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Abstract

Introduction. Point-of-care ultrasound (POCUS) devices are gaining popu-
larity due to their portability and affordability, making ultrasound technology
more accessible in various medical settings. However, these benefits of cost and
portability come with a trade-off in imaging quality.

Aim. This thesis aims to enhance the image quality of POCUS devices using
deep learning and a novel paired dataset of POCUS and high-end ultrasound
images.

Method. First, an accurately paired dataset was created, comprising ex vivo
and abdominal phantom images from both POCUS and high-end ultrasound
systems. This was achieved by building an automated acquisition setup to en-
sure consistent capture locations, along with comprehensive image alignment
and registration steps. Second, a deep learning network was developed to en-
hance POCUS image quality. A conditional Generative Adversarial Network
(cGAN) with a U-Net generator, pretrained on simulation data, was trained
and evaluated using this paired dataset.

Results. A paired dataset of 1064 images was collected. The proposed cGAN
achieved significant improvements in image quality over low-quality input im-
ages, increasing the Structural Similarity Index Measure (SSIM) from 0.286 ±
0.062 to 0.540 ± 0.082 and Peak Signal-to-Noise Ratio (PSNR) from 19.155 ±
1.948 dB to 22.406 ± 2.189 dB. It also reduced the Natural Image Quality Eval-
uator (NIQE) from 7.948 ± 1.772 to 4.436 ± 0.528 and Perception-based Image
Quality Evaluator (PIQE) from 31.116 ± 5.911 to 19.991 ± 5.722, where lower
scores indicate higher quality. Additionally, qualitative assessment showed that
end-users preferred the enhanced images over the original low-quality images.

Conclusions. This thesis presents the first accurately paired dataset of POCUS
and high-end ultrasound images. Additionally, the developed cGAN success-
fully enhanced the quality of POCUS images, surpassing the results reported
in similar studies. This work demonstrates the potential for reliable quality
enhancement methods for POCUS while preserving its cost and portability
benefits, ultimately increasing its value and impact in the medical field.





Contents

1 Introduction 1

2 Method 5
2.1 Collection of paired ultrasound images . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Ultrasound devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Image acquisition setup . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Ex vivo and abdominal phantom data . . . . . . . . . . . . . . . . . 8
2.1.4 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Maximizing locational agreement between paired images . . . . . . . 10
2.1.6 Image preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Development of deep learning network . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Pretraining with simulation data . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.6 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.7 Quantitative evaluation metrics . . . . . . . . . . . . . . . . . . . . . 23
2.2.8 Qualitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Results 27
3.1 Collection of paired ultrasound images . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Dataset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Registration and preprocessing . . . . . . . . . . . . . . . . . . . . . 27

3.2 Development of deep learning network . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Model convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Ablation study and quantitative evaluation . . . . . . . . . . . . . . 29
3.2.3 Qualitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Discussion 33
4.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Comparison to literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Future recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Conclusion 39

iii





1

Introduction

The use of handheld devices suitable for point-of-care ultrasound (POCUS) has been on
the rise in recent years. This increase in popularity can be attributed to several key char-
acteristics of these devices. Firstly, their portability offers greater convenience compared
to conventional cart-based devices. Moreover, these handheld POCUS devices are more
affordable than traditional ultrasound machines [1–5], making ultrasound technology more
accessible and expanding its application beyond the radiology department in hospitals.
POCUS is particularly valuable in settings where larger, more expensive ultrasound equip-
ment is impractical, such as in bedside emergency care, general practitioner offices, home
care environments, and rural medicine facilities [6–13].

Despite these advantages, one of the primary drawbacks of ultrasound examination with a
handheld POCUS device is their reduced imaging quality. This discrepancy in quality pri-
marily arises from hardware constraints due to portability demands and cost limitations,
which are reflected in the probe material, transducer elements, processor modules, and
the absence of advanced post-processing algorithms [14, 15]. Compared to conventional
high-end ultrasound systems, handheld POCUS devices typically exhibit reduced resolu-
tion and contrast, less distinct texture or edges of anatomical structures, and increased
noise levels [6, 16, 17]. These limitations can potentially lead to less accurate diagnoses [2,
4]. Despite the advancements in POCUS technology in recent years, a trade-off remains
between imaging quality and the benefits of cost and portability [14, 18, 19].

Efforts to enhance the POCUS image quality can be categorized into three main ap-
proaches. The first approach involves advancements in hardware. However, this approach
is constrained by rising costs and compromised portability. Another option for quality
improvement involves refinements in the ultrasound beamforming algorithm [20, 21]. Nev-
ertheless, access to the raw radio frequency (RF) signals required for such improvements is
limited in most commercial ultrasound systems. Therefore, this thesis centers its focus on
a third alternative: modifications to the image post-processing methods, eliminating the
need for hardware remodeling or operations on the raw RF signal.

Traditional post-processing techniques, such as filtering and deconvolution, have been em-
ployed for ultrasound image enhancement for some time [22]. However, in recent years
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1. INTRODUCTION

deep learning has emerged as a powerful tool, achieving state-of-the-art performance in
various image processing tasks, including image quality enhancement [23–25]. Therefore,
a literature review [26] was conducted to explore the current state-of-the-art progress in
ultrasound image enhancement using deep learning for POCUS applications. This review
highlights the potential of these methods, demonstrating substantial image quality im-
provements across various studies and datasets.

Notably, many studies rely on paired low-quality POCUS images with high-quality im-
ages from high-end machines. While these image pairs are expected to contain the same
locational information, they frequently suffer from spatial discrepancies due to acquisi-
tion challenges. These discrepancies, which can only be partially mitigated by registration
methods, impact the training of deep learning networks. Moreover, they introduce un-
certainties in the ground truth (i.e., the high-quality reference images), which makes it
difficult to validate the quality enhancement achieved by such models. To the best of the
authors’ knowledge, this issue is present in all paired POCUS datasets reported in litera-
ture, including those used in the studies by Zhou et al. [6, 18] and the open-source dataset
from the Ultrasound Image Enhancement Challenge (USenhance) [27] in collaboration with
MICCAI 2023. This lack of accurately paired datasets represents a significant gap in the
current literature, which this thesis aims to address. Although simulation data could offer
an alternative solution, the review found that simulated datasets generally exhibit higher
performance gains compared to in vivo and phantom datasets, suggesting that simulation
results may not fully represent clinical scenarios. Therefore, the primary goal of this thesis
is to develop a setup capable of acquiring an accurately paired dataset of POCUS images
and high-end ultrasound images, addressing aspects such as consistent capture locations
and precise image alignment and registration.

The second aim of this study is to leverage this paired dataset for the development of
a deep-learning network aimed at enhancing POCUS images. The literature review [26]
showed that Generative Adversarial Networks (GANs) are employed in the majority of
studies focused on ultrasound enhancement. Originally proposed by Goodfellow et al. [28],
GANs have gained significant popularity in recent years, particularly in image processing
and generation. These deep learning frameworks have also made notable advancements in
healthcare applications, demonstrating strong performance in medical image reconstruction
and enhancement [25, 29–31]. In essence, a GAN consists of two competing deep learning
networks—the generator and the discriminator—that engage in an adversarial process to
train a model capable of generating realistic data. A particularly relevant variation of
GANs is the conditional GAN (cGAN), with a well-known implementation called pix2pix,
developed by Isola et al. [32]. This cGAN is specifically designed for image-to-image trans-
lation tasks. It is therefore well-suited for the objective of enhancing ultrasound images
using a paired dataset, as the goal is to map low-quality handheld images to high-quality
reference images.

In summary, this study has two main objectives; 1) to collect the first accurately paired
dataset of POCUS and high-end ultrasound images, and 2) to use this paired dataset to
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train a deep learning network for enhancing POCUS image quality. Thereby, this thesis
aims to contribute to the quality enhancement of POCUS, while preserving its cost and
portability benefits, ultimately increasing its value to the medical field.
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Method

This thesis consists of two phases, which will be described in the following sections. Section
2.1 outlines the development of an image acquisition setup for the collection of a paired
dataset of low-quality POCUS and high-quality, high-end ultrasound images. Section 2.2
presents the development of a deep learning network aimed at enhancing the quality of
POCUS images.

2.1 Collection of paired ultrasound images

A measurement setup was designed to obtain a paired dataset consisting of images from
both a low-cost POCUS system (low-quality) and a high-end ultrasound machine (high-
quality). Additionally, paired images were collected using a mid-range POCUS device from
a higher cost segment (intermediate-quality). In the following subsections, the ultrasound
devices will first be specified. Next, the development of the image acquisition setup will be
described, followed by an overview of the ex vivo specimens and abdominal phantom used.
Then, the data acquisition along with a method for maximizing the locational agreement
between paired images from different ultrasound devices will be outlined. Finally, the
preprocessing steps for obtaining the paired dataset will be illustrated.

2.1.1 Ultrasound devices

Ultrasound imaging was performed using three devices of varying quality. These devices,
in increasing order of quality, included a cost-effective handheld device (Telemed), a mid-
range handheld device (Clarius), and a high-end cart-based device (Philips). The speci-
fications for each of the ultrasound devices can be found in Table 2.1. Figure 2.1 shows
a photo of each of the three ultrasound devices along with an image acquired by each device.

In this thesis, image acquisition was done using three probes. However, this study fo-
cused on enhancing the lowest-quality ultrasound images obtained with the low-cost probe
(Telemed), utilizing the high-quality images acquired with the highest-quality ultrasound
device (Philips). The primary goal of this study was to demonstrate the feasibility of such
quality enhancement. Although images of intermediate-quality were also obtained with
the mid-range handheld device (Clarius), there quality was not enhanced. Nevertheless,
the same approach could be applied to these images in future research.
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2. METHOD

Table 2.1: Specifications of ultrasound devices used in this thesis.
Telemed Clarius Philips

Description Handheld,
cost-effective, with
wire

Handheld, mid-range,
wireless (Bluetooth
and Wi-Fi)

Cart-based, high-end,
with wire

Device
specifications

MicrUS EXT-1H;
TELEMED, Vilnius,
Lithuania

HD3; Clarius Mobile
Health, Vancouver,
British Columbia,
Canada

CX50; Philips,
Amsterdam,
Netherlands

Probe
specifications

TL15-6L25S-3 L20 HD3 L15-7io

Dimensions 106x105x21 mm
(MicroUs box)

147x76x32 mm
(wireless probe)

400x350x70 mm
(device without
trolley)

Weight 0.26 kg (MicroUs box) 0.29 kg (wireless
probe)

7.3 kg (device without
trolley)

Price
estimation

⇡€3.5K (MicrUs box
+ transducer)

⇡€8K (wireless probe
+ software package)

>€50K (device +
transducer)

Number of
piezoelectric
elements

64 192 128

Frequency
range

6-15 MHz 8-20 MHz 7-15 MHz

Max depth 45 mm 40 mm 30 mm
Scan width 25 mm (scan width) 25 mm (Field of View) 23 mm (aperture)
Access to
unprocessed
raw images

Yes No No

Access to ra-
diofrequency
signals

No No No
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2.1 Collection of paired ultrasound images

Figure 2.1: (a) Ultrasound devices used in this thesis, listed in increasing order of image
quality: a cost-effective handheld device (Telemed), a mid-range handheld device (Clarius),
and a high-end cart-based device (Philips). (b) Transducer used with each device. (c) Example
ultrasound images acquired with each device.
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2. METHOD

2.1.2 Image acquisition setup

In order to develop a paired dataset, it was essential to ensure consistent image capture
locations for each ultrasound probe. This was achieved using a motorized and automated
setup, where the ultrasound probes were hovered over the image subject to acquire im-
ages at predetermined locations. This was accomplished with a two-axis gantry system—a
framework allowing precise and automated movements along motorized rails—to which the
ultrasound probes were attached. The NEJE 3 system, originally designed for laser engrav-
ing and capable of automatic and controllable movements along the x- and y-axes, served
as the foundation. The system was modified by removing the laser engraver, elevating the
structure, and extending the rails to accommodate larger image subjects. Additionally, a
z-axis was added, allowing for manual height adjustment of the probes above the subject.
A custom 3D-printed holder was designed to secure the ultrasound probes to the gantry
system, ensuring they remained stationary throughout image acquisition sessions. This
setup allowed each probe to capture images from consistent positions relative to the image
subject. The gantry system, equipped with the probes and the 3D-printed holder, is shown
in Figure 2.2-a.

Custom software was developed to automatically execute the image acquisition process
according to a predefined grid of acquisition locations, which will be detailed in Section
2.1.4. The software, written in Python (version 3.8.18), controlled both the gantry system
and the three ultrasound devices. The gantry system could be operated through G-code
programming. For the Telemed ultrasound device, real-time image acquisition was possible
using the TELEMED Real-time Imaging for the Research Dynamic Link Library (DLL)
(version 1.0.1), which allows calling the high level programming library "Ultrasonography
for Windows II" Software Development Kit (Usgfw2 SDK) (version 4.3.0). For the Clarius
device, images could be streamed through Python using the Cast API (version 11.2.0),
which requires the Clarius App (version 11.2.2) to be running simultaneously. For the
Philips machine, images could be automatically acquired through Python using a VGA to
USB Video Converter in combination with Open Broadcaster Software (OBS) Studio (ver-
sion 30.1.2), enabling real-time recording of 1080p HD images. The developed software
ensured fully automatic image acquisition, facilitating consistent and repeatable image
capture for each ultrasound probe.

2.1.3 Ex vivo and abdominal phantom data

A diverse dataset was created using various ex vivo specimens and an abdominal phantom.
For the ex vivo dataset, breast, colorectal, and sarcoma specimens were used. Patients were
included if they were diagnosed with sarcoma or colorectal cancer and underwent a surgi-
cal resection, or were scheduled for a breast mastectomy at the Antoni van Leeuwenhoek
Hospital - Netherlands Cancer Institute. Specimen with a maximum dimension smaller
than 5 cm were excluded for practical reasons. All patients have given permission for the
further utilization of their data and biological materials for scientific research. The spec-
imens were collected and measured immediately after surgical removal. After the freshly
excised specimen was collected, it was placed in a vacuum-sealed bag to facilitate stable
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2.1 Collection of paired ultrasound images

Figure 2.2: Overview of the image acquisition setup: (a) The gantry system equipped with
three ultrasound probes secured in a 3D-printed holder; (b) The complete setup during image
acquisition of an ex vivo specimen inside a vacuum-sealed bag, with the probes protected from
water by plastic sterile covers; (c) Schematic top view of the image acquisition setup, showing
the ex vivo specimen inside the vacuum-sealed bag. Additionally, the grid of acquisition
locations is visualized, with each dot representing a position for image capture; (d) Schematic
side view of the image acquisition setup.

placement in a water-filled container. Placing the specimen inside the water ensured opti-
mal acoustic contact of the ultrasound devices without air interference. This was crucial,
as the ultrasound probes hovered over the specimens rather than making direct contact in
the developed image acquisition setup. The vacuum-sealed bag ensured preservation of the
specimen when placed in the water. Additionally, it prevented the specimen from floating,
as the bag could be secured within the container using magnets. An example of an ex vivo
specimen inside a vacuum-sealed bag is depicted in Figure 2.2-b.

Additionally, images were acquired using the Abdominal Intraoperative and Laparoscopic
Ultrasound Phantom "IOUSFAN" (Kyoto Kagaku Co., Ltd, Kyoto, Japan). This abdom-
inal phantom simulates the anatomical structures of abdominal organs and is designed as
a training tool for abdominal ultrasound examinations during surgery. This phantom was
filled with water for optimal acoustic contact, which was necessary as the probes were not
in direct contact with the phantom. An illustration of this abdominal phantom is shown
in Figure 2.3.

9



2. METHOD

Figure 2.3: Abdominal Intraoperative and Laparoscopic Ultrasound Phantom.

2.1.4 Data acquisition

For each device, a scan depth of 3 centimeters was used with a corresponding frequency
of 14 MHz. The maximum number of focal zones was used, resulting in 4 zones for the
Telemed and Philips devices, and 1 focal zone for the Clarius device. The gain and dy-
namic range settings were adjusted as needed, avoiding underexposure, oversaturation, and
loss of contrast or resolution. This was monitored by checking the pixel value histograms
so that no more than 0.1% of the pixels exceeded the maximum value of 255, ensuring
minimal saturation and thereby preventing loss of information.

For each specimen and the abdominal phantom, the aim was to capture as many images
as possible, while minimizing the overlap between images. This was achieved by acquiring
images at locations according to a predefined grid with fixed step sizes: 20 mm in the
x-direction, corresponding to the approximate image width captured by the ultrasound
probes, and 5 mm in the y-direction, corresponding to the approximate slice thickness.
The dimensions of the grid were adjusted based on the size of each specimen in both the x-
and y-directions. The covered areas of the specimens ranged from a minimum of 5 cm to
a maximum of 20 cm. Consequently, between 40 and 140 images were acquired per speci-
men. An example grid of acquisition locations can be seen in Figure 2.2-c. An image of the
complete image acquisition setup, as well as a schematic overview, is shown in Figure 2.2.

2.1.5 Maximizing locational agreement between paired images

Maximizing the locational agreement between paired images acquired with different probes
was crucial for developing an accurately paired dataset. Consistent image capture locations
for each probe were enabled by the automated image acquisition setup with fixed probe
positions, as explained in Section 2.1.2. However, further refinement was needed to achieve
more precise alignment between images from each probe. Locational differences primarily
arose from the use of stick-on sterile plastic probe covers, which were necessary to protect
the probes from water. These probe covers can be seen in Figure 2.2-b. These covers could
introduce variations in the probes’ positioning relative to each other due to the accumula-
tion of excessive plastic, creating offsets. These variations occurred only between different
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2.1 Collection of paired ultrasound images

imaging sessions, when the covers were re-applied and the probes were re-secured in the
holder. Once the covers were in place and the probes were fixed, their relative positions
remained constant within each session.

The offset between images acquired by each probe was minimized in two steps: an align-
ment step and a registration step. These steps were facilitated by an in-house developed
calibration phantom. The calibration phantom consisted of hyperechoic targets—nylon
monofilament wires with a diameter of 0.30 mm—arranged in a specific pattern within a
3D-printed tool. An image of the calibration phantom is shown in Figure 2.4. Placing the
calibration phantom in a water-filled box made the hyperechoic wire targets clearly visible
against the anechoic background.

Figure 2.4: Photo of the in-house developed calibration phantom, consisting of a 3D-printed
tool and hyperechoic nylon monofilament wires.

Image alignment
First, an alignment step was performed before each image acquisition session. The goal
of this alignment was to ensure that each probe captured an image slice as similar as
possible to the others. To achieve this, the distance between the probes needed to be
precisely established, accounting for offsets introduced by variations in probe and cover
placement. In this study, this distance between the probes is defined in the y-direction.
This y-alignment was critical to perform before each measurement, as it cannot be corrected
post-acquisition due to the loss of spatial information. During alignment, the calibration
phantom was positioned so that the first probe was precisely aligned above a hyperechoic
wire parallel to the direction of the image slice, as illustrated in Figure 2.5-a. The probe
holder with the fixed probes was then moved along the y-axis to align the second and
third probes with the wire. This was done by testing a range of different possible distances
between the probes (Figure 2.5-b). The images that best depicted the wire were identified
(Figure 2.5-c). Because the wire was very thin, precise positioning was ensured; even a
small offset resulted in an image that did not capture the wire. This information was then
used to determine the correct distance between the probes for that specific imaging session.
These established distances were then taken into account by the software, ensuring that
each probe captured the same image slices. This process is illustrated in Figure 2.5.
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2. METHOD

Figure 2.5: (a) Side view of Y-axis alignment process to determine the correct distance
between probes, which was done to ensure each image captured the same image slice. This
example shows how the correct distance between probes 1 and 2 was obtained by moving the
probe holder according to different possible distances between the two probes. (b) Probe 1 was
placed precisely above the wire (b.1). Then probe 2 was moved towards the wire according to
the different possible distances, acquiring an image at each position (b.2-b.4). (c) Resulting
images acquired for probe 2 in position b.2-b.4. The wire was only visible when probe 2 was
exactly above it, indicating the correct distance between probe 1 and 2 (distance 2 in this
example). The same process was repeated for probes 1 and 3.
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2.1 Collection of paired ultrasound images

Image registration
Second, a registration step was performed before each imaging session. While the pre-
vious step ensured that each probe captured the same image slice, this registration step
focused on aligning the image plane, ensuring that each probe captured consistent infor-
mation across the image width and height. For this registration step, the same calibration
phantom with hyperechoic wires was used, but now 90 degrees rotated. When acquiring
an ultrasound image of the calibration phantom in this orientation, it resulted in a dot
pattern. Before each image acquisition session, a registration image depicting these dots
was acquired for each probe, resulting in three registration images. This process is shown
in Figure 2.6.

Figure 2.6: (a) Side view of the acquisition of registration images using the calibration
phantom. Each probe was positioned at the same location above the calibration phantom, to
capture a registration image. (b) Resulting images acquired for each probe, showing a dot
pattern. These dot-pattern images were used in the next step of the registration process.

These calibration phantom images, depicting the dot patterns, were used to accurately reg-
ister the images from each probe, aligning them along the image width (X-axis) and height
(Z-axis). In this study, the registration was performed only for the low-quality images from
the low-cost handheld ultrasound device and the high-quality images, while disregarding
the intermediate-quality images from the mid-range handheld device. First, three corre-
sponding dots were selected from the low- and high-quality registration images of the same
imaging session. These dots were used to calculate a 2x3 transformation matrix, which
applies an affine transformation involving translation, rotation, scaling, and skewing, while
preserving collinearity (see Figure 2.7-a). While this served as an important initial reg-
istration step, it was not sufficient for training the deep learning network, for which it is
crucial that the images are registered as accurately as possible. Poorly registered images
could cause the network to focus on correcting misalignments rather than enhancing the
low-quality images to more closely resemble the high-quality reference.
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2. METHOD

Therefore, a more comprehensive registration step was implemented using Elastix [33,
34], a well-established open-source toolbox offering a wide range of algorithms for image
registration. Since the images do not show complete overlap, structures at the edges of
one image that are not present in the other can hinder registration. To address this,
the Elastix registration was constrained to the areas present in both images by using the
regions of interest (ROIs) from the initial registration step as masks. For each imaging
session, these ROI masks were applied to one pair of images—one low-quality and one
high-quality—acquired at the same location (see Figure 2.7-b). Elastix then determined
the spatial transformation needed to best align each low-quality image with its correspond-
ing high-quality image by optimizing an image similarity metric (see Figure 2.7-c). This
registration method in Elastix was applied to each image pair. An affine registration, as
defined in the default Affine parameter map of Elastix, was chosen as a starting point.
Affine registration was deemed the most suitable for this dataset since it provides a good
balance between flexibility for correcting small global misalignments and preservation of
anatomical structures, while avoiding unnecessary complexity. Given the challenges of
image registration and the lack of a one-size-fits-all solution, the parameter settings were
fine-tuned through trial and error to achieve satisfactory results for this specific dataset.
The final parameter settings used are detailed in Section 3.1.2.

2.1.6 Image preprocessing

Before using the images as training input for the deep learning network, several preprocess-
ing steps were performed. This involved cropping, resampling, and normalizing the pixel
value range. After the paired low- and high-quality images were registered as described in
2.1.5, the paired images were cropped to retain only the overlapping area, ensuring that
both images were rectangular and of identical size, as shown in Figure 2.7-d. To meet the
input requirements of the deep learning network, images were resampled and, if necessary,
further cropped to achieve consistent dimensions across all images. Both image width and
height were adjusted to be divisible by 32 pixels, a standard requirement for deep learning
networks. The aspect ratio was preserved, and cropping was minimized to retain as much
information as possible. Finally, the images were normalized to a range of -1 to 1 to pre-
vent large gradients, accelerate convergence and enable high precision weights of the deep
learning network.
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2.1 Collection of paired ultrasound images

Figure 2.7: Overview of the registration steps applied to the dataset of low- and high-quality
paired images. (a) Initial registration of images using calibration phantom images from both
the low- and high-quality probes. Three corresponding dots from each image were selected, as
indicated by the red circles, to calculate the initial registration (b) The initial registration is
used to define regions of interest (ROIs) for both low- and high-quality images of an ex vivo
subject, which are then applied as masks. (c) More comprehensive registration for this ex vivo
image pair is performed using the Elastix library with the defined masks. (d) Final images
after registration and cropping for both low- and high-quality datasets.
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2.2 Development of deep learning network

Using the acquired paired dataset, a deep learning network was developed to enhance
POCUS image quality. The paired images were used as input to train the network to map
the low-quality images to the corresponding high-quality ones. The following subsections
will provide an overview of the network architecture and its loss function. Next, addi-
tional steps to enhance the model, including pretraining and image augmentation, will be
discussed. Then, the implementation details will be outlined, followed by a description of
the experiments conducted in the ablation study. Finally, the quantitative and qualitative
evaluation methods employed will be discussed.

2.2.1 Network architecture

This study employed a conditional GAN (cGAN). A GAN is a framework for estimating
generative models via an adversarial process [28]. It involves the simultaneous training of
two models: a generative model and a discriminative model, which compete against each
other in a two-player game. The generator’s objective is to produce outputs that are in-
distinguishable from real images, while the discriminator’s role is to accurately distinguish
between real and generated images. Unlike traditional GANs, which learn a generative
model of data, cGANs learn a conditional generative model. This makes cGANs particu-
larly suitable for image-to-image translation tasks, where the network is conditioned on an
input image to generate a corresponding output image[32]. A schematic overview of the
cGAN framework is shown in Figure 2.8.

Figure 2.8: Schematic overview of the cGAN framework.
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2.2 Development of deep learning network

The open-source cGAN model by Isola et al. [32], referred to as pix2pix, was used in
this study. It was developed as a general-purpose solution to image-to-image translation
problems. The generator in this model employs a U-Net[35], which is an encoder-decoder
architecture where the input undergoes progressive downsampling through a series of lay-
ers until reaching a bottleneck layer. The process is then reversed to upsample the data
back to its original resolution. Additionally, U-Net incorporates skip connections into the
encoder-decoder network. These connections enable the network to bypass the bottleneck
by directly transferring spatial information across the network, helping to recover details
lost during the downsampling process.

The discriminator used is termed PATCHGan, a convolutional neural network consisting
of layers with increasing depth that attempts to classify each 70 × 70 patch in an image
as real or fake. Using a patch size smaller than the full size of the image is advantageous
because a smaller PATCHGan has fewer parameters, runs faster, and can be applied to
arbitrarily large images while still producing high-quality results [32]. The discriminator
operates convolutionally across the image, averaging all patch-level responses to produce
the final output. It focuses solely on local structures at the scale of these image patches,
thus capturing high-frequency, detailed information. Therefore, the PATCHGAN can be
understood as a form of texture/style loss [36, 37]. This design choice for the discriminator,
restricting it to model only local and detailed structures, is motivated by the use of an
L1 term in the generator. This L1 term ensures that low-frequency global information is
accurately captured, as will be explained in subsection 2.2.2.

2.2.2 Loss function

The loss function of GAN models is a critical aspect of their design and is known as the
adversarial loss function [28]. This adversarial loss function, used for training both the
generator and the discriminator networks, aims to create a model capable of generating
realistic data. An interesting extension of the cGAN architecture by Isola et al. [32]
involves modifying the loss function by adding a content loss to the generator loss. This
addition ensures that the generated images are not only indistinguishable from real ones but
also closely resemble the target images. These two key components—the adversarial loss
and content loss—that make up the cGAN loss function will be further explained below.
Additionally, they are illustrated in the schematic overview of the cGAN framework in
Figure 2.8.

Adversarial Loss
GANs are generative models that learn to map a random noise vector z to a target image
y, represented as G : z ! y. In contrast, cGANs learn to map an observed image x and
a random noise vector z to y, expressed as G : {x, z} ! y. In this context, x is the
low-quality input image and y is the high-quality target image. The generator G is trained
to produce outputs that are indistinguishable from real images. More specifically, in this
context, the generator of the cGAN tries to generate an image using the low-quality input
image that is indistinguishable from the high-quality reference image. The discriminator D
receives pairs consisting of the input image with the high-quality target image and the input
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image with the generated image. It then tries to discriminate between the pair containing
the real image (high-quality reference image) and the fake image (image generated by the
generator). This adversarial training framework is central to GANs, in which the two
networks are pitted against each other and thereby improve themselves. The objective of
this adversarial training is captured by the adversarial loss function LcGAN(G,D). The
adversarial loss is implemented as binary cross-entropy (BCE) and is formulated as:

LcGAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1�D(x,G(x, z)))], (2.1)

where G is the generator, D is the discriminator, E denotes the expectation operator, x
is the low-quality input, and y is the high-quality target image. The generator G aims to
minimize this loss function. To do so, it must maximize the probability that the discrimi-
nator classifies the generated images G(x, z) as real, thereby minimizing the second term in
the equation. Note that the generator has no control over the first term so it will only try
to minimize the second term. In contrast, the discriminator D aims to maximize the loss
function by learning to distinguish as accurately as possible between fake and real images.
It does this by increasing the probability that it correctly identifies the pair with the input
image and the high-quality reference image D(x, y) as real, thereby maximizing the first
term in the loss function. At the same time, it tries to minimize the probability that it
mistakenly classifies the generated image D(x,G(x, z))) as real, thereby also maximizing
the second term. In summary, the discriminator’s parameters are adjusted to maximize the
loss function, while the generator’s parameters are adjusted to minimize it. This creates
the classic min-max game central to GANs, ultimately leading to the optimal generator
G⇤, as expressed by the equation:

G⇤ = argmin
G

max
D

LcGAN(G,D). (2.2)

Content Loss
To further improve the ability of the generator to generate images that are indistinguish-
able from the high-quality reference images, the generator loss doesn’t only comprise the
adversarial loss, but also includes a content loss. The aim of adding this content loss is
to ensure that the generator not only fools the discriminator but also produces images
that are close to the target images, in this context, the high-quality reference images. The
content loss is usually a traditional pixel-based loss function. In pix2pix, the content loss
is represented by the L1 loss. The L1 loss measures the pixel-wise difference between
the ground truth image y and the generated image G(x, z), encouraging the generator to
produce outputs that are close to the target images, defined as:

LL1(G) = Ex,y,z [ky �G(x, z)k1] . (2.3)

Thus, combining both adversarial and content (L1) loss, gives the following objective for
the optimal generator:

G⇤ = argmin
G

max
D

LcGAN(G,D) + �LL1(G), (2.4)
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2.2 Development of deep learning network

where � is a weight that balances the contribution of the content loss and adversarial loss,
and is set to 100.

However, the conducted literature review on deep learning models for POCUS quality
enhancement [26] showed that multiple content loss functions, such as pixel, structure,
and sometimes feature-based information, are often combined. While the L1 loss serves
as a pixel loss, Structural Similarity Index (SSIM) was added in this study as a structure
loss. The SSIM loss function enhances the visual similarity between the generated and real
images, as demonstrated by Zhou et al. [6], who found that incorporating SSIM loss helped
their GAN model to capture more detailed information in ultrasound images, especially
tissue structure and speckle. The SSIM loss models the distortion of the reconstructed
image based on three factors: brightness, contrast, and structure, and is defined as follows:

LSSIM(G) = Ex,y,z

"
1�

(2µyµG(x,z) + C1)(2�yG(x,z) + C2)

(µ2
y + µ2

G(x,z) + C1)(�2
y + �2

G(x,z) + C2)

#
, (2.5)

where µy and µG(x,z) are the means of the real and generated images, �y and �G(x,z) are
the variances, �yG(x,z) is the covariance, and C1 and C2 are constants used to stabilize the
division. The final objective for the generator, including the adversarial loss, L1 loss, and
SSIM loss, becomes:

G⇤ = argmin
G

max
D

LcGAN(G,D) + �1LL1(G) + �2LSSIM(G), (2.6)

with �1 and �2 balancing the contributions of L1 and SSIM losses, set at 70 and 30,
respectively.

2.2.3 Pretraining with simulation data

In addition to the cGAN network architecture described in section 2.2.1, a pretraining step
was added using a simulation dataset. Pretraining was implemented to initialize the net-
work’s weights with useful features learned from a large and similar dataset— in this case,
a simulation dataset— which could potentially enhance its performance on the POCUS
dataset in the resulting network.

To this end, a simulation dataset was created using ultrasound images from open-source
breast datasets [38–44], which were generally of high-quality. The datasets included im-
ages both with and without lesions, with the lesions being either benign or malignant.
These high-quality images were artificially degraded to simulate low-quality input images,
resulting in pairs of high- and low-quality images. Differences between low-quality hand-
held images and high-quality images typically include reduced resolution and contrast, less
distinct texture and edges, and increased noise [6, 16, 17], which can also be seen in Figure
2.1-c. This makes the image-to-image translation for quality enhancement in this study a
style transfer problem rather than just noise removal.

To resemble these multi-faceted differences, the quality of the open-source images was
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downgraded using a variety of methods, including the addition of speckle and multiplica-
tive noise, blurring, random gamma adjustment, JPEG compression, and down-sampling.
Additionally, minor affine offsets were added between the image pairs to simulate inevitable
minor registration inaccuracies present in the dataset acquired in this study. These degra-
dation methods were applied to each image pair in a randomized manner, with parameters
set within a specified range for each method, to introduce variability into the dataset. An
example image pair from the created simulation dataset is shown in Figure 2.9. The sim-
ulation dataset contained 5564 image pairs. Pretraining was conducted over 200 epochs,
after which the pretrained generator was used in the standard training process.

Figure 2.9: Image pair from the simulation dataset used for pretraining, showing (a) the
artificially degraded low-quality input image and (b) the corresponding high-quality target
image.

2.2.4 Data augmentation

As neural networks generally require substantial training data to achieve good performance
and avoid overfitting, a data augmentation step was incorporated to artificially expand the
dataset size and variability. The original pix2pix paper employed geometric augmentations
such as random jittering (slightly resizing and then randomly cropping) and mirroring. To
further enhance the augmentation in this study, additional illumination adjustments were
applied using the Albumentations library (v.1.4.14) [45]. This library facilitates the cre-
ation of augmentation pipelines by defining a sequence of transformations with specified
probabilities and magnitudes, effectively transforming both the input and target images.
The additional transforms included changes in brightness and contrast, as well as lumi-
nance adjustments through gamma correction. These transforms were applied according
to set probabilities, with the strength of each transform randomly determined within a
specified range of magnitudes for each transformation. The effects of randomly applying
these augmentations to both images in a low- and high-quality pair are shown in Figure
2.10.

20



2.2 Development of deep learning network

Figure 2.10: The effects of randomly applied augmentations. The top row displays low-
quality images, and the bottom row shows the corresponding high-quality reference images.
The columns represent three different augmentation instances.

2.2.5 Implementation details

For the development of the cGAN, the complete dataset, including both phantom and ex
vivo data, was randomly split into training and test sets with a 90:10 ratio, without strat-
ification by patient. From the test set, 10 samples were reserved for validation to assess
model convergence. The cGAN is implemented using PyTorch (version 2.3.1) on a single
Nvidia GeForce GTX 1080 GPU.

Following the pix2pix approach [32], the network was optimized by alternating gradient
descent steps between the discriminator (D) and generator (G). Instead of training G to
minimize log(1�D(x,G(x, z))), the approach maximizes logD(x,G(x, z)), as suggested in
the original GAN paper [28]. To balance the training process, the objective function for
the discriminator is halved, resulting in more balanced learning rates and slowing down
the discriminator’s learning compared to the generator’s. The networks are trained using
minibatch SGD with the Adam optimizer, with a learning rate of 0.0002 and momentum
parameters �1 = 0.5, �2 = 0.999. Given the relatively small size of the training dataset,
the number of filters in the generator was reduced. Specifically, the number of filters in
each layer was decreased, with the last convolutional layer reducing from 64 to 32 filters.
This change led to a reduction in the total number of parameters from approximately
55,000 to 15,000. This reduction was deemed sufficient for effective learning while enhanc-
ing training speed and reducing memory usage. A batch size of 32 was used to improve
network stability, unlike the original pix2pix approach, which experimented with batch
sizes ranging from 1 to 10.

The model was trained for 300 epochs. Unlike other deep learning models that are trained
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with a loss function until convergence, a GAN generator model is trained using a second
discriminator model. As such, there is no objective loss function and no straightforward
way to monitor training progress or to model quality based on loss alone [46]. In this study,
L1 and SSIM loss were used alongside adversarial loss. Unlike adversarial loss, these losses
provide some insight into the training progress. However, these losses are only indicative,
as they represent just a part of the total loss function. For example, a low L1 loss can still
result in generated images of poor quality due to blurring or missing important details,
making L1 loss insufficient on its own for determining when to stop training. Therefore, it
is common practice to generate and visually inspect a few sample images during training
to check convergence by human judgment [46]. This approach was also applied in this
study, using the 10 validation images. Although manual inspection is the simplest method
of model evaluation, it is subjective, and results can be closely related, making conclusive
decisions difficult. To address this, SSIM and PSNR metrics were calculated on the vali-
dation dataset as well. Consequently, training was stopped based on a combination of L1
and SSIM loss, visual inspection of the validation samples, and performance metrics for
these validation samples.These aspects were monitored for signs of convergence, including
when improvements in L1 and SSIM loss plateaued, when validation images no longer
showed noticeable improvements, and by assessing the changes in validation metrics. It is
important to note that only images from the validation dataset were monitored and used
for model development, ensuring an unbiased final evaluation on the unseen test set.

2.2.6 Ablation study

Ablation experiments were conducted to investigate the impact of different aspects of the
proposed model on the quality of the reconstructed images. First, the effect of adding
SSIM to the content loss (which in the baseline model comprised only L1) was exam-
ined, resulting in the ’L1 + SSIM’ model. This model was compared quantitatively to
the baseline model, referred to as ’baseline (L1)’. The baseline model’s objective is de-
tailed in Equation 2.4, while the objective of the L1 + SSIM model is given in Equation 2.6.

Additionally, for the loss function that achieved the best quantitative results, the effects of
pretraining (described in Section 2.2.3) and data augmentation (described in Section 2.2.4)
were further evaluated. These models are referred to as ‘augmentation’ and ‘pretraining’,
respectively. If both data augmentation and pretraining improve the quantitative results,
their combined effect will be assessed in a final model.

For the best-performing model, a two-sided paired t-test was conducted to compare its per-
formance metrics with the low-quality input and assess whether it achieved a statistically
significant improvement in image quality. Additionally, if applicable, the best-performing
model will be compared to the baseline model to determine if the proposed improvements
result in a significant quality enhancement. This statistical analysis will be performed for
each quantitative performance metric, using a significance level of p = 0.05.
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2.2.7 Quantitative evaluation metrics

The developed models were assessed quantitatively using both full-reference metrics and
no-reference metrics. Full-reference metrics evaluate image quality by comparing a test
image to a high-quality reference image, whilst no-reference methods evaluate the image
quality without any reference image. The full-reference metrics used in this study are given
below, defined for a reference image f and a test image g.

1) Structural similarity index measure (SSIM)[47]: predicts perceived quality by
assessing perceptual similarity between paired images, correlating with human visual per-
ception. It models image distortion through loss of correlation, luminance distortion, and
contrast distortion. The SSIM ranges between �1 and 1, with a value of 1 indicating
perfect correlation, 0 indicating no correlation, and �1 indicating anti-correlation between
the images [47–49]. For images f and g, the SSIM is defined as:

SSIM(f, g) =
(2µfµg + C1)(2�fg + C2)

(µ2
f + µ2

g + C1)(�2
f + �2

g + C2)
, (2.7)

where µ denotes the mean, � the (co)variance, and C1 and C2 are positive regularization
constants used to avoid instability in image regions where the local mean or standard
deviation is close to zero. These constants are small non-zero values based on the pixel
intensity range (255). Specifically, C1 is calculated by multiplying this range by a lumi-
nance constant (0.01), while C2 is calculated by multiplying it by a contrast constant (0.03).

2) Peak signal-to-noise ratio (PSNR): reflects pixel-based similarity by measuring
the ratio between the maximum possible signal power and the power of noise affecting
image quality. A higher PSNR value indicates better image quality and more detail, while
a lower value indicates greater differences between images [48, 49]. For images f and g,
both of size MxN with maximum intensity MAXI and the Mean Squared Error MSE,
the PSNR is defined as:

PSNR(f, g) = 10 · log10
✓

MAX2
I

MSE(f, g)

◆
, (2.8)

where MSE represents:

MSE(f, g) =
1

MN

MX

i=1

NX

j=1

(fij � gij)
2. (2.9)

The following no-reference metrics were used:
3) Naturalness image quality evaluator (NIQE)[50]: an advanced image quality
metric for natural images that uses statistical features from a spatial domain natural scene
statistic model. It effectively reflects the quality of medical images, as verified in [51].
The metric is inversely correlated to perceptual image quality, where lower scores indicate
higher perceptual quality and higher scores suggest lower perceptual quality. NIQE assess-
ments were performed using the default model provided in Matlab (MATLAB Research
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R2024a; The MathWorks, Inc).

4) Perception-based image quality evaluator (PIQE)[52]: evaluates image quality
based on human perception using statistical features of an input image. It is an unsuper-
vised method that does not require a learning model, and has been shown to effectively
reflect medical image quality [53]. PIQE values range between 0 and 100, with lower values
indicating better perceptual quality. The quality scale is as follows: excellent (0-20), good
(21-35), fair (36-50), poor (51-80), and bad (81-100). The PIQE metric was evaluated
using MATLAB (MATLAB Research R2024a; the MathWorks, Inc).

2.2.8 Qualitative evaluation

Quantitative metrics have limitations in fully capturing the perceptual quality of images.
Therefore, a qualitative assessment was also conducted. The images generated by the best-
performing deep learning model were qualitatively compared to the corresponding low- and
intermediate-quality images acquired with the low-cost and mid-range handheld devices,
respectively.

Six researchers with experience in ultrasound imaging, acquisitions and analysis partici-
pated in the evaluation. The model-generated images, along with the low- and intermediate-
quality images, were presented side-by-side in random pairs, ensuring that the left/right
positioning of the images and the combination of categories (low-quality, medium-quality,
and model-generated) were randomized. Simultaneously, the image acquired with the
high-quality probe was displayed as a ground truth reference. This setup allowed the re-
viewers to identify correct structures that should be visible and detect missing structures
due to poor quality or issues such as hallucinations produced by the generative model.
Each reviewer independently selected the image from the pair that they believed showed
the highest quality, best corresponding to the ground truth image. This process was re-
peated for 45 one-by-one comparisons, each time comparing two of the categories, using
images from the test set. An example of such a comparison as presented to the reviewers is
shown in Figure 2.11. The results were used to rank the three categories (model-generated,
low-quality, and intermediate-quality) based on how frequently they were chosen over the
others, expressed as percentages. These percentages were calculated based on the total
number of times each category appeared in a comparison with one of the other two cate-
gories. A score of 0% indicates that the category was never chosen, while 100% indicates
that it was always chosen.
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Figure 2.11: Example of a one-by-one comparison as shown to the reviewers in the qualitative
evaluation, presented alongside a high-quality reference image (ground truth). In this example,
a low-quality image is shown on the left (1) and a model-generated image on the right (2).
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Results

3.1 Collection of paired ultrasound images

3.1.1 Dataset characteristics

Ultrasound images were acquired using each of the three probes (low-, intermediate-, and
high-quality) at various locations for every image target. This resulted in a total of 1299
images per probe, so 1299 sets of paired images. Images were excluded if they predomi-
nantly showed water with only a small part of the image target, or if they showed large
artefacts caused by air bubbles in the vacuum bag. After exclusion, 1064 image sets re-
mained, including 936 ex vivo and 128 phantom images. An overview of the characteristics
of the acquired images can be found in Table 3.1.

Table 3.1: Overview of acquired paired US image dataset, after exclusions.
Target type Specifications Number of targets Number of image sets
Ex vivo Breast specimen 9 527

Sarcoma specimen 3 153
Colorectal specimen 3 256

Phantom IOUSFAN 1 128
Total Ex vivo & phantom 16 1064

3.1.2 Registration and preprocessing

After acquisition, the images from the different probes were registered. This was achieved
by experimenting with the default Affine parameter map of Elastix until satisfactory reg-
istration results were obtained. The following adjustments were made to the parameters:
Advanced Normalized Correlation as the image metric, a maximum of 200 iterations, 40
resolutions, and 2000 spatial samples. Figure 3.1-a shows unprocessed example image
pairs acquired with the low-quality (Telemed) and high-quality (Philips) ultrasound de-
vices. Figure 3.1-b displays these image pairs after registration and preprocessing.
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Figure 3.1: Image pairs acquired with low- and high-quality ultrasound devices: (1) un-
processed and (2) after registration and preprocessing, showing examples of (a) an ex vivo
specimen (mamma) and (b) an abdominal phantom.

3.2 Development of deep learning network
3.2.1 Model convergence

To determine the appropriate stopping point for training, several indicators were moni-
tored, including the L1 loss curve during training (and SSIM if applicable), graphs of the
SSIM and PSNR metrics for the validation set, and the evolution of generated images at
specific epochs for the validation set. These are illustrated for the baseline (L1) model in
the supplementary materials. From epochs 200 to 300, the L1 loss shows minimal change,
as can be seen in Figure 1 in the supplementary materials. The SSIM and PSNR metrics
for the validation set plateau before reaching epoch 300 as well (Figure 2 and 3 in the
supplementary materials). However, these metrics alone do not fully capture the network’s
progress, as the generated images from the validation dataset show continued quality im-
provement up to epoch 300, though the progress diminishes over time. This can be seen
by comparing images at epochs 210 and 300 in Figure 4 in the supplementary materials.
Based on these findings, training was stopped at epoch 300 for all models.

Additionally, attention should be paid to significant drops in performance metrics of the
validation dataset, such as the one observed at epoch 240. When visually assessing the
validation images generated by the model stopped at an epoch around this performance
drop, the images indeed appear qualitatively less satisfactory and less similar to the high-
quality reference images, as shown in Figure 5 in the supplementary materials. For each
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model, the validation metrics and generated images were checked to ensure the model was
not within such a performance drop when training stopped at epoch 300. Since this was
not the case for any of the models, epoch 300 was definitively chosen as stopping point for
all models during testing.

3.2.2 Ablation study and quantitative evaluation

Four different models were developed and compared: the baseline (L1), L1+SSIM, aug-
mentation (L1+SSIM), and pretraining model (L1+SSIM). Training for each model took
approximately 4.5 hours, while pretraining on the simulation dataset required around 25
hours. The inference time per image was 6.9 ± 1.4 milliseconds.

Quantitative metrics for each model, evaluated on the test set, are detailed in Table 3.2.
It can be seen that applying the baseline model increased the SSIM from 0.286 to 0.495
and the PSNR from 19.155 dB to 21.735 dB compared to the low-quality input. More-
over, the NIQE decreased from 7.948 to 5.130 and the PIQE decreased from 31.116 to
28.982. When assessing the added value of adding SSIM in the content loss, it can be seen
that the L1+SSIM model outperformed the baseline (L1) model across most quantitative
metrics. Therefore, subsequent experiments with data augmentation and pretraining used
this combination of SSIM and L1 as the content loss. Among all models, the pretrain-
ing (L1+SSIM) model achieved the best performance across all evaluation metrics. The
augmentation (L1+SSIM) model, on the other hand, showed comparable or worse per-
formance compared to the other models. As a result, the pretraining and augmentation
steps were not combined into a fifth model, and the pretraining model with combined L1
and SSIM content loss was selected as the best-performing final model. This final model
achieved a quality enhancement in the SSIM from 0.286 to 0.540 and the PSNR from
19.155 dB to 22.406 dB compared to the low-quality input. Additionally, the NIQE de-
creased from 7.948 to 4.436 and the PIQE decreased from 31.116 to 19.991, surpassing the
scores of the high-quality reference images. Moreover, the paired t-test revealed statisti-
cally significant improvements across all image metrics (p < 0.001) when comparing the
final best-performing model to both the low-quality input and the baseline model.

Example images generated by each model, alongside the low-quality input and high-quality
reference images, are presented in Figure 3.2. Overall, the images produced by the best-
performing model (pretraining (L1+SSIM)) show satisfactory visual quality and closely
resemble the high-quality reference image, effectively enhancing the low-quality input.
Consistent with the quantitative metrics, the pretraining model’s images in some examples
show higher quality and greater similarity to the reference image compared to those gener-
ated by other models, for instance in Figure 3.2-a, -b, and -f. Conversely, the augmentation
model’s images generally exhibit less satisfactory quality in these examples. However, for
some test images, such as those in Figures 3.2-c, -d, and -e, the images generated by all
models appear quite similar to one another. Notably, the images generated by the deep
learning models are often visually more appealing and more similar to the high-quality
reference images compared to the low-quality input.
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Table 3.2: Full-reference and no-reference image quality metrics.
SSIM PSNR (dB) NIQE PIQE

(mean ± std) (mean ± std) (mean ± std) (mean ± std)
High-quality reference - - 5.171± 0.600 23.288± 6.744
Low-quality input 0.286± 0.062 19.155± 1.948 7.948± 1.772 31.116± 5.911
Baseline (L1) 0.495± 0.086 21.735± 2.005 5.130± 0.462 28.982± 4.532
L1 + SSIM 0.519± 0.073 22.074± 2.094 5.329± 0.709 28.263± 5.832
Augmentation (L1 + SSIM) 0.438± 0.087 20.414± 2.282 5.562± 1.240 34.992± 7.640
Pretraining (L1 + SSIM) 0.540± 0.082 22.406± 2.189 4.436± 0.528 19.991± 5.722

Figure 3.2: Example images from the test set (a-f), displaying the low-quality input, high-
quality reference, and the generated images by each of the four models: Baseline, L1 + SSIM,
Augmentation, and Pretraining.
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3.2.3 Qualitative evaluation

The final model was also qualitatively compared to the low- and intermediate-quality im-
ages, with the results summarized in Table 3.3. Note that the high-quality reference images
are not listed here, as they served as the ground truth reference during the comparison of
the other three categories. This table shows the win percentages for each category, reflect-
ing the proportion of times each category was selected (blindly) by the expert reviewers as
having the highest quality over the other two categories. The images generated by the pro-
posed model, pretrained on the simulation dataset, achieved the highest win percentage,
being selected 62.2% of the time. The images acquired with the intermediate-quality hand-
held probe were chosen 58.6% of the time, while the images acquired with the low-quality
and low-cost handheld probe were selected only 30.6% of the time.

Table 3.3: Win percentages for each category in the qualitative image quality assessment.
Win percentage (%)

Low-quality images 30.6
Intermediate-quality images 58.6
Model-generated images 62.2
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Discussion

4.1 Summary of results

This thesis developed a novel, accurately paired dataset of images acquired with POCUS
devices and a high-end ultrasound device. This dataset is crucial for advancing post-image
processing quality enhancement for POCUS and achieving reliable real-time methods. To
the best of our knowledge, this is the first POCUS dataset accurately paired with high-
quality reference images without relying on artificial data. This was achieved by developing
a motorized and automated setup that acquired images at consistent positions using two
POCUS devices (low-cost and mid-range) and a high-end ultrasound device. Addition-
ally, a comprehensive registration step was implemented to enhance the similarity between
paired images. The collected dataset contained 1064 ex vivo and abdominal phantom im-
ages for each of the three ultrasound devices.

Additionally, a deep learning network was developed for POCUS image quality enhance-
ment using this paired dataset. The proposed method consisted of a cGAN framework
with a U-Net generator, pretrained on a simulation dataset. The proposed deep learning
method achieved significant improvements in image quality over the original low-quality
input. Specifically, the SSIM increased from 0.286 ± 0.062 to 0.540 ± 0.082 (+88.8%),
and the PSNR improved from 19.155 ± 1.948 dB to 22.406 ± 2.189 dB (+17.0%). Ad-
ditionally, the method reduced the NIQE and PIQE scores from 7.948 ± 1.772 to 4.436
± 0.528 (-44.2%) and 31.116 ± 5.911 to 19.991 ± 5.722 (-35.8%), respectively, where
lower scores indicate higher quality. Notably, the improvements even surpass the NIQE
and PIQE values of the high-quality reference images, which showed a NIQE of 5.171 ±
0.600 and a PIQE of 23.288 ± 6.744. Furthermore, the qualitative assessment revealed
that reviewers rated the enhanced model-generated images as superior to those from both
the original low-quality images acquired with the cost-efficient handheld device and the
intermediate-quality images obtained with the handheld ultrasound device from a higher
price segment.

4.2 Comparison to literature

When visually comparing this dataset to other paired POCUS and high-end ultrasound
datasets reported in literature, such as those from Zhou et al. [6, 18] and the open-source
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dataset from the Ultrasound Image Enhancement Challenge (USenhance) [27], it is evident
that the paired images in this thesis show greater similarity. The dataset collected in this
thesis, comprising over 1000 image pairs, is competitive compared to the 1500 pairs in the
USenhance dataset [27] and 846 pairs in the clinical dataset by Zhou et al [6]. However,
the number of different ex vivo specimens (n=15) is relatively low compared to the 109
patients and 47 healthy volunteers in the USenhance dataset [27] and the dataset by Zhou
et al. [6], respectively.

A previously conducted literature review by the authors [26] on deep learning methods
for POCUS image quality enhancement revealed substantial disparities in low-quality in-
put performance and variability in performance gains across datasets. These differences
are likely due to heterogeneity in dataset types and ultrasound devices used across stud-
ies. Additionally, an interesting observation from this review was that simulated datasets
generally exhibited higher performance gains compared to in vivo and phantom datasets,
indicating that simulation results may not fully represent clinical scenarios. Therefore,
our results can best be compared to studies with clinical in vivo or ex vivo datasets and
specifically focusing on POCUS.

The quantitative results obtained in this thesis for the enhanced POCUS images generated
by the proposed model surpass those reported in similar studies in literature. An overview
of the results obtained in these previous studies focused on enhancing POCUS image qual-
ity using clinical data, along with the results from this thesis, is provided in Table 4.1. Guo
et al. [54] demonstrated an improvement in the image quality of handheld ultrasound with
their LG-Unet method, with PSNR increasing from 16.04 to 18.94 (+18.1%). Zhou et al.
[6] proposed a two-stage GAN for handheld ultrasound image quality improvement. When
considering only clinical data, this method improved the SSIM of low-quality input images
from 0.18 ± 0.04 to 0.41 ± 0.05 (+127.8%) and the PSNR from 8.65 ± 1.32 to 18.08 ± 1.57
(+109%). In a subsequent study by Zhou et al. [18], focused on handheld ultrasound video
quality reconstruction using a low-rank representation multipathway GAN, the reported
metrics for low-quality input using a clinical dataset of healthy volunteers were SSIM =
0.24 ± 0.06 and PSNR = 12.68 ± 3.45. These metrics were improved to SSIM = 0.45 ±
0.06 (+87.5%) and PSNR = 19.95 ± 3.24 (+57.3%).

A noteworthy observation when comparing the results from this thesis to similar stud-
ies is that the full-reference metrics for low-quality input images were generally lower in
literature. Specifically, the PSNR ranged from 8.65 to 16.04 in literature, compared to
19.16 in this thesis, and the SSIM ranged from 0.18 to 0.24 in literature, compared to
0.29 in this thesis. This low baseline quality results in relatively large performance gains
reported in some of these previous papers. Nevertheless, the improvements achieved by
the proposed model in this thesis achieved higher performance in absolute terms for the
model-generated images compared to those reported in these studies. For instance, while
other studies reported final PSNR values of 18.08 to 19.95, this thesis achieved a value of
22.41. Similarly, the SSIM improved to a range of 0.41–0.45 in other studies, compared
to 0.54 in this thesis. A possible reason for these disparities in baseline quality metrics
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Table 4.1: Overview of image quality metrics reported in previous studies for POCUS image
enhancement using clinical data, compared to the proposed model in this thesis.

Study Data SSIM PSNR (dB)
(mean ± std) (mean ± std)

Guo et al. [54] Low-quality input - 16.04
Reconstructed images - 18.94

Zhou et al. [6] Low-quality input 0.18 ± 0.04 8.65 ± 1.32
Reconstructed images 0.41 ± 0.05 18.08 ± 1.57

Zhou et al. [18] Low-quality input 0.24 ± 0.06 12.68 ± 3.45
Reconstructed images 0.45 ± 0.06 19.95 ± 3.24

Proposed Model Low-quality input 0.29 ± 0.06 19.16 ± 1.95
Reconstructed images 0.54 ± 0.08 22.41 ± 2.19

might be attributed to locational differences in the unpaired datasets used in other studies.
Additionally, it is not always clear in these studies if the baseline quality metrics for the
low-quality input images are calculated before or after preprocessing, which includes the
registration step. This might also significantly impact the full-reference performance met-
rics, which rely on the similarity between low-quality input images and the high-quality
reference, and, consequently, the relative improvement achieved. This makes it challeng-
ing to determine if the observed relatively large improvements in full-reference metrics are
solely due to quality enhancement or whether they are also influenced by the minimization
of locational differences, which is not the primary aim of an image enhancement model.
In contrast, the image quality improvements observed in this thesis can be predominantly
attributed to the quality enhancement achieved by the proposed model, given the paired
nature of the dataset used.

The challenge of reliably validating quality improvements underscores the primary con-
tribution of this thesis to current literature: the development of a paired POCUS dataset.
This dataset is crucial for advancing post-image enhancement methods for POCUS, as it
not only facilitates model development but also enables reliable validation using paired
and accurately registered reference images. The successful development of a deep learning
network in this thesis, which effectively competes with state-of-the-art methods reported
in literature, further demonstrates the potential of this dataset.

4.3 Limitations

This study acknowledges several limitations. First, while the dataset size in terms of the
number of images was reasonable, including a greater variety of ex vivo specimens would
have enhanced the diversity of the dataset. However, due to time constraints, further ex-
pansion was not feasible for this thesis. Additionally, the automated setup acquired images
at specified locations, which were randomly selected relative to the ex vivo specimen. This
sometimes resulted in images lacking clear anatomical structures, unlike manually acquired
images where locations with distinct anatomical features are intentionally chosen. Address-
ing this limitation by acquiring more data and excluding images lacking anatomical detail
could further enhance the dataset’s value and potentially improve the proposed model’s
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performance.

Additionally, the only normalization step performed in this pipeline was re-scaling the
pixel intensities in each image to a range of -1 to 1, as done in the original pix2pix paper.
Experiments with gray-level stretching were also performed but did not yield the expected
results and even reduced model performance. This was likely due to noise in the low-quality
images acquired with the low-cost handheld probe. Using the 0.1th and 99.9th percentiles
instead of the minimum and maximum values for gray level stretching—intended to limit
the effect of noise—also failed to improve the results. Normalization methods such as
standard normal variate (SNV), calculated based on the mean and standard deviation of
each image, were not incorporated because they posed challenges in transforming the im-
ages back to their original representation. However, since many normalization techniques
exist and their effectiveness depends on the specific problem, further experimentation with
different methods could potentially enhance model performance.

Training instability, a common issue in GANs, was also observed in this study. Although
GANs are among the most popular models for image generation, training instability re-
mains an open problem for all GAN-based algorithms [55–57]. Stabilizing GAN training
is an intensively researched area, with numerous methods and strategies proposed in liter-
ature, focusing on aspects such as loss functions, regularization, normalization techniques,
training algorithms, and model architectures [56]. Future work should explore strategies
to improve the training stability of the model proposed in this thesis. Additionally, in-
corporating cross-validation in the evaluation stage could enhance result reproducibility,
since this was not yet implemented in the current study due to time constraints and the
extensive training time required for deep learning models. Moreover, the differences seen
in quantitative metrics between the proposed models in the ablation study were minimal.
These small differences, combined with the performance fluctuations due to training insta-
bility, make it difficult to determine which of the models is the most suitable. However,
the performance gain of the proposed models compared to the low-quality input is evident.

Due to time constraints in this thesis, promising options regarding the deep learning ap-
proach have remained unexplored. For example, incorporating a perceptual loss function
alongside the current pixel- and structural-based loss functions could help capture visual
feature-based information more effectively. A perceptual loss function based on the pre-
trained VGG network, as utilized in previous ultrasound quality enhancement methods [6,
58, 59], or an ultrasound-specific perceptual loss function, as used by Zhou et al. [18], could
be promising directions to explore. Moreover, while a computationally feasible network was
selected for this thesis, other network architectures might be better suited for addressing
high-detail, context-rich problems like ultrasound image enhancement. For instance, the
two-stage GAN architecture proposed by Zhou et al. [6] utilizes a residual network with
multiple residual blocks and avoids downsampling and upsampling, which is particularly
useful for tasks requiring the maintenance of spatial resolution. However, this approach is
computationally expensive; training the two-stage GAN required around 700 hours, which
was not feasible within the scope of this thesis.
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Multiple quantitative metrics were employed to assess the baseline image quality and deter-
mine the model’s effectiveness in quality enhancement. By using two full-reference and two
no-reference metrics, the goal was to provide a comprehensive evaluation of image quality
in relation to both the high-quality reference images and overall quality. However, the test
set was relatively small, containing only 90 images, as a significant portion of the data was
required for training. Since quantitative metrics alone cannot fully capture the perceived
quality of an ultrasound image, a qualitative assessment by end-users was included as well,
again based on a limited number of images. It is also important to note that the dataset
used in this study consists of ex vivo and abdominal phantom images, while the intended
application would likely involve in vivo settings. Despite these limitations, the assessments
provided valuable insights and facilitated comparisons with similar methods in literature.

4.4 Future recommendations

Beyond the results achieved by the proposed model in this work, this thesis lays the
groundwork for fully exploiting this methodology in future research. The automated data
collection setup developed in this thesis facilitates expansion of the dataset in the future,
potentially leading to even better results. Additionally, exploring different deep learning
approaches could further improve the outcomes obtained in this thesis.

It is important to realize that quality enhancement is not a goal in itself; it rather serves
as a tool to improve the effectiveness of POCUS in specific tasks. These can include its
direct clinical use or its application in downstream tasks, such as algorithms designed to
support particular medical applications. To this end, more extensive validation is neces-
sary to fully assess the model’s applicability in clinical practice and its impact on algorithm
performance.

When looking at the use of POCUS in daily clinical practice, it is primarily used as a
supplementary tool rather than a replacement for comprehensive ultrasound. It provides
physicians with immediate imaging access for rapid diagnosis and efficient patient work-
up and treatment, often complementing or broadening the physical examination [60]. It
is important to note that the validation in this thesis is retrospective, relying on previ-
ously acquired images rather than real-time assessment of enhanced POCUS’s sufficiency
for specific clinical applications. Future validation should therefore focus on determin-
ing whether enhanced POCUS is sufficient for accurate diagnoses and whether it can as-
sist in interventions through image-guided approaches. Validation should be application-
specific, as different clinical settings—such as general practitioner offices or emergency
rooms [7, 12, 13]—and different medical specialties—such as gastroenterology [61] or neu-
rology [62]—each have unique requirements and considerations.

Additionally, an enhancement model for POCUS could be valuable for downstream tasks,
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which involve algorithms leveraging ultrasound image data for specific medical applica-
tions. Currently, these algorithms are often developed using images acquired with high-
end ultrasound devices. However, with enhanced quality, POCUS could possibly offer a
more affordable and portable alternative, though its impact on these algorithms must be
validated. Its potential could be explored in various ultrasound-based techniques, such as
prostate volume prediction in general practitioner offices [63]. Enhanced POCUS could also
be beneficial in tasks like tumor detection, segmentation, and margin assessment [64–67],
aiding surgeons in intraoperative settings. Furthermore, it could support navigated surgery
by assisting with vessel segmentation [68, 69] or bone registration [70], enabling accurate
registration. While some of these techniques are still in early stages of development, others
are already in clinical use. By offering a more compact and cost-effective option, enhanced
POCUS could facilitate the widespread adoption of these ultrasound-based applications.

Looking to the future, handheld ultrasound devices are expected to be increasingly adopted
by physicians as bedside tools, with their use expanding beyond the radiology department.
Moreover, enhanced POCUS could be valuable in specialized tasks that currently rely
on high-end ultrasound imaging, such as intraoperative guidance and navigation, facili-
tating their broader adoption. Enhancing POCUS image quality will therefore become
increasingly important while maintaining its advantages of low cost and portability. Ad-
vancements in post-image processing models will be crucial to achieve this. This work
demonstrates the potential for reliable quality enhancement methods for POCUS while
preserving its cost and portability benefits, ultimately increasing its value and impact
across different medical fields.
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Conclusion

This thesis presents the first accurately paired dataset of POCUS and high-end ultrasound
images, crucial for advancing post-image enhancement methods for POCUS. This dataset
facilitates model development and enables reliable validation with paired, accurately reg-
istered reference images. Additionally, a cGAN was developed for POCUS image quality
enhancement using this dataset. The proposed model achieved significant improvements
in image quality over low-quality input images, as shown by both quantitative metrics and
a qualitative assessment. Furthermore, the quantitative results surpass those reported in
similar studies. The successful development of this deep learning network further high-
lights the methodology’s potential and lays the groundwork for future research. However,
further validation, particularly in real-time clinical settings, is needed to fully assess the
model’s clinical applicability. Nonetheless, this thesis represents a significant step toward
developing reliable quality enhancement methods for POCUS, while preserving its cost and
portability benefits, ultimately increasing its value and impact in the medical field.
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Supplementary materials

Figure 1: L1 loss during training of the baseline model.
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SUPPLEMENTARY MATERIALS

Figure 2: SSIM metric evaluated on the validation set and calculated for each epoch through-
out the training process.

Figure 3: PSNR metric evaluated on the validation set and calculated for each epoch through-
out the training process.
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