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Abstract. Real-world problems are often multi-objective, with decision-
makers unable to specify a priori which trade-off between the conflicting
objectives is preferable. Intuitively, building machine learning solutions
in such cases would entail providing multiple predictions that span and
uniformly cover the Pareto front of all optimal trade-off solutions. We
propose a novel approach for multi-objective training of neural networks
to approximate the Pareto front during inference. In our approach, we
train the neural networks multi-objectively using a dynamic loss function,
wherein each network’s losses (corresponding to multiple objectives) are
weighted by their hypervolume maximizing gradients. Experiments on
different multi-objective problems show that our approach returns well-
spread outputs across different trade-offs on the approximated Pareto
front without requiring the trade-off vectors to be specified a priori. Fur-
ther, results of comparisons with the state-of-the-art approaches high-
light the added value of our proposed approach, especially in cases where
the Pareto front is asymmetric.

Keywords: Multi-objective optimization · Neural networks · Pareto
front · Hypervolume · Multi-objective learning

1 Introduction

Multi-objective (MO) optimization refers to finding Pareto optimal solutions
for multiple, often conflicting, objectives. In MO optimization, a solution is
Pareto optimal if none of the objectives can be improved without a simulta-
neous detriment in performance on at least one of the other objectives [35]. MO
optimization is used for MO decision-making in many real-world applications
[32] e.g., e-commerce recommendation [21], treatment plan optimization [25,27],
and aerospace engineering [29]. In this paper, we focus on learning-based MO
decision-making i.e., MO training of machine learning (ML) models so that MO
decision-making is possible during inference. Specifically, we focus on training
neural networks to generate a finite number of Pareto optimal solutions for each
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sample1, so that they together provide a discrete approximation of the Pareto
front2.

The most straightforward approach for MO optimization is linear scalariza-
tion, i.e., optimizing a linear combination of different objectives according to
scalarization weights. The scalarization weights are based on the desired trade-
off between multiple objectives which is often referred to as ‘user preference’. A
major issue with linear scalarization is that user preferences cannot always be
straightforwardly translated to linear scalarization weights. Recently proposed
approaches have tackled this issue and find solutions on the average Pareto
front for conflicting objectives according to a pre-specified user preference vec-
tor [20,23]. However, in many real-world problems, the user preference vector
cannot be known a priori and decision-making is only possible a posteriori, i.e.,
after multiple solutions are generated that are (near) Pareto optimal for a specific
sample3. For example, in neural style transfer [11] where photos are manipulated
to imitate an art style from a selected painting, the user preference between the
amount of semantic information (the photo’s content) and artistic style can
only be decided by looking at multiple different resultant images on the Pareto
front (Fig. 5). Moreover, defining multiple trade-offs, typically by defining mul-
tiple scalarizations, to evenly cover the Pareto front is far from trivial, e.g., if
the Pareto front is asymmetric. Here, we define asymmetry in Pareto fronts as
asymmetry in the distribution of Pareto optimal solutions in the objective space
on either side of the 45◦-line, the line which represents the trade-off of equal
marginal benefit along all objectives (see Pareto fronts in Fig. 1). We demon-
strate and discuss this further in Sect. 4. To enable a posteriori decision-making
per sample, multiple solutions spanning the Pareto front need to be generated
without requiring the user preference vectors beforehand.

Despite many developments in the direction of MO training of neural net-
works with pre-specified user preferences, research on MO learning allowing for
a posteriori decision-making is still scarce. Here, we present a novel method
to multi-objectively train a set of neural networks to this end, leveraging the
concept of hypervolume. Although we present our approach for training neural
networks, the proposed formulation can be used for a wide range of ML models.

The hypervolume (HV) – the objective space dominated by a given set of
solutions – is a popular metric to compare the quality of different sets of solu-
tions approximating the Pareto front. It has its origins in the field of evolutionary
algorithms [39], which are commonly accepted to be state of the art for multi-
objective optimization. Theoretically, if the HV is maximal for a set of solutions,
these solutions are on the Pareto front [9]. Additionally, HV not only encodes the
proximity of a set of solutions to the Pareto front but also their diversity, which
means that HV maximization provides a straightforward way for finding diverse
solutions on the Pareto front. Therefore, we use hypervolume maximization for

1 Note that, during inference, only near Pareto optimal solutions can be generated
due to the generalization gap between training and inference.

2 The Pareto front is the set of all Pareto optimal solutions in objective space.
3 For more information on a posteriori decision-making, please refer to [14].
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MO training of neural networks. We train the set of neural networks with a
dynamically weighted combination of loss functions corresponding to multiple
objectives, wherein the weight of each loss is based on the HV-maximizing gra-
dients. In summary, our paper has the following main contributions:

– An MO approach for training neural networks
• using gradient-based HV maximization
• predicting Pareto optimal and diverse solutions on the Pareto front per

sample without requiring specification of user preferences
• enabling learning-based a posteriori decision-making.

– Experiments to demonstrate the added value of the proposed approach, specif-
ically in asymmetric Pareto fronts.

2 Related Work

MO optimization has been used in machine learning for hyperparam-
eter tuning of machine learning models [2,18], multi-objective classification of
imbalanced data [33], and discovering the complete Pareto set starting from a
single Pareto optimal solution [22]. [15] used MO optimization for finding con-
figurations of deep neural networks for conflicting objectives. [13] proposed opti-
mizing the weights of an autoencoder multi-objectively for finding the Pareto
front of sparsity and reconstruction error. [24] used the Tchebycheff procedure
for multi-objective optimization of a single neural network with multiple heads
for multi-task text classification. Although we do not focus on these directions,
our proposed approach can be used in similar applications.

MO training of a set of neural networks such that their predictions approx-
imate the Pareto front of multiple objectives is closely related to the work
presented in this paper. Similar to our work, [20,23] describe approaches with
dynamic loss formulations to train multiple networks such that the predictions
from these multiple networks together approximate the Pareto front. However,
in these approaches, the trade-offs between conflicting objectives are required
to be known in advance whereas our proposed approach does not require know-
ing the set of trade-offs beforehand. Other approaches [19,28] involve training
a “hypernetwork” to predict the weights of another neural network based on
a user-specified trade-off. Recently, it has been proposed to condition a neu-
ral network for an input user preference vector to allow for predicting multiple
points near the Pareto front during inference [31]. While these approaches can
approximate the Pareto front by iteratively predicting neural network weights or
outputs based on multiple user preference vectors, the process of sampling the
user preference vectors may still be intensive for an unknown Pareto front shape.
Another approach proposes growing dense Pareto fronts from sparse Pareto opti-
mal solutions [22], for which our approach can provide baseline solutions.

Gradient-based HV maximization is a key component of our approach. [26]
have described gradient-based HV maximization for single networks and formu-
lated a dynamic loss function treating each sample’s error as a separate loss. [1]
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applied this concept for training in generative adversarial networks. HV maxi-
mization is also applied in reinforcement learning [34,38]. While these approaches
use HV maximizing gradients to optimize the weights of a single neural network,
our proposed approach formulates a dynamic loss based on HV maximizing gra-
dients for a set of neural networks. Different from our approach, other concurrent
approaches for HV maximization are based on transformation to (m−1)D (where
m is the number of objectives) integrals by use of polar coordinates [7], random
scalarization [12], and a q-Expected hypervolume improvement function [3].

3 Approach

MO learning of a network parameterized by a vector θ can be formulated as
minimizing a vector of n losses L(θ, sk) = [L1(θ, sk), . . . , Ln(θ, sk)] for a given
set of samples S = {s1, . . . , sk, . . . , s|S|}. These loss functions form the loss
space, wherein the subspace attainable by a sample’s losses is bounded by its
Pareto front. To learn multiple networks with loss vectors on each sample’s
Pareto front, we replace θ by a set of parameters Θ = {θ1, . . . , θp}, where each
parameter vector θi represents a network. The corresponding set of loss vectors is
{L(θ1, sk), . . . ,L(θp, sk)} and is represented by a stacked loss vector L(Θ, sk) =
[L(θ1, sk), . . . ,L(θp, sk)]. Our goal is to learn a set of p networks such that
loss vectors in L(Θ, sk) corresponding to the networks’ predictions for
sample sk lie on and span the Pareto front of loss functions for sample
sk. In other words, each network’s loss vector is Pareto optimal and lies in a
distinct subsection of the Pareto front for each sample. To achieve this goal,
we train networks so that the loss subspace Pareto dominated by the networks’
predictions (i.e., the HV) is maximal.

The HV of a loss vector L(θi, sk) for a sample sk is the volume of the subspace
Dr(L(θi, sk)) in loss space dominated by L(θi, sk). This is illustrated in Fig. 1a.
To keep this volume finite, the HV is computed with respect to a reference point
r which bounds the space to the region of interest4. Subsequently, the HV of
multiple loss vectors L(Θ, sk) is the HV of the union of dominated subspaces
Dr(L(θi, sk)),∀i ∈ {1, 2, ..., p}. The MO learning problem to maximize the mean
HV of all |S| samples is as follows:

maximize
1

|S|
|S|∑

k=1

HV (L(Θ, sk)) (1)

The update direction of gradient ascent for parameter vector θi of network i is:

∂ 1
|S|

∑|S|
k=1 HV(L(Θ, sk))

∂θi
(2)

4 The reference point is generally set to large coordinates in loss space to ensure that
it is always dominated by all loss vectors.
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← L1

L2
↓

L(θ1, sk)

L(θ2, sk)

L(θ3, sk)

Dr(L(θ1, sk))

Dr(L(θ2, sk))

Dr(L(θ3, sk))

r

(a) Dominated subspaces
← L1

L2
↓

∂HV(L(Θ,sk))
∂L2(θ2,sk)

∂HV(L
(Θ

,sk
))

∂L1(
θ2,

sk
)

∂HV(L(Θ,sk))
∂L(θ2,sk)

∂HV(L(Θ,sk))
∂L(θ0,sk)

∂HV(L(Θ,sk))
∂L(θ3,sk)

r

(b) HV gradients

Dr(L(Θ0, sk))

Dr(L(Θ1,sk))

← L1

L2
↓

r

(c) Domination-ranked
fronts

Fig. 1. (a) Three Pareto optimal loss vectors L(θi, s) on the Pareto front (green)
with dominated subspaces Dr(L(θi, sk)) with respect to reference point r. The union
of dominated subspaces is the dominated hypervolume (HV) of L(Θ, sk). (b) Gray

markings illustrate the computation of the HV gradients ∂HV(L(Θ,s))
∂L(θi,s)

(gray arrows)

in the three non-dominated solutions. (c) The same five solutions grouped into two
domination-ranked fronts Θ0 and Θ1 with corresponding HV, equal to their dominated
subspaces Dr(L(θi, sk)), and HV gradients. (Color figure online)

By exploiting the chain rule decomposition of HV gradients as described in [8],
the update direction in Eq. (2) for parameter vector θi of network i can be
written as follows:

1
|S|

|S|∑

k=1

∂HV (L(Θ, sk))
∂L(θi, sk)

· ∂L(θi, sk)
∂θi

∀i ∈ {1, . . . , p} (3)

The dot product of ∂HV(L(Θ,sk))
∂L(θi,sk)

(the HV gradients with respect to loss vector

L(θi, sk)) in loss space, and ∂L(θi,sk)
∂θi

(the matrix of loss vector gradients in the
network i’s parameters θi) in parameter space, can be decomposed to

1
|S|

|S|∑

k=1

n∑

j=1

∂HV (L(Θ, sk))
∂Lj(θi, sk)

∂Lj(θi, sk)
∂θi

∀i ∈ {1, . . . , p} (4)

where ∂HV(L(Θ,sk))
∂Lj(θi,sk)

is the scalar HV gradient in the single loss function Lj(θi, sk),

and ∂Lj(θi,sk)
∂θi

are the gradients used in gradient descent for single-objective
training of network i for loss Lj(θi, sk). Based on Eq. (4), one can observe that
mean HV maximization of loss vectors from a set of p networks for |S| samples
can be achieved by weighting their gradient descent directions for loss functions
Lj(θi, sk) with their corresponding HV gradients ∂HV(L(Θ,sk))

∂Lj(θi,sk)
for all i, j. In other

terms, the MO learning of a set of p networks can be achieved by minimizing5

the following dynamic loss function for each network i:
5 Minimizing the dynamic loss function maximizes the HV because the reference point

r is in the positive quadrant (“to the right and above 0”).



108 T. M. Deist et al.

1
|S|

|S|∑

k=1

n∑

j=1

∂HV (L(Θ, sk))
∂Lj(θi, sk)

Lj(θi, sk) ∀i ∈ {1, . . . , p} (5)

The computation of the HV gradients ∂HV(L(Θ,sk))
∂Lj(θi,sk)

is illustrated in Fig. 1b. These
HV gradients are equal to the marginal decrease in the subspace dominated only
by L(θi, sk) when increasing Lj(θi, sk).

Note that Eq. 5 maximizes the HV for each sample’s losses instead of first
averaging losses on the set of samples as commonly done in learning tasks. Conse-
quently, the neural networks are trained on each sample’s Pareto front separately,
instead of on the front of averages losses. In [5], we experimentally illustrate that
learning an average front may lead to undesired results for non-convex fronts.

3.1 HV Maximization of Domination-Ranked Fronts

A relevant caveat of gradient-based HV maximization is that HV gradients
∂HV(L(Θ,sk))

∂Lj(θi,sk)
in strongly dominated solutions are zero (because no movement

in any direction will affect the HV, Fig. 1b) and in weakly dominated solutions
are undefined [8]. To resolve this issue, we follow [37]’s approach, which avoids
the problem of dominated solutions by sorting all loss vectors into separate fronts
Θl of mutually non-dominated loss vectors and optimizing each front separately
(Fig. 1c). l is the domination rank, and q(i) is the mapping of network i to
domination rank l. By maximizing the HV of each front, trailing fronts with
domination rank > 0 eventually merge with the non-dominated front Θ0 and a
single front is maximized by determining optimal locations for each loss vector
on the Pareto front.

Furthermore, we normalize the HV gradients
∂HV(L(Θq(i),sk))

∂L(θi,sk)
as in [6] such

that their length in loss space is 1. The dynamic loss function with domination-
ranking of fronts and HV gradient normalization is:

1
|S|

|S|∑

k=1

n∑

j=1

1
wi

∂HV
(
L(Θq(i), sk)

)

∂Lj(θi, sk)
Lj(θi, sk) ∀i ∈ {1, . . . , p} (6)

where wi =
∥∥∥∥

∂HV(L(Θq(i),sk))
∂L(θi,sk)

∥∥∥∥.

3.2 Implementation

We implemented the HV maximization of losses from multiple networks, as
defined in Eq. (6), in Python6. The neural networks were implemented using
the PyTorch framework [30]. We used [10]’s HV computation reimplemented

by Simon Wessing, available from [36]. The HV gradients
∂HV(L(Θq(i),sk))

∂Lj(θi,sk)
were

6 Code is available at https://github.com/timodeist/multi objective learning.

https://github.com/timodeist/multi_objective_learning
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computed following the algorithm by [8]. Networks with identical losses were
assigned the same HV gradients. For non-dominated networks with one or more
identical losses (which can occur in training with three or more losses), the left-
and right-sided limits of the HV function derivatives are not the same [8], and
they were set to zero. Non-dominated sorting was implemented based on [4].

3.3 A Toy Example

Consider an example of MO regression with two conflicting objectives: given
a sample xk ∈ S, from input variable X ∈ [0, 2π], predict the corresponding
output zk that matches y1

k from target variable Y1 and y2
k from target variable

Y2, simultaneously. The relation between X, Y1, and Y2 is as follows:

Y1 = cos(X), Y2 = sin(X)

The corresponding mean square error formulations for loss functions are Lj =
1

|S|
∑|S|

k=1(y
j
k − zk)2; j ∈ {1, 2}. We generated 200 samples of input and target

variables for training and validation each. We trained five neural networks for
20000 iterations each with two fully connected linear layers of 100 neurons fol-
lowed by ReLU nonlinearities. Figure 2a shows the HV over training iterations for
the set of networks, which stabilizes visibly. Figure 2b shows predictions (y-axis)
for validation samples evenly sampled from [0, 2π] (x-axis). These predictions by
five neural networks constitute Pareto front approximations for each sampled
xk, and correspond to precise predictions for cos(X) and sin(X), and trade-offs
between both target functions. A network may generate predictions with chang-
ing trade-offs for different samples, as demonstrated Networks 2–5 in Fig. 2b
for x ∈ [ 3/2

π , 2π]. Figure 2c shows the predictions for the highlighted samples in
Fig. 2b in loss space, wherein they seem to be evenly distributed on the approx-
imated Pareto front. It becomes clear from Figs. 2b & 2c that each xk has a
differently sized Pareto front which the networks are able to predict. Figure 2c
also demonstrates an a posteriori decision-making scenario. Upon visualizing
the different Pareto fronts per sample, a user might decide to select predictions
corresponding to different trade-offs for different samples.

4 Experiments

We performed experiments with two MO problems: MO regression with differently
shaped Pareto fronts and neural style transfer.7 We compared the performance
of our approach with linear scalarization and two state-of-the-art approaches:

7 Additional experiments are provided in [5]: multi-observer medical image segmenta-
tion, MO regression with three losses, multi-style transfer, and a counter-example for
initial loss normalization.
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Fig. 2. MO regression on two losses. (a) HV values for a set of networks over training
iterations. (b) Network outputs for X ∈ [0, 2π]. (c) Generated Pareto front predictions
for a selection of six samples from [ 1

4
π, 3

4
π] in loss space.

ParetoMTL [20] andEPO [23]. Pareto MTL and EPO try to find Pareto optimal
solutions on the average Pareto front for a given trade-off vector using dynamic loss
functions. For a consistent comparison, we used the trade-offs used in the original
experiments of EPO for Pareto MTL, EPO, and as fixed weights in linear scalar-
ization.

Experiments were run on systems using Intel(R) Xeon(R) Silver 4110 CPU
@ 2.10 GHz with NVIDIA GeForce RTX 2080Ti, or Intel(R) Core(R) i5-3570K
@ 3.40 Ghz with NVIDIA GeForce GTX 1060 6 GB. For training, the Adam
optimizer [17] was used. The learning rate and β1 of Adam were tuned for each
approach separately based on the maximal HV of validation loss vectors.

4.1 MO Regression

We considered three cases for the MO regression toy problem described in
Sect. 3.3 each demonstrating a different Pareto front shape: the symmetric case
with two MSE losses as in Fig. 2, and two asymmetric cases each with MSE as
one loss and L1-norm or MSE scaled by 1

100 as the second loss. The reference
point for our proposed approach was set to (20, 20).

Figure 3 shows Pareto front approximations for all three cases. Figures 3a & 3c
show that fixed linear scalarizations and EPO produce networks generating well-
distributed outputs with low losses that predict a sample’s symmetric Pareto front
for two conflicting MSE losses. The positions on the front approximated by linear
scalarization seem to be far from the pre-specified trade-offs (gray lines). This is
expected because, by definition of linear scalarization, the solutions should lie on
the approximated Pareto front where the tangent is perpendicular to the search
direction specified by the trade-offs. For Pareto MTL, networks are clustered closer
to the center of the approximated Pareto front.

Optimizing MSE and L1-Norm (Figs. 3e–3h) results in an asymmetric Pareto
front approximation. The predictions by our HV maximization-based approach
remain well distributed across the fronts. EPO also still provides a decent spread
albeit less uniform across samples whereas linear scalarization and Pareto MTL
tend to both or mostly the lower extrema, respectively.
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Fig. 3. Pareto front approximations on a random subset of validation samples by sets
of five neural networks trained using four approaches. Three different pairs of loss
functions are used: (a–d) MSE and MSE, (e–h) MSE and L1-Norm, and (i–l) MSE and
scaled MSE.

The difficulty of manually pre-specifying the trade-offs without knowledge
of the Pareto front becomes more evident when optimizing losses with highly
different scales (Figs. 3i–3l). The pre-specified trade-offs do not evenly cover the
Pareto fronts. Consequently, the networks trained by EPO do not cover the
Pareto front evenly despite following the pre-specified trade-offs. Further, the
networks optimized by Pareto MTL cover only the upper part of the fronts.
Networks trained with fixed linear scalarizations tend towards both extrema. On
the other hand, our approach trains networks that follow well-distributed trade-
offs on the Pareto front. Normalizing losses from differing scales as in Figs. 3i–3l
might not sufficiently improve methods based on pre-specified trade-offs (Pareto
MTL, EPO) or fixed linear scalarizations [5].

The mean HV over 200 validation samples is computed for all approaches
and Table 1 displays the median and inter-quartile ranges (IQR) over 25 runs.
The magnitude of the HV is largely determined by the position of the reference
point. For r = (20, 20) the maximal HV equals 400 minus the area bounded by
the utopian point (0, 0) and a sample’s Pareto front. Even poor approximations
of a sample’s Pareto front can yield a HV ≥ 390. For these reasons, HVs in
Table 1 appear large and minuscule differences between HVs are relevant. As
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Table 1. Comparison of HV across different approaches. The maximal median HV in
each column is highlighted. Small increases in HV close to the maximum (106 or 400)
matter: see Sect. 4.1. A statistically significant one-sided Wilcoxon signed rank test
with correction for multiple comparison is indicated by: LS vs HV max. (∗), PMTL
vs HV max. (†), and EPO vs HV max. (‡). Columns 1–3: Median (inter-quartile
range) values of the mean HV of the approximated Pareto fronts for 200 validation
samples from 25 runs of MO regression problem are reported. Column 4: Median
(inter-quartile range) HV of the approximated Pareto fronts for the 25 image sets used
in neural style transfer are reported.

MSE & MSE MSE &
L1-Norm

MSE & scaled
MSE

Style & content

Linear
scalarization
(LS)

399.5929∗

(399.5776,
399.6018)

399.2909
(399.2738,
399.3045)

399.9859
(399.9857,
399.9864)

999990.7699
(999988.6580,
999992.5850)

Pareto MTL
(PMTL)

397.1356
(396.3212,
397.6288)

392.2956
(392.0377,
393.4942)

398.3159
(397.4799,
398.6699)

997723.8748
(997583.5152,
998155.6837)

EPO 399.5135
(399.5051,
399.5348)

399.0884
(398.998,
399.1743)

399.9885
(399.9883,
399.9889)

999988.4297
(999984.4808,
999989.8338)

HV
maximization

399.5823† ‡

(399.5619,
399.6005)

399.3795∗ † ‡

(399.3481,
399.4039)

399.9954∗ † ‡

(399.9927,
399.9957)

999999.7069
(999999.4543,
999999.8266)∗ † ‡

expected, our approach finds higher HV values for the case of asymmetric front
shapes (Table 1 columns 2 and 3, and Figs. 3e–3l). In case of the symmetric front
shape (Fig. 3a), since the pre-specified trade-offs appear to span the Pareto front
shape well, linear scalarization’s training based on fixed loss weights is more
efficient than training on a dynamic loss with varying weights as used by HV
maximization. This increased efficiency of training using fixed weights that are
suitable for symmetric MSE losses presumably results in a slightly higher HV
for linear scalarization (Table 1 column 1).

4.2 Neural Style Transfer

We further considered the MO optimization problem of neural style transfer as
defined in [11] (we reused and adjusted Pytorch’s neural style transfer imple-
mentation [16]), where pixels of an image are optimized to minimize content loss
(semantic similarity with a target image) and style loss (artistic similarity with
a style image) simultaneously. We performed experiments with 25 image pairs
(image sources as in [5]), obtained by combining 5 content and 10 style images
to generate 6 solutions on the Pareto front. The reference point in our approach
was chosen as (100, 10000) based on preliminary runs.

Figure 4 shows the obtained Pareto front estimates for 25 image sets by each
approach. Linear scalarization (a) and EPO (c) determine solutions close to
or on the chosen user preferences which, however, do not diversely cover the
range of possible trade-offs. Pareto MTL (b) achieves sets of clustered and partly
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Fig. 4. Pareto front estimates in loss space by different approaches for neural style
transfer using four approaches: (a) Linear scalarization (b) Pareto MTL, (c) EPO, and
(d) HV maximization. Sections within the black frames are magnified.

dominated solutions, which do not cover trade-offs with low content loss. On the
other hand, HV maximization (d) returns Pareto front estimates that broadly
cover diverse trade-offs between style and content loss across different image
sets without having to specify user preferences. This is also reflected in the
significantly larger median HVs reported in Table 1.

Fig. 5. Neural style transfer example by all four approaches for one image set.

Figure 5 shows the images generated by each approach for one of the image
sets. This case was manually selected for its aesthetic appeal.8 The images seen
here match observations from Fig. 4, e.g., Pareto MTL’s images show little diver-
sity in style and content, many images by linear scalarization of EPO have too
little style match (‘uninteresting’ images), and images by HV maximization show
most interesting diversity.
8 Generated images for all 25 image sets are available at https://github.com/

timodeist/multi objective learning.

https://github.com/timodeist/multi_objective_learning
https://github.com/timodeist/multi_objective_learning
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5 Discussion

We have proposed an approach to train a set of neural networks such that they
jointly predict Pareto front approximations for each sample during inference,
without requiring user-specified trade-offs. Our approach translates the concept
of gradient-based HV maximization from MO optimization to MO learning. We
provide experimental comparisons with existing approaches that require a priori
specification of the trade-offs. The results highlight the advantage of our HV
maximization approach, especially in MO problems that exhibit asymmetric
Pareto front.

Our HV maximization based approach does not require specifying p trade-
offs a priori (based on the number of predictions, p, required on the Pareto front),
which essentially are p(n−1) hyperparameters of the learning process for n losses.
Choosing these trade-offs well requires knowledge of the Pareto front shapes,
which is often not known a priori. HV maximization, however, introduces the n-
dimensional reference point r and thus n additional hyperparameters. However,
choosing a reference point such that the entire Pareto front gets approximated
is not complex. It often suffices to use losses of randomly initialized networks
rescaled by a factor ≥1 as the reference point. If only a specific section of the
Pareto front is relevant and this is known a priori, the reference point can be
chosen so that the Pareto front approximation only spans the chosen section.

HV-based training for sets of neural networks can, in theory, be applied to
any number of networks, p, and loss functions, n. In practice, the time com-
plexity of exact HV (exponential in n, [10]) and HV gradient (quadratic in p
with n ≤ 4, [8]) computations is limiting but may be overcome by algorith-
mic improvements using, e.g., HV approximations. Further, we train a separate
network corresponding to each prediction. This increases computational load
linearly if more predictions on the Pareto front are desired. We train separate
networks instead of one multi-headed network for the sake of simplicity in exper-
imentation and clarity when demonstrating our approach. It is expected that the
HV maximization formulation would work similarly if the parameters of some of
the neural network layers are shared, which would decrease computational load.

In conclusion, we describe MO training of neural networks using HV max-
imization for learning-based a posteriori MO decision-making. Our approach
provided the desired well-spread Pareto front approximations on artificial MO
regression problems. On the MO style transfer problem, our method yielded
encouraging results that emphasize its usefulness for a posteriori decision-
making.
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