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ABSTRACT

The characteristic motion of water under breaking waves and the turbulence
structure in the surf zone were investigated through detailed two-dimensional ve-
locity measurements in a wave flume. Significant difference was found between the
breaking processes in the outer and inner regions of the surf zone. The velocity field
in each region consists of steady current, periodic wave motion, organized vortex
motion and turbulence. It was found that the organized vortex motion caused by
wave breaking was an importaﬁt fluid motion connecting the wave motion and the

turbulence.

The vertical profiles of the undertow, which is the steady current below the
wave trough level, were investigated from velocity histories measured by hot-film
and laser-Doppler-velocimeters. The turbulence generated in the upper layer by
wave breaking prevents the development of the bottom boundary layer in the inner
region. The vertical distribution of the mean Reynolds stress and the mean eddy
viscosity coefficient in the inner region can be approximated by linear functions of
the vertical elevation. The offshore-directed mean shear stress on the bottom is so

large that it can not be neglected in the modeling of the undertow.

The transition point which was the boundary between the outer and inner
regions of the surf zone was defined as the offshore limit of the quasi-steady breaking
region. The distance from the breaking point to the transition point was expressed

in terms of the breaking water depth and the bottom slope.

In order to describe the mechanism of the energy transfer during wave breaking
accurately, a model was presented in which the organized large vortexes were taken
into account as a transmitter of energy in the energy transfer pfocess from wave
motion to turbulence. The distribution of the turbulence energy calculated by this

model agreed with the experimental results qualitatively.




The mass and momentum fluxes by the organized large vortexes were also
discussed. The mass transport by breaking waves was found to be induced by the

wave motion and the organized large vortexes.

By using the models of the energy distribution and the mass transport, a model
was presented for the two-dimensional distribution of the undertow. The Reynolds
stress and the eddy viscosity coefficient were quantitatively evaluated from the
energy dissipation rate on the basis of the dimensional analysis. The variation of
the mean water level in the surf zone was also predicted with a good accuracy by
considering the momentum flux by the organized vortexes. The model can evaluate
the distribution of the undertow on an arbitrary beach topography from the incident

wave condition.
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CHAPTER 1

General Introduction

The velocity field and the energy process in the surf zone are of great im-
portance since they exert wide influences over the phenomena such as the wave
attenuation, sediment transport and material diffusion which actively take place
due to wave breaking. As the velocity field in the surf zone is rather complicated
because of its variation in time and space as well as its turbulent characteristics, only
qualitative descriptions of breaking waves were presented early in the last decade
through observation and visualization of the flow pattern in laboratories. With the
recent development of the velocity measurement techniques, many researches have
been carried out thereafter to clarify the structure of the turbulent velocity field in
the surf zone by measuring the velocity fluctuation. However, the understanding
of the characteristics of the velocity field in the surf zone and the process of the

energy transfer due to wave breaking is not yet satisfactory.

The mass transport due to breaking waves, which is larger than that due to
non-breaking waves, causes the undertow which is offshore-directed steady current
below the wave trough level. Since such mass movement induces a macro-scale
circulation in the surf zone, it plays significant roles in the sand movement and the
material diffusion in combination with micro-scale eddies, i.e. turbulence, generated
by the wave breaking. The relatively large velocity of the undertow causes large
shear stress near the trough level and on the bottom. Although some models to
estimate the distribution of the undertow were presented by adopting rather crude
assumptions, the application was limited to the inner region in which the wave
breaking can be regarded as a quasi—steady process. Since most of these models
are constructed by using the local properties of waves and turbulence, the accurate

prediction of the wave field and the energy dissipation in the surf zone is required.




Numerical models for predicting the wave height or wave energy variation in
the surf zone from the incident wave condition have been proposed based on simple
modeling of the breaking process. In these models, the wave energy is considered to
be directly transferred to the turbulence energy. However the rotational organized
motion of water formed at the crests of the breaking waves cannot be neglected
because the existence of the vortex motion shows an important characteristic of
the energy transfer and also of the mass transport and momentum exchange in
the surf zone. Most of the energy of irrotational wave motion is converted firstly
to the energy of the organized large vortexes, although it finally dissipates to heat
through turbulent dissipation. The previous models therefore are not able to explain
the experimental results on the characteristics of the turbulent velocity field such
as the spatial distribution of turbulence energy. In order to establish a practical
model which is capable of dealing with various problems due to wave breaking, the

comprehensive understanding of the surf zone dynamics is necessary.

The mechanisms of wave breaking in the outer and inner regions of the surf
zone are much different. In the outer region, a rapid transition of wave profiles takes
place with energy transfer from wave motion to the organized vortexes, especially in
case of plunging breakers. On the other hand, a quasi-steady breaking occurs in the
inner region and the energy transfer from the wave motion to the turbulence through
the vortex is in an equilibrium state. Hence the definition and determination of the
transition point which is the boundary between these two regions are important for

the general description of the surf zone dynamics.

Motivated by the background mentioned above, the characteristics of the tur-
bulent velocity field in the surf zone were investigated in the present study through
detailed measurement of the two-dimensional velocity field under breaking waves.
Then a model which describes the energy transfer during wave breaking is presented

to evaluate the energy variation and the energy dissipation in the surf zone. In the




model, the wave energy is assumed to be transmitted to the turbulence energy
through the organized large vortexes. A model for evaluating the distribution of
the undertow is also proposed on the basis of the accurate description of the wave

field and energy dissipation in the surf zone.

The first objective of the present study is to investigate the velocity field and
the turbulence structure in the surf zone. The second objective is to describe the
energy transfer in the surf zone on the basis of the understanding of the physical
process and to formulate a model for estimating the vertical distribution of the

steady current below the trough level which is valid throughout the surf zone.

The present dissertation is divided into two parts according to the above sub-
jects. The former part, Chapter 2, deals with the characteristics of the velocity field
through detailed and precise laboratory experiments. The organized motion of the
water particle under breaking waves is investigated in terms of the velocity, vor-
ticity and turbulent intensity. Next, the distributions of the turbulence properties
such as the turbulence energy, Reynolds stress and eddy viscosity are investigated.

In the last section of this chapter, the position of the transition point is discussed.

In the latter part, Chapter 3, a model which estimates the two-dimensional
distribution of the undertow is presented. The transfer of energy in the surf zone
is firstly described based on the results obtained in Chapter 2. Then the energy
variation and energy dissipation rate in the surf zone are estimated by applying the
time-dependent mild slope equation. The organized large vortexes formed at the
wave crests are taken into account as transmitters of energy from the wave motion
to the turbulence in order to accurately describe the energy distribution in the surf

zone.







CHAPTER 2

Turbulence Structure in the Surf Zone

2.1 Introduction

The velocity field in the surf zone is much concerned with the phenomena, there.
Hence, it is a very important technical problem to make it clear. Since the velocity
field under breaking waves is rather complicated because of its variation in time
and space as well as its turbulent characteristics, only qualitative descriptions of
breaking waves were presented early in the last decade through visual observation

in laboratories.

Svendsen et al. (1978) separated the surf zone into two regions which were
outer and inner regions (Fig. 2.1.1). In the outer region, rapid transitions of wave
shape occurs, particularly in case of plunging breakers. Sawaragi and Iwata (1974)
suggested the existence of a large scale vortex formed just below the wave plunging.
It is frequently called “horizontal roller” or “plunger vortex”. Miller (1976) showed
the process of formation of the plunger vortex and the recirculating motion near the
water surface caused by the splash of wave plunging by using photography. He also
observed the same processes with a relatively smaller scale in spilling breakers. In
the inner region, quasi-steady breaking waves which are similar to bores propagate
shoreward with attenuation. Both such bore-like waves and plunger vortexes seem

to give strong effect on the generation of turbulence in the surf zone.

With the recent development of the velocity measurement techniques, many
works have been carried out to clarify the structure of the turbulent velocity field
in the surf zone by measuring the velocity. Hattori and Aono (1985) measured the

velocity field under breaking by using a hot-film-velocimeter. They separated the




breaking point transition point

outer region inner region
| rapid transitions of ‘ slow change in wave shape (bore-like waves). |
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Fig. 2.1.1  Wave characteristics in the surf zone.




turbulence from measured velocity considering the coherence between the veloc-
ity and the water surface elevation and discussed the turbulence structure in the
inner region, which they pointed out to be strongly three-dimensional. Nadaoka
et al. (1989) found from flow visualization and measurement by a laser-Doppler-
velocimeter that two-dimensional horizontal vortexes developed near the water sur-
face in front of the wave crests and obliquely downward stretched eddies with strong
three-dimensionality were formed behind the wave crests. Sakai et al. (1984) dis-
cussed the variation of the Reynolds stress in the surf zone. Okayasu et al. (1986)
verified the initial breaking process by detailed measurements of the velocity field in
the outer region and Mizuguchi (1986) also discussed the rapid transition of waves

near the breaking points.

The existence of “undertow” caused by the mass transport of breaking waves
was first observed by Bagnold (1940) and has been recognized for many years [see
e.g. Hansen and Svendsen (1984)]. The undertow plays an important role for
the circulation of material or the sediment transport in the surf zone. However
our knowledge on the interaction between the turbulence and the undertow or the
mass flux by the vortexes as well as on the breaking process in the surf zone is
not yet satisfactory. In order to clarify the turbulence structure, the flow field and
the energy dissipation process in the surf zone, it is important to investigate the
motion and roles of the large vortexes which are considered to generate turbulence

and characterize the velocity field in the surf zone.

In this chapter, these characteristics of the velocity field in the surf zone will
be clarified through detailed and precise laboratory experiments. The distributions
of the turbulent properties such as the turbulence enérgy, the Reynolds stress and
the eddy viscosity will be investigated. The energy dissipation in the surf zone will

also be discussed in relation to the variation of the wave energy.




The mechanisms of wave breaking in the outer and inner regions are much dif-
ferent as already mentioned. Hence, the position of the transition point which is the
boundary between the two regions is also important for comprehensive descriptions
of the surf zone. However, no systematic investigation to determine the position of
the transition point was carried out. In this chapter, the position of the transition

point and the plunging point will be discussed later.




2.2 Experiments on Two-Dimensional Velocity Field in the Surf Zone

2.2.1 Experimental Facilities and Arrangement

Laboratory experiments were carried out in a two-dimensional wave flume
which was 23 m long and 0.8 m wide with a wave generator at one end. The
generator was controlled by electric signals from a function oscillator which gener-
ated regular sinusoidal signals in the present experiments. The beach models which
had smooth beds were set at the other side of the flume. A partition was set at
the center of the beach models for the sake of keeping the phenomena to be two-
dimensional, z.e. uniform in the longshore direction. Figure 2.2.1 shows a sketch of

the flume.

The experiments were divided into series A and B. The detailed measurements
of the velocity fields were performed in series A to get a basic and essential under-
standing of the velocity field throughout the surf zone. For case A1, the step-type
beach profile was used to elucidate the behavior of the plunger vortex. The beach
model consisted of a 1/10 slope and a horizontal bed. The still water depth on
the horizontal bed was 10 cm. The reasons why this type of beach topography
was chosen were to fix the breaking point of each wave and to make a region deep
enough for the measurement. A large amount of thin plastic strings were put on
the bed at the shoreward end instead of a slope to prevent the wave reflection. The
measuring area was from 0.5¢cm to 14.5cm above the bottom and 80 cm long in an
cross-shore directed vertical plane. The measuring points were arranged to make 2

cm grids. The arrangement is shown in Fig.2.2.2.

For cases A-2 and A-3, a constant slope of 1/20 was used to measure the
whole area of the surf zone. The measuring areas were about 250 cm long in both
cases, but the arrangements of measuring points were different. The 2 cm grids

arrangement was adopted for case A-2 to obtain the vorticity distribution. The
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lowest points were Tmm above the bottom. The detailed arrangement is shown
in Fig. 2.2.3. On the other hand, for case A-3, a grid which was sparse in the
horizontal direction and dense in the vertical direction was used for the purpose
of detailed measurements of the mass flux variation and the vertical profiles of
the undertow. The measuring points were arranged with distance of 10 cm in the
cross-shore direction and distance from 2.5 to 10 mm in the vertical direction. On
every measuring line, at least seven measuring points were set below the trough
level for accurate evaluation of the mass flux. The lowest points were 2 mm above
the bottom. The arrangement is shown in Fig. 2.2.4 which is exaggerated in the

vertical direction.

The measuring points were arranged only close to the bottom for case A—4 to
investigate the details of the bottom boundary layer in the surf zone. Nine mea-
suring lines were allocated every 40 cm from the offshore side beyond the breaking
point to the still water shoreline. The measuring points were arranged 1, 2, 3, 5,

10 and 20 mm above the bottom along each line.

For series B, velocity fields were measured for various beach topographies and
incident wave conditions. Three kinds of beach topographies were used. They were
a 1/20 uniform slope (from case B-1 to B-4), a 1/30 uniform slope with 1 m of a
1/20 slope at its offshore end (from case B-5 to B-9) and a step-type topography
which consisted of 4.11 m of a 1/10 slope, 2.85 m of a horizontal bed and a 1/10 slope
at its onshore end (cases B~10 and B-11). The still water depth on the horizontal
bed were 6 cm for cases B-10 and B-11. The arrangements of the measuring points
were sparse in the horizontal direction and dense in the vertical direction for the
purpose of detailed measurements of the undertow profiles. The measuring points
were arranged along 6 or 7 vertical measuring lines in every case but case B-11. The
first measuring lines were set on the wave breaking points. The second lines were

located on the plunging points in case of plunging breakers, or the intermediate
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Arrangement of measuring points (case A-3).

Fig. 2.2.4



point between lines 1 and 3 for spilling breakers. From the third, the measuring
lines were arranged in the inner regions where the bore-like waves developed well.
In case B-11, the measuring lines were arranged to cover the wave recovery point
which was at £ = —115 cm by visual observation. The lowest measuring points
in each measuring line are Imm above the bottom in cases B-1 to B—4, and for
cases B-5 to B-11, they are 2 mm above the bottom. The vertical distance of those
points were from 1 to 20 mm and the highest points are near the mean water levels.

As examples, the arrangement of cases B-1, B-5 and B-11 are shown in Fig.2.2.5.

2.2.2 Experimental Conditions

The z-axis and z-axis were set to be shoreward and vertically upward, respec-
tively. The origin of the coordinates in case A—1 was at the offshore end of the
measuring area as shown in Fig.2.2.2. In the other cases, the shoreline at the still
water level was set to be the origin. The conditions of the experiments of series A
and series B are listed in Table 2.2.1 and 2.2.2, respectively. In the table, T is the
wave period, h; the water depth in the offshore constant depth region, H; the wave
height there, Ho/Lo the deep-water wave steepness, z; the breaking point, z, the

plunging point.

Table 2.2.1  Conditions of experiments of series A.

case slope | T'(s) | hi (em) | H; (em) | Ho/Ly | 23 (cm) [ z, (cm)
A-1 [1/10+fat | 1.55 40.0 6.95 0.0201 10 24
A-2 1/20 1.50 40.0 7.36 0.0226 —225 -162
A-3 1/20 1.50 36.4 8.15 0.0249 —-250 -215
A4 1/20 1.50 39.5 7.48 0.0230 -250 -200
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Fig. 2.2.5  Arrangement of measuring points (cases B-1, B-5 and B-11).




Table 2.2.2  Conditions of experiments of series B.

case slope T (s) | hs (cm) | H; (em) | Ho/Lo | p (cm) | z, (cm)
B-1 1/20 2.00 40.0 8.50 0.0139 -270 -220
B-2 1/20 2.00 40.0 5.63 0.0092 -200 -165
B3 | 1/20 | 117 | 400 9.87 | 0.0502 | -275 D
B4 1/20 0.91 40.0 6.69 0.0542 -200 -1
B-5 1/30 1.61 40.0 8.80 0.0232 —410 -1
B-6 1/30 1.97 40.0 6.17 0.0104 -290 —-230
B-7 | 1/30 | 1.96 | 40.0 822 | 0.0140 | —410 -1
B-8 | 1/30 | 1.12 | 40.0 8.26 | 0.0457 | -350 =)
B9 | 1/30 | 1.23 | 40.0 6.05 | 0.0279 | -290 —D
B-10|1/10+flat | 2.01 47.1 10.82 0.0179 —440 -385
B-11|1/10+4flat | 1.20 47.1 9.24 0.0447 —415 -365

1) spilling breaker

In addition to the table, the wave height to the water depth ratios, Hj/hs, at the
breaking points were 1.02, 0.901 and 0.954 in cases A-1, A-2 and A-3, respectively.
The breaking points (abbreviated to “B.P.”) and the plunging points (“P.P.”) were
indicated in the figures. After breaking, the wave propagates shoreward forming
successive vortexes on the water surface. In case A-3, the point where these vortexes
formed a rather stable bore-like waves and the point where the vortexes formed just
in front of the wave crests began to attenuate were at # = —170 cm and z = —80

cm, respectively. The mean shoreline was at £ = 50 ¢cm in case A-3.

2.2.3 Data Processing and Analysis

A hot-film-velocimeter with a split film probe was used to measure the histories
of two-dimensional velocity vectors lying on the zz plane for cases A-1 and A-2.
The split-hot-film sensor consists of two platinum films on a single quartz fiber
whose length is 1.2 mm and the diameter is 0.15 mm. The output from the two

films provides a set of data of the magnitude of the velocity component normal to




the axis of the fiber, and of the component normal to the split plane. The magnitude
of the velocity component parallel to the split plane is calculated from these two
values though its sign cannot be detected. In case A-1, the sign of the cross-shore
component of the velocity could not be determined. An assumption was therefore
made that the surface profile and the cross-shore velocity are in phase. Hence, the
sign of the velocity was reversed once in every wave period according to the surface
profile. In case A-2, velocities were measured twice, once for the cross-shore and

the other time for the vertical direction to avoid such an uncertainty.

Velocities for cases A-3 and A-4 and all cases of Series B were measured
by a two-component laser-Doppler-velocimeter equipped with a 4 W Ar-ion laser
tube. The laser beam projected from the laser tube is separated to a green light
(the wave length A = 514.5 nm) and a blue light (A = 488 nm) by color filters.
Since the two lights do not interfere each other, the two-component laser-Doppler-
velocimeter works as if two completely individual velocimeters. Consequently, used
with frequency shifters, full information of velocities for two component can be
obtained. Moreover, the laser-Doppler-velocimeter has a great advantage for the
measurements of turbulent velocity fields that it works without physical contact
to the fluid. If the laser beams have transverse intensity distributions which obey
the Gaussian distribution, the form of the probe of the velocimeter is considered
to be ellipsoid. The longitudinal diameter of the probe was about 3.7 mm (green
beam) or 3.5 mm (blue beam) and transverse diameter was 0.17mm (green beam)

or 0.15mm (blue beam) in the present experiments.

The module was used as three-beam backscatter mode with frequency shifting.
The laser-Doppler-velocimeter was capable of evaluating two components of veloc-
ities in the normal to the optic axis of the module by detecting the Doppler-shift
frequency of the green and the blue lights scattered by particles in the focus of

the laser beams. In order to obtain the scattered light with sufficient intensity, a




small amount of white paint which contained acrylic emulsion was seeded in the
flume. Detailed measurements of velocity' components (u,w) in a vertical plane
were conducted by injecting the laser beams perpendicularly through the side wall
of the flume. Though the laser beams projected with a little angle of depression for
the measuring points close to the bottom, the deviation of velocities is negligible.
Generally, it is difficult to measure the velocity at a point very close to the solid
boundaries because of increasing noise by the diffused reflection. It became a seri-
ous problem especially for case A—4 in which the velocities near the bottom were
primarily measured for investigation of the bottom boundary. Plastic mirrors were
therefore placed on the bottom in case A—4 to prevent reflected laser lights from
disturbing the signal. It was proved to be successful in getting velocity data with

high S/N (signal to noise) ratio.

The velocity data were sampled every 10 ms for all cases except for case A-2
in which the sample timing was 12 ms and were converted into digital data over 30
(for cases A—1 and A-2) or 100 (for the other cases) wave periods. The data of the
water surface elevation over the measuring point were also taken simultaneously
by using a capacitance-type wave gage. The ensemble mean (equi-phase-mean)
value of velocity which is expressed by (u) in z-direction or (w) in z-direction was
calculated as the average of the velocity at the same phase of every wave. The steady
current components (U, W) were calculated from those ensemble mean values. The
turbulence components denoted by u' and w' was determined as the deviation from

the ensemble mean value.
\

The Reynolds stress was calculated from the turbulence as —pu'w!\in case that
the laser-Doppler-velocimeter was ﬁseg,,, where p is the water density. \The mean
Reynolds stress —pulw’ was obta;jﬁé\/d by averaging the Reynolds stress over one
wave period. From the steady current and the mean Reynolds stress, the mean

eddy viscosity coefficient v, was evaluated by using the eddy viscosity model. It




means that the mean eddy viscosity coefficient was obtained not by averaging the
instantaneous values of the eddy viscosity coefficient but from the vertical gradient

of the steady current and the mean Reynolds stress.




2.3 Velocity Field and Turbulence Structure in the Surf Zone

The results of the experiments will be shown in this section. The spatial dis-
tributions and time histories of ensemble mean velocities, vorticities and turbulent
intensities were obtained. The time averaged values of each quantity were also
obtained. The mean Reynolds stress and the mean eddy viscosity were calculated
for cases in which the laser-Doppler-velocimeter was used. From these results, the

characteristics of the velocity field in the surf zone will be discussed.

2.3.1 Difference of Turbulence Component due to the Definition

Figure 2.3.1 shows a comparison between the ensemble mean values of velocity
(u) and the moving averages i of 0.11 s (time averages over 0.11 s of the instanta-
neous values of the velocity) at the point £ = —100 cm and 2 cm above the bottom
in case A-3. It is found in the surf zone that the variation of the velocity in one
wave by the organized motion, which is caused by the fluctuation of the breaking
point ete., is far larger than the turbulence in higher frequency which is beyond 10
Hz. Considering the previous concept of turbulence in which the turbulence does
not include the organized variation, the definition of turbulence by the ensemble-
mean method may not be proper. Sakai et al. (1984) defined the turbulence by
the moving-average method to obtain the Reynolds stress in the surf zone. How-

ever, the mean Reynolds stress calculated by using the ensemble-mean method as

—p(u — (u))(w — (w)) is far larger than that by the moving-average method calcu-
lated as —p(u — %)(w — @) as shown in Fig.2.3.2 for case A-3. The values by the
moving-average method is so small that it can hardly be distinguished in the figure.
It means that the fluctuation in low frequency by the organized motion is predom-
inant for the momentum exchange in the surf zone. It can therefore be considered

that the ensemble-mean method is better for defining the turbulent component to
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investigate the steady current distribution by using the eddy viscosity model which

will be discussed later in the present study.

2.3.2 Organized Vortex Motion Caused by Wave Breaking

Figure 2.3.3 gives a result for case A-1. The field of the ensemble mean veloc-
ities, the vorticity field and the turbulent intensity field at the time immediately
after the wave plunging are shown in the figures. A large scale vortex can be ob-
served obviously by the velocity vectors around ¢ = 22 cm and z = 3 cm in the
figure. The high positive (clockwise in the figure) vorticity and turbulent intensity
regions are in good agreement with the velocity vectors which suggest the existence

of the plunger vortex.

Large magnitude of the velocity vectors can be seen at the wave crest. An-
other large value of the vector is seen at z = 26 cm. It can be considered that
this small wave crest is caused by the large mass of water which penetrates into
the water surface by the wave plunging pushing up the neighboring water body as
Peregrine (1983) described. These crests have large magnitudes of positive vortici-
ties, although turbulent intensities are not so large. There should be large vortexes,
which rotate clockwise in this figure, also at the crests. On the other hand, negative
(counterclockwise) vorticities can be seen between these vortexes. These negative
vorticities should be made to cancel the positive vorticities caused by the large
vortexes, although the spatially averaged vorticity is positive. The most intense
turbulence exists between the regions which have positive values of vorticity and

negative values of vorticity.

Figure 2.3.4 is the successive figures of the ensemble mean velocities after plung-
ing. The process that the first plunging pushes up the neighboring water body and
the second plunging occurs in a smaller scale is shown. The plunger vortex formed

by the first plunging does not move according with the crest and goes downward.
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The contour maps of the turbulent intensity at the same phases are shown in Fig.
2.3.5. The high turbulent regions caused by the first and second wave plunging
go ahead slowly behind the wave crests, spread, and then dissipate. These figures
show that the most part of the turbulence was produced near the surface and the

turbulence generated near the bottom is little.

Figure 2.3.6 shows the distribution of the dropout rate for the measurements
by the laser-Doppler-velocimeter for case A-3. The dropout rate is defined as the
ratio of the time in which the intensity of the scattered light was not sufficient to
resolve velocity component to the total time of the measurements. Although it
is natural that the figure indicates so large values of the dropout rate above the
trough level where the measuring points were beyond the water surface for a while,
the values are also large in the region from z = —120 cm to # = —180 cm below the
trough level. It can be considered that a large amount of air bubbles injected from
the water surface obstructed the laser beams, which also confirms the existence of

the plunger vortexes.

Figure 2.3.7 gives the successive contour maps of the turbulent intensity for
case A-2. The figure shows a high turbulent region in front of the wave crest. It
should be noticed that this turbulence is caused by the vortex motion as described
by Nadaoka (1986) which is formed there. In the figure, it is also confirmed that
the turbulence spreads downward, so the vortex motion in front of the wave crest
should influence the turbulent flow field there and the bottom boundary layer. The
figure indicates another turbulent region from & = —40 cm to ¢ = —80 cm at the
phases ¢/T" =0.0-0.6. Since this high turbulent region stays there after the wave
crest passes, it can be said that this turbulence is due to the interaction between
the bore-like wave and the return flow from the swash zone. The high turbulent

region caused by the wave plunging is also ascertained in this figure.
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Based on these facts, it can be concluded that the generation of the plunger
vortex has much influences on the characteristics of the velocity field and is much
concerned with the energy dissipation process under plunging waves. The vortex
motion formed in front of the wave crest has also important roles in the energy
dissipation process. As the vortexes must have some rotational kinetic energy, it
also relates to the energy transfer of breaking waves in the surf zone. Both of these
vortex motions should not be included in the wave component, but they are not
turbulence, either. In the present study, they are called “organized large vortexes”.
Since the vortex which is formed by the wave plunging is usually called “plunger
vortex”, the term “organized large vortexes” generally means the vortex motion

formed in front of the crests of the bore-like waves hereafter.

Up to now, the velocity field in the surf zone were often described as the sum
of a steady current, periodic wave motion and turbulence. This time, however, the
measured results showed that the periodic component consists of the irrotational
wave motion and organized rotational motion due to the wave breaking. It can
be said that the organized vortexes are an important fluid motion connecting the
wave motion and turbulence. Hence, it is proposed that the velocity field in the
surf zone should be divided into four components as [steady current] 4 [irrotational

wave motion] + [organized vortex motion] + [turbulence].

In the present study, the turbulence is defined as the deviation from the ensem-
ble mean values of velocity. This definition is based on the idea that the waves are
completely periodic so that the vortexes are formed at the same position and phase
at every time. However, the turbulence defined here includes a part of the organized
motion, which is caused by the fluctuation of the breaking point etc. as already
shown in §2.3.1. The situation becomes much more complicated in case of irregular

waves for which the ensemble mean does not make any sense. Hence, it may be




better to define the “organized vortex motion” as “a coherent structure with large-
scale eddies which depends on the flow geometry concerned” as defined by Nadaoka

et al. (1989) when the physical process of the wave breaking is considered.

2.3.3  Vertical Distribution and Average of Undertow

Figure 2.3.8 shows the steady current distribution for case A-3. It can be seen
that the shape of the undertow profiles in the inner region is significantly different
from that around the breaking point. The gradient of the profiles —aa—g— below the
trough level is negative in the outer region, but it is positive or zero in the inner
region except near the bottom. The large magnitude of the gradient shows that
large shear stress works near the mean water level. The steady current distribution
for case A—4 is shown in Fig.2.3.9. In the inner region the velocity at the elevation
of 1 mm above the bottom indicates large value in the offshore direction, while it
still directs onshore at the plunging point. This is because the bottom boundary
layer in the inner region does not develop well due to agitation of the turbulence
from the upper layer. The influence by the bottom to the steady current can be

seen up to 3 mm above the bottom there.

The cross-shore variation of the mean steady current Uy, averaged vertically
from the bottom to the trough level was shown in Fig. 2.3.10 for case A-3. The
vertically averaged undertow in the bore region is larger than that at the plunging
point. It keeps almost the same value from the breaking point to the plunging point,
then rapidly increases from the plunging point despite the monotonous decrease of
the wave height. It continues to take a large value in the region where the bore-like
waves were fully developed, and then gradually decreases to the shore line. The
increment of the value should be caused by the organized large vortexes formed in

front of the crests of the bore-like waves.
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The distribution of the steady current for case B-11 in which the breaking
waves recovered on the flat bed is shown in Fig.2.3.11. The bore-like waves almost
completely recovered at © = —115 cm. The profiles of the undertow in the recovery
zone are much more similar to those at the outer region rather than those in the
inner region. The wave height to the water depth ratio at the breaking point was
0.904. On the other hand, it was 0.294 in the wave recovery zone (z = —105 cm).
The small magnitude of the steady current in z > —205 cm means that the mass

transport by the bore-like waves is little.

Figure 2.3.12 gives the distribution of the turbulent intensity for case B-11.
Since the turbulence is defined as the deviation from the ensemble means, the
turbulence of the horizontal component near the bottom is large by fluctuation for
each wave. The turbulent intensity at the trough level is still large in ¢ > —205 cm
where the steady current is small, It is consistent with the visual observation that
the profile and magnitude of the distribution at z = —105 cm are about the same
as those at the breaking point (z = —415 cm). It can be considered that the mass

transport by the organized large vortexes are almost zero in z > —205 cm.

2.3.4 Distributions of the Reynolds Stress and the Eddy Viscosity Coefficient

Figure 2.3.13 shows the distributions of the mean Reynolds stress of cases B-2
and B-7. The distributions of the mean eddy viscosity coefficient of those cases are
given in Fig.2.3.14. In the figures, it can be seen that both of them decrease linearly
from the trough level to the bottom in the inner region. And on the bottom, the
value of the mean eddy viscosity coefficient is very small compared with that at the
trough level. This should correspond to the fact that the turbulence produced by
the large vortex on the front face of the wave crests is far larger than that generated
near the bottom. But with respect to the mean Reynolds stress, it is observed that

the offshoreward shear stress is too large to be neglected. The result of this study for
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the vertical variation of the mean eddy viscosity coefficient is in contradiction to the
analysis by Svendsen (1987) that the mean eddy viscosity coefficient is independent

of the vertical coordinate.

2.3.5 Wave Height Attenuation and Cross-Shore Distributions of

the Turbulence Energy

Figure 2.3.15 shows the cross-shore distribution of the vertically averaged mean
1 [ — 1 [ —
turbulence energy u',° | = —/ u?d7 ) and w!* [ = -—/ w'2dz' ) for cases
di Jo di Jo
B-2 and B-6. The wave height variations are also given in the figures. The wave
height rapidly decreases after wave breaking in both cases, however the turbulence
does not increase until near the plunging points. The tendency is similar in case of
the spilling breakers, although the change becomes gentle as shown in Fig. 2.3.16

for cases B-3 and B-7.

Since the energy of the turbulence which is rapidly transferred to heat cor-
responds to the energy dissipation and the wave height attenuation implies rapid
decrease of the wave energy, the figures indicate that the wave energy loss is not
equal to the local energy dissipation. It is inconsistent with the previous models of
the energy decay or the wave attenuation in the surf zone in which the wave energy
directly dissipates to heat. One reason may be that the wave height attenuation
does not mean the wave energy decay. However, the primary reason should be the
existence of the organized large vortexes including both of the plunger vortexes and
those formed as bore-like waves. These vortexes must have some energy which was
not considered in the previous models. The little turbulence energy in the outer
region means that the total energy of breaking waves which includes the vortex
energy does not decrease so much. Hence, the transformation of waves in the outer
region should be the process in which the energy of wave motion is transferred to

the energy of the organized large vortexes. The concept in the previous models




of the energy dissipation that the wave energy decay equals the generation of the
turbulence energy is not adequate. The further investigation about the magnitude

of the energy of the organized large vortexes will be discussed later in Chapter 3.
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2.4 Experiments on Length of Outer Region

2.4.1 Definition of Transition Point

The surf zone is divided into the “outer region (transition region)” where a
rapid transformation of the wave profiles take place and the “inner region” where
rather stable bore-like waves propagate according to the dynamics of wave break-
ing. This concept was first introduced by Svendsen et al. (1978) from the visual
observations of wave behavior after breaking. The experimental results shown in
§2.3 revealed the difference between the two regions in the distributions of the tur-
bulence and the steé&y current. Since it can be considered that the mechanism
of wave breaking in the outer region is essentially different from that in the in-
ner region, it is necessary to distinguish them for modeling the energy transfer or

dissipation process in the surf zone.

Svendsen (1984a) found that the mean water level is almost horizontal over
some distance (5-8 times the mean water depth at the breaking point) from the
breaking point, although a rather sharp increase in its slope occurs in the onshore
side. He termed the point where the slope of the mean water level changes as the
“transition point”, and defined it as the limit between the outer and the inner region.
Basco (1985) divided the surf zone into three regions which were termed Zones I, II
and IIT according to the slope of the mean water level and the wave height variation.
He mentioned that Zone I covers roughly 25-30% of the wavelength at the breaking
point and it corresponds to the outer region defined by Svendsen (1984a) from the
slope of the mean water level. However, he also mentioned that “the transition
point will probably occur during the latter stages of the breaking process”, which
suggested that the boundary between the outer and the inner region may not be

the onshore side of Zone I according to his understanding,.




Yamashita et al. (1988) described the motion of the organized large vortexes
formed by spilling breakers precisely by using a video recording system. They
also separated the surf zone into three regions according to the behavior of the
vortexes, which are the “rapid transformation region”, “large vortex region” and
“quasi-steady vortex region”. They found that the size of the vortexes and the
time intervals of their generations rapidly decrease in the former two regions, on

the other hand, they become almost stable in the “quasi-steady vortex region”.

As mentioned above, the boundary between the outer region and the inner
region has not been investigated systematically yet, and its definition is not obvious,
despite the importance in the energy process in the surf zone. The plunging point
which is also important for the dynamics of wave breaking as the point where the
turbulence increases abruptly has not been investigated systematically, either. In
the present study, the transition point which is the boundary between the outer and
the inner region is defined as the “point where fully developed bore-like waves are
formed”, and is interpreted as the offshore end of the quasi-steady energy decaying
region. Since the criterion is based on the visual observation of the large vortexes
formed in front of the wave crests, it is considered that the transition point defined
here corresponds to the boundary between the “large vortex region” and the “quasi-

steady vortex region” described by Yamashita et al. (1988).

The transition points and the plunging points were measured for various inci-
dent waves on different bottom slopes. The relation between the distances from the
breaking point to the transition point and the bottom slope or the wave steepness

will be investigated. The distance to the plunging point will also be investigated.

2.4.2 Experimental Facilities, Procedures and Conditions

Laboratory experiments were performed in a two-dimensional wave flume which

was 12 m long and 20 cm wide with a glass side wall. The beach models were made




of 1/10, 1/20, 1/30 and 1/50 constant slopes which had 1/20 slope of 1 m at their
feet in cases of the 1/30 and 1/50. The breaking point, plunging point (in case of
the plunging breaker) and bore developing point were measured for various regular

wave conditions.

The breaking point was defined as the point where the wave height took its
maximum value, and the “bore developing point” which is the limit between the
outer region and the inner region was determined as the point where bore-like
waves which looked stable enough were formed. It may not be proper for a strict
argument to decide the boundary by the visual observation because it is inevitable
to imply the subjectivity. However, the determination by the visual observation is
far more convenient than the way adopted by Yamashita et al. (1988) and it should
be considered that the change in the wave attenuation, the slope of the mean water
level or the distribution of the turbulent intensity is the secondary phenomenon

caused by the difference of the energy transfer process of the waves.

The breaking points and others were averaged over about 10 waves because
they fluctuated a little by the wave reflection or the oscillation by long period
waves in the flume. The periods and the heights of the incident waves were 0.6-1.8
s and 5-8 cm for every beach slope. The still water depth in the offshore constant
depth region was 18-21 cm. The detailed experimental conditions are listed in
Table 2.4.1-4 together with the experimental results. In the tables, kg is the still
water depth at the breaking point, I, the distance from the breaking point to the

plunging point and /; the distance from the breaking point to the transition point.




Table 2.4.1 Conditions and results of experiments of series C-1 (tan 8 = 1/10).

case T (s) | ki (cm) | H; (cm) | Ho/Lo | hop (cm) Iy /hoy | 1:/hob
C-1-1 | 0.617 19.67 5.92 0.1040 7.34 ) 4.77
C-1-2 10.705 19.68 6.38 0.0882 7.35 2.04 4.76
C-1-3 | 0.800 19.69 7.68 0.0840 8.25 2.31 4.85
C-1-4 | 0.901 19.69 7.48 0.0646 7.76 2.58 6.44
C-1-6 | 1.003 19.70 6.54 0.0454 7.37 2.71 6.51
C-1-6 | 1.105 19.72 6.79 0.0383 7.39 3.38 7.44
C-1-7 | 1.197 19.74 6.66 0.0316 7.22 3.33 7.35
C-1-8 | 1.295 19.75 5.97 0.0237 7.91 3.03 6.32
C-1-9 1.393 19.80 6.61 0.0223 6.98 3.72 7.16
C-1-10} 1.501 19.81 7.67 0.0218 8.17 3.43 7.09
C-1-111 1.617 19.83 6.23 0.0149 7.50 2.53 6.40
1)

spilling breaker

Table 2.4.2 Conditions and results of experiments of series C-2 (tan # = 1/20).

case T (s) | ki (em) | H; (cm) | Ho/Lo | hop (cm) Ip/hos | Lt/hob

C—2-1 |0.631 | 18.12 6.46 0.1100 9.73 U1 566
C-2-2 |0.700 | 18.13 6.66 0.0939 9.49 - | 580
C-2-3 | 0.794 | 18.14 6.80 0.0755 9.50 - | 6.32
C-2-4 |0.910 | 18.15 8.03 0.0679 | 10.75 - | 6.98
C-2-5 |0.998 | 18.16 7.57 0.0529 8.78 2.39 | 6.83
C-2-6 |1.101| 18.19 7.16 0.0404 9.55 _1 | 7.86
C-2-7 | 1.182 | 18.19 5.11 0.0247 | 10.05 249 | 7.96
C-2-8 | 1.276 | 18.24 7.48 0.0304 9.35 3.85 | 9.63
Cc-2-9 | 1.389 | 18.26 6.19 0.0208 8.88 2.37 | 7.89
C-2-101] 1.499 | 18.27 5.79 0.0163 8.14 246 | 7.37
C-2-111| 1.613 | 18.28 5.80 0.0137 6.91 2.89 | 7.23
1)

spilling breaker




Table 2.4.3 Conditions and results of experiments of series C-3 (tan 8 = 1/30).

case T (s) | hi (cm) | H; (cm) | Ho/Lo | hop (cm) Lp/hos | le/hos
C-3-1 | 0.614 19.82 5.29 0.0938 7.88 ) 9.62
C-3-2 | 0.701 19.84 5.86 0.0818 8.71 =) 9.18
C-3-3 | 0.796 19.85 6.25 0.0690 9.21 -1 9.22
C-3-4 | 0.895 19.87 6.36 0.0557 8.91 -1 l10.11
C-3-5 | 0.997 19.89 7.27 0.0511 10.39 - 9.63
C-3-6 | 1.100 19.91 7.30 0.0417 10.41 -1 9.60
C-3-7 | 1.192 19.97 6.94 0.0332 11.78 =D 9.76
C-3-8 | 1.300 19.99 6.07 0.0239 10.00 -1 11050
C-3-9 | 1.388 20.00 6.63 0.0226 10.18 - |11.30
C-3-10§ 1.493 20.02 6.65 0.0192 10.85 1.11 8.75
C-3-111 1.610 20.04 6.07 0.0147 9.08 2.20 8.82
C-3-12| 1.697 20.06 6.22 0.0133 8.12 1.97 9.24
C-3-13{ 1.800 20.08 6.83 0.0127 8.14 3.32 9.21

1

spilling breaker

Table 2.4.4 Conditions and results of experiments of series C—4 (tan f = 1/50).

case T (s) | hi (cm) | H; (cm) [ Ho/Lo | hos (cm) | Ip/hos | 1/ hos
C-4-1 |[0.624 | 20.07 6.41 0.1103 | 10.42 —1 1 13.43
C—4-2 ]0.712 20.16 6.43 0.0872 10.21 -1 13.71
C-4-3 | 0.810 20.21 6.73 0.0716 10.06 -1 13.42
C-4-4 | 0.898 20.26 7.24 0.0630 11.21 =1 14.27
C—4-5 | 0.997 20.31 7.44 0.0524 11.46 - 13.52
C-4-6 1.122 20.40 7.00 0.0383 10.75 -1 14.41
C-4-7 |1.196 20.44 6.66 0.0318 10.29 ) 15.07
C-4-8 1.300 20.48 6.18 0.0245 8.73 ) 13.74
C—4— 1.413 20.53 6.00 0.0197 9.78 D) 17.38
C-4-101 1.496 20.60 6.12 0.0176 9.85 ) 15.73
C-4-11| 1.605 20.67 5.82 0.0142 10.62 ) 10.83
C—4-12| 1.711 20.86 5.26 0.0111 7.71 3.24 11.03

1) spilling breaker




2.4.3 Distance from Breaking Point to Plunging and Transition Points

Figure 2.4.1 shows the dimensionless property, l;/hop, which is obtained from
the ratio of the distance between the breaking point and the transition point to
the still water depth at the breaking point as a function of the deep water wave
steepness Hy/Lo. As for the plunging points, the distance, [,, from the breaking
point divided by kg is shown by the dotted lines in the figure. The quantity I¢/hos
is nearly independent of the wave steepness and takes an almost constant value for
each slope, although it fluctuates a little. Since the incident wave height does not
vary so much, it shows that the distance to the transition point does not depend on
the wavelength. It can also be considered that the distance to the plunging point
is slightly influenced by the wave steepness though the influence due to the bottom
slope is not obvious because plunging-type breaking happened only in few cases on

a mild slope such as 1/30 or 1/50.

Figure 2.4.2 shows the relation between the dimensionless value (hop — hot)/hob
(hop and hoy: the still water depths at the breaking and transition points) and
the surf similarity parameter & (= tan ﬂ/\/m—o) in order to compare with the
criterion presented by Basco and Yamashita (1986). It is obvious from the figure

that it is difficult to express a general relation in terms of such parameters.

The relation between the averaged value of I,/ hgp for each slope and the bottom
slope is shown in Fig. 2.4.3. The marks in the figure express the averages and the

vertical lines express the fluctuations. The solid line expresses

Iy = ( L +4> hob (2.4.1)

5tan 3
by which the transition point can roughly be estimated.

As for the plunging points, the averages are nearly constant and do not depend

on the bottom slope, although the data for plunging breakers on milder slopes
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are few as mentioned before. Svendsen and Hansen (1986) adopted the relation
expressed by hop/hoy = 0.8, where hg, is the still water depth at the plunging
point, to determine the plunging point. The experimental result of the present

study is contrary to it.

If the wave plunging is subject to the free fall and the water particle velocity
at the top of the wave and the vertical distance for the water particle falling are
assumed to be the wave celerity by the small amplitude wave theory 1/ghgs and
the wave height Hy ~ hgs, respectively, the distance from the breaking point to the
plunging point I, must be v/2 hgp which depends only on the water depth. On the

other hand, the distance is expressed roughly as

I, = 2.5hg (2.4.2)

in Fig.2.4.3. It can be considered that the reasons why the factor in Eq.(2.4.2) is
larger are the plunging points were determined by the onshore end of the plunging

jets and the water particle velocity at the top of the wave crests should be larger
than \/ghos.

On the contrary, Eq.(2.4.1) can be interpreted as the sum of the distance given
by the water depth and the distance depending on the bottom slope (or the surf

zone width).







CHAPTER 3

Modeling of Undertow

3.1 - Introduction

In order to predict the sediment transport rate, material diffusion or wave
attenuation rate in the surf zone, it is necessary to estimate the velocity distribution
with high accuracy. Especially for the sediment transport rate and the bottom

friction, the prediction of the velocity near the bottom is necessary.

Longuet-Higgins (1953) derived a laminar solution of mass transport velocity
in the fluid with assumption that non-linear acceleration term in the conduction
equation is negligible compared with the viscous term. The solution obtained by
Longuet-Higgins cannot be applied to the turbulent flow in the surf zone. Svendsen
(1984c) presented a model of vertical distribution of cross-shore steady current in
the surf zone applying the eddy viscosity model. He used a boundary condition
which was the mass transport velocity on the bottom given by the Stokes wave the-
ory. Okayasu et al. (1986) gave one of the boundary conditions by the slip condition
on the bottom. Stive and Wind (1986) and Tsuchiya et al. (1988) investigated a
model with a boundary condition at the trough level. Nadaoka and Hirose (1986)
evaluated the diffusion coefficient in the surf zone. They also obtained the vertical

distribution of the steady current from that of the mean vorticity.

However, the above mentioned studies are not adequate to evaluate the velocity
distribution close to the bottom or the shear stress on the bottom. From this point
of view, Okayasu et al. (1988) presented a model in which the distribution of the
mean eddy viscosity coefficient was assumed to be a linear function of the vertical
coordinate and to be zero at the bottom, while the above mentioned models were

formulated with the depth-independent eddy viscosity. Svendsen et al. (1987) also




evolved Svendsen’s model considering the bottom boundary layer and the bottom
shear stress theoretically, but the application of the models is limited to the inner

region.

The variation of the wave height or the cross-shore distribution of the energies
in the surf zone is necessary to evaluate the undertow and to consider other various
practical problems as well. Mizuguchi (1980) presented a model to estimate the
wave height variation in the surf zone with formulation of the energy dissipation rate
by wave breaking. Izumiya and Horikawa (1984) presented a model for evaluating
the change of the wave energy in the surf zone without converting to the variation
of the wave height so that the model can estimate the radiation stress accurately.
These models were constructed on the concept that the loss of the wave energy is
locally balanced with the energy dissipation. However the organized large vortexes
whose importance was already verified in Chapter 2 should be taken into account
as the transmitter of mass, momentum and energy. A comprehensive model which
describes the wave and velocity field throughout the surf zone on the basis of the

accurate understanding of the energy process is therefore required for practical uses.

In this chapter, based on the results obtained in Chapter 2, a model which
estimates the two-dimensional distribution of the undertow will be presented. First
the transfer of energy in the surf zone will be described with consideration of the
physical process of the energy transfer in the surf zone. Then applying the time-
dependent mild slope equation, the energy variation and energy dissipation rate in
the surf zone will be estimated. The existence of the large vortexes gives a specific
feature to the energy dissipation process and to the mass flux in the surf zone.
Hence, the organized large vortexes formed in the wave crests will be considered

for an accurate description of the wave field and velocity field in the surf zone.

An attempt to combine the previous models for the undertow and the longshore




current was made by Svendsen and Lorenz (1989) to cope with much more general
conditions. The present model can easily be expanded to the comprehensive three-
dimensional model by virtue of the applicability of the time-dependent mild slope

equation.




3.2 Energy Transfer in the Surf Zone

The evaluation of the steady current distribution is very important for estimat-
ing the convective diffusion of materials, the sediment transport in the surf zone
and others. However, the wave field in the surf zone is so different from that in
offshore region that it is necessary to investigate the velocity field in all its aspects.
The most different point compared with the offshore region is the wave breaking in
the surf zone. The energy conveyed from the offshore region dissipates by the wave
breaking. The dissipation rate of the energy is far larger than that in the offshore
region. Strong turbulence is generated in the dissipation process. The turbulence

gives a specific feature to the velocity field in the surf zone as shown in Chapter 2.

The bore-like waves give another specific feature to the velocity field in the
surf zone. Organized large vortexes are formed in front of the crests of the bore-like
waves. The large vortexes transport a large amount of mass onshoreward; therefore
it is natural that the large vortexes also have considerable energy flux. Hence, it
can be considered that the organized large vortexes play an important role in the
generation process of the turbulence. The high turbulent intensity observed near
the surface confirms the concept. The organized large vortexes are the transporter

of the large mass, the transmitter of the energy and the generator of the turbulence.

First of all, an outline of the energy transfer in the surf zone will be described
qualitatively in this section. It will be mentioned later, in §3.5, how each part of
the energy will be estimated in the actual calculation in this model. For the proper
description of the energy transfer in the surf zone, it is necessary to take the energy
of the large vortexes into account as mentioned above. The total energy in the surf

zone should therefore be described as

Ey = E, + E, (3.2.1)




where Ey is the total energy, F,, the energy of wave motion and E, the energy of
organized large vortexes. Generally, the wave energy can be divided into two parts:

the potential energy F, and the kinetic energy Ey as
E, = E, + E; (3.2.2)

Energy exchange between the potential and kinetic energies takes place during
propagation of waves. The energy Ey in Eq. (3.2.2) is therefore defined as the
transferable kinetic energy. Though the energy of the organized large vortexes
should be classified as the kinetic energy in the general sense, it is denoted as
another variable here. The reason is that it can be considered that the energy of
the large vortexes is conveyed to smaller size eddies, never transferred back to the

wave motion.

In the early stage of the breaking process, the turbulent intensity is still small,
although the wave height rapidly decreases as shown in §2.3.5. It can be considered
that the energy transferred to the kinetic energy cannot be regarded as the wave
kinetic energy E} because the potential and kinetic energies of the wave motion is
in balance in some way as mentioned just before. A little part of the lost energy
should be directly transferred to the turbulence, but it is natural to consider that
the most part of the energy is transferred to the energy of the organized large
vortexes. Hence, in this model, it is assumed that the wave energy is first converted
to that of the organized large vortexes formed in front of the wave crests. After the

conversion, the energy is transferred to smaller size eddies, then dissipates.

Since the energy flux by wave motion is denoted by E\cy, the transfer rate
from the wave energy to the energy of the vortexes per unit length and unit width

is expressed as
d(Bwcy)

Tp = ———2- (3.2.3)




If the energy which is directly transferred from the wave energy to the turbulence

is little, the energy flux by the large vortexes can be denoted as

d(Eycy)
T = TB — DB (3.24)

where Dpg is the dissipation rate per unit area by wave breaking. If it is assumed
that the organized large vortexes propagate with the wave crests, the energy flux
should be described by E,c. But the group velocity ¢, is nearly equals to the phase
velocity ¢ in the surf zone and it is not clear how fast the vortexes are. Hence the

phase velocity is replaced by the group velocity for the simplicity of the model.
From Egs. (3.2.1), (3.2.3) and (3.2.4), Dp is also expressed as

Dy = _%ﬁ (3.2.5)




3.3 Mass Balance in the Surf Zone

The steady current distribution in the surf zone is much different from that
of any wave theories solved in the in;'iscid condition. The organized large vortexes
which are formed just in front of the wave crest of the bore-like wave propagating in
the surf zone affects the mass flux balance and the turbulence generation as shown
in Chapter 2. In this section, the general aspects of the mass balance in the surf
zone will be discussed. Then it will be considered that how it can be expressed in

terms of the energy.

3.3.1 Mass Flux in the Surf Zone

Since the wave field which is completely two-dimensional is considered in this
study, the velocity component in the longshore direction is assumed to be zero. The

continuity equation of time averaged values of the velocity components becomes

oU oW
L =0 3.3.1
Oz + Oz ( )

where U and W are the steady current components in the cross-shore and the
vertical direction, respectively. Since the boundary condition is given as U = 0 at
the shoreline, the integral property in the vertical direction of Eq.(3.3.1) is obtained

as
Ce
/ Udz =0 (3.3.2)
—ho

where hy is the still water depth and (. is the wave crest level. The above equation

Ce
Mt = / UdZ
‘ St

- _/Ct U(gz ©(33.3)

—ho

can also be expressed as

where (; is the wave trough level. The value M, is defined as the mass flux by waves

which is the mass transport above the trough level per unit time and unit width.




The second line in Eq. (3.3.3) can be considered as the compensatory flow of the

mass flux by waves and is termed “undertow” in the surf zone.

Outside the surf zone, the mass flux M, is caused only by the wave motion.
But in the surf zone, the mass flux by organized large vortexes is considerably large
as found in §2.3.3. In other words, the total mass flux by breaking waves should be

expressed as

Mt = Mw + Mv (334)

in which M, is the mass flux by wave motion and M, is the mass flux by organized
large vortexes. Actually, it is impossible to divide the mass flux in the two parts
exactly, because it is difficult to define the boundary of the organized vortexes

[Peregrine and Svendsen (1978)].

3.3.2 Mass Flux due to Wave Motion

The wave component of the water particle velocity calculated by the stream
function method which was presented by Dean (1965) is reliable as reported by
Isobe et al. (1979), but the computation takes much time. Moreover, the stream
function method needs full information of the time history of water surface elevation
which is difficult to obtain in the surf zone. If the mass flux by wave motion can
be estimated from the wave energy distribution, the problem becomes much easier.
Hence in this section, application of the linear long wave theory to the estimation
of the mass flux by wave motion will be considered by comparing with the stream

function method.

By using the linear long wave theory, the mass flux by wave motion is described

as

¢
Miw :/ udz




T o
Z/ct 7(¢=Q)dz
R

- % ¢ -7) (3.3.5)

where Myrw is the mass flux calculated by the linear wave theory, ¢ the water
surface elevation, ¢ the wave celerity and h the mean water depth. Since — expresses

the time average, ¢ is the wave setup.

Figure 3.3.1 shows the comparisons between the mass flux variation calculated
by the stream function method and the linear long wave theory from measured
water surface profiles in the surf zone. Examples are given for cases B-2, B-3
and B-5 presented in Chapter 2. The incident wave conditions have been already
shown in Table2.2.2. In Fig.3.3.1, the solid lines show the values calculated by the
stream function method and the dashed lines show those by the linear long wave
theory. Though difference exists between the solid lines and the dashed lines, they
agree qualitatively. From the experiments of Series B, it is found that the values
calculated by the stream function method can be approximated by the linear long

wave theory as

Mw ~ MSFM ~ 0-8MLLW (3.3.6)

where Mgpy is the mass flux calculated by the stream function method. The
coefficient in Eq. (3.3.6) is obtained by averaging the ratio of the two values for
all the cases of Series B. The values modified by multiplying 0.8 to My w are also
shown in Fig. 3.8.1 with Mgpy and Mpw. They agree well, so that the mass flux

by wave motion can be evaluated by using the linear long wave theory.

Since Eq. (8.3.5) also needs the time history of the surface elevation, it is of

little advantage. The potential energy of waves is defined as

T
E, :%/0 PQ(C—Z)CH

= %pg (¢—0¢)? (3.3.7)
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where T is the wave period. Then from Eq.(3.3.7), Eq. (3.3.5) can be replaced by

2¢
M, = —F 3.3.8
LLW ogh P ( )

This means the mass flux by the wave motion can be estimated from the potential
energy. Consequently, the mass flux by the wave motion can be evaluated by the

following equation:
1.6¢c

Mw:—p—g—hp

(3.3.9)

Equation (3.3.9) is obtained by regarding the area occupied by the organized
vortexes as the area of the wave motion. However, the area of vortexes should be
much smaller than that of wave motion. Svendsen ( 1984b) approximated the area,
of the vortex by 0.9H? based on the experimental results on a breaker behind a
- towed hydrofoil obtained by Duncan (1981). Okayasu et al. (1986) found that it
can be expressed by 0.06 HL which was confirmed by Hansen (1989) later. In both

cases, the area is small compared to the cross section of a wave.

3.3.3 Mass Flux due to Organized Large Vortexes

In this section, the velocity distribution inside the organized large vortexes
formed in front of wave crests will be assumed. From the assumption, the area of

the section and the mass transport by the vortexes will be estimated.

The velocity distribution inside one vortex is assumed as shown in Fig.3.3.2(a).
Although the vortexes generated in front of the wave crests decelerate and go down-
ward, the mean horizontal velocity can be assumed the same as the wave celerity

at the first stage. The diameter of the vortex is given by the wave height H,

The velocity can be divided into the rotational component u; and the parallel
component uz. Figure 3.3.2(b) shows the former part of the velocity and Fig.

3.3.2(c) shows the latter. The total velocity u is expressed as

U = Uy + Uy (3.3.10)
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Fig. 3.3.2  Assumption of velocity distribution of an organized large vortex.




Uy = —7r, Uy =c¢ (3.3.11)

where 7 is the radial coordinate. The energy, E;, of the rotational component per

unit width is given as

wlm

1
3 puq 22mr dr

El':/
0

1
- 16 7rpcr"H2 (3.3.12)

The parallel component E; is also given as

1
E, = §7rpc2H2 (3.3.13)

The total energy of one vortex per unit width Ej is obtained as

Es =E) + E,

3 2 772
= — 3.3.14
g TP H ( )

Even if the vortex is skewed or the real velocity distribution is slightly different
from the assumption, it influences only the constant value in Eq.(3.3.14). The total
energy should be proportional to ¢ H2. Svendsen (1984b) presented the model that
there is one skewed vortex, so-called “surface roller” in front of the waves. On the
other hand, Nadaoka (1986) described that there should be plural vortexes (Fig.

3.3.3). The following discussion applies to both models.

The section of one vortex A; is given as

A = - H? (3.3.15)

s
4
From Egs. (3.3.14) and (3.3.15), the energy, e,, of the vortex per unit mass is

obtalned as

€y = —— = —¢ (3.3.186)
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If there are some vortexes in one wave crest, for example as shown in Fig. 3.3.5, the
energy, E,, of the vortexes per unit width and unit length can be expressed as

Ae,

: (3.3.17)

E,=p

where A is the total area of the vortexes per wave and L is the local wave length.

Substituting Eq.(3.3.16) into Eq.(3.3.17), A is expressed as

4
A=tlp (3.3.18)
3 pc? .

The mass flux, M,, due to the vortexes is expressed by the following equation:

pcA 4
M, = P4 - S|, 3.3.19
v L 3c ( )

The above formula implies the mass flux due to organized large vortexes can be
estimated from the energy of the vortexes. In actual calculation, the factor % in
Eq. (3.3.19) is modified to 2 so as to fit the measured values. Hence, Eq. (3.3.19) is
replaced by

M, = 2E, (3.3.20)

Finally, from Egs. (3.3.4), (3.3.9) and (3.3.20), the total mass flux due to
breaking waves can be described in terms of the potential energy and the energy of

organized large vortexes as

6 2
Moep + 2E, (3.3.21)

M, =
" pgh c




3.4 Momentum Balance in the Surf Zone

In case of cross-shore vertically two-dimensional (2-VD) models such as dis-
cussed in this study, the longshore variation of the momentum flux need not be
considered, but the momentum flux variation in the cross-shore direction causes
the wave setup which can not be neglected to describe the wave field accurately.
The radiation stress which is defined as the excess momentum flux due to waves is

expressed as

¢ 1
Ser = (pu? + p)dz — = pgh? (3.4.1)
—ho 2
where p is the pressure. The gradient of S,, in the z-direction should balance the

gradient of the mean water elevation, that is

dS;,
dz

d_

By the small amplitude wave theory, the radiation stress S, is expressed in terms
of the wave energy E,, as

1 2kh
Sz = (§ + sinthh) Ew (3.43)

for monochromatic waves. For the shallow water condition, the value inside the

parentheses in Eq.(3.4.3) can be replaced by 3/2.

Most of the previous étudies adopted a simple equation (3.4.3) for calculating
the wave setup in the surf zone because of the inordinate complication of wave
field. But in making an effort to describe the momentum balance correctly, at least
one should consider the momentum flux by the organized large vortexes in the surf
zone. If the velocity field of wave motion and the velocity field of large vortexes do
not affect each other as already introduced in §3.2, the radiation stress can also be
divided into two parts as

S.’BI = Sw + Sv (344)

o




where S, is the excess momentum flux by wave motion and S, is that by organized

large vortexes.

Generally the small amplitude theory cannot express the wave motion ade-
quately in shallow water condition because of the strong effect of the non-linearity
of waves. The finite amplitude theories can express it much more accurately off-
shoreward of the breaking point; however, they cannot either be applied to the
description of the wave field in the surf zone as mentioned before. The small am-
plitude wave theory is therefore adopted for convenience to calculate the radiation
stress by wave motion in this study. The radiation stress, S,,, due to wave motion is
calculated in this model according to Watanabe and Dibajnia ( 1988) for a complex

wave field.

To calculate the total radiation stress S,, by Eq. (3.4.1), it is necessary to

estimate the radiation stress, S,, due to organized large vortexes. S, is defined as

;
Sy = j {pu? + (p — p,)} dz (3.4.5)

where (j is the boundary between the velocity field of wave motion and that of
vortexes and p, the static pressure. If a vortex is flat, the quantity Z—l: is so small
that the the term (p—p,) is negligible except at the both ends of the vortex. At the
front and rear ends, %—tui is large so that the pressure deviates a lot from the static
value. It can be considered that it makes the fluctuating upper surface boundary.
Since the deviation of the pressure is negligible in the most part of a vortex, the
following equation can be obtained:

¢
S =/ pu? dz (3.4.6)
¢

b

Here, the velocity distribution is assumed again as shown in Fig. 3.3.2 (a). The

radiation stress by one vortex S is denoted as

1
S :—/ pu? dedz
1=7 "
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:—/ p(u1 + ug)” dedz
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where A; is the area occupied by the vortex. From Eqgs. (3.3.16) and (3.3.17), the

energy of the vortexes is expressed as
E, = =2 (3.4.8)
Then the total radiation stress by the organized large vortexes is obtained as
Es
L
=-F, (3.4.9)

As well as for the wave induced momentum flux, the momentum flux due to orga-

nized large vortexes is expressed as a function of the energy of the vortexes.




3.5 Estimation of Energy Distribution in the Surf Zone

In this section, the wave energy distribution will be estimated by using the
time-dependent mild slope equation. The time-dependent mild slope equation can
deal with wave transformation under combined reflection, refraction, diffraction and
breaking in horizontal two-dimensional (2-HD) models. The present model which
is developed by considering the phenomena in the surf zone more precisely has also
an advantage that it can easily be combined with the 2-HD nearshore wave field
models such as Watanabe and Maruyama (1986) and extended to three-dimensional

(3-D) nearshore current models.

Since the mild slope equation was originally derived by using the linear wave
theory, the energy calculated by the time-dependent mild slope equation should be
considered as the energy of wave motion which is denoted as E,, in Eq. (3.2.1).
Consequently, the energy of the organized large vortexes is not included in the
calculation because it can be considered that the energy of the large vortexes is
never transferred to the wave motion as already mentioned in §3.2. The estimation
of the energy of the organized large vortexes needs another equation based on Eq.

(3.2.4). The method will also be discussed in this section.

3.5.1 Governing Equations of Time-Dependent Mild Slope Equation

The mild slope equation was first obtained by Berkhoff (1972) for a stationary
wave field as
v. (cchqASO) tot do =0 (3.5.1)
¢

3]
Oz , 0y
¢ the phase velocity, ¢, the group velocity, ¢ the angular frequency and @o the

where V = <

) , ¥ is the horizontal coordinate in the longshore direction,

amplitude of the velocity potential at the mean water level given by the small-

amplitude wave theory. Watanabe and Maruyama. (1986) derived a set of equations




equivalent to Eq.(3.5.1) in terms of the water surface elevation and the flow rate

Q as follows:

8Q + V( ¢)=0 (3.5.2)
3(
S +tV-Q=0 (3.5.3)
where
1 2kh
"3 (1+ sinh2kh) (3.54)
Q = (Q:,Qy) (3.5.5)
0 0
Q. = /_hudz, Qy = /_hvdz (3.5.6)

and u and v are horizontal velocity components in z and y direction, respectively. A
set of equations completely equivalent to Eq. (3.5.1) was also presented by Nishimura

et al. (1983) as

?_Qi 4 EVE =0 - (357)
a( B
>4 V (nQ) = 0 (3.5.8)

The variable Q' has a difference of order of Vn from the flow rate Q in Eq.(8.5.5).

Watanabe and Maruyama (1986) added a term to Eq. (8.5.2) so that the
equations could express the energy attenuation due to the breaking. The equation

1s as follows:

2 4 V( 0+ frQ =0 (3.5.9)

The third term of Eq.(3.5.9) is generally called “the energy dissipation term”, but
it is termed “the energy transfer term” in this study because the lost energy does
not dissipate directly but is once transferred to the energy of the organized large
vortexes in the present model. The value fr which is also termed “the transfer

factor” by the breaking is determined as

fr = artanf (3.5.10)




Q=+/R2+Q, Q- =4k (3.5.11)

where tanf is the averaged bottom slope, @, and Qy are the amplitude of the flow
rate components. ap and 4' were set to 2.5 and 0.25, respectively. By setting
fr = 0 after breaking (if Q< Qr), wave recovery can be described as well as wave
decay in the surf zone. In case of progressive waves, Egs. (3.5.3) and (3.5.9) reduce

to the wave energy equation, that is expressed as

I(Eycy) _

- w 3.5.12
. frnE ( )

where E,, is the wave energy per unit area. Considering the physical meaning and

the experimental results, Isobe (1987) presented the following equation

froo=nfr = —-gtanm/% (;’ __A:/r ) Fa(kh) (3.5.13)

where v (= k+/2E,,/ tanh kh ) is the ratio of water particle velocity to wave celerity.

The quantity fg comes from the formulation in terms of the ratio of water particle
velocity to wave celerity instead of wave height to water depth ratio. The value fy

is unity for small kh. The values of v, and =, were given as
vs = 0.4(0.57 + 5.3 tan 3) (3.5.14)

¥ = 0.135 (3.5.15)

Watanabe and Dibajnia (1989) added the energy transfer term to Eq. (3.5.7)
in the same manner as Watanabe and Maruyama and obtained an one-dimensional

model as follows:

oQ a¢ B

= T +fr@=0 (3.5.16)
¢ lB(nQ) B
ot n Oz =0 (3.5.17)

The energy transfer factor fr was given as

fr = artanf %(7‘%> (3.5.18)




with the shallow water approximation of Eq.(3.5.13). The value ar is a coefficient
which varies from 0 to 2.5 around the braking point for preventing numerical re-
flections. In Eq. (3.5.18), v, was given by Eq. (3.5.14). According to Maruyama
and Shimizu (1986), v, was replaced by

o), (3519

where (%)b is the ratio of the wave amplitude to the mean water depth at the

breaking point.

The time-dependent mild slope equation was obtained by using the small am-
plitude wave theory. However, waves in the surf zone are no more small amplitude
waves, In that sense, the time-dependent mild slope equation may not be appropri-
ate for waves in the surf zone, but it is also a fact that there is no wave theory which
can express the waves in the surf zone adequately. It was reported by the above
mentioned researchers that the wave energy calculated by the time-dependent mild
slope equation fits well with the measured wave energy. Hence, in the present study,
Egs. (3.5.16) and (3.5.17) are essentially adopted as the governing equations to es-
timate the wave energy variation in the surf zone. The wave height distribution is

not discussed in this study.

The wave energy dissipation due to bottom friction should be taken into ac-
count for accurate estimation of the wave energy variation. The dissipation by
wall friction should also be considered in case of laboratory experiments. Since the
computational results will be compared with laboratory experiments in the present
study, the dissipation factor by the bottom and wall friction fy4,, is added to the

attenuation factor by breaking.

The bottom and wall boundary layers in the surf zone may not be laminar

flow, but the dissipation by wave breaking is so large that the damping due to the




bottom and wall friction is negligible. In the present study, the energy dissipation

by the friction is calculated from the theory for laminar flow.

Iwagaki and Tsuchiya (1966) dealt with laminar damping due to bottom and
wall friction for finite amplitude waves. When deducing in the linearized theory,

the dissipation factor by friction fy4,, is expressed as

1 1 k
foaw = -T-L_ 2vo ('E‘ + gl—m) (3.5.20)

where v is the kinematic viscosity and B is the width of the wave flume. The

dissipation rate by the bottom and wall friction is obtained as
Db+w = fb—{—wnEw (3521)

if no reflected wave exists in the field.

The lost energy by the wave breaking is transferred from the wave energy E,, to
the energy, F,, of large vortexes, but on the contrary, it can be considered that the
lost energy by the bottom and wall friction directly dissipates to heat. A series of

equations from Eq.(3.2.3) to Eq.(3.2.5) is therefore replaced by following equations:

d(Eycy)

e — Dy 3.5.22
- Tg b+ ( )

d(Eycy)

—_—— — 3.5.23
T Tg Dpg ( )

i(—f—tcg—) ~ —Dp — Dyt (3.5.24)

T

On the slope milder than tan f = 1/10, the reflection by wave breaking is so
small that Dy, is evaluated by Eq.(3.5.21). The variation of E,, is calculated by

the scheme expressed as
9Q | 298¢
ot o

8¢ 1 9(nQ)
ot n Oz

+ faQ =0 (3.5.25)

=0 (3.5.26)




which are obtained by replacing the energy transfer factor fr in Eq.(3.5.16) by the

total attenuation factor f4 determined as

fa = fr+ fotw (3.5.27)

The energy transfer factor, fr, of breaking waves expressed by Eq.(3.5.18) is used
after Watanabe and Dibajnia. The detailed description of the coefficients v, and
v» in Eq. (3.5.18) will be mentioned in §3.5.4. Since the wave energy is calculated
by Egs. (3.5.25) and (3.5.26), the energy transfer rate can be obtained by using Eq.
(3.5.22).

The shoreline and offshore boundary conditions are given according to Watan-
abe and Dibajnia (1989). They imposed the shoreline boundary condition as @ = 0.
As for the offshore boundary condition, a non-reflective boundary and sinusoidal
incident waves are considered. The incident wave condition is given in terms of the

water surface elevation ( as
((z0) = ((zo + Az) + ar[sin(kzg — ot) — sin{k(zo + Az) — o(t — 79)}] (8.5.28)

A

where 79 = —m, Az is the spacing between mesh points, and o and ay are the
Co

frequency and the amplitude of the incident waves, respectively. The subscript ¢

denotes quantities at the offshore boundary.

The method of the numerical computation and the adopted mesh scheme are
the same as those employed by Watanabe and Dibajnia. But the convergence of
solution is assumed when the absolute errors between the values obtained from two
successive cycles of the calculation at every point are less than a tolerance error
throughout the field. The required absolute error is equal to 0.02a; for both the

wave amplitudes and the setup calculation in the present study.

The functional form of ap which is different from that proposed by Watanabe

and Dibajnia will be mentioned later in §3.5.3. The wave celerity is modified to




prevent the variation of fr from increasing the numerical reflection. It will be

discussed in §3.5.5.

3.5.2 Estimation of Energy Dissipation Rate

Since the time-dependent mild slope equation was obtained by the small am- »
plitude wave theory, the energy calculated by the equation is the energy due to the
wave motion. From the discussion in §3.2 it is assumed that the wave energy is
first transferred to that of the organized large vortexes formed in front of the wave
crests. The transferred energy which is obtained from T should dissipate anyhow,
because the total amount of the transferred energy throughout the surf zone should

be equal to the total amount of the dissipation.

Here it is considered that after the transfer, the energy is converted to smaller
size eddies, and then dissipates. This idea is the same as so called “the energy
cascade model”. Hence, there should be retardation of dissipation. It also means
that the energy transferred to the large vortexes takes some distance during the

dissipation because the vortexes propagate onshore with the waves.

The problem is how long the transferred energy takes to dissipate. Yamashita
et al. (1988) performed detailed measurements of behavior of the organized large
vortexes in the surf zone and obtained a result that the time interval of the genera-
tions of vortexes in front of one propagating wave are almost constant in the inner
region and are much larger around the breaking point. The interval should have a

relation to the life of a vortex.

In the present model, the energy transferred at one point constantly dissipates
within the distance given as

Iy —

T
<
ld: (4mt_$2+4)h (il)__.’l?t)

(3.5.29)




where x| is the crest breaking point which will be discussed in the next section,
and z, the transition point which is given by Eq. (2.4.1). A schematic illustration
of Eq. (3.5.29) is shown in Fig. 3.5.1. The values of the constants in Eq. (3.5.29)

need further verifications.

A contribution from the energy transferred at z = &' (i.e. Tp(2')) to the local

dissipation rate is expressed as

0 (z <)
ta(z,z') = tzl‘f((;,)) (2! <z <2’ + lg(2")) (3.5.30)
0 (2" + la(a') < =)

Finally, the total dissipation rate, Dpg, by wave breaking is obtained as

Dp(z) = /m ti(z,z')da’! (3.5.31)

— 00

3.5.3 Energy Transfer Factor around the Breaking Point

In relation to the breaking of composite waves, Watanabe et al. (1984) proposed
a breaker index in terms of the ratio of water particle velocity to the wave celerity
so as to agree with the breaking criterion proposed by Goda (1970). This criterion
was determined to give an accurate prediction of the breaking point when the water
particle velocity and the wave celerity by the linear wave theory were used. For
convenience for the numerical calculations, Isobe (1987) approximated it by the
following formula:

= (2/e)

= 053 — 0.3exp{~3y/hr/Lo} + 5tan®/? Bexp{—45(y/hs/Lo — 0.1)} (3.5.32)
where 1 is the amplitude of horizontal water particle velocity at the still water level,
Lg the deep-water wavelength, and subscript b denotes the quantity at the breaking
point. The above equation is adopted in the present study to predict the breaking

point.
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Watanabe and Maruyama (1986) linearly changed the coefficient ar in Eqg.
(3.5.18) around the breaking point to avoid numerical reflection caused by the
sudden increase of the transfer factor f7. They set ar = 0 at the point Ly/4 before
the breaking point and linearly increased to 2.5 at the point Ly /4 after the breaking
point. The distance L is the local wave length at the breaking point. However,
the distance Lj/4 has no physical reason. The dissipation and the transfer of the

energy should occur from the breaking point.

The breaking points slightly differ in accordance with its definition. Seyama
and Kimura (1988) measured cross-shore variations of the wave height on constant
slopes in the surf zone for irregular wave condition. They defined the breaking
point as the point where the crests of propagating waves begin to break and gave a
formula presenting the wave height variation of irregular waves for various bottom
slopes. From their formula, the distance [, from the breaking point according to
their definition to the point where the wave height takes its maximum value was

given as

Iy =zp —
) 1.65exp(—2.3tan 8) + 0.01 tan 3 4 0.37
" tanf | 1.54 exp(—11.5tan 8) — 0.0458 tan 3(—8.41 tan f3)

1} (3.5.33)

—0.67exp(—3.1tan§) +0.01tan f + 1.37

in which z} is the point where the crest of propagating waves begin to break and

xp is the point where the wave height takes its maximum value.

The energy transfer from the wave motion to the organized large vortexes and
also the energy dissipation should occur from the point where the wave crests begin
to break. On the other hand, though the breaker index proposed by Watanabe et
al. deals with the ratio of the water particle velocity to the wave celerity, it can

be considered that their index presents the point where the wave height takes its




maximum value for an analogy from the criterion by Goda. The formula proposed

by Isobe is also for the same point,

Also in this model, the breaking point is defined as the point where the wave
height takes its maximum value, but the energy transfer and dissipation are made
to take place from offshoreward of the breaking point determined by using Isobe’s
formula for the exact description of the energy transfer around the breaking point.
The distance between the two points can be calculated by Eq. (3.5.33), and found

to be

{ 2.55h; (tanp =1/20) (3.5.34)

1.96h, (tanp = 1/30)
The distance is given by 2h, for the simplicity of the calculation in the present

study. Then the crest breaking point z} is given as
oy =z — 2hy (3.5.35)

The coeflicient ar in Eq. (3.5.18) is set to be 0 at the crest breaking point =} and
to be the maximum value 2.5 at the transition point z;. In other words, ar is

increased in the transition region and fixed in the inner region in the model.

0 (z < z})
z —
ap = { 2.5 b (zh <z < ay) (3.5.36)
Tt $b
2.5 (z¢ < )

The variation of ar is illustrated in Fig.3.5.2.

3.5.4 Ratio of Potential Energy to Kinetic Energy of Waves

The value of the potential energy is equal to that of the kinetic energy according
to the small amplitude wave theory, but the actual ratio of the kinetic energy to
the potential energy is not unity in general. Dibajnia et al. (1988) calculated the

ratio by using finite amplitude wave theories. They obtained the result that the




maximum ratio of the kinetic energy to the potential energy calculated by the finite

amplitude wave theory is 1.2 as far as the calculation converged.

Watanabe and Maruyama (1986) imposed the energy dissipation factor from
Ly /4 before the breaking point to cope with the rapid decreasing of the potential
energy after breaking. In this model, although the energy transfer from wave energy
takes place from the crest breaking point z}, the ratio R, = —% is made to change
linearly from 1 to its minimum at the wave plunging point. Because it can be

considered that the breaking waves keep the minimum value as for the ratio R,.

The relationship is expressed as

1 (o <)
1 T —
R, =41~ (1 - ﬁ) —— (zp <@ <zp) (3.5.37)
1
12 (zp < 2)

where x, is the wave plunging point. Though the distance from the breaking point
to the plunging point is not clear yet, the plunging point @, (= x4 +1,) is estimated

by Eq.(2.4.2) for convenience.

Adopting Eq.(3.5.37), the calculated potential energy is reduced to about 90%
of % E,,. The constant coefficient 0.4 in Eq.(3.5.14) for the value v, in Eq.(3.5.18)
which can be considered to express the strength of the wave decay was determined
so that the potential energy which was given by % E,, agreed well with the measured
value. It should be reduced in proportion to the decrease of the potential energy
calculated by means of Eq. (3.5.37), because the variation of R, accelerates the

decrease of the potential energy apparently. Hence, Eq.(3.5.14) is replaced by
e = 0.35(0.57 + 5.3 tan §) (3.5.38)

For the same reason, the constant coefficient 0.4 in Eq. (3.5.19) should be increased

to keep the potential energy in the recovery zone. +, in this model is determined




as

e = 045 (%)b (3.5.39)

3.5.5 Modification of the Wave Celerity

The energy dissipation by wave breaking occurs with little wave reflection,
but the calculation by using the time-dependent mild slope equation generates
numerical reflection. It is necessary to keep it small for the accurate description
of the wave field. Since a rapid change of the energy transfer factor generates
considerable wave reflection, one of the reasons why the coefficient ar in Eq. (3.5.18)
is made to change linearly around the breaking point is to diminish the numerical
reflection. In this section, another way to diminish the numerical reflection will be

discussed.

The governing equations of the time-dependent mild slope equation applied
to this model are given by Egs. (3.5.25) and (3.5.26). If considering a wave field
bounded into two regions in which only the transfer factors fr are different, namely
fr is zero in the incident wave side region and takes non-zero value f; in the other

region, the reflected wave ¢, generated by the sudden change of fr is expressed as

¢ = H (% - ak) P2 + bqu} + i{—bkpz + <—;— - ak) QZ}] e~(ketot) (3.5.40)

where p; and ¢; are the real part and the imaginary part of the complex amplitude
of the transmitted wave, respectively, and k is the wave number calculated by the

small amplitude wave theory. a; and by in Eq.(3.5.40) are given as follows:

2
LHy1+ 5 i
ap =4V T = (3.5.41)

2y/2
V2 2v201[1+1/1+ &

It is possible to decrease the energy of the reflected wave by changing the wave

number in the onshore region. Replacing k in Eq.(3.5.40) by k', the minimum ratio




Rpmin of the reflected wave energy to the transmitted wave energy is obtained as

1w

Ruyin = =53
4al+02

(3.5.42)

when

a
K = Wibi)k (3.5.43)

The details are shown in Appendix A. The wave celerity ¢’ calculated by using k'

in Eq.(3.5.48) is larger than that by the small amplitude wave theory.

It is known that the actual wave celerity in the surf zone is also different from
the value calculated by the small amplitude wave theory. Svendsen et al. (1978)
found that the measured wave celerity in the surf zone is larger than the value \/gh
obtained as the shallow water approximation of the small amplitude wave theory,

and evaluated it by the celerity of a periodic bore which is given by
Chore = \/ G L Ml (3544)

where d. and d; are the water depth at the wave crest and the wave trough, re-
spectively. In general, cpore > +/gh. Horikawa and Isobe (1980) mentioned that
the wave celerity in the surf zone can be predicted fairly well by the solitary wave

theory. The wave celerity by the solitary wave theory is described as
Csol = \/9(ds + H) (3.5.45)

From the discussion above, it can be concluded that using &' in Eq. (3.5.43)
instead of k is adequate in the sense that the wave celerity is getting closer to the
actual wave celerity in the surf zone. In the present model, the transfer factor
fr takes discrete values and gradually change in the surf zone. In this case, the
modified wave number k' should be calculated from the transfer factors at the

neighboring mesh points. However, little difference was recognized on the effect




between the methods, Eq.(3.5.43) is therefore adopted to give the wave celerity in
this model with replacement of f, in Eq. (3.5.41) by fr for the simplicity. Since
fr = 0 offshoreward of the breaking point, k' equals k in the offshore region.
Adopting the wave height to water depth ratio v = 0.78 in the surf zone, cyo1 can

be approximated as

Csol /g (1.39R)
~1.2/gh (3.5.46)

The upper limit of the wave celerity is therefore made as

cl

k
- = — < 1. 5.4
p k,_12 (8.5.47)




3.6 Dimensional Analysis of Turbulence Properties

In this section, representative values of length and velocity of turbulence, mean
energy dissipation by turbulence and mean eddy viscosity will be discussed by using

the dimensional analysis after Battjes (1975).

A dimensional analysis of turbulence in the surf zone concerning to horizontal
dispersion in the longshore direction was done by Battjes (1975). In the first half
of this part, the outline of his work will be introduced. Battjes adopted the energy
cascade model to the energy dissipation process in the surf zone. It means that the
turbulence consists of small-size eddies, the energy is transferred from larger size

eddies to the smaller size, and then dissipates to heat.

If the wave energy dissipates through turbulence, the energy dissipation rate
Dy by wave breaking per unit width and unit length could be expressed in terms

of energy dissipation rate of turbulence as
Dp =~ ph*EZ (3.6.1)

where h* is the representative water depth and e is vertically averaged energy
dissipation rate of turbulence per unit mass. By using the representative length !
and the representative velocity ¢ for the turbulence, i.e. eddies, the energy of the
eddies per unit mass and the representative frequency were given as ¢* and ¢/,
respectively. Then the energy transfer to heat through the higher frequency, that

is energy dissipation rate, ¢, per unit mass was determined as

3
e~ ¢ % - qT (3.6.2)

Battjes considered that the scale of the eddies was restricted by the vertical length
rather than the horizontal length. Replacing ! by k*, and putting h* = h, the

representative velocity was obtained as

.~ (22)1/3 (3.6.3)

P




By the eddy viscosity model, the Reynolds stress in the longshore direction
was expressed as
dv

—pu'v’ = vy % (3.6.4)

in which v}, is the eddy viscosity coeficient in the horizontal plane, v' and V are
the turbulent component and the steady component of velocity in the longshore
direction, respectively. It was considered that v, had a dimension of gl. Hence, v},

could be given from Eq.(3.6.3) as

1/3
vhp & gh = h (%li) (3.6.5)

By using the linear wave theory on a constant slope, the energy dissipation

rate was expressed as follows:

d(Eync) d /1 2
N —m——— Y e —_— .6.6
Ds dz dz <8ng c) (3.6.6)

Substituting H = yyh and ¢ = 1/gh, Battjes obtained
d (1 315 2,50
Dp ~ — o (gpg Tirh

_ 5 322 320R
5 P9 Yirh T

= TSé- pg®/? tan By % H3/? (3.6.7)

where g is the wave height to water depth ratio. Battjes dealt with the horizontal
dispersion, but the analysis can be applied in the vertical direction. The energy of

turbulence and eddy viscosity coefficient will be discussed hereafter.

The vertically averaged energy ,e, of turbulence per unit mass is described from

2/3
e gl R (%) (3.6.8)

Eq. (3.6.3) as

As for the eddy viscosity in the vertical plane, it can be considered that the dis-

cussion about v, can be applied. Hence, v, which is the eddy viscosity coefficient




in the vertical plane is expressed by using the energy dissipation rate Dp and the

mean water depth h as

1/3
ve ~ gl ~ h (%Pi> (3.6.9)

The Reynolds stress should be essentially determined by the flow field. However, if

uw'w’ is proportional to e, it can be described as

2/3
T~ <_D_B) (3.6.10)
p

If the small amplitude theory holds, the energy of turbulence is expressed in
terms of water depth, celerity and bottom slopes by substituting Eq. (3.6.7) into

Eq.(3.6.8) as

5 2/3
€ (—1—6 g*? tanﬂ'y?qhs/2>

5 2/3
= (Igfﬁ{) ¢ tan®/® g (3.6.11)

The above equation means that € is in proportion to the square of the celerity, and
the power of two third of the bottom slope. However, one should take into account

the variation of the wave height to water depth ratio vy.

In the same manner, v, is expressed from Eq. (3.6.9) as

5 1/3
Ve & (?6—7%1> chtan'/* B (3.6.12)

The quantity is in proportion to the water depth, the celerity and the third power

of the slope.




3.7 Modeling of Vertical Distribution of Undertow

The mass flux by waves which is equal to the vertically integrated value of
the undertow is determined by the wave field model shown in the previous sections.
The discussion in §3.6 pointed out the possibility that the vertically averaged values
of the mean Reynolds stress and the mean eddy viscosity coefficient can also be

obtained from Dp which is estimated by the model of the energy dissipation process.

The vertical distribution of the mean Reynolds stress and the mean eddy vis-
cosity coefficient will be assumed as linear functions of the vertical elevation z based
on the experimental results. The undertow profile will be determined from these
distributions by using the eddy viscosity model. The undertow can be evaluated

throughout the surf zone.

3.7.1  Modeling of Vertical Distribution of the Mean Reynolds Stress
and the Mean Eddy Viscosity

Based on the experimental results shown in §2.3, the vertical distributions of
the mean Reynolds stress and the mean eddy viscosity coefficient are assumed as
linear functions of the vertical elevation z in each measuring line. This assumption
is different from that adopted by Svendsen and Hansen (1988) or Tsuchiya et al.

(1988). Figure 3.7.1 shows this simple model for the estimation.

First the coefficients of the linear functions for the measuring line 4 and 5 in
every case of series B of the experiments described in Chapter 2 were obtained by
using the regression analysis. To investigate consistently among the measuring lines
and for various incident wave conditions, it should be proper to non-dimensionalize
the coefficients by the water density p, the celerity ¢ and the trough level d;, which
is probably proportional to the mean water depth h in the inner region, according
to Eqgs. (3.6.11) and (3.6.12). Equations (3.6.11) and (3.6.12) were derived with the

assumption that the energy dissipation is expressed by Eq.(3.6.6), which should hold




Fig. 3.7.1 Assumed distributions of mean Reynolds stress and mean

eddy viscosity coefficient.




in the inner region where waves can be regarded as quasi-steady, although the energy
dissipation rate will be actually evaluated by the model described in §3.5 because it
can apply throughout the surf zone. Then the average of the dimensionless values

of the measuring line 4 and 5 was taken for each case.

Using these parameters, the linear functions for the mean Reynolds stress

—pu'w’ and the mean eddy viscosity coefficient v, are expressed as

CZ

2" + Bipc? (3.7.1)
dy

—pu'w’ = ayp

Ve = agcz + Pacd, (3.7.2)

where ay, f1, ay and f; are dimensionless parameters and 2’ is the vertical elevation

from the bottom. The wave celerity is expressed as

¢ = /g(d: + H) (3.7.3)

based on the solitary wave theory, where H is the local wave height. Table 3.7.1 is

the list of the dimensionless parameters.

Table 3.7.1  Dimensionless parameters for the distribution of —pu’w’ and v,.

case | slope ay A1 N Q2 P2 T2
B-1 1/20 |0.0024 | -0.00058 [ 0.0017 [0.015 |[—-0.00042 [0.015
B-2 | 1/20 |0.0027|-0.00062 | 0.0021 |[0.015 |[-0.0015 0.014
-3 | 1/20 |0.0020 | -0.00026 | 0.0017 | 0.0098 | 0.0013 0.011
-4 | 1/20 |0.0022|-0.00016 | 0.0021 |0.015 0.0015 0.016
Ave. of 1/20 |0.0023 | -0.00041 | 0.0019 [0.014 0.00022 |0.014
B-5 | 1/30 |0.0018|-0.00036[0.0014 [0.010 0.000066 | 0.010
B-6 | 1/30 |[0.0015 |-0.00024 | 0.0013 |0.017 |-0.00052 |0.016
B-7 | 1/30 |0.0019 | -0.00036 | 0.0015 |0.011 |-0.00043 |0.010
B-8

B-9

1/30 |0.0013 | -0.00024 | 0.0011 |0.0091 | —0.00010 | 0.0081
1/30 |0.0011 [ -0.00016 | 0.00094 | 0.0046 | 0.00042 | 0.0050
Ave. of 1/30 | 0.0015 | -0.00027 | 0.0012 [0.010 |-0.00011 | 0.0099




In the table, the parameter B, is the dimensionless value of v, on the bottom
(2" = 0) and 7, is the value at the trough level (z' = d;). Though the magnitude of
the parameters are much smaller than the values obtained from Egs. (3.6.11) and
(3.6.12), the fluctuation of the parameters are so small that they can be regarded as
constants for each bottom slope. The fact that 3, is far smaller than v, is consistent
with the experimental result mentioned in §2.3.4. It should therefore be possible to

take v, = 0 on the bottom. Equation (3.7.2) can be approximated as

ve = agez’ (3.7.4)

To deal with the mean Reynolds stress and the mean eddy viscosity coefficient
in the surf zone which include the outer region or the wave recovery zone, it is
necessary to estimate the magnitude of them by means of Dp calculated by the
model described in §3.5. For this sake, it is convenient that the values are expressed
in terms of dimensional parameters. Since the mean Reynolds stress can be trans-
formed to the mean shear stress, the mean shear stress 7 acting on the horizontal

plane and the the mean eddy viscosity coefficient v, can be denoted as
T = a2 + b, : (8.7.5)

ve = a2’ (3.7.6)

where z' (= z + hg) is the vertical elevation measured from the bottom and ar, b,

and a, are functions of ¢ which can be treated as constants at a certain value of z.

By using the vertically averaged mean shear stress 7, which is defined as

1 [
Tm = —/ Tdz’ (3.7.7)
d¢ Jo

and the ratio of the value at the trough level to the value at the bottom

R, = =% (3.7.8)
Ty'=0




the values a, and b, are denoted as

21-R, 2

= _Z = 3.7.9
ar dtl-!-R,-Tm’ b, 1+RTTm ( )
The mean shear stress is expressed as
2 2!
— md—(1— 41 3.7.10
e BB SRS (3.7.10)

From Eq.(8.6.10), it can be considered that the vertically averaged mean shear

stress is expressed as

Tm = Cpp3DY? (3.7.11)

where C; is a constant. In the present study, C; is determined from the experi-

mental results as

C, = 0.02 (3.7.12)

The value is far smaller than unity. One reason is that the representative length is
given by h in §3.6 though the actual diameter of turbulent eddies should be much

smaller. The ratio R, is determined from the values B and 1 as
R, = —4.0 (3.7.13)

1 .
It should be noticed that T becomes always zero at z' = gdt in this case. Substi-

tuting Eqgs. (3.7.11), (3.7.12) and (3.7.13) into (3.7.10), 7 is obtained as

T = 9—'0—4;)1/3D§/3 S (3.7.14)
3 d,

The value d; is calculated in the model as
di=h—a (8.7.15)

where a is the wave amplitude calculated by the small amplitude wave theory. Al-
though the small amplitude wave theory cannot express the wave height distribution

in the surf zone accurately, it is adopted for convenience of the calculation.




The vertical distribution of the mean eddy viscosity v. can be obtained in the
same manner. Since the value at the bottom was assumed to be zero in §2.3.4, a,

in Eq.(3.7.6) is expressed as
a =220 (3.7.16)

where

(3.7.17)
From Eq.(3.6.9), v, can be denoted as
Vm = C,hp 3 D}* (3.7.18)

where C,, is determined as

C, = 0.03 (3.7.19)

from the experimental results. Then Eq.(3.7.6) is replaced by
Zl
Ve = 2l/m Et-

= o.osp—l/"D}B/adit 2 (3.7.20)

3.7.2 Expression of Undertow Profile by Using the Eddy Viscosity Model

It was assumed that the eddy viscosity coefficient takes the value zero at the
bottom in the previous section, but there exists the kinematic viscosity v. Though
the value v is far smaller than v, in the surf zone in general, it cannot be neglected
near the bottom or in the offshore region where the field is regarded as a laminar

flow. Therefore, the total viscosity is defined as follows:
vy = Ve + v (3.7.21)

By using the eddy viscosity model, the relation between the mean shear stress 7
acting on the horizontal plane and the steady current U in z-direction is expressed

as

)
T = puvt —a-g— (3.7.22)




Substituting Eqs. (3.7.5), (3.7.6) and (3.7.21) into Eq. (3.7.22) and replacing z by

7', the steady current U can be expressed in a first-order linear differential equation

as
au arz' + b,
—_= 2 T 3.7.23
oz' aypz' +v ( )
The general solution of Eq.(3.7.23) is obtained as
U = \/gﬁ__b_r.dzl
a,z +v
b‘r" T
=&y &—za—li log(a,2' +v) + Cy (3.7.24)
ay a?

where Cf is a integral constant. The vertically averaged value of the undertow is

defined as
1 (% ,
Upn =— Udz
7,
1 CC
=— Udz (8.7.25)
dy J_p,

From Eq.(8.3.3), it is obvious that the integrated undertow should compensate the

mass flux above the trough level. Hence, Uy, is calculated by using Eq.(3.3.3) as

U = — — M, (3.7.26)
dy

Substituting Eq. (3.7.24) into Eq. (3.7.25), C; is determined as

1 b, —
¢ =U, — ~4r dy — 9”—7'3ﬂ (aydi+v)log(a,dy+v)—viogv—a,d, (3.7.27)
2a, add,

The value 7 calculated by Eq. (3.7.14) becomes zero in the offshore region or
in the wave recovery zone because Dp is zero in these regions. Then the steady
current calculated by Eq. (3.7.24) becomes a uniform flow. Longuet-Higgins (1953)
derived the Fulerian mass transport velocity on the assumption that the non-linear

inertia terms can be neglected compared with the viscous terms as

alok 22 z
=34k 3—+4—+1)sinh?2
g 4sinh2kh{ + h( mteg T )Sm kh




inh2kh 3 [ 22
+3 (S_mg‘k-h— + 5) (% - 1)} (3.7.28)

Equation (3.7.28) produces no net mass transport when using the small amplitude
wave theory. In the present model, the steady current in the offshore region and

the wave recovery zone is determined as
Ug = Ug + C; (3.7.29)
where C; is the compensatory value to satisfy

Gt
/ Ui dz = —M, (3.7.30)
—ho
From Egs. (3.7.26), (3.7.28), (3.7.29) and (3.7.30), C; is obtained as
a’ok

" 4(C, + h) sinh® kh

Co = Un

: 3
{(khsinh 2kh 4 S 2k 3) S

skh T32) 12

' % ) ) 3sinh2kh 3
+ (2khsinh 2kh) 3 + ( khsinh2kh — — o — 2 ) (¢
B s1nhk2kh} (3.7.31)

Then U,g is expressed as

alok 3sinh2kh 9\ 27
Uyg = —2 7% ; Ssmhzkh | TN 2
" = Zsinh? kA [<3kh3mh2kh TR 2) 2
) 6sinh 2kh z!
dt dt . dt sinh 2kh 3 dt
+ Up, (3.7.32)

For the sake of smoothing the solution near the breaking point or the wave

recovery point, Eq.(3.7.24) is replaced as

al . ds asb —ad v ay,z +v v ayd; +v
U=t 222 rr v d — 1 d
(z 2) + a? <1+10g ayd; + v o8

a, 2 a,ds v

+ Un (3.7.33)




where
2 .
' va‘ok ) 3sinh2kh 9
a, = a, + YRR (3khsmh2kh+ 5k + 5
- o (3.7.34)
6 sinh 2
b = b, — 2L (2kh inh 2kh 4 ——n 1200 9)
r Ahsinh? kh \~ " SmRSER A+ o

The values of the second terms in Eq. (3.7.34) are far smaller than those of the first

terms in the inner region of the surf zone. In the offshore region where Dg = 0,
Eq. (8.7.33) reduces to

! / ! !
a 2 b a b

U= L+ L) -4 T4, +U 3.7.35
ZVZ +1/z 6v ¢ 2 ¢+ Um ( )

which is exactly same as Eq. (3.7.32) [see Appendix B). In case of Dy < 1, the

undertow profile is calculated by Eq. (3.7.35) to prevent the calculation from di-
verging.




3.8 Computational Results

By using the present model, at first the potential and kinetic energies of the
wave motion and the energy of the organized large vortexes are obtained. The wave
setup is also calculated. From the energy variations, the vertically averaged value
of undertow is estimated. Finally, the profiles of the undertow are obtained with
estimation of the mean Reynolds stress and the mean eddy viscosity coefficient from

the energy dissipation rate.

In this section, the calculated values will be compared with the measured
values which were obtained by the laboratory experiments described in §2.2. The
energy variations will also be discussed with the experimental results obtained by

Nagayama (1983).

3.8.1 Variations of Energies

The variation of the calculated values of the potential energy of wave motion
E,, the energy of the organized large vortexes E, and the total energy of wave
E, for case B-1 which was described in §2.2 are shown in Fig. 3.8.1. The mea-
sured potential energy of waves is shown together in the figure. The measured and

calculated breaking points, plunging points and transition points are also indicated.

For the calculation by the present model, only beach topography, period and
height (or amplitude) of the incident waves are necessary as inputs. The spacing
between the mesh points and the time step of the calculation were respectively 2
cm and 0.005 s for all the cases . The calculation was started from the points 100
cm offshoreward of the foot of the slopes, which was z = —900 c¢m in case B-1. The
convergence of solution was assumed when the absolute errors between the values
obtained from two successive cycles of the calculation at every point were less than

2% of the amplitude of the incident waves throughout the field for both the wave
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Fig. 3.8.1  Calculated and measured energy variations (case B-1).
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amplitudes and the setup calculation. Other needed factors and coefficients were

already given in the previous sections.

In the figure, the calculated and measured potential energy E, are in good
agreement in the surf zone; however the calculated E, is slightly smaller than
the measured value at 2 = —500 cm. The numerical reflection can be seen in the
offshore region. The breaking point is estimated slightly offshoreward in spite of the
smaller value of the evaluated potential energy in the offshore region. The estimated
plunging point is much offshore, but the transition point is well estimated if the
difference of the breaking points is taken into account. The calculated E, begins
to attenuate from the estimated breaking point in the figure, although Watanabe
and Maruyama (1986) mentioned that the calculated energy still increased at the
breaking point when setting cer = 0 at the breaking point. The reasons should
be that ap increases from the crest breaking point in this case and that the ratio

between the potential energy and the kinetic energy is modified after breaking.

On the other hand, the total energy E; does not change so much around the
breaking point and rapidly decreases from the measured plunging point to the
transition point. It is caused by the existence of the organized large vortexes. The
magnitude of the energy of the organized large vortexes E, is comparable to that
of the potential energy E,. The energy of the vortexes increases from the crest
breaking point and takes its maximum value which is almost the same as the value

of E, near the calculated transition point.

The calculated energy transfer rate T from the wave energy to the energy
of the vortexes and the energy dissipation rate Dp are shown in Fig. 3.8.2. The
hatched area corresponds to the rate of change of the vortex energy. The quali-
tative agreement with the vertically averaged energy of turbulence u’mz and winz

shown in Figs. 2.3.15 and 2.3.16 is good except near the plunging point where the
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Fig. 3.8.3  Potential energies calculated by the present model and measured

by Nagayama (1983) on a uniform slope (case 1).
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calculated value of the energy dissipation is much larger than the measured value
of the turbulence energy. But in general, it can be said that the difference of the
spatial distributions between the attenuation of the wave energy and the energy

dissipation is well expressed by the present model.

Figure 3.8.3 gives the comparison with the variation of the potential energy
measured by Nagayama (1983) on a 1/20 constant slope (case 1). The incident
wave condition is listed in Table 3.8.1. The potential energy is under-estimated
in the surf zone, Since the potential energy rapidly deceases after breaking, it
can be considered that the prediction of the breaking point influences much to
the variations of the calculated energies in the surf zone. The calculated potential
energy increases gradually up to the wave breaking point, although the measured
value keeps almost same value. It should be because the small amplitude theory by
which the wave energy is over-estimated in shallow water is adopted in this model

[Dibajnia et al. (1988)].

Table 3.8.1 Conditions of experiments performed by Nagayama (1983).

~case | beach type | T (s) | h; (cm) | H; (cm) | Ho/Lo | zp (cm) | z, (cm)
1 uniform 1.19 27.1 5.44 0.027 -182 -132
3 step 1.19 28.4 5.07 0.025 -358 -306
5 step 0.96 28.4 7.19 0.055 -387 -308
6 bar 0.94 28.4 6.48 0.051 -357 -331
7 bar 0.95 28.4 5.85 0.045 -357 -314

The comparisons between the calculated and measured potential energies are
shown in Figs. 3.8.4 and 3.8.5 for cases 3 and 5 of the experiments by Nagayama
on a step-type béach with the variations of the transfer factor fr. The transfer

factors increase from the crest breaking points according to the coeflicient ar, then
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Fig. 3.8.4 Potential energies calculated by the present model and measured

by Nagayama (1983) on a step-type beach (case 3).
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Fig. 3.8.5 Potential energies calculated by the present model and measured

by Nagayama (1983) on a step-type beach (case 5).
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decrease from the transition points on the flat bed. As the transfer factor becomes
zero on the flat bed in case 5, waves recover at that point in calculation. On the
other hand, they do not recover by calculation for case 3, although the variation
of the measured potential energy suggests the wave recovery around z = —150 cm.
However, in general, it can be said that the calculated values predict the actual
energy variations well in both cases. The energy variations for case B~11 are shown
in Fig. 3.8.6. The relative magnitude of the vortex energy is larger than other cases
because of the steeper bottom slope offshoreward of the flat bed. The agreement is

good.

Figures 3.8.7 and 3.8.8 give tHe comparisons of the calculated and measured
potential energies for cases 6 and 7 of Nagayama’s experiments on a bar-type beach.
The agreement is good. However, the estimation of the second breaking points is
not accurate in both cases. It is probably due to the fact that waves which have
once recovered tend to break easily for the second time. The reflection at the first

breaking points is too large to be neglected.

3.8.2 Vertically Averaged Undertow

Figure 3.8.9 shows the comparison of the variations of the calculated and mea-
sured values U, of the steady current averaged vertically below the trough level for

case B—1. The contributions to the calculated value of Uy, from the mass flux by

wave motion Uy, <E —MT:U> and the organized large vortexes U, <E _Ad{u> are
also given in the figure. The measured value is smaller than the calculated value
in the outer region but is larger in the inner region. Since the measured value is
almost the same as the value U,, offshoreward of the plunging point, it is considered

that the actual magnitude of the contribution by the organized large vortexes is

much smaller than the calculated value.




— 105 —

cal. B.P.
Cal.P.P.
meas. B.P.
><103 g/s \rmeaS.P.P.

_ «e——-—- calculated E; A
10 ——————— calculated £, E

L ’ \ --------------- calculated FE, N
——e——— measured E, _

Fig. 3.8.6 Calculated and measured energy variations (case B-11).




— 106 —

meas. B.P.
cal. P.P. meas. P.P.
x10° (g/s?) cal. B.P. L— -cal. T.P. - calculated £,
oYWV Y calculated £, 7
5x/\—/\/\ ——————————————— calculated E, A

L \ ————e—— measured F, .

1 i i 1 1 1 1 1 1 i I 1 L ] ] 1 1

L
~400 - -20 0 (cm)

_20 1 1 1

(cm)
Fig. 3.8.7  Potential energies calculated by the present model and measured
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Fig. 3.8.8 Potential energies calculated by the present model and measured
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The calculated value of the energy dissipation around the plunging points is
much larger than the measured value of the turbulence energy as already mentioned.
It means that the actual energy dissipation may be smaller than the value evaluated
by this model. Since the calculated potential energy agrees with the measured value
as shown in Fig. 3.8.1, little energy dissipation means that the energy of vortexes
must be much larger. But in the present model, the large value of the vortex energy
at the plunging point makes the mass flux by the vortexes large there, which is
contrary to the results shown in Fig. 3.8.9. It is probable that the structure of
the organized large vortexes in the outer region is different from that in the inner
region. The magnitude of the vortex energy depends on the dissipation length of
vortex energy Iy which is given by Eq. (3.5.29). The influence by the difference of
the structure of the organized large vortex is partly considered in Eq. (3.5.29) in

this model.

The comparisons between the calculated value and measured value of Uy, for
cases B-4 and B-8 are shown in Figs. 3.8.10 and 3.8.11. The vertically averaged
undertow is well predicted in case B—4 in the outer region, however it is rather
over-estimated in case B-8. The reason for such a difference is not clear, but at
least, it can be said that the prediction of the breaking point affects the evaluation

of Uy, especially in the outer region.

In the inner region, the calculated value is larger than the measured value
in case B-4. In case B-8, the measured value fluctuates in the inner region. It
cannot be concluded whether the fluctuation of the measured value is caused by
the three-dimensionality of the steady current in the inner region or the error of

the measurement,.

3.8.3 Profiles of Undertow
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The comparison of the calculated and measured distribution of the steady
current in the cross-shore direction U for case B-1 is shown in Fig. 3.8.12 with
the bottom profile. The variation of the mean water level which will be discussed
in the next part of this section is given together. From the figure, it can be said
that the profiles in the inner region are well evaluated. The calculated profiles in
the outer region which decrease with the vertical elevation 2’ are different from the
measured profiles which increase with z'. In the present model, the mean shear
stress 7 is almost zero at z' = édt in the surf zone as mentioned in §3.7.1, g—g—l
becomes also zero at that point. However, the profiles are greatly depend on the
energy dissipation rate Dg. If Dp is very small as it is at the breaking point, the
profile becomes almost vertical as shown around the predicted breaking point in
Fig. 3.8.12. In that case, the agreement of the calculated and measured profiles is
fairy good. On the other hand, as the calculated energy dissipation is larger than
the measured turbulent energy near the plunging points as already mentioned in
the previous part, the calculated profiles become much different from the measured
value. If the evaluated energy dissipation becomes in better agreement, the profiles
will also approach to the measured value near the plunging point. Since Dy changes
rapidly in the outer region as shown in Fig. 3.8.2, the prediction of the breaking
points has a great importance for the accurate estimation of Dp, i.e., the profiles
of the steady current in the outer region. The comparisons for cases B-4 and B-8

are shown in Figs. 3.8.13 and 3.8.14. The tendency is the same, but the agreement

in the outer region is rather good for case B—4.

Figure 3.8.15 gives the undertow profiles for case B-11. The calculated profile
does not fit to the measured profile at the plunging point, either in this case. On the
offshore part of the flat bed, the form of the calculated profiles is good, although the
magnitude is smaller than the measured values. The onshore side on the flat bed

is a wave recovery zone. The energy transfer factor fr becomes zero at z = —240
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cm, but Dp has some value there and it becomes zero around ¢ = —200 cm where
the waves are regarded to recover by the calculation. The observed recovery point
was z = —115 cm. The measured profiles are almost vertical and the magnitude is
small at the measuring lines at = —145 and = —105 cm where the calculated
profiles are the same as those by Longuet-Higgins (1953) because Dp is zero there.
The figure shows that the computational result expresses the distribution of the
steady current under recovering waves on the onshore side of the flat bed well.
Hence, it can be concluded that the present model can deal with the steady current

distributions not only for uniform but also for composite beach topographies.

3.8.4 Wave Setup and Setdown

The variations of the mean water level, that is the wave setup or setdown,
are shown in Figs. 3.8.12 — 3.8.15. The agreement between the calculated and
measured setup is good in all cases. The wave setdown is slightly over-estimated
at the breaking points, because the radiation stress is over-estimated there by the
small amplitude theory. Since the total wave energy E; by the calculation does
not change so much till the plunging point, the wave setup in the outer region is
under-estimated. In other words, the wave setup lag behind the deformation of the
waves. It is evident in case B-11, but the setup on the flat bed is well predicted by

the present model.
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CHAPTER 4

Conclusions

The present study has investigated the characteristic motion of water under

breaking waves and the turbulence structure in the surf zone through detailed and

precise laboratory experiments. A model for estimating the cross-shore vertical

distribution of the undertow has been presented with a model of the energy transfer

process in the surf zone. The main conclusions obtained in the this study are

summarized as follows:

(1)

2)

(3)

(4)

The organized vortex motion caused by wave breaking is an important fluid
motion which transmits the wave energy to the turbulence energy. The velocity
field in the surf zone can therefore be divided into four components which are

the steady current, wave motion, organized vortex motion and turbulence.

The bottom boundary layer in the inner region of the surf zone does not develop
well due to agitation of the turbulence from the upper layer. In such a quasi-
steady breaking region, the magnitude of the steady current velocity near the

bottom is large in the offshoreward direction.

The mean Reynolds stress and the mean eddy viscosity coefficient in the inner
region can be regarded as linear functions of the vertical elevation. The offshore
directed mean shear stress on the bottom is so large that it cannot be neglected.
The vertically averaged values of these two quantities can be expressed in terms

of the energy dissipation rate.

The transition point which is the boundary between the outer region and the
inner region should be defined as the offshore end of the quasi-steady breaking
region. The distance from the breaking point to the transition point can be

expressed in terms of the water depth at the breaking point and the bottom
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slope. The distance to the plunging point does not depend on the bottom

slope.

(5) From the distribution of the energy of wave motion which can be calculated by
using the time-dependent mild slope equation, the distribution of the vortex
energy and the variation of the energy dissipation rate in the surf zone can be
evaluated by a model. In the model, the organized large vortexes are taken
into account as transmitters of energy from wave motion to turbulence in the
energy transfer process. The model is able to explain the spatial difference

between the wave attenuation and the production of the turbulence energy.

(6) The mass transport by breaking waves can be evaluated as the sum of two
components. One component is the contribution from the wave motion which
can be estimated by modifying the linear long wave theory. The other compo-
nent is that by the organized large vortexes which can be estimated from the
vortex energy with an assumption of the internal velocity distribution of the

vortex.

(7) The momentum flux by the organized vortexes should also be taken into ac-
count. The little change of the mean water level around the wave plunging
points can be rationally explained by considering the momentum flux by the

vortexes.

(8) The cross-shore vertically two-dimensional distribution of the undertow which
is calculated by the present model only from the incident wave conditions agree

well with the measured values in the surf zone including the wave recovery zone.

The present study has introduced a new concept of energy transfer in the surf
zone considering the organized vortex motion due to wave breaking. Although this
idea is based on the experimental results obtained in the former half of this study, it

is based on some assumptions as well. Investigations of the energy transfer process
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from micro-scopic views are therefore necessary for a much more accurate estimation
of the energy distribution and the impregnable description of the turbulent velocity
field in the surf zone. For that sake, detailed measurements of the velocity field
in the upper layer and the bottom layer are required. Though the present study
dealt only with the on-offshore cross-sectional distribution of the undertow, it can
be applied to the prediction of the three-dimensional distribution of the nearshore

current.
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APPENDIX A

The governing equations of the time-dependent mild slope equation applied to

this model are given by

Q) %8 _

a—t + 025; + fAQ =0 (3'5'25)
¢ | 19(nQ) _
o tnes 0 (8:5.26)

In the derivation of the time-dependent mild slope equation, the following equations

have been assumed:

ST (a1

where ¢ and Q are the complex amplitudes of the surface elevation and the flow

rate, respectively. Substituting Eq.(A.1), Egs. (3.5.25) and (3.5.26) can be replaced

by
oA, 298
(fa—i0)Q + s o 0 (A.2)
L 10(0) _
—ZO’C + ;): Oz =0 (A..3)

Eliminating Q from Egs. (A.2) and (A.3), a single equation which includes the

second derivative of ¢ is obtained as

o ¢ 9 198 nc? o
RS et = Rt (ream) LI

If the water depth k and the energy transfer factor f4 are constant whole the

region, n and ¢ become also constants. Then the third term of Eq. (A.4) vanishes.

2 c? 8%
, —_— = =0 A5
o) o (4.5)
Replacing ¢ by o /k, Eq.(A.5) is expressed as
. . 82 2
k2(1+2f7")§+—c—-—0 (A.6)

Oz
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Assuming the form of the solution as
¢ = g (A9)

where ¢ is a complex amplitude and & is a complex quantity which expresses the

energy decay and the phase, Eq.(A.6) can be described as

B+ Ty eerr 4 eprer — 0 (A7)

il
The solution is obtained as

ka f2

R 2014/ 1 1 th——e—=
¢ =Ce Vaoifi+yits e V2 (A.8)

Now a wave field which has two regions bounded at = 0 as shown in Fig. A.1

is supposed. Here it can be treated as f4 = fr, because fp+y given by Eq.(3.5.20)
is far smaller than fr in the surf zone and it changes little whole the field. The
transfer factor fr is zero in Region I at the left hand side of the field and takes some
value f in Region II at the right hand side. Though the water depth is constant
in both regions, the wave number k; in Region I and k; in Region II are different
according to the value of fr as inferred from Eq.(A.8). If the wave comes from the
left hand side, the complex amplitude function of the surface elevation in Region I
51 consists of the incident wave component é,- and the reflected wave component fr
which is expressed as o | )
) .Cl = Ci:'— Cr ‘ } (A.9)
&= gethe, 6 =gt
which has no decaying factor because of fr = 0. On the other hand, {3 in Region

II contains the decaying factor r and is denoted as

G = Erelratika)e (A.10)
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&i, €& and €5 are complex amplitudes which are determined as
§i=pitiqi, &=pr+ig, L=p+ign (A.11)

where p;, gi, pr, ¢r, p2 and ¢o are real numbers. The boundary conditions of the

surface elevation and the velocity at @ = 0 are expressed as

G=206 (A12)
ol _ 8
o = B (A.13)

Substituting Eqs. (A.10) and (A.11) into Eqs. (A.12) and (A.13)

Pi+Pr:P2} (A.14)
g+ qr = q2
and
ki (p2 — 2pr) = kopa + 1242 } (A.15)
—k1 (g2 — 2¢;) = raps — kaqa

can be obtained. From Egs. (A.14) and (A.15), p, and ¢, is expressed as follows:

1 r2p2 — kaq2
pr=5(p2————)
! (A.16)
:l( n ksz—Tzqz)
qr B q2 ———kl

Considering Eq. (A.8), the wave number and the decaying factor in Region II are

denoted as
kg = 2akk1 } (A 17)
re = ~2bkk1 )
where
f2
14+4/14+ 3% fa
ap =— —-—2—\/5———, bk = (A18)
2v204/1+1/1+
Then the values p, and ¢, are obtained as
1
pr= (5 —ax) p2 + brge
2 (A.19)

1
gr = —bypa + (5 — a) q2
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Substituting Eq. (A.19) with Eq. (A.11), the complex amplitude function of water

surface elevation of the reflected wave can be denoted as

ér = (pr + iQr) gTthie

e S o e

It can be concluded that the reflected wave component expressed by ¢ in Eq. (A.20)
is generated by the sudden change of the energy transfer factor. It is possible to
restrain the energy of the reflected wave by apparently changing the wave number

in Region II.

If using k' which does not satisfy the dispersion relation in stead of k; in Region

IT, Eq. (A.17) is replaced by

kg = 2akk:’
Y } (A.21)
pr and ¢, are also obtained as
1 K K
pr=(5— - ar)p2 + 7= brga
2k ky A
k' 1K (A.22)

=1 brpa + (5 - k—lak)%

Then the energy of the reflected wave Eg can be expressed in terms of the energy

of the transmitted wave Er as
1k N\ KN
— g — b 23
Er {(z b ‘“) * (kl b‘) }ET (4.23)

1 1
Eg = Epg(prrqg), Er = < pg (v +43) (A.24)

where

The ratio of the reflected wave energy to the transmitted wave energy is calculated

by
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T\ TR Ty
2 2
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Finally, the minimum value of Rg is given by

1 8

A.26
Rp = 4ak + b2 ( )

when

! ak

(“L‘H’)

(A.27)
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APPENDIX B

The expansion of log (1 + z) to a power series around z = 0 is denoted as

oo

log (1 - _1)n-1 z"
og(1+z) '?:1:( T —
z2 2 ot
=e-F Aty ot (B-1)

Hence log (a, 2’ + v) and log (a,d; + v) can be expressed as

log (a,2' +v)

zl
= logv + log <1 + —l—/—al,>

2 1 /2 o1 /d 51/ 4
- ].Ogl/ + ;a,, — § (;a,,) + § (7&,,) — Z <-l'/—0,y> + —_—as (BZ)

log (a,d; + v)
dy
= logv + log 1+7a,,
dt 1 dt 2 1 dt 8 1 dt *
— Za, — = Za, | =a,)] = =1—a, —... (B.3
log v + I/a 2(ua> +3(1/a 4 I/a + ( )

Substituting Eqs. (B.2) and (B.3), U in Eq.(3.7.33) is transformed as

U :fé’.(zr_f_li>+ a, b, —alv <1+10gayz/+y v loga,,dt+1/>+ U
2

a? a,d; +v a,d; v

v
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The steady current U in the limit when a, approaches to zero (namely Dp
approaches to zero) is given as
Iim U = lim
a, —0 a, —0 |

a,b

+

= lim
ay, —0
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