atec
ction
[1NQ

hesis

Automateao
lransaction
\Vionitoring

Bachelor Thesis

by

R. Hageman
8. Kostense

B. van Walraven
H.J. van der Wilk

to obtain the degree of Bachelor of Science
at the Delft University of Technology.

Project duration: April 22,2019 — July 5, 2019
Supervisors: ir. Sander van den Oever, TU Delft

ir. W. Van, bunq

MSc. A. el Hassouni, bunq
Bachelor Project coordinators: ir. O. W. Visser

dr. ir. H. Wang

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

For the past 10 weeks, we have been tasked with improving the performance of the transaction monitoring system
of bung, an internationally active mobile bank. bunq has requested that we improve this system by automating
the training of the machine learning model, providing better input data for this model and creating additional
machine learning models. During this project, we have been working at the offices of bunq on this system. This
thesis will give an overview of our research, software design process and implementation.

Our thanks go to everyone at bunq who has helped us, especially Wessel Van for being our client coach, Ali
el Hassouni for guiding us through the transaction monitoring system, Niels Tiben for answering our countless
questions, André de Roos for helping us with backend related issues, Esan Wit for helping us with DevOps related
issues, Hannah van Drunen for human resource related topics and Ali Niknam for his continuous feedback.
Finally, we would like to thank Sander van den Oever from the TU Delft for being our TU Delft coach.

R. Hageman

B. Kostense

B. van Walraven

H.J. van der Wilk
Amsterdam, July 2019

iii

Summary

For 10 weeks, bunq, a Dutch mobile bank, tasked us to improve its transaction monitoring system that is used to
detect fraud. The current system is a combination of a rule based system and a machine learning model. Every
transaction goes through this system and if either one of the two components generates a hit, the transaction gets
sent to the compliance department for manual checking.

The first two weeks consisted of a research phase, where we interviewed the client to get a better overview of
the problem, looked at the possible solutions and selected the ones that we thought were most optimal. The last
eight weeks consisted of implementing the actual improvements. These improvements consisted of three major
milestones: automating the training and deployment of machine learning models, improving the quality of the
input data for these models and developing additional models.

The first step of the implementation consisted of refactoring the previous transaction monitoring system
backend. This allowed for multiple machine learning models to generate predictions on transactions. Database
migrations have been designed to prevent loss of data while changing the database design. Also, the machine
learning server hosting the machine learning models has been changed to support multiple models. To make use
of this refactor, new models have been trained for different types of mutations and to detect the greatest outliers
per day.

Secondly, a system has been designed to train these machine learning models automatically at fixed intervals.
The required data is fetched from the database, enriched with different sources of other information and sent to a
Python training server in batches. On this server the different models are trained with optimal parameters found
using GridSearch. Once trained, information about the machine learning model such as name and status is stored
in the database using an API. After inspection of a data scientist, a model can be set to an active state to generate
fraud scores for transactions.

Finally, the data used as input for the machine learning models has been improved by almost quadrupling the
amount of features the machine learning model uses to train on. Also, retrospective labelling of transactions that
are in hindsight fraudulent has been applied to improve the quality of the data.

Contents

1 Introduction

2 Research Phase 3
2.1 Whatisbung? e e e e e e e 3
2.2 Problem Definition. e e e e 3
2.3 Current SYStEM.o e e e e e e e e e e e e e e 3

2.3.1 Transaction Filtering e e 4
2.3.2 Transaction Monitoring. o e e e e e e e e e 4
2.4 ASSIZNMENt e e e e e e e e e e e 5
2.4.1 Automatic Training. e e e e e e 5
242 TImproving Labels. e 5
2.4.3 Training a Machine Learning Model for Businesses. 5
2.4.4 TImplement More Features 5
245 OutlierDetection. o e e e e e e e e 6
2.4.6 Detecting Fraud in Transaction Sequences v v v v 6
2.5 Design ChoiCes. v v v i e e e e e e e e e e e e 6
2.5.1 Automatic Training.o e e e 6
2.5.2 Improving Labels. e 7
2.5.3 Training a Model for Businesses oo 8
2.54 Implement More Features e 8
2.5.5 OutlierDetection. e e e e e e e 8
2.5.6 Detecting Fraud in Transaction Sequences 9
2.6 Performance Measurement e e e e e e e e 9
2.6.1 TrainingData. L 9
2.6.2 Evaluation Criteria e e e e e e 9
2.6.3 Deploying a Model in Production. 0oL 9
3 Current Situation:
Backend Architecture 11
3.1 Coding Guidelines L 11
32 MVCDesign. o e 11
3.3 Workflow and Model Definitions e 11
34 Testing. L e e e s 13
3.5 Database Architecture L e e e e e e 13
4 Current Situation:
Transaction Monitoring System 15
4.1 Compliance Dashboard. e 15
4.2 Current Backend Architecture 16
4.2.1 Current Model Architecture e e 16
4.2.2 Current Controller Architecture. o 17
4.3 Current Machine Learning Server. e 17
5 The Product: Multiple Model Functionality 19
5.1 Refactor e e e 19
5.1.1 Imitial Design.o 19
5.1.2 Model Architecture. e e e 19
5.1.3 Controller Architecture. e 21
5.1.4 View Architecture e e 22
5.1.5 Machine Learning Server. Lo 22

vii

viii Contents
5.2 Model for Business Transactions e e e 22

5.3 Outlier Detection. e e e e e e e 23

6 The Product: Automatic Training 25
6.1 OVEIVIEW. o o i i e e e e e e e e 25
6.2 Software Architecture e e 25
6.3 Implementation: Version 1 e e 26
6.3.1 Implementation Details: Feature Engineering. 27

6.3.2 Implementation Details: Automatic Training Preparation in Backend 27

6.3.3 Implementation Details: Python Training Scripts 28

6.3.4 Notable Differences 28

6.4 Implementation: Version2 Lo e e 28
6.4.1 Implementation Details: Automatic Training Preparation in Backend 28

6.4.2 Implementation Details: Python Training Scripts 29

6.4.3 Considerable Differences. 30

6.5 Developmentand Testing. L e e e e 30

7 The product: Improving Data Quality 31
7.1 Feature Engineering L. 31
T1.1 OVerview. o o o e e e e e e 31

7.1.2 Development and Testing. 31

7.2 Retrospective labellingo e 32
7.2.1 Initial Design. L. e e e e e e e e e 32

7.2.2 Implemented Software Architecture 33

8 Discussion and Conclusion 35
8.1 DISCUSSION e e e 35
8.1.1 Accomplishments 35

8.1.2 Issues e e e e 35

8.2 Conclusion. e e e e e e e 35
8.2.1 Measurement of Success e e e 35

822 Value. e e e e 36

8.2.3 Lessons e e e e e e 36

9 Recommendations and Ethics 37
9.1 Recommendations e e e 37
9.1.1 Reinforcement Learning Algorithm. L. 37

9.1.2 Speeding up the Training Process. 37

9.1.3 Business Feature Optimisationo e 37

9.1.4 Parameter Optimisation.o e e e 37

9.2 Ethics e 37
9.2.1 Biasin Unsupervised Learning 38

9.2.2 Impactonthe Environment. Lo 38

A Project Description 39
A.1 Aboutthe Project. e e e 39
A2 Aboutbung. e e e e e 39

B Software Development 41
B.l Usageof Git e e 41
B.2 Deployments and Hotfixes e 41
B.3 Hard-and Software. e e 41
B4 Triage e e 41

C Research Phase: Project Plan 43
C.1 Requirements e e 43
C2 Roadmap. L e 43

Contents

ix

D Software Improvement Group (SIG) 45
D.1 FirstFeedbackby SIG 45
D.2 OurReaction. e e e 46

E Additional Implementations 47
F Machine Learning Features 49
G Glossary 51
Bibliography 55

Introduction

A bank is obligated to report unusual transactions according to article 2a of the Wet ter voorkoming van witwassen
en financieren van terrorisme [11], a Dutch law to prevent money laundering. This law, of course, also applies
to bunqg, who call themselves an ‘IT company with a banking license‘. Since this law only requires banks to use
a simple rule based system to detect fraudulent transactions, bunq already uses an adequate form of transaction
monitoring, as they combine their rule based system with a machine learning model. bunq chose to deploy this
machine learning model to more accurately catch fraudsters in order to protect her customers.

Since bunq is growing fast and is expanding to other countries, they must keep constantly improving their
transaction monitoring system. Because transactions from different countries have different characteristics, such
as the words they use in the description, transactions with different characteristics are fed into the machine
learning model with each country bunq adds to its market. Because the current machine learning model was not
trained on such data, it gives less accurate predictions about these transactions. Therefore, the machine learning
model should be trained on new data more often.

However, labelling data and training a new model is currently a laborious and time-consuming task. There-
fore, over the span of ten weeks, we have been tasked with reworking the machine learning part of the transaction
monitoring system to improve its performance. Our goal will be to automate the training and deployment of new
machine learning models, provide better input data to train these models on and create additional machine learn-
ing models.

This thesis describes the process of improving the current transaction monitoring system used by bunq. The
research phase is documented in Chapter 2. In Chapter 3 and Chapter 4, the current situation will be discussed.
In Chapters 5 through 7 we will discuss the product we have developed. Chapter 8 and Chapter 9 contain the
discussion, conclusion, recommendations and ethical aspects of the project.

Research Phase

In this chapter we will present the research phase as performed at the beginning of the project. This includes a
formulation of the problems as stated by the company and our considerations for solutions to these problems.
First, we give a brief description of the company in Section 2.1 and define the problem in Section 2.2. Next, the
current system that bunq uses for transaction filtering and transaction monitoring will be discussed in Section 2.3.
As bungq is obligated to keep their systems up to date, several improvements have been proposed by them which
are listed in Section 2.4. The way we aim to implement the suggested improvements is described in Section 2.5.
Section 2.6 elaborates on the methods used to assess the performance of the developed models. The requirements
and the roadmap on how we plan to complete these requirements can be found in Appendix C.

2.1. What is bunq?

bunq is a Dutch bank which focuses on ease-of-use financial services, mainly through their mobile app. The
company was founded by Ali Niknam, known as the founder of the web-hosting company TransIP. The company
is founded in 2012 and bunq obtained their banking license in 2014 from the Dutch central bank (DNB) [2]. bunq,
like every other bank, offers financial services at the cost of a monthly subscription. However, unlike others, this
is the only source of income for bung, as other banks also generate money through (often risky) investments.

2.2. Problem Definition

Since bunq is a bank, they provide the service of transferring money between accounts or from accounts to cash.
In recent years bunq has experienced a growth in users, meaning the amount of transactions has also increased.
This increase in total transactions also means an increase in fraudulent transactions, which bung, like any other
bank, has to monitor and report to the appropriate authorities. Authorities require Dutch banks to do this to
prevent money laundering, credit and debit card fraud, identity theft and various other types of fraud, as stated
in the Wet ter voorkoming van witwassen en financieren van terrorisme [11]. Detecting potential fraudulent
transactions and investigating them can be a costly activity, which has led not only Dutch banks [15], but also
large banks worldwide [19] to be negligent in monitoring these transactions.

bunq already has a system that is responsible for monitoring transactions. However, as their user base grows,
transactions are not only more numerous, but also differ in their characteristics. | R I N N N I B
B NN N /5o, fraudulent transactions take on new
forms, which bunq must be able to detect. To effectively monitor the growing number and growing types of
transactions, bunq wants to automate this process as much as possible. This is desirable as it becomes infeasible
for all transactions to be checked manually by the compliance department, which is responsible for detecting
fraud and reporting it to the Financial Investigation Unit (FIU).

2.3. Current System

When a transaction is made, it goes through a sequence of processes before and after it is executed. An overview
of the processes relevant to our problem is depicted in Figure 2.1.

3

4 2. Research Phase

Figure 2.1: Overview of the systems a transaction passes through where bunq checks for fraud.

2.3.1. Transaction Filtering

2.3.2. Transaction Monitoring

Figure 2.2 I . i 1 ‘0 ' 1 |
1 1 = 1 1 ¢ ‘11 1335 =3 :@°1 |

2.4. Assignment 5

Figure 2.2: Structure of the machine learning part of the transaction monitoring system.

2.4. Assignment

To improve the described system on the previous page, bunq has proposed a set of solutions to improve the
transaction monitoring system. Before describing the way we plan to implement these solutions in Section 2.5,
we will describe the improvements that could be realised as stated by bung.

2.4.1. Automatic Training
bunq is currently expanding to different countries where the characteristics of the transactions differ to the ones
the machine learning model is trained on. To ensure proper accuracy on all transactions, training on recent data
is required.

Right now, training the machine learning model has to be done manually, which is a laborious process Il
I I I D B N B . This manual process consists of labelling transactions as either
fraudulent or not, converting all the data to a format that the model can train on and finally training a machine
learning model on this dataset. Therefore, the first milestone is to automatically train the current supervised
learning model using recent transactions. This improvement is also suggested by the builders of the current
system [10].

2.4.2. Improving Labels
To make sure that the data the machine learning model trains on is an as well as possible reflection of reality, we
are tasked to improve the labelling of the transactions sent to the machine learning model. The task of improving
the labels consists of identifying transactions that have not been labelled as fraudulent by compliance, but could
in hindsight be considered fraudulent because the user is a known fraudster.

To accomplish this, the labels of some earlier transactions made by a fraudulent user should be changed
according to a given set of rules. Then, when the model is retrained as described in Section 2.4.1, the model
should have been improved, since the training data is more accurate.

2.4.3. Training a Machine Learning Model for Businesses

< r 11 5 1 1 1 1 111 .|
< <+ 0 1 5 1 1 1 1 111 |
. r: 11 1 1 1.~ 11 1 1 | 1|
o a1 11 118 1 1 1 1 11|
1t <1+ 11 1 £ 1 1 11 11 1]
gy 1 8 1 1 @ 1 ‘111 111 8] ||
440 1 4 41 17]

2.4.4. Implement More Features

As the fourth milestone, bunq would like to see their current supervised learning model being improved by adding
more input for the machine learning algorithm to train on. | I NN I I D O D
4 . 1 1< 101 11 ||
I D N D D D N N [owever, there are still potential usable features
out there that are not being used by the transaction monitoring system. The compliance team will help us to come
up with these features as they have the required specific domain knowledge to be able to identify these features.

6 2. Research Phase

Therefore, it is our task to find usable features and add them to the data that the machine learning algorithm uses
to train on.

2.4.5. Outlier Detection

The current transaction monitoring system is created upon known instances of fraud. This means that new, unique
and undetected fraud may remain unnoticed. Supervised machine learning algorithms are known to perform
suboptimal when receiving significant outliers [13] and thus other techniques are required to detect unknown
types of fraud.

2.4.6. Detecting Fraud in Transaction Sequences

The current machine learning algorithm is an implementation of a supervised learning model, where the algo-
rithm maps the information about the transaction to the chance of the transaction being fraud. A minor drawback
of this approach is that this algorithm does not find links between previous transactions, i.e. the algorithm is
myopic. [l I IEEEEEN N I N A N NN N DN B DN DR BN). .
<1 10 ' ' 1/ J1]]|
I B B 1 v e were to implement this, we would not have to rely on implemented historical features.
Therefore, our last milestone is to enhance the current supervised learning model with another machine learning
model that is capable of learning and recognising these patterns. This is, however, a big task and the possibility
of finishing this task depends on the time left after reaching the previous milestones.

2.5. Design Choices

Several decisions regarding the implementation, such as choosing algorithms, training methods, and frameworks
will have to be made. In this section, we will elaborate on these decisions, and how we plan to actually achieve
the goals described in Section 2.4.

2.5.1. Automatic Training

To implement the automatic retraining of the algorithm, we need to perform a few steps. The first step is to make
sure that the data is prepared for training. When the compliance team manually checks a transaction, it passes
through a few different phases, as seen in figure 2.3. In the end the transaction is set to one of the final states. We
need to map these different labels to a Boolean state, namely O (not fraud) or 1 (fraud). Green states in figure 2.3
correspond with not fraud, while red states correspond with fraud. Then, to train the machine learning model,
we need to map the features of the checked transactions to these labels. The third and last step is to perform the
retraining with the newly acquired data.

2.5. Design Choices 7

Figure 2.3: Possible labelling of a transaction as a result of transaction monitoring.

Training the model with all available data would take several days or even weeks on consumer infrastructure.
Therefore, it is not feasible to do this locally. Since bunq already uses Amazon Web Services, we are going to
use a large EC2 instance where we can train our machine learning models.

Figure 2.4 gives an overview of the global structure that has to be designed for this project, altering the design
from Figure 2.2. It only provides a general structure. The specific software design can be found in Section 6.2.
When we compare Figure 2.4 to Figure 2.2, we can see that we plan to add a new functionality to the transaction
monitoring system, which is a machine learning trainer. This trainer is going to send training data to a Python
training server running on an EC2 instance. This training server will train a new model and deploy it to the Java
machine learning server.

Figure 2.4: Global structure of the new transaction monitoring system.

We will train the same type of supervised machine learning model that is currently being used, namely a
Gradient Boosting Machine (GBM). H20 is a machine learning framework that supports GBMs and is available
in Python and R. Since we all have programming experience in Python but not in R, we will be using H20 in
Python for machine learning related programming.

2.5.2. Improving Labels
The task of the manual retrospective labelling of transactions is a laborious task and can be automated. This is
done by setting up a set of rules for which transactions should be flagged, as not every transaction from a user

8 2. Research Phase

which has committed fraud, should be flagged as fraudulent. For example, not every previous transaction of a
fraudster is necessarily fraudulent as they also have to, for example, do groceries and pay their bills. However,
some transactions that are made by a fraudster can definitely be considered fraudulent in hindsight. The rules
to decide for which transactions their state should be changed are developed by the compliance team using their
specialised domain knowledge. Each time a user gets tagged for fraudulent behaviour, these rules are followed
and the previous transactions which might be involved in this behaviour are tagged as fraudulent.

2.5.3. Training a Model for Businesses

2.5.4. Implement More Features

To implement more features, we need to figure out which features could potentially be useful for our algorithm
to train on. A way to figure this out is by discussing this issue with the compliance team and the data scientists at
bung, as they have a lot of experience with fraudulent transactions, so they should have knowledge about which
features occur often in fraudulent cases. Lastly, we need to test our newly added features by checking whether
the accuracy of the model is increased with the added feature.

2.5.5. Outlier Detection

To catch outliers, various approaches are possible. First, we will discuss several of the possible approaches.
Then, we make and explain our choice.

Clustering is a technique in which the algorithm tries to find patterns in the data. It tries to find groups
in the data where the elements are in the same group have comparable values for their features [12]. Outliers
can be detected by applying this technique to the dataset and stopping the process when the amount of desired
outliers are left. The already clustered transactions are more similar than the unclustered ones. Clustering has the
disadvantage that the computational complexity is dependant on the amount of dimensions of the data. Also, the
large number of dimensions in our data causes the distance measures to become increasingly meaningless [16].

Local outlier factor (LOF) [4] is an algorithm where outliers are detected using the local deviation with
respect to its neighbours. For a transaction, we find the maximum distance to its k-nearest neighbours. This
way, we can calculate the density of the data point, which we can use to find outliers. A property of LOF is
that, because it uses a different approach of calculating distance than clusters, it also finds different outliers. A
disadvantage is that the resulting values of each data point are hard to interpret, as the result of something being
an outlier or not with respect to the resulting value depends on the dataset. LOF suffers from the same curse of
dimensionality as clustering.

An autoencoder is a neural network architecture consisting of two separate networks, the encoder and the
decoder, which learn efficient encoding of data in such a way that the decoding is similar to the original data.
The autoencoder trains its network b encoding data to reduce noise (dimensionality reduction) and decoding
data to reconstruct the original input. Such networks are mainly used for compression and noise reduction,
but as autoencoders learn how the majority of the data looks like, it is also often used for detecting outliers
[5]. At bung, an experiment with autoencoders has already been performed with results indicating the ability
of detecting other transactions than the rule-based and supervised learning models. Of those transactions, a
significant amount turned out to actually being fraud [8]. A study by Schreyer et al. [17] has shown that auto-
encoders detect relevant transactions for a follow-up audit. Kaggle provided an open credit card fraud detection
dataset where an autoencoder has been trained upon [9] showing a decrease in total operation costs.

To conclude, both clustering and LOF are usable for detecting outliers but suffer from the curse of dimen-
sionality. Autoencoders are not susceptible to this and are shown to produce promising results on both the bunq
and other datasets. Therefore, to implement our unsupervised learning algorithm, we have chosen to use autoen-
coders, as they best fit our needs in this specific context. The goal is to automatically train the autoencoder at
the same moment as the supervised learning algorithm. It should be trained on the most recent data, just like the

supervised learning algorithm, NI N I N AN AN I INNNNNNNNNNN NN B

Since we already use H20 to train the GBM, we will also be using H2O to train the autoencoder.

2.6. Performance Measurement 9

2.5.6. Detecting Fraud in Transaction Sequences

To improve the existing supervised learning algorithm such that it can find links between transactions, reinforce-
ment learning is the machine learning class that we want to take a look at. A reinforcement learning approach
is one of the three major machine learning classes, along with the supervised- and unsupervised learning ap-
proaches. A reinforcement learning algorithm tries to take different actions in order to maximise its reward [14].
In our case, the reward would be to correctly identify fraud cases and non-fraud cases (true positives and true
negatives), while the punishment would be to flag a fraud cases as non-fraud, and vice versa (false positives and
false negatives). The algorithm tries different actions in order to optimise the reward and minimise the punish-
ment, and thus finds an optimal mapping from the input data to the desired labels. As it does not try to learn
a simple mapping from input to output as a supervised learning model does, but tries to generally maximise its
reward, it is able to detect logical connections between transactions in the data. The importance of reinforcement
learning and automatic retraining in the context of fraud detection follows from the following quote from Chen
et al.: "Since the financial operations may vary from time to time, the need of a reinforcement learning that keeps
on training should also be put into consideration.” [6].

If we have enough time to complete this task, we will be using Facebook Horizon to train our reinforcement
learning model, as this was recommended by the data scientist at bunq and H2O does not support reinforce-
ment learning yet. Facebook Horizon is built upon PyTorch, which uses the Deep Q-Learning algorithm for
reinforcement learning.

2.6. Performance Measurement

Several steps of the assignment consist of adding to or changing parts of the current supervised machine learning
algorithm. All of these changes are meant to improve the performance of this model and a method to validate this
is important. Such a method is not required for detecting outliers as it is solely built for the purpose of detecting
odd transactions with the assumption this will potentially include fraud, but for improving labelling, adding new
features and implementing reinforcement learning, it provides valuable insights.

2.6.1. Training Data

Access to Triage, a staging environment where testing before deployment is performed, is granted to build and
test functionality. While this assists in building the systems, it only consists of test data created by developers.
Therefore, Triage is only useful to us to test whether the functionality works, but not to assess the performance of
machine learning models trained on this data. To assess the performance of a machine learning model, it needs
to be used on real data.

2.6.2. Evaluation Criteria

Evaluating the performance of a classifier normally starts with measuring the area under the curve (AUC) when
plotting the true against the false positives. However, AUC is not an optimal performance measurement metric,
because our dataset is very unbalanced meaning that classifying every transaction as non fraudulent also provides
a large AUC. Although AUC is still important, this is definitely not the silver bullet for assessing the performance
of a model.

Another measurement is a confusion matrix where the true positive/negative and false positive/negative are
represented. These values are used to define two types of errors, type 1 and type 2. Type 1 errors are flagged
transactions that turn out to be valid, costing bunq money due to unnecessary work for the compliance depart-
ment. Type 2 errors are instances of fraud that are not flagged.

The model should minimise both the type 1 and type 2 errors while optimising the AUC. While there is no
concrete logic defined by bunq which states that a model is strictly better if not all the metrics are improved, when
at least two of the thee improve a model is most likely better than before. The final decision on this remains at
the discretion of a bunq employee.

2.6.3. Deploying a Model in Production

The goal of our system is first to allow automatically training of a machine learning model and then to improve
its performance. Once a machine learning model is automatically trained, it is required to verify its performance
before using it in production. Ideally, the performance of such a new model could be verified by using it besides
the model used in productions. When this shows better results, it could be deployed into production.

Current Situation:
Backend Architecture

In this chapter relevant information about the backend of bunq is provided. This is relevant as it describes the
various demands and expectations that our code has to live up to and adhere by. We will touch upon the code
style, backend design choices, testing and database architecture. Other relevant information that is relevant to
our software development can be found in Appendix B.

3.1. Coding Guidelines

Strict rules based upon PSR-2 have been established for the bunq backend code base. These rules apply on
aspects like the naming of variables, classes and methods but also on the size of functions. Because a part of our
code is going to be placed directly into the backend, which is written in PHP, we have to follow these guidelines.
To help adhere to these conventions, a coding style checker is available for PHP.

3.2. MVC Design

The backend of bunq is constructed of multiple request handling flows built upon the model view controller
(MVC) design pattern as schematically depicted in Figure 3.1. Once a request is sent to the backend, the
Router determines the correct route of pre-processors which extract the information of the HTTP request.
Then, the request is forwarded to workflows that act as controllers. These workflows contain the business logic
and communicate with the database via models. Once the workflows are executed they return a response which
is parsed by the post-processors before sending it back as a response on the initial request.

Not all business logic is executed directly due to incoming HTTP requests. Several background tasks, so
called daemons, are started by a time-based job scheduler (cronjob). These daemons execute workflows contain-
ing the business logic. Parallelization is also possible with daemons, by creating several workers which perform
batches of the big task of the master daemon. The master daemon keeps track of the workers and creates more if
required.

3.3. Workflow and Model Definitions

bungq has created its own parser for JSON files containing definitions for models, workflows, objects and views.
This provides a developer with a consistent way of creating such patterns without having to write trivial code. In
this section the two most used definitions are explained; workflows and models.

A workflow is similar to a finite state diagram. In the workflow definition different states are defined. Each
state has different input and output which can be used by the consecutive states and boolean logic is used to
define the conditions for each transition to another state. All logic for making these transitions and passing along
variables is available in the abstract workflow class created by the parser. Only the business logic in each state
has to be implemented.

Models are used as interfaces with the database. The definition contains all properties, their type and eventual
index, together with the relation with other models. The abstract class contains all trivial code like getters and

11

3. Current Situation:
12 Backend Architecture

Raw HTTP data (JSON/binary, headers, etc)

~— View

Preprocessor x

= Controller

~— View

Postprocessor x

Raw HTTP data (JSON/binary, headers, eic)

Figure 3.1: Schematic overview of a request handling flow as depicted on the internal wiki of bung.

3.4. Testing 13

setters. Queries to create the table in the database are also generated. Only implementing the Access Control
Layer, which defines which operations are allowed by who, is left.

3.4. Testing

Unit testing these controllers is harder as a consequence of the generated abstract workflows bases classes.
Therefore, bunq uses mainly end to end testing for workflows or even test the complete MVC pattern. For this, a
testing framework has been created which cooperates with the standard PHP testing frame work PHPUnit. JSON
files are used to define parametrized scenarios. Once executed, standard assertions are used to assert correct
behaviour. However, unit testing is still possible in some workflows and we try to do unit tests as well if we can.

On the other hand, there are also classes that are not workflows, and can therefore be tested normally. These
classes will have to be both end to end tested as unit tested.

3.5. Database Architecture

The main database architecture of bunq is built upon MySQL and is backed up by another database. All tables are
grouped with other tables which are frequently used together. Each group is stored on a different cluster to spread
the load. To reduce the load even further, a separate database built on top of Elastic Search is created. A daemon
makes sure the search database is as up to date as possible. As it could occur that the search database is lacking
behind due to high load, it should therefore not used for critical applications. The MySQL database remains the
single source of truth but the search database is orders of magnitude faster and thus useful for analytics and other
applications where incompleteness of information is not catastrophic. | I N I I BN B 1
a1 1 1 i1 1 1 115 1 |
4 4 4 44940 4500 ' 1 | !

Current Situation:
Transaction Monitoring System

In Chapter 2 we have already briefly explained what the transaction monitoring system does. In this chapter we
will provide a more detailed overview of the transaction monitoring system as currently used at bunq. This is
useful to explain as it better indicates why the improvements we made matter. First we will discuss the tangible
effect of our product in Section 4.1, which will be visible in the compliance dashboard, where transactions are
monitored. Next, Section 4.2 will discuss the current backend architecture. Finally the current machine learning
server setup is discussed in Section 4.3.

4.1. Compliance Dashboard

When a transaction is flagged for manual checking by compliance, it is shown in the dashboard which the
compliance team uses and is depicted in Figure 4.1. All transactions hit by the transaction monitoring system
which are not yet processed by compliance are shown. Once an employee of the compliance department selects
a transaction, he or she has access to all the information about the user and the transaction to make a decision
whether or not to report it to the Financial Intelligence Unit (FIU). Compliance employees are required to report
all unusual transactions to the FIU [11]. Improving the predictions by the machine learning model will mean that
the transactions shown here are more accurate, reducing workload for the compliance team.

Figure 4.1: Screenshot made of the compliance dashboard in the testing environment Triage with fake data.

15

4. Current Situation:
16 Transaction Monitoring System

4.2. Current Backend Architecture

This section will describe the current transaction monitoring architecture. First, Section 4.2.1 will explain how
current model architecture is implemented and how the database tables are configured. Section 4.2.2 will describe
the controller architecture.

4.2.1. Current Model Architecture
Currently, the model architecture of the transaction monitoring system consists of two tables: | NNNNING

. @me |

TransactionMonitoringMetadata table For every mutation, an entry in the [EEGEGcTcTINGzGzGEGEGEGEGEGG_
I (-bic will be created. This table includes information about the classification of the transaction
monitoring system on the mutation. The table includes the following columns:

* Featuremap is a key value storage of all features calculated about the mutation.

* MachineLearningName is the name of the machine learning model used to classify the mutation. This
field is optional as not all mutations are classified by a machine learning model.

e FraudScore is the outcome of the classification of the machine learning model on the mutation. It is a
number between 0 and 1, where a larger number means a higher chance of the mutation to be 'unusual’.
Again, this is optional as not all mutations are classified.

e Status is used to indicate what the status of the mutation is. | Izl GGGz TN B

11 B
I
|

e ExecutionTime is the time it took to process this mutation. This is used to monitor the performance of
the transaction monitoring system.

TransactionMonitoringRisk table Once a transaction that passed through the transaction monitoring system
is hit by at least one rule or the machine learning model returns a risk score above a certain predefined threshold,
the transaction is labelled as [l If this is the case, an entry in the [RN
is created. Each entry is linked to a metadata entry and a user. It also contains a RiskIndicator which is
used to determine why a mutation is shown in the compliance dashboard.

Risk Metadata
Metadatald ——<@| Metadatald
UserltemID " 1 Mutationld
RiskIndicator Featuremap

MachineLearningName
FraudScore
Status

ExecutionTime

Figure 4.2: UML diagram of the previous transaction monitoring software database architecture.

4.3. Current Machine Learning Server 17

4.2.2. Current Controller Architecture

1< 5 1 1 2y X 1 1 ‘a3: gy 11/
L 5 1! N 1r 1 ¥ ¥ 1 3139/
(N NN NN A NN N NN O N A DN BN BN -och mutation is pro-
cessed by a single TransactionMonitoringWorker. This worker calls the WorkflowTransaction
MonitoringWorker which determines whether the mutation is incoming or outgoing and performed by ei-
ther a business or personal user. Depending on the type of mutation, a different workflow is executed and finally
the created metadata is saved.

In Figure 4.3 an overview of the current transaction monitoring system is shown with a private incoming
transaction as input. Each mutation type dependent workflow asserts that the correct workflow is executed.
Then, all applicable rules are checked on the mutation, and if a rule applies, an entry in the | NRREREEE
I (bl is created and the status of the [NN -1y is sct
to I

I

(4 3 3 4 ¢ 1 ° B} J7 | | | ‘N
executeWorkflowTransactionMonitoringMachineLearning requests the machine learning server
to provide a list of the required features. Once these features are calculated and put together into a featuremap it is
sent to the machine learning server to get a prediction. The prediction is stored together with the featuremap into
the |G :bc. If the machine learning server indicates that the prediction
is above a threshold, an entry in the | ENERENEGE_—cGTNGEGEGEGEEEEEE i 5o created.

4.3. Current Machine Learning Server

<9 i+ 0 2 r 1 1 1 111 1 |
2 1 <+ 1 1 1 1 11 1 1 1.
1 o 1 1 111+ 11111 J| |
43 1 /1 11] 1] /!

The machine learning server runs a Java Virtual Machine and the code is built upon the Spring Boot frame-
work. As a machine learning model is exported in a Java format, it first needs to be compiled to a jar file. This
compiled file can then be used to load aMachineLearningModel object on which a prediction can be called.
Because this process of compiling and object loading is computationally intensive, the model object is cached in
memory. This way, the object does not have to be loaded from a jar each time a prediction is requested. When
a model is uploaded, this cache is cleared and overwritten with the new model. | I 1l I I B B
--ll_--l-. 1 11 1] |

4. Current Situation:
Transaction Monitoring System

Figure 4.3: Overview of the current transaction monitoring software controller architecture.

The Product: Multiple Model Functionality

The current transaction monitoring system as explained in Chapter 4 has been designed with the rule-based
system together with one machine learning model in mind. As it is part of the requirements to support multiple
models and we aim to make deployment of additional models as easy as possible, a refactor is required to
accommodate multiple models. In this chapter, we will first discuss various aspects of the refactor of existing
code and database tables. Then, we will discuss the addition of a model for business transactions. Lastly, we will
touch upon the implementation of an autoencoder for outlier detection.

5.1. Refactor

In this section, we will discuss the refactor to accommodate multiple models. We will discuss the refactor
according to the MVC design pattern the bunq backend is built upon. First, the model and database refactor will
be discussed, followed by the controller and view refactors.

S.1.1. Initial Design

Initially, a complete refactor of the transaction monitoring system for both the rules and machine learning models
was designed. This design used the database to store all the different rules and models as classifiers and allowed
the compliance department to dynamically adapt these classifiers used on transactions. However, in collaboration
with developers of bunq we have decided not to continue with this design as it is not know what the impact would
be on underlying mechanisms such as the compliance dashboard and generated reports for the FIU. Therefore,
to allow us to complete the project in the limited timespan, we have decided with bunq that we have to focus
the refactor on building upon the current system. This means that existing database tables must remain largely
preserved.

5.1.2. Model Architecture

To accommodate multiple machine learning models while preserving existing tables that are related to transaction
monitoring, we chose to add two tables. These will be explained in this section. A figure of all tables related to
transaction monitoring is presented in Figure 5.1.

Result Table One of the introduced tables is | INE—EGzG_T———
This table is meant to take over functionality that was previously present in the [EGcNGEGEGEG_
I -blc. While the metadata table contained columns for fraud probability and machine learning model
name, the table was still unfit to host predictions for multiple models. As the feature map is saved in the metadata
table, you would have to store it twice for multiple predictions. Furthermore, we wanted to have a relation with
the table we will explain in the next section where machine learning models are stored as entry. This would mean
altering the metadata table, which we preferred not to do as explained at the start of this section.

The new table has a relation with both metadata and predictor. A fraud probability and execution time
is stored for each prediction made on a metadata model. This probability will replace the one in the former
metadata table and determine whether an entry is stored in the risk table.

19

20 5. The Product: Multiple Model Functionality

Metadata
—{ Metadatald >
Mutationld

Featuremap
Status

ExecutionTime

Risk Result

Metadatald — Predictor “— Metadatald

UserltemID Predictorld «@—{ Predictorld

RiskIndicator Name Result

StatusDeployment ExecutionTime

StatusReporting
TransactionDirection

TransactionAccountType

Figure 5.1: UML diagram of the new transaction monitoring software database architecture.

Predictor Table The other table is [N . This

table stores information about all machine learning models that have been or will be deployed. The table includes
the following columns:

e Name is the standardised unique name of the machine learning model. This is used to make it easy to
determine the type of machine learning model for humans.

e StatusDeployment is used to determine whether a model is still training, active or deprecated. This
is used to determine whether predictions should be made using that model.

e StatusReporting is used to determine whether a model reports hits directly if they are above a certain
threshold, or aggregates the highest scoring hits over a period and sends them to compliance only then. It
is also possible to not report any hits of a machine learning model for validation purposes.

e TransactionDirection/Type is used to separate models that predict only for business or private
transactions and incoming or outgoing, or both of either.

e RiskIndicator is used to determine with which RiskIndicator the prediction is scored if it is
placed in the risk table. This is the indicator used on the compliance dashboard to indicate why the
mutation is hit.

Migration of Current Tables As the result of storing the machine learning models in a new table, the same
type of information is scattered around multiple places. To prevent this, a migration which moves the results from
the metadata table to the new table has been performed. The migration consisted of three steps to be completed.

First, a PredictorModel is inserted connected to the currently used machine learning model. It is set
to directly report to compliance and it only applies on private transactions, to mimic the previously hardcoded
behaviour. Secondly, a new PredictorModel is created for each unique MachineLearningModelName
in the MetadataModel table. These models are added to store all the data in a single and to prevent loss
of data. As they are not operational any more, their deployment status is set to deprecated. Finally, the
I (oblc is filled with all the predictions made earlier. Each result has a connec-
tion with a metadata model and the corresponding predictor. The columns MachineLearningModelName
and FraudProbability could now in principle be dropped from the table, although this is not scheduled to
occur soon as the new system must demonstrate its performance first.

For deployment, only the first step is critical, because as soon as the refactor is deployed, only | NI
I /i1l be created. The two other migration steps can be executed at any moment as no new
entries in the metadata table will contain the two migrated columns. This turned out practicable, as while tested

5.1. Refactor 21

on smaller datasets the migrations took significantly long for the complete metadata table | [I I I
. 1 . .r ! . & 1.\ 1 1 e
this was reduced to @(n)) by us, it took || IIllll to perform the second and |IIIll Il Bl for the final migration
step. The third step took significantly longer as besides looping over each metadata entry, a lot of insertions were
executed.

5.1.3. Controller Architecture

In the previously active system, transaction monitoring mainly consisted of both a workflow that assessed a
transaction based on rules and machine learning. The implementation of rules was similar to how we wanted to
use machine learning models, where it is possible to add and remove machine learning models for certain types
of transactions. However in contrast to how rules work, prediction made by machine learning models consist not
just of logic and require communication with a separate server. While the models described in previous sections
were needed to accommodate for this, the controller logic is fairly similar. Figure 5.2 gives a visual representation
of the new controller architecture but omits the details of the WorkflowTransactionMonitoringRule
as it remained the same.

Figure 5.2: Overview of the new transaction monitoring software controller architecture.

22 5. The Product: Multiple Model Functionality

Similar to how it worked before, a transaction enters the transaction monitoring system in Workflow
TransactionMonitoringWorker. It then goes through the applicable workflow for its type, private or
business, incoming or outgoing. However, while earlier the rule workflow was called followed by a single call to
the machine learning workflow, multiple calls to the machine learning workflow are now made. The amount of
calls is determined by a query to the TransactionMonitoringMachineLearningPredictor model
that fetches all predictors that are applicable to that transaction. This workflow gets a prediction from the ma-
chine learning server, saves an entry to the result table, saves an entry to the risk table if the threshold is exceeded
and updates the metadata status to either be not flagged or needs investigation.

To get a prediction, a featuremap containing all the features for the predictor must be sent to the machine
learning server. Before it is sent, an HTTP GET request is sent to the server to retrieve a list of required features. If
multiple predictors are applicable on a single metadata model, some features will be required for both predictors.
By passing along the created featuremap, calculation of duplication features can be prevented causing a decrease
in execution time. Feature engineering has more implications which do not directly concern this workflow, which
will be discussed in Section 6.3.1.

5.1.4. View Architecture

PHP code executed on bunq servers have access to the database via the models. Code outside of the backend
must communicate with the database via an API. As the training of machine learning models is performed on
python servers, it must use such an API. To accommodate the automatic insertion of new predictors, a RESTful
N oo | ¢ | | | | | | || | |
I B Bl Using an API allows also for end-to-end testing of the complete workflow by inserting data
and verifying the behaviour.

5.1.5. Machine Learning Server

The server that runs the machine learning model was implemented for running only a single supervised learning
model. To be able to run different machine learning models in parallel, the server had to be refactored. There
were a few things needed to accommodate this change.

First of all, when a model is uploaded, the name of this model should be unique, since other models can be
run on the same machine. In the old server, each uploaded model was given the name model. jar. When a
new model would be uploaded, this would cause the older model to be overwritten by the newer model. To solve
this problem, a model is given a unique name based on a timestamp each time a model is uploaded to the server.
This way, multiple models can exist on the same server. After uploading a model to the machine learning server
it is also stored on a S3 bucket. This allows the server to fetch all models in case it crashes.

To make the possibility of having multiple models useful, the server should also be able to run predictions on
a specific model. Therefore, the HTTP call for getting predictions has been changed to include the model name.
This way, the backend is able to get predictions from specific models and compare results given by them.

During deployment of the refactored server and corresponding backend, there is a time where one of the
systems is using an older version than the other. In the case that the machine learning server is already deployed
and the backend is not, the server should still work as before. Therefore, the endpoints used previously to get a
prediction from the server, should still exist. These endpoints return the predictions given from a default model,
which is the model defined before updating the machine learning server.

5.2. Model for Business Transactions

the functionality for multiple models as explained in Section 5.1, a new model that is specialised for business
transactions could be deployed and added to the table of active machine learning models and the transaction
monitoring system would automatically make predictions. In Section 6.4 will be discussed how the training of a
specialised model for business transactions works.

5.3. Outlier Detection 23

5.3. Outlier Detection

As explained in Chapter 2, supervised machine learning models are less accurate when the incoming transactions

have different characteristics than what it has been trained on. To also detect outliers, we chose to use an autoen-
coder. The autoencoder will be trained at the same time the regular model will be trained, and it will classify every
transaction as well. The prediction will be saved in the [N NRNRREEIEEEEEEEEEEEEEEEEE .
just like predictions made by other machine learning models. However, this predictor is saved to be reporting to
compliance in an aggregated manner. | N NN H I I B I I | D D B D

4 4 33! 11] J] /!

The Product: Automatic Training

As described in Chapter 2, the current process of training a machine learning model is a laborious task. It is done
manually by collecting a dataset, labelling every transaction as either fraud or non fraud, converting it into a for
the machine learning model readable format and running the training scripts. If the process would be automated,
the required time and effort can be spend more productively. In this chapter we will discuss the design and
implementation of automating this process.

6.1. Overview

The process of automatically training a model is going to require a few steps. Most of these steps run directly
in the backend of bunq. The first step is collecting a dataset, which is the featuremap for each transaction ever
made at bunq. The second step is to label all these transactions as either fraudulent or non-fraudulent. Then
the model has to be trained on this dataset. Because training a machine learning model on datasets of this size
requires a enormous amount of computing power, this is not done directly in the backend of bunq. A separate,
very powerful EC2 instance will be used to do the heavy training computations. After the model is trained, the
fourth step is to export the model as a POJO to another separate server, which hosts all machine learning models.
The fifth and last step is to write an entry to the database indicating that the model is ready to use.

6.2. Software Architecture

At the start of the project, we designed a workflow structure for the process of automatically training machine
learning models. This is depicted in Figure 6.1. As seen in this diagram, there is one main workflow called
WorkflowTransactionMonitoringMachineLearningTrainer. This workflow is responsible for
the whole training process in the backend, from preparing and storing the dataset to executing a request for
training on the external server. To make things more clear, this workflow delegates some of its responsibilities
to another workflow called WorkflowTransactionMonitoringMachinelLearningLabelMapping.
The responsibility of this workflow is to get all features of all transactions ever made, assign a label of either
fraudulent or non-fraudulent to them and then store these mappings in JSON into an S3 bucket. The advantage
of delegating these responsibilities to a separate workflow is that this process can then be batched. This is a
requirement, as there are, at time of writing, millions of metadata models in the transaction monitoring meta-
data database. As the number of metadata entries is enormous, the trainer call the WorkflowTransaction
MonitoringMachineLearningLabelMapping in batches.

25

26 6. The Product: Automatic Training

PHP
[Workflow TMMLTrainer]
ExecuteMapping [
J J)
[—b WorkflowTMMLLabelMapping
l J w T doTrainingRequest
FetchTransactions —# PerformLabelling —» StoreMapping ry
v
{ PythonExecuteTraining]

l T

‘ PrepareTraining H PerformTraining H EvaluateTraining |

l l

‘ Connect with H20 | | Create model |

. .

w H Fetch mapping | | Train model |

‘ Split dataset | Save maodel

Python

Figure 6.1: Software design diagram for automatic retraining of the ML system.

When all transactions have been processed and stored, the main workflow makes a call to the EC2 server
to get the training process started. On this remote server, a Python script is run. This script is responsible for
training the machine learning model. First it starts a local H2O-server. This is a Java server, running on the
same machine as the script, which handles all the training and model generating. After this server is started, the
dataset, which was previously uploaded to the S3 bucket, is then loaded from this bucket. For the H2O-server to
read in this dataset, the JSON format of the dataset is changed to a DataFrame format. The dataset is then split
into a training set and a validation set of respectively 80% and 20% of the data, after which the training is started
on the training dataset. After this process has completed, a model in the form of a POJO is created, which is sent
to the server where machine learning models are hosted using a unique name to be able to differentiate between
the models on the server. From this server, these models can be called by the backend to get a prediction for
a specific transaction. Because the backend does not know the name of the newly generated model, a database
table, containing all machine learning models on the machine learning server, is updated with an entry for the
new model.

6.3. Implementation: Version 1

When we started implementing the workflow as depicted in Figure 6.1, we came to the conclusion that the system
was sub-optimal. This was mainly caused by factors that we did not take into account, because we were not as
familiar with the system at the time of creating the software architecture. Therefore, we made some changes to
the workflows and how they work. The resulting system is depicted in Figure 6.2. The diagram will be discussed
in more detail below.

6.3. Implementation: Version 1 27

PHP
[WorkflowTMMLTrain]
StoreAllFeaturelabel [
[—b Workflow TMMLFeatureLabelMake —J
l T l T doTrainingRequest
getAllTransaction determineAllFeatureLabel T
h] [
PythonExecuteTraining
Upload all files to "
Connect with H20 B —» Remove all files
Upload all files to S3 Update entry in
Connect with S3 i database
Create initial model
checkpoint Save all files Sleep
Create entry in Compute optimal Shut down H20
v database threshold cluster
Save model
w [+ Loadbatchofdata — Snio Mo Empty S3 bucket
Load model » Prepare data and
checkpoint train model SplEczisiancy
Python

Figure 6.2: Software implementation for automatic retraining of the ML system.

6.3.1. Implementation Details: Feature Engineering

The automatic training is done by running a script in the backend, but before the training workflow can be started,
the script ensures that all features for all transactions are calculated. Currently, these features are calculated when
a transaction comes in and are then stored in a database object called TransactionMonitoringMetadata
Model. This ensures that the feature engineering does not have to be done every time a machine learning model
is trained. However, when new features are added, they should be calculated for all previous transactions as well.
To make sure all features can be used in training the machine learning model, the features which are not yet
calculated will be determined before any training will happen.

As feature engineering can be time consuming on large datasets, we parallelised this process. Because cal-
culating a feature of a transaction is not dependant on any other feature, this process is easily parallelisable by
executing the feature engineering of each transaction on a separate thread. However, there are a lot of transac-
tions these features should be calculated for and creating threads uses a lot of overhead. Therefore, we decided
to parallelise batches of transactions. Each batch runs on a seperate process and once a batch is finished, a new
batch will be started. This continues until all features have been determined.

6.3.2. Implementation Details: Automatic Training Preparation in Backend

When the process of automatic training is started, the WorkflowTransactionMonitoringMachine
LearningTrainis called by a script. This script is called by a cronjob that executes in a given interval of time,
determined by bunq. The workflow calls the method st oreAllFeatureLabel, which queries the transaction
database to find its size. It then calls the workflow named WorkflowTransactionMonitoringMachine
LearningFeatureLabelMake over batches of TransactionMonitoringMetadataModel objects.
The method getAl1Transaction fetches the required batch of transactions from the database. Then, in a call
to determineAllFeatureLabel, for each transaction it is checked what metadata status it has. Examples
of these statuses are | NEGczNENEG

B

28 6. The Product: Automatic Training

I N ood

Il Each of these statuses has a mapping to either fraudulent or not fraudulent. A JSON object is created
with the featuremap and the a label of either | NIl Il Il BMEll. Then back in storeAllFeaturelabel,
the mapping is stored in the S3 bucket. This is done for all metadata models in the database.

When this workflow is completed, doTrainingRequest is called. When this request is done, an EC2
instance, containing the Python training scripts, is started.

6.3.3. Implementation Details: Python Training Scripts

The Python scripts that train the machine learning model are hosted on a remote EC2 instance. The script first
initialises H20 and connects with the S3 bucket where the training data is stored. It created an entry in the
database indicating that a model is training. Then, it trains the machine learning model in batches. Afterwards, it
saves the POJO, jar, snapshot of the model, and threshold. It uploads these files to the Java server and S3 bucket
before removing them again. It then enters a predefined period of sleep, such that a bunq employee has a chance
to take a look at the data and snapshot if they want to. When the sleeping period is over, the H20 cluster gets
shut down, the S3 bucket containing the training data is emptied, and finally the EC2 instance is stopped.

6.3.4. Notable Differences

The implementation as depicted in Figure 6.2 differs substantially from our initial design as seen in Figure 6.1.
First of all, some of the names have changed. This is done to match the style enforced by bunq. Secondly, the
underlying processes in PythonExecuteTraining are substantially different. The script trains the model in
batches instead of on the whole dataset at once to reduce memory usage and increase training speed. Also, the
model and other files are now stored as a backup on a seperate S3 bucket as well. Lastly, we also removed the
storeMapping and moved the logic that was in there up to storeAllFeaturelabel, as it did not make
sense to have the uploading of the files in the workflow that is supposed to map labels to either fraud or not fraud.
Instead, we added the functionality of storeMapping to StoreAllFeaturelLabel.

6.4. Implementation: Version 2

During the development of the automatic training process, we also started implementing retrospective labelling.
The implementation details of that are explained further in Section 7.2, but it also meant a complete rewrite of
the automatic training process. The first implementation was not designed to accommodate multiple ways of
labelling the training dataset. Together with some other improvements in mind, we designed a new system for
creating a training dataset and executing the training process. The feature engineering part has not been changed
since that is a separate process which did not require improvements at this time.

6.4.1. Implementation Details: Automatic Training Preparation in Backend

There is one large difference between the first system and the newly designed automatic training system. This
difference is in the way the training dataset is created. Where in the old system dataset batches were created and
the training script executed afterwards, in the new system there is a complete seperate workflow for creating a
training dataset batch. This worfklow is depicted in Figure 6.3.

As seen in this diagram, the workflow WorfklowTransactionMonitoringMachineLearningTraining
DatasetBatchCreate has four methods. It starts by determining dataset entries from the feature maps and
status codes in the TransactionMonitoringMetadataModel objects stored in the database. This pro-
cess is run in a separate workflow again and is comparable to how the datasets were created in our initial de-
sign. After creating these dataset entries, another workflow is called: WorkflowTransactionMonitoring
MachinelLearningDetermineBatchRetrospectivelLabellingDetermine. This mouthful of a
workflow will be explained in detail in Section 7.2, but in general it creates dataset entries for transactions which
do not have a fraudulent status code, but retrospectively can be seen as fraudulent. The third method of the
dataset batch creation workflow combines the dataset entries created in the previous two methods. The dataset
entries created in the first method comprise all transactions possible in this batch, however the entries created
by the retrospective labelling workflow only contain the transactions which have been retrospectively labelled.
To combine these entries, the retrospective labelling entries overwrite the entries created from feature maps and
status codes. When the complete dataset batch is created in memory, it is stored in an S3 bucket in the fourth
method of the workflow. This process is also comparable to our initial design.

Another factor we did not incorporate in our first version of the automatic training workflows was having
the possibility to create datasets of only private users or company users. To accomplish this, we filter by these

6.4. Implementation: Version 2 29

WorkflowTMMLTrainingDatasetBatchCreate

A I T R A

DetermineDataset D EE)

BatchFrom CombineDatasetBatch StoreDatasetBatch
BatchFromMetadata .
RetrospectiveLabel
Workflow TMMLTraining Workflow TMMLTraining WorkflowTMMLTraining
DatasetBatchMetadataDetermine DatasetBatchRetrospectiveLabelDetermine DatasetBatchStore

Figure 6.3: Software implementation version 2 for automatic retraining of the ML system.

specific user types when retrieving the TransactionMonitoringMetadataModel objects. The datasets
are then stored on the S3 bucket with a prefix containing either I
[1 B

I dcscribing a dataset of data of private users or company users respectively.

6.4.2. Implementation Details: Python Training Scripts

In the second version of our automatic retraining workflow, the Python scripts that train the model have been
altered as well. The single original scripts has been split up into several scripts such that we can easily add new
models and functionalities. The diagram that describes the new main training script can be found in Figure 6.4.

——» ConnectwithS3 > Start H2O server —> De|erm[;r;mude\ > Call GBM trainer > ca"a“r";‘i"?ermm'" > Sleep > Remove training data—» Shutdown EC2
‘GBM training Autoencoder training

Figure 6.4: Python main script version 2.

The script that is depicted in Figure 6.4 is the main training script. It connects with the S3 bucket where the
training data is stored and starts an H20O server. The script then determines the model type by checking whether
all files in the bucket contain either the prefix [

o

I - discussed in Section 6.4.1. If not all the files in the S3 bucket have the same prefix, an exception
is thrown. It then calls the GBM trainer, which handles the training and uploading of the GBM. Afterwards,
it calls the Autoencoder trainer, which trains and uploads the autoencoder. Lastly, sleeps for a set period
of time, removes all training data, and shuts down the EC2 instance where it runs on.

The GBM trainer is described in Figure 6.5 below.

. Create validation set Create training set
> CreateentyinDB = o last 20% of data > from first 80% of data
) - Optimize GBM
Upload files to Java Perform training on ;
-~ o «— parameters using
server and 53 bucket 100% of data GridSearch

Figure 6.5: Python Gradient Boosting Machine training script version 2.

30 6. The Product: Automatic Training

The script first creates an entry in the database for the model indicating that it is currently training. Then, the
script retrieves the newest 20% of transactions from the S3 bucket and creates a validation set from that data. It
also creates a training set from the rest of the data, being the 80% oldest transactions. Then, it uses GridSearch
to build and train models with different sets of randomly chosen GBM parameters, such as amount of trees and
maximum tree depth, and returns the parameters of the most successful model based on F2 score. The script then
trains a model on 100% of the data using the optimal parameters found by the GridSearch. After the training,
the script uploads a POJO of the model, jar file, threshold and snapshot to the S3 bucket and the POJO, jar and
threshold to the Java server. The Autoencoder trainer goes through the same steps, but does not upload
a threshold as it does not require one. It also uses different parameters for the GridSearch to optimise.

6.4.3. Considerable Differences

As shown in Section 6.4.1, the main difference between our first implementation is that training dataset batches
are created in a separate workflow. We decided in favour of this design, because it abstracts the logic needed
to create a batch of dataset entries better than before. This abstraction makes the code base more readable and
easier to maintain. It also allows for better implementation of using different data sources in the dataset; in our
case the feature map with its status code and the retrospective labelling workflow.

6.5. Development and Testing

During development we used Localstack to host a local AWS S3 bucket. We then stored data from our local
database in the local S3 bucket. When everything worked nicely, we wrote a Python script to access this bucket
and store it in a data frame, and trained our classifier on the retrieved data. When everything worked locally,
we were granted access to AWS for further testing. Here, we created our S3 bucket and EC2 instance, and got
everything to work once again. Then, our merge requests were thoroughly checked by colleagues to ensure code
quality and correctness. After a meeting with DevOps to configure the EC2 instance, S3 bucket, Java server
changes and cronjob, our code was uploaded on the test environment Triage, where we could do further testing.
Once everything was working correctly, our code was deployed in production.

Of course did we not only test our code by seeing how it behaves in our local and the Triage environment, we
also wrote a large amount of tests. Our tests consisted of both unit tests, where we tested whether the individual
states in the workflows returned the correct values, and end to end tests, where we checked whether a workflow
returned the correct results.

The product: Improving Data Quality

In this chapter we will discuss the changes we made to improve the data that is used to train the machine learning
models used for transaction monitoring. First, Section 7.1 will describe the process of designing more features.
This essentially gives the machine learning model a greater variety of data to train on. After that, Section 7.2
will describe the design of a system which labels transactions of users that later turned out to be fraudulent.
The process of designing new features was a continuous one in the sense that over the course of the entire
project we implemented new features as they were requested. This is in contrast to the retrospective labelling
implementation, which primarily happened at the end of the project.

7.1. Feature Engineering

During the project, we have increased the amount of features |l IIll ll ll. This is a significant increase
in data that not only has to be calculated and stored, but also sent to the training server to be processed. This
section will first give a general overview of what types of features have been implemented in Section 7.1.1. Next,
Section 7.1.2 will discuss the process of developing these features. Finally, the complete list of features can be
found in Appendix F.

7.1.1. Overview

To give a rough idea what features are used to train the machine learning model, Section 7.1.2 provides an
overview of all types of features that have been implemented. All features types are associated with a trans-
action. For example, monetary account type features relate to the monetary account that is associated with the
transaction. Il Il I NN AN NN NN AN I AN N DN AN N B D N
2 1 1 1 1 i 111 |
4 1 = ! . ‘v o 11 1 |
. 1 131 711 & ' ‘- 11 1715 11 |
!

7.1.2. Development and Testing
Prior to our project, the transaction monitoring system already had a software architecture for calculating fea-
ture values. Since we have not changed the general structure of this, we will not go into depth of how this is
implemented. However, even though the development of new features did not require a large intervention in the
software architecture, the development required a significant amount of time. This had two main causes, which
we will discuss in this section.

g2 . r 0 P 1 it B 11 1 |
.. < 1 1 1 1 ¢ 1 I 111 5 1 1|
1 . i 1 0 1 ' 1 7 | |
I

2 i 1 11 & 1 1171.1 1.1.|
1+t 5 1 5 @ 1+ 11 1 1 @11 17]./.
4 1 1 1 s+ 00 13 1 31 |
0 1 41 11 7 1] @

31

32 7. The product: Improving Data Quality

7.2. Retrospective labelling

To further improve the data used for training the machine learning model, we implemented a process we chose
to call retrospective labelling. This name comes from the notion that transactions of users that turned out to
be fraudulent under certain circumstances have to be labelled as fraud in hindsight. This section will first de-
scribe the initial design in Section 7.2.1. Next, the software design that was implemented will be discussed in
Section 7.2.2.

7.2.1. Initial Design

In the initial design, the retrospective labelling workflow was called before the automatic training workflow. This
section will shortly summarise the behaviour of that workflow, followed by an explanation of why this design
was not implemented.

Behaviour Summary Each time before training, the retrospective labelling workflow would consult a table
where which transactions had been retrospective labelled before was stored. Using this table, the workflow would
be executed with the transactions that had not gone through this workflow before. If such a transaction was from
a user that had a fraudulent transaction at any point, the transaction was tested against a couple of rules which
are composed by compliance. If any of these rules applied to the transaction, such as whether the amount of the
transaction was significantly high, this transaction would then also automatically be labelled as fraudulent. This
would then be stored in the TransactionMonitoringMetadata, just like when a transaction is manually
flagged as fraudulent.

Encountered Problems The consequence of this design is that large quantities of transactions could be auto-
matically labelled as fraudulent. This has a serious downside, in that when this process goes wrong it makes a
big impact that could be difficult to be undone. Furthermore, storing this information is only needed and used for
training the machine learning model. Together with bunq we decided to make a new design that would not have
this problem.

7.2. Retrospective labelling 33

7.2.2. Implemented Software Architecture
The new design works similar to the old design in the sense that before training, transactions will be labelled
as fraudulent if the user has had a fraudulent transaction at any other point and if certain rules apply to that
transaction. However, instead of storing this data, it is determined while the training process happens. The
integration in that process is described in Section 6.4.

WorkflowTMMLTrainingDatasetBatchRetrospectiveLabelDetermine

L] L] L]

Get all users and Get all metadata Determine
their transactions in — to retrospective labell datasetbatch from
this batch per user metadata label

P

WorkflowTMMLTrainingDatasetBatchRetrospectiveLabelUserDetermine

Y$ Add to metadata to
TS retrospective label

Does the user have < Does any
— any fraudulent For all user metadata rule apply?
transactions — > PPy

Figure 7.1: Software architecture of the implemented retrospective labelling workflow.

The retrospective labelling process is depicted in more detail in Figure 7.1. For each batch of transactions that
is prepared for training, Workf lowTMMLTrainingDatasetBatchRetrospectivelLabelDetermine
is called. This workflow calls WorkflowTMMLTrainingDatasetBatchRetrospectivelLabelUser
Determine for each user with their transactions in this batch. If the user has had a fraudulent transaction at
any point, all their transactions in this batch are assessed according to a set of rules. These transactions will be
labelled as fraudulent and overwritten in the original batch before sent to training.

Discussion and Conclusion

In this chapter we will discuss several issues and assess whether the project can be considered a success. Further-
more, the value added by our product for bunq will be evaluated. We will also discuss the knowledge we have
gathered during this project.

8.1. Discussion

In this section we will briefly discuss the accomplishments of this project, as well as some of the issues we
encountered.

8.1.1. Accomplishments

The product we delivered is a fully functioning automated training system, capable of training both private and
business machine learning models. We also tripled the amount of input features for the model to train on, and
we implemented retrospective labelling to further increase the quality of the input data. Lastly, we implemented
an unsupervised learning model to catch new and undiscovered types of fraud. Every system is completely
integrated into the existing bunq backend, and thoroughly tested through unit tests and integration tests. The
code has been deployed to the production environment.

8.1.2. Issues

The main issue we encountered was that merging our software into the deve lop branch can take a large amount
of time, sometimes up to three weeks. Often, our software was functional fairly quickly, but due to the strict
coding guidelines we were not as familiar with as regular employees and high requirements with regards to code,
various revisions were often needed before our software would be merged.

Due to this lack of time, we were not able to experiment with various machine learning parameters and input
features to verify performance. Since training a model takes a lot of time and making a comparison between
models requires them to classify transactions in parallel for a significant period, it would be difficult to compare
various slightly different models with each other in our limited timespan of ten weeks.

8.2. Conclusion

In this section we will assess whether the project can be considered a success. We will also discuss the value
created for bunq with our project, as well as the lessons we learned during the project.

8.2.1. Measurement of Success

To assess the success of our project, we are going to take a look at the requirements we initially set in Ap-
pendix C.1. We can see that all must haves have been satisfied