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a b s t r a c t

This paper discusses the problem of system identification when frequency domain side-information
is available. We mainly consider the case where the side-information is provided as the H∞-
norm of the system being bounded by a given scalar. This framework allows considering different
forms of frequency domain side-information, such as the dissipativity of the system. We propose
a nonparametric identification approach for estimating the impulse response of the system under
the given side-information. The estimation problem is formulated as a constrained optimization in
a stable reproducing kernel Hilbert space, where suitable constraints are considered for incorporating
the desired frequency domain features. The resulting optimization has an infinite-dimensional feasible
set with an infinite number of constraints. We show that this problem is a well-defined convex
program with a unique solution. We propose a heuristic that tightly approximates this unique solution.
The proposed approach is equivalent to solving a finite-dimensional convex quadratically constrained
quadratic program. The efficiency of the discussed method is verified by several numerical examples.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

System identification problem, initially introduced in Zadeh
1956), deals with the theory and techniques for estimating suit-
ble mathematical models describing dynamical systems using
easurement data. The topic has received substantial attention
ue to its broad applicability in numerous phenomena in science
nd technology (Ljung, 1999, 2010; Schoukens & Ljung, 2019).
n many situations, identifying a dynamical system goes beyond
itting a mathematical model to the input–output measurement
ata. We may additionally need to integrate a specific attribute
r a known feature of the system into the model. This side-
nformation is possibly provided from our general understanding
f the behavior of the system based on its inherent physical na-
ure, or acquired from qualitative characteristics and phenomena
bserved from historical or experimental data. For example, in
he identification of nonlinear dynamics various forms of side-
nformation such as stability, region of attraction, dissipativity
nd many others are incorporated (Ahmadi & El Khadir, 2020;
ara, Inoue, & Sebe, 2019; Khosravi & Smith, 2021a, 2021e;
menberger & Manchester, 2018).

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Gianluigi
Pillonetto under the direction of Editor Alessandro Chiuso.
∗ Corresponding author.

E-mail addresses: mohammad.khosravi@tudelft.nl (M. Khosravi),
smith@control.ee.ethz.ch (R.S. Smith).
ttps://doi.org/10.1016/j.automatica.2022.110813
005-1098/© 2022 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
The incorporation of side-information has been considered in
the identification of linear dynamics, e.g., the low complexity of
the model is imposed by considering sparsity promoting regular-
izations (Khosravi, Iannelli, et al., 2020; Khosravi, Yin, et al., 2020;
Pillonetto, Chen, Chiuso, Nicolao, & Ljung, 2016; Shah, Bhaskar,
Tang, & Recht, 2012; Smith, 2014). For penalizing the order of
systems, the rank and the nuclear norm of the corresponding
Hankel matrix are utilized in Fazel, Pong, Sun, and Tseng (2013),
Mohan and Fazel (2010), Pillonetto et al. (2016) and Smith (2014).
For the same purpose, the notion of atomic transfer functions and
regularization based on the atomic norm are employed (Khosravi,
Yin, Iannelli, Parsi & Smith, 2020; Shah et al., 2012). Identifi-
cation with the side-information involving positivity features of
the system such as compartmental structure and the internal or
external positivity are also discussed in the literature (Benvenuti,
De Santis, & Farina, 2002; De Santis & Farina, 2002; Grussler,
Umenberger, & Manchester, 2017; Umenberger & Manchester,
2016). Other forms of side-information are studied in Abe, Inoue,
and Adachi (2016), Goethals, Van Gestel, Suykens, Van Dooren,
and De Moor (2003), Hoagg, Lacy, Erwin, and Bernstein (2004),
Inoue (2019), Miller and De Callafon (2013) and Okada and Sugie
(1996), e.g., including information on the location of the eigen-
values (Miller & De Callafon, 2013; Okada & Sugie, 1996), the
moments of transfer function (Inoue, 2019), and the positive-
realness (Goethals et al., 2003; Hoagg et al., 2004). The subspace
identification method is employed to include information on the
steady-state behavior (Alenany, Shang, Soliman, & Ziedan, 2011;
Lacy & Bernstein, 2003; Yoshimura, Matsubayashi, & Inoue, 2019)
such as the stability of the system (Lacy & Bernstein, 2003).
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Starting from the seminal work Pillonetto and De Nicolao (Pil-
lonetto & De Nicolao, 2010), a paradigm shift known as the kernel-
based approach has emerged in system identification which al-
lows integrating side-information (Chiuso & Pillonetto, 2019;
Khosravi & Smith, 2021f, 2023; Ljung, Chen, & Mu, 2020; Pil-
lonetto, Dinuzzo, Chen, De Nicolao, & Ljung, 2014). In this frame-
work, the identification problem is formulated as a regularized
regression in a reproducing kernel Hilbert space (RKHS) (Berlinet
& Thomas-Agnan, 2011) where the regularization term, based
on the norm of RKHS, penalizes solutions not compatible with
the side-information. By a suitable choice of the kernel func-
tion, or by imposing appropriate constraints in the regression
problem, one can incorporate a variety of side-information such
as stability, resonant frequencies, smoothness of the impulse
response, steady-state gain, and, internal or external positivity
of the system (Chen, 2018; Khosravi & Smith, 2019, 2021d,
2021g; Marconato, Schoukens, & Schoukens, 2016; Zheng & Ohta,
2021). Moreover, employing a Tikhonov-like regularization in
this framework leads to an improvement in the bias–variance
trade-off (Pillonetto et al., 2014).

Input–output behavioral properties such as the H∞-norm of
he plant, or more generally frequency domain properties like
he dissipativity of the system (Willems, 1972), can be consid-
rably useful in feedback controller design (Brogliato, Lozano,
aschke, & Egeland, 2007; Zames, 1966). These features are a
riori known for many systems due to their inherent physical
ature, e.g., the electrical circuits where the energy is dissipated
y the resistors (Willems, 1972). In addition, they can be verified
sing recently developed data-driven methods (Koch, Berberich,
Allgöwer, 2020; Koch, Montenbruck, & Allgöwer, 2019; Müller,
alenzuela, Proutiere, & Rojas, 2017; Romer, Berberich, Köhler,
Allgöwer, 2019; Romer, Montenbruck, & Allgöwer, 2017). In-

ormation about these attributes is potentially available for later
se as side-information. However, existing research on LTI system
dentification with side-information (Abe et al., 2016) does not
dequately address the inclusion of this frequency domain side-
nformation. For example, in the standard implementation of
ubspace and kernel-based identification methods, the informa-
ion on the bound of system’s H∞-norm is not encoded in the
dentified model (see the example in Section 3).

The main goals of this paper are to develop identification
ethods utilizing frequency domain side-information in a nu-
erically tractable fashion and to provide suitable theoretical
uarantees. First, we consider the case where the
ide-information is the H∞-norm of the system being bounded
y a given scalar. The framework considers various forms of fre-
uency domain side-information, such as the dissipativity of the
ystem. As kernel-based approaches provide a powerful frame-
ork, the identification problem is formulated as a constrained
egularized regression problem in a stable RKHS (Chen & Pil-
onetto, 2018; Pillonetto et al., 2014) with suitable constraints to
mpose the frequency domain side-information on the estimation.
he optimization problem is infinite-dimensional with an infinite
umber of constraints. We show that this problem is a convex
rogram with a unique solution. Towards deriving a tractable so-
ution scheme, we consider a suitable finite set of frequencies, and
ubsequently, an approximate estimation problem is formulated
s an optimization problem with the same objective function
ut with constraints imposed according to these frequencies. The
ew problem attains a unique solution with a specific paramet-
ic form. Subsequently, an equivalent finite-dimensional convex
ptimization is derived as a convex quadratically constrained
uadratic program (QCQP). By solving this optimization problem,
he solution of the approximate problem is obtained. We derive
roper bounds on the tightness of this approximation and provide
heoretical guarantees on the convergence of the approximate
olution to the solution of the original problem. Several numerical
xamples verify the efficiency of the proposed method.
 m

2

. Notation and preliminaries

The set of natural numbers, the set of non-negative integers,
he set of real numbers, the set of non-negative real numbers,
he set of complex numbers, the n-dimensional Euclidean space,
the space of n by m real matrices, and the space of n by n real
symmetric matrices are denoted by N, Z+, R, R+, C, Rn, Rn×m,
nd Sn, respectively. For any z ∈ C, the real and imaginary part

of z are denoted by real(z) and imag(z), respectively. The inner
product and norm of Hilbert space H is denoted by ⟨·, ·⟩H and
∥ · ∥H , respectively, and when it is clear from the context, we
drop the subscript. To handle discrete and continuous time in
the same formulation, T denotes either Z+ or R+, and T± is the
set of scalars t where either t ∈ T or −t ∈ T. Given measure
space X , the space of measurable functions g : X → R is
denoted by RX . The element u ∈ RX is shown entry-wise as
u = (ux)x∈X , or equivalently as u =

(
u(x)

)
x∈X . Depending on

the context of discussion, L∞ refers either to ℓ∞(Z) or L∞(R).
Similarly, L 1 is either ℓ1(Z+) or L1(R+). For p ∈ {1,∞}, the norm
in L p is denoted by ∥ · ∥p. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be two
normed vector spaces. The set of linear bounded (continuous)
operators A : X → Y, denoted by L(X,Y), is a normed vector
space with the norm defined as ∥A∥L(X,Y) := supx∈X,∥x∥X≤1 ∥Ax∥Y.
The identity matrix/operator and the zero vector are denoted by
I and 0 respectively. Given V ⊆ X, the linear span of V , denoted
by spanV , is a linear subspace of X containing linear combination
of the elements of V . Let Y be a set and C ⊆ Y . We define the
function δC as δC(y) = 0, if y ∈ C and δC(y) = ∞, otherwise.
Similarly, function 1C is defined as 1C(y) = 1, if y ∈ C and
1C(y) = 0, otherwise.

3. System identification with frequency domain
side-information

Consider a stable single-input–single-output (SISO) LTI system
S described with impulse response g(S)

:= (g (S)
t )t∈T ∈ L 1 and

ransfer function G(S). For the case of discrete-time and the case
of continuous-time, we have here respectively T := Z+ and
T := R+. Let the system be actuated with a bounded input signal
denoted by u = (ut )t∈T ∈ L∞. Accordingly, for any t ∈ T±, one
an define linear map Lut over the space of stable causal impulse
esponses, for the discrete-time case, as
u
t (g) :=

∑
s∈Z+

gsut−s, (1)

nd similarly, for the case of continuous-time, as

u
t (g) :=

∫
R+

gsut−s ds. (2)

et the output of the system be measured at time instants T :=

{ti | i = 0, . . . , nD − 1}, for a given nD ∈ N. More precisely, define
yt as

yt := Lut (g
(S))+ wt , t ∈ T , (3)

where, for any t ∈ T , wt denotes the measurement uncertainty.
ubsequently, let D be the set of input–output pairs, i.e., D is

defined as D = {(ut , yt ) | t ∈ T }.
Let assume we know that the H∞-norm of system S is

bounded by a given scalar ρ ∈ R+. The question is whether this
ide-information is naturally encoded in the identification prob-
em. The following example elaborates this issue by demonstrat-
ng that the information on the bound of the system’s H∞-norm
s not included in the models identified by the standard identi-
ication approaches such as the subspace and the kernel-based
ethods.
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Fig. 1. The estimated models Ĝ1 and Ĝ2 for the system (4) are compared with
he true transfer function.

xample. Let S be a discrete-time system described by the
ollowing transfer function

(S)(z) =
1

2z − 1
+

3
100

z − 1
z2 + z + 0.9

. (4)

To obtain set of data D , we actuate the system with a random
white Gaussian signal of length nD = 150, and then, the output
f system is measured where SNR = 14.5 dB (see Fig. 1). Addi-
ionally, assume we are given the side-information ∥G(S)

∥H∞ ≤ 1.
e employ Matlab’s System Identification Toolbox (Ljung &

ingh, 2012) to estimate models Ĝ1 and Ĝ2 for the system using
mpulseest and n4sid, respectively. The results are shown in
ig. 1 where we have ∥Ĝ1∥H∞ = 1.24 and ∥Ĝ2∥H∞ = 1.38. One
an see that the models estimated by the mentioned standard
dentification methods do not comply the side-information. △

Motivated by this example, we introduce the main prob-
em discussed in this paper as system identification with side-
nformation on the H∞-norm of the system.

roblem 1. Given the set of input–output data D , estimate the
mpulse response of system S satisfying the side-information
G(S)
∥H∞ ≤ ρ, where ρ is a given non-negative real scalar.

This problem can be extended to the identification prob-
em with more general characterization of dissipativity side-
nformation. More precisely, let Q ∈ S2 be an indefinite matrix
and assume that in addition to the given set of data D , we know
that the system S is dissipative with respect to quadratic supply
rate function sQ(u, y) defined as

sQ(u, y) :=
[
u y

]
Q
[
u
y

]
=
[
u y

] [ qu quy
quy qy

][
u
y

]
= quu2

+ 2quyuy+ qyy2,

(5)

where qy < 01 (Antoulas, 2005; Haddad & Chellaboina, 2011). For
the case of sQ(u, y) = ρ2u2

− y2 where ρ ∈ R+, this dissipativity
prior knowledge is equivalent to being L2-gain or H∞-norm of
the system not larger than ρ. Given the above side-information on
the dissipativity of system S , a desired identification procedure
for estimating the impulse response of the system should suitably
utilize this information and also guarantee that the identified
model satisfies the given feature. The more general problem is
the following.

1 In other words, given that the system is initially at rest, for any input–
utput pairs

(
ut , yy

)
t∈T and any τ ∈ T, we have

∫ τ

0 sQ(ut , yt )dt ≥ 0, if T = R+ ,
nd

∑τ s (u , y ) ≥ 0, if T = Z .
t=0 Q t t +

3

Fig. 2. The equivalent system S̃ with H∞-norm less than or equal to 1.

Problem 2. Given the set of data D and considering the side-
information on the dissipativity of system with respect to the
supply rate sQ(u, y), estimate the impulse response of system S
satisfying the dissipativity side-information.

Note that we have

Q =
[
qu quy
quy qy

]
=

[
l1 l2
0 l3

][
1 0
0 −1

][
l1 0
l2 l3

]
(6)

where l1 = (det Q/qy)
1
2 , l2 = −quy/(−qy)

1
2 , and l3 = (−qy)

1
2 , and

ubsequently, one can define the system S̃ with input v = l1u and
utput z = l2u + l3y as shown in Fig. 2. Then, S̃ is a dissipative
ystem with respect to supply rate function s(v, z) = u2

− y2,
r equivalently, ∥G(S̃)

∥H∞ ≤ 1 where G(S̃) is the transfer function
of system S̃. Meanwhile, using the introduced change of variables
and based on D , we can define set of data DS̃ := {(vt , zt ) | t ∈ T },
here vt := l1ut and zt := l2ut + l3yt , for t ∈ T . Accordingly,
he problem is equivalent to identifying system S̃ given the set
f data DS̃ and the side-information ∥G(S̃)

∥H∞ ≤ 1. Therefore, in
order to address Problem 2 it suffices to find a solution approach
for Problem 1.

Problem 1 can be further extended to the case where system S
is approximately known. More precisely, let S be a known system
with transfer function G(S) and we are given that ∥G(S)

−G(S)
∥H∞ ≤

ρ, for a known ρ ∈ R+. This can be the case where the system
might have been previously modeled or identified as S , and we
ould now like to identify an improved version of the model. The

ollowing identification problem addresses this case.

roblem 3. Given the set of input–output data D , estimate the
mpulse response of system S satisfying the side-information
G(S)
− G(S)

∥H∞ ≤ ρ, where S is a known system with transfer
function G(S) and ρ ∈ R+ is a given scalar.

Let ∆S be the system with the transfer function G(∆S)
:= G(S)

−
(S) and the impulse response g(∆S)

:= g(S)
− g(S), where g(S) is the

impulse response of system S̄. Since g(S) is known, one can obtain
Lut (g

(S)), and subsequently, define dt as dt := yt − Lut (g
(S)), for any

∈ T . Due to (3) and the linearity of Lut , we have

t = Lut (g
(S))+ wt − Lut (g

(S)) = Lut (g
(∆S))+ wt , t ∈ T .

Accordingly, we can define D∆S := {(ut , dt ) | t ∈ T } as the input–
output pairs of data for the system ∆S. Therefore, Problem 3 is
equivalent to identifying system ∆S given the set of data D∆S
and the side-information ∥G(∆S)

∥H∞ ≤ ρ, which is in form of
Problem 1.

Let T = Z+, T := {i = 0, . . . , nD − 1}, and consider the
following identification problem:

Problem 4. Given the set of input–output data D , estimate the
impulse response of system S satisfying the frequency domain
side-information ∥WG(S)

∥H∞ ≤ ρ, where ρ ∈ R+ is a given scalar,
and weight W is a known stable transfer function with stable
casual inverse.
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Let the output signal y = (yt )
nD−1
t=0 be filtered by system W

and p := (pt )
nD−1
t=0 be the resulting filtered signal. One can see

that DH := {(ut , pt )|t ∈ T } is a set of input–output data for the
system with transfer function H := WG(S), where we know that
H∥H∞ ≤ ρ. Let Ĥ be the solution of Problem 1 for this setting.

Then, Ĝ := W−1Ĥ is a solution to Problem 4.
Considering the above discussion, a solution approach for

Problem 1 also addresses Problems 2–4. In the remainder of the
paper, we discuss solving Problem 1.

4. The estimation problem: Existence and uniqueness of the
solution

We investigate the existence and uniqueness properties for
the solution of Problem 1.

Let F ⊆ RT be a suitable functional space of stable impulse
responses taken as the hypothesis set for the estimation Prob-
lem 1. Given bounded signal u ∈ RT, with respect to each t ∈ T,
e have the linear map Lut : F → R as defined in (1) and (2).

Based on this definition and the set of data D , one can define the
empirical loss function or the fitting error function, ED : F → R,
s the sum of squared error. In other words, for a given candidate
mpulse response g ∈ F , we have that

D(g) :=
∑
t∈T

(Lut (g)− yt )2. (7)

Define G ⊆ L 1 as the set of impulse responses corresponding
to the systems with H∞-norm less than or equal to ρ. More
recisely, we have

:=

{
g = (gt )t∈Z+ ∈ L 1

⏐⏐⏐⏐ sup
ω∈[0,π ]

⏐⏐⏐ ∑
t∈Z+

gte−jωt
⏐⏐⏐ ≤ ρ

}
, (8)

and

G :=

{
g = (gt )t∈R+ ∈ L 1

⏐⏐⏐⏐ sup
ω∈R+

⏐⏐⏐ ∫
R+

gte−jωtdt
⏐⏐⏐ ≤ ρ

}
, (9)

respectively for T = Z+ and T = R+. Note that since each
element of G belongs to L 1 the summation in (8) and the in-
tegration in (9) are well-defined. Accordingly, in order to address
Problem 1, we solve the following optimization problem

min
g∈F

ED(g)+ λR(g)

s.t. g ∈ G ,
(10)

where R : F → R+ is a suitable regularization function and
λ > 0 is the regularization weight. Due to the definition of G ,
the optimization problem (10) is an infinite-dimensional program
with an uncountably infinite number of inequality constraints,
which is not tractable in the current form. Accordingly, we need
to address the following questions:

(1) What is a suitable candidate for hypothesis set F?
(2) Does optimization problem (10) admit a solution? Is this

solution unique?
(3) How can we obtain the solution of (10) or a tight approxima-

tion for it?

The first two questions are addressed throughout the remainder
of this section. The last question is postponed to Section 5.

4.1. Stable reproducing kernel Hilbert spaces

The hypothesis space taken for estimating the unknown im-
pulse response is a type of Hilbert spaces known as reproducing
kernel Hilbert spaces (RKHS) which are introduced briefly below
(see Aronszajn, 1950; Berlinet & Thomas-Agnan, 2011, for more
4

details). The structure of RKHS provides a suitable framework for
investigating the problem and obtaining a tractable scheme for
solving (10).

Definition 1 (Berlinet & Thomas-Agnan, 2011). Let H ⊆ RT be
a Hilbert space endowed with inner product ⟨·, ·⟩H and induced
norm ∥·∥H . Then, H is a reproducing kernel Hilbert space (RKHS)
if for any t ∈ T, we have sup

{
|gt |

⏐⏐ g := (gt )t∈T ∈ H , ∥g∥H ≤

1
}

<∞.

Along with the RKHS, the notion of kernel is introduced in the
next definition.

Definition 2 (Berlinet & Thomas-Agnan, 2011). The function k :

T×T→ R is a kernel, or more precisely, a positive definite kernel,
when for any m ∈ N, t, s, t1, . . . , tm ∈ T and a1, . . . , am ∈ R,
we have k(t, s) = k(s, t) and

∑
1≤i,j≤m aiajk(ti, tj) ≥ 0. For each

t ∈ T, the section of kernel k at t is defined as the function
k(t, ·) : T→ R and denoted by kt .

The next theorem shows the connection between RKHSs and
the kernels.

Theorem 1 (Berlinet & Thomas-Agnan, 2011). Given a kernel k :
T×T→ R, there exists a RKHS Hk ⊆ g ∈ RT, endowed with inner
product ⟨·, ·⟩Hk

and norm ∥ · ∥Hk
, such that for any t ∈ T, we have

kt ∈ Hk, and ⟨g,kt⟩Hk
= gt , for all g = (gt )t∈T ∈ Hk. The second

feature is called the reproducing property.

Based on Theorem 1, we know that a RKHS is uniquely charac-
terized by a kernel. Therefore, in the current context, the kernel
k is chosen suitably such that each impulse response g ∈ Hk rep-
resents a stable system in the bounded-input–bounded-output
(BIBO) sense. More precisely, we should have Hk ⊆ L 1. When
kernel k satisfies this feature, it is called a stable kernel (Chen &
Pillonetto, 2018). The following theorem provides a necessary and
sufficient condition for the stability of a given kernel.

Theorem 2 (Carmeli, De Vito, & Toigo, 2006; Chen & Pillonetto,
2018). Let k : T × T → R be a kernel. Then, k is stable if and
only if, when T = Z+, we have

∑
t∈Z+

⏐⏐∑
s∈Z+ usk(t, s)

⏐⏐ < ∞,
and, when T = R+, we have

∫
R+

⏐⏐ ∫
R+

usk(t, s)ds
⏐⏐dt <∞, for any

u = (ut )t∈T ∈ L∞.

The most common stable kernel in the literature (Pillonetto
et al., 2014) is the tuned/correlated (TC) kernel defined as follows

k(s, t) =
{
αmax(s,t) if T = Z+,
e−β max(s,t) if T = R+,

(11)

where α ∈ [0, 1) and β > 0. By setting α as e−β , one can
obtain same definition for both cases in (11). This is the default
kernel employed in impulseest function of Matlab’s System
Identification Toolbox. One can easily see that if kernel h is
dominated by TC kernel k, i.e., there exists γ ∈ R+ such that for
any s, t ∈ T we have |h(s, t)| ≤ γk(s, t), then h is a stable kernel.
This highlights the importance of TC kernels.

4.2. The estimation problem in stable reproducing kernel Hilbert
spaces

Let k be a stable kernel and Hk be the corresponding RKHS.
Motivated by Ljung et al. (2020), Pillonetto and De Nicolao (2010),
Pillonetto et al. (2014) and the above discussion, we set Hk as the
hypothesis space for the estimation problem, i.e., F = Hk. Subse-
quently, we can introduce a suitable kernel-based regularization.
More precisely, let the regularization function R : H → R
k +
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e defined as R(g) := ∥g∥2Hk
. Therefore, in correspondence with

he estimation Problem 1, we have the following optimization
roblem:

min
g∈Hk

∑
t∈T

(Lut (g)− yt )2 + λ∥g∥2Hk
,

s.t. |G(jω)| ≤ ρ, ∀ω ∈ ΩT,

(12)

here G denotes the transfer function corresponding to the im-
ulse response g, ΩT := [0, π] when T = Z+, and ΩT := R+

when T = R+. Note that by abuse of notation, for both cases of
discrete-time and continuous-time, we employ same expression
G(jω) for the transfer function of the system.

The constraints introduced in (12) are the Fourier transform of
the impulse response g at different frequencies. Since g belongs
to RKHS Hk, one needs to study the frequency response and its
properties in the domain of RKHS Hk.

Definition 3. With respect each ω ∈ ΩT, we define maps F (r)
ω :

Hk → R and F (i)
ω : Hk → R such that for any g = (gt )t∈T ∈ Hk,

e have
(r)
ω (g) :=

∑
t∈Z+

gt cos(ωt),

F (i)
ω (g) := −

∑
t∈Z+

gt sin(ωt),
(13)

when T = Z+, and

F (r)
ω (g) :=

∫
R+

gt cos(ωt)dt,

F (i)
ω (g) := −

∫
R+

gt sin(ωt)dt,
(14)

when T = R+. Also Fω : Hk → C is defined as Fω(g) =
F (r)

ω (g)+ jF (i)
ω (g), for any g ∈ Hk.

Based on the definition of Fω , for any g ∈ Hk and ω ∈ ΩT, we
have G(jω) = Fω(g), where G is the transfer function correspond-
ing to the impulse response g. Accordingly, the problem (12) can
be re-written in the following form

min
g∈Hk

∑
t∈T

(Lut (g)− yt )2 + λ∥g∥2Hk
,

s.t. |Fω(g)| ≤ ρ, ∀ω ∈ ΩT.

(15)

Remark 1. One can see that Fω is the Fourier transform restricted
to the RKHS Hk evaluated for the frequency ω ∈ ΩT. However,
we should note that it does not necessarily inherit the same prop-
erties of standard Fourier transform. More precisely, the structure
of Hk plays a key role.

Before proceeding further, we need to introduce a notion
based on the kernel k. For any n ∈ Z+, define µn ∈ [0,∞] as

µn :=

⎧⎪⎪⎨⎪⎪⎩
∑
t∈Z+

tn k(t, t)
1
2 , if T = Z+,∫

R+
tn k(t, t)

1
2 dt, if T = R+.

(16)

The next lemma introduces properties of F (r)
ω , F (i)

ω and Fω .

Lemma 3. Assume that µ0 <∞. Then, the following hold:
(1) The maps F (r)

ω ,F (i)
ω : Hk → R and Fω : Hk → C are linear

continuous with

∥F (r)
∥ , ∥F (i)

∥ ≤ µ . (17)
ω L(Hk,R) ω L(Hk,R) 0

5

(2) There exist unique elements ϕ(r)
ω = (ϕ(r)

ω,t )t∈T and ϕ(i)
ω = (ϕ(i)

ω,t )t∈T
n Hk such that, for any g ∈ Hk, we have
(r)
ω (g) = ⟨ϕ(r)

ω , g⟩Hk
,

F (i)
ω (g) = ⟨ϕ(i)

ω , g⟩Hk
.

(18)

3) For any t ∈ T, when T = Z+, we have
(r)
ω,t =

∑
s∈Z+

k(t, s) cos(ωs),

(i)
ω,t = −

∑
s∈Z+

k(t, s) sin(ωs),
(19)

nd, when T = R+, we have

(r)
ω,t =

∫
R+

k(t, s) cos(ωs)ds,

(i)
ω,t = −

∫
R+

k(t, s) sin(ωs)ds.
(20)

roof. See Appendix A in Khosravi and Smith (2021c). □

Let Ω ⊆ ΩT and η ∈ R+. Define set Gk(η, Ω) as

k(η, Ω) :=
{
g ∈ Hk

⏐⏐ |Fω(g)| ≤ η,∀ω ∈ Ω
}
. (21)

ne can see that the feasible set in (15) is a special case of this
et. Based on Lemma 3, we study the main properties of Gk(η, Ω)
n the next theorem.

heorem 4. Assume that µ0 < ∞. Then, Gk(η, Ω) is non-empty,
losed and convex.

roof. From (21), one can see that

k(η, Ω) =
{
g ∈ Hk | |Fω(g)| ≤ η,∀ω ∈ Ω

}
=

⋂
ω∈Ω

{
g ∈ Hk | |Fω(g)| ≤ η

}
=

⋂
ω∈Ω

Gk
(
η, {ω}

)
.

herefore, it is enough to show that, for any ω ∈ ΩT, Gk(η, {ω})
s a closed and convex subset of Hk. Since |Fω(g)|2 = |F (r)

ω (g)|2+
F (i)

ω (g)|2, we have that

k(η, {ω}) =
{
g ∈ Hk

⏐⏐ |F (r)
ω (g)|

2
+ |F (i)

ω (g)| ≤ η2}.
ue to Lemma 3, we know that F (r)

ω (g) = ⟨ϕ(r)
ω , g⟩Hk

and F (i)
ω (g) =

ϕ(i)
ω , g⟩Hk

, for any g ∈ Hk. With respect to each θ ∈ [0, π
2 ], define

set Gk(η, ω, θ ) as

k(η, ω, θ ) :=
{
g ∈ Hk

⏐⏐|⟨ϕ(r)
ω , g⟩Hk

| ≤ η cos θ,

|⟨ϕ(i)
ω , g⟩Hk

| ≤ η sin θ
}

.

Note that Gk(η, ω, θ ) is the intersection of

g ∈ Hk|⟨ϕ
(r)
ω , g⟩Hk

≤ η cos θ
}
,

g ∈ Hk|⟨ϕ
(r)
ω , g⟩Hk

≥ −η cos θ
}
,{

g ∈ Hk|⟨ϕ
(i)
ω , g⟩Hk

≤ η sin θ
}
,{

g ∈ Hk|⟨ϕ
(i)
ω , g⟩Hk

≥ −η sin θ
}
,

(22)

which are closed half-spaces in Hk. Therefore, Gk(η, ω, θ ) is a
closed and convex set. Since we have Gk(η, {ω}) =

⋂
θ∈[0, π

2 ]
Gk(η,

ω, θ ), the set Gk(η, {ω}) is closed and convex as well. Note that
for 0 ∈ Hk and any ω ∈ Ω , we have Fω(0) = 0. Therefore,
|Fω(0)| = 0 ≤ η and subsequently, 0 ∈ G (η, Ω). This shows
that G (η, Ω) is a non-empty set and concludes the proof. □
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Before proceeding to the main theorem of this section, we
need to present an auxiliary lemma.

Lemma 5. Assume that µ0 < ∞ and u ∈ L∞. Then, for any
∈ T, the map Lut : Hk → R, defined in (1) and (2), is linear and
ontinuous with ∥Lut∥L(Hk,R) ≤ µ0∥u∥∞. Also, there exists unique
(u)
t := (ϕ(u)

t,s )s∈T ∈ Hk such that Lut (g) = ⟨ϕ
(u)
t , g⟩Hk

, for any g ∈ Hk.
Moreover, for any s ∈ T, we have

ϕ
(u)
t,s = Lut (ks) =

⎧⎪⎪⎨⎪⎪⎩
∑
τ∈Z+

k(s, τ )ut−τ , if T = Z+,∫
R+

k(s, τ )ut−τdτ , if T = R+.
(23)

Proof. See Appendix B in Khosravi and Smith (2021c). □

Theorem 6. Assume that µ0 > 0 and consider the following
program

min
g∈Gk(η,Ω)

∑
t∈T

(Lut (g)− yt )2 + λ∥g∥2Hk
. (24)

Then, (24) is a convex optimization problem with a unique solution
g⋆

Ω . Moreover, we have

∥g⋆
Ω∥Hk

≤ λ−
1
2 ∥y∥. (25)

here vector y is defined as y = [yt ]t∈T .

Proof. Define J : Hk → R ∪ {+∞} such that for any g ∈ Hk we
have

J (g) =
∑
t∈T

(Lut (g)− yt )2 + λ∥g∥2Hk
+ δGk(η,Ω)(g). (26)

Since 0 ∈ Gk(η, Ω), we have δGk(η,Ω)(0) = 0. From the definition
of Lut in (1) and (2), it is implied that Lut (0) = 0, for each t ∈ T ,
and subsequently, we have J (0) =

∑
t∈T y2t = ∥y∥

2 < ∞.

From Theorem 4, we know that Gk(η, Ω) is a convex and closed
set, and consequently, δGk(η,Ω) is a proper lower semi-continuous
convex function (Peypouquet, 2015). Due to Lemma 5, we know
that Lut : Hk → R is a continuous linear map, for each t ∈ T .
Therefore, function ED : Hk → R, defined in (7), is a convex and
continuous function. Since λ > 0, we know that J is a proper
nd lower semi-continuous strongly convex function. Therefore,
ing∈Hk

J (g) has a unique (finite) solution (Peypouquet, 2015),
and subsequently, (24) is a convex program with a unique solu-
tion g⋆

Ω with finite cost. Since 0 ∈ Gk(η, Ω) and due to optimality
of g⋆

Ω , we have J (g⋆
Ω ) ≤ J (0). Subsequently, one can see

λ∥g⋆
Ω∥

2
Hk
≤

∑
t∈T

(Lut (g
⋆
Ω )− yt )2 + λ∥g⋆

Ω∥
2
Hk
≤ J (0) =

∑
t∈T

y2t ,

which implies (25). This concludes the proof. □

Corollary 7. Assume that µ0 < ∞. Then, (15) is a convex opti-
mization with a unique solution denoted by g⋆. Moreover, g⋆ satisfies
inequality (25). A similar property holds for (12).

Proof. In Theorem 6, set Ω and η respectively to ΩT and ρ.
Then, the convexity of (15) as well as the existence and unique-
ness of its solution immediately follows. Since (12) and (15) are
equivalent, the same claim holds for (12). □

In the above discussion, we have assumed that µ0 < ∞.
The next theorem shows that the boundedness of µ0 is a valid
assumption for most of the stable kernels introduced in the
literature. In particular, it holds for TC kernel.
 p

6

Theorem 8. Consider kernel k and assume there exist β, γ > 0 such
that |k(s, t)| ≤ γ e−β max(s,t), for any s, t ∈ T. Then, for any n ∈ Z+,
we have µn ≤ γ

1
2 ( 2

β
)n+1n!, where n! :=

∏n
k=1 k, when n ≥ 1, and,

0! := 1.

Proof. When T = Z+, from the upper bound of kernel, we have

µn ≤
∑
t∈Z+

tn k(t, t)
1
2 ≤

∫
R+

tn(γ e−βt )
1
2 dt,

where the second inequality is due to being f (t) := e−
1
2 βt a non-

ncreasing function. This inequality holds for the case of T = R+
s well. Using change of variable s = β

2 t , we have

µn ≤ γ
1
2
2n+1

βn+1

∫
R+

sne−sds = γ
1
2
2n+1

βn+1 Γ (n+ 1),

where the equality is due to the definition of Gamma function.
The claim follows from Γ (k+ 1) = k!, for k ∈ Z+. □

Based on Corollary 7, we know that the optimization problem
12) has a unique solution addressing Problem 1. Since this op-
imization problem is defined over an infinite-dimensional space
ith uncountably infinite number of constraints, obtaining this
olution is not yet tractable in the current form. This is discussed
n the next section.

. Towards a tractable scheme

In this section, we present a tractable approach to derive the
olution of the nonparametric estimation problem introduced in
ection 4.
Consider optimization problem (15). For ease of discussion and

ithout loss of generality, we assume ρ = 1. More precisely, one
can use a change of variable and replace yt with ρ−1yt in D and
hen, set ρ = 1 in Problem 1 as well as in (15), or equivalently
n (12). With respect to each ω ∈ ΩT, there exists a constraint in
15). Thus, we have uncountably infinite number of constraints
hich makes the problem intractable. To resolve this issue, we
pproximate the problem by considering a suitable finite subset
f ΩT. In order to investigate this possibility, we need the notion
f partition introduced in the next definition.

efinition 4. We say P is a partition of interval [a, b] if P is a
inite subset of [a, b] as P = {ωi | i = 0, . . . , nP} where

a = ω0 < ω1 < · · · < ωnP
= b. (27)

With respect to partition P , the mesh of P , denoted by mesh(P),
is defined as

mesh(P) := max
{
|ωi − ωi−1| | i = 1, 2, . . . , nP

}
. (28)

Now, let P = {ωi | i = 0, . . . , nP} be a given partition. One can
see that satisfying the constraints |Fω(g)| ≤ 1, for all w ∈ P , does
not necessarily imply that the desired feature supω∈ΩT |Fω(g)| ≤
. More precisely, these constraints do not guarantee that for all
∈ ΩT\P we have |Fω(g)| ≤ 1 as well. Accordingly, in order

o approximate problem (15), we take ϵ > 0 and consider the
ollowing problem as our approximation

min
g∈Hk

∑
t∈T

(Lut (g)− yt )2 + λ∥g∥2Hk
,

s.t. |Fω(g)|2 ≤ 1− ϵ, ∀ω ∈ P.

(29)

n the following, we provide appropriate conditions on partition
and ϵ > 0 for ensuring that the solution of (29) satisfies

upω∈ΩT |Fω(g)| ≤ 1. These conditions depend on the bandwidth
f system g and the rate of change of |Fω(g)| with respect to
. Accordingly, we need to introduce necessary definitions and
reliminaries.
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efinition 5. Let g ∈ Hk be a given impulse response. With
espect to g, we define function mg : ΩT → R as

g(ω) = |Fω(g)|2. (30)

iven impulse response g, the function mg shows the squared
agnitude of transfer function corresponding to g at different

requencies. The following lemma introduces a bound for the rate
f changes of mg in terms of its Lipschitz constant, which in turn

can be expressed in terms of the properties of the regularization
kernel. This will be used later in the analysis of problem (29).

Lemma 9. Assume that µ0, µ1 < ∞. Then, for any g ∈ Hk and
ω1, ω2 ∈ ΩT, we have

|mg(ω2)−mg(ω1)| ≤ Lg|ω2 − ω1|, (31)

where Lg := 4µ0µ1∥g∥2Hk
.

Proof. See Appendix D in Khosravi and Smith (2021c). □

For the case of discrete-time systems, i.e., T = Z+, the
frequency range ΩT is the bounded interval [0, ωmax], where
ωmax = π . In order to introduce analogous of ωmax for the
continuous-time systems, we need the next assumption.

Assumption 1. For the case T = R+, we have

lim
ω→∞

∫
R+

∫
R+

k(s, t)e−jω(s−t)dsdt = 0. (32)

This assumption says that the bandwidth of kernel k is
bounded. Moreover, from (32), we know that there exists ωmax ∈

R+ such that⏐⏐⏐⏐ ∫
R+

∫
R+

k(s, t)e−jω(s−t)dsdt
⏐⏐⏐⏐ ≤ λ∑

t∈T y2t
, (33)

or all ω > ωmax. In the following, it is shown that the frequency
alue ωmax plays the role of an upper bound for the bandwidth
f the system of interest. The next theorem shows that for TC
ernels Assumption 1 holds. One may show similar results for
ther stable kernels in the literature.

heorem 10. Let β > 0 and k : R+ × R+ → R+ be the TC kernel
(s, t) = e−β max(s,t). Then, we have

R+

∫
R+

k(s, t)e−jω(s−t)dsdt =
2

ω2 + β2 . (34)

roof. We know that max(s, t) = 1
2

(
s+ t + |s− t|

)
. Accordingly,

sing change of variable τ = s− t , it follows that

R+

∫
R+
k(s, t)e−jω(s−t)dsdt

=

∫
R+

e−βt
∫
∞

−t
e−βτ+−jωτdτdt,

(35)

where τ+ := 1
2

(
τ + |τ |

)
. Also, we have∫

∞

−t
e−βτ+−jωτdτ =

∫ 0

−t
e−jωτdτ +

∫
∞

0
e−βτ−jωτdτ

=

[
−

1
jω
+

ejωt

jω

]
+

1
β + jω

=
ejωt
−

β
.

jω jω(β + jω)
7

ubsequently, by replacing the right-hand side of this equation in
35) and simplifying the integrals, we obtain

R+

∫
R+

k(s, t)e−jω(s−t)dsdt

= −
1

jω(−β + jω)
−

1
jω(β + jω)

=
2

β2 + ω2 .

This concludes the proof. □

Based on the discussion above, we can present the main the-
orem of this section, which concerns optimization problem (29).
One should compare this theorem with the analogous argument
in Corollary 7 about optimization problem (15).

Theorem 11. Assume that µ0, µ1, defined in (16), are finite. Let
P be a given partition of [0, ωmax] and ϵ > 0. Then, optimization
problem (29) is a convex program with a unique solution g(⋆,ϵ). For
(⋆,ϵ), we have

g(⋆,ϵ)∥Hk
≤ λ−

1
2 ∥y∥. (36)

here y is the vector defined as y = [yt ]t∈T . Moreover, if mesh(P)
2ϵ
L , where

L :=
1
λ
4µ0µ1

∑
t∈T

y2i , (37)

hen we have

G(⋆,ϵ)
∥H∞ = sup

ω∈ΩT

|Fω(g(⋆,ϵ))| ≤ 1. (38)

here G(⋆,ϵ) is the transfer function corresponding to g(⋆,ϵ).

roof. Due to the definition of the set Gk in (21), we know that
he feasible set of optimization problem (29) is Gk

(
(1− ϵ)

1
2 , P

)
.

ubsequently, problem (29) can be written as

min
g∈Gk((1−ϵ)

1
2 ,P)

∑
t∈T

(Lui (g)− yi)2 + λ∥g∥2Hk
. (39)

hen, according to Theorem 6, the optimization problem (39) as
ell as (29), is a convex program with unique solution, denoted
y g(⋆,ϵ), which satisfies (36).
Let ω ∈ [0, ωmax]. If ω ∈ P , then |Fω(g(⋆,ϵ))| ≤ (1 −

)
1
2 ≤ 1. If ω /∈ P , then there exists i ∈ {1, . . . , n}, such that

ω ∈ (ωi−1, ωi). If |Fω(g(⋆,ϵ))| > 1, then, due to Lemma 9 and
|Fωi−1 (g

(⋆,ϵ))|2, |Fωi (g
(⋆,ϵ))|2 ≤ 1− ϵ, we know that

ϵ <

⏐⏐⏐ |Fωi (g
(⋆,ϵ))|

2
− |Fω(g(⋆,ϵ))|

2
⏐⏐⏐

= |mg(⋆,ϵ) (ωi)−mg(⋆,ϵ) (ω)| ≤ Lg(⋆,ϵ) |ωi − ω|,

ϵ <

⏐⏐⏐ |Fω(g(⋆,ϵ))|
2
− |Fωi−1 (g

(⋆,ϵ))|
2
⏐⏐⏐

= |mg(⋆,ϵ) (ω)−mg(⋆,ϵ) (ωi−1)| ≤ Lg(⋆,ϵ) |ω − ωi−1|,

(40)

where Lg(⋆,ϵ) = 4µ0µ1∥g(⋆,ϵ)∥2Hk
. Therefore, since |ωi − ωi−1| ≤

mesh(P), we have that 2ϵ < Lg(⋆,ϵ)mesh(P). Subsequently, it
follows that

mesh(P) >
2ϵ
Lg(ϵ)
=

2ϵ
4µ0µ1∥g(ϵ)∥2Hk

≥
2ϵλ

4µ0µ1
∑

t∈T y2t
=

2ϵ
L

,

(41)

which contradicts the specification that mesh(P) ≤ 2ϵ
L . There-

fore, we have |Fω(g(ϵ))| ≤ 1. This shows that ∥G(⋆,ϵ)
∥H∞ =

upω∈[0,ωmax] |Fω(g(⋆,ϵ))| ≤ 1, which concludes the proof for the
case T = Z where we have ω = π . Now, we consider
+ max
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he case T = R+ and let ω > ωmax. Due to Lemma 3 and the
Cauchy–Schwarz inequality, we know that

|Fω(g(⋆,ϵ))|
2
= |⟨g(⋆,ϵ), ϕ(r)

ω ⟩Hk
|
2
+ |⟨g(⋆,ϵ), ϕ(i)

ω ⟩Hk
|
2

≤ ∥g(⋆,ϵ)∥2Hk

[
∥ϕ(r)

ω ∥
2
Hk
+ ∥ϕ(i)

ω ∥
2
Hk

]
.

(42)

n the other hand, from (18), (14), and (33), we have

ϕ(r)
ω ∥

2
Hk
+ ∥ϕ(i)

ω ∥
2
Hk
= ⟨ϕ(r)

ω , ϕ(r)
ω ⟩

2
Hk
+ ⟨ϕ(i)

ω , ϕ(i)
ω ⟩

2
Hk

=

∫
R+

ϕ
(r)
ω,t cos(ωt)dt +

∫
R+

ϕ
(i)
ω,t sin(ωt)dt

=

∫
R+

∫
R+

k(t, s) cos(ωs) cos(ωt)dsdt

+

∫
R+

∫
R+

k(t, s) sin(ωs) sin(ωt)dsdt

=

∫
R+

∫
R+

k(t, s)e−jω(s−t)dsdt ≤
λ∑

t∈T y2t
,

(43)

here the last equality is due to the fact that
∫
R+

∫
R+

k(t, s)
sin(ω(s − t))dsdt = 0 which is a result of k(t, s) = k(s, t) and
sin(ω(s − t)) = − sin(ω(t − s)). Accordingly, due to (36) and
(42), we have |Fω(g(⋆,ϵ))|

2
≤ 1. This shows that ∥G(⋆,ϵ)

∥H∞ =

supω∈ΩT |Fω(g(⋆,ϵ))| ≤ 1 and concludes the proof. □

Due to Theorem 11, we know that (29) admits a unique
solution. While this optimization problem is defined over the
infinite-dimensional Hilbert space Hk, we can find its unique
solution g(⋆,ϵ) by solving an equivalent convex finite-dimensional
program. This feature, which makes (29) a tractable problem, is
due to the structure of the RKHS Hk and the Representer Theorem,
provided below.

Theorem 12 (Representer Theorem, Dinuzzo & Schölkopf, 2012 and
Schölkopf, Herbrich, & Smola, 2001). Let e : Rm

→ R ∪ {+∞} and
r : R+ → R be functions such that r is an increasing function.
Also, let H be a Hilbert space with inner product ⟨·, ·⟩H. Consider
the optimization problem

min
w∈H

e(⟨w1,w⟩H, . . . , ⟨wm,w⟩H)+ r(∥w∥H), (44)

where w1, . . . ,wm ∈ H are given vectors. Then, if (44) admits a
solution, it has also a solution in W := span{wi}

m
i=1.

In order to present the tractable finite-dimensional optimiza-
tion problem equivalent to (29), additional definitions are re-
quired. Define m := nD + 2nP + 2 and the index sets I(u)

:=

{0, 1, . . . , nD − 1}, I(P)
:= {0, 1, . . . , nP}, and I := {0, 1, . . . ,m−

}. Let {ϕi}
m−1
i=0 be vectors defined as

ϕi := ϕ
(u)
ti , for i ∈ I(u),

ϕnD+2j := ϕ(r)
ωj

, for j ∈ I(P),

ϕnD+2j+1 := ϕ(i)
ωj

, for j ∈ I(P).

(45)

et Φ ∈ Rm×m be a symmetric matrix such that its entry at the
th row and the jth column is ⟨ϕi−1, ϕj−1⟩Hk

, for i, j = 1, . . . ,m.
ne can see that Φ is the Gram matrix of vectors ϕ0, . . . , ϕm−1.
oreover, for i ∈ I(u), we define vector ai ∈ Rm as the (i + 1)th

column of Φ . Similarly, vectors bj ∈ Rm and cj ∈ Rm are defined
respectively as the (nD + 2j+ 1)th and the (nD + 2j+ 2)th column
f Φ , for j ∈ I(P). In the following, without loss of generality, we
ssume that ϕ0, . . . , ϕm−1 are linearly independent. Indeed, if for

some i ∈ I, the vector ϕi belongs to span{ϕj|j ∈ I\{i}}, it does not
rovide any additional information and one can replace it with
linear combination of {ϕj|j ∈ I\{i}}. We can now present the

heorem on the equivalent tractable finite-dimensional program.
8

Theorem 13. The unique solution of optimization problem (29),
(⋆,ϵ), is in the linear form
(⋆,ϵ)
= x⋆

0ϕ0 + · · · + x⋆
m−1ϕm−1, (46)

here x⋆
:=
[
x⋆
0, x

⋆
1, . . . , x

⋆
m−1

]T
∈ Rm is the unique solution of the

following convex program

min
x∈Rm

∑
i∈I(u)

(aT
i x− yi)2 + λxTΦx

s.t. (bT
j x)

2
+ (cTj x)

2
≤ 1− ϵ, ∀j ∈ I(P).

(47)

roof. Define J : Hk → R ∪ {+∞} as

(g) :=
∑
t∈T

(Lut (g)− yt )2 +
∑
ω∈P

δ
{|Fω |

2≤1−ϵ}(g). (48)

ince P = {ω0, . . . , ωnP
} is a finite set, the summation in

(48) is well-defined. We know that optimization problem (29)
is equivalent to ming∈Hk

J (g) + λR(g), where R : Hk → R
s defined as R(g) = ∥g∥2Hk

(see Section 4.2). Let the function
: Rm
→ R∪{+∞} be defined such that for any z = (zi)m−1i=0 ∈ Rm

we have

e(z) :=
∑
i∈I(u)

(zi − yti )
2
+

∑
j∈I(P)

δAj (z), (49)

here, for each j ∈ I(P), Aj ⊆ Rm is the following set

Aj :=
{
(zi)m−1i=0 ∈ Rn

⏐⏐z2nD+2j + z2nD+2j+1 ≤ 1− ϵ
}
. (50)

Also, let r : R+ → R be the increasing function defined as r(z) =
z2. For i ∈ I(u) and j ∈ I(P), we know that Luti (g) = ⟨ϕi, g⟩Hk

,
(r)
ωj
(g) = ⟨ϕnD+2j, g⟩Hk

and F (r)
ωj
(g) = ⟨ϕnD+2j+1, g⟩Hk

. Accordingly,
we have

J (g)+ λR(g) = e(⟨ϕ0, g⟩, . . . , ⟨ϕm−1, g⟩)+ r(∥g∥).

From Theorem 11, it follows that ming∈Hk
J (g) + λR(g) has a

unique solution denoted by g(⋆,ϵ). Therefore, due to Theorem 12,
it has a solution which belongs to W = span{ϕi}

m−1
i=0 . From the

uniqueness of the solution of (29), it follows that g(⋆,ϵ) belongs
to W . Therefore, in order to find g(⋆,ϵ), we need to obtain the
corresponding coefficients in the linear representation (46). Ac-
cordingly, we replace g in ming∈Hk

J (g)+ λR(g), or equivalently
in (29), by g =

∑m−1
i=0 xiϕi, and solve the problem for x :=

[xi]m−1i=0 ∈ Rm. Due to the linearity of inner product and the
definition of matrix Φ , one has R(g) = xTΦx. Similarly, we have
Luti (g) = aT

i x, or each i ∈ I(u), and, F (r)
ωj
(g) = bT

j x and F (i)
ωj
(g) = cTj x,

or each j ∈ I(P). Therefore, from (48), one has

J (g) = J

(
m−1∑
k=0

xkϕk

)
=

nD−1∑
i=0

(aT
i x− yi)2 +

nP∑
j=0

δBj (x),

where, for each j ∈ I(P), Bj ⊆ Rm is the set defined as

Bj :=

{
x = (xi)m−1i=0 ∈ Rm

⏐⏐⏐ (bT
j x)

2
+ (cTj x)

2
≤ 1− ϵ

}
.

Accordingly, solving ming∈Hk
J (g)+ λR(g) reduces to

min
x∈Rm

nD−1∑
i=0

(aT
i x− yi)2 +

nP∑
j=0

δBj (x)+ λxTΦx, (51)

which is equivalent to (47). Since xTΦx = ∥
∑m−1

i=0 xiϕi∥
2 and

{ϕi}
m−1
i=0 are linearly independent, Φ is a positive definite matrix.

Therefore, the cost function in (47) is strongly convex. Also, for
each j = 0, . . . , nP , we have

(bTx)2 + (cTx)2 = xT(b bT
+ c cT)x, (52)
j j j j j j



M. Khosravi and R.S. Smith Automatica 150 (2023) 110813

a

u

i
a

[

M
w

P
o
(
s
p

t
o

L

∥

w

ϵ

i

⟨

f

U
e

a
s
f
A

L

v

S
k
a

∥

C

0

v

S

∥

nd bjbT
j + cjcTj is a positive semi-definite matrix. Consequently,

the feasible set in (47) is a convex and closed set. Moreover, since
ϵ < 1, we know that g = 0 is a feasible point of (47). Therefore,
the optimization problem (47) is a convex program with a unique
solution. This concludes the proof. □

Before proceeding further, we present a corollary which is
seful in the implementation of the proposed approach. Let P :=

{ωi}
nP

i=0 ⊆ P , I(P)
:= {0, 1, . . . , nP} and m := nD + 2nP + 2.

Analogously to Φ and {ϕi}
m−1
i=0 , we define Φ and {ϕi}

m−1
i=0 . Also, for

∈ I(u) and j ∈ I(P), let ai, bj and cj be defined in the same manner
s ai, bj and cj, respectively.

Corollary 14. The optimization problem

min
g∈Hk

∑
t∈T

(Lut (g)− yt )2 + λ∥g∥2Hk
,

s.t. |Fω(g)|2 ≤ 1− ϵ, ∀ω ∈ P.

(53)

has a unique solution denoted by g(⋆,ϵ). This solution satisfies (36),
and admits a parametric form as g(⋆,ϵ) =

∑m−1
i=0 xiϕi where x =

xi]m−1i=0 is the solution of the following convex program

min
x∈Rm

∑
i∈I(u)

(aT
i x− yi)2 + λxTΦx

s.t. (b
T

j x)
2
+ (cTj x)

2
≤ 1− ϵ, ∀j ∈ I(P).

(54)

oreover, if |Fω(g(⋆,ϵ))|
2
≤ 1−ϵ, for all ω ∈ P , then g(⋆,ϵ) coincides

ith g(⋆,ϵ).

roof. Using similar lines of argument to the proof of Theorem 11,
ne can show the existence and uniqueness of the solution of
53). The parametric form of g(⋆,ϵ) and the fact that x is the
olution of (54) can be concluded based on a proof similar to the
roof of Theorem 13.
Since, for each ω ∈ P , one has |Fω(g(⋆,ϵ))|

2
≤ 1− ϵ, we know

hat g(⋆,ϵ) is feasible for optimization (29). Therefore, as g(⋆,ϵ) is the
ptimal solution of (29), it follows that ED(g(⋆,ϵ)) + λR(g(⋆,ϵ)) ≤

ED(g(⋆,ϵ))+ λR(g(⋆,ϵ)), where ED is defined in (7). Also, we know
that the feasible set in (29) is a subset of feasible set of (53).
Accordingly, since g(⋆,ϵ) is the optimal solution for (53), we have
ED(g(⋆,ϵ))+ λR(g(⋆,ϵ)) ≤ ED(g(⋆,ϵ))+ λR(g(⋆,ϵ)). Therefore, g(⋆,ϵ) is
an optimizer of (29). Consequently, from the uniqueness of the
solution of (29), we have g(⋆,ϵ) = g(⋆,ϵ), concluding the proof. □

Theorem 13 introduces the finite-dimensional convex pro-
gram (47) as a tractable problem equivalent to optimization (29).
The solution of (47) is discussed in the next section. However,
we should first verify that solving optimization problem (29),
for small enough ϵ > 0, provides a close approximation to the
solution of the main optimization problem (15). This is addressed
by the next theorem.

Theorem 15. Let Lu : Hk → RnD be a linear operator defined as
u(g) := [Lut (g)]t∈T , for any g ∈ Hk. Then, we have

g(⋆,ϵ) − g⋆
∥
2
Hk
≤ 4ϵ(∥Lu∥2L(Hk,RnD ) + 1)

1
2 ∥y∥2. (55)

here y is the vector defined as y = [yt ]t∈T . Moreover, we have
lim
→0

g(⋆,ϵ) = g⋆ in Hk. Furthermore, if supt∈T k(t, t)
1
2 is finite, one

has g (⋆,ϵ)
t

ϵ→0
−−→ g⋆

t , uniformly in T.

Proof. Let Vk := RnD ×Hk be the Hilbert space endowed with the
nner product defined as

(x , g ), (x , g )⟩ := xTx + λ⟨g , g ⟩ , (56)
1 1 2 2 Vk 1 2 1 2 Hk

9

or all (x1, g1) and (x2, g2) in Vk. Given Ω ⊆ ΩT and ρ ∈ R+,
define set Uk(ρ, Ω) ⊆ Vk as

Uk(ρ, Ω) :=
{
(x, g)

⏐⏐Lu(g)− x = y, |Fω(g)| ≤ ρ,∀ω ∈ Ω
}
,

where y := [yt ]t∈T ∈ RnD . Let Uϵ := Uk(1 − ϵ, [0, π]) and
P := Uk(1 − ϵ, P). Accordingly, replacing η with ρ, (24) is
quivalent to the following optimization problem

min
(x,g)∈Uk(ρ,Ω)

∥(x, g)∥2Vk
, (57)

nd therefore, it is a convex optimization with the same unique
olution. Let v(ϵ) := (x(ϵ), g(ϵ)) be the solution for (57) for Uϵ

or ϵ ∈ [0, 1). When ϵ = 0, we simply write v⋆
:= (x⋆, g⋆).

lso, let v(⋆,ϵ) := (x(⋆,ϵ), g(⋆,ϵ)) is the solution of (57) for UP .
These notations is consistent with our previous ones due to the
equivalency of (24) and (57) and the uniqueness of the solution.
One can easily see that Uϵ ⊆ UP . Also, based on an argument
similar to those provided in the proof of Theorem 11, we know
that UP ⊆ U0. Accordingly, we have

sup
w∈UP

min
v∈Uϵ

∥v−w∥Vk
≤ sup

w∈U0

min
v∈Uϵ

∥v−w∥Vk
,

sup
w∈U0

min
v∈UP

∥v−w∥Vk
≤ sup

w∈U0

min
v∈Uϵ

∥v−w∥Vk
.

et v1 ∈ Vk be defined as

1 := projUϵ
(v⋆) = argminv∈Uϵ

∥v− v⋆
∥
2
Vk

. (58)

ince v1 ∈ Uϵ and Uϵ ⊆ U0, due to the definition of v(ϵ), we
now that ∥v(ϵ)∥Vk

≤ ∥v1∥Vk
. Therefore, from triangle inequality

nd (58), we have

v(ϵ)∥Vk
≤ ∥v1∥Vk

≤ ∥v1 − v⋆
∥Vk
+ ∥v⋆

∥Vk

= min
v∈Uϵ

∥v− v⋆
∥Vk
+ ∥v⋆

∥Vk

≤ sup
w∈U0

min
v∈Uϵ

∥v−w∥Vk
+ ∥v⋆

∥Vk
.

onsequently, it follows that

≤ ∥v(ϵ)∥Vk
− ∥v⋆

∥Vk
≤ sup

w∈U0

min
v∈Uϵ

∥v−w∥Vk
.

Due to the convexity of U0 and Uϵ ⊆ U0, we know that 1
2 (v

(ϵ)
+

⋆) ∈ U0, and therefore, we have

∥v⋆
∥Vk
≤ ∥

1
2
(v(ϵ) + v⋆)∥Vk

=
1
2
∥v(ϵ) + v⋆

∥Vk
. (59)

ubsequently, one can see that

v(ϵ) − v⋆
∥
2
Vk
= 2∥v(ϵ)∥2Vk

+ 2∥v⋆
∥
2
Vk
− ∥v(ϵ) + v⋆

∥
2
Vk

≤ 2∥v(ϵ)∥2Vk
+ 2∥v⋆

∥
2
Vk
− 4∥v⋆

∥
2
Vk

= 2∥v(ϵ)∥2Vk
− 2∥v⋆

∥
2
Vk

= 2(∥v(⋆,ϵ)∥Vk
− ∥v⋆

∥Vk
)(∥v(⋆,ϵ)∥Vk

+ ∥v⋆
∥Vk

)

≤ 2( sup
w∈U0

min
v∈Uϵ

∥v−w∥Vk
)(∥v(⋆,ϵ)∥Vk

+ ∥v⋆
∥Vk

).

Since 0 belongs to Uϵ , UP and U0, one has ∥y∥ ≤ ∥g(ϵ)∥Hk
,

∥y∥ ≤ ∥g(⋆,ϵ)∥Hk
and ∥y∥ ≤ ∥g⋆

∥Hk
. Therefore, we have

∥v(ϵ) − v⋆
∥
2
Vk
≤ 4( sup

w∈U0

min
v∈Uϵ

∥v−w∥Vk
)∥y∥.

Similarly, one can show the following inequalities

∥v(ϵ) − v(⋆,ϵ)∥2Vk
≤ 4( sup

w∈UP

min
v∈Uϵ

∥v−w∥Vk
)∥y∥, (60)

∥v(⋆,ϵ) − v⋆
∥
2
Vk
≤ 4( sup

w∈U0

min
v∈UP

∥v−w∥Vk
)∥y∥. (61)

Now, let v = (x, g) be an arbitrary element of U0. Then, we know
that (1− ϵ)g ∈ G (1− ϵ, ΩT). Also, we have

Lu((1− ϵ)g)− (x− ϵLu(g)) = Lu(g)− x = y.
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herefore w := (x−ϵLu(g), (1−ϵ)g) is an element of U0. Moreover,
e have

v−w∥2Vk
= ϵ(∥Lu(g)∥2 + ∥g∥2Hk

)
1
2

≤ ϵ(∥Lu∥2L(Hk,RnD ) + 1)
1
2 ∥g∥2Hk

.

ccordingly, it follows that

sup
∈U0

min
v∈Uϵ

∥v−w∥Vk
≤ sup

(x,g)∈U0

ϵ(∥Lu∥2L(Hk,RnD ) + 1)
1
2 ∥g∥2Hk

≤ ϵ(∥Lu∥2L(Hk,RnD ) + 1)
1
2 ∥y∥.

(62)

ince Uϵ ⊆ UP ⊆ U0, we know that

sup
∈U0

min
v∈UP

∥v−w∥Vk
≤ sup

w∈U0

min
v∈Uϵ

∥v−w∥Vk
.

Subsequently, due to (61) and (62), we have

∥v(⋆,ϵ) − v⋆
∥
2
Vk
≤ ϵ(∥Lu∥2L(Hk,RnD ) + 1)

1
2 ∥y∥. (63)

onsequently, it follows that

g(⋆,ϵ) − g⋆
∥
2
Hk
≤ ∥v(⋆,ϵ) − v⋆

∥
2
Vk

≤ 4ϵ(∥Lu∥2L(Hk,RnD ) + 1)
1
2 ∥y∥2.

his also shows that limϵ→0 g(⋆,ϵ) = g⋆ in Hk. Note that, for any
t ∈ T, we have g (⋆,ϵ)

t = ⟨g(⋆,ϵ),kt⟩Hk
and g⋆

t = ⟨g
⋆,kt⟩Hk

. There-
ore, from the Cauchy–Schwarz inequality and the reproducing
roperty, one has

g (⋆,ϵ)
t − g⋆

t | = |⟨g
(⋆,ϵ)
− g⋆,kt⟩Hk

|

≤ ∥g(⋆,ϵ) − g⋆
∥Hk
∥kt∥Hk

.

ccordingly, from ∥kt∥ = k(t, t)
1
2 , it follows that

g (⋆,ϵ)
t − g⋆

t | ≤ ∥g
(⋆,ϵ)
− g⋆
∥Hk

sup
t∈T

k(t, t)
1
2 .

ince supt∈T k(t, t)
1
2 < ∞ and limϵ→0 ∥g(⋆,ϵ) − g⋆

∥Hk
= 0, we

ave g (⋆,ϵ)
t

ϵ→0
−−→ g⋆

t , uniformly in T, and proof concludes. □

emark 2. The property supt∈T k(t, t)
1
2 < ∞ is satisfied by the

TC kernel and other common kernels in the literature, such as
the diagonally/correlated (DC) kernel and the stable spline (SS)
kernel (Pillonetto et al., 2014).

Remark 3. In the case of incorrect side-information, we have
g(S) /∈ Gk(1, ΩT). Let g

(S)
⊥
∈ Hk be the projection of g(S) on Gk(1, ΩT),

i.e., g(S)
⊥

is defined as

g(S)
⊥
:= argming∈Gk(1,ΩT)∥g− g(S)

∥Hk
, (64)

hich exists uniquely (due to Theorem 4 and Peypouquet, 2015).
ue to the definition of g(S)

⊥
and since g⋆, g(⋆,ϵ) ∈ Gk(1, ΩT) (see

Theorem 11), we have

0 < ∥g(S)
− g(S)
⊥
∥Hk
≤ ∥g(S)

− g⋆
∥Hk

, (65)

nd

< ∥g(S)
− g(S)
⊥
∥Hk
≤ ∥g(S)

− g(⋆,ϵ)∥Hk
. (66)

In other words, we have a systematic bias in the estimated
impulse response g⋆, and also, in its approximation g(⋆,ϵ), for all
ϵ > 0. Accordingly, in this situation, not including the side-
information may result in a more accurate identified model.

6. Optimization algorithm

Due to Theorem 13, the problem to be solved is

min
x∈Rm

∥Ax− y∥2 + λxTΦx
T T T (P)

(67)

s.t. x (bjbj + cjcj )x ≤ 1− ϵ, ∀j ∈ I , s

10
where A := [a0, . . . , anD−1]
T and y := [yt ]t∈T . From the definition

f the matrix A, we know that A is the first nD rows of Φ . The
vectors bj and cj are respectively the (nD + 2j + 1)th and the
(nD + 2j+ 2)th columns of Φ , for j ∈ I(P). Therefore, matrix Φ is
sufficient for establishing the optimization problem (67). To this
end, for each i, j ∈ I, we need to obtain the value of ⟨ϕi, ϕj⟩Hk

,
hich demands calculating an infinite double summation, when
= Z+, or an improper double integral, when T = R+. In

eneral, to obtain these values one should employ numerical
ethods which are essentially inexact and also computationally
emanding. On the other hand, one can derive these values an-
lytically in specific but rather general situations, e.g., when the
C kernel is employed. The details are provided in Khosravi and
mith (2021c, Appendix G). Note that (67) is a convex quadrat-
cally constrained quadratic program program, for which there
xist various efficient methods (Boyd & Vandenberghe, 2004). For
xample, we can utilize methods which are based on log-barrier

functions (Boyd & Vandenberghe, 2004) and adapt them suitably
to this application. For more details, see Appendix H in Khosravi
and Smith (2021c).

In many situations, such as in the example given in Section 3,
the constraint |G(jω)| = |Fω(g)|2 ≤ 1 − ϵ is not binding on
the whole frequency range ΩT. Accordingly, it is not required to
impose this constraint for each ω ∈ P . Motivated by this fact
and Corollary 14, we can introduce an iterative scheme. More
precisely, let P0 := ∅, and at iteration k, let Pk be a given subset
of P . Consider the optimization problem (29) where only the
onstraints corresponding to the frequencies in Pk are imposed,
i.e., we have the following program

min
g∈Hk

∑
t∈T

(Lut (g)− yt )2 + λ∥g∥2Hk
,

s.t. |Fω(g)|2 ≤ 1− ϵ, ∀ω ∈ Pk.

(68)

Due to Corollary 14, we know that (68) has a unique solution,
denoted by gk, which can be obtained by solving an equivalent
finite-dimensional convex program as in (54). Given gk, one can
check whether the constraint |Fω(gk)|2 ≤ 1 − ϵ is violated on
the remaining frequencies in P . Accordingly, one can obtain the
following set

∆kP :=

{
ω ∈ P\Pk

⏐⏐⏐ |Fω(gk)|2 > 1− ϵ

}
, (69)

Subsequently, we update the frequency set as Pk+1 := Pk∪∆kP ,
nd proceed to the iteration k + 1. The iterative scheme stops

when ∆kP = ∅. This happens either when Pk = P or the
solution gk satisfies the constraint |Fω(gk)|2 ≤ 1−ϵ for all ω ∈ P .
Consequently, due to Corollary 14, we have gk = g(⋆,ϵ) when the
stopping condition is met. It is noteworthy that given the matrix
Φ , one can extract Φk as a sub-matrix of Φ , and subsequently,
the corresponding vectors ai, bj and cj in (54) are obtained as
columns of Φk. This fact improves the computational tractability
of the proposed approach. Algorithm 1 summarizes this iterative
scheme.

This procedure generates a strictly increasing sequence of sets
∅ = P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ P . Since P is a finite set, this
equence is also finite and therefore, Algorithm 1 stops after finite
umber of iterations.

emark 4. The partition P can be designed according to
heorem 11 by employing λ = ϑλλunc in (37), where λunc is
he regularization weight obtained by solving the unconstrained
roblem, and ϑλ ∈ (0, 1) is a small scaling coefficient. One should
ote that the bound in Theorem 11 is introduced mainly for
echnical reasons, i.e., it essentially says that if partition P is
ufficiently fine, then constraint |F (g(⋆,ϵ))| ≤ 1 is satisfied at
ω
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Algorithm 1 Kernel-Based Identification with Frequency Domain
Side-Information ∥G(S)

∥H∞ ≤ 1
1: input: data set D , partition set P , kernel k, regularization

weight λ, tolerance ϵ ∈ (0, 1), matrix Φ , unconstrained
estimation g0

2: k← 0 and gk ← g0.
3: Pk ← ∅ and get ∆kP due to (69).
4: while ∆kP ̸= ∅ do
5: P ← Pk ∪∆Pk.
6: update Φ , ai for i ∈ I(u), bj and cj, for j ∈ I(P).
7: solve optimization problem (54) and gk ←

∑
i xiϕi.

8: Pk ← P and get ∆kP due to (69).
9: end

10: Output: g(⋆,ϵ)

all frequencies ω ∈ ΩT. As a result, in practical implementa-
ions, we only need to employ P with small enough mesh(P).
Accordingly, for a given P , we solve the estimation problem
(29), and then, verify the suitability of P by checking inequality
maxω∈ΩT |Fω(g(⋆,ϵ))| ≤ 1, which is equivalent to a single vari-
able optimization problem. If the inequality is not satisfied, we
augment P by including additional frequency points around the
locations where the inequality is violated, and subsequently, ob-
tain a finer partition Pnew such that mesh(Pnew) ≤ ϑPmesh(P),
here ϑP ∈ (0, 1) is a predefined scalar. Following this, we

replace P in (29) with Pnew and repeat the discussed steps.
According to Theorem 11, this procedure terminates after a finite
number of iterations.

7. Numerical examples

In this section, we provide numerical examples demonstrating
the performance of the proposed scheme in Algorithm 1.

Example 1. We consider the settings of the example given in
Section 3. We set ϵ = 10−5 and take partition set P = {ωi|i =
0, . . . , nP} for interval [0, π] such that ωi =

π
nP

i, for i = 0, . . . , nP ,
ith nP = 3141. We employ the TC kernel and apply Algo-
ithm 1. In order to tune the hyperparameters α and λ, we utilize
ayesian optimization with a lower-confidence-bound acquisi-
ion function (Srinivas, Krause, Kakade, & Seeger, 2012) to find the
yperparameters minimizing an objective function defined based
n a cross-validation procedure. More precisely, for a choice of
yperparameters, the first 100 points of D are used for training
he model and following this, the cost function to be optimized
y Bayesian optimization is defined as the validation error cal-
ulated using the remaining points of data. For more details, see
ppendix I in Khosravi and Smith (2021d). Starting from P0 = ∅,

we estimate g0 as the solution of the unconstrained problem. This
solution violates the constraints on P1 := {ωi|i = 36, . . . , 140}.
Proceeding from this partition set, we obtain g1 which satisfies
the constraints for all of the frequencies in P . Therefore, ∆1P =

∅ and the algorithm terminates with g(⋆,ϵ) = g1.
Fig. 3 shows the transfer function of G(⋆,ϵ) along with the

estimated models Ĝ1 and Ĝ2, obtained in Section 3, and also
the estimated model Ĝ3 resulted from the method in Abe et al.
(2016) which is briefly reviewed later in this section. One can see
that the result of proposed scheme satisfies the side-information
constraint, and also fits better to the true transfer function G(S).
or quantitative evaluation and comparison of the estimated im-
ulse response, we use coefficient of determination, also known as
-squared, which is defined as following

it(g) = 100×
(
1−
∥g− g(S)

∥2
(S)

)
, (70)
∥g ∥2 p

11
Fig. 3. The transfer function of system (4), the model estimated using the
proposed approach, G(⋆,ϵ) , and the estimated models Ĝ1 , Ĝ2 and Ĝ3 .

where g is the estimated impulse response. Here, we have fit(ĝ1)
87.13%, fit(ĝ2) = 87.15%, and fit(ĝ3) = 79.08%, where ĝi is

he impulse responses corresponding to Ĝi, for i = 1, 2, 3. On
he other hand, we have fit(g(⋆,ϵ)) = 90.84% which shows an im-
rovement in the estimation as well as satisfying the given side-
nformation. Note that while Ĝ3 also satisfies the side-information
onstraint, the proposed method performs significantly better in
erms of fitting performance. △

The method in Abe et al. (2016) is a variant of the subspace
dentification method incorporating frequency domain
ide-information, and is denoted by FDIsub in the following. In
his approach, initially a sequence of state variables is estimated,
nd then, the subspace identification method is formulated with
atrix inequalities, coming from the Kalman–Yakubovich–Popov

KYP) lemma, imposing the side-information. The resulting non-
inear program is reduced to a convex one using appropriate
ransformations. Compared to the proposed method, this ap-
roach can be employed in multi-input–multi-output (MIMO)
ases and produces state-space models, which can be directly
sed in applications such as controller design.

xample 2. In this example, we perform numerical experiments
o compare the proposed method with (Abe et al., 2016). We gen-
rate randomly four sets of 150 stable systems using drss Mat-

lab’s function with orders in the range of {10, . . . , 30} and poles
ot larger than 0.98. The systems are normalized with their H∞-
orm, and then, actuated with a realization of standard random
hite Gaussian signal u = (ut )

nD−1
t=0 , i.e., u0, . . . , unD−1 are i.i.d.

samples of N (0, 1). The output of system is corrupted with addi-
tive Gaussian noise. The variance of output noise is chosen such
that we have 10 dB, 20 dB, 30 dB and 40 dB signal-to-noise ratio
(SNR) in the respective sets of the systems. Similar to the previous
example, we tune the hyperparameters of both the proposed
approach and the FDIsub using Bayesian optimization (Srinivas
t al., 2012) and cross-validation. The settings for the proposed
pproach are similar to ones employed in Example 1. The box
lots of results are shown in Fig. 4. While, we can see that the
erformance of the both of these approaches improves when SNR
ncreases, the kernel-based approach significantly outperforms
he subspace-based method FDIsub.
iscussion: The FDIsub approach (Abe et al., 2016) suffers from the
ell-known model order selection issue (Ljung et al., 2020). On
he other hand, the proposed scheme is a derivation of kernel-
ased regularization methods, and therefore, tuning the complex-
ty of model is performed by the powerful concept of estimating
ontinuous regularization hyperparameters rather than picking
n integer order based on a selection rule (Ljung et al., 2020;
illonetto et al., 2014). Moreover, while the proposed approach
orks directly with input–output data, FDIsub employs an esti-
ation of the state trajectory which leads to model estimation

rone to high variance and noisy results. △
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Fig. 4. The performance of FDIsub (Abe et al., 2016) is compared with the
roposed method, FDIRKHS .

The next example considers Problem 1 in the continuous-time
ase and demonstrates the role of proposed approach for the
ontinuous-time systems.

xample 3. Consider the unknown continuous-time system S
ith transfer function G(S)(s) defined (Scandella, Mazzoleni, For-

mentin, & Previdi, 2021) as

G(S)(s) = −
2s3 + 3.6s2 + 2.095s+ 0.396s

0.461s4 + 2.628s3 + 4.389s2 + 2.662s+ 0.519
, (71)

ith side-information ∥G(S)
∥H∞ ≤ 1. Let the system be initially at

rest and actuated with a random switching pulse signal as shown
in Fig. 5. Then, the output of system is measure at nD = 250
time instants t0, . . . , tnD−1 ∈ [0, 10], where tk = kTs + δk, for
k = 0, . . . , nD − 1, with Ts = 0.04 and δk ∼ Uniform([0, Ts]).
The output measurements, {yti}

nD−1
i=0 , are subject to additive white

Gaussian noise such that the SNR is 20 dB. We interpolate the
output measurement values at time instants t̄k = (k + 1)Ts,
for k = 0, . . . , nD − 1, using shape-preserving piecewise cubic
nterpolation available in Matlab’s function interp1 and pchip
ption. The SNR in the interpolated outputs, {ȳti}

nD−1
i=0 , is 20.68 dB.

We identify the system through direct and indirect
pproaches.2 For the direct approaches, we employ the inter-
olated data and CONTSID Toolbox (Garnier & Gilson, 2018) to
btain transfer function estimations Ĝ1 and Ĝ2, respectively, using
fsrivc and rivc functions with known orders of system. In in-
irect approaches, a discrete-time impulse response is estimated
sing the interpolated data, and then the continuous-time version
s derived by the shape-preserving piecewise cubic interpolation
ethod (Kahaner, Moler, & Nash, 1989). To this end, we use the
ubspace method (Abe et al., 2016) explained in Example 2 and
lso, the discrete-time version of the proposed method. Let the
orresponding transfer functions be denoted respectively by Ĝsub
and G(⋆,ϵ)

ind . In obtaining G(⋆,ϵ)
ind , ϵ is set to 10−3 and the rest of

settings are similar to Example 1. Starting from P0 = ∅, the
lgorithm terminates in the second iteration with P1 := {ωi|i =
0, . . . , 76}.
In addition to the above methods, we identify the system

n a direct approach based on the proposed algorithm for the
ase of continuous-time, and using the original uninterpolated
easurement data. Accordingly, we apply Algorithm 1 where ϵ

s chosen as 10−3, the partition set is taken as P = {ωi =

0−2i|i = 0, . . . , nP = 104
}, a TC kernel is employed, and the

yperparameters are tuned similarly to Example 1. Initially, we
ave P0 = ∅ where the resulting solution, g0, violates the

constraints on ∆P0 := {ωi|i = 159, . . . , 205}. The algorithm

2 The indirect identification of continuous-time systems consists of estimat-
ng a discrete-time model using conventional discrete-time transfer function
stimation techniques, followed by converting the estimation result to a
ontinuous-time model. On the other hand, direct identification methods esti-
ate a continuous-time model directly from the measurement data (see Garnier,
ang, & Young, 2008 for further explanation.)
12
Fig. 5. The transfer function of system (71), the model estimated using the
proposed approach, G(⋆,ϵ)

dir , and the estimated models Ĝ1 , Ĝ2 , Ĝsub and G(⋆,ϵ)
ind .

Fig. 6. Box plots of the R-squared metric for the estimation results of the
methods discussed in Example 3.

terminates in the second iteration. Denote the estimated impulse
response and the corresponding transfer function respectively by
g(⋆,ϵ)dir and G(⋆,ϵ)

dir .
In Fig. 5, the estimated transfer functions Ĝ1, Ĝ2, Ĝsub, G

(⋆,ϵ)
ind

nd G(⋆,ϵ)
dir are shown and graphically compared with G(S). The

side-information is satisfied only by Ĝsub, G
(⋆,ϵ)
ind and G(⋆,ϵ)

ind , and
it is violated by Ĝ1 and Ĝ2. Indeed, we have ∥Ĝ1∥H∞ = 1.11
and ∥Ĝ2∥H∞ = 1.17. To evaluate quantitatively the estimation
results, we employ R-squared metric defined in (70). The fitting
results are fit(ĝ1) = 78.93%, fit(ĝ2) = 63.37%, fit(ĝsub) = 73.76%,
fit(g(⋆,ϵ)ind ) = 87.15%, and fit(g(⋆,ϵ)dir ) = 91.86%, where ĝ1, ĝ2,
ĝsub and g(⋆,ϵ)ind are the impulse responses corresponding to Ĝ1,
Ĝ2, Ĝsub and G(⋆,ϵ)

ind , respectively. Therefore, the proposed method
significantly outperforms the other schemes and also satisfies the
side-information.

For further comparison, we perform a Monte Carlo experiment
with a set of 100 runs and settings similar to the numerical
experiment above, where the SNR level is equal to 20 dB and the
regular sampling is employed. We estimate the impulse response
of the system in each run using the direct and indirect imple-
mentation of the proposed method and the previously mentioned
subspace identification approach, i.e., we obtain impulse response
estimations g(⋆,ϵ)dir , g(⋆,ϵ)ind and ĝsub. Fig. 6 shows the boxplot compar-
ing the estimation performance of these methods. Also, Table 1
provides the bias, variance and mean squared error (MSE) of the
estimations.
Discussion: For the proposed method, we observe that the di-
rect implementation significantly outperforms the indirect ap-
proach. This observation is in alignment with the literature on
continuous-time system identification (Garnier et al., 2008).
Moreover, one can see that the kernel-based approaches show
better estimation performance compared to the subspace
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Table 1
Bias, variance and MSE comparison between the continuous-time
model estimation methods.

Method Bias2(ĝ) Var(ĝ) MSE(ĝ)
[×10−6] [×10−6] [×10−6]

Ĝsub 6.39 7.97 14.36
G(⋆,ϵ)
ind 5.33 1.73 7.07

G(⋆,ϵ)
dir 2.25 0.63 2.88

method, as shown in Example 2. Furthermore, the proposed
method can be implemented directly even when in the case of
irregular output sampling. These features highlight the impor-
tance of the developed identification scheme for the estimation
of continuous-time impulse responses. △

8. Conclusion

System identification with frequency domain side-information
has been studied in this paper. We have employed an RKHS
framework for both discrete-time and continuous-time dynamics.
The problem is formulated as an infinite-dimensional optimiza-
tion problem for fitting a stable impulse response to the data
and satisfying an H∞-norm constraint. The problem is well-
defined and convex with a unique solution. We have proposed
a finite-dimensional convex quadratically constrained quadratic
program that tightly approximates the solution. It is shown that
the approximation is uniformly exact, where this bound can be
calculated a priori from the kernel hyperparameters and the
measurement data. The effectiveness of the discussed method is
illustrated by several numerical examples.
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