
 
 

Delft University of Technology

Fault Diagnosis Method for Shearer Arm Gear Based on Improved S-Transform and
Depthwise Separable Convolution

Wu, Haiyang ; Zhou, Hui ; Liu, Chang ; Cheng, Gang; Pang, Y.

DOI
10.3390/s25134067
Publication date
2025
Document Version
Final published version
Published in
Sensors

Citation (APA)
Wu, H., Zhou, H., Liu, C., Cheng, G., & Pang, Y. (2025). Fault Diagnosis Method for Shearer Arm Gear
Based on Improved S-Transform and Depthwise Separable Convolution. Sensors, 25(13), Article 4067.
https://doi.org/10.3390/s25134067

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/s25134067
https://doi.org/10.3390/s25134067


Academic Editor: Jongmyon Kim

Received: 23 May 2025

Revised: 23 June 2025

Accepted: 27 June 2025

Published: 30 June 2025

Citation: Wu, H.; Zhou, H.; Liu, C.;

Cheng, G.; Pang, Y. Fault Diagnosis

Method for Shearer Arm Gear Based

on Improved S-Transform and

Depthwise Separable Convolution.

Sensors 2025, 25, 4067. https://

doi.org/10.3390/s25134067

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Fault Diagnosis Method for Shearer Arm Gear Based on
Improved S-Transform and Depthwise Separable Convolution
Haiyang Wu 1 , Hui Zhou 2, Chang Liu 3,*, Gang Cheng 1 and Yusong Pang 4

1 School of Mechanical and Electrical Engineering, China University of Mining and Technology,
Xuzhou 221116, China; ts22050183p31@cumt.edu.cn (H.W.)

2 School of Chemical Engineering and Technology, China University of Mining and Technology,
Xuzhou 221116, China

3 School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou 221116, China
4 Faculty of Mechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
* Correspondence: liuchang@xzit.edu.cn

Abstract

To address the limitations in time–frequency feature representation of shearer arm gear
faults and the issues of parameter redundancy and low training efficiency in standard convo-
lutional neural networks (CNNs), this study proposes a diagnostic method based on an im-
proved S-transform and a Depthwise Separable Convolutional Neural Network (DSCNN).
First, the improved S-transform is employed to perform time–frequency analysis on the
vibration signals, converting the original one-dimensional signals into two-dimensional
time–frequency images to fully preserve the fault characteristics of the gear. Then, a
neural network model combining standard convolution and depthwise separable convo-
lution is constructed for fault identification. The experimental dataset includes five gear
conditions: tooth deficiency, tooth breakage, tooth wear, tooth crack, and normal. The
performance of various frequency-domain and time-frequency methods—Wavelet Trans-
form, Fourier Transform, S-transform, and Gramian Angular Field (GAF)—is compared
using the same network model. Furthermore, Grad-CAM is applied to visualize the re-
sponses of key convolutional layers, highlighting the regions of interest related to gear
fault features. Finally, four typical CNN architectures are analyzed and compared: Deep
Convolutional Neural Network (DCNN), InceptionV3, Residual Network (ResNet), and
Pyramid Convolutional Neural Network (PCNN). Experimental results demonstrate that
frequency–domain representations consistently outperform raw time-domain signals in
fault diagnosis tasks. Grad-CAM effectively verifies the model’s accurate focus on critical
fault features. Moreover, the proposed method achieves high classification accuracy while
reducing both training time and the number of model parameters.

Keywords: shearer rocker arm; S-transform; depth separable convolution

1. Introduction
As a core component of the transmission system, the shearer arm gear’s health directly

affects the operational stability of the equipment. However, under high load, severe
impacts, and complex working conditions, the gear is prone to faults such as wear, pitting,
and fractures, potentially causing equipment shutdowns or even severe safety accidents [1].
Therefore, accurately extracting gear fault features in complex environments and improving
diagnostic accuracy remain critical challenges in the field of intelligent fault diagnosis.
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In recent years, various gear fault diagnosis methods based on time–frequency anal-
ysis and deep learning have been proposed. Time–frequency analysis techniques effec-
tively extract features from non-stationary signals, including Short-Time Fourier Transform
(STFT) [2–4], Wavelet Transform (WT) [5,6], Empirical Mode Decomposition (EMD) [7,8],
and Variational Mode Decomposition (VMD) [9,10]. However, STFT is limited by a fixed
window size, making it difficult to balance time–frequency resolution. The choice of mother
wavelet in WT is subjective, while both EMD and VMD are susceptible to mode mixing.

To address the aforementioned issues, an increasing number of studies have intro-
duced deep learning into fault diagnosis tasks [11]. For example, Huang et al. combined
convolutional neural networks (CNNs) with Wavelet Transform (WT) for feature extraction
and classification [12]. However, CNNs typically demand high computational resources,
limiting their suitability for edge device deployment. Yin et al. constructed a long short-
term memory (LSTM) network to capture temporal dependencies in time-series data,
which improved recognition of long-duration signals [13]. Nevertheless, the training
process of LSTM is prone to gradient vanishing, leading to a performance drop of over
12% in complex datasets. To reduce dependence on labeled data, Chen et al. proposed
an unsupervised fault diagnosis approach based on autoencoders (AE) [14]. However, its
performance fluctuates significantly (up to ± 15%) under small sample sizes or strong noise
interference. Qiu et al. integrated variational mode decomposition (VMD) with ResNet
for complex operating conditions [15], but the model’s structural complexity led to high
computational demands [16,17].

To enable efficient fault detection under resource-constrained scenarios, Li et al. pro-
posed a rotating machinery fault diagnosis method based on MobileNet, which reduced
the number of parameters by approximately 75% and achieved millisecond-level inference
latency [18]. Ren et al. developed a lightweight diagnostic framework by incorporating
multi-stage pruning and knowledge distillation, significantly reducing the model size while
maintaining accuracy comparable to ResNet [19]. However, most of these methods primar-
ily focus on static fault signals and perform well under low-noise conditions, whereas their
effectiveness under noisy environments remains limited.

Against this backdrop, enhancing time–frequency resolution and noise robustness
during feature extraction has become a key challenge to be addressed. Chen et al. em-
ployed the short-time Fourier Transform (STFT) to generate time–frequency representations
and integrated it with a CNN for classification, achieving end-to-end automatic feature
extraction [20]. However, due to the use of a fixed window function in STFT, the diagnos-
tic accuracy decreased by approximately 6% to 9% when dealing with complex signals.
To mitigate this issue, Li et al. proposed optimizing the Gaussian window structure in
S-transform to improve the time–frequency localization of transient features [21]. Never-
theless, the window parameters still rely on manual configuration, limiting adaptability.
Kazemi et al. introduced a noise suppression strategy prior to transformation to enhance
the saliency of principal components in the time–frequency representation and reduce noise
interference [22]. Although this method improved feature stability, it heavily depended on
preprocessing algorithms and exhibited limited robustness under strong impact conditions.

To address the limitations of the aforementioned studies, this paper proposes a fault di-
agnosis method that integrates an adaptively modulated Gaussian-windowed S-transform
with a depthwise separable convolutional neural network (DSCNN). First, the method
employs a local energy-based adaptive mechanism to dynamically adjust the window
parameters of the S-transform, effectively overcoming the resolution limitations when
processing non-stationary signals and enabling the adaptive extraction of key features.
Then, the standard convolution in CNN is replaced by a depthwise separable convolution,
which decomposes the operation into depthwise and pointwise convolutions for spatial
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feature extraction and channel-wise fusion, respectively. This replacement significantly
reduces computational cost and model complexity, thereby improving diagnostic efficiency.
The main contributions of this study are summarized as follows:

(1) A diagnostic framework combining adaptive window S-transform and depthwise
separable convolutional networks is proposed. Compared with existing methods
using fixed-window S-transform or complex convolutional architectures, the proposed
approach can dynamically adapt to energy variations in different fault signals while
effectively reducing model complexity.

(2) A window-width adjustment mechanism based on the energy distribution of the
signal is designed, enabling more accurate time–frequency decomposition of transient
fault signals and enhancing diagnostic robustness.

(3) A lightweight diagnostic network architecture is developed, which, compared to deep
models such as ResNet, achieves a reduction of approximately 66% in parameter
count and nearly 12% in inference latency per prediction, while maintaining com-
parable diagnostic accuracy—demonstrating its potential for deployment in edge
computing scenarios.

2. Method for Fault Diagnosis
2.1. Theory of the Improved S-Transform

The S-transform integrates the advantages of short-time Fourier Transform and
Wavelet Transform, offering flexible time–frequency resolution [23–25]. However, un-
der noisy conditions, the standard S-transform adopts a fixed window width, which may
lead to time–frequency smearing. To enhance its noise robustness and time–frequency
concentration, this study introduces an adaptive Gaussian window mechanism based on
the local energy of the signal, aiming to improve the stability of feature extraction. The
standard definition of the S-transform is as follows:

S(t, f ) =
∫ ∞

−∞
x(τ) · exp

(
− (t − τ)2

2σ2

)
· e−j2π f τdτ (1)

In this expression, x(τ) denotes the input signal, t and f represent the time and
frequency variables, respectively, and σ is the standard deviation of the Gaussian window.

To achieve adaptive window-width adjustment, the window width σ is redefined as a
time-dependent function σ(t), which is expressed as

σ(t) =
k√
E(t)

(2)

In this expression, k is a scaling coefficient, and E(t) represents the local energy of the
signal around time t. It is calculated as follows:

E(t) =
∫ t+∆

t−∆
|x(τ)|2dτ (3)

In this expression, ∆ denotes half the width of the window used for local energy calculation.
The improved S-transform (IST) is defined as

Sadaptive(t, f ) =
∫ ∞

−∞
x(τ) · exp

(
− (t − τ)2

2σ2(t)

)
· e−j2π f τdτ (4)

In this expression, the adaptive window width σ(t) is dynamically adjusted, according
to the local energy variation.
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2.2. Depthwise Separable Convolution

Depthwise separable convolution is a convolutional operation designed to reduce com-
putational complexity while enhancing feature extraction capability [26–28]. It decomposes
the standard convolution into two steps: depthwise convolution and pointwise convo-
lution, significantly reducing the amount of computation while preserving the model’s
representational power.

The computational complexity of a standard CNN convolution is given by

O(WHCinCoutKK) (5)

While the computational complexity of DSCNN is given by

O(WHCinKK) + O(WHCinCout) (6)

In this expression, W and H represent the width and height of the feature map,
Cin and Cout denote the numbers of input and output channels, respectively, and K is the
size of the convolution kernel.

2.3. Construction of the Diagnostic Model

A DSCNN architecture was constructed to achieve efficient and accurate gear fault
classification. The model takes 64 × 64 × 3 two-dimensional time–frequency images as
input and enhances computational efficiency and classification performance through layer-
by-layer feature extraction and a depthwise separable convolution strategy. Initially, the
input data passes through a convolutional layer to extract low-level features. This layer
employs batch normalization to accelerate convergence and reduce internal covariate shift,
while the ReLU activation function is used to enhance nonlinear representation capability.
Next, max pooling is applied for dimensionality reduction, which decreases computational
load while preserving critical information. In the deeper layers of the network, the model
gradually increases the number of channels and performs multi-level feature extraction
through Conv2, Conv3, Conv4, and Conv5 layers. Each layer is equipped with batch nor-
malization and ReLU activation to enhance stability and representation capability. Notably,
Conv3 and Conv5 adopt pointwise convolution to efficiently integrate channel information
while maintaining spatial structure. The depthwise separable convolution mechanism is
illustrated in Figure 1. After feature extraction, the model performs fault classification
via fully connected layers, followed by a Softmax layer for output normalization. Finally,
the classification layer computes the loss to enable end-to-end training. Compared with
standard convolutional neural networks, this model not only ensures high classification
accuracy, but also significantly reduces computational complexity through depthwise
separable convolutions, thereby improving both training and inference speed.

2.4. Fault Diagnosis Process

This paper proposes a fault diagnosis method for gear vibration signals under various
fault types, based on an IST and a DSCNN. The approach first preprocesses the vibration
signals and simulates complex operating conditions by adding noise at different signal-
to-noise ratios to enhance model robustness. Then, the improved S-transform is applied
for time–frequency analysis, with an optimized adaptive window function that adjusts
time and frequency resolution to enhance critical time–frequency information and improve
feature separability. On this basis, a DSCNN is constructed for feature extraction and classi-
fication, fully exploiting the local correlations of time–frequency features to improve the
model’s ability to recognize different fault patterns. Experimental results demonstrate that
the proposed method maintains stable diagnostic accuracy under various noise levels and
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outperforms standard methods in terms of computational efficiency and feature extraction
capability. Figure 2 illustrates the fault diagnosis process for the shearer arm gear.
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Figure 1. Depthwise separable convolution structure.
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Figure 2. Fault diagnosis process of the shearer arm gearbox.

3. Experimental Data Acquisition
To validate the proposed method, this study uses gear vibration data collected from

the Drivetrain Diagnosis Simulation (DDS) testbed at China University of Mining and
Technology. As shown in Figure 3, the test rig is composed of a two-stage planetary
gearbox, a two-stage parallel-axis gearbox, a programmable magnetic powder brake (load
range: 1.5–32 ft·lb), a 3-horsepower AC motor (variable speed up to 5000 rpm), a torque
sensor (range: 20 N·m, integrated with a 360-pulse encoder), and various vibration sensors
mounted on bearing housings and gearboxes. The system allows the introduction of both
single and coupled faults in the gear and bearing components, and supports the application
of torsional and radial loads to simulate real operational stresses.

In this study, the experimental configuration involved setting the motor speed to
1800 rpm (equivalent to 30 revolutions per second, r/s), applying a magnetic brake torque
of 20 N·m at the output shaft, and using a sampling frequency of 12,800 Hz with a total
sampling duration of 20 s per trial. The sampling frequency of 12,800 Hz was selected to
ensure accurate capture of high-frequency components related to gear fault characteristics,
avoiding aliasing and preserving diagnostic information.
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Figure 3. Power transmission fault diagnosis and signal acquisition platform.

The DDS rig enables the simulation of various fault types, including the following:
(i) normal, (ii) tooth breakage (complete loss of one tooth), (iii) tooth crack (initiation of a
fatigue crack at the gear root), (iv) tooth wear (uniform surface material loss), and (v) tooth
deficiency (intentional removal of teeth to simulate backlash or undercut).

To enhance the stationarity and analyzability of the vibration signals, a sliding smooth-
ing technique was applied for signal pre-processing. Each signal segment contains 2048 data
points, with a sliding window size of 1024. A total of 200 signal samples were acquired for
each fault type, resulting in a dataset of 1000 labeled gear fault samples.

4. Experimental Analysis
4.1. Preprocessing Analysis

To investigate the frequency–domain characteristics of gear faults, a representative
set of signals with broken-tooth faults is selected as a case study. Fast Fourier Transform
(FFT) is applied to reveal the frequency characteristics of the signal. As shown in Figure 4,
the main frequency components are concentrated within the range of 0–3000 Hz, with a
prominent spectral peak observed around 2200 Hz. This peak is typically associated with
the periodic impacts caused by broken teeth, which introduce abrupt changes in meshing
force and excite strong vibration responses. Notably, under the current gear parameters and
rotational speed, 2200 Hz corresponds to a harmonic of the gear mesh frequency (GMF),
making it a critical indicator for identifying broken-tooth faults.

To further evaluate the performance of the proposed diagnostic method under complex
operating conditions, background noise of a certain intensity was artificially added to the
original vibration signals during the experimental phase. On this basis, both the standard
S-transform and the improved S-transform were applied for time–frequency analysis and
comparison. As shown in Figure 5a, the improved S-transform provides a clearer repre-
sentation of the signal’s frequency characteristics within the 0–3000 Hz range, particularly
enhancing the visibility of the fault-related frequency component around 2200 Hz while
effectively suppressing background noise. In contrast, the time–frequency map obtained
using the standard S-transform, as shown in Figure 5b, exhibits an extended frequency
range up to 5000 Hz, in which the fault characteristic frequency is partially obscured and
significantly affected by background noise. Therefore, the improved S-transform not only
preserves critical fault features, but also reduces the interference of background noise,
thereby enhancing the time–frequency representation of the signal and providing stronger
support for subsequent fault diagnosis.



Sensors 2025, 25, 4067 7 of 16

Frequency(Hz)
2000 4000

0

0.2

0.4

0.6

0.8

0 6000

A
m

pl
itu

de

Figure 4. Frequency spectrum of broken tooth signal.

4.2. Fault Diagnosis Analysis
4.2.1. Dataset Construction

To fully leverage the advantages of the proposed integration of the improved
S-transform and DSCNN, a dataset was constructed based on the time-frequency rep-
resentations obtained from 1000 collected signal samples using the improved S-transform.
The dataset includes five conditions, comprising one normal state and four different types of
gear faults, with 200 samples per class to ensure class balance. To enhance the model’s gen-
eralization ability, the dataset was divided into a training set and a testing set in an 8:2 ratio,
with 800 samples used for training and 200 samples for testing. The processed training
data were subsequently fed into the DSCNN for fault classification. The construction and
partitioning details of the fault diagnosis dataset are presented in Table 1.
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Figure 5. Comparison of time-frequency spectrograms. (a) Improved S-transform; (b) standard
S-transform.
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Table 1. Construction and partitioning of the fault diagnosis dataset.

Fault ID Fault Type Speed (HZ) Training Set Test Set Total Samples Label

C1 tooth wear 30 160 40 200 1
C2 tooth crack 30 160 40 200 2
C3 tooth breakage 30 160 40 200 3
C4 tooth deficiency 30 160 40 200 4
C5 normal 30 160 40 200 5

—— sum —— 800 200 1000 ——

4.2.2. Model Parameter Settings

The experiments were conducted on a system equipped with an Intel Core i5-12400F CPU
and an AMD RX series GPU. During network training, the Adam optimizer was employed
with the following hyperparameters: batch size of 32, maximum of 50 training epochs,
gradient clipping threshold set to 1, initial learning rate of 0.001, and a stepwise learning-
rate decay strategy that reduces the learning rate by a factor of 0.1 every 10 epochs. An
L2 regularization coefficient of 1 × 10−4 was applied. Training data were randomly
shuffled every epoch, and validation was performed every 30 iterations. The training
process dynamically selected CPU or GPU computation and displayed real-time training
progress. By appropriately setting hyperparameters such as batch size and learning rate,
the training process can be stabilized.

4.2.3. Diagnostic Results Analysis

After training, the trained model was evaluated on the test set, and both the confusion
matrix and t-SNE visualizations at different layers were plotted. As shown in the t-SNE
distribution of the input data layer in Figure 6a, distinct fault categories did not form
clear clusters in the original feature space; instead, the distributions of different classes
were mixed and boundaries were blurred, indicating the inherent complexity and poor
separability of the gear fault data. After model training, the t-SNE visualization of the
output layer in Figure 6c demonstrates a clear separation between classes, suggesting that
the model progressively extracted highly discriminative deep features during the learning
process. This transformation also confirms the effectiveness of the improved S-transform
combined with the depthwise separable network architecture in feature extraction and
pattern recognition. Furthermore, the confusion matrix in Figure 6b shows that the model
achieves high recognition accuracy across five fault categories (tooth crack, tooth breakage,
tooth wear, tooth deficiency, and normal), particularly with near-zero misclassification
between tooth crack and normal gear states. The model attained a classification accuracy
exceeding 98% on the test set, validating the superior performance of the proposed method
in gear fault diagnosis and providing reliable technical support for fault detection under
complex operating conditions.

To gain deeper insights into the model’s decision-making process, this study employs
t-Distributed Stochastic Neighbor Embedding(t-SNE) and Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) to visualize the features extracted from different convolutional
layers during training. Specifically, t-SNE and Grad-CAM analyses were conducted on
four convolutional layers (Conv2, Conv3, Conv4, and Conv5) of the deep separable convo-
lutional network to investigate the characteristics learned by the model at various depths.

Figure 7 presents the visualization results of the network feature extraction layers.
The t-SNE visualization of the Conv2 layer reveals that the data distribution at this stage
is relatively disordered, with the original fault features difficult to distinguish directly at
the input phase, as there is significant overlap among different classes. Analysis of the
Grad-CAM results for the Conv3 layer indicates that the model has begun to focus on
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more prominent features within the 0–3000 Hz frequency range, although considerable
irrelevant information remains. Meanwhile, the t-SNE results of both Conv2 and Conv3
layers show an improved, but still incomplete, separation of fault categories, suggesting
that the features within the 0–3000 Hz range primarily correspond to shallow convolutional
features. These features can serve as auxiliary cues for manual fault discrimination, but do
not represent the definitive basis for classification.
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Figure 6. Confusion matrix and t-SNE visualization of the DSCNN Model. (a) t-SNE of the input
layer; (b) confusion matrix; (c) t-SNE of output layer.

Further analysis of the Conv4 and Conv5 layers reveals a significant improvement in
clustering performance as visualized by t-SNE, with clearer boundaries between different
classes. This indicates that the model has learned more discriminative features through
deeper convolutional layers. Meanwhile, the Grad-CAM results demonstrate that the
activation regions have become more stable and closely related to the final fault classifica-
tion, suggesting that the high-level features extracted by the deeper convolutional layers
constitute the core basis for the model’s fault diagnosis decisions.
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Figure 7. Visualization results of the network feature extraction layers. (a) Grad-CAM-Conv1;
(b) Grad-CAM-Conv2; (c) Grad-CAM-Conv4; (d) Grad-CAM-Conv5.

In summary, although the attention in the early layers (e.g., approximately 0–3000 Hz)
is partly interpretable and aligns with known signal characteristics, the deeper attention
patterns are less directly explainable, reflecting the complexity and abstraction of the
learned features. This transition from interpretable low-level features to abstract high-
level representations is consistent with the hierarchical nature of deep learning models.
While deep features are more effective for classification, they pose challenges for physical
interpretability, representing a common trade-off in deep neural networks.
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4.2.4. Imbalanced Class Experiment and Analysis

In this imbalanced training experiment, the dataset consists of five classes, each
containing 200 samples. To simulate the common small-sample problem encountered in
real-world scenarios, the training set includes 10 samples of tooth wear, 15 samples of tooth
breakage, 12 samples of tooth deficiency, 80 samples of tooth crack, and 160 samples of
normal, with the remaining samples used for testing. This setup reduces the number of
training samples in the first three classes to 5–7.5% of their total, aiming to replicate the
realistic scenario where majority classes are sufficiently represented while minority classes
are scarce, thereby evaluating the model’s robustness under small-sample conditions.
Table 2 presents the classification performance metrics for each gear fault category.

Table 2. Classification performance metrics of gear fault categories.

Fault ID Fault Type Precision Recall F1-Score

C1 tooth wear 0.9645 0.8579 0.9081
C2 tooth crack 0.9912 0.9932 0.9897
C3 tooth breakage 0.8600 0.9297 0.8935
C4 tooth deficiency 0.9355 0.7713 0.8455
C5 normal 0.5063 1.0000 0.6723

The experimental results indicate a certain degree of overall performance degradation
of the model. Although tooth wear, tooth breakage, and tooth deficiency are typical small-
sample categories, their F1-scores still reach 0.91, 0.89, and 0.85, respectively, demonstrating
that the model retains basic discriminative ability for these categories. This outcome can be
partly attributed to the improved S-transform’s capability in frequency–domain feature
extraction, enabling the model to extract relatively effective discriminative information
from limited samples. However, data imbalance significantly affects the model’s decision
boundaries. Despite the normal class having the largest number of training samples (160),
its precision is only 0.5063, although recall is 1.0, indicating that the model tends to clas-
sify samples as normal, leading to a high number of false positives. This phenomenon
reflects a “majority class dominance” bias, a common issue in imbalanced classification.
In contrast, the tooth crack class, with a moderate training sample size (80), exhibits the
most stable performance, achieving precision, recall, and F1-score of 0.9912, 0.9932, and
0.9897, respectively. This suggests that when the sample size is moderate, the model’s recog-
nition ability is relatively robust, with minimal fluctuation in classification performance.
Overall, under this extreme imbalance setting, the model attains a macro-average F1-score
of 0.8639 and an overall accuracy of 88.52%, showing a noticeable decline compared to
training with balanced data. These results highlight that although the model possesses
some small-sample adaptability, severe class imbalance can bias the decision boundaries
toward majority classes, adversely affecting overall recognition performance. Future work
may consider incorporating few-shot learning, data augmentation, or transfer learning
strategies to further mitigate performance degradation caused by sample imbalance.

4.3. Comparative Experiment
4.3.1. Analysis of Recognition Results Using Different Transformation Methods

To validate the effectiveness of time–frequency representation images as model
inputs for fault diagnosis, this study applied WT, Fourier Transform (FT), and Gramian
Angular Field (GAF) methods to the noisy signals. The generated time–frequency images
were then used as inputs for diagnostic analysis. As shown in Figure 8, the proposed IST
method achieved the best performance in fault classification, with an accuracy of 98.5%,
significantly outperforming other common time–frequency transformation methods.
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The standard ST achieved an accuracy of 94%, while FT and WT reached 92% and 88.5%,
respectively. In contrast, the Lotus plot (81%) and GAF (72%) exhibited relatively lower
performance, indicating weaker feature extraction capability under noisy conditions.
Furthermore, the fault identification results demonstrate that frequency–domain or time–
frequency domain transformation methods generally outperform pure time–domain
images, further confirming the advantages of the proposed method in terms of robustness
and classification accuracy.

Figure 8. Comparison of fault identification results using different time–frequency methods.

4.3.2. Visualization-Based Comparison of Time–Frequency Transformation Methods

As shown in Figure 9, a comprehensive analysis of Grad-CAM and t-SNE visualiza-
tions for different signal transformation methods reveals significant differences in feature
attention and feature distribution. Firstly, the t-SNE visualization indicates clear differences
in feature separability among the methods. Although most transformation methods exhibit
relatively clear overall feature distributions, some methods (such as the Gramian Angular
Field) still show class overlap, suggesting insufficient discriminative capability. In contrast,
the proposed S-transform method demonstrates stronger inter-class separability in the
low-dimensional projection space, further validating its superiority in feature extraction.

From the Grad-CAM visualizations, various time–frequency transformation methods
exhibit distinct patterns of model attention. The Wavelet Transform, with its multi-scale
analysis capability, enables the model to process features across multiple frequency bands.
Although differences in the high-frequency region are less pronounced, the attention
distribution remains interpretable and aligns with known structures of mechanical vibration
signals, demonstrating how Grad-CAM provides insights into fault localization at different
frequency scales. In comparison, the Lotus plot produces a tightly focused attention region.
While this may indicate effective localization, the attention is restricted to a narrow area
with limited physical justification. The Fourier Transform highlights attention to high-
frequency bands, especially around 2200 Hz, which are typically associated with fault
harmonics. Grad-CAM clearly emphasizes this correspondence, illustrating how the model



Sensors 2025, 25, 4067 12 of 16

leverages frequency–domain information. The standard S-transform generates more stable
and concentrated attention in time–frequency regions related to faults, thereby achieving
better focus and interpretability. The Gramian Angular Field produces highly dispersed
attention maps; in this case, Grad-CAM reveals that the model’s focus is scattered and lacks
clear alignment with known diagnostic features. This makes it difficult to understand how
the model arrives at its predictions, despite acceptable model performance.
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Figure 9. Analysis of features and decision mechanisms of different time–frequency methods in fault
identification. (a) visualization of Wavelet Transform; (b) visualization of Lotus Plot; (c) visualiza-
tion of Fourier Transform; (d) Visualization of standard S-transform; (e) visualization of Gramian
Angular Field.
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In summary, not all features attended to by the model are clearly interpretable. Dif-
ferent time–frequency transformation methods exhibit distinct visualization outcomes:
some generate attention maps consistent with domain knowledge, enhancing trust in the
model’s decision rationale, while others produce abstract or dispersed attention regions,
weakening the clarity of the diagnostic logic. In this context, Grad-CAM serves not only
as a visualization tool, but also as an interpretability analysis technique that helps assess
whether the model genuinely focuses on diagnostically relevant signal regions, providing
an important basis for evaluating model reliability.

4.3.3. Comparison of Diagnostic Performance Among Models

To evaluate the fault diagnosis capability of the proposed model under the complex
operating conditions of the shearer rocker arm gear, this study compares the performance
of multiple deep learning models on the fault recognition task under the same conditions.
The models compared include DeepCNN (DCNN), InceptionV3, ResNet, PyramidCNN
(PCNN), and the proposed model. Among these, DCNN employs a simple stacked structure
of multiple convolutional and pooling layers. InceptionV3 introduces multi-scale parallel
convolutional branches to enhance feature representation. ResNet mitigates the vanishing
gradient problem through residual connections. PCNN adopts a pyramid structure that
deepens layer by layer to strengthen abstraction capabilities.

To ensure a fair comparison, the input size of all models was standardized to
64 × 64 × 3, and the output was set to five classes. All models were evaluated on the
same training dataset and using consistent evaluation metrics, with unified training strate-
gies including the number of epochs, optimizer, learning rate, and batch size. Although
different networks employ their respective classic design approaches (such as the stacked
structure of DCNN, residual connections of ResNet, and multi-scale parallel branches of
InceptionV3), efforts were made to maintain similar network depths and numbers of con-
volutional layers across models. This ensured that their feature extraction capabilities were
roughly on the same level, minimizing performance bias caused by architectural differences.
For example, all models contain approximately five to seven convolutional layers; some
models, such as InceptionV3 and the proposed model, utilize parallel or channel-expansion
structures, but the overall parameter count was controlled within a reasonable range. The
diversity of feature extraction strategies among these models provides a representative
basis for subsequent performance evaluation. Figure 10 presents the performance results
of each model in the fault diagnosis task for the shearer rocker arm gear, including key
metrics such as training time, inference time, accuracy, and parameter count.

In terms of accuracy, the ResNet model achieved the highest accuracy of 96.50%,
demonstrating the advantage of its residual structure in extracting complex features. The
PCNN also attained a relatively high accuracy, of 92.50%, indicating that its multi-level
pyramid architecture effectively enhances feature representation. The proposed model
maintained a high accuracy of 94.00% while achieving a better balance between perfor-
mance and efficiency with the lowest parameter count (457,509) and a relatively short
inference time (0.8112 s). Regarding training time, DCNN required the shortest duration
(170.65 s), but its recognition performance was relatively weak, failing to adequately cap-
ture the complex features of the shearer rocker arm gear faults. InceptionV3 incurred
higher training and inference costs with only limited accuracy improvement, underper-
forming compared to ResNet and PCNN. Overall, although ResNet and PCNN slightly
outperformed in accuracy, they demand larger model sizes and longer inference times. In
contrast, the proposed model demonstrates superior overall performance by achieving
fewer parameters, faster inference speed, and high accuracy. Therefore, the proposed
method exhibits better applicability for fault diagnosis of shearer rocker arm gears.
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Figure 10. Analysis of diagnostic results of different models. (a) Train time; (b) inference time;
(c) accuracy; (d) number of parameters.

5. Conclusions
(1) The improved S-transform effectively enhances the fault-related frequency compo-

nents of the gear vibration signals. Compared with the original S-transform, it produces
clearer frequency–domain features and reduces the interference of background noise on
fault characteristics. Furthermore, the introduced depthwise separable structure improves
computational efficiency, reducing model training time, parameter size, and inference
overhead, while maintaining high accuracy. This makes the method more suitable for fault
diagnosis of shearer arm gearboxes under complex working conditions.

(2) Frequency–domain information contributes significantly to improving fault recog-
nition performance. When one-dimensional time-series signals are transformed into
two-dimensional frequency or time–frequency images and fed into 2D models, the recogni-
tion accuracy is generally higher than that based on raw time–domain signals. Notably,
even under certain background noise levels, the frequency-based approach can still main-
tain classification accuracy above 90%.

(3) The interpretability analysis based on Grad-CAM reveals that the model focuses
on features that are closely aligned with the physical mechanisms of gear faults, thereby
enhancing the traceability and trustworthiness of the diagnostic process. However, some
deep-layer features remain abstract and cannot be directly linked to specific physical
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phenomena, suggesting that future studies should integrate domain knowledge to further
improve the explainability and transparency of the model, helping to demystify its “black-
box” nature.

(4) Although the proposed method achieves promising classification performance on
a controlled and balanced dataset, its generalization ability under imbalanced data distri-
butions and variable operating conditions has not been fully evaluated. Future work will
explore the integration of transfer learning and few-shot learning techniques, to enhance the
model’s adaptability and robustness across different equipment and complex environments.
Additionally, domain-informed interpretability strategies will be investigated to further
improve model credibility and facilitate real-world deployment.
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