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Summary

Based on the recently developed mimetic spectral element method, we propose an effective
numerical scheme for solving three-dimensional periodic incompressible Euler flows, which
spatially preserves mass, kinetic energy and helicity. Preserving multiple integral invari-
ants numerically will significantly contribute to the stability and accuracy of the numerical
scheme. We start from the introduction of differential geometry and algebraic topology with
which we then set up the mimetic spectral element method (the mimetic framework). With
the mimetic spectral element method, physical variables can be expressed in more physical
forms and the discretization error will be eliminated as much as possible.

After that, we turn to Euler equations. We first rewrite Euler equations as inner oriented
Euler equations and outer oriented Euler equations in terms of differential differential forms.
Meanwhile the conservation laws of mass, kinetic energy and helicity based on these new
forms of Euler equations at the continuous level are proven. Then, according to expressions
of kinetic energy and helicity in the mimetic framework, we convert the inner oriented and
outer oriented Euler equations into two weak forms and then spatially discretize them using
the mimetic spectral element method in a unit 3-cube ([−1, 1]3) domain equipped with a
cell complex given by the Gauss-Lobatto-Legendre grid. Afterwards, interactions between
the two spatially discretized weak forms and discretizations of time derivative terms are
constructed, which eventually gives rise to a solvable, mass, kinetic energy and helicity
spatially preserved, fully discretized system. The scheme then is tested with a periodic flow.

In summary, the mass conservation is automatically achieved by taking the divergence free
flow condition exactly into account. In addition, with proper discretization of the momen-
tum equation and vorticity equation both kinetic energy and helicity are spatially preserved
at the discretization level.
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1
Introduction

It is well known that incompressible Navier-Stokes equations conserve mass and, if in ab-
sence of viscosity (Euler equations), kinetic energy (K = 1

2

∫
Ω |u|

2 dΩ) simultaneously. These
conservation laws are critical elements for numerical schemes. Satisfying the conservation
laws not only significantly contributes to the numerical stability and convergence, but also
is a crucial factor for getting physically relevant solutions [31]. For Euler equations, in addi-
tion to mass and kinetic energy, there are other integral invariants that are of fundamental
importance, the enstrophy (E = 1

2

∫
Ω |∇ × u|2 dΩ) for two-dimensional flows and the helicity(

H =
∫

Ω u · (∇× u)dΩ
)

for three-dimensional flows. Preserving enstrophy and helicity in
numerical schemes is as important as preserving mass or kinetic energy. However, most
existing numerical schemes just preserve mass. Satisfying more physical conservation laws
is usually difficult.

Local helicity (helicity density) is given as h = u · (∇× u). The conservation law of helicity
(1.0.1) states that for inviscid flows when the net helicity flux through the boundary is zero,
the helicity of the domain does not change over time.

dH
dt

=
d
dt

∫
Ω

h = 0 . (1.0.1)

For viscous flows, the helicity conservation law is replaced by the helicity balance equation
(1.0.2), see [37].

H(T) + 2ν
∫ T

0

(
∇u(t),∇ω(t)

)
dt = H(0) . (1.0.2)

This relation is equivalent to the helicity conservation law (1.0.1) when ν = 0.

Although the conservation law of helicity was discovered as early as in 1961 by Moreau and
was emphasized by Moffatt and Tsinober in their famous paper [35] in 1992, there was not
even one numerical scheme that specializes in conserving helicity besides mass and kinetic
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2 1 Introduction

energy until 2004 when Liu and Wang [31] constructed the first numerical scheme which
conserves mass, kinetic energy and helicity simultaneously.

Moffatt and Tsinober [35] revealed that the helicity has an interesting topological interpreta-
tion in terms of total circulation and Gauss linking number of two interlocking vortex fila-
ments, which indicates that the helicity could be strongly related to vortical flow structures.
Structure-preserving discretization techniques that preserve properties of basic differential
operators and hence can capture the physics more accurately have natural advantages for de-
veloping helicity-preserving schemes. The structure-preserving discretization technique that
will be used in this project is called the mimetic discretization or compatible discretization.

From a physical phenomenon to its physical model (e.g. partial differential equations or
integral equations), error will be introduced, which always lies in the so called constitutive
relations or material relations or closure relations. This is because humans can not totally
understand some points of the phenomenon and then they use approximate relations to
represent that. This kind of approximations is unavoidable. So it has to be taken into account
in the numerical schemes. However, for remaining relations, for example the divergence free
condition of Stokes problems, can they be represented in the numerical schemes exactly? The
answer is yes. To achieve this, it is crucial to understand the essence of physical variables.

Classical approaches introduce error everywhere. This is because that, when they use scalars
or vectors to represent physical variables, they obscure the topological and geometrical in-
formation of variables. For example, in an incompressible flow field, when a velocity vector
u is associated with a surface, it is in fact a representation of mass flux and it is constrained
by the divergence free condition div u = 0. However, when a velocity vector ũ is associated
with a line, it actually is related to the velocity potential ϕ of the flow field, the corresponding
relation is given by ũ = gradϕ. These two velocity vector obviously are different and can not
be equated to each other, u 6= ũ. However, not many numerical schemes consider this point.
In addition, classical approaches can not even exactly discretize first-order differential oper-
ators, such as gradient, curl and divergence, which are ingredients of a wide range of partial
differential equations. For example, the conventional finite difference method approximates
the gradient at a node through values at this node and neighbor nodes. The conventional
finite volume method approximates the divergence free condition by using the mean value
of two connected volumes to represent the value on the boundary. Both of them introduce
error.

Compared to classical approaches, mimetic discretizations are new numerical techniques
which try to mimic the structures of the partial differential equations as much as possible.
Among them, the mimetic spectral element discretization [3, 8, 10, 11, 13, 16, 17, 25, 26, 27,
36, 38, 41, 42, 43, 46] focuses on the topological and geometrical essence of the variables,
distinguishes the variables associated with different geometrical objects, makes use of the
strong analogy between differential geometry and algebraic topology and develops discrete
analogs of differential operators with their properties preserved at the discrete level .
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1.1 State of art 3

All these aspects in fact are also implicitly embedded in the earlier developed mimetic finite
difference method [4, 6, 7, 14, 18, 19, 20, 21, 22, 23, 24, 29, 30, 34, 45]. In contrast to the
mimetic finite difference method, the mimetic spectral element method uses a series of basis
functions (Lagrange polynomials [5, 10, 33] or B-spline polynomials [25] or interpolator &
histopolator functions [45]) to represent the unknowns, which leads to higher-order schemes.

1.1 State of art

From many recent papers, for example see [1, 31, 37, 44], we can conclude that Moffatt and
Tsinober’s work in [35] is important for the investigation of helicity. In this paper, they
explain that helicity is of importance comparable to the kinetic energy for three-dimensional
flows at a fundamental level in relation to flow kinematics because it admits topological
interpretation in relation to the linkage or linkages of vortex lines of the flow. They also
reveal the relationships between helicity and turbulence at the topological level through
theoretical analysis on vorticity.

The variable similar to helicity in two-dimensional flows is enstrophy. The first scheme con-
serving both kinetic energy and enstrophy has existed for a long time. It was developed and
published by Arakawa in 1966. That scheme was then re-organized and re-published in 1997
[1]. In this paper, with the properly designed finite difference analogue for the advection
term, a kinetic energy and enstrophy preserving scheme of significant stability for long-time
numerical integrations is developed. Recently, by using the newly developed mimetic spec-
tral element method, Natale [36] and Ruijter [8] also successfully develop schemes that con-
serve mass, kinetic energy and enstrophy for two-dimensional incompressible Euler flows
respectively.

The article of Olshanskii et. al. [37] focuses on the investigation of the helicity balance in the
conventional Galerkin method. The Galerkin method is a very sound finite element method
and it does not consider helicity conservation since its appearance. The work of Olshanskii
et. al. shows that in the periodic setting the usual Galerkin method with explicitly skew-
symmetric nonlinear terms accurately balances both a discrete kinetic energy and a discrete
helicity for three-dimensional flows. But when it is extended to homogeneous Dirichlet
boundary conditions, helicity is generated near the boundary. This is consistent with the
helicity balance relation (1.0.2).

The first scheme specializing in satisfying helicity balance was released at 2004 by Liu and
Wang [31]. This scheme is used for axisymmetric hydro- and magnetohydro-dynamics flows.
For such flows, it is possible to introduce a generalized vorticity-stream formulation. There-
fore the divergence free constraint for the fluid velocity is trivially satisfied. Although this
scheme is very efficient because all the nonlinear terms are treated explicitly, it is not suit-
able for non-symmetric general flows. After that, Liu and Wang [32] give a convergence
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4 1 Introduction

analysis of the kinetic energy and helicity preserving scheme for axisymmetric flows. The
way of analyzing the truncation error is given in this paper as well. Rebholz [44], motivated
by the work of Liu and Wang, then published his finite element scheme which satisfies ki-
netic energy balance and helicity balance for Navier-Stokes equations in 2007. In this paper,
satisfying both kinetic energy balance and helicity balance are fulfilled through the use of
the projection of the vorticity and a new variational formulation of the nonlinearity which
cancels when tested against either the velocity or projected vorticity.

From 1997 to 1999, Hyman and Shashkov published a series of papers [19, 20, 21, 23] to
create discrete analogies of first-order differential operators, i.e. div, grad and curl, on logi-
cally two-dimensional rectangular, nonorthogonal, non-smooth grids, which exactly satisfies
the theorems in vector calculus at the discrete level. Those discrete analogies of differen-
tial operators developed in this series of papers provide fundamental ingredients for the
development of mimetic finite difference discretization techniques.

Margolin et al. published their paper [34] in 2000, in which they introduce the support op-
erators method (SOM). The SOM is a conceptual framework that can be used used to derive
the discrete operator calculus with some properties of the differential operators preserved
(mimicked) exactly. The application of SOM proceeds is in two steps. First, the prime opera-
tor (one of the fundamental operators) and its discrete form are chosen. Second, according to
the analytical properties one want to preserve, one can sequentially construct discrete forms
of the other fundamental operators, which are then called derived operators.

The SOM is the method used by Hyman and Shashkov [19]. In this article, for the discretiza-
tions of adjoint first-order differential operators, the natural discrete operators in [20] are
selected as prime operators. With the “support” of integral identities Eq. (1.1.1) and Eq.
(1.1.2), the derived adjoint operators then follow.∫

V
u div WdV +

∫
V
(W, gradu)dV =

∮
∂V

u(W, n)dS . (1.1.1)

∫
V
(A, curl B)dV −

∫
V
(B, curl A)dV =

∮
∂V
([B×A], n)dS . (1.1.2)

Hyman et al. [18] then develop a scheme based on mimetic finite difference methods to solve
diffusion equations on non-smooth, nonorthogonal, structured and unstructured computa-
tional grids. Kuznetsov et al. [29] and Lipnikov et al. [30] furthermore extend the application
of mimetic finite difference methods for diffusion problems to unstructured polygonal and
polyhedral meshes on which mimetic finite difference methods constantly show a first-order
convergence rate for vector unknowns (for example velocity vector) and a second-order con-
vergence rate for scaler unknowns (for example pressure) on even non-matching and slightly
distorted meshes. In addition, Brezzi et al. [4] develop a family of new inexpensive numer-
ical schemes for diffusion problems based on the general principles of the mimetic finite
difference method on generalized polyhedral meshes. With these schemes, the convergence
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1.1 State of art 5

rate for scalar variables is slightly improved while the convergence rate for vector variables
keeps at first-order.

Meanwhile, to improve the accuracy of mimetic finite difference methods on vector variables
for diffusion-type problems, Gyrya et al. [14] develop a high-order mimetic difference meth-
ods in which are second-order accurate for both vector and scalar variables. Further, Veiga
et al. [7] extend mimetic finite difference methods on arbitrary polygonal meshes to Stokes
problems and generate a new method which results in a second-order convergence rate in
a discrete L2-norm and a first-order convergence rate in a discrete H1-norm for the velocity
variable and a first-order convergence rate in a discrete L2-norm for the pressure variable.

After the development of mimetic finite differences methods, the idea of mimicking prop-
erties of PDEs is then associated with the least-squares spectral element method. Palha
and Gerritsma [39, 40] combine the least-squares spectral element method with mimetic ap-
proaches based on differential geometry and algebraic topology and develop the mimetic
least-squares spectral element method.

Bochev et al. [2] then present their mimetic least-squares method for diffusion-reaction
problems. The diffusion-reaction problem is deconstructed into a first-order system includ-
ing two scalar and two vector variables. These variables can convert the material properties
of the differential equations into two constitutive relations (two Hodge-? relations actu-
ally). Motivated by this new first-order representation (four-field first-order system) of the
diffusion-reaction problem, they develop a new least-squares functional whose minimizer
satisfies the differential equations exactly.

In the common finite element methods, unknowns are always expanded with nodal func-
tions. As a result, the discretizations of gradient, curl and divergence operators always
require quite some work and meanwhile introduce some error. This is because not all vari-
ables are associated with nodal values. In [10], Gerritsma presents the higher order basis
functions, edge functions, which can be used to expand variables associated with higher di-
mensional geometric objects, lines, surfaces and volumes etc.. These edge functions actually
already have been used in the mimetic least-squares methods stated previously [12, 39, 40].
By using these edge functions, first-order differential operators can be represented in discrete
domain easily and exactly. As a consequence, their properties are conserved. Based on the
mimetic framework already developed, the mimetic spectral element method then appears
naturally. The mimetic discretization, motivated by the strong analogy between differential
geometry and algebraic topology (for example see [9]), associated with the spectral element
method results in the mimetic spectral element method [8, 11, 13, 17, 25, 26, 28, 36, 38, 42].

A first comprehensive introduction of mimetic spectral element method is given by Kreeft
et al. [28]. In this paper, concepts of differential geometric and algebraic topology, for
example the differential forms and differential operators (i.e. exterior derivative, Hodge star
operator, etc.), are presented first which is then followed by the development of mimetic
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6 1 Introduction

operators (i.e. reduction, reconstruction and projection operator) and discrete analogies
of differential operators. These contents are ingredients of the mimetic spectral element
method. Meanwhile, the method of solving flow problems in complex flow domains is also
presented in this paper.

Additional introductions about the mimetic spectral element method can be found in [11, 13].
Gerritsma et al. in [13] emphasize the essential connections among physical phenomenons,
their mathematical representation (partial differential equations) and geometries. Mean-
while, the way of setting up weak formulations in which all the metric-dependent differen-
tial operators are replaced by metric-free differential operators with the help of integration
by parts is presented in this paper. The metric-free differential operators in fact are the nat-
ural operators considered in [20]. While the metric-dependent differential operators are the
adjoint operators discussed in [19]. The integration by parts used here actually is a different
expression of the integral identities (1.1.1) (1.1.2) mentioned in [19, 22, 23]. These relations
are of inherent importance for both mimetic finite difference methods and mimetic spectral
element methods. Another paper of the introduction about the mimetic spectral element
method from Gerritsma is [11]. In this paper, the mimetic spectral element method is ex-
plained in detail from the computational and physical point of view. It is mathematically
shown how to construct scheme from physical modeling to a spectral element discretization
with orthogonal polynomials with respect to differential forms and algebraic topological
cochains. The treatment of curvilinear grids is given in this article as well.

With this mimetic spectral method, Bouman et al. [3] then solve the Poisson equation on
curvilinear dual grids. The orthogonal dual grids, consisting of a Gauss-Lobatto-Legendre
grid and an extended Gauss-Legendre grid, are mapped into curvilinear grids on which
k-forms are pullbacked onto the standard unit domain by the pullback operator. Utilizing
the commutation of the pullback operator with the wedge product and the exterior derivative
leads to a mimetic spectral element formulation that performs metric-free discretizations of
divergence and gradient operators exactly on curvilinear grids. As for the metric dependent
part of the Poisson equation, the Hodge star operator, the support operator method proposed
by Hyman et al. [24] again is employed. This scheme displays exponential convergence rate
which is then proven by a sample problem. A more comprehensive introduction about the
application of mimetic spectral element method on the Poisson equation is given in [42].

Rebelo et al. [43] then apply the mimetic spectral element method to the Darcy’s problem.
In this paper, an anisotropic flow through a porous medium is considered and a discretiza-
tion of a full permeability tensor is presented. The discretization is based on the mixed
formulation of the Darcy’s problem. To derive the mixed formulation, the weighted inner
product for vectors associated with outer-oriented objects is defined. The performance of the
application of the mimetic spectral element method on the Darcy’s problem then is tested by
standard test problems. The results show an exponential convergence rate for this scheme.

Recently, a lot of research using the mimetic spectral element method have been done on
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1.2 Conservation laws in incompressible Euler equations 7

Stokes problems, for example, see [16, 17, 26, 27]. Within the mimetic spectral framework,
the Stokes problem is described as a mixed formulation. This mixed formulation then results
in a symmetric system of linear equations. The performance of the mimetic spectral element
method on the Stokes problem then is tested by lid driven cavity flows. The results show
that the properties of differential operators are exactly preserved.

The most used basic functions for the mimetic spectral element method are the Lagrange
polynomials and its corresponding edge polynomials. Alternatively, one can use the B-
spline node functions and B-spline edge functions or interpolator & histopolator functions
to interpolate (reconstruct) the unknowns. The B-spline basis functions are introduced, for
instance, in [16, 17] and interpolator & histopolator functions are introduced by Rufat et al.
in [45].

Besides the exterior derivative, Hodge star operator and so on, a more complicated oper-
ator, the interior product, one of the two fundamental elements of the Lie derivative that
is used to represent convective terms, is not involved by mimetic spectral element method
until Palha et al. publish their paper [41] in which a discretization of the linear advection of
differential forms is presented. Since the other element of Lie derivative, exterior derivative,
already has a very nice discrete analogy, the metric-free coboundary operator which can be
represented by the incidence matrix in the discrete system. Once the discretization of the in-
terior product is given, the Lie derivative can be discretized. Hence, with the work of Palha
et al., the mimetic spectral element method is expanded to incorporate the Lie derivative.
Therefore, the mimetic framework is applicable for convective term related problems like
Euler problems and Navier-Stokes problems. In addition to the discretization of the interior
product, a time integrator, the canonical mimetic time integrator, for solving the time evolu-
tion is also given in this paper. This time integrator, together with the discretization of the
interior product, then is applied to a two-dimensional advection equation. The results show
good p- and h-convergence rates.

1.2 Conservation laws in incompressible Euler equations

In this section, we derive three conservation laws, conservation of mass, kinetic energy and
helicity, of three-dimensional incompressible Euler flows with periodic boundary conditions
from the viewpoint of conventional vector calculus. We start from the velocity-vorticity form
of incompressible Euler equations. It is written as

∂u
∂t

+ (u · ∇) u +∇p = 0

∂ω

∂t
+ (u · ∇)ω = 0

∇ · u = 0

, (1.2.1)
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8 1 Introduction

where ω = ∇ × u. Suppose the periodic flow domain is denoted by Ω. Because of the
periodic boundary condition, all boundary integral terms, for example see Eq. (1.2.6) and
Eq. (1.2.13), are zero.

Mass conservation Since we are considering incompressible flows, the density is constant
and ∇ · u = 0 everywhere, according to the Gauss theorem, we can easily know that the
mass is conserved not only globally and but also locally.

Kinetic energy conservation The kinetic energy is given as

K =
∫

Ω
k dΩ =

1
2

∫
Ω
‖u‖2dΩ , (1.2.2)

where k = 1
2‖u‖2 is the kinetic energy density. To obtain the conservation law of kinetic

energy, we take the inner product between the momentum equation of Eq. (1.2.1) and the
velocity vector u then integrate over the domain Ω, which results in

dK
dt

+
∫

Ω
u ·
[
(u · ∇) u

]
dΩ +

∫
Ω

u · ∇p dΩ = 0 , (1.2.3)

where the second term can be expressed as∫
Ω

u ·
[
(u · ∇) u

]
dΩ =

∫
Ω

u ·
[
∇ · (u⊗ u)

]
dΩ

=
∫

Ω
∇ · (ku) + k∇ · u dΩ ,

(1.2.4)

and because of the integration by parts, the third term can be written as∫
Ω

u · ∇p dΩ =
∫

Ω
∇ ·

(
pu
)
− p∇ · u dΩ , (1.2.5)

Therefore, with the Gauss theorem, Eq. (1.2.3) becomes

dK
dt

+
∫

∂Ω

(
ku + pu

)
· n dΓ +

∫
Ω

(
k− p

)
∇ · u dΩ = 0 . (1.2.6)

Because the flow field has the periodic boundary condition and is divergence free every-
where, the second term and third term of Eq. (1.2.6) are zero. Therefore, we obtain the
conservation law of kinetic energy:

dK
dt

= 0 . (1.2.7)

Helicity conservation The helicity of the domain Ω is expressed as

H =
∫

Ω
h dΩ =

∫
Ω

u ·ω dΩ , (1.2.8)
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1.3 Thesis outline 9

where h = u ·ω is the helicity density.

To get the conservation law of helicity, we multiply the momentum equation of Eq. (1.2.1) by
the vorticity vector ω and multiply the vorticity equation of Eq. (1.2.1) by the velocity vector
u and then integrate these two equations over the domain Ω, which gives∫

Ω

∂u
∂t
·ω dΩ +

∫
Ω

ω ·
[
(u · ∇) u

]
dΩ +

∫
Ω

ω · ∇pd Ω = 0 , (1.2.9)∫
Ω

u · ∂ω

∂t
dΩ +

∫
Ω

u ·
[
(u · ∇)ω

]
dΩ = 0 . (1.2.10)

Adding above two equations yields

dH
dt

= −
∫

Ω
ω ·
[
(u · ∇) u

]
dΩ−

∫
Ω

u ·
[
(u · ∇)ω

]
dΩ−

∫
Ω

ω · ∇p dΩ

= −
∫

Ω
ω ·
[
∇ · (u⊗ u)

]
+ u ·

[
∇ · (u⊗ω−ω⊗ u)

]
dΩ−

∫
Ω

ω · ∇p dΩ .
(1.2.11)

With the periodic boundary condition and integration by parts, we have∫
Ω

ω ·
[
∇ · (u⊗ u)

]
dΩ = −

∫
Ω

u ·
[
∇ · (u⊗ω)

]
dΩ . (1.2.12)

According to the Gauss theorem and the periodic boundary condition , we obtain∫
Ω

u ·
[
∇ · (ω⊗ u)

]
dΩ =

∫
Ω
∇ ·

[
(u ·ω) u

]
dΩ =

∫
∂Ω

hu · n dΓ = 0 . (1.2.13)

Because of the integration by parts, the Gauss theorem, the periodic boundary condition and
the fact that the divergence of the vorticity is always zero, we can find that∫

Ω
ω · ∇p dΩ = 0 . (1.2.14)

Therefore, we obtain the conservation law of helicity

dH
dt

=
∫

Ω

∂u
∂t
·ω dΩ +

∫
Ω

u · ∂ω

∂t
dΩ = 0 . (1.2.15)

Besides mass, kinetic energy and helicity, you can find a lot of other integral invariants for
three-dimensional incompressible Euler flows. These invariants imply essential properties of
three-dimensional incompressible Euler flows. However, no numerical schemes can preserve
all the invariants. There is alway a trade-off. When a scheme satisfies some conservation
laws, it keeps some properties, but loses some others. Therefore, once the conservation laws
you want to preserve are satisfied, for example the mass conservation and the kinetic energy
conservation, satisfying additional conservation laws in your scheme is always good for the
scheme because these additional conservation laws bring more properties of real flows into
the numerical systems, which means you can get more physical solutions. In addition, your
scheme normally becomes more stable because of that.
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10 1 Introduction

1.3 Thesis outline

The outline of this thesis is as follow. In Chapter 2, the mathematical background, differ-
ential geometry and algebraic topology, will be introduced, which is then followed by the
introduction of the mimetic spectral element method in Chapter 3. With these tools, we
construct our scheme in Chapter 4. After that, the scheme is tested. The test case, results
and corresponding discussions are given in Chapter 5. Finally, some conclusions and rec-
ommendations are given in Chapter 6. In addition, details of the discretization of each term
are given in the Appendix A.
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2
Mathematical background

In this chapter, two main mathematical bases of the mimetic element spectral method, dif-
ferential geometry and algebraic topology, will be presented. Differential geometry which
probably is a novel topic for most readers actually handles similar problems as conventional
vector calculus. The major difference between them is that the vector calculus discusses the
geometric aspects of physical models while differential geometry plays with physical ideas
as well in addition to geometric ideas. (Recall the example of velocities associated with lines
and faces in Chapter 1.) This does not mean vector calculus is incorrect. As we have said,
vector calculus discusses the geometric level of physical models, and it does not assign a
velocity vector associated with face to a velocity vector associated with line. This happens
when someone is using vector calculus on physical problems and he does not make the
proper association with geometries. Hyman and Shashkov noticed this point and developed
the mimetic finite difference methods, for example see [18, 22]. However, if the geometrical
meaning of a variable can be expressed explicitly on the variable, it will be better. Therefore,
we present differential geometry here.

Algebraic topology which has a strong analogy with differential geometry will also be pre-
sented in this chapter. By making using of the analogy, the mimetic spectral element method
(the mimetic framework) is constructed, which is the topic of next chapter.

This chapter is based on the work of Kreeft, Palha, Gerritsma et al., for example see [25, 28,
38]. More details can be found in [9].
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12 2 Mathematical background

2.1 Differential geometry

2.1.1 Manifolds

In mathematics, a manifold is a topological space which extends the Euclidean space. For
each point of an n-dimensional manifold, it has a neighborhood which is isomorphic to an
n-dimensional Euclidean space. A formal definition of differential manifolds is given below:

Figure 2.1: Coordinate charts on a manifold [28].

Manifolds: [9, 25, 28, 38] A k-dimensional manifold is a set M, together with a countable
collection of subset Uα, called coordinate charts, and one-to-one functions ϕM,α : Uα → Vα onto
connected open subsets Vα of Rk called local coordinate maps, as in Fig. 2.1, which satisfy the
following properties:

• (1) The coordinate charts coverM: ⋃
α

Uα =M ;

• (2) On the overlap of any pair of coordinate charts Uα ∩ Uβ, the composite map:

ϕM,β ◦ ϕ−1
M,α : ϕM,α

(
Uα ∩ Uβ

)
→ ϕM,β

(
Uα ∩ Uβ

)
,

is a smooth (infinitely differentiable) function;

• (3) If x ∈ Uα and y ∈ Uβ are distinct points inM, then there exist open subsets Wα of ϕM,α

in Vα and Wβ of ϕM,β in Vβ such that

ϕ−1
M,α(Wα) ∩ ϕ−1

M,β(Wβ) = ∅ .
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2.1 Differential geometry 13

This definition looks mysterious. However, it is quite understandable in low order Eu-
clidean spaces. For example, In R3 equipped with a coordinate system

{
x, y, z

}
, for an

arbitrary surface (2-manifold M), we can set up a local coordinate, say
{

ξ, η
}

, in the sur-
face with which the position vector p of each point in the surface can be expressed as{

p1(ξ, η), p2(ξ, η), p3(ξ, η)
}T. From this point, we can see that, for every subset U ⊆ M,

there is a one-to-one function ϕM : U → V where V is a subset of R2, for example, the one
equipped with the coordinate system

{
ξ, η
}

, see Fig. 2.2.

Figure 2.2: A 2-manifold in R3.

In Rn, we can define n + 1 types of manifolds with dimensions from 0 to n. In a k-manifold
(0 ≤ k ≤ n), we can find (k + 1) types of sub-manifolds with dimensions from 0 to k. For
example, In R3, we can define four types of manifolds, namely, points, lines, surfaces and
volumes, and in a surface (2-manifoldM), you can find infinite numbers of points, lines and
surfaces which are the sub-manifolds ofM.

The boundary of a manifold M is written as ∂M. The boundary of a manifold is always a
boundaryless manifold, which means

∂∂M = ∅ . (2.1.1)

For a periodic domain M, it can be considered as a boundaryless domain itself, ∂M = ∅,
which is the case in this project.

2.1.2 Vectors and covectors

In Rn, if a curve through a point p on a k-manifold M is given by rp(τ), a ≤ τ ≤ b, and
rp(0) refers to point p. The derivative of rp(0) is the tangent vector ep of the curve on the
point p. Remember, the dimensions of the tangent vector ep is equal to the dimensions of the
space in which the k-manifoldM is embedded. If we select k different curves, r1

p(τ), r2
p(τ),

· · · , rk
p(τ), through the point p and take derivative of r1

p(0), r2
p(0), · · · , rk

p(0), we get k linear
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14 2 Mathematical background

independent tangent vectors. The collection of these k tangent vectors,
{

e1
p, e2

p, · · · , ek
p

}
,

spans a vector space called the tangent space of the k-manifoldM at the point p, denoted by
TpM.

{
e1

p, e2
p, · · · , ek

p

}
is then called a basis of the space TpM [42]. An element of TpM is

called a vector. Therefore, any vector u in TpM can be expressed as

u =
k

∑
i=1

uiei
p , (2.1.2)

where ui are the vector coefficients. Specifically, if we set up a local coordinate system{
x1

p, x2
p, · · · , xk

p

}
in the k-manifoldM, we normally use the k tangent vectors parallel to the

coordinate axises to construct the basis which is denoted by

{
∂

∂x1
p

,
∂

∂x2
p

, · · · ,
∂

∂xk
p

}
or by{

∂x1
p, ∂x2

p, · · · , ∂xk
p

}
. So the vector u in TpM can be written as

u =
k

∑
i=1

ui∂xi
p . (2.1.3)

The vector space perpendicular to the tangent space TpM is called the normal space, denoted
by T⊥p M, which is an (n − k)-dimensional vector space. If the k-manifold M is a sub-
manifold of an n-manifold N , then we have

TpM⊕ T⊥p M = TpN . (2.1.4)

The establishment of the tangent space can be done for all points, the collection of all tangent
spaces is called the tangent bundle, denoted by TM:

TM :=
⋃

p∈M
TpM . (2.1.5)

From linear algebra, we know that for an arbitrary linear vector space V, we can always
associate V with a space of linear functions, say V∗, such that

∀α ∈ V∗, α : V → R . (2.1.6)

This linear function space is also called the dual space of the vector space V.

For a tangent space TpM, we can associate a dual space T∗pM to TpM, such that ∀α, β ∈
T∗pM

α(u) = R ∀u ∈ TpM , (2.1.7)

and
α(au + bv) = aα(u) + bα(v) ∀u, v ∈ TpM a, b ∈ R , (2.1.8)
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2.1 Differential geometry 15

(aα + bβ)(u) = aα(u) + bβ(u) ∀u ∈ TpM a, b ∈ R , (2.1.9)

where T∗pM is called the cotangent space, an element of T∗pM, α or β, is called a covector and
α(u) is called the duality pairing between the vector u and the covector α.

The cotangent space T∗pM is isomorphic to the tangent space TpM. If
{

ε
p
1 , ε

p
2 , · · · , ε

p
k

}
is a

basis of T∗pM, then any covector in T∗pM can be expressed as

α = ∑
j

αjε
p
j . (2.1.10)

A good option of
{

ε
p
1 , ε

p
2 , · · · , ε

p
k

}
is the canonical basis

{
dxp

1 , dxp
2 , · · · , dxp

k

}
which satisfies

dxp
j ∂xi

p = δi
j =

 1 i = j

0 i 6= j
. (2.1.11)

Hence, for any covector α in T∗pM, we have

α(u) =
k

∑
i=1

αiui . (2.1.12)

Similarly, we can construct cotangent spaces for all points in M, the collection of which is
then called the cotangent bundle, denoted by T∗M:

T∗M :=
⋃

p∈M
T∗pM . (2.1.13)

Operators which switch between covector and vector are the flat operator [ and the sharp
operator ]. In a Cartesian coordinate system, for a vector u given as u = ∑k

i=1 ui∂xi, the flat
operator [ converts it into a covector by

(u)[ =

(
k

∑
i=1

ui∂xi

)[

=
k

∑
i=1

uidxk = υ . (2.1.14)

While a sharp operator ] converts the covector υ back to the vector u:

(υ)] =

(
k

∑
i=1

uidxk

)]

=
k

∑
i=1

ui∂xi = u . (2.1.15)

Remember, only in Cartesian coordinate systems, above two equations are correct since the
metric tensors, gij, of Cartesian coordinate systems are always identity matrices, I:

∂xi = gi,jdxj = Idxj .
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16 2 Mathematical background

In this project, we use the Cartesian coordinate system as our coordinate system. So Eq.
(2.1.14) and Eq. (2.1.15) are correct here.

If you apply the above analysis to the normal space T⊥p M, you eventually get two bun-
dles, T⊥M and T⊥∗M, which are the tangent bundle and cotangent bundle of the (n− k)-
dimensional manifold embedded in the n-dimensional space. Recognizing this point con-
tributes to understanding concepts of orientations for manifolds (Section 2.1.3).

2.1.3 Orientations

An important concept for manifolds is the concept of orientations [9]. They are general-
ized from the concept of orientations in vector calculus. In a k-dimensional vector space,
for two arbitrary sets of orthogonal unit basis vectors, for example, {a1, a2, · · · , ak} and
{b1, b2, · · · , bk}, we can always find a matrix Ta,b which transforms {a1, a2, · · · , ak} into
{b1, b2, · · · , bk}. This transformation implies the idea of the orientation. The transformation
can only belong to one of the two equivalence classes according to the sign of the determi-
nant of the transform matrix, det(Ta,b). In the remaining part of this thesis, two equivalence
classes always refer to this concept. By declaring one of the two equivalence classes to be
positive, we orient the vector space. For example, if you select the equivalence class rep-
resented by transformation matrices of positive determinants to be the positive orientation,
the other equivalence class represented by transformation matrices of negative determinants
automatically becomes the negative orientation.

(a) Two orientations in R1. (b) Two orientations in R2.

Figure 2.3: Orientations in vector spaces.

In low dimensional spaces, the concept of orientations can be recognized easily. For example
[38], in R1, the two possible directions represent the two possible orientations, see Fig. 2.3a.
In R2, the clockwise and counterclockwise directions represent the two possible orientations,
see Fig. 2.3b.

From Section 2.1.1 and Section 2.1.2, we know k-dimensional manifolds locally resemble Rk.
According to this property, the concept of orientations for the vector space can be easily
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2.1 Differential geometry 17

generalized to manifolds. We can orient a manifold by declaring one of the two equivalence
classes of the vector space associated with the manifold to be positive. Remember, a vector
space (tangent space TpM or normal space T⊥p M) is actually associated with a point in
manifolds. For 1, 2, · · · , n-dimensional manifolds, we have infinite numbers of points. Hence
we have infinite numbers of vector spaces the collection of which is called bundle. Because
of the topological relation within a manifold, the positive orientations according to vector
spaces on different points must be compatible with each other. Therefore, we can always
define the positive orientation of a k-dimensional manifold (k ≥ 1) by declaring one of
the equivalence classes of the vector space associated with a point on this manifold to be
positive. By projecting this orientation into the manifoldM, we get the positive orientation
of the manifold. The other orientation then becomes negative orientation automatically. For
example, see Fig. 2.4 in which the positive orientation of the 2-dimensional vector space
TpM is defined as the orientation represented by the red arrowed circle. By projecting the
red arrowed circle into the manifoldM, we get the positive orientation of the manifoldM.

Figure 2.4: The positive orientation of 2-dimensional manifoldM.

However, there are two different vector spaces, the tangent space TpM and the normal
space T⊥p M, attached on the point p of a k-dimensional manifoldM. We already know that
the tangent space TpM can be used to define orientations of a manifold naturally. These
orientations are called inner orientations. While the normal space T⊥p M can be used to define
the so called outer orientations.

Inner orientations: If one of the two equivalence classes of the tangent space TpM at each point
of a k-manifold M, k ≥ 0, is declared to be positive, this manifold is said to be inner oriented. The
two equivalence classes, positive one or negative one, are then called the positive and negative inner
orientations.

Now, we know that the orientation in Fig. 2.4 is actually the inner orientation. As we know,
the dimension of the tangent space of a manifold only depends on the dimension of the
manifold. Therefore, the dimension of the space in which the manifold is embedded does
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18 2 Mathematical background

not affect the inner orientation. For example, see Fig. 2.5, inner orientations, represented by
red circles, are same in 2-dimensional and 3-dimensional spaces.

Figure 2.5: Inner (red) and outer (blue) orientations of a 2-manifold in 2-dimensional (left)
and 3-dimensional (right) spaces.

Outer Orientations: A k-manifold M embedded in n-dimensional space, 0 ≤ k ≤ n, is said to
be outer oriented if one of the two equivalence classes of the normal space T⊥p M at each point of the
k-manifoldM is declared to be positive. The two equivalence classes, positive one and negative one,
are then called the positive and negative outer orientations.

As we can see from Section 2.1.2, differing from the tangent space TpM, the normal space
T⊥p M not only depends on the dimension of the manifold M, but also depends on the di-
mension of the space in which the manifoldM is embedded. Recall that, for a k-manifold in
n-dimensional space, the dimension of the normal space T⊥p M is given as (n− k). Hence, the
outer orientation of a k-manifoldM in a n-dimensional space changes when the dimension
of the space, n, changes. This point is clearly shown in Fig. 2.5 where the outer orientation,
represented by blue arrowed lines, of a 2-manifold (a surface) in the 2-dimensional space
(left) differs from that of a 2-manifold in the 3-dimensional space (right).

In this thesis, we always stay in the 3-dimensional space. The inner and outer orientations
of k-manifolds (k = {0, 1, 2, 3}) in a 3-dimensional space are expressed in Fig. 2.6.

More discussions about orientations will be given in Section 2.1.4 where the concept of
differential forms is involved.

2.1.4 Differential forms

From Section 2.1.2, we already know that, in an n-dimensional space, given a k-manifoldM,
a covector α in the cotangent space T∗pM maps a vector in the tangent space TpM into R:

α : TpM→ R . (2.1.16)
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2.1 Differential geometry 19

Figure 2.6: Inner and outer orientations of 0, 1, 2, 3-manifolds in R3 [28].

This covector α locally resembles a 1-form. A covector is defined in one point. While a 1-
form is defined in the manifold. The formal definition of differential forms (forms in short)
is given as

Differential forms: [25, 28, 38] For an n-manifoldM, a differential k-form, α(k), 1 ≤ k ≤ n, is a
mapping that

α(k) : TpM× TpM× · · · × TpM︸ ︷︷ ︸
k

→ R ,

which is skew symmetric.

α(k) (u1, u2, · · · , uk) = sign · α(k)
(

uP(1), uP(2), · · · , uP(k)

)
, (2.1.17)

where sign = + when
{

P(1), P(2), · · · , P(k)
}

is an even permutation of {1, 2, · · · , k}, sign = −
when

{
P(1), P(2), · · · , P(k)

}
is an odd permutation of {1, 2, · · · , k}.

A 0-form is simply defined as a scalar valued function, and when k < 0 or k > n, α(k) = 0.
The space of k-forms on the n-manifoldM is expressed by Λk(M). Five extremely important
operators for differential forms are the wedge product ∧, exterior derivative d, Hodge star operator
?, codifferential d∗ and Lie derivative L.

Wedge product ∧: [28] For an n-manifoldM, a wedge product ∧ between two differential forms,
α(k) ∈ Λk(M) and β(l) ∈ Λl(M) (k, l ≤ n), is a mapping:

∧ : Λk(M)×Λl(M)→ Λk+l(M) ,

with following properties satisfied.
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20 2 Mathematical background

• (1) Distributivity: (
α(k) + β(l)

)
∧ γ(m) = α(k) ∧ γ(m) + β(l) ∧ γ(m) ; (2.1.18)

• (2) Associativity: (
α(k) ∧ β(l)

)
∧ γ(m) = α(k) ∧

(
β(l) ∧ γ(m)

)
; (2.1.19)

• (3) Skew symmetry:
α(k) ∧ β(l) = (−1)kl β(l) ∧ α(k) ; (2.1.20)

• (4) If c is a scalar, then

cα(k) ∧ β(l) = α(k) ∧ cβ(l) = c
(

α(k) ∧ β(l)
)

. (2.1.21)

From this definition, we know

α(k) ∧ β(l) = 0 if k + l > n , (2.1.22)

α(k) ∧ α(k) = 0 if k is odd or k >
n
2

. (2.1.23)

If we set up a local coordinate system
{

x1, x2, · · · , xn
}

in the n-manifold M, according to
Section 2.1.2, we know the basis for 1-forms (covectors) is usually selected as the canonical
basis: {

dx1, dx2, · · · , dxn
}

.

Remember that in Section 2.1.2 we consider an k-manifold in an n-dimensional space, while
here we consider the n-manifold. In addition, in Section 2.1.2 we use {dx1, dx2, · · · , dxn} to
represent the canonical basis, while here we use

{
dx1, dx2, · · · , dxn

}
to represent it. Each

element of the basis
{

dx1, dx2, · · · , dxn
}

is itself a 1-form. It follows, from the definition of
the wedge product, that

dxi1 ∧ dxi2 ∧ · · · ∧ dxik = sign ·
(

dxj1 ∧ dxj2 ∧ · · · ∧ dxjk
)

, (2.1.24)

where 1 ≤ i1, i2, · · · , ik, j1, j2, · · · , jk ≤ n and sign = + if
{

j1, j2, · · · , jk
}

is an even permu-
tation of {i1, i2, · · · , ik}, sign = − if

{
j1, j2, · · · , jk

}
is an odd permutation of {i1, i2, · · · , ik}.

Meanwhile, we have
dxil ∧ dxil = 0 il = 1, 2, · · · , n . (2.1.25)

Now, we can set up a basis for general k-forms (1 ≤ k ≤ n). The basis has
n!

(n− k)!k!
linear
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independent elements. A typical choice of the basis is given by{
dxi1 ∧ dxi2 ∧ · · · ∧ dxik

∣∣∣ 1 ≤ i1 < i2 < · · · < ik ≤ n
}

. (2.1.26)

Using the basis, some examples of 0-forms, 1-forms, 2-forms and 3-forms in the coordination
system

{
x, y, z

}
then can be given as

α(0) = α(x, y, z) ; (2.1.27)

β(1) = β1(x, y, z) dx + β2(x, y, z) dy + β3(x, y, z) dz ; (2.1.28)

γ(2) = γ1(x, y, z) dy ∧ dz + γ2(x, y, z) dz ∧ dx + γ3(x, y, z) dx ∧ dy ; (2.1.29)

δ(3) = δ(x, y, z) dx ∧ dy ∧ dz . (2.1.30)

where α, β, γ, δ are scalar functions. The wedge product between β(1) and γ(2) is written as

β(1) ∧ γ(2) =
(

β1γ1 + β2γ2 + β3γ3
)

dx ∧ dy ∧ dz . (2.1.31)

This form is a 3-form which is also called the volume form. Its basis is called the unit volume
form, denoted by vol. In above example, vol = dx ∧ dy ∧ dz. For an n-manifold with a local
coordinate system

{
x1, x2, · · · , xn

}
, a natural choice of the unit volume form is

vol = dx1 ∧ dx2 ∧ · · · ∧ dxn . (2.1.32)

Exterior derivative d: [28] In an n-manifoldM, the exterior derivative d of a differential k-form
α(k), 0 ≤ k ≤ n− 1, of space Λk(M) is a mapping:

d : Λk(M)→ Λk+1(M) .

If α(k) is given as α(k) = ∑i αidxi1 ∧ dxi2 ∧ · · · ∧ dxik where i ∈
{

1, 2, · · · , n!
(n−k)!k!

}
and dxi1 ∧

dxi2 ∧ · · · ∧ dxik is the i-th element of the basis, see Eq. (2.1.26) , then

dα(k) = ∑
i

dαi dxi1 ∧ dxi2 ∧ · · · ∧ dxik

= ∑
i

n

∑
j=1

∂αi

∂xj
dxj ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

(2.1.33)

• (1) Leibniz rule:

d
(

α(k) ∧ β(l)
)
= dα(k) ∧ β(l) + (−1)kα(k) ∧ dβ(l) ; (2.1.34)

• (2) It is a nilpotent:
ddα(k) = 0 . (2.1.35)
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For example, in a three-dimensional space with a coordinate system
{

x, y, z
}

, the exterior
derivatives of the 0-form (Eq. (2.1.27)), 1-form (Eq. (2.1.28)) and 2-form (Eq. (2.1.29)) are

dα(0) =
∂α

∂x
dx +

∂α

∂y
dy +

∂α

∂z
dz ; (2.1.36)

dβ(1) =

(
∂β3

∂y
− ∂β2

∂z

)
dy ∧ dz +

(
∂β1

∂z
− ∂β3

∂x

)
dz ∧ dx +

(
∂β2

∂x
− ∂β1

∂y

)
dx ∧ dy ; (2.1.37)

dγ(2) =

(
∂γ1

∂x
+

∂γ2

∂y
+

∂γ3

∂z

)
dx ∧ dy ∧ dz . (2.1.38)

Note that exterior derivatives of a 0-form, a 1-form and a 2-form are analogous to the gra-
dient of a scalar function, the curl of a vector field and the divergence of a vector field in
vector calculus.

We say k-manifolds are associated with k-forms because of the fact that k-forms are integrable
on k-manifolds. There is nothing different between this manifold integral and the general
integral in an Euclidean space. For example, an integral of a 1-form β(1) given by Eq. (2.1.28)
over a 1-manifold M which in fact is analogous to a line integral of a vector space. For
example, given a line (C) (a 1-manifoldM) expressed as

r = r(t) =
(
x(t), y(t), z(t)

)
a ≤ t ≤ b , (2.1.39)

then, we have the integral of a 1-form β(1) = β1(x, y, z)dx + β2(x, y, z)dy + β3(x, y, z)dz over
the line is ∫

M
β(1) =

∫
(C)

β1(x, y, z)dx + β2(x, y, z)dy + β3(x, y, z)dz , (2.1.40)

where ∫
(C)

β1(x, y, z)dx =
∫ b

a
β1
[
x(t), y(t), z(t)

]
x′(t)dt ;

∫
(C)

β2(x, y, z)dy =
∫ b

a
β2
[
x(t), y(t), z(t)

]
y′(t)dt ;

∫
(C)

β3(x, y, z)dz =
∫ b

a
β3
[
x(t), y(t), z(t)

]
z′(t)dt .

which is exactly the line integral of a vector β = (β(1))] over the line (C).

The integral of a k-form α(k) over a k-manifoldM can also be expressed as the duality pairing
between the k-form α(k) and the k-manifoldM:〈

α(k),M
〉
=
∫
M

α(k) . (2.1.41)
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Generalized Stokes’ theorem: The integral of a (k + 1)-form, dω(k), over a (k + 1)-manifoldM
is equal to the integral of the k-form, ω(k), over the k-manifold ∂M∫

M
dω(k) =

∫
∂M

ω(k) , (2.1.42)

or in duality pairing: 〈
dω(k),M

〉
=
〈

ω(k), ∂M
〉

. (2.1.43)

If n = 1, k = 0, it refers to the Newton-Leibniz integral rule:

∫ b

a
f ′(x)dx = f (x)

∣∣b
a . (2.1.44)

If n = 3, k = 1, it refers to the Stokes’ theorem:∫
S
(∇× g) · ndS =

∮
∂S

g · ndr . (2.1.45)

If n = 3, k = 2, it then refers to the Gauss Theorem:∫
V
∇ · hdV =

∮
S

h · ndS . (2.1.46)

Ensuring that the generalized Stokes’ theorem is satisfied exactly is one of the main features
of the mimetic spectral element method we will present in Chapter 3.

2.1.5 True forms and pseudo-forms

As we know, every manifold has 2 possible orientations (positive and negative) no matter
whether this manifold is outer oriented or inner oriented. Integrals of a k-forms α(k) over a
k-manifold M from different orientations result in opposite values (If α(k) does not change
when we integrate it from different orientation):∫

M+
α(k) = −

∫
M−

α(k) . (2.1.47)

For example, in R1, there is a 1-manifold M given as [a, b], and we define the orientation
from a to b is the positive orientation. Then in M, for an arbitrary 1-form β(1) which is
always given as β(1) = β dx no matter from which orientation β(1) is integrated, we know

∫
M+

β(1) =
∫ b

a
β dx = −

∫ a

b
β dx = −

∫
M−

β(1) . (2.1.48)
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From now on, when we say the orientation of a manifold M, we usually refer to the orien-
tation from which we integrate forms over the manifoldM. We usually choose the positive
orientation as the integral orientation.

If we change the orientation of a manifoldM, there are some integral values on this manifold
M change sign while some other integral values do not change sign. For example, the mass
M is the integral of the density 3-form, ρ(3) over a 3-manifoldM:

M =
∫
M

ρ(3) . (2.1.49)

This value does not depend on the orientation ofM. It is always positive:

M =
∫
M+

ρ
(3)
+ =

∫
M−

ρ
(3)
− = M . (2.1.50)

Through Eq. (2.1.48), we know ρ
(3)
+ = −ρ

(3)
− . This means when we change the orientation of

the manifold, the density 3-form, ρ(3), changes sign.

While there are some other values do change sign when the orientation of the manifold
changes like the α(k) in Eq. (2.1.47), the β(1) in Eq. (2.1.47) and the work of a force along
a curve. The work of a force (1-form f (1)) along a curve from point A to point B, denoted
by WAB, is always equal to the work of the force along the curve from point B to point
A, WAB = −WBA, which implies the force, 1-form f (1), does not change sign when the
orientation of the manifold (curve) changes.

True forms and pseudo forms: For a k-form α(k) in a k-manifoldM, when the orientation ofM
changes, if α(k) does not change sign and

∫
M α(k) does change sign, α(k) is said to be a true form,

and if α(k) does change sign and
∫
M α(k) does not change sign, α(k) is said to be a pseudo form.

According to this definition, we know that the force 1-form f (1) is a true form while the
density 3-form ρ(3) is a pseudo form. As a matter of fact, true forms are associated with
inner oriented manifolds, while pseudo forms are associated with outer oriented manifolds.
Therefore, we have

Remark. True forms are also called inner forms, pseudo forms are also called outer forms, and
usually we use a tilde upon a form or a space to represent an inner one.

For example the force 1-form is expressed as f̃ (1). The space of inner k-forms is expressed as
Λ̃k(M). However, mathematically space Λk(M) and space Λ̃k(M) are in fact the same
space. For example, in a three-dimensional manifold M with local coordinate system{

x, y, z
}

, if there is an outer 2-form γ(2):

γ(2) = γ1(x, y, z) dy ∧ dz + γ2(x, y, z) dz ∧ dx + γ3(x, y, z) dx ∧ dy ,
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in Λ2(M), you can always find an inner 2-form γ̃(2):

γ̃(2) = γ1(x, y, z) dy ∧ dz + γ2(x, y, z) dz ∧ dx + γ3(x, y, z) dx ∧ dy ,

in Λ̃2(M). Vice verse. As you can see, mathematically γ(2) = γ̃(2). While physically
γ(2) 6= γ̃(2) if you take the orientation into account.

Remark. In a statement, symbols without tildes upon them like α(k), Λk(M), L2Λk(M) (not appear
yet), π (not appear yet), etc. can represent either outer oriented or inner oriented forms, spaces,
projections, etc. unless both symbols with tildes and without tildes appear or it is emphasized that the
statement is only proper for one specific kind of forms, spaces, etc..

For example, all theorems in previous sections are suitable for both inner oriented and outer
oriented forms and spaces. Distinguishing true (inner) forms and pseudo (outer) forms is
crucial to fully understand physical phenomena.

2.1.6 Hodge star operator and codifferential

We already know that forms can be divided into inner forms and outer forms. If an inner
form can be converted into an outer form and vice verse? The answer is yes. The operator
which switches between inner forms and outer forms is called the Hodge star operator.

Hodge star operator ?: Provided M is an n-manifold, for a k-form α(k) in Λk(M), the Hodge
star operator, ?, is a mapping:

? : Λk(M)→ Λn−k(M) ,

where Λk(M) and Λn−k(M) are differently oriented, which satisfies

α(k) ∧ ?β(k) =
(

α(k), β(k)
)

vol , (2.1.51)

where
(

α(k), β(k)
)

is the inner product between α(k) and β(k), and vol is the unit volume form, see
Eq. (2.1.32).

The formal definition of the inner product between two forms [9, 28, 38] is relatively compli-
cated and beyond the range of this project. So it is not given in this thesis. Commonly, for
two differential forms α(k) and β(k):

α(k) = ∑
i

αi dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

and
β(k) = ∑

i
βi dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,
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the inner product between α(k) and β(k) is(
α(k), β(k)

)
= ∑

i
αiβi . (2.1.52)

This is correct only for Cartesian coordinate systems. The inner product between two forms
is metric-dependent. Therefore, the Hodge star operator is a metric-dependent operator.
Provided a k-form α(k) = ∑

i
αi dxi1 ∧ dxi2 ∧ · · · ∧ dxik in an n-manifold with the local coordi-

nate system
{

x1, x2, · · · , xn
}

. If the unit volume form is given as vol = dx1 ∧dx2 ∧ · · · ∧dxn,
then

? α(k) = ∑
i

αi ? dxi1 ∧ dxi2 ∧ · · · ∧ dxik , (2.1.53)

and
? dxi1 ∧ dxi2 ∧ · · · ∧ dxik = sign · dxj1 ∧ dxj2 ∧ · · · ∧ dxjn−k , (2.1.54)

where {i1, i2, · · · , ik} is a subset of the set {1, 2, · · · , n} with
{

j1, j2, · · · , jn−k
}

being its com-
plementary set. If

{
j1, j2, · · · , jn−k, i1, i2, · · · , ik

}
is an even permutation of {1, 2, · · · , n},

sign = +. If
{

j1, j2, · · · , jn−k, i1, i2, · · · , ik
}

is an odd permutation of {1, 2, · · · , n}, sign = −.
Then, we know

? ?α(k) = (−1)k(n−k)α(k) ∀α(k) ∈ Λk(M) . (2.1.55)

For example, for a 3-manifold with the local coordinate system
{

x, y, z
}

and the unit volume
form vol = dx ∧ dy ∧ dz, we have

? 1 = dx ∧ dy ∧ dz ? dx ∧ dy ∧ dz = 1 ,

? dx = dy ∧ dz ? dy = dz ∧ dx ? dz = dx ∧ dy ,

? dy ∧ dz = dx ? dz ∧ dx = dy ? dx ∧ dy = dz .

Once we have the Hodge star operator, we can define the Hilbert space L2Λk(M) and the
L2-inner product, (·, ·)M, between two forms.

Hilbert space L2Λk(M) and L2-inner product (·, ·)M: A Hilbert space L2Λk(M) is a space of
k-forms Λk(M) equipped with the L2-inner product (·, ·)M : L2Λk(M)× L2Λk(M) → R which,
for arbitrary two k-forms α(k) and β(k) ∈ L2Λk(M), satisfies(

α(k), β(k)
)
M

=
∫
M

(
α(k), β(k)

)
vol . (2.1.56)

From Eq. (2.1.51) and Eq. (2.1.56), we obtain(
α(k), β(k)

)
M

=
∫
M

α(k) ∧ ?β(k) . (2.1.57)
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In conventional vector calculus, The natural differential operators, gradient, curl and diver-
gence, have their adjoint operators [19, 20]. As the generalized form of the differential oper-
ators, the exterior derivative d also has its adjoint operator which is called the codifferential.

Codifferential: The codifferential operator is the L2-adjoint of exterior derivative with respect to
the L2-inner product, which satisfies(

α(k), d∗β(k+1)
)
M

=
(

dα(k), β(k+1)
)
M
−
∫

∂M
α(k) ∧ ?β(k+1) ∀α(k) ∈ L2Λk(M) , (2.1.58)

where 0 ≤ k ≤ (n− 1). The Eq. (2.1.58) is called the integration by parts in differential forms.

The exterior derivative and codifferential operators actually refer to the natural differential
operators and their adjoint operators mentioned in [19, 20] and the Eq. (2.1.58) in fact is
an expression in differential geometry of the supporting integral identities, Eq. (1.1.1) and
Eq. (1.1.2), used for the discretizations of adjoint operators in the mimetic finite difference
method, see [18, 22, 23].

For a k-form β(k), we have

? d∗β(k) = (−1)kd ? β(k) ∀β(k) ∈ Λk(M) . (2.1.59)

Together with Eq. (2.1.55), we obtain (if the boundary integral term in Eq. (2.1.58) is zero.)

d∗ = (−1)n(k+1)+1 ? d ? . (2.1.60)

The codifferential is also a nilpotent:

d∗d∗β(k) = 0 ∀β(k) ∈ Λk(M) . (2.1.61)

2.1.7 Lie derivative

The convective terms, (u · ∇) u and (u · ∇)ω, in Euler equations represent the relative
changes of u and ω because of the motional flow field. The convection of a variable (k-
form α(k)) because of vector field u is expressed by

Luα(k) = dιuα(k) + ιudα(k) ∀α(k) ∈ Λk(M) , (2.1.62)

where Lu and ιu are the Lie derivative and interior product with respect to the vector field u.
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Interior product ιu: In an n-manifoldM, if there is a vector field given by u, the interior derivation
ιu is a mapping

ιu : Λk(M)→ Λk−1(M) .

If α(k) ∈ Λk(M),

ιuα(k)(ω1, ω2, · · · , ωk−1) = α(k)(u, ω1, ω2, · · · , ωk−1) .

Hence, ιuα(0) = 0, and given a 1-form α(1) = ∑i αidxi and a vector field u = ∑i ui∂xi, we have

ιuα(1) = ∑
i

αiui . (2.1.63)

The interior product satisfies the Leibniz rule: ∀α(k), β(l) ∈ Λk(M), Λl(M) and k + l ≤ n

ιu

(
α(k) ∧ β(l)

)
=
(

ιuα(k)
)
∧ β(l) + (−1)kα(k) ∧

(
ιuβ(l)

)
. (2.1.64)

From above two properties, Eq. (2.1.63) and Eq. (2.1.64), we can generalize the computation
of the interior product for 1-forms to those for arbitrary forms.

In R3, a Cartesian coordinate system is given as
{

x, y, z
}

. If the vector field is u = u ∂x +

v ∂y + w ∂z, for a 1-form α(1) = a dx + b dy + c dz, we have

ιuα(1) = au + bv + cw . (2.1.65)

For a 2-form β(2) = d dy ∧ dz + e dz ∧ dx + f dx ∧ dy, we have

ιuβ(2) =
(
we− v f

)
dx +

(
u f − wd

)
dy + (vd− ue)dz . (2.1.66)

The interior product resembles the cross product in conventional vector calculus where a× b
is perpendicular to either a or b. In differential geometry, given a 3-manifold M, it is very
easy to see that, ∀α(1) ∈ Λ1(M), ∀β(2) ∈ Λ2(M)∫

M
ιαβ(2) ∧ β(2) =

∫
M

ιαβ(2) ∧ ?α(1) = 0 , (2.1.67)

where α = (α(1))].

Proof: According to definitions given above, we can see that

ιαβ(2) ∧ β(2)

=
((

ce− b f
)

dx +
(
a f − cd

)
dy + (bd− ae)dz

)
∧
(
d dy ∧ dz + e dz ∧ dx + f dx ∧ dy

)
= d(ce− b f ) dx ∧ dy ∧ dz + e(a f − cd) dy ∧ dz ∧ dx + f (bd− ae) dz ∧ dx ∧ dy

= 0 ,
(2.1.68)
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and

ιαβ(2) ∧ ?α(1)

=
((

ce− b f
)

dx +
(
a f − cd

)
dy + (bd− ae)dz

)
∧
(
a dy ∧ dz + b dz ∧ dx + c dx ∧ dy

)
= a(ce− b f ) dx ∧ dy ∧ dz + b(a f − cd) dy ∧ dz ∧ dx + c(bd− ae) dz ∧ dx ∧ dy

= 0 .
(2.1.69)

The adjoint operator, j, of interior product is defined as

? juα(k) = (−1)kιu ? α(k) ∀α(k) ∈ Λk(M) , (2.1.70)

and the adjoint operator, L, of the Lie derivative is defined as

Lu ? α(k) = − ? Luα(k) ∀α(k) ∈ Λk(M) . (2.1.71)

See [15, 28] for more details.

2.2 Algebraic topology

In this section, a basic introduction of algebraic topology will be presented.

2.2.1 Cell complex

Numerical schemes can not work with infinite numbers of degrees of freedom. So every
scheme needs one or more grids in which variables are discretized. Given an n-manifold, by
setting up a grid within this manifold, we get a series of sub-manifolds. This grid is called
the cell complex. Within the cell complex, sub-manifolds are of order from 0 to n. These
sub-manifolds are called k-cells (0 ≤ k ≤ n). A 0-cell is a point (0-manifold), a 1-cell is a line
(1-manifold), a 2-cell is a surface (2-manifold) and a 3-cell is a volume (3-manifold). The cell
complex, a set of cells, is the grid in which our mimetic scheme will work.

Here in this project, we consider the n-manifold given as a unit n-cube. A unit n-cube
denoted by In is a manifold given by [−1, 1]n. By setting up a structured grid within the
n-cube, we set up a constructed cell complex. For example, in a 3-cube, by constructing a
structured grid, we get a cell complex containing points (0-cells), straight lines (1-cells) and
surfaces (2-cells) and cubes (3-cells), see Fig. 2.7.

As a fact of matter, a cell which is a manifold can be inner or outer oriented. Cells in a cell
complex can not be differently oriented. That means all of them are either inner oriented

Yi Zhang Msc Thesis



30 2 Mathematical background

Figure 2.7: Cells of a cell complex in R3.

or outer oriented. More discussions about the orientation of cell complexes can be find in
Section 2.2.3. For the time being we use outer oriented cell complexes as example.

Figure 2.8: A cell complex in R2.

There is an example in Fig. 2.8 where a cell complex in R2 containing 9 0-cells, 12 1-cells
and 4 2-cells is presented. As we can see in this figure, all cells are outer oriented and their
positive orientations are given. Meanwhile we denote k-cells by σ(k) and number them as
σ(k),i. Remember, the way of defining the positive orientation of each cell is non-unique, as
well as the method of numbering them. But once you make your choice, you should not
change it during the computation.

2.2.2 Chain and cochain

In a cell complex, D, we can associate a weight ci to each k-cell σ(k),i then add all weighted
k-cells together, which results in the so called k-chain c(k):

c(k) = ∑
i

ciσ(k),i . (2.2.1)
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The set of all c(k) then form a vector space denoted as Ck(D). One basis of the space Ck(D)

is
{

σ(k),1, σ(k),2, · · · , σ(k),]k

}
, where ]k is the number of k-cells in the cell complex. (Different

from the ] operator in differential geometry, see Section 2.1.2.)

We can introduce an operator ϕ which converts a k-chain into a vector form by

ck = ϕ(c(k)) =
{

c1, c2, · · · , c]k
}T

. (2.2.2)

Although a weight ci, also called a coefficient, of c(k) can be any value, in our applications,
ci commonly belongs to {−1, 0, 1}. For a k-chain c(k), coefficient ci = 1 means the k-cell σ(k),i
is in the chain and its orientation is same with its positive default orientation. If ci = −1,
σ(k),i is in the chain as well but its orientation is opposite with its positive orientation. When
ci = 0, the corresponding k-cell σ(k),i is not in the chain.

We can obtain the boundary of a k-chain c(k) by applying the boundary operator ∂ to it which
gives a (k− 1)-chain ∂c(k):

∂c(k) = ∑
i

ci∂σ(k),i ∀ck ∈ Ck(D) . (2.2.3)

The boundary of σ(k),i, ∂σ(k),i, only contains (k − 1)-cells which bound σ(k),i. Take the cell
complex in Fig. 2.8 as example,

∂σ(2),1 = −σ(1),1 + σ(1),7 + σ(1),3 − σ(1),8 ,

∂σ(2),2 = −σ(1),2 + σ(1),8 + σ(1),4 − σ(1),9 ,

∂σ(2),3 = −σ(1),3 + σ(1),10 + σ(1),5 − σ(1),11 ,

∂σ(2),4 = −σ(1),4 + σ(1),11 + σ(1),6 − σ(1),12 .

Express this in matrix form
∂σ(2),1
∂σ(2),2
∂σ(2),3
∂σ(2),4

 =


−1 0 1 0 0 0 1 −1 0 0 0 0
0 −1 0 1 0 0 0 1 −1 0 0 0
0 0 −1 0 1 0 0 0 0 1 −1 0
0 0 0 −1 0 1 0 0 0 0 1 −1




σ(1),1
σ(1),2

...
σ(1),12

 . (2.2.4)

The matrix on the right side is usually denoted by E(2,1). Given a cell complex in a n-
manifold, if all cells are labeled and oriented, we can set up matrices E(k,k−1)(k = 1, 2, · · · , n)

easily. Given a k-chain ck = ϕ(c(k)) =
{

c1, c2, · · · , c]k
}T

, we know

ϕ(∂c(k)) = E(k−1,k)ck ∀c(k) ∈ Ck(D) , (2.2.5)

where E(k−1,k), the discrete form of the boundary operator, is called incidence matrix which is
the transpose of E(k,k−1):

E(k−1,k) = ET
(k,k−1) . (2.2.6)
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The boundary of the boundary is empty, ∂∂c(k) = ∅, ∀c(k) ∈ Ck(D). Therefore, we have

E(k−1,k)E(k,k+1) = 0 . (2.2.7)

With the vector space Ck(D), we can associate a linear function space, a dual space, denoted
by Ck(D), see Eq. (2.1.6). A basis of Ck(D) is written as

{
σ(k),1, σ(k),2, · · · , σ(k),]k

}
such that

σ(k),i(σ(k),j) = δi
j , (2.2.8)

where δi
j is the Kronecker delta. The element of Ck(D) is called the k-cochain, denoted by

c(k):
c(k) = ∑

i
ciσ

(k),i , (2.2.9)

which can be converted into vector as ck = ϕ(c(k)) =
{

c1, c2, · · · , c]k
}T. (Suppose that

operator ϕ can also work on a cochain.) The duality pairing between a chain and a cochain is
expressed as 〈

c(k), c(k)
〉
= c(k)(c(k)) = ∑

i
cici . (2.2.10)

Coboundary: Given a cell complex D, a coboundary operator δ is a mapping:

δ : Ck(D)→ Ck+1(D) ,

such that, ∀c(k) ∈ Ck(D) and ∀c(k+1) ∈ Ck+1(D),〈
δc(k), c(k+1)

〉
=
〈

c(k), ∂c(k+1)

〉
. (2.2.11)

Given a cell complex D and a k-cochain c(k) ∈ Ck(D), c(k) =
{

c1, c2, · · · , c]k
}T, the duality

pairing between c(k) and each k-cell,
〈

c(k), σ(k),i

〉
= ci, resembles that the k-cochain associates

a value ci to the k-cell. Therefore, a k-cochain can be considered as a set of a series of values
associated with k-cells, and the coboundary δ takes these values then projects them into
values associated with (k+ 1)-cells according to the boundaries (k-chains) of the (k+ 1)-cells,
for example, see Fig. 2.9. In Fig. 2.9a, a 0-cochain is given as c(0) = σ(0),1 + 7σ(0),2 − 4σ(0),3,
and the two boundaries of the two 1-cells are ∂σ(1),1 = σ(0),1− σ(0),2 and ∂σ(1),2 = σ(0),2− σ(0),3.
Then we have〈

δc(0), c(1),1
〉
=
〈

c(0), ∂c(1),1
〉
= σ(0),1(σ(0),1)− 7σ(0),2(σ(0),2) = −6 ,

〈
δc(0), c(1),2

〉
=
〈

c(0), ∂c(1),2
〉
= 7σ(0),1(σ(0),2) + 4σ(0),3(σ(0),2) = 11 .
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In Fig. 2.9b, a 1-cochain is given as c(1) = 4σ(1),1 + 3σ(1),2− 5σ(1),3 + 9σ(1),4, and the boundary
of the 2-cell is ∂σ(2),1 = −σ(1),1 − σ(1),2 + σ(1),3 + σ(1),4. Then we have〈

δc(1), c(2),1
〉
=
〈

c(1), ∂c(2),1
〉
= −4− 3− 5 + 9 = −3 .

(a) The coboundary of a 0-cochain. (b) The coboundary of a 1-cochain.

Figure 2.9: Coboundaries of cochains.

Given a cell complex D and a k-cochain c(k) of Ck(D), ck = ϕ(c(k)) =
{

c1, c2, · · · , c]k
}T, then

we have
ϕ(δc(k)) = E(k+1,k)ck , (2.2.12)

where E(k+1,k) = ET
(k,k+1) = E(k+1,k) is the incidence matrix for coboundary. The coboundary

of the coboundary is empty, δδc(k) = ∅, ∀c(k) ∈ Ck(D), which indicates

E(k+1,k)E(k,k−1) = 0 . (2.2.13)

For example, if you assign an arbitrary 0-cochain to the cell complex in Fig. 2.9b, then take
the coboundary twice, you will find σ(2),1 = 0. A simple proof of Eq. (2.2.13) can be done by
applying the transpose operator to Eq. (2.2.7).

Note the strong analogy between the generalized Stokes’ theorem, Eq. (2.1.43), and the
coboundary relation Eq. (2.2.11). This analogy is the key factor to set up the mimetic spectral
element method that satisfies the generalized Stokes’ theorem exactly. The analogy can also
be clearly seen, for example, in Fig. 2.9b where the computation of the coboundary resembles
an integral of a 2-form dα(1) over a 2-manifold given by σ(2),1 which is the generalized form
of the Stokes’ theorem, Eq. (2.1.45).

2.2.3 Dual complex

As we said, a cell complex is in fact a gird in which we are going to set up our mimetic
discretization. Since our variables (forms) are either inner oriented (true forms) or outer
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oriented (pseudo forms), if both of these two kinds of forms appear in the scheme, we have
introduce two cell complexes to discretize them. We usually call the one with outer oriented
geometries (manifolds) the primal grid which is used for the discretization of outer forms and
call the other one with inner oriented geometries (manifolds) the dual grid (dual complex), like
the examples in Section 2.2.2, which is used to discretize inner forms. An example of the
dual complex, an inner oriented cell complex, can be seen in the following figure, Fig. 2.10.

Figure 2.10: A dual complex.

We use the tilde upon a symbol to represent inner oriented one in Chapter 2. Similarly,
here the tilde upon a symbol means this symbol is related to the dual grid (inner oriented,
associated to true forms). For example, we use

D̃, c̃(k), c̃(k), Ck(D̃), Ck(D̃), Ẽ,

to represent a dual complex and a k-chain, a k-cochain, the k-chain space, the k-cochain space
and an incidence matrix of the dual complex. While we use

D, c(k), c(k), Ck(D), Ck(D), E,

to represent a cell complex and a k-chain, a k-cochain, the k-chain space, the k-cochain space
and an incidence matrix of the cell complex .

The kind of orientations of a grid does not mathematically affect the computation on the
grid. That means the boundary operator ∂ and coboundary operator δ work on a complex
in the same way no matter it is inner oriented or outer oriented.
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Mimetic spectral element method

Differential geometry, algebraic topology and the strong analogy between them have been
presented. Now, with them, we introduce the way of setting up our mimetic framework—the
mimetic spectral element method.

Provided a domain denoted by Ω which in fact is a n-manifold, we can split the domain
Ω into several sub-domains Ωi. Through a map operator, we can then map the sub-domain
Ωi into a unit n-cube In = [−1, 1]n. The map operator together with its adjoint operator,
pullback, which pull forms on In back to Ωi provide tools to deal with problems in arbitrary
domains. The method of how to discretize the map operator and the pullback operator in
the mimetic spectral element method is already well developed, see [17, 25, 26, 38], and once
our scheme is constructed in I3, that method can be used to our scheme, which will make
our scheme applicable to arbitrary domains. However, because our main objective of this
project is to find a spatially mass-, kinetic energy- and helicity-preserving scheme for three-
dimensional flows, we will just use the simplest domain I3 as our flow domain. Therefore,
there is no necessity for us to take the map operator and the pullback operator into account
in this project.

Remark. From now on, we always use symbol Ω to represent our unit flow domain, unit 3-cube
I3 = [−1, 1]3.

In Ω, given a k-form α(k) ∈ Λk(Ω), to make it solvable in a mimetic scheme, we first set up
a grid (cell complex) D (primal or dual, depends on the type of α(k)), then project α(k) into a
discrete k-form α

(k)
h ∈ Λk

h(Ω; Ck) by the projection operator π. The space Λk
h(Ω; Ck) represents

a subspace, associated with the k-chain space Ck(D), of Λk(Ω):

Λk
h(Ω; Ck) ⊂ Λk(Ω) .

The projection operator π is a direct application of differential geometry, algebraic topology
and the analogy between them.
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36 3 Mimetic spectral element method

In this chapter, the projection operator together with another two important kinds of ingre-
dients of the mimetic spectral element method, discrete operators and basis functions, will
be introduced.

3.1 Projections

In the mimetic framework, the projection π is given as π = I ◦ R where R is the reduction
operator and I is the reconstruction operator, see Fig. 3.1.

Figure 3.1: Projection π, reduction R and reconstruction I .

Reduction: Given a domain Ω and a grid D in Ω, the reduction operator R is a mapping that
maps differential forms to cochains:

R : Λk(Ω)→ Ck(D) ,

which satisfies, ∀α(k) ∈ Λk(Ω), ∀σ(k) ∈ D,〈
Rα(k), σ(k)

〉
=
∫

σ(k)

α(k) =
〈

α(k), σ(k)

〉
, (3.1.1)

where the duality pairing on the left side is the duality pairing between a k-cochain and a k-chain, see
Eq. (2.2.10), while the one on the right side is the duality pairing between a k-form and a k-manifold
(recall that a k-cell in fact is a k-manifold), see Eq. (2.1.41).

The reduction of a 0-form α(0) from the domain Ω to the cell complex D is just a 0-cochain
with values of the scalar valued function α(0) at all 0-cells of D being its coefficients:

Rα(0) =
]0

∑
i=1

α(0)(σ(0),i)σ
(0),i . (3.1.2)

While the reduction of a 1-form β(1) is a 1-cochain with integral values of β(1) over all 1-cells
as its coefficients:

Rβ(1) =
]1

∑
i=1

∫
σ(1),i

β(1)σ(1),i . (3.1.3)
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A very important property of the reduction operator is its commutativity with respect to the
exterior derivative d and the coboundary δ:

Rd = δR . (3.1.4)

To prove this, we start with the duality pairing between a (k + 1)-cochain Rdα(k) and a
(k + 1)-chain c(k+1): 〈

Rdα(k), c(k+1)

〉
(3.1.1)
=

∫
c(k+1)

dα(k)

(2.1.43)
=

∫
∂c(k+1)

α(k)

(3.1.1)
=

〈
Rα(k), ∂c(k+1)

〉
(2.2.11)
=

〈
δRα(k), c(k+1)

〉
.

(3.1.5)

Reconstruction: Given a domain Ω and a grid D in Ω, the reconstruction operator I is a mapping
that maps cochains back to differential forms:

I : Ck(D)→ Λk
h(Ω; Ck) .

The reconstruction operator should satisfy many properties. We only mention those do matter in this
project.

• (1) The reduction of the reconstruction must be identity:

R ◦ I = Id ; (3.1.6)

• (2) The reconstruction is commutative with respect to the exterior derivative d and the cobound-
ary δ:

dI = Iδ . (3.1.7)

Note that the projection π = I ◦ R is not an identity:

α(k) = π(α(k)) +O(hp) , (3.1.8)

whereO(hp) is the discretization error in terms of the grid size h and the polynomial order p,
which is unavoidable when we project a variable of infinite degrees of freedom to a domain
with finite degrees of freedom.

Because the Hodge star operator is an isomorphism, so if we have a outer form space Λk(Ω)

and a projection π : Λk(Ω) → Λk
h(Ω; Ck), we can also find a inner form space Λ̃k(D) and a

projection π̃ : Λ̃k(Ω)→ Λ̃k
h(Ω; C̃k). In general, we have

? π 6= π̃ ? and ? π̃ 6= π ? . (3.1.9)
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3.2 Discrete operators

With the projection operator, we project the space Λk(Ω) of infinite degrees of freedom
into the space Λk

h(Ω; Ck) of finite degrees of freedom. In this section, we will present how
does the projection operator perform when it is applied to differential operators (exterior
derivative d, wedge product ∧, L2-inner product (·, ·)Ω, interior product ι and Hodge star
operator ?).

Discrete exterior derivative dh : From previous sections, we already see that the exterior
derivative commutes with the projection operator:

dIR = IδR = IRd . (3.2.1)

So we know the discrete exterior derivative dh performs in the same way on discrete forms
of Λk

h(Ω; Ck) as how the exterior derivative d performs on forms of Λk(Ω):

dhα
(k)
h = dα

(k)
h = IδRα

(k)
h ∀α

(k)
h ∈ Λk

h(Ω; Ck) , (3.2.2)

where δ is the coboundary operator. If we apply the ϕ operator to above equation, we get

ϕ(δRα
(k)
h ) = E(k+1,k)ϕ(Rα

(k)
h ) , (3.2.3)

where E(k+1,k) is the metric-free incidence matrix.

Discrete wedge product ∧h: Given a domain Ω, a cell complex D in Ω and a projection π :
Λk(Ω) → Λk

h(Ω; Ck), we can introduce a discrete wedge product ∧h : Λk
h(Ω; Ck)×Λl

h(Ω; Cl) →
Λk+l

h (Ω; Ck+l) by defining

α
(k)
h ∧h β

(l)
h = π

(
α
(k)
h ∧ β

(l)
h

)
, (3.2.4)

∀α
(k)
h ∈ Λk

h(Ω; Ck), ∀β
(l)
h ∈ Λl

h(Ω; Ck).

Note that ∧ does not commute with projection π, so α
(k)
h ∧h β

(l)
h is not equal to α

(k)
h ∧ β

(l)
h . In

fact [25]
α
(k)
h ∧h β

(l)
h = α

(k)
h ∧ β

(l)
h +O(hp) . (3.2.5)

While in application, we always use α
(k)
h ∧h β

(l)
h = α

(k)
h ∧ β

(l)
h . Hence we introduce some error.

The same happens to the discrete interior product ιh. We commonly use ιhuh
α
(k)
h = ιuh α

(k)
h

while in fact
ιhuh

α
(k)
h = ιuh α

(k)
h +O(hp) . (3.2.6)
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Discrete inner product (·, ·)Ω,h : Given a domain Ω, a cell complex D of Ω and a projection
π : Λk(Ω)→ Λk

h(Ω; Ck), we define the discrete inner product as:(
α
(k)
h , β

(k)
h

)
h
= π

(
α
(k)
h , β

(k)
h

)
vol ∀α

(k)
h , β

(l)
h ∈ Λk

h(Ω; Ck) , (3.2.7)

where vol is the unit volume form. With this definition and the fact that∫
Ω

πα(n) =
∫

Ω
α(n) ,

where α(n) is a volume form in Λn(Ω), we can easily get the discrete inner product (·, ·)Ω:(
α
(k)
h , β

(k)
h

)
Ω,h

=
∫

Ω
π
(

α
(k)
h , β

(k)
h

)
vol =

(
α
(k)
h , β

(k)
h

)
Ω

, (3.2.8)

∀α
(k)
h , β

(k)
h ∈ Λk

h(Ω; Ck).

Discrete Hodge star operator ? : The projection π and projection π̃ naturally give us a
discrete Hodge star operator ?h defined as

?h π = π̃ ? and ?h π̃ = π ? . (3.2.9)

Comparing Eq. (3.1.9) and Eq. (3.2.9), we can easily find the differences between the Hodge
star operator ? and this discrete Hodge star operator ?h. This discrete Hodge star operator
will not be calculated through the method that we use in Section 2.1.6 anymore.

Codifferential operator d∗ : In terms of the codifferential operator d∗, for a term containing
the codifferential operator, we can always use the integration by parts, see Eq. (2.1.58), to
transfer that term into a new term containing the exterior derivative which already has its
discrete counterpart, see Eq. 3.2.2.

3.3 Basic functions and reconstructions of discrete forms

The philosophy of how to constitute the mimetic framework has been given in previous
sections. The reduction has been shown with examples in Section 3.1. Meanwhile, how dif-
ferential operators perform at the discrete level is presented in Section 3.2. However, for the
reconstruction operator I , only its definition is already given. The process of reconstruct-
ing discrete differential forms is not presented in this thesis yet. In this section, the basis
functions which are basic elements of reconstructions and the method of how to reconstruct
discrete differential forms with these basis functions will be introduced.
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Basis functions: [25, 28, 38] Given a line segment [−1, 1], (N + 1) nodes (including two end
points) split this line segment into N intervals. We express these (N + 1) nodes as

x0, x1, x2, · · · , xN ,

where −1 = x0 < x1 < · · · < xN = 1. The N line intervals are expressed by

h1, h2, · · · , hN ,

where hi = [xi−1, xi] (1 ≤ i ≤ N). If there are a series of functions φ0
i (x) (0 ≤ i ≤ N) and a series

of functions φ1
i (x) (1 ≤ i ≤ N) such that

• (1) For xj ∈ {x0, x1, x2, · · · , xN},
φ0

i (xj) = δi
j ; (3.3.1)

• (2) For hj ∈ {h1, h2, · · · , hN},∫
hj

φ1
i (x)dx =

∫ xj

xj−1

φ1
i (x)dx = δi

j ; (3.3.2)

• (3) For an arbitrary linear combination of ψ0
i (x) (0 ≤ i ≤ N), ∑N

i=0 αiψ
0
i (x), αi ∈ R,

d
N

∑
i=0

αiφ
0
i (x) =

N

∑
i=1

(αi − αi−1)φ
1
i (x)dx . (3.3.3)

Then function sets
{

φ0
i (x)

∣∣∣ 0 ≤ i ≤ N
}

and
{

φ1
i (x)

∣∣∣ 1 ≤ i ≤ N
}

can be used to reconstruct

discrete differential forms. The elements of these two sets are called basis functions and
x0, x1, x2, · · · , xN are the nodes of these basis functions. Examples of basis functions φ0

i (x) and
basis functions φ1

i (x) can be found in sub-figures (a), (c), (e) and (b), (d), (f) of Fig. 3.3 respectively.

In R1, given a domain Ω = [−1, 1] and a cell complex in this domain, the 0-cells of the cell
complex are the nodes of basis functions. For a 0-form α(0) ∈ Λ0(Ω), we first reduce α(0)

onto the 0-cells and get a 0-cochain Rα(0), ϕ(Rα(0)) = {α0, α1, α2, · · · , αN}T. Then with basis
functions φ0

i (x) (0 ≤ i ≤ N), we reconstruct α0 according to the 0-cochain Rα(0) as

α
(0)
h = IRα(0) =

N

∑
i=0

αiφ
0
i (x) α

(0)
h ∈ Λ0

h(Ω; C0) . (3.3.4)

In terms of a 1-form β(1) ∈ Λ1(Ω), we can obtain its discrete form β
(1)
h through the same

approach, reducing the form to 1-cells then reconstructing the 1-cochain with basis functions
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φ1
i (x) (1 ≤ i ≤ N):

β
(1)
h =

N

∑
i=1

βiφ
1
i (x)dx β

(1)
h ∈ Λ1

h(Ω; C1) . (3.3.5)

Furthermore, if β(1) = dα(0), then we have

β
(1)
h = IRβ(1) = IRdα(0) = dIRα(0) = IδRα(0) . (3.3.6)

Suppose that the ϕ operator can also work on discrete forms as ϕ(α
(k)
h ) = ϕ(Rα

(k)
h ) (get

coefficients and form a vector). Apply ϕ operator to both sides of above equation, yielding

{
β1, β2, · · · , βN

}T
= E(1,0) {α0, α1, α2, · · · , αN}T . (3.3.7)

where E(1,0) is the incidence matrix of the cell complex D.

For example, when α(0) = sin(πx) + cos(0.5πx), β(1) = dα(0) = π cos(πx)− 0.5π sin(0.5πx),
their projections using Gauss-Lobatto-Legendre polynomials at N = 4 as basis functions are
given in Fig. 3.2. Gauss-Lobatto-Legendre polynomials are the basis functions used in this
project. More details about these basis functions can be found later in this section.

(a) The projection of α(0). (b) The projection of β(1).

Figure 3.2: Projections using Gauss-Lobatto-Legendre polynomials at N = 4.

These basis functions can also be used to reconstruct forms in Rn (n > 1). For example, in
a domain Ω = [−1, 1]3 with orthogonal coordinate system

{
x, y, z

}
, if [−1, 1] is divided into

N intervals by the (N + 1) nodes along each coordinate, we can construct a cell complex
containing (N + 1)3 0-cells (points), 3N(N + 1)2 1-cells (lines), 3N2(N + 1) 2-cells (faces)
and N3 volumes. Then forms can be reduced onto corresponding cells and sequentially be
reconstructed as [38]:
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42 3 Mimetic spectral element method

• Discrete 0-forms (associated with points):

α
(0)
h =

N

∑
i=0

N

∑
j=0

N

∑
k=0

αi,j,k φ0
i (x)φ0

j (y)φ
0
k(z) ; (3.3.8)

• Discrete 1-forms (associated with lines):

β
(1)
h =

N

∑
i=1

N

∑
j=0

N

∑
k=0

βx
i,j,k φ1

i (x)φ0
j (y)φ

0
k(z) dx

+
N

∑
i=0

N

∑
j=1

N

∑
k=0

β
y
i,j,k φ0

i (x)φ1
j (y)φ

0
k(z) dy

+
N

∑
i=0

N

∑
j=0

N

∑
k=1

βz
i,j,k φ0

i (x)φ0
j (y)φ

1
k(z) dz ;

(3.3.9)

• Discrete 2-forms (associated with faces):

γ
(2)
h =

N

∑
i=0

N

∑
j=1

N

∑
k=1

γx
i,j,k φ0

i (x)φ1
j (y)φ

1
k(z) dy ∧ dz

+
N

∑
i=1

N

∑
j=0

N

∑
k=1

γ
y
i,j,k φ1

i (x)φ0
j (y)φ

1
k(z) dz ∧ dx

+
N

∑
i=1

N

∑
j=1

N

∑
k=0

γz
i,j,k φ1

i (x)φ1
j (y)φ

0
k(z) dx ∧ dy ;

(3.3.10)

• Discrete 0-forms (associated with volumes):

δ
(3)
h =

N

∑
i=1

N

∑
j=1

N

∑
k=1

δi,j,k φ1
i (x)φ1

j (y)φ
1
k(z) dx ∧ dy ∧ dz . (3.3.11)

Once we number the cells of the cell complex and the coefficients of discrete differential
forms in the same way, we have

β
(k+1)
h = dα

(k)
h ⇐⇒ βk+1 = E(k+1,k)αk , (3.3.12)

where βk+1
h and αk are the vector proxy of forms β

(k+1)
h and α

(k)
h , βk+1

h = ϕ(β
(k+1)
h ) and

αk = ϕ(α
(k)
h ).

By now, several kinds of spaces of basis functions have been developed, for example, the
space of polynomials [5, 10, 28, 33, 38], the space of B-splines[25], the space of interpolator
and histopolator functions [45]. The one we are going to use is the space of polynomials.
Polynomials have been widely used in the numerical integration. With polynomials as basis
functions, integrals of basis functions on [−1, 1] can be computed easily and exactly [33, 25].
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3.3 Basic functions and reconstructions of forms 43

The basic polynomials are Gauss-Lobatto-Legendre polynomials, an application of these
polynomials is already shown in Fig 3.2. In addition, there are Gauss-Legendre polynomials
and extended Gauss-Legendre polynomials. Different from the Nth order Gauss-Lobatto-
Legendre polynomials which need a grid of N line intervals and (N + 1) nodes on [−1, 1],
the Nth order extended Gauss-Legendre polynomials require a grid of (N + 2) line intervals
and (N + 1) nodes and the Nth order Gauss-Legendre polynomials require a grid of N line
intervals and (N − 1) nodes (excluding the two end points of extended Gauss-Legendre
grid), for example, see Figure 4.1. The scheme, using staggered grids, a Gauss-Lobatto-
Legendre grid and an extended Gauss-Legendre grid, in which we can construct an exact
duality for the Hodge star operator has been developed, for example, see [3, 42]. With this
duality, the Hodge star operator is exactly satisfied at the discrete level, which means we
can project a discrete k-form on the Gauss-Lobatto-Legendre grid onto the extended Gauss-
Legendre grid as a discrete (n− k)-from directly. Keeping this property in discrete systems
is good. However, this kind of staggered grids does not help in our scheme. The reason of
this will be given in Section 4.2.

Here in this project, the Nth order Gauss-Lobatto-Legendre polynomials are used. The nodes
of the corresponding grid, the Gauss-Lobatto-Legendre grid [5], are zeros of the function:

f (x) = (1− x2)L′N(x) , (3.3.13)

where L′N(x) is the derivative of the Legendre polynomials.

Lp(x) =
(−1)p

2p p!
dp

dxp (1− x2)p p ∈N , (3.3.14)

L′p(x) =
1
2
(p + 1)φ1,1

p−1(x) p ∈N , (3.3.15)

where φ1,1
i−1(x) is the Jacobi polynomial. For p ∈N∪ {0} and a, b > −1,

φa,b
p (x) =

(−1)p

2p p!
(1− x)−a(1 + x)−b dp

dxp

[
(1− x)a+p(1 + x)(b+p)

]
. (3.3.16)

On a Gauss-Lobatto-Legendre grid of N line intervals, the corresponding Gauss-Lobatto-
Legendre polynomials are written as

lgl
i (x) = − (1− x2)L′N(x)

N(N + 1)LN(xi)(x− xi)
i = 0, 1, 2, · · · , N. (3.3.17)

which are used as the basis functions ψ0
i (x) = lgl

i (x). The so called edge polynomials [10] of
Gauss-Lobatto-Legendre polynomials are

egl
i (x) = −

i−1

∑
k=0

dlgl
k (x) = −

i−1

∑
k=0

lgl
k

′
(x)dx i = 1, 2, · · · , N. (3.3.18)

They are used as the basis functions ψ1
i (x) = egl

i (x). The Gauss-Lobatto-Legendre polyno-
mials and its edge polynomials for N = 3, 4, 5 are given in Fig. 3.3 where the blue dash lines
represent the nodes of grids.
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44 3 Mimetic spectral element method

(a) Gauss-Lobatto-Legendre polynomials at N = 3. (b) Edge polynomials at N = 3.

(c) Gauss-Lobatto-Legendre polynomials at N = 4. (d) Edge polynomials at N = 4.

(e) Gauss-Lobatto-Legendre polynomials at N = 5. (f) Edge polynomials at N = 5.

Figure 3.3: Gauss-Lobatto-Legendre polynomials and their edge polynomials for N = 3, 4, 5.
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4
Numerical modeling

By now, all tools we are going to use have been presented. In this chapter, we first apply
ideas of differential geometry given in Section 2.1 to Euler equations [25] and analyze the
conservation laws in terms of the mimetic framework. Then we set up two weak forms of
Euler equations. By applying discrete operators given in Section 3.2 to weak forms of Eu-
ler equations, we get two spatially discrete systems. To preserve mass, kinetic energy and
helicity simultaneously, some interactions between the two semi-discrete systems are con-
structed. Finally, with discretizations of the time derivative terms in weak Euler equations,
a fully discretized system which conserves the discrete mass, kinetic energy and helicity is
obtained.

4.1 Conservation laws in mimetic framework

We start from the periodic three-dimensional incompressible Euler equations in the mimetic
framework where the pressure can be expressed as either inner 0-form p̃(0) (inner oriented
pressure or inner pressure) or outer 3-form p(3) (outer oriented pressure or outer pressure), the
velocity can be expressed as either inner 1-form ũ(1) (inner oriented velocity or inner velocity)
or outer 2-form u(2) (outer oriented velocity or outer velocity) and the vorticity can be expressed
as either inner 2-form ω̃(2) (inner oriented vorticity or inner vorticity) or outer 1-form ω(1) (outer
oriented vorticity or outer vorticity).

Relations between ũ(1), ω̃(2), ω(1) and u(2) are

ω(1) d∗←− u(2)

l ? l ?

ω̃(2) d←− ũ(1)

. (4.1.1)
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46 4 Numerical modeling

4.1.1 Inner Euler

Inner oriented Euler equations: For Euler flows in a domain Ω, the inner oriented incompressible
Euler equations (inner Euler for short) are given as [25]

∂ũ(1)

∂t
+ ιuω̃(2) + dp̃(0)0 = 0 (a)

∂ω̃(2)

∂t
+ dιuω̃(2) = 0 (b)

d∗ũ(1) = 0 (c)

, (4.1.2)

where ũ(1) ∈ L2Λ̃1(Ω), ω̃(2) ∈ L2Λ̃2(Ω), p̃(0)0 = p̃(0) + 1
2 ιuũ(1) with p̃(0) ∈ L2Λ̃0(Ω) is the

generalized inner pressure and u = (ũ(1))] is the vector field. Equation (a) and equation (b) in fact
imply that ω̃(2) = dũ(1).

Mass conservation For the inner Euler, the mass conservation law is very easy to get. For
the incompressible flow, the mass flux through the boundary is the boundary integral of
outer oriented velocity ?ũ(1)

∫
∂Ω

?ũ(1) =
∫

Ω
d ? ũ(1) (2.1.59)

= −
∫

Ω
?d∗ũ(1) (4.1.2c)

= 0 . (4.1.3)

The overall mass flux through the boundary is always zero. Meanwhile the flow is in-
compressible. Therefore, the mass must be conserved. In fact, since we have d∗ũ(1) = 0
everywhere, Eq. (4.1.3) is satisfied for any volume of the domain Ω.

Kinetic energy conservation For the inner Euler, the kinetic energy is given as

K̃ =
1
2

∫
Ω

ũ(1) ∧ ?ũ(1) =
1
2

(
ũ(1), ũ(1)

)
Ω

. (4.1.4)

In order to get the conservation law of kinetic energy, we take the wedge product between the
momentum equation of the inner Euler, Eq. (4.1.2a), and ?ũ(1), then integrate the equation
over the domain Ω. We get

∫
Ω

∂ũ(1)

∂t
∧ ?ũ(1) +

∫
Ω

ιuω̃(2) ∧ ?ũ(1) +
∫

Ω
dp̃(0)0 ∧ ?ũ(1) = 0 , (4.1.5)

where from Eq. (2.1.67), we know∫
Ω

ιuω̃(2) ∧ ?ũ(1) (2.1.67)
= 0 , (4.1.6)
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4.1 Conservation laws in mimetic framework 47

and for the third term∫
Ω

dp̃(0)0 ∧ ?ũ(1) (2.1.34)
=

∫
Ω

d
(

p̃(0)0 ∧ ?ũ(1)
)
−
∫

Ω
p̃(0)0 ∧ d ? ũ(1) , (4.1.7)

where the second term on the right side is∫
Ω

p̃(0)0 ∧ d ? ũ(1) (2.1.57)
=

(
p̃(0), ?d ? ũ(1)

)
Ω

(2.1.60)
=

(
p̃(0), d∗ũ(1)

)
Ω

(4.1.2c)
= 0 , (4.1.8)

and in terms of the first term on the right side, from the generalized Stokes’ theorem and
the periodic boundary condition, it is zero as well. Therefore, we obtain

dK̃
dt

=

(
∂ũ(1)

∂t
, ũ(1)

)
Ω

=
∫

Ω

∂ũ(1)

∂t
∧ ?ũ(1) = 0 . (4.1.9)

The kinetic energy is conserved.

Helicity conservation For the inner Euler, the helicity is written as

H̃ =
∫

Ω
ũ(1) ∧ ω̃(2) =

(
ũ(1), ?ω̃(2)

)
Ω
=
(

ω̃(2), ?ũ(1)
)

Ω
. (4.1.10)

We first take the left wedge product of the vorticity equation of inner Euler, Eq. (4.1.2b), with
the inner oriented velocity ũ(1), then integrate the equation over the domain, which gives∫

Ω
ũ(1) ∧ ∂ω̃(2)

∂t
+
∫

Ω
ũ(1) ∧ dιuω̃(2) = 0 . (4.1.11)

where according to the Leibniz rule Eq. (2.1.34)∫
Ω

ũ(1) ∧ dιuω̃(2) =
∫

Ω
ω̃(2) ∧ ιuω̃(2) −

∫
Ω

d
(

ũ(1) ∧ ιuω̃(2)
)

. (4.1.12)

which is zero because the fact that∫
Ω

ω̃(2) ∧ ιuω̃(2) (2.1.67)
= 0 ,

and ∫
Ω

d
(

ũ(1) ∧ ιuω̃(2)
)
=
∫

∂Ω
ũ(1) ∧ ιuω̃(2) = 0 ,

according to the generalized Stokes’ theorem and the periodic boundary condition. There-
fore ∫

Ω
ũ(1) ∧ ∂ω̃(2)

∂t
= 0 . (4.1.13)

If we take the right wedge product of the momentum equation of inner Euler, Eq. (4.1.2a),
with the inner oriented vorticity ω̃(2), then integrate the equation over the domain, we get∫

Ω

∂ũ(1)

∂t
∧ ω̃(2) +

∫
Ω

ιuω̃(2) ∧ ω̃(2) +
∫

Ω
dp̃(0)0 ∧ ω̃(2) = 0 . (4.1.14)
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48 4 Numerical modeling

With the Leibniz rule, the fact ω̃(2) = dũ(1) and the periodic boundary condition, we know∫
Ω

dp̃(0)0 ∧ ω̃(2) (2.1.34)
=

∫
Ω

d
(

p̃(0)0 ∧ ω̃(2)
)
−
∫

Ω
p̃(0)0 ∧ dω̃(2) = 0 , (4.1.15)

and ∫
Ω

ω̃(2) ∧ ιuω̃(2) (2.1.67)
= 0 , (4.1.16)

So ∫
Ω

∂ũ(1)

∂t
∧ ω̃(2) = 0 . (4.1.17)

Adding Eq.(4.1.13) and Eq.(4.1.17), we obtain

dH̃
dt

=
∫

Ω
ũ(1) ∧ ∂ω̃(2)

∂t
+
∫

Ω

∂ũ(1)

∂t
∧ ω̃(2) = 0 . (4.1.18)

The helicity is conserved.

The kinetic energy and helicity expressed with inner forms are called the inner kinetic energy
and inner helicity.

4.1.2 Outer Euler

If we apply the Hodge-star operator, ?, to the inner Euler, we can get outer oriented Euler
equations.

Outer oriented Euler equations: For Euler flows in domain Ω, the outer oriented incompressible
Euler equations (outer Euler for short) are given as [25]

∂u(2)

∂t
+ juω(1) + d∗p(3)0 = 0 (a)

∂ω(1)

∂t
+ d∗juω(1) = 0 (b)

du(2) = 0 (c)

, (4.1.19)

where u(2) ∈ L2Λ2(Ω), ω(1) ∈ L2Λ1(Ω), p(3)0 = p(3) + 1
2 juu(2) with p(3) ∈ L2Λ3(Ω) and u =(

?u(2)
)]

represents the velocity field given by u(2). The operator j is the adjoint operator of interior

product ι, see Eq. (2.1.70). Equation (a) and Equation (b) imply that ω(1) = d∗u(2).

The time derivative here in the outer Euler actually is the adjoint operator of the time deriva-
tive in the inner Euler. The time derivative and its adjoint have the relation as follow [25]

?

(
∂

∂t

)
= − ∂

∂t
? . (4.1.20)
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This relation is in fact included in the two differently oriented Euler. To proof that, for
example, we can apply the Hodge star operator, ?, to Eq. (4.1.19a), we get

?
∂u(2)

∂t
+ ?juω(1) + ?d∗p(3)0 = 0 , (4.1.21)

with

?
∂u(2)

∂t
(4.1.20)
= −∂ũ(1)

∂t
, ?juω(1) (2.1.70)

= −ιuω̃(2) and ? d∗p(3)0
(2.1.59)
= −dp̃(0)0 . (4.1.22)

So we obtain

− ∂ũ(1)

∂t
− ιuω̃(2) − dp̃(0)0 = 0 , (4.1.23)

which is actually identical with Eq. (4.1.2a). If we apply one more Hodge star operator, ?, to
above equation, we again get Eq. (4.1.19a) because of the relation given in Eq. (2.1.55).

The time derivative and its adjoint operator are also convection operators which represent
the change of a variable due to the change of time along two orientation. However, different
from spacial dimensions which naturally have two orientations, the dimension time only
have one physically reasonable orientation. This is the reason why we consider a three-
dimension space

{
x, y, z

}
instead of a four-dimension space

{
x, y, z, t

}
in this project.

Mass conservation Obviously, mass conservation is automatically satisfied because of Eq.
(4.1.19c).

Kinetic energy conservation For the outer Euler, the kinetic energy is given as

K =
1
2

(
u(2), u(2)

)
Ω
=

1
2

∫
Ω

u(2) ∧ ?u(2) . (4.1.24)

If we take the inner product of Eq. (4.1.19a) with the outer oriented velocity u(2), we get(
∂u(2)

∂t
, u(2)

)
Ω

+
(

u(2), juω(1)
)

Ω
+
(

u(2), d∗p(3)0

)
Ω
= 0 . (4.1.25)

With the integration by parts, it becomes(
∂u(2)

∂t
, u(2)

)
Ω

+
∫

Ω
u(2) ∧ ?juω(1) +

(
du(2), p(3)0

)
Ω
−
∫

∂Ω
u(2) ∧ ?p(3)0 = 0 , (4.1.26)

where ∫
Ω

u(2) ∧ ?juω(1) = −
∫

Ω
u(2) ∧ ιu ? ω(1) (2.1.67)

= 0 . (4.1.27)

Meanwhile, because of the divergence free flow condition, Eq. (4.1.19c), and the periodic
boundary condition, the third and fourth terms of Eq. (4.1.26) are zero. So

dK
dt

=

(
∂u(2)

∂t
, u(2)

)
Ω

= 0 . (4.1.28)

The kinetic energy is conserved.
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Helicity conservation For the outer Euler, the helicity is expressed as

H =
∫

Ω
u(2) ∧ω(1) =

(
?u(2), ω(1)

)
Ω
=
(

u(2), ?ω(1)
)

Ω
. (4.1.29)

Take the inner product between the vorticity equation of the outer Euler, Eq. (4.1.19b), and
?u(2), we obtain (

?u(2),
∂ω(1)

∂t

)
Ω

+
(
?u(2), d∗juω(1)

)
Ω
= 0 . (4.1.30)

With integration by parts, the equation becomes(
?u(2),

∂ω(1)

∂t

)
Ω

+
(

d ? u(2), juω(1)
)

Ω
−
∫

∂Ω
?u(2) ∧ ?juω(1) = 0 , (4.1.31)

(
?u(2),

∂ω(1)

∂t

)
Ω

−
∫

Ω
d ? u(2) ∧ ιu ? ω(1) +

∫
∂Ω

?u(2) ∧ ιu ? ω(1) = 0 . (4.1.32)

Since d ? u(2) (2.1.59)
= ?d∗u(2) (4.1.1)

= ?ω(1) , we have∫
Ω

d ? u(2) ∧ ιu ? ω(1) (2.1.67)
= 0 . (4.1.33)

In addition, because of the periodic boundary condition, the boundary integral term drops
out. So we have (

?u(2),
∂ω(1)

∂t

)
Ω

= 0 . (4.1.34)

If we take the inner product between ?ω(1) and momentum equation of outer oriented Euler
equation, Eq. (4.1.19a), we get(

∂u(2)

∂t
, ?ω(1)

)
Ω

+
(
?ω(1), juω(1)

)
Ω
+
(
?ω(1), d∗p(3)0

)
Ω
= 0 . (4.1.35)

Again, with the integral by parts, we have(
∂u(2)

∂t
, ?ω(1)

)
Ω

+
∫

Ω
?ω(1) ∧ ?juω(1) +

(
d ? ω(1), p(3)0

)
Ω
−
∫

∂Ω
?ω(1) ∧ ?p(3)0 = 0 . (4.1.36)

The second term is zero because∫
Ω
?ω(1) ∧ ?juω(1) = −

∫
Ω
?ω(1) ∧ ιu ? ω(1) (2.1.67)

= 0 . (4.1.37)

The third term is zero as well because

d ? ω(1) (2.1.59)
= − ? d∗ω(1) (4.1.1)

= − ? d∗d∗u(2) (2.1.61)
= 0 . (4.1.38)
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The fourth term is also zero because of the periodic boundary condition. Therefore,(
∂u(2)

∂t
, ?ω(1)

)
Ω

= 0 . (4.1.39)

Adding Eq. (4.1.34) and Eq. (4.1.39) yields

dH
dt

= 0 . (4.1.40)

The helicity is conserved.

The kinetic energy and helicity expressed with outer forms are usually called the outer kinetic
energy and outer helicity. Note that the inner product used here actually is the L2-inner
product. Because we are only going to use L2-inner product, from now on, we always use
the inner product to represent the L2-inner product.

4.2 Weak forms and spatial discretizations

As we can see in Section 4.1, the kinetic energy and helicity, no matter inner or outer, can be
expressed in terms of either wedge product or inner product, as well as the weak forms of
Euler equations, Eq. (4.2.16) and Eq. (4.2.22). In Section 4.1, the proofs of conservation laws
in the inner Euler make use of expressions of the kinetic energy and helicity with respect to
the wedge product. While those in the outer Euler make use of expressions with respect to
the inner product. In fact, because at the continuous level, we have

α̃(n−k) = ?α(k) and α(k) = ?α̃(n−k) α(k) = ω(1), u(2), p(3) , (4.2.1)

and (
α(k), β(k)

)
Ω
=
∫

Ω
α(k) ∧ ?β(k) ∀α(k), β(k) ∈ L2Λk(Ω) , (4.2.2)

these two kinds of proofs can convert into each other exactly. In addition, although we
distinguish the inner kinetic energy (helicity) and outer kinetic energy (helicity), they are
identical with each other at the continuous level because of the same reasons.

Remark. No matter what kind of definitions of the kinetic energy and helicity, with respect to wedge
product or inner product, we use, if we want to get expressions for time derivatives of kinetic energy
and helicity, both inner and outer oriented velocity and vorticity are needed and we always need to
take the wedge product or inner product of the Euler equations with inner oriented form and outer
oriented form respectively.

Now, we take the outer Euler as example. in outer Euler, to get the time derivative of
the inner kinetic energy, we take the inner product of the momentum equation with the
outer oriented velocity u(2), see Eq. (4.1.25). Meanwhile, to get the time derivative of the
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inner helicity, we take the inner product of the momentum equation with the inner oriented
vorticity ?ω(1), see Eq. (4.1.35). This does not introduce any problems at the continuous
level because

u(2) ∈ L2Λ2(Ω) and ω̃(2) = ?ω(1) ∈ L2Λ̃2(Ω) , (4.2.3)

and mathematically Λ2(Ω) = Λ̃2(Ω) (see Section 2.1.5) and the calculation of Hodge star
operator is natural. However at the discrete level, the calculation of the discrete Hodge star
operator is not natural. It requires the existence of both primal grid and dual grid. Moreover,
at the discrete level,

u(2)
h ∈ L2Λ2

h(Ω; C2) and w̃(2)
h = ?hw(1)

h ∈ L2Λ̃2
h(Ω; C̃2) , (4.2.4)

where L2Λ2
h(Ω; C2) does not necessarily equal to L2Λ̃2

h(Ω; C̃2). In order to make them to be
equal, we have to make sure that C2 = C̃2 (in fact C2(D) = C̃2(D̃)). In other words, we
need to use only one grid as both primal grid and dual grid. Once D = D̃, L2Λ1

h(Ω; C1) =

L2Λ̃1
h(Ω; C̃1) is satisfied as well. As we said in Section 3.3, the Gauss-Lobatto-Legendre grid

will is used for both primal grid and dual grid in this project.

Seemingly, we only use a single grid. To be exact, we should consider that we use dual grids
but these two dual grids coincide with each other. This duality is obviously different from
the duality used by Palha et al. in [42] and Bouman et al. in [3] where a Gauss-Lobatto-
Legendre primal grid is associated with an extended Gauss-Legendre dual grid, see Fig. 4.1.
Under this kind of duality, we have

Figure 4.1: The Gauss-Lobatto-Legendre primal grid (black) and the extended Gauss-
Legendre dual grid (red) for N = 2.

L2Λk(Ω; Ck) ⊆ L2Λ̃n−k(Ω; C̃n−k) k = 0, 1, · · · , n . (4.2.5)

Therefore, we can set up Hodge matrices representing the Hodge star operator according to
the relation given in Eq. (2.1.57). However, in this project, the duality does not satisfy Eq.
(4.2.5) anymore. Hence, we can not obtain direct discrete counterparts, the Hodge matrices,
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for the Hodge star operator. That means at any time step, even if we already have solutions
of outer oriented variables, we can not calculate the inner oriented variables by applying the
Hodge matrices to vector forms of the outer oriented variables. Therefore, we know

Remark. To obtain both inner and outer oriented variables, the computation of both inner Euler and
outer Euler must be preformed simultaneously on the primal gird and dual grid.

In this case, connections between inner oriented variables and outer oriented variables are
represented by the discrete Hodge star operator given in Eq. (3.2.9). In fact, because of the
relation in Eq. (3.1.9), this discretization is more accurate than the discretization (Hodge
matrices) in [3, 42] for the Hodge star operator.

For mimetic spectral schemes, degrees of freedom of are defined not only on points, but
also on lines, faces, volumes etc. in the cell complex. Sometimes we can not find suitable
degrees of freedom to define the boundary condition. For example, in this project, we solve
a periodic flow in a unit 3-cube. The inner velocity, 1-form ũ(1), is expanded onto the 1-cells
of the dual grid. These 1-cells are actually representing the degrees of freedom. However,
1-cells in the boundary can only used to expand the tangential components of velocity. So,
we have no degrees of freedom which can be used to expand normal component of velocity
on the boundary. Therefore, it seems that we lose control of the normal velocity component
on the boundary. Similarly, for the outer oriented velocity, 2-form u(2), it seem that we only
control the normal velocity component on the boundary. The same happens to the vorticity
and pressure. For the components that have no degrees of freedom on the boundary, to
impose boundary conditions to them, weak boundary conditions are employed. While for
those that have degrees of freedom on the boundary, the boundary conditions applied to
them are then called strong boundary conditions.

Figure 4.2: A discrete inner velocity on a Gauss-Lobatto-Legendre grid at N = 2.

For example, in a periodic unit 2-cube ([−1, 1]2) equipped with a Gauss-Lobatto-Legendre
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grid at N = 2, see Fig. 4.2, the discrete inner velocity 1-form ũ(1) is given as

ũ(1) =
2

∑
i=1

2

∑
j=0

ũi,j dx +
2

∑
i=0

2

∑
j=1

ṽi,j dy . (4.2.6)

Because the flow is periodic, we can set ũi,0 = ũi,2, i = 1, 2 for the top and bottom boundaries,
which is the strong boundary condition. However, the normal component of the velocity on
top and bottom boundaries where we have no degrees of freedom for it is also periodic and
we need to apply boundary condition for it. In this case, we have to introduce the weak
boundary condition.

In our project, weak boundary conditions are imposed to the system by making use of either
the integration by parts, Eq. (2.1.58), or the Leibniz rule of wedge product, Eq. (2.1.34). For
a differential k-form α(k) which is the target to impose the weak boundary condition, when
there is a term d∗α(k) in the control equation, we can test the equation with test functions
ς(k−1) by taking the inner product between the control equation and the test functions, which
results in a series of terms:(

d∗α(k), ς(k−1)
)

Ω

(2.1.58)
=

(
α(k), dς(k−1)

)
Ω
−
∫

∂Ω
ς(k−1) ∧ ?α(k) . (4.2.7)

Once the test functions ς(k−1) are periodic, by making the boundary integral terms to be
zero: ∫

∂Ω
ς(k−1) ∧ ?α(k) := 0 ,

we weakly apply a periodic boundary condition to α(k) since if only α(k) is periodic, the
boundary integral terms can be zero.

If there is a term dβ(k) in the control equation, we can test the equation by taking the wedge
product of the equation with test functions σ(n−k) then integral the equation over the domain,
which gives rise to a series of terms:∫

Ω
dβ(k) ∧ σ(n−k−1) (2.1.34)

=
∫

Ω
d
(

β(k) ∧ σ(n−k−1)
)
− (−1)k

∫
Ω

β(k) ∧ dσ(n−k−1)

(2.1.43)
=

∫
∂Ω

β(k) ∧ σ(n−k) − (−1)k
∫

Ω
β(k) ∧ dσ(n−k−1) .

(4.2.8)

Once the test functions are periodic, by making the boundary integral term to be zero,∫
∂Ω

β(k) ∧ σ(n−k) := 0 ,

we weakly impose a periodic boundary condition to β(k) because if only β(k) is also periodic,
the boundary integral term can be zero. Note that here we do not use the inner product
between dβ(k) and test functions τ(k+1). This is because if we do that, to avoid the appearance
of the metric-dependent operator codifferential (So we can not use the integration by parts.),

Msc Thesis Yi Zhang



4.2 Weak forms and spatial discretizations 55

we have to first use the relation given in Eq. (2.1.57) and then use the Leibniz rule,(
dβ(k), τ(k+1)

)
Ω

(2.1.57)
=

∫
Ω

dβ(k) ∧ ?τ(k+1)

(2.1.34)
=

∫
Ω

d
(

β(k) ∧ ?τ(k+1)
)
− (−1)k

∫
Ω

β(k) ∧ d ? τ(k+1)

(2.1.43)
=

∫
∂Ω

β(k) ∧ ?τ(k+1) − (−1)k
∫

Ω
β(k) ∧ d ? τ(k+1) .

(4.2.9)

Similarly, we can make the boundary integral term to be zero to weakly impose the periodic
boundary condition to β(k). However, this will leave a term including d ? τ(k+1) which is
actually equal to (−1)(k+1) ? d∗τ(k+1) in the equation. As we said, the metric-dependent
operator codifferential d∗ is what we want to avoid. Therefore, for the equation containing
dβ(k), we normally do not use inner production as a tool to impose the weak boundary
condition to β(k).

Because of above analysis, we finally choose the weak form in wedge product for inner Euler
and the weak form in inner product for outer Euler. Overall, the general information for our
discrete system is

• The domain: The domain Ω is a unit 3-cube I3 = [−1, 1]3.

• Boundary conditions: Periodic boundary conditions

• Grids: The same Gauss-Lobatto-Legendre grid for both primal and dual grids.

• Discrete Euler: Discrete weak form in wedge product for inner Euler, discrete weak form in
inner product for outer Euler.

4.2.1 Inner Euler

We start from the weak form of the inner Euler at the continuous level Eq. (4.2.10).

Weak inner Euler: Find{
p̃(0), ũ(1), ω̃(2)

}
∈
{

L2Λ(0)(Ω), L2Λ(1)(Ω), L2Λ(2)(Ω)
}

,

such that
∀
{

σ(2), ς(1), φ(0)
}
∈
{

L2Λ(2) (Ω) , L2Λ(1) (Ω) , L2Λ(0) (Ω)
}

,

we have 

∫
Ω

∂ũ(1)

∂t
∧ σ(2) +

∫
Ω

ιuω̃(2) ∧ σ(2) +
∫

Ω
dp̃(0)0 ∧ σ(2) = 0∫

Ω

∂ω̃(2)

∂t
∧ σ(2) +

∫
Ω

dιuω̃(2) ∧ σ(2) = 0(
d∗ũ(1), φ(0)

)
Ω
= 0

. (4.2.10)
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With the Leibniz rule and the generalized Stokes’ theorem, Eq. (4.2.10) becomes

∫
Ω

∂ũ(1)

∂t
∧ σ(2) +

∫
Ω

ιuω̃(2) ∧ σ(2) +
∫

∂Ω
p̃(0)0 ∧ σ(2) −

∫
Ω

p̃(0)0 ∧ dσ(2) = 0∫
Ω

∂ω̃(2)

∂t
∧ ς(1) +

∫
∂Ω

ιuω̃(2) ∧ ς(1) +
∫

Ω
ιuω̃(2) ∧ dς(1) = 0(

ũ(1), dφ(0)
)

Ω
−
∫

∂Ω
φ(0) ∧ ?ũ(1) = 0

. (4.2.11)

We first discretize these equations with the mimetic discretization constructed in Chapter 3
and then apply the weak boundary conditions by setting the boundary integral terms to be
zero: ∫

∂Ω
p̃(0)0,h ∧h σ

(2)
h = 0 , (4.2.12)∫

∂Ω
ιhuh

ω̃
(2)
h ∧h ς

(1)
h = 0 . (4.2.13)

The discrete test functions σ
(2)
h and ς

(1)
h are in fact known. By setting up a set of linear

independent periodic test functions using the basis functions and making σ
(2)
h or ς

(1)
h to be

each element of the corresponding test functions set, we get a series of linear independent
equations. If there are as many equations as the degrees of freedom, the system is solvable.
This is as same as the general philosophy of the conventional finite element method or
spectral method.

In terms of the periodic test functions, the simplest choice is using all internal basis func-
tion and the combinations each of which contains two basis functions associated with two
periodic boundary cells. For example, in Fig. 4.2, a set of periodic test functions is given as{

φ1,1 , φ2,1 , φ1,0 + φ1,2 , φ2,0 + φ2,2 , ψ1,1 , ψ1,2 , ψ0,1 + ψ2,1 , ψ0,2 + ψ2,2
}

, (4.2.14)

where φi,j is the basis function related to the cell on which ũi,j are defined and ψi,j is the
basis function related to the cell on which ṽi,j are defined. Note that at the discrete level,
the periodic test functions are actually not fully periodic. Only the normal component or
tangential components are periodic. But through simple analysis, we can easily find that this
point does not affect the weak periodic boundary conditions because the boundary integral
being zero only requires that the boundary integral of the normal component is zero.

We eventually get

∫
Ω

∂ũ(1)
h

∂t
∧h σ

(2)
h +

∫
Ω

ιhuh
ω̃

(2)
h ∧h σ

(2)
h −

∫
Ω

p̃(0)0,h ∧h dhσ
(2)
h = 0

∫
Ω

∂ω̃
(2)
h

∂t
∧h ς

(1)
h +

∫
Ω

ιhuh
ω̃

(2)
h ∧h dhς

(1)
h = 0(

ũ(1)
h , dhφ

(0)
h

)
Ω,h

= 0

. (4.2.15)
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To make it clear, we omit the sub-script and super-script h. Eventually, we get a discrete
weak inner Euler as

Discrete weak inner Euler: Find{
p̃(0), ũ(1), ω̃(2)

}
∈
{

L2Λ(0)
h (Ω; C0; P), L2Λ(1)

h (Ω; C1; P), L2Λ(2)
h (Ω; C2; P)

}
,

such that

∀
{

σ(2), ς(1), φ(0)
}
∈
{

L2Λ(2)
h (Ω; C2; P) , L2Λ(1)

h (Ω; C1; P) , L2Λ(0)
h (Ω; C0; P)

}
,

we have 

∫
Ω

∂ũ(1)

∂t
∧ σ(2) +

∫
Ω

ιuω̃(2) ∧ σ(2) −
∫

Ω
p̃(0)0 ∧ dσ(2) = 0∫

Ω

∂ω̃(2)

∂t
∧ ς(1) +

∫
Ω

ιuω̃(2) ∧ dς(1) = 0(
ũ(1), dφ(0)

)
Ω
= 0

, (4.2.16)

where P means the space is periodic.

4.2.2 Outer Euler

The weak form of the outer Euler at the continuous level is given as

Weak outer Euler: Find{
p(3), u(2), ω(1)

}
∈
{

L2Λ(3)(Ω), L2Λ(2)(Ω), L2Λ(1)(Ω)
}

,

such that
∀
{

ς(1), σ(2), τ(3)
}
∈
{

L2Λ(1) (Ω) , L2Λ(2) (Ω) , L2Λ(3) (Ω)
}

,

we have 

(
∂u(2)

∂t
, σ(2)

)
Ω

+
(

juω(1), σ(2)
)

Ω
+
(

d∗p(3)0 , σ(2)
)

Ω
= 0(

∂ω(1)

∂t
, ς(1)

)
Ω

+
(

d∗juω(1), ς(1)
)

Ω
= 0(

du(2), τ(3)
)

Ω
= 0

. (4.2.17)
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Eq. (4.2.17) can be expressed as

(
∂u(2)

∂t
, σ(2)

)
Ω

−
∫

Ω
ψ(2) ∧ ιu ? ω(1) +

(
p(3)0 , dψ(2)

)
Ω
−
∫

∂Ω
ψ(2) ∧ ?p(3)0 = 0(

∂ω(1)

∂t
, ς(1)

)
Ω

−
∫

Ω
dϕ(1) ∧ ιu ? ω(1) +

∫
∂Ω

ϕ(1) ∧ ιu ? ω(1) = 0(
du(2), τ(3)

)
Ω
= 0

. (4.2.18)

Again, we discretize above system and define weak boundary conditions by setting all
boundary integral terms to be zero,∫

∂Ω
ψ
(2)
h ∧h ?h p(3)0,h = 0 , (4.2.19)∫

∂Ω
ϕ
(1)
h ∧h ιhuh

?h ω
(1)
h = 0 . (4.2.20)

Finally, we get

∂u(2)
h

∂t
, σ

(2)
h


Ω,h

−
∫

Ω
ψ
(2)
h ∧h ιhuh

?h ω
(1)
h +

(
p(3)0,h , dhψ

(2)
h

)
Ω,h

= 0

∂ω
(1)
h

∂t
, ς

(1)
h


Ω,h

−
∫

Ω
dh ϕ

(1)
h ∧h ιhuh

?h ω
(1)
h = 0

(
dhu(2)

h , τ
(3)
h

)
Ω,h

= 0

. (4.2.21)

We again omit the sub-script and super-script h. Finally the discrete weak outer Euler is
expressed as

Discrete weak outer Euler: Find{
p(3), u(2), ω(1)

}
∈
{

L2Λ(3)(Ω; C3; P), L2Λ(2)(Ω; C2; P), L2Λ(1)(Ω; C1; P)
}

,

such that

∀
{

ς(1), σ(2), τ(3)
}
∈
{

L2Λ(1) (Ω; C1; P) , L2Λ(2) (Ω; C2; P) , L2Λ(3) (Ω; C3; P)
}

,

we have 

(
∂u(2)

∂t
, σ(2)

)
Ω

−
∫

Ω
σ(2) ∧ ιu ? ω(1) +

(
p(3)0 , dσ(2)

)
Ω
= 0(

∂ς(1)

∂t
, ϕ(1)

)
Ω

−
∫

Ω
dς(1) ∧ ιu ? ω(1) = 0(

du(2), τ(3)
)

Ω
= 0

. (4.2.22)
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4.3 Conservation laws at the discrete level

Once spatial discretizations for two weak forms are constructed, we need to set up inter-
actions between them to keep the kinetic energy and helicity preserved. The interactions
between the discrete inner Euler and outer Euler are strongly related to the discrete Hodge
star operator we construct in Section 3.2.

From now on, variables and operators without sub-script or super-script h represent discrete
variables and operators unless it is specifically mentioned that they do not or both discrete
and non-discrete variables or operators appear.

4.3.1 Inner Euler

In the discrete inner Euler, we take use of the discrete Hodge star operator between the inner
oriented velocity ũ(1) and outer oriented velocity u(2):

u(2) = ?ũ(1) . (4.3.1)

The discrete weak inner Euler is given as

∫
Ω

∂ũ(1)

∂t
∧ σ(2) +

∫
Ω

ιuω̃(2) ∧ σ(2) −
∫

Ω
p̃(0)0 ∧ dσ(2) = 0∫

Ω

∂ω̃(2)

∂t
∧ ς(1) +

∫
Ω

ιuω̃(2) ∧ dς(1) = 0(
ũ(1), dφ(0)

)
Ω
= 0

. (4.3.2)

We borrow u(2) from the discrete outer Euler and use ?u(2) and u =
(
?u(2)

)]
to replace ũ(1)

and u in the discrete inner Euler except the ũ(1) in the time derivative term. We obtain

∫
Ω

∂ũ(1)

∂t
∧ σ(2) +

∫
Ω

ιuω̃(2) ∧ σ(2) −
∫

Ω
p̃(0)0 ∧ dσ(2) = 0∫

Ω

∂ω̃(2)

∂t
∧ ς(1) +

∫
Ω

ιuω̃(2) ∧ dς(1) = 0(
ũ(1), dφ̃(0)

)
Ω
= 0

. (4.3.3)

Here we in fact use uh =
(
? ?h ũ(1)

h

)]
, which means we make use of the vector field given by

the outer Euler to solve the inner Euler. Note that ??h 6= Id from Eq. (3.1.9) and Eq. (3.2.9).
The generalized inner pressure p̃(0)0 is then expressed as

p̃(0)0 = p̃(0) +
1
2

ιu?u(2) . (4.3.4)

The red Hodge star operator ? represents the non-discrete Hodge star operator.
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Kinetic energy conservation For the kinetic energy conservation, we have

dK̃
dt

=

(
∂ũ(1)

∂t
, ũ(1)

)
Ω

=
∫

Ω

∂ũ(1)

∂t
∧ ?ũ(1) =

∫
Ω

∂ũ(1)

∂t
∧ u(2) . (4.3.5)

Because in our discrete system, both u(2) and σ(2) belong to the space L2Λ2(Ω; C2). We
replace σ(2) by u(2) for the first equation of Eq. (4.3.3). We obtain∫

Ω

∂ũ(1)

∂t
∧ u(2) +

∫
Ω

ιuω̃(2) ∧ u(2) −
∫

Ω
p̃(0)0 ∧ du(2) = 0 , (4.3.6)

where ∫
Ω

p̃(0)0 ∧ du(2) = 0 , (4.3.7)

because we borrow u(2) from the outer Euler in which du(2) = 0 is satisfied strictly. In
addition, ∫

Ω
ιuω̃(2) ∧ u(2) =

(
ιuω̃(2), ?u(2)

)
Ω

(2.1.67)
= 0 . (4.3.8)

Therefore
dK̃
dt

=
∫

Ω

∂ũ(1)

∂t
∧ u(2) =

∫
Ω

p̃(0)0 ∧ du(2) −
∫

Ω
ιuω̃(2) ∧ u(2) = 0 . (4.3.9)

The discrete inner kinetic energy is conserved.

Helicity conservation For the helicity conservation, because σ2, ω̃(2) ∈ L2Λ2(Ω; C2) and
ς(1), ũ(1) ∈ L2Λ1(Ω; C1), we can replace σ2 and ς(1) in the first and second equations of Eq.
(4.3.3) by ω̃(2) and ũ(1) respectively, which results in∫

Ω

∂ũ(1)

∂t
∧ ω̃(2) +

∫
Ω

ιuω̃(2) ∧ ω̃(2) −
∫

Ω
p̃(0)0 ∧ dω̃(2) = 0 , (4.3.10)

∫
Ω

∂ω̃(2)

∂t
∧ ũ(1) +

∫
Ω

ιuω̃(2) ∧ dũ(1) = 0 . (4.3.11)

Because in the inner Euler, relation dũ(1) = ω̃(2) is satisfied, we have∫
Ω

ιuω̃(2) ∧ dũ(1) =
∫

Ω
ιuω̃(2) ∧ ω̃(2) (2.1.67)

= 0 . (4.3.12)

And since the exterior derivative d is a nilpotent (See Eq. (2.1.35)), dω̃(2) = ddũ(1) = 0, we
have ∫

Ω
p̃(0)0 ∧ dω̃(2) = 0 . (4.3.13)

Therefore, we get ∫
Ω

∂ũ(1)

∂t
∧ ω̃(2) =

∫
Ω

p̃(0)0 ∧ dω̃(2) −
∫

Ω
ιuω̃(2) ∧ ω̃(2) = 0 , (4.3.14)∫

Ω

∂ω̃(2)

∂t
∧ ũ(1) = −

∫
Ω

ιuω̃(2) ∧ dũ(1) = 0 . (4.3.15)
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With above two equations, we eventually obtain

dH̃
dt

=
∫

Ω

∂ũ(1)

∂t
∧ ω̃(2) +

∫
Ω

∂ω̃(2)

∂t
∧ ũ(1) = 0 . (4.3.16)

The discrete inner helicity is conserved.

4.3.2 Outer Euler

In outer Euler, we make use of the discrete Hodge star relation between the inner oriented
vorticity ω̃(2) and outer oriented vorticity ω(1):

ω̃(2) = ?ω(1) . (4.3.17)

The weak form of the outer Euler is given as

(
∂u(2)

∂t
, ψ(2)

)
Ω

−
∫

Ω
ψ(2) ∧ ιu ? ω(1) +

(
p(3)0 , dψ(2)

)
Ω
= 0(

∂ω(1)

∂t
, ϕ(1)

)
Ω

−
∫

Ω
dϕ(1) ∧ ιu ? ω(1) = 0(

du(2), τ(3)
)

Ω
= 0

. (4.3.18)

We borrow ω̃(2) from the inner Euler to replace ?ω(1). This is natural because of our defini-
tion of the discrete Hodge star, see Eq. (3.2.9).

(
∂u(2)

∂t
, σ(2)

)
Ω

−
∫

Ω
σ(2) ∧ ιuω̃(2) +

(
p(3)0 , dσ(2)

)
Ω
= 0(

∂ω(1)

∂t
, ς(1)

)
Ω

−
∫

Ω
dς ∧ ιuω̃(2) = 0(

du(2), τ(3)
)

Ω
= 0

, (4.3.19)

where ω̃(2) is borrowed from the inner Euler in which dω̃(2) = 0 is satisfied and du(2) = 0 in
the outer Euler.

Kinetic energy conservation For the kinetic energy conservation, we can replace σ(2) in the
first equation of Eq. (4.3.19) by u(2) because both σ(2) and u(2) belong to Λ2(Ω; C2). Hence,
we obtain (

∂u(2)

∂t
, u(2)

)
Ω

−
∫

Ω
u(2) ∧ ιuω̃(2) +

(
p(3)0 , du(2)

)
Ω
= 0 , (4.3.20)
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where ∫
Ω

u(2) ∧ ιuω̃(2) (2.1.67)
= 0 , (4.3.21)(

p(3)0 , du(2)
)

Ω
= 0 . (4.3.22)

Sequentially,

dK
dt

=

(
∂u(2)

∂t
, u(2)

)
Ω

= 0 . (4.3.23)

The discrete outer kinetic energy is conserved.

Helicity conservation For the helicity conservation, because of the fact that ω̃(2), σ(2) ∈
L2Λ2(Ω; C2) and ũ(1), ς(1) ∈ L2Λ1(Ω; C1), we can replace the σ(2) and ς(1) in the first and
second equations of Eq. (4.3.19) by ω̃(2) and ũ(1), which leads to(

∂u(2)

∂t
, ω̃(2)

)
Ω

−
∫

Ω
ω̃(2) ∧ ιuω̃(2) +

(
p(3)0 , dω̃(2)

)
Ω
= 0 , (4.3.24)

(
∂ω(1)

∂t
, ũ(1)

)
Ω

−
∫

Ω
dũ(1) ∧ ιuω̃(2) = 0 , (4.3.25)

where ∫
Ω

ω̃(2) ∧ ιuω̃(2) (2.1.67)
= 0 , (4.3.26)

and both ω̃(2) and ũ(1) come from inner Euler where ω̃(2) = dũ(1), so(
p(3)0 , dω̃(2)

)
Ω
= 0 , (4.3.27)

∫
Ω

dũ(1) ∧ ιuω̃(2) (2.1.67)
= 0 . (4.3.28)

Eventually we get

dH
dt

=

(
∂u(2)

∂t
, ω̃(2)

)
Ω

+

(
∂ω(1)

∂t
, ũ(1)

)
Ω

= 0 . (4.3.29)

The discrete outer helicity is conserved.

4.4 Temporal discretizations

Although we have constructed two spatial discretization systems which preserve mass, ki-
netic energy and helicity, the temporal terms are not discretized yet. To verify the discrete
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conservation laws given in Section 4.3, we use the simplest temporal discretization, the for-
ward Euler. The forward Euler in fact destroys the conservation laws. For example, the
kinetic energy conservation in the discrete outer Euler is given as, Eq. (4.3.23),

dK
dt

=

(
∂u(2)

∂t
, u(2)

)
Ω

= 0 . (4.4.1)

With the forward Euler, the fully discretized form of this equation isu(2)
n+1 − u(2)

n

∆t
, u(2)

n


Ω

= 0 , (4.4.2)

where the sub-script means the time step. Therefore,

1
∆t

(
u(2)

n+1, u(2)
n

)
Ω
=

1
∆t

(
u(2)

n , u(2)
n

)
Ω

, (4.4.3)

which means
Kn+1 =

(
u(2)

n+1, u(2)
n+1

)
Ω
6=
(

u(2)
n , u(2)

n

)
Ω
= Kn . (4.4.4)

To eliminate this inaccuracy, higher order temporal discretization is needed. However, in this
project, our main objective is verifying the discrete conservation laws given by Eq. (4.3.9),
Eq. (4.3.29), Eq. (4.3.23) and Eq. (4.3.29). Hence, we will just use the forward Euler for the
temporal discretization.

4.4.1 Inner Euler

If we apply the the forward Euler to the discrete inner Euler, Eq. (4.3.3), we get a fully
discretized system given as

1
∆t

∫
Ω

ũ(1)
n+1 ∧ σ(2) − 1

∆t

∫
Ω

ũ(1)
n ∧ σ(2) +

∫
Ω

ιuω̃
(2)
n ∧ σ(2) −

∫
Ω

p̃(0)0,n ∧ dσ(2) = 0

1
∆t

∫
Ω

ω̃
(2)
n+1 ∧ ς(1) − 1

∆t

∫
Ω

ω̃
(2)
n ∧ ς(1) +

∫
Ω

ιuω̃
(2)
n ∧ dς(1) = 0(

ũ(1)
n+1, dφ(0)

)
Ω
= 0

, (4.4.5)

where ∆t is the time interval between two time steps. Recall that the generalized inner
pressure p̃(0)0,n = p̃(0)n + 1

2 ιu?u(2)
n . Although we use the forward Euler, the inner velocity and

vorticity at time step n, ũ(1)
n and ω̃

(2)
n , are known, the inner pressure p̃(0)n in fact is consid-

ered to be unknown. Make σ(2), ς(1), φ(0) to be each corresponding periodic test function
respectively. This results in a series equations. Actually, by doing that, the first and second
equations of Eq. (4.4.5) provide as many equations as the degrees of freedom of the inner
velocity and inner vorticity at time step n + 1, ũ(1)

n+1 and ω̃
(2)
n+1. Meanwhile, the third equation
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of Eq. (4.4.5) provides as many equations as the degrees of freedom of the inner pressure at
time step n, p̃(0)n .

Eventually, by expressing this series of equations in matrix form, we get a system expressed
as 

1
∆t

M̂(1) ∅ E(2,3)M̂(0)

∅
1

∆t
M̂(2) ∅

M(1)E(1,0) ∅ ∅


 ũ(1)

n+1

ω̃
(2)
n+1

p̃(0)
n

 =


1

∆t
M̂(1)ũ(1)

n −A +
1
2

B

1
∆t

M̂(2)ω̃
(2)
n −E(1,2)A

0

 , (4.4.6)

where ũ(1), ω̃(2), p̃(0) are vector proxies, see Appendix A, of inner oriented differential forms
ũ(1), ω̃(2), p̃(0) and their sub-scripts means the time step, matrices E are the metric-free inci-
dence matrices of the grid, matrices M̂ are the mass matrices and matrices A, B come from
terms ∫

Ω
ιuω̃

(2)
n ∧ σ(2),

∫
Ω

ιuũ(1)
n ∧ dσ(2) ,

respectively. For more details about this fully discretized system, see Appendix A.1 where
derivations of matrices for all terms is given.

4.4.2 Outer Euler

In terms of the outer Euler Eq. (4.3.19), the forward Euler leads to a fully discretized system
expressed as

− 1
∆t

(
u(2)

n+1, σ(2)
)

Ω
+

1
∆t

(
u(2)

n , σ(2)
)

Ω
−
∫

Ω
σ(2) ∧ ιuω̃

(2)
n +

(
p(3)0,n, dσ(2)

)
Ω
= 0

− 1
∆t

(
ω̃

(2)
n+1, ς(1)

)
Ω
+

1
∆t

(
ω̃

(2)
n , ς(1)

)
Ω
−
∫

Ω
dς ∧ ιuω̃

(2)
n = 0(

du(2)
n+1, τ(3)

)
Ω
= 0

, (4.4.7)

where ∆t is the time interval between two time steps and p(3)0,n = p(3)n + 1
2 juu(2)

n . In fully

discretized outer Euler, u(2)
n+1, ω

(1)
n+1 and p(3)n are unknowns. Note that we in fact use

(
∂u(2)

∂t
, σ(2)

)
Ω

= −

(
u(2)

n+1, σ(2)
)

Ω
−
(

u(2)
n , σ(2)

)
Ω

∆t
, (4.4.8)

(
∂ω(1)

∂t
, ς(1)

)
Ω

= −

(
ω

(1)
n+1, ς(1)

)
Ω
−
(

ω
(1)
n , ς(1)

)
Ω

∆t
, (4.4.9)

here. The minus signs are because of we implicitly apply a Hodge star operator, ?, to the
outer Euler by making use of the relation Eq. (2.1.56). According to relation Eq. (4.1.20), if
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we use the normal forward Euler, it actually means we are backtracking the flow instead of
developing the flow.

By making σ(2) to be the each 2-form test function, we get as many equations as the degrees
of freedom of u(2)

n+1 from the first equation of Eq. (4.4.7). Meanwhile, by making ς(1) to be
the each 1-form periodic test function, we get as many equations as the degrees of freedom
of ω

(1)
n+1 from the second equation. Furthermore, By making τ(3) to be the each 3-form test

function, we get as many equations as the degrees of freedom of p(3)n from the third equation.
Expressing this series of equations in matrix form, we get

1
∆t

M(1) ∅ E(2,3)M(3)

∅
1

∆t
M(2) ∅

M(3)E(3,2) ∅ ∅


u(2)

n+1

ω
(1)
n+1

p(3)
n

 =


1

∆t
M(1)u(2)

n −A +
1
2

B

1
∆t

M(2)ω
(1)
n −E(1,2)A

0

 , (4.4.10)

where u(2), ω(1), p(3) are vector proxies, see Appendix A, of outer oriented differential forms
u(2), ω(1), p(3) and their sub-scripts means the time steps, matrices E are the metric-free
incidence matrices of the grid, matrices M are the mass matrices and matrices A, B come
from terms ∫

Ω
σ(2) ∧ ιuω̃

(2)
n ,

(
juu(2)

n , dσ(2)
)

Ω
,

respectively which are actually identical with the matrices A and B in Eq. (4.4.6). More
details about this fully discretized system is given in Appendix A.2 where the derivation of
the matrix expression for each term is given.

Because of the interactions, above two fully discretized systems basically can be considered
as one. Eventually, we get a scheme shown in Fig. 4.3.

Figure 4.3: Spatially mass-, kinetic energy- and helicity-preserving numerical scheme.
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5
Test case and results

We test our scheme with the initial condition given as

u =
(
cos(πz), sin(πz), sin(πx)

)T . (5.0.1)

The vorticity is obtained by taking the curl of u

ω =
(
−π cos(πz),−π sin(πz)− π cos(πx), 0

)T . (5.0.2)

As we said in Section. 3.3, we use Gauss-Lobatto-Legendre polynomials to reconstruct our
forms. Here we will use Gauss-Lobatto-Legendre polynomials at N = 3, 5, 7 for our test
cases. The projections of functions, cos(πx) and sin(πx), are shown in Fig. 5.1 and Fig. 5.2.
The square points in 5.1a and 5.2a and the dash lines in 5.1b and 5.2b represent the nodes

(a) Projections with basis functions φ0. (b) Projections with basis functions φ1.

Figure 5.1: Projections of cos(πx) on Gauss-Lobatto-Legendre grids for N = 3, 5, 7.
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(a) Projections with basis functions φ0. (b) Projections with basis functions φ1.

Figure 5.2: Projections of sin(πx) on Gauss-Lobatto-Legendre grids for N = 3, 5, 7.

of the Gauss-Lobatto-Legendre grid at N = 3, 5, 7.

From Fig. 5.1 and Fig. 5.2, we can clearly see that the projection at N = 3 (blue) deviates
from the original functions significantly. Especially, the projection with basis functions φ1

projects function sin(πx) into a straight line, see Fig 5.2b. This is because the reduction
of the function sin(πx) at N = 3 results in an arithmetic progression {−a, 0, a} where a is
a positive real number. Meanwhile, for function cos(πx), the projection with basis func-
tions φ1 in fact projects it into a parabola, see Fig 5.1b. When N = 5, we get much better
approximations (red) although the deviations are still visible. In terms of N = 7, we get
considerable acceptable approximations (green). The projections almost coincide with the
original functions represented by black curves, see Fig. 5.1 and Fig. 5.2.

The results using time interval ∆t = 0.0001, N = 3, 5, 7 and computing to t = 2s are given
in Fig. 5.3, Fig. 5.4 and Fig. 5.5. The first four sub-figures of these figures indicate the time
derivatives of discrete inner kinetic energy, outer kinetic energy, inner helicity and outer
helicity. From these sub-figures we can see that their time derivatives are always kept at
relatively low level (< 10−13) even on the extremely coarse grid N = 3. This indicates that
our discretization does conserve kinetic energy and helicity spatially. These results also show
the great influence of the structure-preserving ability of the mimetic spectral discretization.
Keep in mind that, for most conventional numerical schemes, they probably diverge after
just a few of steps on a grid of N = 3 unless the time interval is extremely short. Note that
we only apply the mimetic spectral discretization to the spatial terms of Euler equations,
not to the temporal terms for which we just use the simplest explicit forward Euler, and the
interactions keeping the kinetic energy and helicity conserved are constructed based on the
spatially discretized systems. As a result, the discrete kinetic energy and the discrete helicity
are just conserved spatially, not temporally. So if we plot the discrete kinetic energy and the
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discrete helicity instead of time derivatives of them, we will find they are not conserved. For
more details, see Section 4.4. More discussions about this will be given in Section 6.2.

From the L2-norm of du(2), we can know that if the mass conservation law is satisfied. For
our test case, the data of L2-norm of du(2) are shown in sub-figures (e). From these sub-
figures, we can see that the value of ‖du(2)‖L2 is always lower than 10−13 which proves that
the mass conservation law is well satisfied in our scheme. Meanwhile, since we consider
the L2-norm, we can know that the value of du(2) at each cell is lower than 10−13 as well.
Therefore, we can conclude that we obtain a velocity divergence free solution. The last
sub-figures (f) show how the L2-norm of (ω̃(2) − dũ(1)) changes over time. The value of
‖ω̃(2) − dũ(1)‖L2 indicates that how well the relation ω̃(2) = dũ(1) is satisfied. In these sub-
figures, the value of ‖ω̃(2)−dũ(1)‖L2 slightly increases over time. But overall, it is constrained
at considerably low level.

In addition, the long time stability are tested with the same initial condition at ∆t = 0.0001,
N = 5 and t = 20s. The results are presented in Fig. 5.6. In this figure, we can find that the
scheme still conserve mass, kinetic energy and helicity after a long time computation. How-
ever, the fluctuation of the time derivative of helicity increases over time which is probably
because of the accumulation of error that comes from the coarse temporal discretization.
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(a) Time derivative of inner kinetic energy. (b) Time derivative of outer kinetic energy.

(c) Time derivative of inner helicity. (d) Time derivative of outer helicity.

(e) L2-norm of du(2). (f) L2-norm of (ω̃(2) − dũ(1)).

Figure 5.3: Results at N = 3, ∆t = 0.0001, t = 2s.
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(a) Time derivative of inner kinetic energy. (b) Time derivative of outer kinetic energy.

(c) Time derivative of inner helicity. (d) Time derivative of outer helicity.

(e) L2-norm of du(2). (f) L2-norm of (ω̃(2) − dũ(1)).

Figure 5.4: Results at N = 5, ∆t = 0.0001, t = 2s.
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(a) Time derivative of inner kinetic energy. (b) Time derivative of outer kinetic energy.

(c) Time derivative of inner helicity. (d) Time derivative of outer helicity.

(e) L2-norm of du(2). (f) L2-norm of (ω̃(2) − dũ(1)).

Figure 5.5: Results at N = 7, ∆t = 0.0001, t = 2s.
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(a) Time derivative of inner kinetic energy. (b) Time derivative of outer kinetic energy.

(c) Time derivative of inner helicity. (d) Time derivative of outer helicity.

(e) L2-norm of du(2). (f) L2-norm of (ω̃(2) − dũ(1)).

Figure 5.6: Results at N = 5, ∆t = 0.0001, t = 20s.
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6
Conclusions and recommendations

In this project, we start from differential geometry and algebraic topology. With these ingre-
dients, we can understand physical variables and differential operators in a more physical
and reasonable way. Then we set up the mimetic spectral element method by introducing
projection operators, discrete operators and basis functions. The reduction operator reduces
differential forms to co-chains associated with chains. Then, with basis functions, the re-
construction operator reforms the co-chains and results in discrete forms. The reduction
operator and the reconstruction operator constitute the projection operator. Furthermore,
we analyze the performance of the projection operator acting on differential operators such
as exterior derivative, wedge product, interior product, inner product and Hodge star oper-
ator, then sequentially derive discrete forms of them. Using discrete differential forms and
discrete operators, we set up our mimetic framework (the mimetic spectral element method),
and with it, we can easily discrete complicated equations.

After setting up the mimetic spectral element method, we apply it to Euler equations. First,
Euler equations are rewritten with inner oriented forms and outer oriented variables re-
spectively. Meanwhile we prove the conservation laws of Euler equations under these new
forms. Secondly, by analyzing the expressions of the kinetic energy and helicity in the
mimetic framework and the discrete spaces, we decide to make the dual grid and primal
grid to be one. In addition, because of our periodic boundary conditions and the fact that
degrees of freedom strongly depend on the distribution of cells, we choose to use the weak
form in wedge product for inner Euler and use the weak form in inner product for outer
Euler. Then, the mimetic spectral element method is applied to the weak inner Euler and
weak outer Euler. Two semi-discretized systems are obtained.

With these semi-discretized systems, we are not able to preserve mass, kinetic energy and
helicity yet because only a part of properties of Euler equations are kept in either the discrete
inner Euler or discrete outer Euler, and each of the two discrete forms of Euler equations
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can not satisfy conservation laws individually. So we have to set up interactions between the
discrete inner Euler and discrete outer Euler to make use of their properties simultaneously.
With the interactions given in Section 4.3, we finally successfully construct a spatially mass-,
kinetic energy- and helicity-preserving scheme. Together with the temporal discretization, a
fully discretized system is obtained. The resulting scheme is then tested by a periodic flow,
which shows that the scheme does satisfy the conservation laws and some other important
properties like the divergence free flow condition and the relation that inner vorticity is the
exterior derivative (curl) of inner velocity.

6.1 Conclusions

In summary, this project is a successful one and some important conclusions are listed as
follow:

• First, compared to the existing mass, kinetic energy and helicity conserved schemes,
for example, see [31, 44], the structure-preserving mimetic spectral element method
has natural advantage for constructing schemes which conserve multiple invariants.
This is because that the discretization error which may destroy the conservation laws
at the discrete level is eliminated as much as possible.

• Both inner and outer oriented velocity and vorticity are required to express the discrete
kinetic energy and helicity. Meanwhile, to preserve them simultaneously, the space of
discrete inner oriented velocity

(
L2Λ̃1

h(Ω; C̃1)
)

need to be identical with that of dis-

crete outer oriented vorticity
(

L2Λ1
h(Ω; C1)

)
, and the space of discrete inner oriented

vorticity
(

L2Λ̃2
h(Ω; C̃2)

)
need to be identical with that of discrete inner oriented veloc-

ity
(

L2Λ2
h(Ω; C2)

)
. Therefore, two dual grids with the primal grid totally coinciding

with the dual grid need to be employed.

• Because of the duality between the primal and dual grid we employ, the spaces of dis-
crete forms are not compatible for direct Hodge star computation. Therefore, to obtain
both inner and outer oriented forms, both the inner Euler and outer Euler should be
discretized and computed.

• At the discrete level, only some properties of Euler equations at the continuous level
are conserved for either inner Euler or outer Euler, to preserve both discrete kinetic
energy and helicity, we need to set up interactions between the discrete weak inner
Euler and the discrete weak outer Euler to make use of these properties together.
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6.2 Recommendations

This project is a first try of applying the mimetic spectral element method to develop mass-,
kinetic energy- and helicity-preserving schemes. However, because of the time constraint,
there is still a lot of work left incomplete, and many aspects of our research can be improved.
Here in this last section, we will give some advises to the ones who want to carry on research
related to this project about what can be done to improve and complete this project.

• First, the computational domain in this project is very simple, a unit 3-cube [−1, 1]3.
However, real flows rarely have such simple flow domains. To make our scheme appli-
cable to real flow cases, the approach of applying our scheme to complex flow domains
should be developed. Although the method that allows the application of the mimetic
spectral element method on arbitrary domains is already well developed as we said in
Chapter 3, for example, see [17, 25, 26, 38], applying that method to our scheme still is
a challenge because we compute two differently oriented Euler simultaneously, which
is totally different from any existing mimetic spectral discretization schemes.

• Secondly, for the time derivative terms, the explicit forward Euler which is the last
accurate Runge-Kutta method (of order 1) is used. Higher order Runge-kutta methods,
like The symplectic Euler (of order 2) or the famous 4th order Runge-Kutta methods,
will help a lot. In addition, the time integration developed by Palha et al. [41] can
also be a good option. Further, time staggered schemes based on the interactions
constructed between the discrete inner and outer Euler may benefit the computation
significantly.

• Thirdly, as we can see from the appendix, discretizations we used for convection terms,
like ιuω̃(2) and ιuũ(1), are extremely complicated. Basically, we use brute force accord-
ing to the definition of the interior product to discretize these convection terms. A
direct result is that the matrices representing these convections terms are huge. There-
fore, the computation becomes very expensive. Essentially, the interior product is
a metric-free operator like the exterior derivative which has the metric-free discrete
counterpart coboundary (incidence matrix). However, by now, no metric-free discrete
counterpart for the interior product is found. Developing a metric-free discrete coun-
terpart for the interior product is of great value and will be a great challenge.

• Fourthly, an important aspect for developing a new scheme is the error analysis which
is missed in this project. As we can see from Fig. 5.6, the unphysical fluctuation in-
creases over time, which will eventually result in divergence if the computation time
is long enough. Clear error analysis can help us understand the reason of this in-
stability. In addition, understanding the source of error will significantly benefit the
development of better schemes based on the scheme given in this project.
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78 6 Conclusions and recommendations

Furthermore, the application of our helicity preserved scheme on the investigation of tur-
bulence can be another field of great value. All in all, what we already done just covered a
small part of this interesting field which is of great potential.
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2011, 2011.

[16] R. Hiemstra and M. Gerritsma. High order methods with exact conservation properties.
In Spectral and High Order Methods for Partial Differential Equations-ICOSAHOM 2012,
pages 285–295. Springer, 2014.

[17] R. R. Hiemstra, D. Toshniwal, R. H. M. Huijsmans, and M. Gerritsma. High order
geometric methods with exact conservation properties. Journal of Computational Physics,
257:1444–1471, 2014.

[18] J. Hyman, J. Morel, M. Shashkov, and S. Steinberg. Mimetic finite difference methods
for diffusion equations. Computational Geosciences, 6(3-4):333–352, 2002.

[19] J. Hyman and M. Shashkov. Adjoint operators for the natural discretizations of the
divergence, gradient and curl on logically rectangular grids. Applied Numerical Mathe-
matics, 25(4):413–442, 1997.

[20] J. Hyman and M. Shashkov. Natural discretizations for the divergence, gradient, and
curl on logically rectangular grids. Computers & Mathematics with Applications, 33(4):81–
104, 1997.

[21] J. Hyman and M. Shashkov. Approximation of boundary conditions for mimetic finite-
difference methods. Computers & Mathematics with Applications, 36(5):79–99, 1998.

[22] J. Hyman and M. Shashkov. Mimetic discretizations for Maxwell’s equations. Journal of
Computational Physics, 151(2):881–909, 1999.

[23] J. Hyman and M. Shashkov. The orthogonal decomposition theorems for mimetic finite
difference methods. SIAM Journal on Numerical Analysis, 36(3):788–818, 1999.

Msc Thesis Yi Zhang



Reference 81

[24] J. Hyman, M. Shashkov, and S. Steinberg. The numerical solution of diffusion prob-
lems in strongly heterogeneous non-isotropic materials. Journal of Computational Physics,
132(1):130–148, 1997.

[25] J. Kreeft. Mimetic spectral element method; a discretization of geometry and physics. TU Delft,
Delft University of Technology, 2013.

[26] J. Kreeft and M. Gerritsma. Mixed mimetic spectral element method for Stokes flow: A
pointwise divergence-free solution. Journal of Computational Physics, 240:284–309, 2013.

[27] J. Kreeft and M. Gerritsma. Higher-order compatible discretization on hexahedrals. In
Spectral and High Order Methods for Partial Differential Equations-ICOSAHOM 2012, pages
311–323. Springer, 2014.

[28] J. Kreeft, A. Palha, and M. Gerritsma. Mimetic framework on curvilinear quadrilaterals
of arbitrary order. arXiv preprint arXiv:1111.4304, 2011.

[29] Y. Kuznetsov, K. Lipnikov, and M. Shashkov. The mimetic finite difference method on
polygonal meshes for diffusion-type problems. Computational Geosciences, 8(4):301–324,
2004.

[30] K. Lipnikov, M. Shashkov, and D. Svyatskiy. The mimetic finite difference discretiza-
tion of diffusion problem on unstructured polyhedral meshes. Journal of Computational
Physics, 211(2):473–491, 2006.

[31] J. Liu and W. Wang. Energy and helicity preserving schemes for hydro-and
magnetohydro-dynamics flows with symmetry. Journal of Computational Physics,
200(1):8–33, 2004.

[32] J. Liu and W. Wang. Convergence analysis of the energy and helicity preserving scheme
for axisymmetric flows. SIAM Journal on Numerical Analysis, 44(6):2456–2480, 2006.

[33] A. N. Lowan, N. Davids, A. Levenson, et al. Table of the zeros of the legendre poly-
nomials of order 1–16 and the weight coefficients for Gauss’ mechanical quadrature
formula. Bulletin of the American Mathematical Society, 48(10):739–743, 1942.

[34] L. Margolin, M. Shashkov, and P. K. Smolarkiewicz. A discrete operator calculus for
finite difference approximations. Computer methods in applied mechanics and engineering,
187(3):365–383, 2000.

[35] H.K. Moffatt and A. Tsinober. Helicity in laminar and turbulent flow. Annual review of
fluid mechanics, 24(1):281–312, 1992.

[36] A. Natale. A compatible discretization approach for the incompressible Euler equations.
2013.

Yi Zhang Msc Thesis



82 Reference

[37] M. Olshanskii and L. G. Rebholz. Note on helicity balance of the Galerkin method for
the 3d Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,
199(17):1032–1035, 2010.

[38] A. Palha. High order mimetic discretization; development and application to Laplace and ad-
vection problems in arbitrary quadrilaterals. TU Delft, Delft University of Technology, 2013.

[39] A. Palha and M. Gerritsma. Mimetic least-squares spectral/hp finite element method
for the Poisson equation. In Large-Scale Scientific Computing, pages 662–670. Springer,
2010.

[40] A. Palha and M. Gerritsma. Spectral element approximation of the hodge-star operator
in curved elements. In Spectral and High Order Methods for Partial Differential Equations,
pages 283–291. Springer, 2011.

[41] A. Palha, P. P. Rebelo, and M. Gerritsma. Mimetic spectral element advection. In Spectral
and High Order Methods for Partial Differential Equations-ICOSAHOM 2012, pages 325–335.
Springer, 2014.

[42] A. Palha, P. P. Rebelo, R. Hiemstra, J. Kreeft, and M. Gerritsma. Physics-compatible dis-
cretization techniques on single and dual grids, with application to the Poisson equation
of volume forms. Journal of Computational Physics, 257:1394–1422, 2014.

[43] P. P. Rebelo, A. Palha, and M. Gerritsma. Mixed mimetic spectral element method
applied to Darcy’s problem. In Spectral and High Order Methods for Partial Differential
Equations-ICOSAHOM 2012, pages 373–382. Springer, 2014.

[44] L. G. Rebholz. An energy-and helicity-conserving finite element scheme for the Navier-
Stokes equations. SIAM Journal on Numerical Analysis, 45(4):1622–1638, 2007.

[45] D. Rufat, G. Mason, P. Mullen, and M. Desbrun. The chain collocation method: A
spectrally accurate calculus of forms. Journal of Computational Physics, 257:1352–1372,
2014.

[46] D. Toshniwal, R. H. M. Huijsmans, and M. Gerritsma. A geometric approach to-
wards momentum conservation. In Spectral and High Order Methods for Partial Differential
Equations-ICOSAHOM 2012, pages 393–402. Springer, 2014.

Msc Thesis Yi Zhang



A
Appendix: Discretizations

In a Gauss-Lobatto-Legendre grid with N line segment on each direction, from Section 3.3
we know the discrete forms are expanded as:

Discrete inner 0-forms, the inner oriented pressure (associated with points):

p̃(0) =
N

∑
i=0

N

∑
j=0

N

∑
k=0

p̃i,j,kφ0
i (x)φ0

j (y)φ
0
k(z) , (A.0.1)

with vector proxy p̃(0):

p̃(0) = ϕ(R p̃(0)) =
{

p̃1, p̃2, · · · , p̃l , · · · , p̃(N+1)3

}T
,

where p̃l = p̃i,j,k, l = i + 1 + j(N + 1) + k(N + 1)2, i, j, k = 0 : N. We use M : N means
M, M + 1, M + 2, · · · , N.

Discrete inner 1-forms, inner oriented velocity (associated with lines):

ũ(1) =
N

∑
i=1

N

∑
j=0

N

∑
k=0

ũx
i,j,kφ1

i (x)φ0
j (y)φ

0
k(z)dx

+
N

∑
i=0

N

∑
j=1

N

∑
k=0

ũy
i,j,kφ0

i (x)φ1
j (y)φ

0
k(z)dy

+
N

∑
i=0

N

∑
j=0

N

∑
k=1

ũz
i,j,kφ0

i (x)φ0
j (y)φ

1
k(z)dz ,

(A.0.2)
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with vector proxy ũ(1):
ũ(1) = ϕ(Rũ(1)) = {ũx, ũy, ũz}T : (A.0.3)

ũx =
{

ũx
1 , ũx

2 , · · · , ũx
l , · · · , ũx

N(N+1)2

}
;

ũy =
{

ũy
1, ũy

2, · · · , ũy
m, · · · , ũy

N(N+1)2

}
;

ũz =
{

ũz
1, ũz

2, · · · , ũz
n, · · · , ũz

N(N+1)2

}
,

where ũx
l = ũx

i,j,k; ũy
m = ũy

i,j,k; ũz
n = ũz

i,j,k:
l = i + jN + kN(N + 1) i = 1 : N; j = 0 : N; k = 0 : N

m = i + 1 + (j− 1)(N + 1) + kN(N + 1) i = 0 : N; j = 1 : N; k = 0 : N

n = i + 1 + j(N + 1) + (k− 1)(N + 1)2 i = 0 : N; j = 0 : N; k = 1 : N

.

Discrete inner 2-forms, inner oriented vorticity (associated with faces):

ω̃(2) =
N

∑
i=0

N

∑
j=1

N

∑
k=1

ω̃x
i,j,kφ0

i (x)φ1
j (y)φ

1
k(z)dy ∧ dz

+
N

∑
i=1

N

∑
j=0

N

∑
k=1

ω̃
y
i,j,kφ1

i (x)φ0
j (y)φ

1
k(z)dz ∧ dx

+
N

∑
i=1

N

∑
j=1

N

∑
k=0

ω̃z
i,j,kφ1

i (x)φ1
j (y)φ

0
k(z)dx ∧ dy ,

(A.0.4)

with vector proxy ω̃(2):
ω̃(2) = ϕ(Rω̃(2)) = {ω̃x, ω̃y, ω̃z}T : (A.0.5)

ω̃x =
{

ω̃x
1 , ω̃x

2 , · · · , ω̃x
l , · · · , ω̃x

N2(N+1)

}
;

ω̃y =
{

ω̃
y
1 , ω̃

y
2 , · · · , ω̃

y
m, · · · , ω̃

y
N2(N+1)

}
;

ω̃z =
{

ω̃z
1, ω̃z

2, · · · , ω̃z
n, · · · , ω̃z

N2(N+1)

}
,

where ω̃x
l = ω̃x

i,j,k; ω̃
y
m = ω̃

y
i,j,k; ω̃z

n = ω̃z
i,j,k:

l = i + 1 + (j− 1)(N + 1) + (k− 1)N(N + 1) i = 0 : N; j = 1 : N; k = 1 : N

m = i + jN + (k− 1)N(N + 1) i = 1 : N; j = 0 : N; k = 1 : N

n = i + (j− 1)N + kN2 i = 1 : N; j = 1 : N; k = 0 : N

.
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Discrete outer 3-forms, outer oriented pressure (associated with volumes):

p(3) =
N

∑
i=1

N

∑
j=1

N

∑
k=1

pi,j,kφ1
i (x)φ1

j (y)φ
1
k(z)dx ∧ dy ∧ dz , (A.0.6)

with vector proxy p(3):

p(3) = ϕ(Rp(3)) =
{

p1, p2, · · · , pl , · · · , pN3

}T ,

where pl = pi,j,k, l = i + (j− 1)N + (k− 1)N2, i, j, k = 1 : N.

Discrete outer 2-forms, outer oriented velocity (associated with faces):

u(2) =
N

∑
i=0

N

∑
j=1

N

∑
k=1

ux
i,j,kφ0

i (x)φ1
j (y)φ

1
k(z)dy ∧ dz

+
N

∑
i=1

N

∑
j=0

N

∑
k=1

uy
i,j,kφ1

i (x)φ0
j (y)φ

1
k(z)dz ∧ dx

+
N

∑
i=1

N

∑
j=1

N

∑
k=0

uz
i,j,kφ1

i (x)φ1
j (y)φ

0
k(z)dx ∧ dy ,

(A.0.7)

with vector proxy u(2):

u(2) = ϕ(Ru(2)) = {ux, uy, uz}T : (A.0.8)

ux =
{

ux
1 , ux

2 , · · · , ux
l , · · · , ux

N2(N+1)

}
;

uy =
{

uy
1, uy

2, · · · , uy
m, · · · , uy

N2(N+1)

}
;

uz =
{

uz
1, uz

2, · · · , uz
n, · · · , uz

N2(N+1)

}
,

where ux
l = ux

i,j,k; uy
m = uy

i,j,k; uz
n = uz

i,j,k:


l = i + 1 + (j− 1)(N + 1) + (k− 1)N(N + 1) i = 0 : N; j = 1 : N; k = 1 : N

m = i + jN + (k− 1)N(N + 1) i = 1 : N; j = 0 : N; k = 1 : N

n = i + (j− 1)N + kN2 i = 1 : N; j = 1 : N; k = 0 : N

.
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Discrete outer 1-forms, outer oriented vorticity (associated with lines):

ω(1) =
N

∑
i=1

N

∑
j=0

N

∑
k=0

ωx
i,j,kφ1

i (x)φ0
j (y)φ

0
k(z)dx

+
N

∑
i=0

N

∑
j=1

N

∑
k=0

ω
y
i,j,kφ0

i (x)φ1
j (y)φ

0
k(z)dy

+
N

∑
i=0

N

∑
j=0

N

∑
k=1

ωz
i,j,kφ0

i (x)φ0
j (y)φ

1
k(z)dz ,

(A.0.9)

with vector proxy ω(1):
ω(1) = ϕ(Rω(1)) = {ωx, ωy, ωz}T : (A.0.10)

ωx =
{

ωx
1 , ũx

2 , · · · , ωx
l , · · · , ωx

N(N+1)2

}
;

ωy =
{

ω
y
1 , ω

y
2 , · · · , ũy

m, · · · , ω
y
N(N+1)2

}
;

ωz =
{

ωz
1, ωz

2, · · · , ωz
n, · · · , ωz

N(N+1)2

}
,

where ωx
l = ωx

i,j,k; ω
y
m = ω

y
i,j,k; ωz

n = ωz
i,j,k:

l = i + jN + kN(N + 1) i = 1 : N; j = 0 : N; k = 0 : N

m = i + 1 + (j− 1)(N + 1) + kN(N + 1) i = 0 : N; j = 1 : N; k = 0 : N

n = i + 1 + j(N + 1) + (k− 1)(N + 1)2 i = 0 : N; j = 0 : N; k = 1 : N

.

In addition, we will use Φα,β,··· ,γ
a,b,··· ,c to represent integrals given as

Φα,β,··· ,γ
a,b,··· ,c =

∫ 1

−1
φα

a (x)φβ
b (x) · · · φγ

c (x)dx . (A.0.11)

A.1 Inner Euler discretization

The fully discretized inner Euler is given as

1
∆t

∫
Ω

ũ(1)
n+1 ∧ σ(2) − 1

∆t

∫
Ω

ũ(1)
n ∧ σ(2) +

∫
Ω

ιuω̃
(2)
n ∧ σ(2) −

∫
Ω

p̃(0)0,n ∧ dσ(2) = 0

1
∆t

∫
Ω

ω̃
(2)
n+1 ∧ ς(1) − 1

∆t

∫
Ω

ω̃
(2)
n ∧ ς(1) +

∫
Ω

ιuω̃
(2)
n ∧ dς(1) = 0(

ũ(1)
n+1, dφ(0)

)
Ω
= 0

, (A.1.1)
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and its matrix form is
1

∆t
M̂(1) ∅ E(2,3)M̂(0)

∅
1

∆t
M̂(2) ∅

M(1)E(1,0) ∅ ∅


 ũn+1

ω̃n+1

p̃n

 =


1

∆t
M̂(1)ũn −A +

1
2

B

1
∆t

M̂(2)ω̃n −E(1,2)A

0

 . (A.1.2)

A.1.1 Mass matrix M̂(0)

Matrix M̂(0) results from term
∫

Ω p̃(0) ∧ dσ(2).

When λ(3) = φ1
a(x)φ1

b(y)φ
1
c (z)dx ∧ dy ∧ dz where a = 1 : N, b = 1 : N, c = 1 : N,

∫
Ω

p̃(0) ∧ λ(3) =
N

∑
i=0

N

∑
j=0

N

∑
k=0

p̃i,j,k

∫ 1

−1
φ0

i (x)φ1
a(x)dx

∫ 1

−1
φ0

j (y)φ
1
b(y)dy

∫ 1

−1
φ0

k(z)φ
1
c (z)dz .

(A.1.3)
Therefore

M̂
(0)
(r,s) = Φ0,1

i,a Φ0,1
j,b Φ0,1

k,c , (A.1.4) r =a + (b− 1)N + (c− 1)N2 a = 1 : N, b = 1 : N, c = 1 : N

s =i + 1 + j(N + 1) + k(N + 1)2 i = 0 : N, j = 0 : N, k = 0 : N
. (A.1.5)

A.1.2 Mass matrix M̂(1)

Matrix M̂(1) results from term
∫

Ω ũ(1) ∧ σ(2).

When σ(2) = φ0
a(x)φ1

b(y)φ
1
c (z)dy ∧ dz where a = 0 : N, b = 1 : N, c = 1 : N,

∫
Ω

ũ(1) ∧ σ(2) =
N

∑
i=1

N

∑
j=0

N

∑
k=0

ũξ
i,j,kΦ0,1

a,i Φ0,1
j,b Φ0,1

k,c . (A.1.6)

When σ(2) = φ1
a(x)φ0

b(y)φ
1
c (z)dz ∧ dx where a = 1 : N, b = 0 : N, c = 1 : N,

∫
Ω

ũ(1) ∧ σ(2) =
N

∑
i=1

N

∑
j=0

N

∑
k=0

ũξ
i,j,kΦ0,1

i,a Φ0,1
b,j Φ0,1

k,c . (A.1.7)

When σ(2) = φ1
a(x)φ1

b(y)φ
0
c (z)dx ∧ dy where a = 1 : N, b = 1 : N, c = 0 : N,

∫
Ω

ũ(1) ∧ σ(2) =
N

∑
i=1

N

∑
j=0

N

∑
k=0

ũξ
i,j,kΦ0,1

i,a Φ0,1
j,b Φ0,1

c,k . (A.1.8)
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Therefore

M̂(1) =

M̂11 0 0
0 M̂12 0
0 0 M̂13

 , (A.1.9)

where
M̂11

r,s = Φ0,1
a,i Φ0,1

j,b Φ0,1
k,c , (A.1.10) r =a + 1 + (b− 1)(N + 1) + (c− 1)N(N + 1) a = 0 : N, b = 1 : N, c = 1 : N

s =i + jN + kN(N + 1) i = 1 : N, j = 0 : N, k = 0 : N
; (A.1.11)

M̂12
r,s = Φ0,1

i,a Φ0,1
b,j Φ0,1

k,c , (A.1.12) r =a + bN + (c− 1)N(N + 1) a = 1 : N, b = 0 : N, c = 1 : N

s =i + 1 + (j− 1)(N + 1) + kN(N + 1) i = 0 : N, j = 1 : N, k = 0 : N
; (A.1.13)

M̂13
r,s = Φ0,1

i,a Φ0,1
j,b Φ0,1

c,k , (A.1.14) r =a + (b− 1)N + cN2 a = 1 : N, b = 1 : N, c = 0 : N

s =i + 1 + j(N + 1) + (k− 1)(N + 1)2 i = 0 : N, j = 0 : N, k = 1 : N
. (A.1.15)

A.1.3 Mass matrix M̂(2)

Matrix M̂(2) results from term
∫

Ω ω̃(2) ∧ ς(1).

When ς(1) = φ1
a(x)φ0

b(y)φ
0
c (z)dx where a = 1 : N, b = 0 : N, c = 0 : N,

∫
Ω

ω̃(2) ∧ ς(1) =
N

∑
i=0

N

∑
j=1

N

∑
k=1

ω̃
ξ
i,j,kΦ0,1

i,a Φ0,1
b,j Φ0,1

c,k . (A.1.16)

When ς(1) = φ0
a(x)φ1

b(y)φ
0
c (z)dy where a = 0 : N, b = 1 : N, c = 0 : N,

∫
Ω

ω̃(2) ∧ ς(1) =
N

∑
i=1

N

∑
j=0

N

∑
k=1

ω̃
η
i,j,kΦ0,1

a,i Φ0,1
j,b Φ0,1

c,k . (A.1.17)

When ς(1) = φ0
a(x)φ0

b(y)φ
1
c (z)dz where a = 0 : N, b = 0 : N, c = 1 : N,

∫
Ω

ω̃(2) ∧ ς(1) =
N

∑
i=1

N

∑
j=1

N

∑
k=0

ω̃
η
i,j,kΦ0,1

a,i Φ0,1
b,j Φ0,1

k,c . (A.1.18)

Therefore

M̂2 =

M̃21 0 0
0 M̃22 0
0 0 M̃23

 , (A.1.19)
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where
M̂21

r,s = Φ0,1
i,a Φ0,1

b,j Φ0,1
c,k , (A.1.20) r =a + bN + cN(N + 1) a = 1 : N, b = 0 : N, c = 0 : N

s =i + 1 + (j− 1)(N + 1) + (k− 1)N(N + 1) i = 0 : N, j = 1 : N, k = 1 : N
; (A.1.21)

M̂22
r,s = Φ0,1

a,i Φ0,1
j,b Φ0,1

c,k , (A.1.22) r =a + 1 + (b− 1)(N + 1) + cN(N + 1) a = 0 : N, b = 1 : N, c = 0 : N

s =i + jN + (k− 1)N(N + 1) i = 1 : N, j = 0 : N, k = 1 : N
; (A.1.23)

M̂23
r,s = Φ0,1

a,i Φ0,1
b,j Φ0,1

k,c , (A.1.24) r =a + 1 + b(N + 1) + (c− 1)(N + 1)2 a = 0 : N, b = 0 : N, c = 1 : N

s =i + (j− 1)N + kN2 i = 1 : N, j = 1 : N, k = 0 : N
. (A.1.25)
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A.1.4 Matrix A

Matrix A comes from term
∫

Ω ιuω̃(2) ∧ σ(2) and from Section 4.3, we know that

u =
(
?u(2)

)]
=

N

∑
i=0

N

∑
j=1

N

∑
k=1

ux
i,j,kφ0

i (x)φ1
j (y)φ

1
k(z)

∂

∂x

+
N

∑
i=1

N

∑
j=0

N

∑
k=1

uy
i,j,kφ1

i (x)φ0
j (y)φ

1
k(z)

∂

∂y

+
N

∑
i=1

N

∑
j=1

N

∑
k=0

uz
i,j,kφ1

i (x)φ1
j (y)φ

0
k(z)

∂

∂z
,

(A.1.26)

ιuω̃(2) =+
N

∑
i=1

N

∑
j=1

N

∑
k=0

N

∑
l=1

N

∑
m=0

N

∑
n=1

uz
i,j,kω̃

y
l,m,nφ1

i (x)φ1
j (y)φ

0
k(z)φ

1
l (x)φ0

m(y)φ
1
n(z)dx

−
N

∑
i=1

N

∑
j=0

N

∑
k=1

N

∑
l=1

N

∑
m=1

N

∑
n=0

uy
i,j,kω̃z

l,m,nφ1
i (x)φ0

j (y)φ
1
k(z)φ

1
l (x)φ1

m(y)φ
0
n(z)dx

+
N

∑
i=0

N

∑
j=1

N

∑
k=1

N

∑
l=1

N

∑
m=1

N

∑
n=0

ux
i,j,kω̃z

l,m,nφ0
i (x)φ1

j (y)φ
1
k(z)φ

1
l (x)φ1

m(y)φ
0
n(z)dy

−
N

∑
i=1

N

∑
j=1

N

∑
k=0

N

∑
l=0

N

∑
m=1

N

∑
n=1

uz
i,j,kω̃x

l,m,nφ1
i (x)φ1

j (y)φ
0
k(z)φ

0
l (x)φ1

m(y)φ
1
n(z)dy

+
N

∑
i=1

N

∑
j=0

N

∑
k=1

N

∑
l=0

N

∑
m=1

N

∑
n=1

uy
i,j,kω̃x

l,m,nφ1
i (x)φ0

j (y)φ
1
k(z)φ

0
l (x)φ1

m(y)φ
1
n(z)dz

−
N

∑
i=0

N

∑
j=1

N

∑
k=1

N

∑
l=1

N

∑
m=0

N

∑
n=1

ux
i,j,kω̃

y
l,m,nφ0

i (x)φ1
j (y)φ

1
k(z)φ

1
l (x)φ0

m(y)φ
1
n(z)dz ,

(A.1.27)

When σ(2) = φ0
a(x)φ1

b(y)φ
1
c (z)dy ∧ dz where a = 0 : N, b = 1 : N, c = 1 : N,∫

Ω
σ(2) ∧ ιuω̃(2) =

+
N

∑
i=1

N

∑
j=1

N

∑
k=0

N

∑
l=1

N

∑
m=0

N

∑
n=1

uz
i,j,kω̃

y
l,m,n

∫ 1

−1
φ1

i (x)φ1
l (x)φ0

a(x)dx
∫ 1

−1
φ1

j (y)φ
0
m(y)φ

1
b(y)dy

∫ 1

−1
φ0

k(z)φ
1
n(z)φ

1
c (z)dz

−
N

∑
i=1

N

∑
j=0

N

∑
k=1

N

∑
l=1

N

∑
m=1

N

∑
n=0

uy
i,j,kω̃z

l,m,n

∫ 1

−1
φ1

i (x)φ1
l (x)φ0

a(x)dx
∫ 1

−1
φ0

j (y)φ
1
m(y)φ

1
b(y)dy

∫ 1

−1
φ1

k(z)φ
0
n(z)φ

1
c (z)dz

=

+
N

∑
i=1

N

∑
j=1

N

∑
k=0

N

∑
l=1

N

∑
m=0

N

∑
n=1

uz
i,j,kω̃

y
l,m,nΦ0,1,1

a,i,l Φ0,1,1
m,j,bΦ0,1,1

k,n,c

−
N

∑
i=1

N

∑
j=0

N

∑
k=1

N

∑
l=1

N

∑
m=1

N

∑
n=0

uy
i,j,kω̃z

l,m,nΦ0,1,1
a,i,l Φ0,1,1

j,m,bΦ0,1,1
n,k,c .

(A.1.28)

Msc Thesis Yi Zhang



A.1 Inner Euler discretization 91

When σ(2) = φ1
a(x)φ0

b(y)φ
1
c (z)dz ∧ dx where a = 1 : N, b = 0 : N, c = 1 : N,

∫
Ω

σ(2) ∧ ιuω̃(2) =

+
N

∑
i=0

N

∑
j=1

N

∑
k=1

N

∑
l=1

N

∑
m=1

N

∑
n=0

ux
i,j,kω̃z

l,m,n

∫ 1

−1
φ0

i (x)φ1
l (x)φ1

a(x)dx
∫ 1

−1
φ1

j (y)φ
1
m(y)φ

0
b(y)dy

∫ 1

−1
φ1

k(z)φ
0
n(z)φ

1
c (z)dz

−
N

∑
i=1

N

∑
j=1

N

∑
k=0

N

∑
l=0

N

∑
m=1

N

∑
n=1

uz
i,j,kω̃x

l,m,n

∫ 1

−1
φ1

i (x)φ0
l (x)φ1

a(x)dx
∫ 1

−1
φ1

j (y)φ
1
m(y)φ

0
b(y)dy

∫ 1

−1
φ0

k(z)φ
1
n(z)φ

1
c (z)dz

=

+
N

∑
i=0

N

∑
j=1

N

∑
k=1

N

∑
l=1

N

∑
m=1

N

∑
n=0

ux
i,j,kω̃z

l,m,nΦ0,1,1
i,l,a Φ0,1,1

b,j,mΦ0,1,1
n,k,c

−
N

∑
i=1

N

∑
j=1

N

∑
k=0

N

∑
l=0

N

∑
m=1

N

∑
n=1

uz
i,j,kω̃x

l,m,nΦ0,1,1
l,i,a Φ0,1,1

b,j,mΦ0,1,1
k,n,c .

(A.1.29)
When σ(2) = φ1

a(x)φ1
b(y)φ

0
c (z)dx ∧ dy where a = 1 : N, b = 1 : N, c = 0 : N,

∫
Ω

σ(2) ∧ ιuω̃(2) =

+
N

∑
i=1

N

∑
j=0

N

∑
k=1

N

∑
l=0

N

∑
m=1

N

∑
n=1

uy
i,j,kω̃x

l,m,n

∫ 1

−1
φ1

i (x)φ0
l (x)φ1

a(x)dx
∫ 1

−1
φ0

j (y)φ
1
m(y)φ

1
b(y)dy

∫ 1

−1
φ1

k(z)φ
1
n(z)φ

0
c (z)dz

−
N

∑
i=0

N

∑
j=1

N

∑
k=1

N

∑
l=1

N

∑
m=0

N

∑
n=1

ux
i,j,kω̃

y
l,m,n

∫ 1

−1
φ0

i (x)φ1
l (x)φ1

a(x)dx
∫ 1

−1
φ1

j (y)φ
0
m(y)φ

1
b(y)dy

∫ 1

−1
φ1

k(z)φ
1
n(z)φ

0
c (z)dz

=

+
N

∑
i=1

N

∑
j=0

N

∑
k=1

N

∑
l=0

N

∑
m=1

N

∑
n=1

uy
i,j,kω̃x

l,m,nΦ0,1,1
l,i,a Φ0,1,1

j,m,bΦ0,1,1
c,k,n

−
N

∑
i=0

N

∑
j=1

N

∑
k=1

N

∑
l=1

N

∑
m=0

N

∑
n=1

ux
i,j,kω̃

y
l,m,nΦ0,1,1

i,l,a Φ0,1,1
m,j,bΦ0,1,1

c,k,n .

(A.1.30)

Therefore, term
∫

Ω σ(2) ∧ ιuω̃(2) can be expressed in matrix form as

A =

 0 · · · 0 −A1
1ω̃z · · · −A1

µω̃z +A2
1ω̃y · · · +A2

µω̃y

+A3
1ω̃z · · · +A3

µω̃z 0 · · · 0 −A4
1ω̃x · · · −A4

µω̃x

−A5
1ω̃y · · · −A5

µω̃y +A6
1ω̃x · · · +A6

µω̃x 0 · · · 0

 u(2) ,

(A.1.31)
where µ = N2(N + 1) and

A1
r,(s,t) = Φ0,1,1

a,i,l Φ0,1,1
j,m,bΦ0,1,1

n,k,c , (A.1.32)
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with 
t =l + (m− 1)N + nN2 l = 1 : N, m = 1 : N, n = 0 : N

s =a + 1 + (b− 1)(N + 1) + (c− 1)N(N + 1) a = 0 : N, b = 1 : N, c = 1 : N

r =i + jN + (k− 1)N(N + 1) i = 1 : N, j = 0 : N, k = 1 : N

.

(A.1.33)

A2
r,(s,t) = Φ0,1,1

a,i,l Φ0,1,1
m,j,bΦ0,1,1

k,n,c , (A.1.34)

with 
t =l + mN + (n− 1)N(N + 1) l = 1 : N, m = 0 : N, n = 1 : N

s =a + 1 + (b− 1)(N + 1) + (c− 1)N(N + 1) a = 0 : N, b = 1 : N, c = 1 : N

r =i + (j− 1)N + kN2 i = 1 : N, j = 1 : N, k = 0 : N

.

(A.1.35)

A3
r,(s,t) = Φ0,1,1

i,l,a Φ0,1,1
b,j,mΦ0,1,1

n,k,c , (A.1.36)

with
t =l + (m− 1)N + nN2 l = 1 : N, m = 1 : N, n = 0 : N

s =a + bN + (c− 1)N(N + 1) a = 1 : N, b = 0 : N, c = 1 : N

r =i + 1 + (j− 1)(N + 1) + (k− 1)N(N + 1) i = 0 : N, j = 1 : N, k = 1 : N

. (A.1.37)

A4
r,(s,t) = Φ0,1,1

l,i,a Φ0,1,1
b,j,mΦ0,1,1

k,n,c , (A.1.38)

with
t =l + 1 + (m− 1)(N + 1) + (n− 1)N(N + 1) l = 0 : N, m = 1 : N, n = 1 : N

s =a + bN + (c− 1)N(N + 1) a = 1 : N, b = 0 : N, c = 1 : N

r =i + (j− 1)N + kN2 i = 1 : N, j = 1 : N, k = 0 : N

.

(A.1.39)

A5
r,(s,t) = Φ0,1,1

i,l,a Φ0,1,1
m,j,bΦ0,1,1

c,k,n , (A.1.40)

with
t =l + mN + (n− 1)N(N + 1) l = 1 : N, m = 0 : N, n = 1 : N

s =a + (b− 1)N + cN2 a = 1 : N, b = 1 : N, c = 0 : N

r =i + 1 + (j− 1)(N + 1) + (k− 1)N(N + 1) i = 0 : N, j = 1 : N, k = 1 : N

. (A.1.41)

A6
r,(s,t) = Φ0,1,1

l,i,a Φ0,1,1
j,m,bΦ0,1,1

c,k,n , (A.1.42)
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with
t =l + 1 + (m− 1)(N + 1) + (n− 1)N(N + 1) l = 0 : N, m = 1 : N, n = 1 : N

s =a + (b− 1)N + cN2 a = 1 : N, b = 1 : N, c = 0 : N

r =i + jN + (k− 1)N(N + 1) i = 1 : N, j = 0 : N, k = 1 : N

.

(A.1.43)

A.1.5 Matrix B

Matrix B comes from term
∫

Ω ιu?u(2) ∧ dσ(2),

ιu?u(2) =
N

∑
i=0

N

∑
j=1

N

∑
k=1

ux
i,j,k

N

∑
l=0

N

∑
m=1

N

∑
n=1

ux
l,m,nφ0

i (x)φ1
j (y)φ

1
k(z)φ

0
l (x)φ1

m(y)φ
1
n(z)

+
N

∑
i=1

N

∑
j=0

N

∑
k=1

uy
i,j,k

N

∑
l=1

N

∑
m=0

N

∑
n=1

uy
l,m,nφ1

i (x)φ0
j (y)φ

1
k(z)φ

1
l (x)φ0

m(y)φ
1
n(z)

+
N

∑
i=1

N

∑
j=1

N

∑
k=0

uz
i,j,k

N

∑
l=1

N

∑
m=1

N

∑
n=0

uz
l,m,nφ1

i (x)φ1
j (y)φ

0
k(z)φ

1
l (x)φ1

m(y)φ
0
n(z) .

(A.1.44)

When λ(3) = φ1
a(x)φ1

b(y)φ
1
c (z)dx ∧ dy ∧ dz where a = 1 : N, b = 1 : N, c = 1 : N,

∫
Ω

λ(3) ∧ ιu?u(2) =

+
N

∑
i=0

N

∑
j=1

N

∑
k=1

ux
i,j,k

N

∑
l=0

N

∑
m=1

N

∑
n=1

ux
l,m,n

∫ 1

−1
φ0

i (x)φ0
l (x)φ1

a(x)dx
∫ 1

−1
φ1

j (y)φ
1
m(y)φ

1
b(y)dy

∫ 1

−1
φ1

k(z)φ
1
n(z)φ

1
c (z)dz

+
N

∑
i=1

N

∑
j=0

N

∑
k=1

uy
i,j,k

N

∑
l=1

N

∑
m=0

N

∑
n=1

uy
l,m,n

∫ 1

−1
φ1

i (x)φ1
l (x)φ1

a(x)dx
∫ 1

−1
φ0

j (y)φ
0
m(y)φ

1
b(y)dy

∫ 1

−1
φ1

k(z)φ
1
n(z)φ

1
c (z)dz

+
N

∑
i=1

N

∑
j=1

N

∑
k=0

uz
i,j,k

N

∑
l=1

N

∑
m=1

N

∑
n=0

uz
l,m,n

∫ 1

−1
φ1

i (x)φ1
l (x)φ1

a(x)dx
∫ 1

−1
φ1

j (y)φ
1
m(y)φ

1
b(y)dy

∫ 1

−1
φ0

k(z)φ
0
n(z)φ

1
c (z)dz

=

+
N

∑
i=0

N

∑
j=1

N

∑
k=1

ux
i,j,k

N

∑
l=0

N

∑
m=1

N

∑
n=1

ux
l,m,nΦ0,0,1

i,l,a Φ1,1,1
j,m,bΦ1,1,1

k,n,c

+
N

∑
i=1

N

∑
j=0

N

∑
k=1

uy
i,j,k

N

∑
l=1

N

∑
m=0

N

∑
n=1

uy
l,m,nΦ1,1,1

i,l,a Φ0,0,1
j,m,bΦ1,1,1

k,n,c

+
N

∑
i=1

N

∑
j=1

N

∑
k=0

uz
i,j,k

N

∑
l=1

N

∑
m=1

N

∑
n=0

uz
l,m,nΦ1,1,1

i,l,a Φ1,1,1
j,m,bΦ0,0,1

k,n,c .

(A.1.45)
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Therefore, we obtain
B =

(
B1

1ux · · · B1
µux
)

ux

+
(

B2
1uy · · · B2

µuy
)

uy

+
(

B3
1uz · · · B3

µuz
)

uz ,

(A.1.46)

where µ = N2(N + 1) and
B1

r,(s,t) = Φ0,0,1
i,l,a Φ1,1,1

j,m,bΦ1,1,1
k,n,c , (A.1.47)

with
t =l + 1 + (m− 1)(N + 1) + (n− 1)N(N + 1) l = 0 : N, m = 1 : N, n = 1 : N

s =a + (b− 1)N + (c− 1)N2 a = 1 : N, b = 1 : N, c = 1 : N

r =i + 1 + (j− 1)(N + 1) + (k− 1)N(N + 1) i = 0 : N, j = 1 : N, k = 1 : N

.

(A.1.48)
B2

r,(s,t) = Φ1,1,1
i,l,a Φ0,0,1

j,m,bΦ1,1,1
k,n,c , (A.1.49)

with 
t =l + mN + (n− 1)N(N + 1) l = 1 : N, m = 0 : N, n = 1 : N

s =a + (b− 1)N + (c− 1)N2 a = 1 : N, b = 1 : N, c = 1 : N

r =i + jN + (k− 1)N(N + 1) i = 1 : N, j = 0 : N, k = 1 : N

. (A.1.50)

B3
r,(s,t) = Φ1,1,1

i,l,a Φ1,1,1
j,m,bΦ0,0,1

k,n,c , (A.1.51)

with 
t =l + (m− 1)N + nN2 l = 1 : N, m = 1 : N, n = 0 : N

s =a + (b− 1)N + (c− 1)N2 a = 1 : N, b = 1 : N, c = 1 : N

r =i + (j− 1)N + kN2 i = 1 : N, j = 1 : N, k = 0 : N

. (A.1.52)

A.2 Outer Euler discretization

In terms of the outer Euler, the fully discretized form is given as

− 1
∆t

(
u(2)

n+1, σ(2)
)

Ω
+

1
∆t

(
u(2)

n , σ(2)
)

Ω
−
∫

Ω
σ(2) ∧ ιuω̃

(2)
n +

(
p(3)0,n, dσ(2)

)
Ω
= 0

− 1
∆t

(
ω̃

(2)
n+1, ς(1)

)
Ω
+

1
∆t

(
ω̃

(2)
n , ς(1)

)
Ω
−
∫

Ω
dς ∧ ιuω̃

(2)
n = 0(

du(2)
n+1, τ(3)

)
Ω
= 0

, (A.2.1)

which is expressed in matrix form as
1

∆t
M(1) ∅ E(2,3)M(3)

∅
1

∆t
M(2) ∅

M(3)E(3,2) ∅ ∅


u(2)

n+1

ω
(1)
n+1

p(3)
n

 =


1

∆t
M(1)u(2)

n −A +
1
2

B

1
∆t

M(2)ω
(1)
n −E(1,2)A

0

 . (A.2.2)
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A.2.1 Mass matrix M(1)

M(1) =

M11 0 0
0 M12 0
0 0 M13

 . (A.2.3)

M11
r,s =

∫ 1

−1
φ1

i (x)φ1
l (x)dx

∫ 1

−1
φ0

j (y)φ
0
m(y)dy

∫ 1

−1
φ0

k(z)φ
0
n(z)dz

= Φ1,1
i,l Φ0,0

j,mΦ0,0
k,n ,

(A.2.4)

with  r = i + jN + kN(N + 1) i = 1 : N, j = 0 : N, k = 0 : N

s = l + mN + nN(N + 1) l = 1 : N, m = 0 : N, n = 0 : N
. (A.2.5)

M12
r,s =

∫ 1

−1
φ0

i (x)φ0
l (x)dx

∫ 1

−1
φ1

j (y)φ
1
m(y)dy

∫ 1

−1
φ0

k(z)φ
0
n(z)dz

= Φ0,0
i,l Φ1,1

j,mΦ0,0
k,n ,

(A.2.6)

with r = i + 1 + (j− 1)(N + 1) + kN(N + 1) i = 0 : N, j = 1 : N, k = 0 : N

s = l + 1 + (m− 1)(N + 1) + nN(N + 1) l = 0 : N, m = 1 : N, n = 0 : N
. (A.2.7)

M13
r,s =

∫ 1

−1
φ0

i (x)φ0
l (x)dx

∫ 1

−1
φ0

j (y)φ
0
m(y)dy

∫ 1

−1
φ1

k(z)φ
1
n(z)dz

= Φ0,0
i,l Φ0,0

j,mΦ1,1
k,n ,

(A.2.8)

with r = i + 1 + j(N + 1) + (k− 1)(N + 1)2 i = 0 : N, j = 0 : N, k = 1 : N

s = l + 1 + m(N + 1) + (n− 1)(N + 1)2 l = 0 : N, m = 0 : N, n = 1 : N
. (A.2.9)

A.2.2 Mass matrix M(2)

M(2) =

M21 0 0
0 M22 0
0 0 M23

 . (A.2.10)

M21
r,s =

∫ 1

−1
φ0

i (x)φ0
l (x)dx

∫ 1

−1
φ1

j (y)φ
1
m(y)dy

∫ 1

−1
φ1

k(z)φ
1
n(z)dz

= Φ0,0
i,l Φ1,1

j,mΦ1,1
k,n ,

(A.2.11)
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with r = i + 1 + (j− 1)(N + 1) + (k− 1)N(N + 1) i = 0 : N, j = 1 : N, k = 1 : N

s = l + 1 + (m− 1)(N + 1) + (n− 1)N(N + 1) l = 0 : N, m = 1 : N, k = 1 : N
.

(A.2.12)

M22
r,s =

∫ 1

−1
φ1

i (x)φ1
l (x)dx

∫ 1

−1
φ0

j (y)φ
0
m(y)dy

∫ 1

−1
φ1

k(z)φ
1
n(z)dz

= Φ1,1
i,l Φ0,0

j,mΦ1,1
k,n ,

(A.2.13)

with  r = i + jN + (k− 1)N(N + 1) i = 1 : N, j = 0 : N, k = 1 : N

s = l + mN + (n− 1)N(N + 1) l = 1 : N, m = 0 : N, n = 1 : N
. (A.2.14)

M23
r,s =

∫ 1

−1
φ1

i (x)φ1
l (x)dx

∫ 1

−1
φ1

j (y)φ
1
m(y)dy

∫ 1

−1
φ0

k(z)φ
0
n(z)dz

= Φ1,1
i,l Φ1,1

j,mΦ0,0
k,n ,

(A.2.15)

with  r = i + (j− 1)N + kN2 i = 1 : N, j = 1 : N, k = 0 : N

s = l + (m− 1)N + nN2 l = 1 : N, m = 1 : N, n = 0 : N
. (A.2.16)

A.2.3 Mass matrix M(3)

M
(3)
r,s =

∫ 1

−1
φ1

i (x)φ1
l (x)dx

∫ 1

−1
φ1

j (y)φ
1
n(y)dy

∫ 1

−1
φ1

k(z)φ
1
m(z)dz

= Φ1,1
i,l Φ1,1

j,mΦ1,1
k,n ,

(A.2.17)

with  r = i + (j− 1)N + (k− 1)N2 i = 1 : N, j = 1 : N, k = 1 : N

s = l + (m− 1)N + (n− 1)N2 l = 1 : N, m = 1 : N, n = 1 : N
. (A.2.18)
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