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ABSTRACT Sparsity constraints on the control inputs of a linear dynamical system naturally arise in
several practical applications such as networked control, computer vision, seismic signal processing, and
cyber-physical systems. In this work, we consider the problem of jointly estimating the states and sparse
inputs of such systems from low-dimensional (compressive) measurements. Due to the low-dimensional
measurements, conventional Kalman filtering and smoothing algorithms fail to accurately estimate the states
and inputs. We present a Bayesian approach that exploits the input sparsity to significantly improve estimation
accuracy. Sparsity in the input estimates is promoted by using different prior distributions on the input.
We investigate two main approaches: regularizer-based maximum a posteriori estimation and Bayesian
learning-based estimation. We also extend the approaches to handle control inputs with common support and
analyze the time and memory complexities of the presented algorithms. Finally, using numerical simulations,
we show that our algorithms outperform the state-of-the-art methods in terms of accuracy and time/memory
complexities, especially in the low-dimensional measurement regime.

INDEX TERMS Kalman filtering and smoothing, sparsity-promoting regularizer, joint sparsity, ADMM, �1

minimization, reweighted �2 minimization, sparse Bayesian learning, variational Bayesian methods.

I. INTRODUCTION
Sparse actuator control of linear dynamical systems (LDSs)
has recently gained considerable interest in the literature [2],
[3], [4], [5]. This new research area deals with LDSs with
sparsity constraints on the control inputs, i.e., each input
vector contains only a small number of nonzero entries. An
LDS with sparse control inputs models several practical ap-
plications such as networked control systems [2], [3], opinion
dynamics manipulation [6], [7], computer vision [8], seismic
signal processing [9], [10], and cyber-physical systems [11],
[12]. In such applications, an important goal is to jointly
estimate the states and sparse inputs of the LDS from its
measurements or output. For example, malicious attacks on
cyber-physical systems can be modeled as sparse inputs [11],
[12]. Recovery of these sparse attacks is crucial to detecting

and mitigating the attacks, as demonstrated in applications
such as aircraft engine [13], [14], [15] and power system
network [16]. Motivated by the above applications, this pa-
per focuses on developing joint state and input recovery
algorithms for observable LDSs with sparse control inputs.
Specifically, we consider a discrete-time LDS, with state
transition matrix Ak ∈ R

n×n, input matrix Bk ∈ R
n×m, mea-

surement matrices Ck ∈ R
p×n and Dk ∈ R

p×m at time instant
k, whose dynamics are governed by

xk+1 = Akxk + Bkuk + wk (1)

yk = Ckxk + Dkuk + vk . (2)

Here, uk ∈ R
m is the input, xk ∈ R

n is the state, and yk ∈
R

p is the measurement at time k. Also, wk and vk are the
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process noise and measurement noise, respectively. The noise
wk ∼ N (0, Qk ) and vk ∼ N (0, Rk ) are independent, where
Qk ∈ R

n×n and Rk ∈ R
p×p are positive definite matrices.

Here, N (μ,�) denotes the Gaussian distribution with mean
vector μ and covariance matrix �. We aim to simultaneously
estimate the states and sparse inputs {xk, uk : ‖uk‖0 � m}K

k=1
from the low dimensional measurements {yk}K

k=1 with p < m,
for a given K > 0. Here, ‖ · ‖0 denotes the �0 norm. We
emphasize that our focus is not on the design of sparse control
inputs, but on recovering the states and sparse inputs of the
system.

A. RELATED WORK
Joint recovery of states and input without assuming any
specific structure on the inputs or states has been studied
extensively [17], [18], [19], [20], [21], but these works ignore
any underlying sparsity structure that may exist in the sys-
tem. Exploiting sparsity can facilitate the recovery of states
and inputs with far fewer measurements than conventional
approaches. The existing studies on the recovery of states
and inputs in sparsity-constrained LDS consider one of three
problems:

1) ESTIMATION OF SPARSE INITIAL STATE x1

Estimating the sparse initial state of an LDS is equivalent
to the standard sparse recovery problem, and can be solved
using algorithms like LASSO, orthogonal matching pursuit,
or sparse Bayesian learning (SBL) [22], [23], [24]. Theoreti-
cal results on the recoverability of a sparse initial state from
low dimensional linear measurements of the states when the
sparsity is exploited have been derived in [23], [24], [25], [26],
[27]. These works focus on estimating the sparse initial state,
assuming complete knowledge of the inputs applied to the
system.

2) ESTIMATION OF SPARSE STATES {xk}K
k=1

The sparse state estimation of an LDS without the knowledge
of inputs has been studied in diverse applications. Sparsity-
aware Kalman filtering was proposed in [28] to track abrupt
changes in the sequence of sparse states of an LDS. Fur-
ther, sparse state estimation was discussed in [29], where
an SBL-based algorithm was used under the assumption of
jointly sparse states. Another approach for jointly sparse state
recovery algorithms imposed an �1-regularizer in the Kalman
smoothing cost, followed by the alternating direction method
of multipliers (ADMM) method [30]. Furthermore, the re-
covery of sparse states without the joint sparsity assumption
was studied via �1-regularization-based dynamic filtering [31]
and via a variational form of SBL in [32]. Additionally, [33]
considered a general non-linear state space model with linear
measurements of sparse states and developed an SBL-based
dynamic filtering algorithm. However, these works assume the
system matrices and inputs are restricted to ensure that xk+1
in (1) is sparse.

3) JOINT ESTIMATION OF STATES AND SPARSE INPUTS
{xk, uk}K

k=1

In [34], the problem of jointly recovering the state and sparse
input sequences as an �1-minimization using convex optimiza-
tion methods was considered, i.e., minimizing

∑K
k=1 ‖uk‖1.

Necessary and sufficient conditions for observability of sparse
control inputs and the initial state for a noiseless LDS have
been investigated in [35], [36]. These methods involve solving
for a large-dimensional unknown sparse vector obtained by
stacking the input vectors and do not exploit the temporal
correlation in the state evolution. Consequently, the resulting
algorithms have high computational complexity and memory
requirements. To address these literature gaps, we presents
new sparsity-driven estimators with better performance and
lower complexities.

B. CONTRIBUTIONS
We address the joint estimation of states and sparse inputs
from (1) and (2) using p observations per time step over K
time steps. With K (n + m) unknowns and only K p observa-
tions with p � n + m, the system is highly underdetermined.
We solve the problem by enforcing sparsity via fictitious pri-
ors from the exponential family and integrating the resulting
Bayesian framework with Kalman smoothing to exploit tem-
poral correlations, yielding different estimation methods. Our
contributions are as follows:

1) Regularizer-based approach: We integrate the sparsity-
promoting priors in the maximum a posteriori (MAP) estima-
tor of the system’s state and inputs leading to �1-regularized
and reweighted �2-regularized algorithms. (See Section III.)

2) Bayesian learning-based approach: We develop two
techniques that use hierarchical Gaussian priors to induce
sparsity. First, we rely on type-II maximum likelihood (ML)
estimation combined with Kalman smoothing to determine
the states and sparse inputs. Second, we develop a variational
Bayesian (VB) algorithm that groups the prior parameters and
unknown states and inputs as unobserved variables, and infers
their posterior distributions. (See Section IV.)

3) Comparison and extension: We analyze and derive the
time and memory complexities of both approaches in Section
IV-C. Our empirical studies in Section V show that Bayesian
learning-based algorithms outperform the regularizer-based
approach and have lower complexity. We also extend the two
approaches to the case of jointly sparse control inputs and
present a similar analysis.

The key innovation in this work is seamlessly integrat-
ing advanced sparse recovery techniques with the Kalman
smoothing framework. Unlike most control algorithms that
exploit sparsity using basic �1-norm regularization, often
neglecting the temporal evolution of the state process, our
work bridges the gap between sparse signal processing
and control theory by introducing sophisticated Bayesian
sparse signal recovery methods within the Kalman smoothing
framework.
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This work significantly extends the conference paper [1] in
several key aspects: we present a family of regularizer-based
approaches, convergence analysis of the algorithms, and more
comprehensive simulation results along with comparisons to
extended versions of state-of-the-art algorithms.

Notation: The ith entry of vector a is a(i) and the (i, j)th
entry of matrix A is A(i, j). We denote a sequence of vectors
{a1, a2, . . . , aN } by AN

1 . The �1-norm is denoted by ‖ · ‖1, and
‖ · ‖ denotes the induced �2-norm for matrices and Euclidean
norm for vectors. Also, AS denotes the submatrix of A with
the columns indexed by set S , and xS denotes the subvector
of x with entries indexed by S . If P is a nonsingular matrix,
we define ‖x‖P = xTP−1x.

II. MAP ESTIMATION OF STATES AND SPARSE INPUTS
In this section, we introduce the generalized framework
for Bayesian estimation of initial state and sparse inputs
via sparsity-promoting priors. Specifically, we consider the
estimation of the states and inputs {xk, uk}K

k=1 using mea-
surements Y K

1 � {yk}K
k=1 in (2) using a Bayesian framework,

exploiting the sparsity of the inputs and the temporal correla-
tion across the states dictated by (1).

The MAP estimates x̂k|K , ûk|K of the states and inputs are
computed using the joint distribution of all the states and
inputs {xk, uk}K

k=1 given all observations Y K
1 , subject to the

system dynamics in (1) and (2), i.e.,{
x̂k|K , ûk|K

}K
k=1 = arg max

xk ,uk
k=1,...,K

p
({xk, uk}K

k=1 | Y K
1

)

= arg max
xk ,uk

k=1,...,K

K∏
k=1

p(yk|xk, uk )p(uk )

×
K∏

k=2

p(xk|xk−1, uk−1) × p(x1), (3)

where we use the Markov structure implied by (1), and assume
the input uk is independent of the inputs. We note that the
control inputs applied to the LDS need not be independent of
the initial state. However, we make no assumptions about any
prior knowledge of such relationships. Instead, we treat the
inputs as unknown parameters and impose a fictitious prior
to enforce sparsity (which we discuss later) to develop our
algorithms.

Further, we do not make any assumptions about the initial
state x1 and assume p(x1) to be a (an improper) uniform prior.
So, from (1) and (2), and using Gaussianity of the process and
measurement noise, the optimization problem in (3) reduces
to

{
x̂k|K , ûk|K

}K
k=1 = arg min

xk ,uk
k=1,...,K

1

2

K∑
k=1

‖yk − Ckxk − Dkuk‖2
Rk

+ 1

2

K−1∑
k=1

∥∥xk+1 − Akxk − Bkuk
∥∥2

Qk

−
K∑

k=1

ln(p(uk )). (4)

Since the input is known to be sparse, we encode this informa-
tion into the estimation model via suitable priors on the inputs.
Based on different sparsity-promoting priors, we develop two
approaches: (a) regularized robust Kalman smoothing (RKS)
and (b) Bayesian RKS, presented next.

III. REGULARIZED ROBUST KALMAN SMOOTHING
Inspired by the convex optimization-based sparse signal re-
covery algorithms [22], [37], we use the following prior to
induce sparsity:

p (uk ) =
m∏

i=1

χ exp
[
−τk

2
|uk (i)|l

]
,

where χ is the normalizing constant and τk, l > 0 are known
distribution parameters. Here, τk controls the sparsity of the
control inputs, i.e., a large value of τk leads to sparser so-
lutions. This parameter is often chosen by cross-validation.
The choice of l determines the properties of the optimization
problem in (4), leading to different estimators as given below.

A. �1-REGULARIZED ROBUST KALMAN SMOOTHING
Motivated by the �1 norm-based Laplacian prior, the most
popular choice is l = 1. With l = 1, the optimization problem
in (4) becomes

{
x̂k|K , ûk|K

}K
k=1 = arg min

xk ,uk
k=1,...,K

K∑
k=1

‖yk − Ckxk − Dkuk‖2
Rk

+
K−1∑
k=1

∥∥xk+1 − Akxk − Bkuk
∥∥2

Qk

+
K∑

k=1

τk ‖uk‖1 . (5)

The convex optimization problem in (5) has no closed-form
solution. So, we use the ADMM algorithm [38] to solve
it. ADMM decomposes the convex optimization problem in
(5) into simpler optimization problems. We reformulate (5)
to another equivalent optimization problem using auxiliary
variables {tk ∈ R

m}K
k=1. We define the augmented Lagrangian

function as

L ({xk, uk, tk,λk}K
k=1

)
=

K∑
k=1

‖yk − Ckxk − Dkuk‖2
Rk

+
K−1∑
k=1

∥∥xk+1 − Akxk − Bkuk
∥∥2

Qk

VOLUME 4, 2025 583
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+
K∑

k=1

[
τk ‖tk‖1 + λT

k (tk − uk ) + c ‖tk − uk‖2
]
, (6)

where {λk ∈ R
m}K

k=1 are the Lagrangian multipliers that arise
from the K constraints tk = uk . Also, c > 0 is a scalar.
ADMM is an iterative algorithm that alternately solves sub-
problems of (6), each focusing on a specific block of variables.
The rth iteration updates are{

x(r)
k , u(r)

k

}K

k=1
= arg min

{xk ,uk}K
k=1

L
({

xk, uk, t (r−1)
k λ

(r−1)
k

}K

k=1

)
(7)

t (r)
k = arg min

tk
L
({

x(r)
k , u(r)

k , tk,λ
(r−1)
k

}K

k=1

)
(8)

λ
(r)
k = λ

(r−1)
k + 2c

(
u(r)

k − t (r)
k

)
, (9)

for k = 1, 2, . . . , K . Further, (7) can be simplified as

{
x(r)

k , u(r)
k

}K

k=1
= arg min

xk ,uk
k=1,...,K

K∑
k=1

∥∥∥y�1
k −C̃kxk −D̃kuk

∥∥∥2

R
�1
k

+
K−1∑
k=1

∥∥xk+1 − Akxk − Bkuk
∥∥2

Qk
. (10)

Here, we define the new matrices

y�1
k =

[
yk

t (r−1)
k − c−1λ

(r−1)
k

]
, R�1

k =
[

Rk 0
0 c−1I

]
(11)

C̃k =
[
CT

k 0
]T

, D̃k =
[
DT

k I
]T

. (12)

To solve (10), we next extend Kalman filtering and smoothing,
laying the foundation for our algorithms in this paper.

Theorem 1: Consider the MAP estimates of the states and
inputs of the linear system in (1) and (2) with the assumption
that Dk’s have full column rank and without any prior infor-
mation on the inputs, given by

arg min
xk ,uk

k=1,...,K

K∑
k=1

‖yk − Ckxk − Dkuk‖2
Rk

+
K−1∑
k=1

∥∥xk+1 − Akxk − Bkuk
∥∥2

Qk
. (13)

This problem can be solved recursively using the predic-
tion, filtering, and smoothing steps, using the robust Kalman
smoothing (RKS) algorithm summarized in Algorithm 1.

Proof: See Appendix A.
We note that the statement of Theorem 1 requires p ≥ m,

which implies that, in the absence of additional structural
information about the inputs uk , a necessary condition for
obtaining MAP estimates is that the number of measurements
must be at least as large as the input dimension.

In Algorithm 1, we determine the statistics of the joint
Gaussian posterior distribution of xk and uk given Y K

1 . We

Algorithm 1: Robust Kalman Smoothing.

Input: {yk, Ak, Bk,Ck, Dk, Qk, Rk}K
k=1

Initialization: ξ̂0|0 = 0 ∈ R
n+m, Pξ

0|0 ∈ R
(n+m)×(n+m)

and Q0 = 0 ∈ R
n×n

1: ξk =
[
xT

k uT
k

]T
, Ãk =

[
Ak Bk

]
and

T =
[
I 0

]T ∈ R
(n+m)×n

2: Jk = (DT
kR−1

k Dk )−1DT
kR−1

k for k = 1, . . . K
3: for k = 1, 2, . . . , K do

#Prediction:
4: x̂k|k−1 = Ãk−1ξ̂k−1|k−1

5: Px
k|k−1 = Ãk−1Pξ

k−1|k−1ÃT
k−1 + Qk−1

#Filtering:
6: Lk = Px

k|k−1CT
k (Rk + CkPx

k|k−1CT
k )−1

7: Gk =
[

(I − LkDkJkCk )−1Lk (I − DkJk )

(I − JkCkLkDk )−1Jk (I − CkLk )

]

8: ξ̂k|k = Tx̂k|k−1 + Gk (yk − Ck x̂k|k−1)

9: Pξ
k|k = (T −GkCk )Px

k|k−1(T −GkCk )T+ GkRkGT
k

10: Compute x̂k|k and Px
k|k from ξ̂k|k and Pξ

k|k
11: end for

#Smoothing:
12: for k = K − 1, K − 2, . . . , 1 do
13: Kk = Pξ

k|kÃT
k (Px

k+1|k )−1

14: Pξ
k|K = Pξ

k|k + Kk (Px
k+1|K − Px

k+1|k )KT
k

15: ξ̂k|K = ξ̂k|k + Kk (x̂k+1|K − Ãk ξ̂k|k )

16: Compute x̂k|K and Px
k|K from ξ̂k|K and Pξ

k|K
17: end for

Output: {x̂k|K }K
k=1 and {ûk|K }K

k=1

know for any t and k the posterior distribution of the state xt

and input ut given measurements Y k
1 is given by

p
(

xt , ut |Y k
1

)
= N

⎛
⎝[x̂t |k

ût |k

]
,

⎡
⎣ Px

t |k Pxu
t |k(

Pxu
t |k
)T

Pu
t |k

⎤
⎦
⎞
⎠ . (14)

Here, x̂t |k ∈ R
n and ût |k ∈ R

m are the estimates of xt

and ut given Y k
1 with associated covariances Px

t |k ∈ R
n×n

and Pu
t |k ∈ R

m×m, respectively, and cross-covariance Pxu
t |k ∈

R
n×m. Then, defining ξT

t =
[
xT

t uT
t

]
, we get p(ξt |Y k

1) ∼
N (ξ̂t |k, Pξ

t |k ), where ξ̂t |k and Pξ
t |k are the mean and covariance

of the distribution in (14).
Since (10) has the same form as (13), its solution follows

the RKS algorithm with the measurement model in (11) and
(12). Further, from (8), the auxiliary variable update is

t (r)
k = arg min

tk
τk ‖tk‖1 + c

∥∥∥tk − c−1λ
(r−1)
k − u(r)

k

∥∥∥2

= Sc−1τk

(
u(r)

k + c−1λ
(r−1)
k

)
, (15)
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Algorithm 2: �1-regularized Robust Kalman Smoothing.

Input: {yk, Ak, Bk,Ck, Dk, Qk, Rk}K
k=1

Parameters: c, rmax, and τk for k = 1, 2, . . . , K , r = 1,
ε = 2εthres
Initialization: t (0)

k = λ
(0)
k = 0, for k = 1, 2, . . . , K

1: Compute R�1
k , C̃k , D̃k using (11) and (12)

2: while (r < rmax) or (ε > εthres) do
3: Compute y�1

k using (11)

4: Compute x(r)
k and u(r)

k via Algorithm 1 replacing

yk , Ck , Dk , and Rk with y�1
k , C̃k , D̃k , and R�1

k ,
respectively

5: for k = 1, 2, . . . , K do
6: t (r)

k = Sc−1τk
(u(r)

k + c−1λ
(r−1)
k )

7: λ
(r)
k = λ

(r−1)
k + 2c(u(r)

k − t (r)
k )

8: end for

9: ε =∑K
k=1 ‖ξ(r)

k − ξ
(r−1)
k ‖2

2 where ξ
(r)
k =

[
x(r)

k

u(r)
k

]
10: r = r + 1
11: end while

Output: {x(r)
k }K

k=1 and {u(r)
k }K

k=1

where the last step follows from the LASSO solution. Also,
S(·) is the entry-wise soft thresholding function, Sb(a) =
Sgn(a) max{|a| − b, 0}. Combing (9), (10) with Theorem 1,
and (15), �1-regularized RKS is summarized in Algorithm 2.

In Algorithm 2, the full column rank requirement of Theo-

rem 1 holds for D̃k =
[
DT

k I
]T ∈ R

(p+m)×m.

Since (5) is convex, ADMM is guaranteed to converge to
the global solution. A general limitation of �1-based regu-
larization, however, is that it may yield biased estimates for
large coefficients, thereby necessitating careful tuning of the
penalty parameters [39].

B. REWEIGHTED �2-REGULARIZED ROBUST KALMAN
SMOOTHING
When 0 < l < 2, an alternative algorithm, similar in spirit to
the iterative reweighting-based sparse recovery [37], can be
derived. Then, the optimization problem (13) changes to

{̂
xk|K , ûk|K

}K
k=1 = arg min

xk ,uk
k=1,...,K

K∑
k=1

‖yk −Ckxk −Dkuk‖2
Rk

+
K−1∑
k=1

∥∥xk+1−Akxk −Bkuk
∥∥2

Qk

+
K∑

k=1

τk

m∑
i=1

|uk (i)|l . (16)

We use the majorization minimization (MM) technique to
solve (16). In MM, the cost function is upper-bounded around
the current iterate by a tractable function that is easy to op-
timize, and we minimize that upper bound to get the new

iterate. Here, we bound the regularizer term by noting that
the function |u|l = (|u|2)l/2 is a concave function of |u|2.
Therefore, the function is bounded above by its first-order
Taylor approximation, and for any u ∈ R,

(|uk (i)|2)l/2 ≤ (|u|2)l/2 + l

2

(|u|2)l/2−1
(|uk (i)|2 − |u|2).

With u = u(r−1)
k (i), we get

(|uk (i)|2)l/2 ≤ l

2

∣∣∣u(r−1)
k (i)

∣∣∣−(2−l ) |uk (i)|2

+
(

1 − l

2

) ∣∣∣u(r−1)
k (i)

∣∣∣l . (17)

We now iteratively solve (16) by optimizing the upper
bound in each iteration. So, the rth iteration computes

{
x(r)

k , u(r)
k

}K

k=1
= arg min

xk ,uk
k=1,...,K

K∑
k=1

‖yk − Ckxk − Dkuk‖2
Rk

+
K−1∑
k=1

∥∥xk+1 − Akxk − Bkuk
∥∥2

Qk

+ l

2

K∑
k=1

τk ‖uk‖2
W (r)

k
. (18)

Here, the diagonal weight matrix W (r)
k ∈ R

m×m is

W (r)
k = diag

{∣∣∣u(r−1)
k

∣∣∣}(2−l )
,

with | · | representing the element-wise modulus. When an
entry of u(r−1)

k become close to zeros, W (r)
k can potentially

become non-invertible. To avoid numerical instabilities, we
prune the entries of u(r−1)

k falls below some small threshold κ

(e.g., κ = 10−6) in magnitude. Now, (18) modifies to

{
x(r)

k , ũ(r)
k

}K

k=1
= arg min

xk ,ũk
k=1,...,K

K∑
k=1

∥∥∥y�2
k −C�2

k xk −D�2
k ũk

∥∥∥2

R
�2
k

+
K−1∑
k=1

∥∥∥xk+1 − Akxk − B�2
k ũk

∥∥∥2

Qk

, (19)

where we define

y�2
k =

[
yT

k 0|Ik |
]T

, B�2
k = (Bk )Ik

(20)

C�2
k =

[
CT

k 0n×|Ik |
]T

, D�2
k =

[
(Dk )TIk

I|Ik |
]T

, (21)

where ũ(r−1)
k ∈ R

|Ik | is the vector obtained after removing the

entries of u(r−1)
k whose absolute values are less than κ , and

Ik is the set of indices corresponding to the entries of u(r−1)
k

which have absolute value at least κ . Also, we define

R�2
k =

⎡
⎣Rk 0

0 2
τk l diag

{∣∣∣ũ(r−1)
k

∣∣∣}(2−l )

⎤
⎦ . (22)
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Algorithm 3: Reweighted �2-regularized Robust Kalman
Smoothing.

Input: {yk, Ak, Bk,Ck, Dk, Qk, Rk}K
k=1

Parameters: l , rmax, κ , and τk for k = 1, 2, . . . , K ,
ε = 2εthres
Initialization: u(0)

k = 1, for k = 1, 2, . . . , K
1: while (r < rmax) or (ε > εthres) do
2: Determine Ik for each u(r−1)

k and compute ũ(r−1)
k

3: Compute y�2
k , B�2

k , C�2
k , D�2

k , R�2
k using (20), (21)

and (22)
4: Compute x(r)

k and ũ(r)
k via Algorithm 1 replacing

yk , Bk , Ck , Dk , and Rk with y�2
k , B�2

k , C�2
k , D�2

k , and

R�2
k respectively

5: Construct u(r)
k using (23)

6: ε =∑K
k=1 ‖ξ(r)

k − ξ
(r−1)
k ‖2

2 where ξ
(r)
k =

[
x(r)

k

u(r)
k

]
7: end while

Output: {x(r)
k }K

k=1 and {u(r)
k }K

k=1

Here, (19) takes the same form as (5) and can be solved via
RKS in Algorithm 1. Finally, we reconstruct u(r)

k as(
u(r)

k

)
Ik

= ũ(r)
k and

(
u(r)

k

)
I�k

= 0. (23)

The pseudocode for the overall reweighted �2-regularized
RKS is summarized in Algorithm 3.

Next, we show that iteratively optimizing the surrogate
function in (18) via Algorithm 3 either decreases the value of
the cost function in (16) or leaves it unchanged, and that the
sequence of cost function values over iterations converges.

Proposition 1: For a given set of inputs, let {x(r)
k , u(r)

k }K
k=1

be the sequence generated by Algorithm 3. Then, the corre-
sponding sequence of cost function values in (5) is monotoni-
cally non-increasing and converges to a limit in R.

Proof: For brevity, we define x = XK
1 and u = UK

1 . Let
the cost function in (16) be denoted by f (x, u) = f1(x, u) +
f2(u), where f1(x, u) denotes the first two quadratic terms
and f2(u) =∑K

k=1 τk
∑m

i=1 |uk (i)|l is the regularizer term.
Also, let the upper bound in (17) be g(u|u(r−1)) ≥ f2(u) and
equality holds when u = u(r−1). Hence, we derive

f (x(r−1), u(r−1)) = f1(x(r−1), u(r−1))+ g(u(r−1)|u(r−1))

≥ f1(x(r), u(r) ) + g(u(r)|u(r) )

≥ f1(x(r), u(r) ) + f2(u(r) )

= f (x(r), u(r) ).

The first inequality holds because, in the rth iteration,
(x(r), u(r) ) the RKS algorithm minimizes the cost func-
tion in (18), which is equivalent to minimizing f1(x, u) +
g(u|u(r−1)). The second inequality holds because g(u|u(r) ) ≥
f2(u) for any u. Hence, the sequence of the cost function val-
ues is monotonically non-increasing. Finally, f (x, u) is lower

bounded by 0. Thus, by the monotone convergence theorem,
the cost function sequence converges. �

The above result guarantees that cost function derived from
the iterates converges to a limit, but the iterates may oscillate,
cycle, or converge to a local minimum or a saddle point.

Iterative reweighted �2 regularization provides stronger
sparsity promotion than �1-based regularizer, since 0 < l < 1
offers a closer approximation to the �0 norm than �1. How-
ever, for 0 < l < 1 the problem becomes non-convex, and a
key drawback is that the algorithm may get trapped in local
minima, as indicated by Proposition 1.

C. EXTENSION TO JOINTLY SPARSE INPUTS
We can extend �1-regularized RKS to estimate jointly sparse
inputs by modifying (5) as follows:

{
x̂k|K , ûk|K

}K
k=1 = arg min

xk ,uk
k=1,...,K

K∑
k=1

‖yk − Ckxk − Dkuk‖2
Rk

+
K−1∑
k=1

∥∥xk+1−Akxk −Bkuk
∥∥2

Qk

+ τ

m∑
i=1

√√√√ K∑
k=1

u2
k (i), (24)

where regularizer τ
∑m

i=1

√∑K
k=1 u2

k (i) is inspired by the
LASSO type regularization [40]. As τ > 0 increases, the com-
mon support output by the algorithm shrinks, making the
inputs sparser. Now, using auxiliary variables tk’s, we refor-
mulate (24) and solve the following using ADMM:

{
x̂k|K , ûk|K

}K
k=1 = arg min

xk ,uk
k=1,...,K

K∑
k=1

‖yk − Ckxk − Dkuk‖2
Rk

+
K−1∑
k=1

∥∥xk+1 − Akxk − Bkuk
∥∥2

Qk

+ τ

m∑
i=1

√√√√ K∑
k=1

t2
k (i) +

K∑
k=1

λT
k (tk − uk )

+ c
K∑

k=1

‖tk − uk‖2 , (25)

where {λk ∈ R
m}K

k=1 are the Lagrangian multipliers that arise
from the equality constraints tk = uk and c > 0 is a positive
scalar. Since (25) is identical to (6) except for the terms in tk ,
our modified �1-regularized RKS is identical to Algorithm 2
except for Step 6, which changes to [40],

t (r)(i, :) = u(r)(i, :) + c−1λ(r−1)(i, :)∥∥u(r)(i, :) + c−1λ(r−1)(i, :)
∥∥

× Sc−1τ

(∥∥u(r)(i, :) + c−1λ(r−1)(i, :)
∥∥) ,
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where function S is defined in (15), and t (r)(i, :), u(r)(i, :),
λ(r−1)(i, :) follow the definition,

a(i, :) =
[
a1(i) a2(i) . . . aK (i)

]T ∈ R
K , (26)

for any set {ak ∈ R
m}K

k=1 and i = 1, 2, . . . , K . This modified
version is referred to as group �1-regularized RKS.

IV. BAYESIAN ROBUST KALMAN SMOOTHING
In this section, we present an alternative approach, called
Bayesian RKS, to estimate the states and sparse inputs
{xk, uk}K

k=1 using measurements {yk}K
k=1 in (2). Unlike the

regularized RKS that assumes the knowledge of the param-
eters of the sparse input prior, the Bayesian approach uses
hierarchical priors which account for the uncertainty in the
prior distribution. Specifically, we use a hierarchical Gaussian
prior on the inputs to promote sparsity:

p(uk; γk ) =
m∏

i=1

1√
2πγk (i)

exp

(
− uk (i)2

2γk (i)

)
, (27)

where γk ∈ R
m is the unknown hyperparameter of the distri-

bution. The Bayesian RKS learns the hyperparameters from
the measurements, unlike the regularized RKS. We present
two Bayesian RKS variants: SBL-RKS and VB-RKS.

A. SPARSE BAYESIAN LEARNING-BASED RKS
In the SBL framework, we first compute the ML estimate γ̂ML

k
of the hyperparameter as

{γ̂ML
k }K

k=1 = arg max
γk∈Rm×1

+
k=1,...,K

p
(
Y K

1 ; {γk}K
k=1

)
. (28)

Using the estimate γ̂ML
k , we can estimate the states and

inputs using the Kalman filtering and smoothing algorithm.
For this, we note that (1) and (2) are equivalent to

ξk+1 =
[

Ãk

0

]
ξk +

[
wk

zk

]
and yk =

[
Ck Dk

]
ξk + vk,

(29)
where ξk is defined as

ξk =
[
xT

k uT
k

]T
, (30)

and zk = uk+1 is an auxiliary variable. From (27), we get[
wk

zk

]
∼ N

(
0,

[
Qk 0
0 Diag

{
γk+1

}
])

.

Given {γ̂ML
k }K

k=1, estimating the states and inputs reduces to
estimating {ξk}K

k=1 using Y K
1 via Kalman filtering and smooth-

ing, due to the Gaussian assumptions.
Since optimization problem in (28) lack a closed-form solu-

tion, we employ expectation-maximization (EM), an iterative
method with the expectation (E) and maximization (M) steps.
In the rth iteration, the E-step computes the expected log-
likelihood function Q(r) of {γk}K

k=1 with respect to {ξk}K
k=1

given data Y K
1 and the current estimate γ

(r−1)
k of the hyper-

parameter γk obtained in the previous iteration. The M-step
maximizes the expected log-likelihood to obtain the new es-
timate of γk . Further, from the state space model in (29), the
distribution of the data is given by

p
(
Y K

1 , {ξk}K
k=1 ; {γk}K

k=1

)= K∏
k=1

p(yk|ξk )p
(
ξk|ξk−1; γk

)
,

where ξ0 = 0. Thus, the E-step is given by

Q(r)
(

{γk}K
k=1 |

{
γ

(r−1)
k

}K

k=1

)

=
K∑

k=1

E
ξk ,ξk−1|Y K

1 ;γ (r−1)
k

{log p(yk|ξk )

×p
(
xk | ξk−1

)
p (uk; γk )

}
.

From the above relation, the M-step that maximizes Q(r)

with respect to {γk}K
k=1 is separable, and ignoring the terms

independent of γk , the M-step reduces to

γ
(r+1)
k = arg max

γk

Euk |Y K
1 ;γ (r−1)

k
{p (uk; γk )} .

Using (27), we derive the M-step as

γ
(r+1)
k = arg min

�=Diag{γk}
log |�|+Tr

{
�−1(ûk|K ûT

k|K +Pu
k|K )
}

= Diag
{

ûk|K ûT
k|K + Pu

k|K
}

.

Further, ûk|K and Pu
k|K can be computed by applying

Kalman filtering and smoothing on the modified state space
model in (29). The overall SBL-RKS algorithm is summarized
in Algorithm 4.

Next, we establish a result similar to Proposition 1 for
SBL-RKS. We show that the EM updates in Algorithm 4
are guaranteed to monotonically increase (or maintain) the
data log-likelihood in each iteration. Hence, the sequence of
objective function values over iterations converges.

Proposition 2: For a given set of inputs, let {γ (r)
k :

k = 1, . . . , K}∞r=1 be the sequence generated by Algorithm
4 such that ‖γ (r)

k ‖2 < ∞. Then, the sequence {log p(Y K
1 |

{γk}K
k=1}∞r=1 is monotonically nondecreasing and converges to

a finite limit in R.
Proof: For notational brevity, we denote the observations

by y = Y K
1 , the hidden variables by z = {XK

1 ,UK
1 }, and the

hyperparameters by γ = {γk}K
1 . In the rth iteration of the SBL

algorithm, we derive

γ (r+1) = arg max
γ

Q(γ | γ (r) )

= arg max
γ

Ez∼p(z|y,γ (r) )[log p(y, z | γ )].

Then, by the properties of the EM algorithm [41, Section
3.2], the ML objective function in (28) is monotonically in-
creasing,

log p(y | γ (r) ) ≤ log p(y | γ (r+1)).
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Algorithm 4: RKS with Sparse Bayesian Learning.

Input: {yk, Ak, Bk,Ck, Dk, Qk, Rk}K
k=1

Parameters: rmax, εthres
Initialization: γ

(0)
k = 1 for k = 1, 2, . . . , K , r = 1,

ε = 2εthres

1: Āk =
[

Ak Bk

0 0

]
∈ R

(n+m)×(n+m) and

C̄k =
[
Ck Dk

]
2: while (r < rmax) or (ε > εthres) do

#E-Step:
3: ξ̂0|0 = 0, Pξ

0|0 = I
4: for k = 1, 2, . . . , K do

5: Q̄k−1 =
[

Qk−1 0
0 Diag{γk}

]
#Prediction:

6: ξ̂k|k−1 = Āk−1ξ̂k−1|k−1

7: Pξ
k|k−1 = Āk−1Pξ

k−1|k−1ĀT
k−1 + Q̄k−1

#Filtering:
8: Gk = Pξ

k|k−1C̄T
k (Rk + C̄kPξ

k|k−1C̄T
k )−1

9: ξ̂k|k = ξ̂k|k−1 + Gk (yk − C̄k ξ̂k|k−1)

10: Pξ
k|k = (I − GkC̄k )Pξ

k|k−1
11: end for

#Smoothing:
12: for k = K − 1, K − 2, . . . , 1 do
13: Kk = Pξ

k|kĀT
k (Pξ

k+1|k )−1

14: Pξ
k|K = Pξ

k|k + Kk (Pξ
k+1|K − Pξ

k+1|k )KT
k

15: ξ̂k|K = ξ̂k|k + Kk (ξ̂k+1|K − Āk ξ̂k|k )

16: Pξ
k+1,k|K =

[
Px

k+1|K Pxu
k+1|K

]T
KT

k

17: Compute ûk|K and Pu
k|K using (30) from ξ̂k|K

and Pξ
k|K

18: end for
#M-step:

19: γ
(r)
k =Diag{̂uk|K ûT

k|K +Pu
k|K}, for k = 1, 2, . . . , K

20: ε =∑K
k=1 ‖γ (r)

k − γ
(r−1)
k ‖2

2
21: r = r + 1
22: end while
23: Compute {x̂k|K , ûk|K }K

k=1 using (30) from ξ̂k|K
Output: {x̂k|K }K

k=1 and {ûk|K }K
k=1

Further, from (1) and (2), we derive

ỹK = f̃ (z,W K−1
1 ) + ṽK ,

where ỹK =
[
yT

1 yT
2 . . . yT

K

]T ∈ R
K p denotes the con-

catenated measurement vector. Likewise, ṽK ∈ R
K p stacks

the measurement noise. It is Gaussian with zero mean and
covariance R = Blkdiag(R1, . . . , RK ), where the operator
Blkdiag(·) denotes a block diagonal matrix with its arguments
as its block diagonal entries. The term f̃ (z,W K−1

1 ) is a linear
function of the initial state, inputs, and process noise. It is also

Gaussian distributed with zero mean and covariance denoted
by �(γ ) ∈ R

K p×K p, i.e., it is a function of γ . Then, we derive

log p(y | γ (r) ) = − K p

2
log(2π ) − 1

2
log |�(γ ) + R|

− 1

2
ỹT

K (�(γ ) + R)−1 ỹK

≤ − K p

2
log(2π ) − 1

2
log |R| ,

since �(γ ) is positive semi-definite and bounded. Moreover,
since R is positive definite, the monotonically nondecreasing
sequence {log p(Y K

1 | {γk}K
k=1}∞r=1 is bounded from above and

the sequence converges to a finite limit point.
Remark: When all the inputs are jointly sparse, we can

use a common prior uk ∼ N (0, Diag{γ}), i.e., γk = γ for
k = 1, 2, . . . , K . Then, the SBL-RKS for joint sparse input
recovery is identical to Algorithm 4 except for Steps 5 and 19.
The noise covariance in Step 5 changes to

Q̄k =
[

Qk 0
0 Diag {γ}

]
, k = 1, 2, . . . , K.

Similarly, the M-step in Step 19 is modified as

γ (r+1) = 1

K

K∑
k=1

Diag
{

ûk|K ûT
k|K + Pu

k|K
}

.

The modified SBL-RKS for jointly sparse inputs is referred
to as multiple measurement vector SBL-RKS (MSBL-RKS).
The advantage of SBL is that the hierarchical Gaussian priors
together with EM updates automatically learn the penalty
weights associated with the relevant nonzero entries of the
sparse vector. In contrast, regularization-based approaches re-
quire manual tuning of penalty parameters [42].

B. VARIATIONAL BAYESIAN ROBUST KALMAN SMOOTHING
In the variational Bayesian inference (VBI) approach, we em-
ploy a two-stage hierarchical prior. Specifically, we assume
βk (i) ∼ Gamma(a, b), where the precision hyperparameter
βk (i) = 1/γk (i) in (27), and Gamma(a, b) is the Gamma
distribution with shape parameter a > 0 and rate parameter
b > 0, i.e.,

p(βk ) =
m∏

i=1

	−1(a) ba(βk (i))a−1 exp(−bβk (i)). (31)

The VB-RKS algorithm estimates the set of unknown
parameters Z = {XK

1 ,UK
1 , {βk}K

k=1} as the mean of their pos-
terior distribution. However, the posterior distribution compu-
tation is intractable, and we approximate it using a family of
factorized distributions:

p(Z|Y K
1 ) ≈ q(Z ) =

K∏
k=1

qx
k (xk )qu

k (uk )qβ
k (βk ),

where qx
k (·), qu

k (·), and qβ
k (·) are the marginal distributions of

the latent variables xk, uk , and βk , respectively.
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We seek the optimal distribution q(Z ) that minimizes the
Kullback-Leibler (KL) divergence

F (q(Z )) = KL(q(Z )‖p(Z | y)).

Now, the optimal marginal distribution is given by [43]

ln qx
k (xk ) ∝ Eq(Z\xk )

{
ln p

(Z,Y K
1

)}
ln qu

k (uk ) ∝ Eq(Z\uk )
{
ln p

(Z,Y K
1

)}
,

where ∝ denotes the equality up to an additive constant and
Eq(Z\xk ){·} and Eq(Z\uk ){·} are the expectations with respect to
all the latent variables except xk and uk , respectively. Further,
we recall that

p(Z,Y K
1 )=

K∏
k=1

p(yk|xk, uk )p(xk|xk−1, uk−1)

× p(uk|βk )p(βk ),

where p(uk|βk ) and p(βk ) are given by (27) with βk (i) =
1/γk (i), and (31), respectively. Consequently, we arrive at

ln qx
k (xk ) ∝ ‖yk − Ckxk − Dk〈uk〉‖2

Rk

+ ‖〈xk+1〉 − Akxk − Bk〈uk〉‖2
Qk

+ ‖xk − Ak−1〈xk−1〉 − Bk−1〈uk−1〉‖2
Qk−1

,

where 〈·〉 denotes the mean of a random variable following the
marginal distribution q(·). Hence, the marginal distribution
qx

k (xk ) is Gaussian. Its mean can be computed by setting the
gradient with respect to xk to 0, leading to

〈xk〉 = Px
k

[
CT

kR−1
k yk + Q−1

k−1Bk−1〈uk−1〉

−
(
CT

kR−1
k Dk + AT

kQ−1
k Bk

)
〈uk〉

+Q−1
k−1Ak−1〈xk−1〉 + AT

kQ−1
k 〈xk+1〉

]
, (32)

where we define

Px
k =

(
CT

kR−1
k Ck + Q−1

k−1 + AT
kQ−1

k Ak

)−1
. (33)

Similarly, the marginal distribution of uk is computed as

ln qu
k (uk ) ∝ Eq(Z\uk )

{
ln p

(Z,Y K
1

)}
∝ ‖yk − Ck〈xk〉 − Dkuk‖2

Rk

+ ‖xk+1−Ak〈xk〉−Bkuk‖2
Qk

+
m∑

i=1

uk (i)2〈βk (i)〉.

The mean of the Gaussian distribution qu
k (xk ) is

〈uk〉 = Pu
k

[
DT

kR−1
k yk −

(
DT

kR−1
k Ck + BT

kQ−1
k Ak

)
× 〈xk〉 +BT

kQ−1
k 〈xk+1〉

]
, (34)

where the matrix Pu
k is

Pu
k =

(
DT

kR−1
k Dk + BT

kQ−1
k Bk + 〈diag {βk}〉

)−1
.

Algorithm 5: Variational Bayesian RKS.

Input: {yk, Ak, Bk,Ck, Dk, Qk, Rk}K
k=1

Parameters: rmax and r̃max

Initialization: 〈xk〉 = 0, 〈uk〉 = 0, 〈βk〉 = 1 for
k = 1, 2, . . . , K
1: for r = 1, 2, . . . , rmax do
2: for r̃ = 1, 2, . . . , r̃max do
3: Compute x(r,r̃)

k = 〈xk〉 using (32) for
k = 1, . . . , K

4: Compute u(r,r̃)
k = 〈uk〉 using (34) for

k = 1, . . . , K
5: end for
6: Compute β

(r)
k = 〈βk〉 using (35) for k = 1, . . . , K

7: end for
Output: {x(r,r̃)

k }K
k=1 and {u(r,r̃)

k }K
k=1

We use xK+1 = 0 for k = K and x0 = 0 for k = 1 in (32)
and (34). Finally, q(βk ) =∏m

i=1 q(βk (i)) is a Gamma distri-
bution with mean

〈βk (i)〉 = a + 0.5

b + 0.5〈u2
k (i)〉 = a + 0.5

b + 0.5
[〈uk (i)〉2 + Pu

k (i, i)
] .
(35)

Using (32), (34), and (35), the marginal distribution param-
eters are iteratively updated until convergence to obtain the
approximate posterior distribution. The pseudocode is sum-
marized in Algorithm 5.

The following result shows that Algorithm 5 monotonically
decreases the KL divergence F (Z ) at each iteration.

Proposition 3: For a given set of inputs, the sequence
{F (r)}∞r=1 of KL divergence generated by Algorithm 5 is
monotonically non-increasing and converges to a limit in R.

Proof: From Algorithm 5, let the rth iterate be Z (r) =
(x(r,r̃max ), u(r,r̃max ),β(r) ). Algorithm 5 proceeds by updating
one set of parameters at a time, implying

F (r) = F (Z (r) ) ≥ F (x(r+1,1), u(r,r̃max ),β(r) )

≥ F (x(r+1,1), u(r+1,1),β(r) )

≥ F (x(r+1,r̃max), u(r+1,r̃max ),β(r) )

≥ F (x(r+1,r̃max), u(r+1,r̃max ),β(r+1)) = F (r+1).

Thus, the sequence {F (r)}∞r=1 decreases monotonically, and
since KL divergence is bounded below by 0, it converges.

We note that our result does not establish that the KL
divergence converges to zero, but rather that it converges to
a stable value. This indicates that the estimated state and
input distributions have stabilized at the closest achievable
approximation to the true distribution, though not necessarily
identical to it.

Also, when all the inputs are jointly sparse, similar to
SBL-RKS, we use a common prior uk ∼ N (0, Diag{β}), i.e.,
βk = β for k = 1, 2, . . . , K . In that case, the VB-RKS for
joint sparse input recovery is identical to Algorithm 5 except

VOLUME 4, 2025 589



CHAKRABORTY ET AL.: STATE AND SPARSE INPUT ESTIMATION IN LINEAR DYNAMICAL SYSTEMS USING LOW-DIMENSIONAL MEASUREMENTS

TABLE 1. Run Time Comparison of Algorithms When n = 30, p = 20,
m = 100, K = 30, s = 5 and SNR is 20 dB

that (35) in Step 6 changes as follows.

〈β(i)〉 = a + 0.5

b + 0.5
K

∑K
k=1〈u2

k (i)〉 .

We refer to this algorithm as multiple measurement vector
VB-RKS (MVB-RKS).

Remark: A special case of our problem is the conventional
KF problem when uk = 0 ∀k. The update steps consist of only
two equations (32) and (33) with Bk = 0, Dk = 0. The state
update equation is given by,

〈xk〉 = Px
k

[
CT

kR−1
k yk + Q−1

k−1Ak−1〈xk−1〉 + AT
kQ−1

k 〈xk+1〉
]
.

VB-RKS allows for simple updates of both states and in-
puts, whereas the other algorithms typically require running
a Kalman filter or an RKS subroutine. Consequently, each
iteration of VB-RKS (Step 3, 4, and 6) is computationally
faster than those of the other iterative algorithms. However, in
simulations (see Section V) we observe that VB-RKS requires
significantly more iterations to converge, making it overall
slower.

C. COMPLEXITY COMPARISONS
All four algorithms, �1-regularized RKS, reweighted �2-
regularized RKS, SBL-RKS, and VB-RKS are iterative and
uses the RKS algorithm in every iteration. Also, the RKS step
is the most computationally complex step in these algorithms
and dominates the overall complexity, leading to per-iteration
time complexity of all the algorithms as O(K (n3 + m3 +
p3)) for the versions with and without the joint sparsity
assumption. Since the sparsity-driven algorithms consider
low-dimensional measurements where m ≥ p, the time com-
plexity further reduces to O(K (n3 + m3)).

Further, we have observed from our simulation results that
the other algorithms require a larger number of iterations and
a longer time to converge than SBL-RKS (see Table 1). In
particular, VB-RKS takes a longer run time owing to the large
number of iterations required for convergence. For compar-
ison, we consider the state-of-the-art �1 minimization-based
algorithm, referred to as basis pursuit (BP)-RKS (group BP-
RKS for the joint support case). BP-RKS is a non-iterative

TABLE 2. Complexity Comparison of Algorithms

algorithm whose complexity scales as O(K
7
2 m

3
2 p2 + K (n3 +

p3)) due to the convex programming optimization using the
interior point method. So, our algorithms have low com-
plexity order when the number of iterations is small. The
auxiliary space (memory) complexity of all the algorithms is
O(p2 + K (n2 + m2)). The total time complexities of all the
algorithms are summarized in Table 2 for comparison.

V. SIMULATION RESULTS
In this section, we present empirical results to demonstrate the
superior performance of the algorithms that exploit sparsity.
We choose the state dimension n = 30, the input dimension
m = 100, the output dimension p = 20, and the number of
time steps K = 30. The sparsity level of the input is s = 5,
and the locations of s nonzero entries are chosen uniformly
at random from the set {1, 2, . . . , m}. Further, the nonzero
entries are drawn independently from a normal distribution
N (0, σ 2

u ) with σu = 5. For the time-varying support case, we
independently choose different supports for each time instant
k, and for the jointly sparse case, we use the same support
for all values of k. The entries of the time invariant system
matrices A, B,C, and D and the initial state x1 are indepen-
dently drawn from the standard normal distribution. Also,
the process noise covariance Q and the measurement noise
covariance R are the identity matrix and σ 2

v I, respectively.
Finally, σv is computed from the measurement SNR via the
relation SNR = sσ 2

u /σ 2
v .

For the above setting, we compare the performance of our
algorithms: �1-regularized RKS, reweighted �2-regularized
RKS, SBL-RKS, and VB-RKS for the time-varying support
and jointly sparse cases. We also consider two benchmark ap-
proaches: basis pursuit (BP)-RKS and group BP-RKS, which
are adapted from the algorithm in [34] (see Appendix B for
details), and the RKS algorithm (Algorithm 1). The following
metrics are used for comparison: normalized mean squared
error (NMSE) in the state and input estimation, false support
recovery rate (FSRR) for input estimation, and run time. The
FSRR is the sum of the false alarm and missed detection
rates of the support estimation. The results in Figs. 1–2 and
Table 1 compare the algorithms’ performance as a function of
the measurement dimension p.
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FIGURE 1. Performance comparison of our sparse recovery algorithms and RKS as a function of measurement dimension p when the control inputs are
jointly sparse with n = 30, m = 100, K = 30, s = 5, and SNR = 20 dB.

FIGURE 2. Phase transition diagram for our sparse recovery algorithms
with n = 30, m = 100, K = 30, and SNR = 20 dB.

1) COMPARISON WITH RKS AND AN ORACLE BASELINE
Fig. 1 shows different algorithms’ NMSE and FSRR perfor-
mance for the joint sparsity case. We omit the time-varying
support case due to space limitations; it can be found in [44,
Fig. 1]. From Fig. 1, we infer that the conventional RKS
algorithm has poor NMSE performance compared to the
sparsity-driven approaches. This underscores the importance
of exploiting sparsity to achieve low NMSE. RKS requires
p > m for the inverse to exist in Step 2 of Algorithm 1. Natu-
rally, the algorithm fails in the low-dimensional measurement
regime. Also, the NMSE of RKS is comparable to that of
the sparsity-driven algorithms only when p > m, but the latter
outperform RKS even in that regime.

We also compare performance against an oracle RKS base-
line that assumes the knowledge of input supports. With the
support set Sk of uk known, the system can be represented
with reduced matrices Ak, (Bk )Sk , Ck , and (Dk )Sk driven by
non-sparse inputs (uk )Sk . Then, oracle RKS estimates (uk )Sk

are found by running the RKS algorithm with the modified
matrices. As expected, oracle RKS outperforms all other algo-
rithms in both state and input NMSE performance, as shown
in Fig. 1(a) and (b), respectively. However, SBL-RKS and
VB-RKS approach oracle-level performance in state estima-
tion in the high-p regime.

2) COMPARISON OF SPARSITY-DRIVEN ALGORITHMS
Fig. 1 and Table 1 show that the SBL-RKS and VB-RKS
algorithms outperform BP-RKS and regularized RKS in terms
of NMSE in both states and input estimation, FSRR, and run
time, in line with our arguments in Section IV-C. VB-RKS
performs similar to SBL-RKS, except for runtime, which is
much higher for the former algorithm.

3) TIME-VARYING SUPPORT AND JOINT SPARSITY
Fig. 2 and Table 1 show different algorithms’ performances
for the time-varying support and joint sparsity cases. Fig. 2
plots the minimum value of the number of measurements p
required for 90% recovery accuracy (i.e., successful recovery
of the sparse signals in 90% of the random experiments).
Here, a sparse vector is said to be successfully recovered if
the normalized mean square error between the original signal
and the recovered signal is below 0.05. For the same number
of measurements p, the NMSE in input estimation is better for
the joint sparsity-aware algorithms: group BP-RKS, group �1-
regularized RKS, MSBL-RKS, and MVB-RKS. This behavior
is because of the additional joint sparse structure exploited
by these algorithms. Clearly, the Bayesian RKS algorithms
require the least number of measurements, followed by group
BP-RKS and group �1-regularized RKS. The joint sparsity-
aware algorithms are followed by Bayesian-RKS, BP-RKS,
and regularized RKS. The regularized RKS algorithms have
similar phase transition curves, but SBL-RKS and VB-RKS
require fewer measurements than the regularized RKS.

Finally, Table 1 indicates that joint sparsity-aware algo-
rithms have a shorter run time than their counterparts for the
time-varying support case because they have fewer parameters
to estimate.

4) TIME DOMAIN TRACKING OF STATES AND INPUTS
The time domain state and input tracking performance of
SBL-RKS is shown in Fig. 3 for visual comparison. Here, the
estimate of one entry in the state and input vectors across time
obtained using SBL-RKS are depicted in Fig. 3(a) and in Fig.
3(b), respectively. It is clear from Fig. 3(b) that SBL-RKS is
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FIGURE 3. Time domain tracking performance of SBL-RKS with n = 30, m = 100, p = 20, K = 100, s = 5, and SNR = 20 dB.

able to recover the spikes in the entries of input vectors ac-
curately. Also, Fig. 3(a) shows that SBL-RKS tracks the state
tightly. We observe similar results for all the other sparsity-
aware algorithms, and hence, we omit plotting them to avoid
clutter.

VI. CONCLUSION
In this paper, we studied the joint estimation of states and
sparse inputs as an observer design problem in an LDS.
We developed novel algorithms using fictitious sparsity-
promoting priors, integrating sparse signal recovery tech-
niques within the Kalman smoothing framework to create
sparsity-aware Kalman smoothers. Our methods include a
regularization-based MAP estimation approach and a hierar-
chical Bayesian learning framework built on Gaussian priors.
Empirical results show that exploiting sparsity improves esti-
mation and enables recovery with fewer measurements than
conventional methods. Among the proposed methods, SBL-
RKS is preferred for its low complexity and superior accuracy.
We also extended our approaches for the jointly sparse input
case and demonstrated the efficacy of exploiting additional
structures with sparsity. We also guarantee convergence of the
cost functions of our algorithms to a local minimum or saddle
point. However, convergence of the iterates is not ensured
due to the combined Kalman smoothing and ADMM, EM, or
VBI framework, which needs future study. Investigating the
fundamental limits of sparse recovery in LDS is an interesting
direction for further research. Future work can also extend our
algorithms to handle system identification and estimation of
the system matrices.

APPENDIX A
PROOF OF THEOREM 1: THE KALMAN FILTERING AND
SMOOTHING STEPS
A1 PREDICTION AND FILTERING STEPS
For detailed derivation of step 2-11 see [44]. The filtered
estimates of states and inputs are mathematically equivalent
to the estimator derived in [20]; hence, we omit it for brevity,
although the approach in [44] differs from that in [20].

A2 SMOOTHING STEPS
We develop the smoothing updates for the case of unknown
inputs along the lines of the Kalman smoothing in [45]. The
smoothed posterior distribution p(xk, uk | Y K

1 ) is Gaussian

with mean x̂k|K , ûk|K and covariance Pξ
k|K as derived below.

The joint posterior distribution is

p
(
ξk+1, ξk | Y K

1

)
= p

(
ξk | ξk+1,Y k

1

)
p
(
ξk+1 | Y K

1

)
(36)

= p
(
ξk+1 | ξk,Y k

1

)
p
(
ξk,Y k

1

)
p
(
ξk+1,Y k

1

) p
(
ξk+1 | Y K

1

)

= p
(
ξk+1 | ξk

)
p
(
ξk | Y k

1

)
p
(
ξk+1 | Y k

1

) p
(
ξk+1 | Y K

1

)
, (37)

where (36) follows since {yk+1, . . . , yK } are linear combina-
tions of ξk+1 and other random variables (UK

k+1, W K
k+1, V K

k+1)
which are independent of ξk+1. Also, (37) follows due to the
Markovian nature of the dynamics in (29).

p
(
ξk+1, ξk | Y K

1

)
= p

(
xk+1 | xk, uk

)
p
(
uk+1

)
p
(
ξk | Y k

1

)
p
(
xk+1 | Y k

1

)
p
(
uk+1

) p
(
ξk+1 | Y K

1

)
(38)

= p
(
xk+1 | xk, uk

)
p
(
ξk | Y k

1

)
p
(
xk+1 | Y k

1

) p
(
ξk+1 | Y K

1

)
. (39)

Here, (38) follows since uk+1 is assumed to be independent
of xk , xk+1, uk and all past observations {y1, . . . , yk}.

Taking the logarithm of each term in (39), we have

log p
(
xk+1 | xk, uk

) = −1

2
‖xk+1 − Akxk − Bkuk‖2

Qk

= −1

2
‖Tξk+1 − Ãkξk‖2

Qk
,

where we used xk+1 = Tξk+1 with T and Ãk defined in Algo-
rithm 1. Similarly, we can show that

log p
(

xk+1 | Y k
1

)
= −1

2
‖xk+1 − x̂k+1|k‖2

Px
k+1|k
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= −1

2
‖T
(
ξk+1 − ξ̂k+1|k

)
‖2

Px
k+1|k

log p
(
ξk | Y k

1

)
= −1

2
‖ξk − ξ̂k|k‖2

Pξ
k|k

log p
(
ξk+1 | Y K

1

) = −1

2
‖ξk+1 − ξ̂k+1|K‖2

Pξ
k+1|K

.

Using the above four relations in (39), we derive

log p
(
ξk+1, ξk | Y K

1

) = −1

2
ξT

k+1

[
T TQ−1

k T

−T T
(

Px
k+1|k

)−1
T +

(
Pξ

k+1|K
)−1
]

ξk+1

+ 1

2
ξT

k+1T TQ−1
k Ãkξk + 1

2
ξT

kÃT
kQ−1

k Tξk+1

− 1

2
ξT

k

[
ÃT

kQ−1
k Ãk +

(
Pξ

k|k
)−1
]

ξk + ξT
k

(
Pξ

k|k
)−1

ξ̂k|k

+ linear and constant terms.

Next, we follow the proof technique for deriving the
smoothing updates in [45], and we use same notation S11, S12,
S21, S22 and F11 as given in the reference which indicate same
variables in our context. In our case, S−1

22 is

S−1
22 =

(
ÃT

kQ−1
k Ãk +

(
Pξ

k|k
)−1
)−1

= Pξ
k|k − Pξ

k|kÃT
k

(
Qk + ÃkPξ

k|kÃT
k

)−1
ÃkPξ

k|k

= Pξ
k|k − Pξ

k|kÃT
k

(
Px

k+1|k
)−1

ÃkPξ
k|k

= Pξ
k|k − KkPx

k+1|kKT
k,

where we define

Kk = Pξ
k|kÃT

k

(
Px

k+1|k
)−1

.

Similarly, S21 = −ÃT
kQ−1

k T , and S−1
22 S21 simplifies to

S−1
22 S21 = −

(
Pξ

k|k − Pξ
k|kÃT

k

(
Qk + ÃkPξ

k|kÃT
k

)−1

ÃkPξ
k|k
)

ÃT
kQ−1

k T

= −Pξ
k|kÃT

k

(
In −

(
Qk + ÃkPξ

k|kÃT
k

)−1

ÃkPξ
k|kÃT

k

)
Q−1

k T

= −Pξ
k|kÃT

k

(
Qk + ÃkPξ

k|kÃT
k

)−1
T

= −Pξ
k|kÃT

k

(
Px

k+1|k
)−1

T = −KkT .

Hence, the covariance update is given by (see (19) of [45]),

Pξ
k|K = S−1

22 + S−1
22 S21F−1

11 S12S−1
22

=
(

Pξ
k|k − KkPx

k+1|kKT
k

)
+ (−KkT ) Pξ

k+1|K (−KkT )T

= Pξ
k|k + Kk

(
Px

k+1|K − Px
k+1|k

)
KT

k,

where we used TPξ
k+1|K T T = Px

k+1|K in the last step. Hence,
we prove Step 14 of Algorithm 1.

Finally, we can compute Pξ
k+1,k|K as (see (20) in [45])

Pξ
k+1,k|K = − F−1

11 S12S−1
22 = −Pξ

k+1|K (−KkT )T

=
⎡
⎣ Px

k+1|K KT
k(

Pxu
k+1|K

)T
KT

k

⎤
⎦ .

We can find the smoothed posterior estimate using [45,
Equation (23)], which leads to ξ̂k|K = −S−1

22 S21ξ̂k+1|K +
S−1

22 (Pξ
k|k )−1ξ̂k|k and simplifies to

ξ̂k|K = Kk x̂k+1|K + (In+m − KkÃk
)
ξ̂k|k .

Thus, we prove Step 15 of Algorithm 1, and it completes
proof of all the steps in the algorithm.

APPENDIX B
DERIVATION OF BP-RKS AND GROUP BP-RKS
In this section, we derive two benchmark algorithms inspired
by [34], namely BP-RKS for the time-varying support case,
and its extension to the joint sparsity case. To derive BP-RKS,
we first consider the problem of estimating the initial state x1

and inputs UK
1 for the linear system defined in (1) and (2),

which can be written as

ỹK = OK x1 + �K ũK + MK w̃K−1 + ṽK , (40)

where ỹK =
[
yT

1 yT
2 . . . yT

K

]T ∈ R
K p denotes the con-

catenated measurement vector. Likewise, ũK ∈ R
Km, w̃K−1 ∈

R
(K−1)n, and ṽK ∈ R

K p are obtained by concatenating the
inputs, process noise terms and measurement noise terms, re-
spectively. The system matrices, OK ∈ R

K p×n, �K ∈ R
K p×Km

and MK ∈ R
K p×(K−1)n in (40) are given by

OK =

⎡
⎢⎢⎢⎢⎣

C

CA
...

CAK−1

⎤
⎥⎥⎥⎥⎦, MK =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0
C 0 · · · 0
...

...
. . .

...

CAK−2 CAK−3 · · · C

⎤
⎥⎥⎥⎥⎦
(41)

�K =

⎡
⎢⎢⎢⎢⎢⎢⎣

D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
...

...
. . .

CAK−2B CAK−3B CAK−4B · · · D

⎤
⎥⎥⎥⎥⎥⎥⎦

. (42)

For notational simplicity, we present (41) and (42) for the
constant system matrices case, i.e., Ak = A, Bk = B, Dk =
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C, and Dk = D, k = 1, 2, . . . , K . However, the extension to
time-varying matrices is straightforward.

Similar to the approach in [34], we first eliminate the initial
state term in (40) by multiplying it with 
, the projection
matrix onto the orthogonal complement of the column space
of the observability matrix OK , to get


ỹK = 
�K ũK + 
ñK , (43)

where the noise term ñK = MK w̃K−1 + ṽK and the projection
matrix is


 = I − OK (OT
K OK )−1OT

K , (44)

where OK is assumed to have full rank n.
Now, we estimate the states and inputs in two steps, using a

Laplacian prior on inputs to encourage sparsity. We first solve
for inputs ũK using (43). Substituting the estimate ũ∗

K into
(40), we then compute the weighted least square estimate x∗

1
as

x∗
1 = (OT

K Q−1
ñ OK )−1OT

K Q−1
ñ (ỹK − �K ũ∗

K ). (45)

Here, Q̃K is the covariance of the noise ñ in (40), given by

Q̃K = MK Blkdiag(Q1, . . . , QK )MT
K

+ Blkdiag(R1, . . . , RK ). (46)

Having estimated the initial state and inputs, the states XK
2

can be reconstructed using the Kalman smoothing algorithm.
To estimate the sparse inputs ũK from (43), we note that the

projection step makes 
�K rank deficient. This is because
from (44), we get rank(
) = K p − n as rank(OK ) = n. We
further reduce the system in (43) to get linearly independent
measurements. Denote the singular value decomposition of
the matrix 
�K by


�K =
[
�1

�2

]H [
� ∈ R

R×R 0
0 0

][

1


2

]
= �H

1 �
1, (47)

where � =
[
�H

1 �H
2

]H
is an orthonormal matrix and R is

the rank of 
�K . When the system matrices have full rank,
we have R = min{K p − n, Km}. From (43), we derive

�
ỹK =
[
�1
ỹK

�2
ỹK

]
=
[
�
1

0

]
ũK +

[
�1
ñK

�2
ñK

]
. (48)

Hence, the reduced system of equations is

�1
ỹK = �1
�K ũK + �1
ñK , (49)

where the covariance of the noise component �1
ñK is

Q̄K = �1
Q̃K
T�H
1 . (50)

Finally, we multiply the reduced measurements in (49) with

the prewhitening matrix Q̄
− 1

2
K to make the noise uncorrelated.

Hence, the new system of equations is

ȳK = Q̄
− 1

2
K �1
ỹK = �̄K ũK + n̄K , (51)

Algorithm 6: Basis Pursuit Robust Kalman Filtering.

Input: {yk, Ak, Bk,Ck, Dk, Qk, Rk}K
k=1

1: Compute ỹK , OK , MK , �K from (40), (41), (42) and

 using (44)

2: Determine 
1 using the singular value
decomposition of 
�K as given in (47)

3: Compute Q̄K using (46) and (50)
4: Compute ȳK and �̄K from (51)

5: Set parameter ε =
√

R(1 + 2
√

2
R )

6: Solve for inputs UK
1 using the convex optimization

problem (52)
7: Calculate the initial state estimate x1 using (45)
8: Set x1|K = x1|1 = x1

Kalman Smoother
9: for k = 2, . . . , K do

#Prediction:
10: x̂k|k−1 = Ak−1x̂k−1|k−1+Bkuk−1
11: Px

k|k−1 = Ak−1Px
k−1|k−1AT

k−1 + Qk−1
#Filtering:

12: Gk = Px
k|k−1CT

k (Rk + CkPx
k|k−1CT

k )−1

13: x̂k|k = x̂k|k−1 + Gk (yk−Dkuk − Ck x̂k|k−1)
14: Px

k|k = (I − GkCk )Px
k|k−1

15: end for
#Smoothing:

16: for k = K − 1, K − 2, . . . , 2 do
17: Kk = Px

k|kAT
k (Px

k+1|k )−1

18: Px
k|K = Px

k|k + Kk (Px
k+1|K − Px

k+1|k )KT
k

19: x̂k|K = x̂k|k + Kk
(
x̂k+1|K − Ak x̂k|k

)
−Px

k|k (I − KkAk )AT
kQ−1

k Bkuk

20: end for
Output: {x̂k|K }K

k=1 and {uk}K
k=1

where matrix �̄K = Q̄
− 1

2
K �1
�K and the noise term n̄K =

Q̄
− 1

2
K �1
ñK follows the standard Gaussian distribution

N (0, I). Under a Laplacian prior on ũK to promote sparsity,
the corresponding MAP estimate is obtained by solving a
LASSO problem [46, Section 3.4.3] given by

ũ∗
K = arg min

ũK

‖ũK‖1 s.t. ‖ȳK − �̄K ũK‖2 ≤ ε. (52)

Here, ε > 0 is typically chosen as
√

var(n̄K )R

√
1 + 2

√
2
R

which is slightly larger than
√

var(n̄K )R (in our case
var(n̄K ) = 1) [47].

In the second step, we compute the state estimates using
the optimal solution ũ∗

K obtained by solving (52). Treating
these inputs as the true ones, uk = u∗

k , we compute the MAP
estimate of the states x̂k using the Kalman smoothing algo-
rithm applied to the system (1) and (2). The resulting BP-RKS
algorithm is summarized in Algorithm 6.

594 VOLUME 4, 2025



IEEE Open Journal of

Control Systems

When control inputs share a common support, we
can rearrange ũK into a block-sparse vector ûK =[
u(1, :)T u(2, :)T . . . u(m, :)T

]T ∈ R
Km with block length K ,

where u(i, :) as defined in (26). The corresponding columns
of �̄K are also rearranged, which we denote as �̂K , leading
to the system of equations ȳK = �̂K ûK + n̄K . We can now
exploit the block sparsity structure by imposing an �1/�2 type
penalty [48] on ûK to arrive at the following optimization
problem:

û∗
K = arg min

ûK

m∑
i=1

‖u(i, :)‖2 s.t. ‖ȳK −�̂K ûK‖2 ≤ε. (53)

The problem (53) can be solved by rewriting it as a second-
order cone program using an auxiliary variable t as

min
t∈Rm

ûK ∈RKm

m∑
i=1

t i s.t. t i ≥ ‖u(i, :)‖2 for i = 1, . . . , m

and ‖ȳK − �̂K ûK‖2
2 ≤ ε. (54)

The resulting group BP-RKS algorithm is identical to Al-
gorithm 6 except that in Step 6 we solve (54) instead of (52).
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