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SUMMARY

A BOUT 70 prestressed concrete T-beam bridges, constructed in the Netherlands be-
tween 1953–1977, are still in use today with many located in the main highway net-

work. This type of bridge consists of prefabricated and prestressed T-shaped beams,
with an integrated deck slab, cross-beams and transverse prestressing. Even if these
bridges are well maintained, two important factors demand the current need for assess-
ment: (1) increased traffic loading and (2) potential lack of shear resistance. Using tra-
ditional assessment methods it was concluded that about 50% of these bridges do not
fulfil the current design code requirements. However, this does not automatically imply
that these bridges are structurally unsafe, since some potentially significant additional
load-transfer mechanisms are not taken into account in a traditional assessment. This
is strengthened by the observation that, in general, these bridges do not show any signs
of distress.

In previous research the integrated deck slab with transverse prestressing was in-
vestigated and a substantially higher load capacity was found due to the presence of
compressive membrane action (CMA). For the current research, the focus is on the load
capacity of the main T-beams. The main characteristics and shear-related deficiencies
for the Dutch T-beam bridge stock are therefore investigated. The presence of 2–4 cross-
beams in each span, as well as transverse prestressing, in both the cross-beams and the
integrated deck slab, led to the concept of ‘system behaviour’, in which the capacity of
a structure is increased due to the restraint provided by the connected members. This
concept is investigated using the theory of compressive arching, for both the integrated
deck slab (CMA) as well as the T-beams, with the latter designated as compressive arch
action (CAA).

The main part of this research is related to a case study of a typical Dutch T-beam
bridge called the Vecht bridge. The Vecht bridge is a multispan T-beam bridge, con-
structed in 1962, located near the town of Muiden crossing the Vecht river. Using a single
concentrated load at the centre of the T-beam at two different a/d positions, seven full-
scale collapse tests are conducted on this bridge prior to its scheduled demolition. Three
tests are conducted with the original structural system unchanged. On a separate span,
four tests are conducted on individual T-beams, with the deck in-between the beams
sawn in the longitudinal direction. The two types of tests allow for a direct compari-
son between the load capacity of an individual T-beam versus a connected T-beam. The
individual beam tests resulted in a flexural shear failure, whereas the connected beam
tests resulted in an explosive failure for both the bridge deck (punching failure) and the
T-beam (shear failure).

The case study is extensively analysed with conventional cross-sectional evaluations
for shear and bending and using nonlinear finite element analysis. In addition, a generic
analytical model for arch action is derived, to investigate the effects of CMA and CAA.
Following the conventional assessment, using a linear model for the load effect and a

xi



xii SUMMARY

cross-sectional analysis for the verification, the governing failure mode for connected
T-beams is shear tension. On the contrary, analysing an individual simply supported T-
beam, the governing failure mode is either the ultimate bending moment at midpoint
or flexural shear close to the support. Using a full 3D nonlinear finite element model of
the complete span with 15 beams, the experimentally observed failure mode(s) are con-
firmed. In addition, the model allowed insight in the development of the mechanisms of
CMA and CAA. With the exception of the stiffness of the elastomeric bearings, no other
parameters needed to be calibrated. From the numerical parameter study, an optimal
incremental-iterative solution method combined with an automatic adaptive step size
method has been found resulting in nonlinear analyses in which all steps are converged,
regardless of the size of the finite element model.

Using the experimental, numerical and analytical methods, it is demonstrated that
for T-beam bridges a combination of compressive membrane action (CMA) and com-
pressive arch action (CAA) contributes to the ’system behaviour’, which differs signif-
icantly from the behaviour of an individual T-beam. Compressive membrane action
(CMA), and the corresponding increased (punching) capacity, is found in the deck in
case of a (concentrated) load at the centre of a T-beam. Compressive arch action (CAA),
and the corresponding increased shear capacity, is found in the T-beam in case of a (con-
centrated) load positioned in-between the cross-beams. This research has explained
and quantified the contribution of the aforementioned mechanisms resulting in an in-
creased capacity for these types of bridges. These effects are not considered in a tradi-
tional assessment.



SAMENVATTING

V ANDAAG de dag zijn nog circa 70 voorgespannen betonnen T-ligger bruggen in Ne-
derland in gebruik uit de bouwperiode tussen 1953 en 1977. Vele van deze bruggen

bevinden zich in het hoofdwegennet. Dit type brug bestaat uit geprefabriceerde voorge-
spannen T-liggers, een tussenstort, dwarsbalken en dwarsvoorspanning. Zelfs als deze
bruggen goed worden onderhouden zijn er twee belangrijke redenen voor een herbeoor-
deling: (1) toename van de verkeersbelasting en (2) potentieel gebrek aan dwarskracht-
capaciteit. Uit een eerdere beoordeling kwam naar voren dat circa 50% van deze brug-
gen niet voldoen aan de eisen van de huidige ontwerpnormen. Dit betekent echter niet
automatisch dat deze bruggen constructief onveilig zijn, aangezien bij een traditionele
beoordeling een aantal potentieel zeer gunstige aanvullende draagmechanismen niet in
rekening worden gebracht. Deze conclusie wordt verder versterkt door het feit dat over
het algemeen deze bruggen bij een nadere inspectie in een goede conditie blijken te ver-
keren.

Uit voorgaand onderzoek is gebleken dat de tussenstort, voorzien van dwarsvoor-
spanning, een aanzienlijk hogere last kan dragen ten gevolge van drukmembraamwer-
king. Met het huidige onderzoek wordt aansluitend de belastbaarheid van de T-liggers
zelf onderzocht. Voor de Nederlandse T-ligger bruggen worden daarom de algemene
eigenschappen en de eventuele tekortkomingen, met name in relatie tot dwarskracht,
onderzocht. De aanwezigheid van 2 tot 4 dwarsdragers in iedere overspanning en van
dwarsvoorspanning, in zowel de dwarsbalken als in het dek hebben hierbij geleid tot
het concept van ‘systeemgedrag’. Hierbij wordt aangenomen dat de draagcapaciteit van
een constructie toeneemt als gevolg van verhindering van vervorming (opsluiting) die
wordt veroorzaakt door de aansluitende constructie-onderdelen. Dit concept wordt on-
derzocht met behulp van de theorie van drukmembraamwerking, voor zowel het dek als
de T-liggers, waarbij het laatste fenomeen zal worden aangeduid als drukboogwerking.

Het voornaamste deel van dit onderzoek is gerelateerd aan de casestudy van de Vecht-
brug. Dit betreft een representatieve Nederlandse T-ligger brug uit 1962 met meerdere
overspanningen die nabij de stad Muiden de rivier de Vecht kruist. Voordat deze brug
definitief gesloopt zou worden zijn er door middel van het aanbrengen van een enkele
geconcentreerde last in het hart van een T-ligger, op twee verschillende afstanden vanaf
de oplegging, in totaal zeven bezwijkproeven op deze brug uitgevoerd. Bij drie van de
zeven bezwijkproeven is het originele brugdek intact gelaten. Vervolgens zijn op een
ander veld nog eens vier bezwijkproeven uitgevoerd op losse T-liggers waarbij de tus-
senstort in langsrichting is doorgezaagd. Doordat er twee verschillende soorten testen
zijn uitgevoerd, kan de draagcapaciteit van een losse ligger direct worden vergeleken met
die van een verbonden ligger. Bij de bezwijkproeven van de losse liggers is sprake van af-
schuifbuigbreuk, terwijl bij de verbonden liggers sprake is van een explosief bezwijken
van zowel het brugdek (pons) als de T-ligger (dwarskrachtbreuk).

De casestudy wordt uitgebreid geanalyseerd door middel van traditionele doorsnede
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controles voor buiging en dwarskracht en met behulp van niet-lineaire analyse. Tevens
wordt er een analytisch model afgeleid voor het onderzoeken van de effecten van zowel
drukmembraamwerking als drukboogwerking. Uit de traditionele controles, met een li-
neair elastisch model voor de krachtsverdeling en een verificatie op basis van doorsnede
controles, volgt voor de verbonden liggers afschuiftrekbreuk als maatgevende faalme-
chanisme. Voor de losse vrij opgelegde ligger volgt op basis van eenzelfde analyse of-
wel het breukmoment halverwege de overspanning ofwel afschuifbuigbreuk nabij de
eindoplegging als maatgevende faalmechanisme. Met behulp van een volledig 3D niet-
lineair eindige-elementenmodel van een enkele overspanning, bestaande uit totaal 15
liggers, worden de experimenteel waargenomen bezwijkmechanismen bevestigd. Te-
vens geeft dit model inzicht in de ontwikkeling van de zowel drukmembraamwerking als
drukboogwerking. Met uitzondering van de veerstijfheid van de rubber oplegblokken is
geen andere kalibratie van parameters toegepast. Door middel van een numerieke pa-
rameterstudie is een optimale incrementele iteratieve oplosmethode gevonden. Hierbij
is tevens gebruik gemaakt van een automatische adaptieve stapgrootte. Deze aanpak
heeft geresulteerd in niet-lineaire analyses waarbij alle last stappen zijn geconvergeerd
ongeacht de grootte van het eindige-elementenmodel.

Door middel van zowel experimentele, numerieke als analytische methoden is aan-
getoond dat bij T-ligger bruggen, door een combinatie van drukmembraamwerking en
drukboogwerking, sprake is van ‘systeemgedrag’ en dat dit gedrag significant afwijkt van
die van een losse ligger. Drukmembraamwerking, met de bijbehorende toegenomen
(pons) capaciteit, is waargenomen in het brugdek in het geval van een geconcentreerde
last in het hart van een T-ligger. Drukboogwerking, met de bijbehorende toegenomen
dwarskrachtcapaciteit is waargenomen in de T-ligger in het geval van een geconcen-
treerde last met een positie tussen de dwarsdragers. Dit onderzoek heeft de bijdrage van
de hiervoor genoemde draagmechanismen verklaard en gekwantificeerd hetgeen resul-
teert in een toename van de draagkracht van dit type brug. Deze effecten worden bij een
traditionele herberekening niet in rekening gebracht.
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GREEK LOWER CASE

α1, α2 multiplication factors related to the color segments used in the principal
strain plots

β factor related to the height of the compression zone

β load-reduction factor for shear according to Eurocode

βrel reliability index

γc partial factor for concrete

δ deflection, deformation

δ2a deflection up until phase 2a in nonlinear analysis

δjack total jack extension at failure

δsb,end linear elastic deformation steel bridge (end value)

δsb,start linear elastic deformation steel bridge (start value)

δu ultimate deflection or deformation

δu,CAA ultimate deflection or deformation related to compressive arch action

δu,CMA ultimate deflection or deformation related to compressive membrane action

δz vertical deflection

ε strain

εc strain at maximum concrete compressive strength

εe maximum elastic strain

εu strain of reinforcement or prestressing steel at maximum load

εu ultimate strain of concrete in compression

εuk characteristic strain of reinforcement or prestressing steel at maximum load

εult ultimate strain of concrete in tension
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xvi NOTATIONS

ζspan influence factor of the bending moment in the span on the compression
zone resultant

ζsupp influence factor of the bending moment at the support on the compression
zone resultant

η degree of edge restraint

η reduction factor for concrete compressive strength used in stress-strain model

θ compressive strut angle

θ′ additional compressive strut rotation as a result of elastic deformation

θ∞ rigid compressive strut angle

κ curvature

λ member slenderness

λ reduction factor for compression zone depth used in stress-strain model

ν Poisson’s ratio

νmin coefficient related to flexural shear according to Eurocode

ρ density of concrete

ρ maximum shear stress according to GBV (NNI 1962)

ρl reinforcement ratio of longitudinal reinforcement in the tensile zone

ρw reinforcement ratio for shear reinforcement

ρw,min minimum shear reinforcement ratio

σ stress

σ1 principal tensile stress in uncracked concrete

σcp axial stress in concrete caused by loading or prestressing

σpi initial stress in prestressing steel

σpw working stress in prestressing steel

σx stress in x-direction (axial)

σy stress in y-direction (vertical)

τ, τx y shear stress

τmax maximum shear stress

τS,d average design shear stress according to VB (NNI 1977)

φ change in angle of the system line
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GREEK UPPER CASE

∆σp additional stress in prestressing reinforcement(s) due to bending

∆l elastic deformation of the compressive strut

∆lv additional vertical deformation as a result of the elastic deformation of the
compressive strut

∆u horizontal displacement

∆F additional normal force due to displacement ∆u

∆Np additional axial force in prestressing reinforcement(s) due to bending

ROMAN LOWER CASE

a distance between the center of the concentrated load and the center of the
support

av shear span

av vertical displacement

b width

bflange T-beam top flange width

bmin minimal width of the cross-section

bslab integrated deck slab width

bw width of the cross-section for shear according to Eurocode

d effective depth of the cross-section

dp effective depth of the prestressing reinforcement

ds effective depth of the ordinary reinforcement

f drape of a curved prestressing tendon

fb tensile strength of concrete according to VB (NNI 1977)

fc compressive strength of concrete

fcd design value of concrete compressive strength

fcd,pl design value of unreinforced concrete compressive strength

fck characteristic compressive cylinder strength of concrete

fcm mean concrete cylinder compressive strength



xviii NOTATIONS

fcm,cube mean concrete cube compressive strength

fcm,slab mean concrete cylinder compressive strength, integrated deck slab

fcm,T-beam mean concrete cylinder compressive strength, T-beam

fctm mean axial tensile strength of concrete

fp0.1k characteristic 0.1% proof-stress of prestressing steel

fpd design yield strength of prestressing steel

fpk characteristic yield strength of prestressing steel

fu tensile strength of reinforcement or prestressing steel

fy yield strength of reinforcement or prestressing steel

fyd design yield strength of reinforcement

fyk characteristic yield strength of reinforcement

fym mean yield strength of reinforcement or prestressing steel

h height

havg average thickness concrete slab

heq equivalent length or crack-band width

heq,max maximum equivalent length or crack-band width to avoid a snap-back in
the softening curve

k coefficient related to flexural shear (size effect) according to Eurocode

k1 coefficient related to flexural shear (axial stress) according to Eurocode

khor linear horizontal stiffness

l length

p distance between top side concrete slab and bottom side pile anchorage
plate or ribs

q distributed line load

qpw equivalent distributed line load caused by working prestressing load

qu ultimate distributed line load

qu0 initial distributed line load

s spacing of the shear reinforcement

tol1 bottom side tolerance underwater concrete
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tol2 top side tolerance underwater concrete

x distance of a control section to the center of the support

xspan height of compression zone in the span

xsupp height of compression zone at the support

z inner lever arm of internal forces

zcb distance from the centre of gravity of a concrete section to the bottom edge

zct distance from the centre of gravity of a concrete section to the top edge

zu inner lever arm of internal forces at failure

zxspan distance between the top edge and the stress resultant in the span compres-
sion zone

zxsupp distance between the bottom edge and the stress resultant at the support
compression zone

ROMAN UPPER CASE

A cross-sectional area

A length of concrete compressive strut

A′ reduced length of concrete compressive strut as a result of elastic deforma-
tion

A1 length of concrete compressive strut (av = 0)

A2 length of concrete compressive strut (av > 0)

Ac cross-sectional area of concrete

Ac,1 phase 1 cross-sectional area, T-beam

Ac,2 phase 2 cross-sectional area, T-beam with integrated deck slab

Ap cross-sectional area of prestressing reinforcement

As cross-sectional area of ordinary reinforcement

Asl cross-sectional area of longitudinal reinforcement in the tensile zone

Asw cross-sectional area of shear reinforcement within length s

B width

C volumetric compressive modulus



xx NOTATIONS

CRd,c design value of coefficient related to flexural shear according to Eurocode

CRm,c mean value of coefficient related to flexural shear according to Eurocode

Dmax maximum aggregate size

E modulus of elasticity

E1 maximum principal strain

E3 minimum principal strain

Ecm secant modulus of elasticity of concrete

Ep Young’s modulus of prestressing steel

Es Young’s modulus of reinforcement

Eslab modulus of elasticity, integrated deck slab

ET-beam modulus of elasticity, T-beam

F force or unit load

F0 initial normal force due to soil and water pressure against retaining walls
(av = 0)

F2a load up until phase 2a in nonlinear analysis

Fmax maximum concentrated (live) load

Fmax,Mcr maximum concentrated (live) load related to cracking moment

Fmax,Mu maximum concentrated (live) load related to ultimate bending moment

Fmax,VFS maximum concentrated (live) load related to flexural shear resistance

Fmax,VST maximum concentrated (live) load related to shear tension resistance

Fpw,kink working prestressing force at a kink in the system line

Ftot total normal force

Ftot,span total normal force in the span

Ftot,supp total normal force at the support

Fu ultimate load

Fu,CAA ultimate load related to compressive arch action

Fu,CMA ultimate load related to compressive membrane action

Fu,max maximum ultimate load



NOTATIONS xxi

Fu,NL ultimate load determined by nonlinear analysis

Fu,test ultimate load determined by collapse test

G shear modulus

Gc compressive fracture energy

Gf tensile fracture energy

Ic second order moment of area of concrete section

K vertical stiffness of a single rubber layer

Kx,y lateral support stiffness

Kz vertical support stiffness

L length, span

LF load factor

LFMcr load factor for cracking moment

LFMu load factor for ultimate bending moment

LFshear load factor for shear

LFVFS load factor for flexural shear

LFVST load factor for shear tension

M bending moment

M1 phase 1 bending moment (Mdw +Mpw)

M2 phase 2 bending moment (MF)

Mcr cracking moment

MF bending moment caused by unit load F

Mdw bending moment caused by dead weight

Mpw bending moment caused by working prestressing force

Mu ultimate bending moment

Mu,span ultimate bending moment in the span

Mu,supp ultimate bending moment at the support

My vertical bending moment in nonlinear analysis (DIANA)

N axial force



xxii NOTATIONS

N1 phase 1 axial force (Npw)

N2 phase 2 axial force (NF = 0)

NEd axial force caused by loading or prestressing

NF axial force caused by unit load F

NMu,span compression zone resultant as a result of the ultimate bending moment in
the span

NMu,supp compression zone resultant as a result of the ultimate bending moment at
the support

Np axial prestressing force

Np,span axial prestressing force in the span

Np,supp axial prestressing force at the support

Npi initial axial prestressing force

Npw working axial prestressing force

Npw,hor working prestressing force, horizontal component

Npw,vert working prestressing force, vertical component

Nx axial force in x-direction in nonlinear analysis (DIANA)

Nxx in-plane distributed line force in x-direction in nonlinear analysis (DIANA)

Qz shear force in z-direction in nonlinear analysis (DIANA)

R radius

RA support reaction force (loaded side)

RB support reaction force (non-loaded side)

Sxx embedded reinforcement stress in nonlinear analysis (DIANA)

SX X concrete stress in x-direction in nonlinear analysis (DIANA)

Sy first moment of area around the y-axis

SY Y concrete stress in y-direction in nonlinear analysis (DIANA)

T ratio coefficient

T Dt Z vertical deformation in nonlinear analysis (DIANA)

V shear force

Vdw shear force caused by dead weight
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VF shear force caused by unit load F

VFS shear force related to flexural shear

Vpw shear force caused by working prestressing force

VRd design value of the shear resistance

VRd,c design value of the flexural shear resistance, contribution of concrete

VRd,s design value of the flexural shear resistance, contribution of shear reinforce-
ment

VRm,c mean value of the flexural shear resistance, contribution of concrete

VS,d design value of the shear force according to VB (NNI 1977)

VST shear force related to shear tension

Vtot sum of shear force caused by dead weight and working prestressing force
(Vdw +Vpw)

Vu ultimate shear force

Wcb section modulus of the bottom part of the concrete section

Wcb,1 phase 1 section modulus of the bottom part of the concrete section, T-beam

Wcb,2 phase 2 section modulus of the bottom part of the concrete section, T-beam
with integrated deck slab

Wct section modulus of the top part of the concrete section

ABBREVIATIONS

AA arch action

CAA compressive arch action

CMA compressive membrane action

FS flexural shear

NLFEA nonlinear finite element analysis

RBK Dutch guideline for the assessment of existing bridges (Rijkswaterstaat 2013)

SLS serviceability limit state

ST shear tension

TPL transverse prestressing level

ULS ultimate limit state





1
INTRODUCTION

In this chapter the research topic of ‘system behaviour in prestressed concrete T-beam bridges’
is introduced and the scope and objectives of this research are given. In addition, the re-
search methodology and the structure of this dissertation are explained.
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1.1. BACKGROUND

P REFABRICATED prestressed concrete beam bridges have been built since the inven-
tion of prestressed concrete and the availability of high strength steel, starting shortly

before and after WWII. One of the earliest examples in bridge construction of this type
is the Adam Viaduct (1946) in the UK (McIlmoyle 1947). This multispan railway bridge
consists of prefabricated prestressed concrete I-shaped beams transversely connected
by post-tensioned steel rods in the top flange, see Figure 1.1.

Figure 1.1: Adam Viaduct in the UK (1946) (taken from (McIlmoyle 1947))

After WWII there was an obvious high demand in Europe to construct new bridges. Con-
sequently, many concrete bridges are built in the decades following WWII. The number
of bridges built was at its peak in the 1960s and 1970s. The need for new bridges to-
gether with the increased knowledge of prestressed concrete fuelled the development of
prefabricated concrete beams. With the advantages of rapid on-site construction and
controlled prefabrication many such bridges have been built and are still being built to-
day. Now, after more than 60 years many of these early bridges are reaching the end of
their expected lifespan and the question arises whether these bridges are still structurally
safe. Even if these bridges are well maintained and do not show any signs of distress, two
important factors demand the current need for assessment: (1) increased traffic loading
and (2) potential lack of shear resistance.

The road traffic has dramatically increased since these bridges were built both in
numbers and in axle loads. This is also reflected in the changes in the design codes in
the Netherlands over the last 80 years (NNI 2020). In the current design code, NEN-EN
1991-2 (NNI 2015), the axle loads are significantly higher and the axles more closely to-
gether as compared to the codes used in the past. In the period from 1933 to 2007, the
code provisions in the Netherlands remained largely the same with only minor adjust-
ments. Specifically, for the highest load class 60, used for highway bridges, the live load
model consists of three axles with an equal load of 200 kN per axle. In this period, only
the axle spacing changed from 1.5 m and 6.0 m (distance between the first and the sec-
ond and between the second and third axle) (<1963) to 1.0 m and 4.0 m (1963-2007).
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From 2007 onwards, the current live load model 1 from NEN-EN 1991-2 (NNI 2015), is
adopted with just two axles at a distance of only 1.2 m and an equal load of 300 kN per
axle. Consequently, compared to the original design, with the current code, the design
sectional shear forces have increased significantly.

The other important factor for assessment is the increased knowledge in concrete
shear resistance. In the Netherlands, before 1974, the code provisions used for shear
generally resulted in very low shear reinforcement and the shear resistance was substan-
tially over-estimated1. In current design of concrete members, according to NEN-EN
1992-1-1 (NNI 2011a), the shear resistance is significantly reduced as compared to pre-
vious codes and, contrary to slabs, for (prestressed) beams a minimum amount of shear
reinforcement is now required. In many cases the existing beam bridges do not satisfy
this minimum requirement. Additionally, the current detailing rules for stirrups are dif-
ferent from the engineering practices in the past1. Consequently, even if a sufficient
amount of stirrups is present in existing prestressed concrete beam members, it is un-
clear if they can be taken fully into account for assessment. Furthermore, because of the
relatively low steel classes used in the past, their capacity is also limited.

On the more positive side, continued hardening of concrete often results in a higher
strength compared to the 28 days strength used in the original design. The increase in
concrete strength can be significant and the corresponding increased shear resistance
can sometimes mitigate (some of) the above mentioned factors.

In the Netherlands in the early 2000s, the need for assessment of existing structures
was recognised and the Dutch Ministry of Infrastructure and Water Management (Rijks-
waterstaat) started with the evaluation of the structural safety and the remaining life
span of their existing concrete bridge stock (Rijkswaterstaat 2007). This evaluation was
executed starting with the (expected) structurally most critical and heavily loaded high-
way bridges to the less critical and less heavily loaded viaducts in secondary roads.

One subset under investigation are the prestressed concrete T-beam bridges (Roosen
2015, Roosen and Sliedrecht 2018). About 70 of these bridges, constructed in the Nether-
lands between 1953–1977, are still in use today, with many located in the main highway
network. This type of bridge consists of prefabricated and prestressed T-shaped beams,
with an integrated deck slab, cross-beams and transverse prestressing, see Figure 1.2. A
more detailed description of this bridge type is given in Chapter 2.

Figure 1.2: Typical cross-section prestressed concrete T-beam bridge

From the initial assessment, it was concluded that about half of these bridges do not
fulfil the current design code requirements for existing structures, i.e. NEN 8700 and
RTD 1006 (NNI 2011b, Rijkswaterstaat 2013), in the ultimate limit state (ULS), warrant-
ing further investigation. It should be noted that this does not automatically imply that

1This is treated in Chapter 2 Section 2.8.
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these bridges are structurally unsafe since some potentially significant additional load-
transfer mechanisms are not taken into account in a traditional assessment. This is
strengthened by the observation that, in general, these bridges do not show any signs
of distress.

In previous research (Amir 2014), the integrated deck slab with transverse prestress-
ing was investigated. Compared to conventional bending theory, the slab proved to
have a substantially higher load capacity due to the presence of compressive membrane
action (CMA). Compressive membrane action is activated after initial cracking has oc-
curred and the slab starts bending under load. When the lateral (horizontal) movement
of the slab is restrained by stiff boundaries, compressive membrane forces are induced.
Since the integrated deck slab is no longer the governing, or weakest, structural element
in T-beam bridges, the focus is shifted to the main T-beams.

With assessment of existing bridges, and in general also for new structures, sec-
ondary nonlinear effects like arching action are often not taken into account. However,
for this type of bridge these secondary nonlinear effects could be substantial. Compres-
sive membrane action (CMA) in the deck slab is possibly also activated with a load placed
directly on the T-beam. Additionally, in longitudinal direction, the T-beams are locked
between the cross-beams and compressive arching action (CAA) could potentially sig-
nificantly increase their load capacity. This leads to the concept of ‘system behaviour’, in
which the capacity of a structure is increased due to the restraint provided by the con-
nected members.

1.2. SCOPE AND OBJECTIVES

N OT much research has been done on the structural or ‘system behaviour’ of concrete
beam bridges as is defined in the previous section. In most concrete research, the

emphasis is on separate or individual components, like beams and slabs. However, a
better understanding of the workings of a complete structure, in the ultimate limit state,
can be beneficial when assessing existing concrete structures to reveal ‘hidden’ capacity.
In this research the scope is limited to the existing prestressed concrete T-beam bridges
still in use in the Netherlands. Some of these bridges contain atypical aspects which
are excluded for this research; these atypical features are listed in Chapter 2 Section 2.3.
Furthermore, the focus of this research is on the load capacity of the main T-beams and
not on other bridge deck components such as the cross-beams or the integrated deck
slab.

The objectives of this research are a better understanding of the restraining effects in
T-beam bridges, in relation to the ultimate load capacity of the T-beams, and to identify
the requisites needed for the development of additional load-transfer mechanisms such
as compressive membrane action in the deck slab and compressive arching action in the
T-beam. In addition, the ultimate load capacity of individual T-beams will be directly
compared to connected T-beams, to understand the differences in behaviour and load-
transfer mechanisms. Ultimately, the goal of this research is to investigate whether the
existing T-beam bridges in the Netherlands still have sufficient load capacity or if they
require strengthening measures.
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1.3. RESEARCH QUESTIONS

F OLLOWING the scope and objectives as stated in the previous section, the main re-
search question that is addressed in this dissertation is as follows:

In concrete T-beam bridges, how does the structural or ‘system behaviour’,
benefit the ultimate load capacity of the main T-beams?

In this context structural or ‘system behaviour’ refers to the restraint provided by the
connected members. In concrete T-beam bridges the main T-beams are connected by
prestressed cross-beams and by the transverse prestressing in the integrated deck slab.
To answer the main question, the following sub questions are stated:

• To which extent does compressive membrane action (CMA) in the integrated deck
slab increase the ultimate load capacity of the main T-beams?

• To which extent is the ultimate load capacity of the main T-beams, locked between
the cross-beams, increased by arching action?

• How does the resistance of an individual (isolated) T-beam translate to the resis-
tance of connected T-beams and what are the benefits of large-scale testing and
nonlinear finite element analysis?

For the first two sub questions the necessary boundary conditions needed for compres-
sive membrane action and arching action are also investigated. These mechanisms will
be introduced in Chapter 3.

1.4. RESEARCH METHODOLOGY

T O investigate the ‘system behaviour’ of existing T-beam bridges, the main part of
this research is related to a case study of a typical Dutch multispan T-beam bridge

from 1962 called the Vecht bridge. Prior to its demolition, seven full-scale collapse tests
are executed on this bridge as part of this research. The case study of the Vecht bridge is
split into three parts, starting with an assessment based on linear elastic analysis, follow-
ing up with the full-scale collapse tests and finalizing with the nonlinear analysis which
includes a numerical parameter study. The case study is preceded by an overview of
the existing prestressed concrete T-beam bridges in the Netherlands, to investigate the
dimensions, geometry and materials used, and to compare these aspects to the Vecht
bridge. In addition, the theories related to compressive membrane action in thin slabs
as well as arching action in beams, and the current state-of-the-art theories and assess-
ment approaches used for existing structures, are researched for their application to T-
beam bridges. In this context, for compressive arching action in beams, an analytical
model is proposed. The results of the case study, together with the theoretical parts, are
combined in order to investigate the additional load capacity of T-beam bridges by ‘sys-
tem behaviour’. The different parts of the research, and how they connect, are visualised
in Figure 1.3.
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1.5. OUTLINE

T O guide the reader, a brief description of each chapter is given. In total this dis-
sertation is comprised of nine chapters. The relation between Chapters 2–9 is also

outlined in Figure 1.3. In Chapter 2 the existing Dutch T-beam bridges are introduced
with their construction and execution methods, typical geometry and dimensions as
well as the material properties and the reinforcement and prestressing layout. In ad-
dition, the deficiencies specifically related to shear are detailed. Chapter 3 outlines the
current state-of-the-art assessment approaches used for existing structures. In addition,
the theories related to compressive membrane action in thin slabs as well as compres-
sive arching action in beams are treated. This chapter also includes an overview of other
bridge collapse tests found in the literature. In Chapter 4 an analytical model for arching
action in restrained beams is proposed. This model will be used to analyse the load ca-
pacity of the T-beams in the full-scale collapse tests.

Chapters 5–7 are related to a case study of a typical Dutch T-beam bridge called the Vecht
bridge (1962). In Chapter 5 the Vecht bridge is introduced with a short history of the
bridge and a detailed description of its geometry, reinforcement and prestressing. The
results of the material investigation are also treated in this chapter. In addition, a linear
elastic FEM model is used to analyse the (concentrated) live load location in relation to
the sectional forces. In combination with the prestressing forces, an assessment based
on linear analysis is carried out to determine the critical load and associated position(s)
based on sectional calculations. In Chapter 6 the details of the experimental setups and
the results of the full-scale collapse tests are given. For this research seven full-scale col-
lapse tests are executed on the Vecht bridge. Three experiments are carried out with the
original structural system unchanged. In four experiments, the integrated deck slab is
sawn in the longitudinal direction, so that the individual behaviour of the T-beams can
be tested. In Chapter 7 the details and the results of the nonlinear analysis of the full-
scale collapse tests are given. In addition, a numerical parameter study is carried out.

In Chapter 8 the results of the case study together with the theoretical parts (Chapters
3–4), are combined in order to analyse the ‘system behaviour’ of T-beam bridges. The
analysis focusses on compressive membrane action in the integrated deck slab and com-
pressive arch action in the T-beams and the boundary conditions necessary to activate
these mechanisms. In addition, the differences in behaviour, ultimate load capacity and
load-transfer mechanism between individual T-beams and connected T-beams are ex-
amined. Finally, Chapter 9 contains the overall conclusions and the recommendations
for future research.





2
EXISTING PRESTRESSED CONCRETE

T-BEAM BRIDGES

In this chapter prestressed concrete T-beam bridges are introduced. The construction and
execution methods, their typical geometry and main components are described. In addi-
tion, their material properties, reinforcement and prestressing layout as well as their most
common shear-related deficiencies are described.

9
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2.1. INTRODUCTION

T -BEAM bridges consist of prefabricated and prestressed T-shaped beams, with an in-
tegrated deck slab, cross-beams and transverse prestressing. In Figure 2.1 a typical

example of a bridge deck cross-section for this type of bridge is shown. In the Nether-
lands about 70 of these bridges were constructed between 1953–1977 and many are still
in use today. For 33 Dutch T-beam bridges the year of construction versus number of
bridges is shown in Figure 2.2. At present, this type of bridge has fallen out of fashion
due to the labour-intensive construction method, mainly due to the casting of the cross-
beams and the integrated deck slab. In France this type of bridge is referred to as ‘viaduc
à travées indépendantes à poutres précontraintes’ or ‘VIPP’ for short, which translates
to simply supported and post-tensioned prestressed beam viaduct.

Figure 2.1: Typical cross-section of a T-beam bridge (Van Brienenoord bridge Rotterdam 1963) (Kamp 2017,
Roosen and Sliedrecht 2018)
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Figure 2.2: Number of bridges built versus year of construction based upon 33 Dutch bridges (Kamp 2017,
Roosen and Sliedrecht 2018)

Although no comprehensive overview has been made, this type of bridge appears to have
been constructed worldwide as references are found related to T-beam bridges in France
(Godart 2015, Tonnoir et al. 2018), Belgium, the US, China and Japan. Typically, in the
Netherlands this type of bridge is used as an approach bridge as part of a river cross-
ing where the main span over the river itself is constructed in a different manner, for
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instance as an arch bridge or a movable bridge. As these approach bridges generally re-
quire multiple spans, the benefits of prefabrication can be fully exploited. An example
of such a river crossing is shown in Figure 2.3.

Figure 2.3: Typical river crossing with approach bridges constructed with T-beams
(Van Brienenoord bridge Rotterdam 1963) (Kamp 2017, Roosen and Sliedrecht 2018)

Usually, these bridges are located in the main highway network and are therefore of
significant regional and national importance in terms of traffic flow. For the present
research most information comes from the Dutch Ministry of Infrastructure and Wa-
ter Management (Rijkswaterstaat), therefore in this chapter the emphasis will be on
the Dutch bridge stock. The results of this chapter are based upon various Rijkswater-
staat reports (Kamp 2017, Roosen 2015, Roosen and Sliedrecht 2018), available technical
drawings of more than 30 Dutch T-beam bridges, an online photo archive (Rijkswater-
staat 2020) as well as other available sources (Freyssinet 1972, Goedhart 1956).

2.2. CONSTRUCTION AND EXECUTION

T HE superstructure of T-beam bridges is usually constructed in a similar fashion, the
basic approaches for construction are:

• Preferably, the T-beams all have the same size and length, and are prefabricated
on-site or in a factory. In some cases two different lengths of spans are used for
each side of the river crossing. In addition, the edge T-beams can be slightly differ-
ent from the other T-beams due to the one-sided connection with the cross-beams
and the anchorage of the transverse prestressing.

• At the ends of the T-beams, prefabricated concrete end blocks are placed in the
form. These hold the anchorage zones of the, in most cases curved, prestress-
ing tendons, see Figures 2.4a and 2.7. Since the end blocks are already completely
cured, early stressing of the tendons is possible to avoid shrinkage cracks (Freyssinet
1972).

• After prefabrication, the T-beams are transported to the span under construction.
In some cases this is done by utilizing a temporary railway track on the already
completed spans, and then using an assembly truss to lift the T-beams into posi-
tion, see Figure 2.4b. In other cases the T-beams are simply lifted in place by using
a crane, see Figure 2.5.

2.3. MAIN DIMENSIONS

I N this section the main dimensions of the T-beam bridges are described based upon
the Dutch bridge stock using the available data of 33 bridges (Kamp 2017, Roosen and

Sliedrecht 2018), see also Tables 2.1–2.2. In most cases, the T-beam bridges have multiple
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(a) Prefabrication of T-beam on-site (b) On-site transportation of prefabricated T-beam
using railway track

Figure 2.4: Construction of the Van Brienenoord bridge Rotterdam (1963) (Rijkswaterstaat 2020)

Figure 2.5: Construction of a T-beam bridge deck (Vechtbrug 1962) (Rijkswaterstaat 2020)

spans of equal length and are simply supported with expansion joints at the piers and at
the abutments, see Figure 2.3. In some cases, a separate bridge is used for each driv-
ing direction. River crossings are typically straight bridges or bridges with a negligible
skew. Most bridges show similarities in their general layout, dimensions and geometry.
However, some bridges contain atypical properties and can therefore not be readily com-
pared to the other bridges within this group. To distinguish these bridges, the following
aspects are considered to be atypical:

1. Acute angle between the superstructure and substructure.

2. Continuous system, i.e. statically indeterminate.

3. The use of half-joints.

4. T-beams with a varying height.

5. An additional concrete overlay on top of the deck slab.
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The atypical bridges are listed in Table 2.1 where the atypical properties relate to the
numbering listed above. The beam spacing given in Table 2.1 refers to the centre-to-
centre distance between the T-beams. An example of the use of half-joints and a varying
height is shown in Figure 2.6.

Figure 2.6: Maasbrug Roermond with half-joints and variable height (1959) (Kamp 2017, Roosen and
Sliedrecht 2018)

The more common bridges that do not contain atypical properties are listed in Table 2.2.
As can be seen in Table 2.2, the span lengths range between 17–50 m, with an average
slenderness of 19.0. Naturally, the slenderness is also related to the beam spacing. In
general a larger beam spacing with equal span length will result in a lower slenderness.
However, larger beam spacing is also directly related to the beam dimensions. With in-
creasing width of the top flange, the beam spacing naturally increases as well, see also
Table 2.4. Finally, the beam height increases from 900 to 3000 mm as the span lengths
increase.

Table 2.1: Main dimensions of 9 atypical Dutch T-beam bridges (in order of span length)

Name of bridge Atypical Span Beam Slenderness Beam
propertya length height spacing

[m] [mm] [-] [mm]

Uitgeestb,c 1,2,5 15.9 1100 14.5 1500
aansluiting Schiphol 2,5 18.0 650 27.7 800
Brug o/d Rijnb,c 1 21.9 1100 19.9 1200
Hollandsche IJsselc 2,4 21.9 1320 16.6 1400
Spoorweg Harderwijkc 3,4 24.2 1250 19.3 2118
Terbregsepleinb,c 3 24.4 1150 21.3 1600
Schellingwouderbrug 2 28.9 1500 19.3 1500
Amsterdamse brug 2 28.9 1500 19.3 1500
Maasbrug Roermondb,c 3,4 50.0 2550 19.6 2560
a see Section 2.3, b used in material investigation see Section 2.5
c used in transverse prestressing investigation see Sections 2.5.3 and 2.7.2
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Table 2.2: Main dimensions of 24 typical Dutch T-beam bridges (in order of span length)

Name of bridge Span Beam Slenderness Beam
length height spacing

[m] [mm] [-] [mm]
Brasserskade 17.4 900 19.3 1000
Maastrichterlaanc 18.0 1050 17.1 1150
Ringvaart noord 19.1 1100 17.4 2240
Steenenhoekc 20.4 1200 17.0 1250
Helperzooma,b,c 22.9 1100 20.8 1610
Herewega 22.9 1100 20.8 1610
Paterswoldsewega 22.9 1100 20.8 1610
Vechtbruga 24.0 1150 20.9 1225
Schieplein 24.5 1150 21.3 1600
Kruithuiswegb,c 24.7 1100 22.5 1600
Brug o/d Rotteb,c 25.1 1150 21.8 1500
Brug o/h Amsterdam-Rijnkanaalc 26.1 1500 17.4 1770
Hamersbrugb,c 26.2 1400 18.7 2450
Koningsbrug 26.5 1500 17.7 1440
Meeuwerderbaana,b,c 26.7 1250 21.4 1560
Thoolsebrugb,c 34.4 1800 19.1 2144
Volkeraksluizen 36.8 2240 16.4 2390
Schinkelbrug 39.0 2100 18.6 3234
Draaibrug Sas van Gentb,c 40.0 2100 19.1 4080
Draaibrug Sluiskilc 40.0 2100 19.1 3340
Brug o/d Beneden Merwedec 44.1 2500 17.6 3625
Brug o/d Boven Merwedec 44.1 2450 18.0 2056
Hollandse brug 49.6 3000 16.5 4110
Van Brienenoordb,c 50.2 3000 16.7 3600
average 30.2 1627 19.0 2175
a no longer in use (demolished), b used in material investigation see Section 2.5
c used in transverse prestressing investigation see Sections 2.5.3 and 2.7.2

2.4. BRIDGE COMPONENTS

I N this section the individual components of the superstructure of a T-beam bridge are
described in more detail. This section is based on the bridges listed in Table 2.2.

2.4.1. T-BEAM

T HE general design of a prefabricated prestressed T-beam is shown in Figure 2.7. In
case of post-tensioned tendons (see also Section 2.7.1), a prefabricated end block is

used at the ends of the beam, which also holds the anchorage zones of the prestressing
tendons, see also Figure 2.4a. The thickness of this part is normally equal to the thickness
of the bottom flange. The prefabricated end block is continued in the non-prefabricated
part, see Figure 2.7, section A, and a transition piece is used between the end block and
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the T-beam. The transition between the web and the flanges can either be curved (see
Figure 2.7, section B) or bevelled. In the top view of Figure 2.7, the partly absent top
flange near the ends of the T-beam is shown, presumably for easier casting of the end
cross-beams. In section C it is shown that the onset of the intermediate cross-beams is
usually cast as part of the prefabricated T-beam. In top view it is shown that these are
usually slightly wedge-shaped, presumably for easier formwork removal.

Figure 2.7: Typical design of T-beam

The width of the top flange is usually 1000 mm for T-beams with a span length up to
28 m and increases with increasing span length until a width of 1520 mm for the Van
Brienenoord and Hollandse brug, see also Table 2.4. The web thickness is usually 180 or
200 mm. Most T-beams have an end block with a length of 1000 mm. However, no end
block or transition piece is used in the bridges Steenenhoek and Koningsbrug. The tran-
sition piece usually has a length of 1000 mm. However, for larger span length bridges (>
30 m), longer transition pieces are used with lengths up to 2500 mm. The reinforcement
and prestressing layout are described in sections 2.6 and 2.7.

2.4.2. CROSS-BEAMS

T HE number of cross-beams per span, the spacing between the cross-beams as well
as their thickness is given in Table 2.3. The spacing refers to the centre-to-centre

distance between the cross-beams. Most bridges have four cross-beams per span: two
end cross-beams and two intermediate cross-beams. In some cases the thickness of the
end cross-beam differs from the intermediate cross-beam(s), but in general they have
an equal thickness. The reinforcement and prestressing layout are described in sections
2.6 and 2.7.

2.4.3. INTEGRATED DECK SLAB

T HE beam spacing, the width of the top flange of the T-beam, the width of the inte-
grated deck slab and its thickness are given in Table 2.4. As can be seen in Table 2.4
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Table 2.3: Cross-beams of 24 typical Dutch T-beam bridges (in order of span length)

Name of bridge Number of Spacing Spacing Thickness
cross-beams ECB–ICB ICB–ICB ECB / ICB

[-] [mm] [mm] [mm]
Brasserskade 0 - - -
Maastrichterlaan 0 - - -
Ringvaart noord 2 - - 400 / -
Steenenhoek 4 6966 7168 450 / 450
Helperzoom 4 7550 7550 450 / 420
Hereweg 4 7550 7550 450 / 420
Paterswoldseweg 4 7550 7550 450 / 420
Vechtbrug 4 8000 8000 400 / 500
Schieplein 2 - - 500 / -
Kruithuisweg 4 8251 8100 500 / 500
Brug o/d Rotte 2 - - 500 / -
Brug o/h Amsterdam-Rijnkanaal 4 8710 8680 600 / 400
Hamersbrug 4 8750 8700 400 / 400
Koningsbrug 5 6631 6631 250 / 250
Meeuwerderbaan 2 - - 500 / -
Thoolsebrug 4 11450 11500 580 / 500
Volkeraksluizen 4 11925 12950 500 / 500
Schinkelbrug 4 13000 13000 600 / 600
Draaibrug Sas van Gent 4 12900 14200 600 / 600
Draaibrug Sluiskil 4 12900 14200 600 / 600
Brug o/d Beneden Merwede 4 14680 14740 500 / 500
Brug o/d Boven Merwede 4 14700 14700 500 / 500
Hollandse brug 4 16525 16500 500 / 500
Van Brienenoord 4 16825 16500 500 / 500

ECB: end cross-beam, ICB: intermediate cross-beam

the thickness of the integrated deck slab does not vary much and is usually 180 or 200
mm. However, as the beam spacing varies significantly so does the width, and therefore
its span length in the transverse direction, of the integrated deck slab. The smallest width
is 150 mm, whereas the largest width is 2780 mm. The reinforcement and prestressing
layout are described in sections 2.6 and 2.7.

2.5. MATERIAL PROPERTIES

I N this section the material properties of the T-beam bridges are described based upon
a material investigation of 12 Dutch T-beam bridges (Roosen 2015); these are also in-

dicated in Tables 2.1–2.2.
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Table 2.4: Integrated deck slab dimensions of 24 typical Dutch T-beam bridges (in order of span length)

Name of bridge Beam Flange Slab Slab
spacing width width thickness

[mm] [mm] [mm] [mm]
Brasserskade 1000 750 250 200
Maastrichterlaan 1150 1000 150 250
Ringvaart noord 2240 1000 1240 210
Steenenhoek 1250 1000 250 200
Helperzoom 1610 1000 610 180
Hereweg 1610 1000 610 180
Paterswoldseweg 1610 1000 610 180
Vechtbrug 1225 800 425 180
Schieplein 1600 1000 600 210
Kruithuisweg 1600 1000 600 200
Brug o/d Rotte 1500 1000 500 210
Brug o/h Amsterdam-Rijnkanaal 1770 1000 770 180
Hamersbrug 2450 1100 1350 180
Koningsbrug 1440 1000 440 180
Meeuwerderbaan 1560 1000 560 200
Thoolsebrug 2144 1250 894 200
Volkeraksluizen 2390 1400 990 180
Schinkelbrug 3234 1300 1934 200
Draaibrug Sas van Gent 4080 1300 2780 200
Draaibrug Sluiskil 3340 1300 2040 200
Brug o/d Beneden Merwede 3625 1520 2105 200
Brug o/d Boven Merwede 2056 1400 656 180
Hollandse brug 4110 1520 2590 200
Van Brienenoord 3600 1520 2080 200
average 2175 1132 1043 196

2.5.1. CONCRETE

F OR the T-beams the characteristic cylinder concrete compressive strength f ck was
found to be between 40–70 N/mm2 with an average of 53 N/mm2. For the integrated

deck slab the characteristic cylinder concrete compressive strength f ck was found to be
between 28–55 N/mm2 with an average of 47 N/mm2. Note that for prestressed con-
crete T-beams, as well as for the integrated deck slab, when constructed before 1976 and
not showing any defects, the Dutch guideline for assessing existing bridges, RTD 1006
(Rijkswaterstaat 2013), allows the use of a minimal value of f ck = 35 N/mm2, without
performing a material investigation.
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2.5.2. REINFORCEMENT

I N most cases, the steel grade is either QR22 or QR241. In three cases a steel grade
of QR40 was found. Sometimes different steel grades are used for the stirrups and

the longitudinal reinforcement. Also a lower strength is sometimes used for reinforce-
ment that needed to be welded. Welding is sometimes applied to the stirrups when they
are connected by cross-bars. Steel grades QR22 and QR24 are generally smooth bars,
whereas steel grade QR40 are ribbed bars. The material properties of the mentioned
steel grades are given in Table 2.5.

Table 2.5: Material properties of old reinforcement steel grades (Rijkswaterstaat 2013)

Steel grade f yk f yd

N/mm2 N/mm2

QR22 220 191
QR24 240 209
QR40 400 330

2.5.3. PRESTRESSING

T HE prestressing steel grade is often not written on the original technical drawings,
but rather the cross-section and the used prestressing system (brand name) are in-

dicated. However, from this information the steel grade can normally be deduced. For
the longitudinal prestressing tendons used in the T-beams, the grades varies between
QP150 and QP190, but in most cases QP170 was used. Some bridges apply two different
prestressing steel grades, QP170 for smaller diameter tendons and QP190 for larger di-
ameter tendons.

The steel strength for the transverse prestressing steel was of special interest and
was investigated for 20 bridges (Roosen 2015); these are also indicated in Tables 2.1–
2.2. Transverse prestressing is applied in all bridges except one: ‘aansluiting Schiphol’
see also Table 2.1. The steel grade of the transverse prestressing in the cross-beams and
in the slab-flange system, varies much more compared to the longitudinal prestressing.
In a few cases (5 times), prestressing steel grades of QP90 and QP150 are used. However,
in all other cases prestressing steel grades of QP105 or QP170 are used. The material
properties of the mentioned steel grades are given in Table 2.6.

Table 2.6: Material properties old prestressing steel grades (Rijkswaterstaat 2013)

Steel grade f pk f pd

N/mm2 N/mm2

QP90 883 580
QP105 1030 713
QP150 1470 1115
QP170 1670 1293
QP190 1864 1742

1Steel grades formerly used in the Netherlands.
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2.6. REINFORCEMENT LAYOUT

I N Figure 2.8 some examples are given for the T-beam reinforcement. As shown in Fig-
ure 2.8a the shear reinforcement is anchored in the top flange but follows the contour

of the bottom flange. In Figure 2.8b the shear reinforcement is anchored in the bot-
tom flange but here it follows the contour of the top flange. Obviously, both shapes do
not comply with current detailing rules as the stirrups should be completely straight to
avoid spalling of the concrete cover when the stress in the stirrups is high. From the in-
vestigation, the bar diameters of the stirrups were found to be either ø8, ø10 or ø12. The
stirrup spacing varied between 350 and 710 mm, although the most common distance
was found to be 400 mm.

(a) Helperzoom (b) Hamersbrug

Figure 2.8: Examples of T-beam reinforcement (Kamp 2017, Roosen and Sliedrecht 2018)

The (prefabricated) end blocks normally contain more closely spaced stirrups as well as
the splitting reinforcement in the anchorage zone of the prestressing tendons. The inte-
grated deck slab is generally very lightly reinforced. Also, other than the transverse pre-
stressing, there is no reinforcement connection between the T-beam and the deck slab.
To improve this connection, it was common practice to have an indented concrete inter-
face between the T-beam and the slab. Previous research has shown that this interface is
not critical or governing (Amir 2014). An example of the reinforcement in the integrated
deck slab is shown in Figure 2.9. Note that for smaller width slabs, intermediate stirrups
are often not necessary.

2.7. PRESTRESSING LAYOUT AND SYSTEMS

I N this section the common prestressing layout and systems of the longitudinal and
transverse prestressing of T-beam bridges are described. This overview is based upon

the Dutch bridge stock using the available data of 33 bridges (Kamp 2017, Roosen and
Sliedrecht 2018), see also Tables 2.1–2.2.
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Figure 2.9: Reinforcement integrated deck slab (Draaibrug Sluiskil) (Kamp 2017, Roosen and Sliedrecht 2018)

2.7.1. LONGITUDINAL PRESTRESSING

T HE longitudinal prestressing tendon layout can be rather complicated and has many
variations between the different T-beam bridges. Most commonly, multiple post-

tensioned draped tendons are used that fan out near the anchorages. In addition, most
tendons are anchored at the end of the T-beam, at the end block, but typically one or
more tendons are anchored in the top flange. The most commonly used system in the
Netherlands is that of Freyssinet (Freyssinet 1972). The number of tendons can vary
between six and sixteen for larger span length bridges. If two types of tendons are used,
the ones with a smaller cross-section are anchored in the top flange. Figure 2.10 shows
an example of the longitudinal prestressing tendon layout. In addition to the vertical,
the tendons also have a horizontal layout towards the centre of the span.

Figure 2.10: T-beam with 16 post-tensioned prestressing tendons (Brug o/d Boven Merwede) (Kamp 2017,
Roosen and Sliedrecht 2018)

Instead of draped tendons, in some T-beam bridges straight and/or kinked individual
wires or strands are used (aansluiting Schiphol (1965), Brasserskade (1964), Hollandsche
IJssel (1955), Steenenhoek (1959), Uitgeest (1957)). Presumably, these are manufactured
using a pre-tensioning system. Note that these T-beams do not have a prefabricated
end block; an example of this is shown in Figure 2.11. As these bridges are constructed
between 1955–1965, there does not appear to be a specific time period in favour of this
method.

Not much information is available about the prestressing procedure of the tendons.
Presumably, all tendons are prestressed using two-sided prestressing. Sometimes the
numbering on the technical drawing reveals the order of prestressing (Rijkswaterstaat
1962). On the technical drawing of the Schellingwouderbrug, it is mentioned that the
tendons anchored in the top flange use one-sided prestressing.
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Figure 2.11: T-beam manufactured with a pre-tensioned prestressing system (Steenenhoek) (Kamp 2017,
Roosen and Sliedrecht 2018)

2.7.2. TRANSVERSE PRESTRESSING

T RANSVERSE prestressing is commonly applied to the deck slab and the cross-beams
using post-tensioned tendons. Generally, the tendons are more or less evenly spaced

to realise a constant transverse compressive stress (see also Figure 2.11). However, it is
equally common to have more concentrated transverse prestressing at the location of
the cross-beams. The prestressing tendons are either of the same type as the longitu-
dinal prestressing used in the T-beams, or can have a smaller cross-section. The inter-
mediate cross-beams often contain more prestressing tendons as compared to the end
cross-beams (see also Figure 2.11). Transverse prestressing was of special interest and
was investigated for 20 bridges; these are also indicated in Tables 2.1–2.2. From this in-
vestigation it was concluded that the average transverse compressive stress was between
0.8–3.4 N/mm2 with an average of 2.3 N/mm2 (Roosen 2015).

2.8. SHEAR-RELATED DEFICIENCIES

B EFORE 1974 the Dutch code for reinforced concrete was called the ‘GBV’, of which
the last version was the ‘GBV 1962’ (NNI 1962). After 1974 a new code was adopted,

called the ‘VB 1974’ (NNI 1977), which included revised, i.e. stricter, rules for shear.
Generally speaking, the T-beam bridges constructed using the newer code will be less
shear-critical than those that were constructed using the older code. Consequently, the
amount of shear reinforcement in the T-beams often does not comply with today’s codes.
Until 1974, the following rules applied for shear reinforcement using the Dutch code
‘GBV 1962’ (NNI 1962):

• The stresses are calculated in the serviceability limit state (SLS).

• An uncracked cross-section is assumed with a parabolic shear stress distribution.

• The maximum shear stress is calculated using: ρ = τmax = 1.5 V
bh .

• No shear reinforcement is required if:
concrete class K160 ( f ck = 9 N/mm2): ρ ≤ 0.6 N/mm2

concrete class K225 ( f ck = 13 N/mm2): ρ ≤ 0.7 N/mm2

concrete class K300 ( f ck = 19 N/mm2): ρ ≤ 0.8 N/mm2

After 1974 the following rules applied for shear reinforcement using the Dutch code ‘VB
1974’ (NNI 1977):

• The stresses are calculated in the ultimate limit state (ULS), using a global resis-
tance factor of 1.7.
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• A cracked cross-section is assumed with a constant shear stress distribution.

• The shear stress is calculated using: τS;d = V S;d

bd .

• No shear reinforcement required if: τS;d ≤ 0.5 f b +0.15 N
bd .

Low levels of shear reinforcement make the T-beams vulnerable for shear failure. In ad-
dition, in terms of detailing of the stirrups the following observations can be made:

• The stirrups partially follow the contour of the T-beam, see also Figure 2.8. Current
detailing rules state that they should be straight to prevent outward forces at the
kinks under loading, which may cause spalling, rupture or failure of the concrete
cover.

• In addition to the previous point, at the top side, the stirrups are often bent out-
ward. In this way, the compression zone is not sufficiently confined.

• Often the stirrups are welded, see also Section 2.5.2. For high strength steel, this
can reduce the tensile strength.

• Longitudinal reinforcement bars are not always present in the corners of the stir-
rups.

Considering that the steel grade used for the stirrups in older bridges is generally also rel-
atively low it is a conservative approach to determine the shear capacity without the con-
tribution of the stirrups that are not code-compliant (Kamp 2017, Roosen and Sliedrecht
2018).



3
STATE-OF-THE-ART: ASSESSMENT,

THEORY AND TESTING

In this chapter the current methods for assessment of existing concrete beam bridges are
treated. In addition, the theory and methods of several mechanisms, related to structural
or ‘system behaviour’, such as compressive membrane action (CMA) and compressive arch
action (CAA), that can potentially increase the load-carrying capacity of prestressed T-
beam bridges are treated. Finally, full-scale collapse tests found in literature, related to
‘system behaviour’ of prestressed concrete beam bridges are summarised.

23
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3.1. INTRODUCTION

U NDERSTANDING of the structural behaviour is important for the design of new bridges
as well as for the assessment of existing concrete bridges. For existing bridges, the

‘real’ structural behaviour is important to be able to fully exploit all possible relevant load
bearing mechanisms for the evaluation. In many cases the current assessment is based
on the checking of the sectional forces to assess the individual parts of a structure. In ad-
dition, the design codes are also mostly based on the testing of individual members, such
as beams and slabs, and generally do not consider structural behaviour. This is an obvi-
ous choice, since testing of a complete structure is both expensive and the results can not
always be generalised to all structures. However, some mechanisms, such as compres-
sive membrane action (CMA) and compressive arch action (CAA), are dependent on the
structural behaviour and can potentially significantly increase the load bearing capacity
in concrete beam bridges. These mechanisms depend on a (horizontal) restraint that
can be provided by the connected members. In this dissertation these phenomena are
referred to as ‘system behaviour’. In Section 3.2 first the current assessment approaches
for existing bridges are treated. Section 3.3 will then give some examples related to ‘sys-
tem behaviour’ found in the literature. Next, in Section 3.4 the theories, methods and
applications for compressive membrane action are treated. In addition, the use of full-
scale testing is treated in Section 3.5. Finally, the main conclusions of the chapter are
summarised in Section 3.6.

3.2. ASSESSMENT APPROACHES EXISTING BRIDGES

I N the Netherlands, the starting point for a structural assessment of an existing con-
crete bridge is based on the level of safety that applies to new structures. In addition,

standard code formulations and modelling approaches are adopted. If deficits remain,
several options for structural assessment refinements are possible. For existing concrete
road bridges, the different options, according to RBK (Rijkswaterstaat 2013) and NEN
8700 (NNI 2011b), are summarised in Figure 3.1. The design load can be reduced by re-
ducing the level of safety combined with a reduced remaining lifespan of 30 years1. In
addition, the use of fixed (actual) traffic lane positions, as opposed to free positions, can
be adopted to reduce the sectional forces in critical sections. If deficits still remain, an
on-site material investigation can be used to, potentially, increase the concrete (com-
pressive) strength used in the assessment, which is especially beneficial for shear. In ad-
dition, for their existing bridges, the Dutch Ministry of Infrastructure and Water Manage-
ment (Rijkswaterstaat) allows for code modifications of the Eurocode equations related
to flexural shear. For prestressed beams with sufficient stirrups Equation 3.1 is allowed2

using a prescribed fixed strut angle of θ = 30◦.

VRd =VRd,s +VRd,c (3.1)

Equation 3.1 allows for the concrete contribution (VRd,c) to be added to the resistance of
the stirups (VRd,s), using a fixed angle θ. As is described in Chapter 2 Section 2.8, for the

1This corresponds to a minimum reliability index of βrel = 3.3.
2Note that the full equation includes additional terms for variable height box girders which are not relevant

here.
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Analytical

Reduce load

Reduce level of safety (+ lifespan)

Fixed traffic lane positions

Increase material strength

Code modifications

Numerical

Model refinements (linear elastic)

Nonlinear finite element analysis

Experimental

Proof loading

Figure 3.1: Methods of structural assessment refinements for existing concrete bridges
(according to RBK (Rijkswaterstaat 2013) and NEN 8700 (NNI 2011b))

T-beam bridges in the present research, generally, the amount of stirrups is below the
minimum requirement (ρw < ρw,min) or the stirrups are not correctly detailed. Thus, in
these cases Equation 3.1 does not apply and only VRd,c is used for the capacity. In addi-
tion to the analytical options (see Figure 3.1), efforts can be made to improve, i.e. refine,
the initially adopted linear elastic finite element model. For example, the use of more
sophisticated elements, such as shells or solids, can be considered. Another example is
to model the exact positions, dimensions and the linear stiffness of the supports.

When all of the analytical and linear elastic modelling options have been exhausted,
the use of a nonlinear finite element analysis (NLFEA) can be considered. For prestressed
concrete beam bridges, this is generally a two step procedure. The first step is to deter-
mine the most unfavourable load positions and corresponding maximum acting shear
using a linear elastic model of the full bridge deck as before. The second step is to anal-
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yse the shear resistance using a nonlinear model of, in most cases, an individual beam
member. The use of a nonlinear model of the full bridge deck (Chapter 7) is not standard
practice. These nonlinear analyses generally also include a sensitivity study (load posi-
tions (a/d), prestressing level etc.).

If uncertainties still remain (for instance due to insufficient or missing records), struc-
tural damages are present (corrosion, cracking) or the analytical and/or numerical inves-
tigations still yield an insufficient load capacity, a proof loading of the bridge deck can
be considered (Alampalli et al. 2021).

Although the author did not perform an extensive literature review on this particu-
lar topic, the assessment methods used in other countries for existing concrete bridges
show similarities and generally fall within one of the categories as shown in Figure 3.1.
For example in Germany, with regard to flexural shear it is permissible, under certain
conditions, to extend the limit values for θ (Bundesministerium für Verkehr 2011). How-
ever, some countries additionally make use of what can be described as ‘advanced ana-
lytical methods’. Some examples of the methods used in Germany are: ‘The simplified
arch action model’ (SAAM), ‘The arch action model’ (AAM) and the ‘Extended techni-
cal bending theory’ (ETB) (Kolodziejczyk and Maurer 2017). For the present research,
the (simplified) arch action model used in Germany is of particular interest and will be
shortly treated in Section 3.4.3.

3.3. SYSTEM BEHAVIOUR OF BEAM BRIDGES

I N the context of this research, system behaviour of beam bridges refers to the be-
haviour in the ultimate limit state (ULS) of a bridge deck. Specifically, the aim is to

investigate additional load-carrying mechanisms, such as compressive membrane ac-
tion (CMA) and compressive arch action (CAA), that only occur after initial cracking.
These mechanisms rely on a restraint provided by the connected members (adjacent
beams, cross-beams, transverse prestressing). In most concrete research the emphasis
is more on the separate or individual components such as beams and slabs. However,
the author has found a few relevant examples of research related to system behaviour of
beam bridges that are treated in this section.

One example is the research done by Sato et al. (2019) in which a single experiment is
conducted on a narrow simply supported T-beam bridge, consisting of four prestressed
T-beams and cross-beams. The edge beam is loaded at midspan to failure and the re-
search includes a 3D nonlinear finite element analysis of the full bridge deck. Interest-
ingly, during the experiment the 20 mm gap at the joint near the end support, between
the loaded span and the adjacent span, is closed, due to the deflection of the loaded
span, causing an unexpected contact between the T-beams of the consecutive spans.
From the analysis it becomes clear that this restraint is causing a significantly higher
failure load demonstrating that additional compressive normal forces can have a posi-
tive effect.

Another interesting example is the research done by Floyd et al. (2016), Murray and
Floyd (2018) and Murray et al. (2019) in which half scaled I-beams are tested individually
and compared to a bridge deck test consisting of four similar prestressed I-beams con-
nected by a cast in-situ deck slab and cross-beams. The results of this research indicate
that the cross-beams (diaphragms) play an important role in the load distribution and
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the two-way bending behaviour. In addition, it was found that the cross-beams can ar-
rest (i.e. reduce or prevent) cracking of the I-beams and that the deck and cross-beams
can also provide additional redundancy at post-beam failure by transferring the load
to the adjacent beams. Finally, from this research there are indications that slip of the
prestressing tendons at the anchorages is postponed in case of the bridge deck test as
compared to the individual beam tests. This could possibly indicate that shear anchor-
age failure is postponed or prevented by system behaviour.

In the aforementioned examples the bridge deck behaviour will naturally be greatly
influenced by the bridge deck layout (beam spacing, position and number of cross-
beams, amount of (transverse) prestressing). In addition, the type of loading, i.e. con-
centrated load(s) or distributed load(s), is of importance. For the current research the
focus is on the load capacity of the main T-beams by applying a concentrated (live) load
directly on the T-beam3.

3.4. THEORY, METHODS AND APPLICATIONS OF COMPRESSIVE

MEMBRANE ACTION

I N this section the theory, methods and applications of compressive membrane ac-
tion (CMA) will be treated. The general mechanism of compressive membrane action

will be briefly explained in Section 3.4.1. Next, in Sections 3.4.2–3.4.3 the established
methods and applications of compressive membrane action, respectively for slabs and
beams, are treated. Finally, in Section 3.4.4 the theoretical application of compressive
membrane action in a T-beam bridge, for the current research, is treated.

3.4.1. INTRODUCTION TO COMPRESSIVE MEMBRANE ACTION

C OMPRESSIVE membrane action occurs in structural members where the edges are
restrained against lateral displacement, see Figure 3.2. With the lateral movement

restrained, an internal arching mechanism is induced as the slab deflects, resulting in
compressive membrane forces. These forces increase the flexural resistance as typical
moment-axial force interaction diagrams show. In addition, the punching shear resis-
tance is also increased. CMA increases the load capacity of a slab with failure loads much
higher than those predicted with standard yield line theory, see Figure 3.3. The arching
phenomenon occurs in concrete members due to the large difference between the ten-
sile and compressive strengths. The weak strength in tension causes cracking due to the
application of the load. This shifts the neutral axis towards the compressive face.

Figure 3.2: Compressive membrane action in laterally restrained reinforced concrete slab

3Note that research on system behaviour of beam bridges related to arching action while loading a main beam
could not be found by the author.
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Figure 3.3: Typical load versus deflection for restrained reinforced concrete slab

The main parameters influencing the extent in which compressive membrane action
can occur in structural members are:

• degree of edge restraint (η≤ 1.0);

• member slenderness (λ= L/h);

• concrete compressive strength ( fc).

Note that the value for η can vary between 0 (zero restraint, i.e. simply supported) and 1
(fully restrained) (Batchelor 1987).

3.4.2. COMPRESSIVE MEMBRANE ACTION IN SLABS

I N concrete slabs, compressive membrane action enhances both the flexural resis-
tance, see Figure 3.3, as well as the punching shear resistance. However, when consid-

ering a concentrated load, since the flexural resistance is increased the most, generally a
punching shear failure will be the governing failure mode. For both reinforced and unre-
inforced concrete slabs, CMA has been extensively researched most notably in Canada,
New Zealand and the UK, for instance by Batchelor (1987) (Canada) and Taylor et al.
(2002) (UK). In addition, more recently, the use of CMA in prestressed concrete deck
slabs has also been researched by Amir (2014). Most of this research is aimed specifically
at concrete bridge deck slabs.

Provided that sufficient restraint is present, from this research it can be concluded
that CMA enhances the load-bearing capacity also in cases with very low or no reinforce-
ments. In addition, the position of the reinforcements in the cross-section, i.e. top and
bottom or centrically, can effect the load-bearing capacity but to a lesser degree than the
main parameters listed in the previous section.

In the case of a prestressed concrete slab, a linear relation between the (transverse)
prestressing level and the punching failure load was found (Amir 2014). In addition, the
presence of prestressing increases the cracking loads, thereby also improving the ser-
viceability limit state (SLS).

To calculate the effect of compressive membrane action several analytical methods
have been developed over the years, some of which are also listed in Batchelor (1987)
and Taylor et al. (2002). Among all proposed models, the model by Park and Gamble
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(2000) is one of the most widely accepted.
For reinforced concrete, the aforementioned research led to several design codes in

which CMA is taken into account. The Canadian (CSA 2006) and New Zealand (TNZ
2003) code both adopt a similar approach and take into account an edge restraint. The
UK (UK HA 2002) code uses a simplified method, and assumes a fully restrained slab in
which the reinforcement is neglected. In addition, in the Netherlands, CMA can also be
taken into account in the design of unreinforced underwater concrete slabs (SBR CUR
2014). The latter method will be extended and modified so it can be applied to pre-
stressed concrete T-beams in the next chapter. For a general description of this method,
the reader is referred to Chapter 4 Section 4.1.

3.4.3. COMPRESSIVE MEMBRANE ACTION IN BEAMS

A LTHOUGH the mechanism of compressive membrane action is identical for beams
and slabs, in the literature, compressive membrane action in beams is most com-

monly referred to as compressive arch action (CAA) or simply as arch action (AA). In the
present research, to distinguish between arch action in beams and slabs, the designation
CMA is adopted for slabs and the designation CAA is adopted for beams.

Over the last decade, CAA is of particular interest in the analysis of beam-column
assemblies, or frame structures, in preventing a progressive collapse after a column re-
moval. Based upon experimental findings, numerical models have been validated and
several analytical models have been proposed.

In one study, the model by Park and Gamble (2000) is improved upon for reinforced
concrete beams (Lu et al. 2018). This research is validated by 50 reinforced concrete
progressive collapse tests. Of particular interest in this study, is the influence of cross-
section, specifically a rectangular versus a T-shaped cross-section, i.e. a beam or a beam-
slab configuration respectively. From this study it is concluded that the model by Park
and Gamble (2000) is not sufficiently accurate in case of a beam-slab configuration. This
is due to the fact that this model assumes full plasticity at the position of the maximum
bending moments. However, in case of a beam-slab configuration, contrary to a rectan-
gular cross-section, this assumption is no longer valid as some of the reinforcements, at
the position of the maximum bending moments, will remain linear elastic. After an ex-
tensive parametric study and using appropriate modifications to the model by Park and
Gamble (2000) and assuming fixed boundaries, the authors (Lu et al. 2018) are able to
predict the maximum CAA capacity, including the peak displacement (δ), with sufficient
accuracy.

Another arch action related phenomenon in beams is the so-called tied-arch action.
This type of arch action does not require an external restraint, as shown in Figure 3.2, but
is instead caused by an internal restraint.

For reinforced concrete beam members, an example of this type of arch action is de-
scribed by Jeong and Kim (2014). In this research, for a simply supported beam, an an-
alytical behavioural model is derived in which the shear resisted by arch action is quan-
tified. The arch is formed by the fact that the value of the resultant normal force in the
compression zone, and its vertical position in the cross-section, decreases towards the
end support, due to the decreasing bending moment, creating an arch-shaped line of
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thrust, between the resultant points, towards the end support, see Figure 3.4. The re-
searchers found that, for the investigated beams, 29-46% of the shear is resisted by arch
action (the remaining part is resisted by aggregate interlocking and the stirrups). It was
also found that the amount of shear resisted by this type of arch action highly depends on
the load position (a/d) and, albeit to a lesser degree, on the shape of the cross-section.
A higher contribution of arch action is observed with load positions closer to the end
support and for T-shaped beams with a more slender web.

Figure 3.4: Tied-arch action in areas close to end support

Likewise, for prestressed concrete, similar models are adopted by Kiziltan (2012) and
Gleich (2020) called the ‘The simplified arch action model’ (SAAM) and ‘The arch ac-
tion model’ (AAM) (Gleich and Maurer 2017, 2018). The main difference between the
two analytical models is the inclusion of an additional compressive normal force, due to
shear, in the ‘The arch action model’, whereas in ‘The simplified arch action model’ this
force is neglected. These models are especially beneficial for taken into account the lo-
cal arching effect in the areas close to the (inner) supports. When utilizing these models
for the assessment of several existing prestressed beam bridges in Germany, a signifi-
cant increase in shear resistance was found when taking the arching effect into account
(Kolodziejczyk and Maurer 2017). This conclusion is also confirmed by other researchers
(Huber et al. 2018).

3.4.4. COMPRESSIVE MEMBRANE ACTION IN PRESTRESSED T-BEAM BRIDGES

T HE established methods and applications for CMA and CAA, as treated in the previ-
ous sections, cannot be readily applied to the system behaviour of prestressed con-

crete T-beam bridges in case of a concentrated load at the centre of a T-beam.
Figure 3.5 displays the situation with a concentrated load placed at the centre of a T-

beam. In transverse direction, a possible arching effect (CMA) can take place in the top
flange of the loaded beam, and the integrated deck slab on either side, spanning the two
adjacent T-beams as highlighted in Figure 3.5. This situation is very different from previ-
ous applications with the load situated on the slab. Firstly, CMA relies on cracking of the
concrete slab at the position of the load as well as at either end of the arch. In this case,
cracking at the load position is largely prevented by the prestressed T-beam. Secondly,
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a relative deflection is needed between the loading point and the ends of the arch, to
achieve the maximum arching effect. In this case, the deformation at the loading point
is prevented by the relatively high stiffness of the prestressed T-beam. In addition, it can
also be limited for loading positions in closer proximity to a cross-beam. Finally, as the
two-way bending behaviour of the slab differs, the width of the activated part of the slab
will be influenced by the presence of the prestressed T-beam. On the other hand, very
high horizontal restraint is likely present created by the surrounding structural elements,
such as the adjacent parts of the slab, the transverse prestressing and the cross-beams.

Figure 3.5: Possible slab arching effect (CMA) in T-beam bridge while loading T-beam

Figure 3.6: Possible beam arching effect (CAA) in T-beam bridge while loading T-beam

Figure 3.6 displays the situation with a concentrated load, or loads, placed at the centre
of a T-beam between the cross-beams. In longitudinal direction, a possible arching effect
(CAA) can take place in the loaded prestressed T-beam, spanning between the end cross-
beam and the intermediate cross-beam, as highlighted in Figure 3.6. At the intermediate
cross-beam, a fictitious vertical support is possibly provided by the stiffness of the inter-
mediate cross-beam. A similar situation is possible in the longitudinal section between
two intermediate cross-beams. This situation is very different from previous research
related to CAA dealing mostly with individual, isolated beams. In this case, cracking at
either end of the arch is possibly prevented by the lack of hogging bending moments. In
addition, because of the connections with the integrated deck slab, along its longitudinal
axis, the sectional forces will dissipate away from the loading point, including the pos-
sible axial membrane force, thereby preventing or limiting the formation of a complete
arch.

3.5. FULL-SCALE TESTING OF EXISTING BRIDGES

F ULL scale testing for the assessment of existing bridges can be classified in three dis-
tinct categories in order of increased loading:

• diagnostic load test;

• proof loading;
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• collapse test.

With a diagnostic load test, the aim is to gain insight into the bridge behaviour by ap-
plying a known (non-destructive) load and measuring the bridge responses. This type
of test can provide insights into the load distribution and can for instance be used to
calibrate a finite element model of the bridge. With a proof loading, a code-prescribed
live load is applied to directly demonstrate the bridge load-carrying capacity (see also
Section 3.2). Depending on the load level, the amount of cracking and the crack widths,
a proof loading might already reveal hidden capacities such as CMA (see also Section
3.4.1). Note that with a diagnostic load test or a proof load test the bridge deck is not
irreversibly damaged as these tests are applied to in-service bridges.

In literature, many examples can be found of full-scale testing of the first two types,
for instance by Lantsoght et al. (2017a,b) and Alampalli et al. (2021). However, in order to
analyse the full load-carrying capacity and failure mechanism, a full-scale collapse test
is required. In this section, examples of full-scale collapse tests of prestressed concrete
(PC) beam bridges, are summarised. In light of the present research, only tests which
resulted in a beam failure are treated.

An overview of tests on PC beam bridges, which resulted in a beam failure, is listed
in Table 3.1. The listed bridge tests have been carried out by Anonymous (1951, 1952),
South Bank bridge, Burdette and Goodpasture (1973), Boiling Fork Creek bridge, Mc-
Clure and West (1984), Pennsylvania State University bridge, Plos et al. (1991), Stora Höga
bridge 2, Oh et al. (2002), Seoul-Pusan highway bridge, Jiaquan et al. (2006), Xin Xing
Tang bridge, Bagge (2017), Kiruna bridge and by Sato et al. (2019), Chikubetsu bridge.

The cited tests (except for the Chikubetsu bridge) are based on a literature review by
Bagge et al. (2018) in which a total of 30 concrete bridges tested to failure are identified. A
summary of these tests, can be found in Bagge et al. (2018). Of the 30 bridges, reinforced
concrete (RC) slab or beam bridges are most commonly tested, with only 3 PC slab and
7 PC beam bridges.

All bridges listed in Table 3.1 are road bridges, except for the South Bank (pedestrian
bridge). For different reasons, some of the listed bridges are less relevant for the present
research. For instance, continuous span bridges consisting of a single beam and tested
in flexure are less relevant, which rules out the South Bank (solid beam with RC can-
tilever slabs) and the Xin Xing Tang bridge (one-cell box beam with cantilever flanges
and inclined webs). In addition, the Pennsylvania State University and the Stora Höga
bridge 2 both have an unusual configuration and are therefore excluded, with the former
a curved segmental box beam bridge and the latter a portal frame bridge, both consist-
ing of just two beams.

Except for the Kiruna bridge, three of the remaining four bridges are all simply sup-
ported and constructed with prefabricated beams, i.e. the Boiling Fork Creek, the Seoul-
Pusan highway and the Chikubetsu bridge4. All three bridges are relatively narrow and
constructed with either four I-beams (Boiling Fork Creek, the Seoul-Pusan highway), or
with four T-beams (Chikubetsu). The I-beam bridges have a deck slab on top, whereas
the T-beam bridge has an integrated deck slab. In addition, the Seoul-Pusan bridge has
six equally spaced RC cross-beams between the webs of the I-beams (not connected to

4Chikubetsu bridge also treated in Section 3.3.
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Table 3.1: Prestressed concrete beam bridges tested to failure (in chronological order of test year),
extract of list by Bagge et al. (2018) (except for Chikubetsu)

Bridge Countrya Construction Test Length No. Failure Loading
year year [m] spans modec,d systeme

South Bank GBR 1948 1952 86.56 4 F1 W
Boiling Fork Creek USA 1963 1970 80.47 4 P1+S2 HJ
Pennsylvania State Univ. USA 1977 1981 36.88 1 F1 HJ
Stora Höga 2 SWE 1980 1989 31.00b 1 S1 HJ
Seoul-Pusan KOR 1971 2000 360.00 12 F1 HJ
Xin Xing Tang CHN 1995 2005 114.00 3 F2 W
Kiruna SWE 1959 2014 121.50 5 S2+P-S2 HJ
Chikubetsu JPN 1960 2019 180.00 5 F2 HJ
a China (CHN), Great Britain (GBR), Japan (JPN), South Korea (KOR), Sweden (SWE) or United States of America (USA)
b frame structure, c flexural failure (F), punching failure (P) or shear failure (S)
d failure tested span specified by superscript, e hydraulic jacks (HJ) or weights (W)

the deck slab), whereas the Chikubetsu bridge has a number of PC cross-beams. Note
that the Chikubetsu is the only bridge within the scope of the present research (see Sec-
tion 1.2). Finally, the Kiruna bridge is a continuous five-span bridge and consists of three
rectangular PC beams, a RC deck slab and four equally spaced RC cross-beams in each
span.

Of the remaining four bridges, only two tests resulted in a PC beam shear failure, i.e.
the Boiling Fork Creek and the Kiruna bridge, see Table 3.1.

In case of the Boiling Fork Creek bridge the load is applied at 8 points, located be-
tween the beams, representing two trucks. On the first span, this resulted in a local
punching failure of the deck slab. On the second span, additional efforts are made to
avoid a punching failure. In the second test, at higher loads, considerable curvature of
the bridge occurred with the two interior beams deflecting much more than the two ex-
terior beams. Due to this effect, the composite action between the interior beams and
the deck slab was lost and the stirrups at the interface sheared. The loss of composite
action resulted in a redistribution of the forces to the exterior beams, and ultimately re-
sulted in a shear failure of the interior beams. Note that in this bridge no cross-beams
are present.

In case of the Kiruna bridge the load is applied to 3 points, transversely aligned, in the
middle of the shortest interior span, at the centre of the beams. The two tested beams are
strengthened utilising two different systems, i.e. CFRP rods (in the concrete cover) and
prestressed CFRP laminates (applied to the concrete surface). First the load is applied
equally to the 3 points across all beams followed by an asymmetric loading to obtain
failures in both an exterior and an interior beam. Both tests resulted in a shear failure of
the loaded beam in addition to a punching failure of the deck slab. Although the loading
points are situated in close proximity and in-between two cross-beams, in the analysis
there is hardly any mentioning of the influence of the cross-beams. In addition, from the
original drawings of the bridge it is not clear if the cross-beams are always present over
the full height of the PC beams and therefore connected to the deck slab (Bagge 2017).

Note that none of the tests listed in Table 3.1 include a test (and resistance evalua-
tion) of an individual beam as well as the bridge deck.
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3.6. SUMMARY AND CONCLUSION

T HE results of the current methods for assessment of existing concrete beam bridges
as well as the theory and methods of the mechanisms related to ‘system behaviour’

together with the main conclusions of this chapter are summarised in this section.

Assessment approaches existing bridges:

• The three main categories for the assessment of existing bridges are: analytical,
numerical and experimental. In addition, some countries make use of so called
‘advanced analytical methods’.

• In the Netherlands, the extensions for flexural shear, according to RBK (Rijkswa-
terstaat 2013), can generally not be applied to prestressed T-beam bridges due to
their lack of shear reinforcement (ρw < ρw,min).

• Generally, when NLFEA is used for assessment, the analysis is limited to an indi-
vidual beam. Such an analysis will therefore not reveal any ‘system behaviour’.

System behaviour of beam bridges:

• Most concrete research found in the literature is related to individual members,
such as beams and slabs. Very few examples of research are found related to sys-
tem behaviour.

• No research related to arching action (CAA) in beams, due to the effects of system
behaviour, is found.

Theory, methods and applications of compressive membrane action:

• CMA occurs in concrete slabs where the edges are restrained against lateral dis-
placement.

• The main parameters are: level of restraint, the slab slenderness and the concrete
compressive strength.

• In the case of a concentrated load, the failure mode for slabs is punching.

• For prestressed slabs, a linear relation, between the level of prestressing and the
punching failure load, is found.

• Several analytical methods for CMA have been developed over the years of which
the model by Park and Gamble is one of the most widely accepted.

• CMA is used in several design codes, mainly in Canada, New Zealand and the UK.
In the Netherlands, a CMA model is adopted in the design code for underwater
concrete slabs.

Compressive membrane action in beams:

• The mechanism of compressive membrane action is identical for beams and slabs.
For beams this is most commonly referred to as compressive arch action (CAA).
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• CAA has been researched for the analysis of beam-column assemblies in prevent-
ing a progressive collapse after a column removal. With regard to a T-shaped cross-
section, the model by Park and Gamble needed to be modified as this model as-
sumes full plasticity at the position of the maximum bending moments. However,
in this case some of the reinforcements remain linear elastic.

• Another arch action-related phenomenon is tied-arch arch action caused by an in-
ternal restraint. For reinforced concrete beam members, a significant amount of
shear resistance can be contributed to this type of arch action. Higher contribu-
tions are found for loads closer to an end support and for T-shaped cross-sections.

• Two types of arch action models are used in Germany as ‘advanced analytical meth-
ods’ for the assessment of prestressed concrete beams in existing bridges. These
models are especially beneficial in the areas close to the (inner) supports.

Compressive membrane action in prestressed T-beam bridges:

• The established methods and applications for CMA and CAA cannot be readily
applied for the case of a concentrated load at the centre of a T-beam as part of a
bridge deck.

• A possible arching effect (CMA) can occur in the transverse direction in the deck
slab, with the load at the centre of the T-beam, despite the fact that the T-beam
limits the cracking and the deformation of the deck slab at midspan.

• A possible arching effect (CAA) can occur in the longitudinal direction in the pre-
stressed T-beam, with the load at the centre of the T-beam and the T-beam locked
between the cross-beams, despite the fact that the sectional forces dissipate away
from the loading point including the membrane force.

Full-scale testing of existing bridges:

• Full-scale testing of prestressed concrete beam bridges are extremely rare with
only eight examples found in literature tested between 1952 and 2019.

• Only four examples have a configuration relevant for the current research, all of
them narrow bridges with 3 or 4 prestressed concrete beams, of which only two
tests resulted in a beam shear failure.

From the literature review it can be concluded that the arching effect in thin slabs is the
same phenomenon as the arching effect in (prestressed) beams, with the former desig-
nated as CMA and the latter as CAA. Both arching effects are investigated as part of the
current research (Chapter 1 Section 1.3). In order to investigate CMA for the deck slab
and CAA for the T-beam, an established analytical model, normally applied to unrein-
forced underwater concrete slabs, is adopted. For the analysis of CAA the current model
is extended and modified in the next Chapter.





4
ANALYTICAL MODEL FOR ARCH

ACTION

In this chapter the basic analytical arch action model for unreinforced underwater con-
crete slabs (SBR CUR 2014) is extended and modified so it can be applied to connected
prestressed concrete T-beams. The adopted model will be used to analyse the system be-
haviour of the Vecht bridge in Chapter 8.
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4.1. DESCRIPTION OF THE BASIC ARCH ACTION MODEL

T HE basic beam arch action model, utilized for unreinforced underwater concrete
slabs with tension piles in the ultimate limit state, is shown in Figure 4.1 (SBR CUR

2014). The load is applied as a distributed (water) pressure against the bottom side of
the slab in the upward direction. At both edges, the concrete slab is horizontally and
vertically restrained by the retaining walls. In vertical direction all supports are assumed
to be rigid. In addition, at the location of the retaining walls, a linear horizontal spring
stiffness is assumed. At the position(s) of the maximum sagging and hogging bending
moment, i.e. in the span and at the (pile) support(s), plastic hinges are assumed as a
result of cracking. Between the plastic hinges, the concrete compressive struts are as-
sumed to be infinitely stiff and the distance A is assumed to remain constant, see Figure
4.1. In the initial undeformed shape (top figure) the normal force F0 results from the
soil and water pressure against the retaining walls after casting and dewatering of the
building pit. With increased loading, due to the additional vertical displacement av, the
model stretches horizontally by∆u (bottom figure) causing an additional horizontal nor-
mal force ∆F . Due to the additional normal force ∆F the compression zones increase in
height and at the same time the internal lever arm z is reduced. Conservatively, linear
compression zones are assumed in this model. In addition, the concrete compressive
strength fcd,pl includes an additional reduction factor of 0.8 to take into account the re-
duced ductility properties of unreinforced concrete.

Figure 4.1: Basic arch action model for unreinforced underwater concrete slab
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The parameters used in the basic arch action model are (see Figure 4.1):

A length of concrete compressive strut

A1 length of concrete compressive strut (av = 0)

A2 length of concrete compressive strut (av > 0)

E A axial stiffness concrete slab

∆F additional normal force due to displacement ∆u

F0 initial normal force due to soil and water pressure against retaining walls (av = 0)

Ftot total normal force, see Equation 4.2

L span length between the tension piles

av vertical displacement

fcd,pl unreinforced concrete compressive strength

havg average thickness concrete slab

p distance between top side concrete slab and bottom side pile anchorage plate or
ribs

qu ultimate distributed line load

qu0 initial distributed line load

tol1 bottom side tolerance underwater concrete

tol2 top side tolerance underwater concrete

∆u horizontal displacement

xspan height of compression zone in span

xsupp height of compression zone at support

z inner lever arm, see Equation 4.7

By gradually increasing the value of ∆u a full relationship between the displacement ∆u
and the load (water pressure) q can be determined until the maximum value of qu is
reached (maximum capacity arch action). In this research the following parameters are
set equal to zero and will not be included in the equations: tol1, tol2 and p. In addi-
tion, havg is replaced by the concrete slab thickness h. The following steps are needed to
calculate q for each value of ∆u, see Equations 4.1–4.8.

∆F = f (∆u) (4.1)
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Ftot = F0 +∆F (4.2)

xspan = 2×Ftot/ fcd,pl (4.3)

xsupp = 2×Ftot/(β× fcd,pl) = xspan/0.6 (4.4)

A2 = h2 + (L/2)2 → A (4.5)

A2 = (h −av)2 + (L/2+∆u)2 → av (4.6)

z = h −xspan/3−xsupp/3−av (4.7)

qu = 8×Ftot × z/(L+2×∆u)2 (4.8)

Note that the factor β = 0.6 in Equation 4.4 is related to the more concentrated acting
width of the compression zone at the location of the (pile) support relative to the act-
ing width of the compression zone in the span. In case of a point load F at midspan,
Equation 4.8 can be replaced by Equation 4.9 to determine Fu.

Fu = 4×Ftot × z/(L+2×∆u) (4.9)

In the following sections the basic arch action model will be extended and modified so it
can be applied to connected prestressed concrete T-beams.

4.2. INCLUSION OF PRESTRESSING FORCE

I N case of a prestressed T-beam the initial normal force F0, see Section 4.1 and Equa-
tion 4.2, can be replaced by the normal force due to prestressing Np. Additionally, a

possible difference in prestressing force, between the span and the support(s), can be
taken into account. Both effects are taken into account by replacing Equation 4.2 with
Equations 4.10–4.11. The corresponding changes to Equations 4.3–4.9 will be treated in
the following sections.

Ftot,span = Np,span +∆F (4.10)

Ftot,supp = Np,supp +∆F (4.11)
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4.3. INCLUSION OF VARYING SECTIONAL FORCES

I N the basic arch action model β = 0.6 is used to take into account the more concen-
trated acting width of the compression zone, at the location of the (pile) support, rel-

ative to the acting width of the compression zone in the span, see Equations 4.3–4.4.
With β < 1.0, the height of the compression zone at the support is increased and conse-
quently the height of the internal lever arm z is reduced. Note that, with the assumption
of perfect hinges, the basic arch action model does not consider the effect of bending
moments. However, for the application of connected prestressed T-beams, a similar ap-
proach can be used to include the effect of the bending moment in the span and at the
support(s). The compression zone resultants, as a result of the bending moments, can be
derived using Equations 4.12–4.13. For ease of use, fixed values for Mu,span and Mu,supp

are utilized using the sectional forces at failure, i.e. the sectional forces corresponding to
qu or Fu, as well as the inner lever arm at failure zu. Note that, for q < qu or F < Fu, this is
a conservative approach.

NMu,span = Mu,span/zu (4.12)

NMu,supp = Mu,supp/zu (4.13)

The total normal force, in the span and at the support(s), including the effect of bending
moments, can be derived by replacing Equations 4.10–4.11 with Equations 4.14–4.151.

Ftot,span = Np,span +∆F +NMu,span (4.14)

Ftot,supp = Np,supp +∆F +NMu,supp (4.15)

To isolate the effect of the bending moment(s), parameters ζspan and ζsupp are intro-
duced, see Equations 4.16-4.17.

ζspan =
NMu,span

Np,span +∆F
(4.16)

ζsupp =
NMu,supp

Np,supp +∆F
(4.17)

Finally, Equations 4.14–4.15 can be rewritten to Equations 4.18-4.19.

Ftot,span = (Np,span +∆F )× (1+ζspan) (4.18)

Ftot,supp = (Np,supp +∆F )× (1+ζsupp) (4.19)

The corresponding changes to Equations 4.3–4.9 will be treated in the following sections.

1Note that in the context of the arch action model, the (total) normal force is defined as the stress resultant in
the compression zone.
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4.4. INCLUSION OF VARIABLE WIDTH CROSS-SECTION

T HE basic arch action model considers a slab with a constant width. To take into ac-
count a variable cross-section width, the basic Equations 4.3–4.4 are no longer valid.

Additionally, for ease of use, the linear compression zone is replaced by a rectangular
stress block according to Eurocode. The rectangular stress block is defined by the pa-
rameter λ, to reduce the height of the compression zone, and by the parameter η, to
reduce the concrete compressive strength, see Equations 4.20–4.21.

λ= 0.8 for fck ≤ 50 MPa (4.20a)

λ= 0.8− ( fck −50)/400 for 50 < fck ≤ 90 MPa (4.20b)

η= 1.0 for fck ≤ 50 MPa (4.21a)

η= 1.0− ( fck −50)/200 for 50 < fck ≤ 90 MPa (4.21b)

Finally, the concrete compressive strength for unreinforced concrete ( fcd,pl) is replaced
by the concrete compressive strength for reinforced concrete ( fcd). The resulting formu-
las for the compression zones are given by Equations 4.22–4.23.

Ftot,span =λ×xspan ×η× fcd ⇔ xspan = Ftot,span

λ×η× fcd
(4.22)

Ftot,supp =λ×xsupp ×η× fcd ⇔ xsupp = Ftot,supp

λ×η× fcd
(4.23)

Due to the variable cross-section width, the height of the compression zones, using
Equations 4.22–4.23, are determined iteratively until equilibrium is obtained between
the normal force Ftot and the corresponding stress resultant. In addition, the closed form
vertical position of the stress resultant in Equation 4.7 is replaced by the more general
Equation 4.24.

z = h − zxspan − zxsupp −av (4.24)

The new parameters used in Equation 4.24 are:

zxspan distance between the top edge and the stress resultant in the span compression
zone

zxsupp distance between the bottom edge and the stress resultant at the support com-
pression zone

Compared to the basic arch action model, using a linear compression zone (see Figure
4.1), the vertical distances of the stress resultants, zxspan and zxsupp , using the modified
model with a rectangular compression zone (see Figure 4.3), are reduced by a factor of
0.75/η.
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4.5. INCLUSION OF ELASTIC DEFORMATION

T HE basic arch action model does not include the effect of elastic deformation of the
compressive struts, see Figure 4.1 (E A = ∞). However, neglecting the elastic com-

pressive strut deformation is a non-conservative approach. The fixed length of the com-
pressive strut A is reflected in the kinematic Equations 4.5–4.6. When taking into account
the elastic deformation ∆l of the compressive strut, an additional strut rotation θ′ will
take place and the strut length is reduced from A to A′. In addition, the strut deforma-
tion ∆l results in an additional vertical deformation ∆lv, see Figure 4.2.

Figure 4.2: Additional strut rotation θ′ and vertical deformation ∆lv resulting from the elastic deformation ∆l
of the compressive strut

The rigid strut angle θ∞ can be derived from rewriting Equation 4.6 into Equation 4.25.

tan(θ∞) = (h −av)

(L/2+∆u)
→ θ∞ (4.25)

The elastic compressive strut deformation ∆l can be approximated by Equation 4.26.

∆l = ∆F × (L/2)

E A
(4.26)

Finally, the additional vertical deformation ∆lv can be derived from the rigid strut angle
θ∞ and the elastic compressive strut deformation ∆l , see Equation 4.27.

∆lv = ∆l

sin(θ∞)
(4.27)

As ∆F gradually increases with increasing ∆u, the elastic compressive strut deformation
∆l is also increasing. At the same time, as the member stretches horizontally, the rigid
strut angle decreases. Both effects will amplify the deformation ∆lv, see Equation 4.27.
To take into account the increased vertical deformation, Equation 4.24 is replaced by
Equation 4.28.

z = h − zxspan − zxsupp −av −∆lv (4.28)
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4.6. RESULTING MODIFIED MODEL FOR ARCH ACTION

I N the previous sections, the basic arch action model, introduced in Section 4.1, is ex-
tended and modified so it can be applied to connected prestressed concrete T-beams.

The resulting modified model for arch action, with a distributed downward vertical load,
is shown in Figure 4.3. At both edges, the prestressed concrete T-beam is horizontally
and vertically restrained by the cross-beams and the end support. At the position of an
intermediate cross-beam, a fictitious (intermediate) support is assumed, see Chapter 3
Section 3.4.4 Figure 3.6. At the interface, between the T-beam and the cross-beam(s),
a linear horizontal stiffness is assumed, caused by the horizontal stiffness of the (con-
nected) cross-beam. In the span, and at the edge of the cross-beam(s), plastic hinges are
assumed. Between the plastic hinges, linear elastic concrete compressive struts are as-
sumed with an initial length A. In the initial undeformed shape (top figure) the normal
force is equal to the initial prestressing force Np . With increased loading, due to the addi-
tional vertical displacement av , the model stretches horizontally by ∆u (bottom figure)
causing an additional horizontal force ∆F . Due to the additional normal force ∆F the
compression zones increase in height and at the same time the internal lever arm z is re-
duced. In addition, the internal lever arm is reduced by the additional vertical deforma-
tion ∆lv caused by the linear deformation of the compressive strut resulting in a length
A′ (see Section 4.5). For ease of use, a rectangular stress block according to Eurocode is
adopted in the compression zones. Finally, due to the variable width cross-section, the
position of the stress resultant as well as the height of the compression zone are deter-
mined iteratively. Note that, for the application of connected prestressed T-beams, the
modified arch action model is a significant simplification of the actual (variable) sec-
tional forces in the area between the cross-beams. For instance, the sagging bending
moments, at the location of the cross-beams, are likely insufficient to cause significant
bending cracks and result in plastic hinges. In addition, because of the connection with
the adjacent T-beams, the additional normal force∆F will not be constant. Despite these
deficiencies, the modified arch action model can still be utilized to determine an upper
bound limit of the ultimate load qu or Fu .

The following steps are needed to calculate q or F for each value of ∆u, see (revis-
ited) Equations below. When using a variable width cross-section, Equations 4.22–4.23
require iterations. In Equation 4.29, the maximum normal force due to prestressing, be-
tween the span and the support(s), is taken into account. For λ and η see Equations
4.20–4.21.

∆F = f (∆u)2 (4.1 revisited)

Ftot = max(Np,span, Np,supp)+∆F (4.29)

NMu,span = Mu,span/zu (4.12 revisited)

NMu,supp = Mu,supp/zu (4.13 revisited)

2With a linear horizontal stiffness, this equation simplifies to ∆F = khor ×∆u.
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Figure 4.3: Modified arch action model for connected prestressed concrete T-beams

ζspan =
NMu,span

Np,span +∆F
(4.16 revisited)

ζsupp =
NMu,supp

Np,supp +∆F
(4.17 revisited)

Ftot,span = (Np,span +∆F )× (1+ζspan) (4.18 revisited)

Ftot,supp = (Np,supp +∆F )× (1+ζsupp) (4.19 revisited)

xspan = Ftot,span

λ×η× fcd
(4.22 revisited)

xsupp = Ftot,supp

λ×η× fcd
(4.23 revisited)

A2 = h2 + (L/2)2 → A (4.5 revisited)

A2 = (h −av)2 + (L/2+∆u)2 → av (4.6 revisited)
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tan(θ∞) = (h −av)

(L/2+∆u)
→ θ∞ (4.25 revisited)

∆l = ∆F × (L/2)

E A
(4.26 revisited)

∆lv = ∆l

sin(θ∞)
(4.27 revisited)

z = h − zxspan − zxsupp −av −∆lv (4.28 revisited)

qu = 8×Ftot × z/(L+2×∆u)2 (4.8 revisited)

Fu = 4×Ftot × z/(L+2×∆u) (4.9 revisited)



5
CASE STUDY: THE VECHT BRIDGE

INTRODUCTION AND LINEAR

ANALYSIS

In this chapter a case study of a typical Dutch T-beam bridge called the Vecht bridge is
introduced. The different parts of the research related to the Vecht bridge are treated in
chapters 5–7. In this chapter, a short history of the bridge, a description of its main ge-
ometry and structural components, as well as its prestressing and reinforcement layout
are given. In addition, a linear elastic FEM model is used to analyse the (concentrated)
live load location versus the sectional forces. Finally, cross-sectional verifications are car-
ried out to investigate the critical load positions, gain insight into the governing failure
mode(s) as well as provide analytical estimates for the ultimate load capacity of the bridge
deck.

Parts of this chapter have been published in (Ensink et al. 2018).
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5.1. INTRODUCTION TO CASE STUDY

I N 2016, a multispan T-beam highway bridge from 1962, called the Vecht bridge, was
destined for demolition and became available for this research. The dimensions of

this bridge are such that it is still possible to perform full-scale collapse tests on-site. In
addition, compared to other Dutch T-beam bridges, with the exception of the low beam
spacing (see Chapter 2 Table 2.4), the Vecht bridge has relatively average dimensions (see
Chapter 2 Table 2.2) and has none of the atypical properties as defined in Chapter 2 Sec-
tion 2.3.

The research related to the Vecht bridge is split into three parts, with each treated in a
separate chapter:

• Introduction and linear analysis (Chapter 5)

• Full-scale collapse test (Chapter 6)

• Nonlinear analysis (Chapter 7)

In the first chapter (Chapter 5) the Vecht bridge is introduced with a short history and
a detailed description is given of its structural components. In addition, the results of
the material investigation are presented. Using a linear elastic FEM model, the (live)
load distribution is analysed and analytical cross-sectional verifications are performed.
The experimental setup as well as the results of the seven on-site collapse tests are then
described in Chapter 6. Finally, Chapter 7 contains the detailed nonlinear analysis of the
full-scale collapse tests.

5.2. THE VECHT BRIDGE

5.2.1. A SHORT HISTORY

T HE Vecht bridge is a multispan T-beam bridge located near the town of Muiden cross-
ing the Vecht river (the Netherlands), see Figure 5.2. For each driving direction, a

parallel bridge is built. It is constructed in 1962 as a replacement of the existing bridge to
allow for a dual carriageway in the highway A1 (Cement 1966). Photos of the construc-
tion are shown in Chapter 2 Figure 2.5 as well as in Figure 5.1. One span consists of a
steel bascule bridge over the Vecht river, whereas all other spans are constructed using
prestressed concrete T-beams. In 2010 the northern approach bridge was widened by
placing two additional prefabricated inverted T-beams in the gap between the two par-
allel bridges. In addition, the piers and abutments were extended to support the new
concrete beams. After more than 50 years, in 2014, it was decided to widen the highway
A1 once again and construction started on a new aqueduct to replace the Vecht bridge,
at the same time shifting the highway A1 more to the south, see Figure 5.2. Finally, col-
lapse tests were executed for this research in October 2016 shortly after which the Vecht
bridge was completely demolished.

5.2.2. MAIN GEOMETRY AND STRUCTURAL SYSTEM

A Complete overview of the Vecht bridge, including the span numbering and the test
locations, is shown in Figure 5.3. The approach bridges, on either side of the river,
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Figure 5.1: Construction of the new Vecht bridge in 1962 (right), existing bridge (left) (Rijkswaterstaat 2020)

Figure 5.2: Completed new aqueduct (right), decommissioned Vecht bridge with opened bascule bridge prior
to its demolition (left) (Rijkswaterstaat 2020)

respectively have six and two spans on the west and on the east side. All spans are simply
supported and 24 m long (centre-to-centre distance between the bearings). The bridge
deck consists of 15 identical prestressed concrete T-beams with cross-beams at 8 m in-
tervals, see Figures 5.4 and 5.5. At the piers and abutments expansion joints are used.
The piers have a centre-to-centre distance of 24.9 m, whereas the T-beams have a length
of 24.7 m. In transverse direction, the centre-to-centre distance between the T-beams is
1.225 m and the total width of the bridge deck, including the kerbs, is 18.40 m, see Fig-
ure 5.4. Since all tests are executed on the southern bridge, in its original 1962 form, the
widening of the northern bridge is of no consequence and will not be described in detail.
The piers consist of a continuous slender tapered wall with a wider rectangular beam at
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the top to accommodate the bearings and support the bridge deck. The foundation of
the piers consists of a slab on closely spaced square concrete piles.

Figure 5.3: Overview of Vecht bridge, span numbering and test locations, side view (top), longitudinal
cross-section (middle) and top view (bottom)

5.2.3. T-BEAM: GEOMETRY, REINFORCEMENT AND PRESTRESSING

T HE dimensions, reinforcements and the draped prestressing tendons of the T-beam
are shown in Figures 5.6 and 5.7. The T-beam has an end block with a thickness of

400 mm and a length of 750 mm followed by a transition piece with a length of 1000 mm.
Part of the end block is prefabricated and this type of prefabrication is also shown in
Chapter 2 Figure 2.7. The total length of the T-beams is 24700 mm. The onset of the
intermediate cross-beams is cast as part of the T-beam, see Figure 5.7 section C. The
height of the T-beam is 1150 mm and the web has a minimal thickness of 180 mm. As
can be seen in Figure 5.7, very light shear reinforcement is present, with stirrups of just
ø8-500 mm. In addition, the stirrups follow the contour of the T-beam and therefore
do not comply with current detailing rules1. In Figure 5.6 the draped prestressing ten-
dons are shown and numbered 1–7, this presumably being the original order of the post-
tensioning. Note that, to improve legibility, parts of the T-beam have been left out in
Figure 5.6. Six of the seven prestressing tendons are anchored at the end block, whereas
one is anchored in the top flange at a distance of 1902 mm from the support. The com-
plete tendon layout is also shown in Figure 5.10. At the end cross-beams, the interme-
diate cross-beams and the top flange, ducts ø50 mm are present to accommodate the
transverse prestressing. The prestressing system is that of Freyssinet with each tendon
12ø7 mm (Ap = 462 mm2) and ducts ø42 mm (Cement 1956, Freyssinet 1972, Rijkswater-
staat 2013).

1see Chapter 2 Section 2.8
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Figure 5.4: Vecht bridge, cross-section deck, T-beam numbering (measurements in mm)

Figure 5.5: Vecht bridge, longitudinal section deck (measurements in mm)

Figure 5.6: Vecht bridge, T-beam dimensions and draped prestressing tendons 1–7 (measurements in mm)

Figure 5.7: Vecht bridge, T-beam dimensions and reinforcement layout (location of cross-sections
see Figure 5.6) (measurements in mm)
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5.2.4. CROSS-BEAMS: GEOMETRY, REINFORCEMENT AND PRESTRESSING

T HE end cross-beams have a thickness of 400 mm and are centred above the bearings,
see Figure 5.5. The bottom is offset by 200 mm compared to the bottom of the T-

beams, see left side of Figure 5.4. The reinforcement consists of stirrups ø8-200 mm
and a longitudinal reinforcement of 5ø8 mm on either side. The end cross-beams also
contain five transverse prestressing tendons of which one is located in the top flange,
see Figure 5.6. The two intermediate cross-beams have a thickness of 500 mm and are
located at 8 m intervals, see Figure 5.5. The bottom is offset by 100 mm compared to
the bottom of the T-beams, see right side of Figure 5.4. The reinforcement in the wedge-
shaped part, cast between the main T-beams, consists of three stirrups ø8 mm and a
longitudinal reinforcement of 5ø8 mm on either side. The intermediate cross-beams
contain eight transverse prestressing tendons, see Figure 5.6. The prestressing system is
the same as for the T-beam, see Section 5.2.3.

5.2.5. INTEGRATED DECK SLAB: GEOMETRY, REINFORCEMENT AND PRE-
STRESSING

T HE integrated deck slab is located between the top flanges of the T-beams and has a
width of 425 mm and a thickness of 180 mm, see Figure 5.4. The integrated deck slab

is only connected via the side of the top flange of the T-beam by transverse prestressing.
To improve this connection, an indented concrete surface is used at the interface of the
T-beam. The reinforcement consists of stirrups ø6-400 mm and a longitudinal reinforce-
ment of 4ø6 mm. The slab is connected to the T-beams by 35 unevenly spaced transverse
prestressing tendons, see Figures 5.6 and 5.10. Note that especially at the location of the
intermediate cross-beams, the transverse prestressing is much more concentrated. The
prestressing system is the same as for the T-beam, see Section 5.2.3.

5.2.6. SUPPORTS

T HE T-beams are all individually supported by reinforced elastomeric bearings. The
dimensions given on the original drawings are l×b×h = 206 × 306 × 46 mm. The

reinforcement consists of three embedded 3 mm thick steel plates. The outer layer ma-
terial is synthetic rubber, whereas the two 15.5 mm thick inner layers are made of natural
rubber. The bearings have never been replaced and therefore have an age of 54 years.

5.3. MATERIAL INVESTIGATION

T HIS section summarises the results of the material investigation of the Vecht bridge,
which is performed for this research. More details about the material investigation

are given in the reports (den Boef 2016, Koekkoek 2017). The investigation is carried out
on the south-western approach bridge on the third span, see Figure 5.3. The following
material properties are investigated:

• The concrete compressive strength and density.

• The strength of the reinforcing steel.

• The strength of the prestressing steel.
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For the determination of the concrete compressive strength and the density, cores are
drilled from the prestressed T-beams, the integrated deck slab and the kerb. For the T-
beams three locations are used, designated with ‘B’ (top cores), ‘L’ (web cores) and ‘O’
(bottom cores), see Figure 5.8. The integrated deck slab cores are designated as ‘T’ and
are taken from different locations along the span length, between T-beams 6 and 13. The
kerb cores are designated as ‘SK’ and are also taken from different locations along the
span length from the north side kerb.

B-Cores

O-Cores

L-Cores

Figure 5.8: Location of concrete cores drilled from T-beams (taken from (den Boef 2016))

In total 61 cores are drilled, 30 in the T-beams, 23 in the integrated deck slab and 8 in
the kerb. The results for the concrete compressive strength and the density are given in
Table 5.1. A correction factor is included for samples that have a ratio between the height
and the diameter of the cores unequal to 1.0, in accordance with RTD 1006 (Rijkswater-
staat 2013). The mean cylinder concrete compressive strength ( fcm) is determined by
multiplying the mean cube concrete compressive strength ( fcm,cube) with a conversion
factor of 0.82 (Gijsbers et al. 2011). The cores are also visually inspected and in general,
the concrete is well compacted and does not show any signs of deterioration, cracking
or corrosion of the reinforcement. In some cases (7 cores), a localised bad compaction is
observed. In a large number of cases (27 cores), flint aggregates are found, which could
make the concrete sensitive to alkali-silica reaction but no evidence of this is found. Fi-
nally, large maximum aggregate sizes are found in the range of Dmax = 26–59 mm, see
also Figure 5.9. Compared to the 28 days strength of fcm,cube = 51 N/mm2 (based on 279
samples see (Rijkswaterstaat 1962)), after 54 years, the current strength for the T-beams
has more than doubled over time.

The strength of the reinforcing steel and prestressing steel is determined by testing
three ordinary reinforcement bars and four prestressing wires in the laboratory at TU
Delft; the results are given in Table 5.2. More detailed information can be found in the
measurement report (Koekkoek 2017). From the results it is concluded that the steel
grade for the reinforcement steel is QR24 and the steel grade for the prestressing steel
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Figure 5.9: Saw cut of T-beam (web) showing large aggregates (measurements in cm)

Table 5.1: Vecht bridge: concrete compressive strength and density

ID Number Location fcm,cube fcm
a ρ

of cores N/mm2 N/mm2 kg/m3

B 10 T-beam top 111.1 91.1 2449
L 10 T-beam web 107.6 88.2 2435
O 10 T-beam bottom 101.5b 83.2 2449

30 T-beam average 106.9 87.7 2444

T 23 Integrated deck slab 73.5c 60.3 2367
SK 8 Kerb 67.6 55.4 2383
a fcm = 0.82× fcm,cube, b based on 9 samples (1 outlier removed)
c based on 21 samples (2 outliers removed)

Table 5.2: Vecht bridge: strength of reinforcement and prestressing steel

ID Type Cal. øa fy fu εu

mm N/mm2 N/mm2 %
VECHT7p_17 prestressing wire 7.006 1487.8 1746.6 7.7
VECHT7p_18 prestressing wire 7.006 1509.4 1797.1 10.0
VECHT7p_19 prestressing wire 7.025 1477.9 1753.7 9.6
VECHT7p_20 prestressing wire 7.017 1546.6 1780.7 8.7

prestressing wire average 1505.4 1769.5 9.0
VECHT10_21 reinforcement bar 9.626 287.9 340.9 >10
VECHT10_22 reinforcement bar 9.646 281.1 339.8 >10
VECHT10_23 reinforcement bar 9.778 294.0 374.6 6.2b

reinforcement bar average 287.7 351.8 10.0
a average thickness determined by weight of specimen
b measurement frame slipped of specimen
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is QP170. The standard material properties of these steel grades are given in Chapter 2
Tables 2.5–2.6.

5.4. PRESTRESSING FORCES

T HE tendon layout and prestressing system are described in Section 5.2.3. In this sec-
tion the sectional forces as a result from the prestressing of the T-beams are deter-

mined that will be used in the linear analysis and the cross-sectional verification. For the
Vecht bridge the prestressing steel grade for all tendons is QP170. Assuming 20% time-
dependent losses, the working prestressing force for each tendon can be calculated from
the allowable initial stress σpi in accordance with RTD 1006 (Rijkswaterstaat 2013):

N pw = 0.8 σpi Ap = 0.8×1084×462×10−3 = 400.6 kN (5.1)

To calculate the internal, i.e. sectional, forces arising from the prestressing the ‘equiv-
alent prestressing load method’ is adopted (Walraven and Braam 2018). The following
forces are exerted on the concrete T-beam by the prestressing tendons:

• N pw subdivided in a horizontal and a vertical component at the anchorages.

• Bending moment M pw at the anchorages as a result of the eccentricities.

• Forces F pw,kink as a result of kinks in the system line from the end block, through
the transition piece, to the regular T-shaped cross-section (see also Figure 5.6).
Assuming a straight system line through the transition piece, this results in two
kinks: one at the start and one at the end of the transition piece.

• Equivalent load qpw as a result from the curvature of the prestressing tendons.

The original calculation of the Vecht bridge is not available. However, from the tech-
nical drawings the tendon layout can be derived. The vertical and horizontal layout, is
given in 9 cross-sections at 1.5 m interval from the centre of the support until half the
span length. An additional cross-section is also given at the position of the intermediate
cross-beam. For the numbering of the tendons, see Figures 5.6 and 5.10. To approximate
the vertical curvature of the prestressing tendons, third degree polynomials are derived
using Equation 5.2. The horizontal curvature, of tendons 1, 3, 4 and 6, is limited and will
not be taken into account.

y = ax3 +bx2 + cx +d (5.2)

The following boundary conditions are used to solve the four polynomial coefficients
(a–d) of Equation 5.2:

• The coordinates at the anchorage and at half the span length.

• The angle with the horizontal at the anchorage taken from the technical drawings,
rounded to 0.5 of a degree.

• A zero slope at half the span length due to symmetry.
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For tendon 7 two connecting third degree polynomials are used, with equal first and
second derivative at the transition point chosen at x = 4.5 m (distance from the centre
of the support). To verify the results, the polynomials are plotted on scale on top of the
original technical drawing as shown in Figure 5.10.

7

3

1

2

6

4

5

Figure 5.10: Third degree polynomial approximation of prestressing tendons 1–7 (half of span length), plotted
on scale on top of the original drawing

The forces exerted on the concrete T-beam for each tendon are summarised in Table 5.3.
The forces F pw,kink are calculated using Equation 5.3 where φ relates to the change in
angle of the system line at the kink. To calculate the equivalent load qpw at first a con-
stant radius R and curvature κ are assumed, see Equations 5.4, 5.5 (Walraven and Braam
2018). The radius R can be derived from the length l and drape f of the prestressing
tendon by using Equation 5.6 (Walraven and Braam 2018).

F pw,kink = 2N pw sin(1/2φ) (5.3)

qpw = N pw

R
(5.4)

κ= 1

R
(5.5)

R = l 2

8 f
(5.6)

Assuming a constant radius results in a total error, for tendons 1–7, of 5% in the vertical

equilibrium (N pw,vert versus
∫ l/2

0 qpw dx), with the extreme curvature of tendon 7 result-
ing in a 10% error. The accuracy of the equivalent load qpw can be improved by using
the full expression for curvature, see Equation 5.7. As a result of using Equation 5.7, the
equivalent loads qpw are no longer constant but vary over the length of the tendon, see
Table 5.3.

κ= f̈ (x)(
1+ ḟ (x)2

)3/2
(5.7)

The equivalent load qpw for tendon 7, using Equation 5.7, is plotted in Figure 5.11a. The
sectional forces as a result of the prestressing of tendons 1–7 as well as the self-weight
are plotted in Figures 5.11b–d. The self-weight includes the parts of the intermediate
cross-beams and the integrated deck slab dependent on the centre-to-centre spacing
(acting width) of the T-beams. No additional dead load, such as asphalt, is taken into
account (see Chapter 6 Section 6.3.1). As can be seen in Figure 5.11a, the equivalent load
qpw shows an extreme value near the anchorage where the curvature is also the most
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Table 5.3: Forces exerting on T-beam from prestressing tendons 1–7

tendon angle at N pw,hor N pw,vert M pw F pw,kink qpw

anchorage anchorage/midspan
◦ kN kN kNm kN kN/m

1 3.0 400 21 -123 8.7 2.8 / 0.7
2 4.5 399 31 -56 8.7 3.7 / 1.6
3 1.0 400 7 -191 8.8 0.8 / 0.3
4 8.0 397 56 79 8.7 8.2 / 1.1
5 9.0 396 63 144 8.7 7.9 / 2.6
6 6.5 398 45 12 8.7 7.4 / 0.2

7(1)a 25.0 363 169 147 - 91.0 / 1.7
7(2)a - - - - - 1.7 / 5.1

a for tendon 7 two connecting third degree polynomials are used, i.e. 7(1) and 7(2)
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Figure 5.11: Equivalent load qpw tendon 7 (a) and combined sectional forces as a result of prestressing
tendons 1–7 and self-weight (b)–(d)
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prominent. Tendon 7 is anchored in the top flange at a coordinate of x = 1.902 m, which
causes jumps in the bending moment, shear and normal forces. In Figure 5.11c the effect
of the forces F pw,kink at the start and end of the transition piece, at x = 0.4 m and x = 1.4 m,
of tendons 1–6 can also be seen.

5.5. LIVE LOAD LOCATION VERSUS SECTIONAL FORCES

5.5.1. FEM MODEL FOR LIVE LOAD CALCULATION

T O investigate the live load location versus sectional forces of a single span consisting
of 15 T-beams, a linear elastic FEM model is created using the software of SCIA Engi-

neer (Nemetschek 2020). The FEM model consists of a slab, representing the integrated
deck slab and the top flange of the T-beams, strengthened by ribs, representing the re-
maining parts of the T-beams and the cross-beams, see Figures 5.12 and 5.13. Since this
is a 2D model, 3D effects are not included and all elements, including the supports, are
located in the centre plane of the slab. Due to the presence of prestressing, uncracked
concrete is assumed for all components with a mean modulus of elasticity E cm accord-
ing to Table 5.4. Note that the concrete kerbs are not included in this model (see Chapter
6 Figure 6.1). The cross-beams are assumed to have a strength equal to the integrated
deck slab. The equivalent modulus of elasticity of the slab in the FEM model is a com-
bination of the concrete classes of the top flange of the T-beam and the integrated deck
slab and is therefore calculated as:

Eslab + flange =
bflangeET-beam +bslabEslab

(bflange +bslab)
= 800×42244+425×38214

(800+425)
= 40846 N/mm2

(5.8)

Table 5.4: Concrete class and modulus of elasticity used in FEM model

concrete class E cm

N/mm2

T-beam C80/95 42244
Cross-beam & integrated deck slab C55/67 38214

Using the results from the collapse tests, the support stiffness is determined to be 475
MN/m; this will be treated in Chapter 7 Section 7.3.1. The transition piece is not mod-
elled, instead the length of the end block is slightly extended by 400 mm to 1150 mm. The
loading is applied as a local surface load of 400 × 400 mm representing a single wheel
load according to NEN-EN 1991-2 (NNI 2015). This loading is applied at the centre of
the T-beam at every 200 mm interval, starting from the centre of the support to halfway
the span length, on T-beam number 1–8 see Figures 5.14 and 5.15. In this way, due to
double symmetry, a grid of load locations at 200 mm interval is realised for the complete
span. In addition, a meshsize of 200 mm is specifically chosen to generate nodes that
coincide with the load locations. Because of the cantilever of 350 mm, the transition
point of the (extended) end block to the regular T-beam is now at a distance of 1150 -
350 = 800 mm from the support, which is exactly on the desired grid of 200 mm. This
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Figure 5.12: Single span linear elastic FEM model, 2D slab strengthened by ribs

(a) Regular T-beam (b) T-beam end block

Figure 5.13: Cross-sections of T-beam without top flange (ribs in FEM model)
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LOADED AREA

Figure 5.14: Top view of mesh, numbering of T-beams and loaded area

X

Y

Z

2000 2000 2000

load locations

Figure 5.15: Detail of mesh and grid of load locations (grid only shown on T-beam 1) (measurements in mm)
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modelling approach will enforce the FEM program to calculate the sectional forces at
the desired grid locations. The Mindlin-Reissner plate theory (Nemetschek 2020) is used
in combination with an edge mesh refinement of 100 mm, see Figures 5.14 and 5.15.
Note that in Figures 5.14 and 5.15 axes A and B relate to the location of the supports and
the end cross-beams, whereas axes C1 and C2 relate to the location of the intermediate
cross-beams. The detailed geometry of the bridge deck is given in Figures 5.4–5.7.

5.5.2. ANALYSIS OF LIVE LOAD LOCATION

I N order to analyse the influence of live load location, using the FEM model described
in the previous section, a unit load of F = 1000 kN will be placed on T-beams 1, 5 and 8

(for T-beam numbering see Figure 5.14). In addition, the results will be compared to an
individual, simply supported T-beam. In the longitudinal direction, the load locations
are chosen at a = 2, 4, 6, 8, 10 and 12 m (distance from the centre of the support). The
results of this analysis are given in Figures 5.16 and 5.17, showing half the span length.
The results of T-beam 5 are similar to those of T-beam 8 and are therefore not included in
Figure 5.17. Due to symmetry, T-beam number 1 equals 15 and T-beam number 5 equals
11.

As can be seen in Figure 5.17, the intermediate cross-beam, at a distance of x = 8 m
from the support, has a significant influence on the load distribution. This is especially
true for T-beams 5 and 8, where the shear force is generally close to zero after passing the
intermediate cross-beam. In addition, with the load placed between the end cross-beam
and the intermediate cross-beam, a behaviour of a simply supported beam with a span
length equal to the distance between the cross-beams can be observed. This also holds
true when the load is placed between the first and second intermediate cross-beam, see
for instance Figures 5.17c, d with the load at a = 12 m. Comparing a simply supported
individual T-beam to the connected T-beams (Figure 5.16 versus Figure 5.17), the main
difference is the decrease of the shear force from the loading point to the supports or the
intermediate cross-beam(s). This is due to the load transfer from the loaded beam to the
adjacent beams, through the integrated deck slab.

For the edge beam, T-beam 1, this behaviour is somewhat less pronounced due to
the one-sided connection with the intermediate cross-beam. For the edge beam, the
most significant observation is the higher shear force of 696 kN (Figure 5.17a) close to
the support, for a = 2 m, compared to T-beams 5 and 8 of 573 and 571 kN (Figure 5.17c).

Likewise, the bending moments show an equally significant influence of the interme-
diate cross-beam. In Figure 5.17, the bending moment is generally close to zero or has
a low value at the location of the intermediate cross-beam, except when a load is placed
directly on it. Again, for the edge beam this behaviour is somewhat less pronounced.
For the edge beam, the highest bending moment of 2182 kNm (Figure 5.17b) is observed
with the load at a = 12 m and is much higher compared to T-beams 5 and 8 with 1245
and 1164 kNm (Figure 5.17d).
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Figure 5.16: Sectional forces for an individual, simply supported, T-beam with a unit load F = 1000 kN at
different load locations (half of span length)
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Figure 5.17: Sectional forces for connected T-beams with a unit load F = 1000 kN at different load locations
(half of span length)



5.6. ASSESSMENT BASED ON LINEAR ANALYSIS

5

63

5.6. ASSESSMENT BASED ON LINEAR ANALYSIS

5.6.1. INTRODUCTION TO CROSS-SECTIONAL VERIFICATION

F OR the Vecht bridge, considering the varying cross-sectional properties, the layout of
the draped prestressing tendons and the load distribution, it is not straightforward

to identify the most critical cross-section(s) and corresponding load position(s). There-
fore this process is automated by combining the previously determined sectional forces
from the self-weight, the prestressing and the concentrated (live) load, and performing
a cross-sectional automated verification using Matlab (Matlab 2019). At all points on
the 200 mm grid, as described in Section 5.5, a concentrated (live) load is placed and a
cross-sectional verification is carried out. Additional control sections are added at lo-
cations where there is a sudden jump in normal force, shear force or bending moment
arising from the prestressing forces giving two different numerical values at the same
location (see Figure 5.11). The additional control sections are located at:

• x = 1400 mm (end of the transition piece (= 1750 - 350 mm), see Figure 5.6);

• x = 1902 mm (anchorage of tendon 7, see Figure 5.6).

Due to the presence of the transversely prestressed intermediate cross-beams, the con-
trol sections between x = 7.75–8.25 m (see Figure 5.5), in the case of connected T-beams,
are excluded from the analysis. In addition, control sections close to the end support, at
a distance of x ≤ 0.6 m (≈ 0.7×d), are also excluded. Note that due to the draped pre-
stressing tendons, the effective depth varies, see also Section 5.6.2.

It should be noted that the cross-sectional verification is not only performed at the
same location as the position of the concentrated (live) load but also at surrounding lo-
cation(s). Therefore, the concentrated (live) load can be considered as a movable load
over the bridge. However in general, the governing control section ‘x’ is usually close or
equal to the load position ‘a’.

The cross-sectional verifications that will be analysed are:

• Flexural shear, denoted as ‘VFS’ (Section 5.6.2).

• Shear tension, denoted as ‘VST’ (Section 5.6.3).

• Cracking moment, denoted as ‘Mcr’ (Section 5.6.3).

• Ultimate bending moment, denoted as ‘Mu’ (Section 5.6.4).

The goal of the analysis is to investigate the critical load positions, gain insight into the
governing failure mode as well as provide analytical estimates for the ultimate load ca-
pacity of the bridge deck. In the chapter 8 these results will be compared to the ex-
perimental results and the detailed nonlinear analysis. It should be noted that in this re-
search the emphasis is on the load capacity of the main T-beams and not on other bridge
deck components such as the cross-beams or the integrated deck slab. Subsequently, the
loading will be placed exclusively at the centre of the T-beams. The sectional forces as
a result of the concentrated (live) load are based upon a unit load of F = 1000 kN, see
Section 5.5.2. The maximum concentrated (live) load Fmax for each control section is de-
termined by multiplication of the unit load with a load factor ‘LF ’ such that the resultant



5

64 5. CASE STUDY: THE VECHT BRIDGE - INTRODUCTION AND LINEAR ANALYSIS

sectional forces equal the resistance at the control section. The resistance is calculated
using average material properties (see Section 5.3), the formulations of NEN-EN 1992-1-
1 (NNI 2011a), adapted for average values, and with material and load factors set equal
to 1.0. The sectional properties used in the calculations are given in Appendix E Figures
E.1–E.2 showing the regular T-beam and the T-beam end block. Figure E.2 includes the
acting width of the integrated deck slab equal to the centre-to-centre distance of the T-
beams. In Matlab the variable width of the T-beam is approximated by using a number of
layers with constant width. The same distribution of layers is used for all cross-sections,
see Figures E.1–E.2.

5.6.2. FLEXURAL SHEAR

T HE minimum required amount of stirrups according to NEN-EN 1992-1-1 (NNI 2011a),
using lower bound material properties for the T-beam (concrete C55/67 and rein-

forcement QR24), is given by Equation 5.9.

ρw,min = (0.08
√

fck)/ fyk = (0.08
p

55)/240 = 0.00247 = 0.247% (5.9)

The shear reinforcement present in the T-beam consists of stirrups ø8-500 mm with a
minimum web thickness of bw = 180 mm, see also Figure 5.7. The resulting shear rein-
forcement ratio is given by Equation 5.10.

ρw = Asw/(sbw) = 2× 1/4π82/(500×180) = 0.00112 = 0.112% (5.10)

Thus, due to the lack of sufficient stirrups, the flexural shear resistance is based upon the
concrete resistance only. The flexural shear resistance is calculated according to NEN-
EN 1992-1-1 (NNI 2011a), see Equations 5.11 through 5.16.

VRm,c = [CRm,ck(100ρl fck)1/3 +k1σcp]bwd (5.11)

With a minimum of:

VRm,c = (νmin +k1σcp)bwd (5.12)

Where:

k = 1+
√

200

d
≤ 2.0 with d in mm (5.13)

ρl =
Asl

bwd
≤ 0.02 (5.14)

σcp = NEd/Ac < 0.2 fcd (5.15)

νmin = 0.035k3/2 f 1/2
ck (5.16)

For average values CRm,c = 0.163 (König and Fischer 1995) and k1 = 0.225 (default de-
sign values are CRd,c = 0.18/γc and k1 = 0.15) and fck, fcd = fcm = 87.7 N/mm2 (see Table



5.6. ASSESSMENT BASED ON LINEAR ANALYSIS

5

65

Table 5.5: Load-reduction factor β

x d a = 0.8 m a = 1.0 m a = 1.2 m a = 1.4 m a = 1.6 m
mm mm β

800 820 0.49 0.61 0.73 0.85 0.98
1000 829 - 0.60 0.72 0.84 0.97
1200 786 - - 0.76 0.89 -
1400 796 - - - 0.88 -
1600 806 - - - - 0.99

5.1). For the longitudinal reinforcement, Asl in Equation 5.14, only the prestressing ten-
dons and the regular reinforcement below the centre of gravity of the cross-section are
included. For the regular reinforcement this amount is the same for all cross-sections
(9ø10 see Figure 5.7). However, for the draped prestressing tendons, this amount varies
and depends on the location of the cross-section. For positive (sagging) moments, the
effective depth is determined by using Equation 5.17. Negative (hogging) moments only
occur at the position of the intermediate cross-beam in case of connected T-beams, see
Figure 5.17d. However, these control sections have been excluded from the analysis, see
Section 5.6.1. For each cross-section, the effective depth of the prestressing tendons dp

is defined using the third degree polynomials, as determined in Section 5.4, see Figure
5.10.

d = Asds + Apdp

As + Ap
= Asds + Apdp

Asl
(5.17)

The effect of direct load transfer is included by means of the reduction factor β on the
concentrated (live) load. This holds for loads that are applied near the end support
within a distance of 0.5d ≤ av ≤ 2d . The contribution of the concentrated load to the
shear force is then reduced by β = av/2d . Since the effective depth d is variable, the
reduction factor β depends on both the control section ‘x’ as well as the load position
‘a’ of the concentrated (live) load, see Table 5.5. For the width bw, the formulations for
variable width cross-sections in accordance with RTD 1006 (Rijkswaterstaat 2013) are
applied, with bw = 1.25×bmin, where bmin is the minimal thickness of the cross-section.
Referring to Figure 5.20, for the rectangular end block bw = 400 mm and for the T-beam
cross-section bw = 1.25×180 = 225 mm. For cross-sections close to or at the transition
piece, inclined cross-sections are taken into account with a strut angle of θ ≥ 30◦, thereby
increasing the minimal thickness of the cross-section. In Equation 5.15 the compres-
sive force NEd consists of the prestressing force only. In the analysis the load factor for
flexural shear LFVFS is determined by solving Equation 5.18 (for Vdw and Vpw see Figure
5.11c). The maximum concentrated (live) load related to flexural shear Fmax,VFS is then
calculated by Equation 5.19, with a unit load of F = 1000 kN.

VRm,c =Vdw +Vpw +LFVFSβVF (5.18)

Fmax,VFS = LFVFS ×F = LFVFS ×1000 [kN] (5.19)
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Table 5.6: Maximum concentrated (live) load for flexural shear

x a Fmax,VFS Relative load capacity
m m kN %

Individual T-beam 1.9 2.0 609 100
Individual T-beam 3.4 3.4 703 115
Connected T-beam 1 (15) 1.9 2.4 840 138
Connected T-beam 1 (15) 8.4 8.8 935 154
Connected T-beam 5 (11) 1.8 2.2 1040 171
Connected T-beam 5 (11) 8.4 8.8 884 145
Connected T-beam 8 1.8 2.2 1045 172
Connected T-beam 8 7.6 7.2 879 144
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Figure 5.18: Flexural shear resistance (a) and maximum concentrated (live) load for individual, simply
supported T-beam (b)
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Figure 5.19: Maximum concentrated (live) load for connected T-beams
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Figure 5.20: Width bmin near end support, vertical versus inclined cross-sections (measurements in mm)

The results of the analysis are shown in Figures 5.18–5.19, showing half the span length,
and are summarised in Table 5.6. The results of T-beam 5 are similar to those of T-beam
8 and are therefore not included in Figure 5.19. Due to symmetry, T-beam number 1
equals 15 and T-beam number 5 equals 11, see Table 5.6. In Figures 5.18b and 5.19 the
x-axis is the control section and the y-axis gives the maximum concentrated (live) load
irrespective of load location (procedure described in Section 5.6.1). The calculated mean
resistance VRm,c is plotted in Figure 5.18a showing an absolute minimum value of 518 kN
at x = 2.2 m with bmin = 180 mm, see Figure 5.20. Between the end support and x = 2.2 m
the increased resistance is due to the increasing width bmin. For x > 2.2 m the flexural
shear resistance increases with increasing effective depth, due to the draped prestressing
tendons, to a maximum value of 627 kN. The jump at x = 1.902 m is due to the change in
the compressive force NEd. The calculated parameters are also given in Table 5.7. For an
individual T-beam, see Figure 5.18b, the governing control section is at x = 1.9 m, at the
anchorage of tendon 7, and an additional local minimum is found at x = 3.4, see Table
5.6. The jump of Fmax,VFS at x = 1.902 m is caused by the change of the counter-balancing
shear force Vtot, see Figure 5.11c. For connected T-beams, see Figure 5.19, the governing
control section is either at x = 1.902 m (T-beam 1) or close to the intermediate cross-
beam (T-beam 5 and 8). For an individual, simply supported T-beam, the minimum
value for Fmax,VFS is obviously lower compared to the connected T-beams, by at least a
factor of 1.4, see Table 5.6.

Table 5.7: Mean flexural shear resistance VRm,c prestressed concrete T-beam

control section
Parameter x = 2.2 m x = 12 m Units Reference
d 788 984 mm Equation 5.17
k 1.50 1.45 - Equation 5.13
Asl 3479 3941 mm2

ρl 0.020 0.018 - Equation 5.14
fcm 87.7 87.7 N/mm2 Table 5.1
NEd 2753×103 2753×103 N Figure 5.11d
σcp 6.91 6.91 N/mm2

VRm,c 518×103 627×103 N Figure 5.18a
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5.6.3. SHEAR TENSION

P ARTS uncracked by bending can be evaluated for shear tension according to NEN-
EN 1992-1-1 (NNI 2011a). The basis for shear tension is assuming a fully uncracked

cross-section. The principal stresses as a function of the internal sectional forces are
determined and a maximum allowable tensile stress equal to the uniaxial tensile strength
is assumed. For 2D the maximum principal stress is calculated by Equation 5.20. In this
equation, the vertical stress,σy is assumed to be zero. For further details and discussions
on shear tension failure the reader is referred to the thesis by Roosen (2020).

σ1 = σx

2
+

√(σx

2

)2
+τ2

x y (5.20)

The principal stressesσ1 are evaluated over the full height of the cross-section, see Figure
5.21b, c. This method implies that if the maximum principal stress is at the bottom fibre
(Figure 5.21c), which corresponds to the cracking moment, this can also be considered as
a lower bound for shear tension resistance. To distinguish between a maximum principal
stress occurring in the thin web or at the bottom fibre, these two situations are treated
separately, with the former denoted as ‘VST’ (i.e. shear tension) and the latter as ‘Mcr’
(i.e. cracking moment).

(a) T-beam (b) Shear tension (c) Cracking moment

Figure 5.21: Principal tensile stress σ1, T-beam cross-section (a), shear tension (b) and cracking moment (c)

The presence of the prestressing tendons with grouted ducts is taken into account by
using a reduction of the width of the cross-section to calculate the shear stresses. This
reduction is set equal to half of the diameter of a single duct, i.e. ø42/2 = 21 mm (NNI
2011a). In the Matlab routine the stresses are evaluated at 20 (equally spaced) points
distributed across the height. Based on the material investigation, see Table 5.1, the
mean tensile strength is determined by Equation 5.21 (NNI 2011a).

fctm = 2.12× ln(1+ fcm/10) = 2.12× ln(1+87.7/10) = 4.83 N/mm2 (5.21)

Due to the construction stages, the following internal sectional forces (see also Figure
5.11) act on the T-beam cross-section without the integrated deck slab (Appendix E Fig-
ure E.1), i.e. construction stage 1:

• Normal force (prestressing): Npw.

• Shear forces (self-weight and prestressing): Vdw and Vpw.
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• Bending moments (self-weight and prestressing): Mdw and Mpw.

Note that the self-weight includes the acting width of the integrated deck slab as well as
the cross-beams. The underlying assumption is that before hardening of the concrete
this weight is carried by the main T-beam(s). For construction stage 2, the external load
acts on the T-beam cross-section with the integrated deck slab, taking into account its
acting width (Appendix E Figure E.2). The external load causes a shear force VF and a
bending moment MF in each cross-section. The stresses calculated in both stages are
then added to calculate the total principal stresses. Note that in this approach the effect
of creep, related to construction stage 1, is ignored. Since a closed formulation is not
available, an iterative solver is used to determine the load factor for shear tension LFVST ,
and the maximum concentrated (live) load related to shear tension resistance Fmax,VST is
then calculated by Equation 5.22, with a unit load of F =1000 kN. To prevent ambiguity
and improve iteration speed, a restraint is set on the solution interval for LFVST , between
zero (no external force) and the external force related to the cracking moment at the
bottom fibre using Equation 5.23. The relationship of Equation 5.23 is also used to de-
termine the load factor for the cracking moment, and the maximum concentrated (live)
load related to the cracking moment, Fmax,Mcr , is determined by multiplication with the
unit load similar to Equation 5.22.

Fmax,VST = LFVST ×F = LFVST ×1000 [kN] (5.22)

N1

Ac,1
+ M1

Wcb,1
+LFVST

(
N2

Ac,2
+ M2

Wcb,2

)
= fctm (5.23)

Where:

N1 phase 1 axial force (Npw)

M1 phase 1 bending moment (Mdw +Mpw)

Ac,1 phase 1 cross-sectional area, T-beam (Appendix E Figure E.1)

Wcb,1 phase 1 section modulus of the bottom part of the concrete section, T-beam (Ap-
pendix E Figure E.1)

N2 phase 2 axial force (NF = 0)

M2 phase 2 bending moment (MF)

Ac,2 phase 2 cross-sectional area, T-beam with integrated deck slab (Appendix E Figure
E.2)

Wcb,2 phase 2 section modulus of the bottom part of the concrete section, T-beam with
integrated deck slab (Appendix E Figure E.2)

The results of the analysis are shown in Figures 5.22–5.23, showing half the span length,
and summarised in Table 5.8. The results of T-beam 5 are similar to those of T-beam
8 and are therefore not included in Figure 5.23. Due to symmetry, T-beam number 1
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Table 5.8: Maximum concentrated (live) load for shear tension and cracking moment

x a Fmax,VST Fmax,Mcr Relative
load capacity

m m kN kN %
Individual T-beam 1.6 1.6 939 - -
Individual T-beam 12.0 12.0 - 284 100
Connected T-beam 1 (15) 1.8 2.2 1323 - -
Connected T-beam 1 (15) 5.8 5.8 - 922 325
Connected T-beam 1 (15) 11.8 11.8 - 780 275
Connected T-beam 5 (11) 1.4 1.8 1652 - -
Connected T-beam 5 (11) 4.6 4.6 - 1557 548
Connected T-beam 5 (11) 8.4 8.8 1416 - -
Connected T-beam 5 (11) 12.0 12.0 - 1369 482
Connected T-beam 8 1.4 1.8 1659 - -
Connected T-beam 8 4.4 4.4 - 1599 563
Connected T-beam 8 8.4 8.8 1424 - -
Connected T-beam 8 12.0 12.0 - 1464 515

equals 15 and T-beam number 5 equals 11, see Table 5.8. In Figures 5.22b and 5.23 the
x-axis is the control section and the y-axis gives the maximum concentrated (live) load
irrespective of load location (procedure described in Section 5.6.1).

For an individual T-beam, the minimum value for the concentrated (live) load related
to the cracking moment is obviously much lower compared to the connected T-beams,
by at least a factor of 2.7, see Table 5.8. This can also be concluded from the live load
location analysis in Section 5.5.2 by comparing Figure 5.16b to Figure 5.17b. For shear
tension, the reduction of the width of the cross-section, due to the presence of the pre-
stressing tendons, has a significant effect on the results. This increases the likelihood of
a maximum principal stress in the thin web (see Figure 5.21b), and stretches the parts of
the T-beam where shear tension can occur. For the connected T-beams, in addition to
the area close to the supports, shear tension can also occur in the areas surrounding the
intermediate cross-beams, see Figure 5.23b.

It may seem peculiar that for some control sections, the maximum concentrated
(live) load related to shear tension appears to exceed the one for the cracking moment,
i.e. Fmax,VST > Fmax,Mcr , see for instance x = 5 m in Figure 5.23b. However, this is a result
of the different load positions taken into account. With the same combination of ‘a’ and
‘x’, this will not be the case. But here, only one combination of ‘a’ and ‘x’ results in shear
tension, whereas multiple combinations result in a cracking moment with one or more
combinations resulting in a lower value for Fmax,Mcr compared to Fmax,VST . It is there-
fore important to realise, that shear tension resistance is dependent on both the control
section as well as the load location.
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(b) Maximum concentrated (live) load for shear
tension and cracking moment, individual T-beam

Figure 5.22: Cracking moment (a) and maximum concentrated (live) load for individual, simply supported
T-beam
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(a) Maximum concentrated (live) load for shear
tension and cracking moment, T-beam 1 (15)
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(b) Maximum concentrated (live) load for shear
tension and cracking moment, T-beam 8

Figure 5.23: Maximum concentrated (live) load for connected T-beams
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5.6.4. ULTIMATE BENDING MOMENT

F OR the calculation of the ultimate bending moment the T-beam cross-section in-
cludes the acting width of the integrated deck slab, see Appendix E Figure E.2. The

difference in concrete compressive strength in the compression zone, between the T-
beam and the integrated deck slab, is taken into account by reducing the acting width
of the integrated deck slab by the ratio between the respective strengths (see Section 5.3
Table 5.1): fcm,slab/ fcm,T-beam = 60.3/87.7 = 0.688. The integrated deck slab therefore has
a fictitious acting width of: 0.688×425 = 292 mm. For both the prestressing tendons and
the regular reinforcement, hardening is not taken into account and elasto-plastic stress-
strain relationships are used with the average yielding strengths fy given in Section 5.3
Table 5.2. In the analysis the load factor for the ultimate bending moment LFMu is de-
termined by solving Equation 5.24 (for M1 and M2 see also Equation 5.23 Section 5.6.3).
The maximum concentrated (live) load related to the ultimate bending moment Fmax,Mu

is then calculated by Equation 5.25, with a unit load of F = 1000 kN.

Mu = M1 +LFMu M2 (5.24)

Fmax,Mu = LFMu ×F = LFMu ×1000 [kN] (5.25)

The result of the analysis are shown in Figures 5.24–5.25, showing half the span length,
and summarised in Table 5.9. The results of T-beam 5 are similar to those of T-beam
8 and are therefore not included in Figure 5.25. Due to symmetry, T-beam number 1
equals 15 and T-beam number 5 equals 11, see Table 5.9. In Figures 5.24b and 5.25 the
x-axis is the control section and the y-axis gives the maximum concentrated (live) load
irrespective of load location (procedure described in Section 5.6.1).

Table 5.9: Maximum concentrated (live) load for ultimate bending moment

x a Fmax,Mu Relative load capacity
m m kN %

Individual T-beam 12.0 12.0 662 100
Connected T-beam 1 (15) 5.4 5.4 2054 310
Connected T-beam 1 (15) 11.8 11.8 1818 275
Connected T-beam 5 (11) 4.2 4.2 3414 516
Connected T-beam 5 (11) 12.0 12.0 3193 482
Connected T-beam 8 4.0 4.0 3493 528
Connected T-beam 8 12.0 12.0 3415 516

For an individual, simply supported T-beam, the minimum value for the concentrated
(live) load related to the ultimate bending moment is obviously much lower compared
to the connected T-beams, by at least a factor of 2.8, see Table 5.9. The ratios are compa-
rable to those found for the cracking moment (see Section 5.6.3 Table 5.8).
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Figure 5.24: Ultimate bending moment (a) and maximum concentrated (live) load for individual, simply
supported T-beam
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Figure 5.25: Maximum concentrated (live) load for connected T-beams



5

74 5. CASE STUDY: THE VECHT BRIDGE - INTRODUCTION AND LINEAR ANALYSIS

5.6.5. OVERALL VERIFICATION, SHEAR AND BENDING

T HE overall verification of each control section consists of an evaluation of the flexural
shear resistance, the shear tension resistance and the ultimate bending moment as

treated in the previous sections. The shear tension resistance for the overall verification
now includes a maximum principal stress at the bottom fibre in accordance with NEN-
EN 1992-1-1 (NNI 2011a), see Section 5.6.3. To determine the overall governing load
factor LF , for each combination of control section ‘x’ and load position ‘a’, the following
rules are applied:

• The load factor for shear resistance, LFshear, is determined by the maximum load
factor for flexural shear (LFVFS ) or shear tension (LFVST ).

• The overall governing load factor for shear and bending, LF , is determined as the
minimum value for shear resistance (LFshear) and the ultimate bending moment
(LFMu ).

The above described procedure is visualised in Figure 5.26. The maximum concentrated
(live) load Fmax for each control section ‘x’, is calculated by Equation 5.26, with a unit
load of F =1000 kN.

Fmax = LF ×F = LF ×1000 [kN] (5.26)

The results of the overall verification for an individual, simply supported T-beam as well
as for the connected T-beams 1, 5 & 8 , are shown in Figures 5.27–5.30 and summarised
in Table 5.10. Due to symmetry, T-beam number 1 equals 15 and T-beam number 5
equals 11, see Table 5.10. As stated in previous sections, combining the different cross-
sectional verifications, especially for shear, is not straightforward. The governing control
section(s) depend on the following factors:

• (Live) load distribution (individual versus connected T-beams);

• Varying sectional properties (regular T-beam versus end block and transition piece);

• Varying vertical positions of the draped prestressing tendons;

• Varying sectional forces as a result of the self-weight and prestressing;

• Combination of sectional forces, V , M and N for shear tension;

• Direct load transfer to the supports.

To demonstrate the effect of the procedure outlined in Figure 5.26, the control section at
x = 8.4 m of the connected T-beam 1 is taken as an example, with the results of the cross-
sectional verification given in Table 5.11. Considering all load positions, between a = 7.8–
9.0 m, results in an overall governing, i.e. minimum, load factor of 1.085 (shear tension)
with a position of the concentrated (live) load at 8.8 m. Note that with the concentrated
(live) load at 8.6 m, the overall governing load factor is only marginally higher, at 1.088,
and a different failure mode is found (flexural shear).
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start
For load position
ai with i = 1..m

For control section
x j with j = 1..n

Calculate load factors:
LFVFS (ai , x j )
LFVST (ai , x j )
LFMcr (ai , x j )
LFMu (ai , x j )

LFshear(ai , x j ) = max

{
LFVFS (ai , x j )

LFVST (ai , x j )

LF (ai , x j ) = min

{
LFshear(ai , x j )

LFMu (ai , x j )

j = n ?i = m ?end
no

no

yesyes

Figure 5.26: Flow chart for determining the overall governing load factor LF (ai , x j )

Table 5.10: Maximum concentrated (live) load overall verification

x a Failure Fmax Relative
mode load capacity

m m kN %
Individual T-beam 3.4 3.4 VFS 703 106
Individual T-beam 12.0 12.0 Mu 662 100
Connected T-beam 1 (15) 3.8 4.2 VST 1067 161
Connected T-beam 1 (15) 9.0 9.4 VFS 995 150
Connected T-beam 5 (11) 1.4 1.8 VST 1652 250
Connected T-beam 5 (11) 8.4 8.8 VST 1416 214
Connected T-beam 8 1.4 1.8 VST 1659 251
Connected T-beam 8 8.4 8.8 VST 1424 215
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Figure 5.27: Overall verification individual, simply supported T-beam
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Figure 5.28: Overall verification T-beam 1 (15)
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Figure 5.29: Overall verification T-beam 5 (11)
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Figure 5.30: Overall verification T-beam 8
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Table 5.11: Overall verification shear and bending at x = 8.4 m connected T-beam 1,
Fmax = 1085 kN (failure mode VST with a = 8.8 m) see also Figure 5.28

a
Load factor 7.8 m 8.0 m 8.2 m 8.4 m 8.6 m 8.8 m 9.0 m
LFVFS 3.025 2.791 5.113 2.740 1.088 0.935 0.972
LFVST 1.157 1.096 1.035 1.005 1.029 1.085 1.142
LFMcr 1.157 1.096 1.035 1.005 1.029 1.085 1.142
LFMu 2.665 2.524 2.384 2.314 2.371 2.500 2.631
LFshear 3.025 2.791 5.113 2.740 1.088 1.085 1.142
LF 2.665 2.524 2.384 2.314 1.088 1.085 1.142
Failure mode Mu Mu Mu Mu VFS V ST VST

5.6.6. SUMMARY AND CONCLUSION

T HE results of the assessment based on linear analysis together with the main conclu-
sions are summarised in this section.

Conclusions flexural shear:

• For an individual T-beam and connected T-beam 1, the governing control sections
are close to the support starting from the end of the transition piece up until pre-
stressing tendon 7, i.e. between x = 1.4–1.902 m.

• For connected T-beams 5 & 8, the governing control section(s) are close to the in-
termediate cross-beam.

• Close to the support, the increased width bw (x ≤ 2.0 m) as well as the effect of
direct load transfer to the support (x ≤ 1.6 m) result in a higher load capacity.

• Prestressing tendon 7, anchored in the top flange, in addition to increasing the
compressive normal force, causes a high local counter-balancing shear force which
results in a jump in load capacity at x = 1.902 m.

• For Fmax,VFS , the ratio between the connected T-beams and an individual, simply
supported T-beam is between 1.4–1.5.

• For connected T-beams, in addition to control sections close to the support, gov-
erning control sections are also found close to the intermediate cross-beam. This
becomes more apparent for T-beams closer to the centre of the bridge deck.

• Especially for beams with draped tendons, it is possible to maximise the flexural
shear resistance VRm,c by omitting (some) of the tendons to determine the effective
depth d and other related parameters.

Conclusions shear tension:

• A maximum principal stress in the thin web is found more frequently in connected
T-beams compared to an individual, simply supported, T-beam.

• For connected T-beams, in addition to control sections close to the support, gov-
erning control sections are also found close to the intermediate cross-beam. This
becomes more apparent for T-beams closer to the centre of the bridge deck.
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• For connected T-beams, theoretically, a maximum principal stress in the thin web
can occur at a control section close to the end support with the load placed at rel-
ative large distance close to the intermediate cross-beam and vice versa. However,
considering a movable load, for other load positions the control section will be
cracked as a result of a much lower load in such cases, i.e. Fmax,Mcr << Fmax,VST .

• In the thin web the grouted ducts reduce the width of the cross-section, in this case
from 180 mm to 159 mm, and therefore increase the shear stresses by 12%. Ignor-
ing the influence of bending stresses in the thin web, the shear tension resistance
is reduced by the same percentage.

Conclusions ultimate bending moment

• For connected T-beams, the governing control sections are at midpoint between
the cross-beams.

• For Fmax,Mu , the ratio between the connected T-beams and an individual, simply
supported, T-beam is between 2.8–5.2.

Conclusions overall verification

• With the exception of connected T-beam 1, the governing failure mode for all con-
nected T-beams is shear tension.

• For connected T-beams, the governing control section is not close to the sup-
port but close to the intermediate cross-beam at x = 8.4 m (T-beam 5 and 8) and
x = 9.0 m (T-beam 1).

• The edge beam, i.e. T-beam 1, is much more sensitive to flexural shear compared
to the other connected T-beams 5 and 8.

• For connected T-beams the ultimate bending moment is not governing at any lo-
cation.

• For connected T-beams, the ratio between Fmax,Mu and Fmax, at governing control
sections, is ≥ 2.

• For an individual, simply supported, T-beam, the governing failure mode is the ul-
timate bending moment at midpoint. However, Fmax,VFS is within 6% of this value,
with the corresponding control section and critical load position at x = a = 3.4 m.

• For an individual T-beam, starting from the support, there is a rather smooth tran-
sition of the failure modes from shear tension, flexural shear to the ultimate bend-
ing moment.

• For Fmax, the ratio between the connected T-beams and an individual, simply sup-
ported, T-beam is between 1.5–2.2.





6
CASE STUDY: THE VECHT BRIDGE

FULL-SCALE COLLAPSE TESTS

In this chapter the seven full-scale on-site collapse tests of the Vecht bridge are treated:
three connected beam tests and four disconnected beam tests. The test preparations, the
comprehensive loading system, the execution and used instrumentation are explained.
The test results include a description of the failure mode, the measurement results and
photos. A summary of the results and considerations for full-scale collapse tests are given
in the final section.

Parts of this chapter have been published in (Ensink et al. 2018).
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6.1. INTRODUCTION

T HE case study of the Vecht bridge is split into three parts, and is treated in Chapters
5–7. For a detailed description of the Vecht bridge and its structural components the

reader is referred to Chapter 5. In this Chapter the details and the results of the full-scale
collapse tests are presented.

6.2. OVERVIEW OF THE EXPERIMENTS

I N total seven consecutive experiments are carried out on the Vecht bridge on two dif-
ferent spans of the southern bridge (see Chapter 5 Figure 5.3), see Table 6.1. Three

of the experiments are carried out with the original structural system unchanged (tests
1–3), see Figure 6.1. These are referred to as the connected beam tests. In tests 1 and 2
at least four T-beams are present between the tested T-beam and the edge of the bridge.
Therefore, in these tests a significant load distribution to the adjacent T-beams will take
place. In four experiments (tests 4–7), the integrated deck slab is sawn in the longitudinal
direction so that the individual T-beams can be tested, see Figure 6.2. These are referred
to as the disconnected beam tests. As indicated in Figures 6.1–6.2, the loading consist of
a single concentrated load at the centre of the T-beam, with dimensions 400×400 mm
equal to a wheel load according to NEN-EN 1991-2 (NNI 2015). In order to compare the
results of the disconnected beam tests to the connected beam tests, the same load posi-
tions are chosen. In both cases, two loading positions are selected, one at a = 2.25 m and
the other at a = 4.00 m (distance from the centre of the support to the centre of the load).
Prior to testing, the load position at 2.25 m is assumed to be governing for a (flexural)
shear failure of the T-beam, as it is located beyond the transition piece and just beyond
the anchorage of tendon 7 (see Chapter 5 Figure 5.6). However, according to the later
executed and more detailed assessment (see Chapter 5 Section 5.6), the governing load
position for flexural shear, in case of an individual T-beam, is at 3.40 m with negligible
increase (≤ 1%) between 3.40–4.00 m (see Chapter 5 Figure 5.27). The second load posi-
tion, at a = 4.00 m, is selected for studying arching effects, in case of connected T-beams,
as it is centred exactly between the cross-beams.

Table 6.1: Overview of tests

test span a a/d a beam structural beam type
mm number system

1 4 4000 4.8 11 unchanged intermediate beam
2 4 2250 2.8 6 unchanged intermediate beam
3 4 2250 2.8 1 unchanged edge beam
4 2 2250 2.8 12 sawn disconnected beam
5 2 2250 2.8 11 sawn disconnected beam
6 2 2250 2.8 10 sawn disconnected beam
7 2 4000 4.8 9 sawn disconnected beam

a due to the draped prestressing tendons, the effective depth d is variable: at a = 2250 mm,

d = 791 mm and at a = 4000 mm, d = 835 mm, see Chapter 5 Section 5.6.2
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Figure 6.1: Connected beam tests 1–3, span 4, southern Vecht bridge showing details of loading plate, edge
beam and barrier (measurements in mm)

Figure 6.2: Disconnected beam tests 4–7 and locations of saw-cuts, span 2, southern Vecht bridge
(measurements in mm)
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6.3. TEST SETUP AND EXECUTION

6.3.1. ON-SITE PREPARATIONS

T HE on-site test preparations started shortly after the highway A1 was rerouted to the
south (see Chapter 5 Figure 5.2) and the Vecht bridge was decommissioned. First

the asphalt on spans 2 and 4, between the expansion joints, is carefully removed by an
asphalt ripper in such a way as to minimise damage to the concrete deck, see Figure
6.3. The concrete kerbs along the bridge edges, including the parapet on the south side,
and the small kerb for the bicycle lane (between T-beams 13–14) are left in place; for the
dimensions see Figure 6.1.

(a) Asphalt removed by asphalt ripper (span 4 is shown in the foreground,
southern side is on the right)

(b) Expansion joint

Figure 6.3: Asphalt removed between the expansion joints

For the connected edge beam test (test 3, see Figure 6.1), the existing concrete kerb
needed to be locally widened to have sufficient space for the loading plate, which is to be
located at the centre of the T-beam. In addition, to prevent contact between the north-
ern and southern bridge during testing, a part of the northern bridge kerb is sawn off to
enlarge the gap between the two bridges (the covering of this gap by steel fences is visible
in Figure 6.11b). The formwork and filling for the concrete widening of the edge beam
kerb are shown in Figure 6.4. To limit the amount of fresh concrete needed on-site, the
formwork is partially filled with concrete tiles. In preparation, a stack of concrete tiles
is tested in compression in the laboratory at TU Delft, to ensure they have sufficient
strength. The concrete mixture used on-site is a rapid hardening casting mortar.

For the disconnected beam tests on span 2, the integrated deck slab and three out
of four cross-beams are sawn, see Figure 6.5. The saw cut is located at the centre of the
integrated deck slab and is continued along the complete span length, with the excep-
tion of the end cross-beam opposite to the load location, see Figure 6.2. This is done
for safety reasons, with the intention to keep the disconnected T-beams stable during
testing, and to prevent unwanted friction forces. Otherwise, if all cross-beams are sawn,
it is possible that the T-beam could tilt during testing and come into contact with the
adjacent T-beam(s), as they are only separated by a narrow saw cut. Note that the bridge
deck also has a slight transverse slope for dewatering (1:50), and therefore the T-beams
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are already slightly tilted. The integrated deck slab is sawn from the topside using a con-
crete saw with a large blade that also penetrates part of the cross-beam (see Figure 6.5a).
The remaining part of the cross-beam is then disconnected from underneath the bridge,
using a combination of sawing and concrete cylinder drilling (see Figure 6.5b).

(a) Formwork (b) Partially filling with concrete tiles

Figure 6.4: Local widening of the existing concrete kerb for the edge beam test (test 3, see Figure 6.1)

(a) Sawing through the integrated deck slab (b) Sawing and cylinder drilling through the cross-beams

Figure 6.5: Sawing the integrated deck slab and the cross-beam(s) on span 4 for the disconnected beam tests

6.3.2. LOADING SYSTEM

T HE complete loading system is shown in Figure 6.6 and consists of a 25 m long steel
bridge with ballast placed on top. The load is applied by using a hydraulic jack po-

sitioned between the concrete deck and the steel bridge. Additionally, a sliding track is
used to move the steel bridge transversely from one test location to the next. In this way,
the time needed to change loading position is significantly reduced and, by utilizing two
steel bridges (one for span 2, the other for span 4), the seven tests can be executed within
one week. With the exception of the sliding track, the loading system is similar to those
used in previous proof loading tests on existing bridges in the Netherlands; for more in-
formation see (Lantsoght et al. 2017a,b, Waarts et al. 2015). The steel bridge consists
of two identical ‘spreader beams’, positioned side by side, composed of steel sections
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(HEB600) creating a total width of 3 m, see Figure 6.7. For the ballast, standard crane
ballast blocks are used, with each one weighing either 75 kN, 100 kN or 125 kN.

ballast

ballast
jack

sliding track

steel bridge

Figure 6.6: Loading system (test 1)

Figure 6.7: Single steel spreader beam cross-section (measurements in mm)

The supports of the steel bridge are positioned on a sliding track. This track consists
of interconnected steel segments lined with teflon blocks, see Figure 6.8a. To move the
steel bridge, a hydraulic jack is used, located inside each track, to push or pull it forward,
see Figure 6.8b. The jack is directly connected to a support beam underneath the steel
spreader beam(s). When moving the steel bridge, additional teflon spray is used to assist
the sliding. For the connected beam tests, some of the ballast needs to be temporarily
removed between the tests, to reduce the otherwise too high load on the sliding track
and jack. In the single beam tests all ballast can remain while sliding.

The sliding track is supported by large rectangular steel beams (‘loadspreader’) placed
on a sand filling, see Figures 6.6 and 6.9. The sand filling is needed to place the support
beams exactly level, and to smooth out the irregular concrete deck surface, the slight
transverse slope of the bridge deck (1:50), the remaining expansion joints (see Figure
6.3b), and the concrete kerbs (see Figure 6.1).

For the edge beam test, the sliding track needs to cross the gap between the northern
and the southern bridge, see Figure 6.10. This gap is filled with smaller steel work and
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(a) Sliding track lined with teflon blocks (b) Detail of jack inside sliding track

Figure 6.8: Sliding track of steel bridge

Figure 6.9: Steel bridge support beam placed on sand filling

timber, placed on top of the kerbs, to keep the sliding track continuously supported.
Note that the length of the steel bridge (25 m) is not sufficient to cross a full span of
the concrete bridge and to locate both supports on the adjacent spans; this is further
detailed in Sections 6.3.3 and 6.3.4.

The load is applied by a 6000 kN hydraulic jack (1180×1050×710 mm, dead weight:
23.3 kN), placed on top of the concrete deck and supported by jacking timbers (1000×
100×100 mm), see Figure 6.11a. The extended jack is also visible in Section 6.3.4 Figure
6.17. The hydraulics and power generator needed to operate the jack are shown in Figure
6.11b. In addition to the required load capacity, the height dimension (710 mm) and the
maximum stroke (250 mm) of the jack are also of importance. The height of the jack is
restricted by the desire to limit the distance between the steel bridge and the concrete
deck as much as possible. In addition, the stroke should be large enough in relation to
the expected deformations of the concrete deck as well as the steel bridge. To distribute
the load between the two spreader beams, a 60 mm thick steel plate with dimensions
3000 × 1500 mm (dead weight: 21.2 kN) is positioned between the jack and the steel
spreader beams, see Figure 6.11a. To assist in all operations, two large 1000 kN cranes
are positioned on the northern bridge, one for span 2, the other for span 4, see Figure
6.11b.
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Figure 6.10: Steel bridge support beam(s) placed on sand filling and gap between
the northern and the southern bridge filled with smaller steel work

(a) Hydraulic jack (6000 kN) and steel plate
supported by jacking timbers

(b) Hydraulics for jack and power generator

Figure 6.11: Jack with hydraulics and power generator

6.3.3. LOADING SETUP CONNECTED T-BEAMS

T HE loading setup for tests 1–3 is shown in Figures 6.12–6.13 (the same setup is used
for tests 2–3). The initial support reaction forces of the steel bridge (prior to loading)

are given in Table 6.2. The reaction forces of the steel bridge will spread through the
support beam(s) and the sand fill, and will gradually decrease during the transfer of the
load from the steel bridge to the concrete bridge by the hydraulic jack. The maximum
possible force by the jack is limited by the requirement to prevent uplifting of the steel
bridge supports, and can be readily determined from the initial support reactions, see
Table 6.2. Due to the different types of ballast used, the height of the ballast stacks differs,
to a maximum height of about 4 m. For safety reasons, the highest stacks are tied down
to the adjacent stacks using tensioning chains.
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Figure 6.12: Loading setup test 1 (see also Figure 6.6) (measurements in mm)

Figure 6.13: Loading setup test 2 and 3 (measurements in mm)

Table 6.2: Initial support reaction forces steel bridge and max. possible force jack, connected beam test 1–3

test ballast steel total support support max. force jack
(total) bridge reaction 1 reaction 2 without support

kN kN kN kN kN uplift (kN)
1 4000 546 4546 3324 (73%) 1222 (27%) 4164
2–3 4000 546 4546 3454 (76%) 1092 (24%) 3968

6.3.4. LOADING SETUP DISCONNECTED T-BEAMS

T HE loading setup for test 4–7 is shown in Figures 6.14–6.15 (the same setup is used
for tests 4–6). The initial support reaction forces of the steel bridge (prior to loading)

are given in Table 6.3. The maximum possible load by the jack, as explained in the pre-
vious section, is also given in Table 6.3. The details of the sawing of the integrated deck
slab and the cross-beams are given in Section 6.3.1. As a precaution, a safety system is
put into place to prevent a disconnected beam falling to the ground below, see Figures
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6.16–6.17. This system consists of two steel beams, a so called static steel beam (‘S’)
and a dynamic steel beam (‘D’), their positions are indicated in Figures 6.14–6.15. The
purpose of the static steel beam is to support the T-beams after testing until the bridge
is demolished. The purpose of the dynamic steel beam is to catch the tested T-beam
should it break completely during testing. The connection between the steel and the
concrete beams is accomplished by chains for which holes are drilled through the deck,
see Figure 6.16. The chains connecting the concrete beam to the static steel beam are
tensioned, whereas the dynamic steel beam chains are loosened so that, during testing,
a maximum deflection of the concrete T-beam of 100 mm is allowed. However, in tests 4,
5 and 7 insufficient clearance is used and the chains needed to be adjusted during testing
which also necessitates a partial or complete unloading before reloading. The supports
of the static and dynamic steel beams are located beyond the tested beams (T-beams
9–12), see Figure 6.2 and Figure 6.17. Finally, to prevent damage, the jack itself is also
connected to the steel bridge by using chains, see Figure 6.11a and Figure 6.17.

Figure 6.14: Loading setup test 4–6 (measurements in mm)

Figure 6.15: Loading setup test 7 (measurements in mm)
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Table 6.3: Initial support reaction forces steel bridge and max. possible force jack, disconnected beam test 4–7

test ballast steel total support support max. force jack
(total) bridge reaction 1 reaction 2 without support

kN kN kN kN kN uplift (kN)
4–6 2250 546 2796 2019 (72%) 777 (28%) 2320
7 2825 546 3371 2456 (73%) 915 (27%) 3076

(a) Static steel beam with chains (top side) (b) Chains around T-beams (bottom side)

Figure 6.16: Static steel beam with tensioned chains

steel bridge

ballast

jack

dynamic steel beam static steel beamworking platform

Figure 6.17: Safety and loading system disconnected beam tests
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6.3.5. INSTRUMENTATION

T HIS section summarises the instrumentation used for tests 1–7; more details can be
found in the measurement report (Koekkoek 2017). All deformations are measured

using linear potentiometers (LP). The sensor IDs and the measurements used in each
test, including the measurement range for each sensor, are given in Tables 6.4–6.6. For
the T-beam numbering and test locations, see also Figures 6.1–6.2. The typical sensor
layout for the connected beam tests is shown in Figure 6.21, and for the disconnected
beam tests in Figure 6.22.

The applied load is measured using a load cell which is positioned underneath the
hydraulic jack, see Figure 6.18a. To equalise the surface and avoid stress concentrations,
a thin layer of sand and a plywood plate are first placed on top of the concrete deck fol-
lowed by a steel loading plate (400 × 400 mm) and the load cell, see Figure 6.18a. The
gap between the top side of the load cell and the bottom of the jack is filled by a stack of
steel blocks (not shown in Figure 6.18a).

The vertical deformations of the deck, at the position of the load and at the position
of the intermediate cross-beam, are measured by sensors attached to aluminium frames
positioned on the ground below the bridge, see Figure 6.19. In the connected beam tests,
the vertical deformations of the adjacent beams (two on each side), at the position of the
load and at the supports, are also measured, see Figures 6.19 and 6.20a. The deforma-
tions of the elastomeric bearings are measured using a sensor connected to the side face
of the pier, see Figure 6.20a. The horizontal distance between the centre of the bearing
and the sensor is 200 mm, see Figure 6.21. Therefore, this sensor will measure the verti-
cal deformation of the bearing including the effect of its rotation. Since the deformations
on the opposite side will be negligible, only the bearings on the loaded side of the span
are measured.

In all tests, except test 5 and 6, a sensor is attached to the side face of the bottom
flange of the T-beam, see Figure 6.18b and Figures 6.21–6.22. This sensor is located at
the position of the load, to measure the displacement over a distance of 1 m (average
longitudinal strain). The purpose of this sensor is to register when cracking occurs.

In test 1, additional sensors are placed to measure the relative vertical deformation
of the integrated deck slab, see Figure 6.20b. These sensors are located on both sides of
the loaded beam, at the positions indicated in Figure 6.21, and are also visible in Figure
6.19a.

(a) Load cell (b) Average longitudinal strain (1 m) bottom flange T-beam

Figure 6.18: Load cell and average strain measurement
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(a) Aluminium measurement frames (test 1) (b) Detail of LP sensor

Figure 6.19: Measurements of vertical deck deformations

(a) Support deformation LP sensor (b) Relative vertical slab deformation (loaded
beam in the middle)

Figure 6.20: Measurements of support and relative vertical slab deformation
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Figure 6.21: Sensor layout connected beam test 1 (span 4) (measurements in mm)

Figure 6.22: Sensor layout disconnected beam tests 4–7 (span 2) (measurements in mm)
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Table 6.4: Measurements connected beam test 1–3

test 1 sensor ID measurement range
F applied load 0–5000 kN
LP01–LP05 support deformation T-beam 9–13 0–25 mm
LP06–LP10 vertical deformation T-beam 9–13 0–200 mm
LP11 vertical deformation T-beam 11 at cross-beam 0–200 mm
LP13–LP16 relative vertical slab deformation T-beam 10–11 0–25 mm
LP17–LP20 relative vertical slab deformation T-beam 11–12 0–25 mm
LP21 average longitudinal strain (1 m) T-beam 11 0–25 mm

test 2 sensor ID measurement range
F applied load 0–5000 kN
LP01–LP05 support deformation T-beam 4–8 0–25 mm
LP06–LP10 vertical deformation T-beam 4–8 0–200 mm
LP11 vertical deformation T-beam 6 at cross-beam 0–200 mm
LP12 average longitudinal strain (1 m) T-beam 6 0–25 mm

test 3 sensor ID measurement range
F applied load 0–5000 kN
LP01–LP05 support deformation T-beam 1–5 0–25 mm
LP06–LP10 vertical deformation T-beam 1–5 0–200 mm
LP11 vertical deformation T-beam 1 at cross-beam 0–200 mm
LP21 average longitudinal strain (1 m) T-beam 1 0–25 mm

Table 6.5: Measurements disconnected beam test 4–6

test 4 sensor ID measurement range
F applied load 0–5000 kN
LP04 support deformation T-beam 12 0–25 mm
LP08 vertical deformation T-beam 12 0–200 mm
LP10 vertical deformation T-beam 12 at cross-beam 0–200 mm
LP21 average longitudinal strain (1 m) T-beam 12 0–25 mm

test 5 sensor ID measurement range
F applied load 0–5000 kN
LP03 support deformation T-beam 11 0–25 mm
LP08 vertical deformation T-beam 11 0–200 mm
LP10 vertical deformation T-beam 11 at cross-beam 0–200 mm

test 6 sensor ID measurement range
F applied load 0–5000 kN
LP02 support deformation T-beam 10 0–25 mm
LP08 vertical deformation T-beam 10 0–200 mm
LP10 vertical deformation T-beam 10 at cross-beam 0–200 mm



6

96 6. CASE STUDY: THE VECHT BRIDGE - FULL-SCALE COLLAPSE TESTS

Table 6.6: Measurements disconnected beam test 7

test 7 sensor ID measurement range
F applied load 0–5000 kN
LP01 support deformation T-beam 9 0–25 mm
LP08 vertical deformation T-beam 9 0–200 mm
LP10 vertical deformation T-beam 9 at cross-beam 0–200 mm
LP21 average longitudinal strain (1 m) T-beam 9 0–25 mm

In addition to the sensors, photo and video cameras together with LED lighting are fixed
to the underside of the bridge deck, between the T-beams at the load position, see Fig-
ure 6.20b. Due to the close spacing of the T-beams, two video cameras are positioned
side-by-side to cover a larger area. On the other side of the loaded beam, a third camera
is used to continuously take photographs. To attach the equipment to the underside of
the bridge deck a mobile manlift is utilised, see Figure 6.23.

Finally, a pilot radar interferometry measurement is used in tests 1 and 2, to inves-
tigate the possibility to replace contact measurements by non-contact measurements.
With a radar station positioned on the ground below the bridge, see Figure 6.24, the ver-
tical deformations of the deck are measured, at specific locations, by attaching reflectors
to the underside of the deck. However, the radar measurements did not yield sufficiently
accurate results and were only applied in tests 1–3. These will therefore not be treated
further. More details about the radar interferometric system are given in the measure-
ments report (Koekkoek 2017).

Figure 6.23: Use of mobile manlift (attaching equipment for test 1)

Figure 6.24: Interferometric radar station
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6.3.6. PLANNING AND EXECUTION

T O execute full-scale collapse tests on an existing bridge requires a significant amount
of planning and preparation. However, as is the case with the Vecht bridge, and in

many other cases a limited amount of time is available before testing (Bagge et al. 2018).
In addition, because of the unique nature of the tests, unexpected challenges can arise
during the execution. Some of the experiences from the Vecht bridge collapse tests in
terms of planning and execution of the tests are summarised in this section for future
reference.

Planning

For the full-scale collapse tests on the Vecht bridge, only four months were available for
the planning and preparations before the actual testing took place in October 2016. Ini-
tially, individual T-beams were planned to be cut out and transported to the laboratory
at TU Delft. However, this proved to be too expensive and it was therefore decided to
perform all tests on-site. In total ten full-scale collapse tests were planned to be exe-
cuted, four connected beam tests and six disconnected beam tests. Under normal cir-
cumstances 2–3 weeks would preferably be needed to perform all tests. However, as the
Vecht bridge was part of a major infrastructural project, there would only be one week
available for the execution of all tests. This time constraint resulted in the need to speed
up the normal testing procedure, by utilizing two steel loading bridges that could be set
up simultaneously, and to make use of sliding tracks to change their loading positions
(see Section 6.3.2). In addition, by simplifying and/or limiting the amount of measure-
ments, the time needed for each test could be further reduced. In this regard, the bridge
deformations were planned to be measured by using an interferometric radar station.

Execution

For several reasons, the execution of ten tests in one week proved to be unfeasible. Due
to a lack of experience with radar interferometry measurements, a second and more
traditional backup system, with LP sensors, was also installed. In this way, it was also
possible to compare the measurements between the two systems. This however meant
additional sensor installation work for each test. In addition, attaching and/or position-
ing all the cameras, power and USB cables, LED lightning, LP sensors and radar reflectors
proved to be much more time-consuming than originally thought. This was further com-
plicated by the need to use mobile man lifts (see Figure 6.23) and by the fact that during
the sliding of the steel bridge and ballast (see Figure 6.6), it was considered unsafe to
work underneath the bridge deck. In addition, after a test had finished, the T-beam was
generally severely damaged, and the sensors had to be carefully removed and checked.
Also, it was considered unsafe to manoeuvrer the mobile man lift underneath the dam-
aged area, and as a consequence it often needed to be repositioned. For three of the four
disconnected beam tests, the safety system, designed to catch the T-beam using chains
(see Figure 6.17), needed to be adjusted to allow for a larger deflection during testing. In
the end, all these factors meant that three out of the ten tests planned were cancelled,
i.e. two disconnected beam tests and one edge beam test, all at x = 4.00 m.
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6.4. TEST RESULTS CONNECTED T-BEAMS

T HE results of the connected beam tests 1–3 are summarised in Table 6.7 and the cor-
responding load versus deflection diagrams are given in Figure 6.25. The detailed

results of tests 1–3 are given in Sections 6.4.1–6.4.3. For the sensor IDs of tests 1–3, see
Table 6.4. The vertical deflection δ in Figure 6.25 is taken from sensor LP08.

Table 6.7: Results of tests 1–3: ultimate deflection (δu), ultimate load (Fu) and failure mode

test a a/d a beam δu Fu failure mode
mm number mm kN

1 4000 4.8 11 21 3004 punching deck & shear T-beam
2 2250 2.8 6 14 3444 punching deck & shear T-beam
3 2250 2.8 1 11 2506 no failure (see Section 6.4.3)

a see also Table 6.1 Section 6.2
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Figure 6.25: Load - deflection connected beam tests 1–3

The linear elastic deformations of the steel bridge, at the load position, are calculated
from the loading setup, see Figures 6.12–6.13. The deformation δsb,start is the initial de-
formation of the steel bridge prior to loading the jack, as a result of its dead weight and
ballast. The deformation δsb,end is the deformation with the jack pressing against the
steel bridge, calculated from the force Fu reduced by the dead weight of the jack and the
steel plate (−23.3−21.2 = = -44.5 kN see Section 6.3.2). The total jack extension at fail-
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ure (δjack) can then be determined as the sum of the deformation of the steel and the
concrete bridge, see Equation 6.1 and Table 6.8.

δjack = (δsb,start −δsb,end)+δu (6.1)

Table 6.8: Results of tests 1–3: steel bridge deformations, ultimate deflection and total jack extension

test steel bridge deformations
δsb,start δsb,end δsb,start-δsb,end δu δjack

a

mm mm mm mm mm
1 115 12 103 21 124
2 67 9 58 14 72
3 67 25 42 14 56

a theoretical (minimum) value without tolerances for execution

6.4.1. TEST 1

T HE results of test 1 are given in Figures 6.26–6.28. Note that the load measurement
starts at 33 kN. In Figure 6.26a the support deformations show a linear behaviour.

However, at a load of 2489 kN, a sudden change in deformation is observed, see Figure
6.26 and Figure 6.28a. A significant bending crack is first observed at a load of approxi-
mately 1500 kN, see Figure 6.28a. In Figure 6.27, the relative vertical slab deformations
start to show some irregularities between a load of 1000–2000 kN. This is due to the po-
sition of the sensors (see Figure 6.20b), and is the result of concrete spalling from the
integrated deck slab. The loading scheme for test 1 is shown in Figure 6.28b, with load
increments of 500 kN used until failure. Test 1 results in a shear failure of the T-beam,
see Figure 6.29. However, the shear failure of the T-beam is preceded by a punching fail-
ure of the deck. The punching perimeter on the top side is shown in Figure 6.30a and is
just slightly larger than the loading plate (400 × 400 mm). The punching perimeter on
the bottom side extends to the full width of the integrated deck slab on both sides of the
loaded beam, see Figure 6.30b. As a consequence of the punching failure the load trans-
fer to the adjacent T-beams is largely lost, and the punching failure is immediately fol-
lowed by a shear failure of the T-beam. Note that the web is severely damaged, and that
the prestressing tendons are visible. The centre of the severely damaged web is located
approximately 1 m from the load position towards the end support (estimated from pho-
tos). In addition to shear cracks towards the end support, a single large shear crack is also
observed in the opposite direction towards the intermediate cross-beam, see Figure 6.31
(also visible in Figure 6.29). Prior to failure, the video and photos show a larger opening
of the shear cracks compared to the bending cracks (not measured).

6.4.2. TEST 2

T HE results of test 2 are given in Figures 6.32–6.33. In Figure 6.32a the support defor-
mations of the adjacent T-beams show a linear behaviour, whereas the support de-

formation of the loaded T-beam, starting from a load of approximately 2000 kN, shows
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(a) Support deformations: LP01-05
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(b) T-beam deformations: LP06-11

Figure 6.26: Connected beam test 1: support and T-beam deformations
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Figure 6.27: Connected beam test 1: relative deformations integrated deck slab
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Figure 6.28: Connected beam test 1: average strain and loading scheme
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Figure 6.29: Shear failure T-beam test 1 (intermediate cross-beam on the left side,
end support on the right side)

(a) Punching failure top side (measurements in
cm)

(b) Punching failure bottom side

Figure 6.30: Punching failure deck slab test 1

(a) Shear cracks towards end support (b) Shear crack towards intermediate cross-beam

Figure 6.31: Shear cracks towards end support and intermediate cross-beam T-beam test 1
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a highly nonlinear behaviour. A bending crack is first observed at a load of approxi-
mately 1800 kN, see Figure 6.33a. The loading scheme for test 2 is shown in Figure 6.33b,
with initial load increments of 500 kN, followed by load increments of 250 kN until fail-
ure. Similar to test 1, test 2 results in a shear failure of the T-beam, see Figure 6.34.
However, the shear failure of the T-beam is again preceded by a punching failure of the
deck. The punching perimeter on the top side is just slightly larger than the loading
plate (400 × 400 mm). The punching perimeter on the bottom side extends over the full
width of the integrated deck slab on both sides of the loaded beam, see Figure 6.35. The
centre of the severely damaged web is located approximately 1 m from the load position
towards the end support (estimated from photos). Similar to test 1, a single large shear
crack is observed in the opposite direction towards the intermediate cross-beam, see
Figure 6.34. Finally, a torsion crack is observed in the end cross-beam, between T-beam
6 and 7, see Figure 6.35. Prior to failure, the video and photos show a larger opening of
the shear cracks compared to the bending cracks (not measured).
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Figure 6.32: Connected beam test 2: support and T-beam deformations
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Figure 6.33: Connected beam test 2: average strain and loading scheme
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Figure 6.34: Shear failure T-beam test 2 (intermediate cross-beam on the left side,
end support on the right side)

Figure 6.35: Punching failure deck slab and shear failure T-beam test 2, torsion crack end cross-beam
(between T-beam 6 and 7)



6

104 6. CASE STUDY: THE VECHT BRIDGE - FULL-SCALE COLLAPSE TESTS

6.4.3. TEST 3

T HE results of test 3 are given in Figures 6.36–6.37. Because of safety concerns, the
edge beam is not loaded beyond 2506 kN which did not result in a failure of the

deck or the T-beam. The loading scheme for test 3 is shown in Figure 6.37b, with initial
load increments of 500 kN, followed by load increments of 250 kN. The edge beam has
an increased stiffness due to the presence of the concrete kerb (see Figure 6.1 and Figure
6.4). However, the edge beam deformations are still higher compared to test 2, see Figure
6.25. A bending crack is first observed at a load of approximately 1900 kN, see Figure
6.37a. The final photo also shows a small shear crack, in the web near the bottom flange,
from the load position to the end support.
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Figure 6.36: Connected beam test 3: support and T-beam deformations
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Figure 6.37: Connected beam test 3: average strain and loading scheme
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6.5. TEST RESULTS DISCONNECTED T-BEAMS

T HE results of the disconnected beam tests 4–7 are summarised in Table 6.9 and the
corresponding load versus deflection diagrams are given in Figure 6.38. Note that

for clarity, the unloading branches in tests 4, 5 and 7 are omitted in Figure 6.38. The
detailed results of tests 4–7, including the unloading branches, are given in the Sections
6.5.1–6.5.4. For the sensor IDs of tests 4–7 see Tables 6.5–6.6. The vertical deflection δ in
Figure 6.38 is taken from sensor LP08. Note that in the tests with unloading, the reloading
branches reconnect with the previous loading branches with only marginal deviations.
The scatter in the ultimate load Fu in tests 4–6, with equal a/d , is approximately 6%.

Table 6.9: Results of tests 4–7: ultimate deflection (δu), ultimate load (Fu) and failure mode

test a a/d a beam δu Fu failure mode
mm number mm kN

4 2250 2.8 12 79 1678 flexural shear T-beam
5 2250 2.8 11 65 1703 flexural shear T-beam
6 2250 2.8 10 74 1774 flexural shear T-beam
7 4000 4.8 9 132 1022 flexural shear T-beam

a see also Table 6.1 Section 6.2
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Figure 6.38: Load - deflection disconnected beam tests 4–7

The calculated linear elastic deformations of the steel bridge and the total jack extension
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at failure for tests 4–7 are given in Table 6.10. The definitions of δsb,start, δsb,end and δjack

are explained in Section 6.4.

Table 6.10: Results of tests 4–7: steel bridge deformations, ultimate deflection and total jack extension

test steel bridge deformations
δsb,start δsb,end δsb,start-δsb,end δu δjack

a

mm mm mm mm mm
4 46 17 29 79 108
5 46 17 29 65 94
6 46 16 30 74 104
7 88 54 34 132 166

a theoretical (minimum) value without tolerances for execution

6.5.1. TEST 4

T HE results of test 4 are given in Figures 6.41–6.42. Note that at a load of 1546 kN an
unloading to 294 kN is applied to adjust the safety chains (see Section 6.3.4). In Fig-

ure 6.41a the support deformation shows a highly nonlinear behaviour. A bending crack
is first observed at a load of approximately 871 kN, see Figure 6.42a. The loading scheme
for test 4 is shown in Figure 6.42b, with initial load increments of 250 kN, followed by
load increments of 100 kN. After the unloading, the load is again increased without in-
terruption to 1348 kN, followed by load increments of 100 kN until failure. Test 4 results
in a flexural shear failure of the T-beam, see Figure 6.39. Due to the close proximity of
tendon 7 in the top flange (see Chapter 5 Figure 5.6), the unreinforced concrete filling
at the anchorage is broken out, see Figure 6.40. This occurred in all tests with the load
position at 2.25 m, i.e. tests 4–6. Prior to failure, the video and photos show comparable
widths of the shear and bending cracks (not measured).

6.5.2. TEST 5

T HE results of test 5 are given in Figure 6.43 and Figure 6.44a. Note that at a load of
1559 kN an unloading to 232 kN is applied to adjust the safety chains (see Section

6.3.4). In Figure 6.43a, the support deformation shows a highly nonlinear behaviour,
and does not appear to unload correctly as it remains more or less constant during the
initial unloading phase. During this test unused sensors were lying in the water that
caused voltage fluctuations in the measurement of LP08 and LP10, see Figure 6.43. The
unused sensors were subsequently unplugged solving the problem for LP08, but LP10
remained unstable. Therefore, the measurement of LP10 is only plotted to a load of
910 kN. The loading scheme is shown in Figure 6.44a, with initial load increments of
1000 kN, 200 kN and 100 kN. After the unloading, the load is again increased without
interruption to 1203 kN, followed by load increments of 200 kN and 100 kN until failure.
Test 5 resulted in a flexural shear failure of the T-beam, see Figure 6.39. In tests 4–6, the
unreinforced concrete filling at the anchorage of tendon 7 broke out, see Section 6.5.1
and Figure 6.40.
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Figure 6.39: Flexural shear failure T-beam test 4 (top) and test 5 (bottom)

Figure 6.40: Broken out unreinforced concrete filling at anchorage of tendon 7 in tests 4–6 (see Chapter 5
Figure 5.6). View towards span, the load position is just visible at the top side of the photo
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Figure 6.41: Disconnected beam test 4: support and T-beam deformations
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Figure 6.42: Disconnected beam test 4: average strain and loading scheme
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Figure 6.43: Disconnected beam test 5: support and T-beam deformations
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Figure 6.44: Disconnected beam tests 5–6: loading scheme
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Figure 6.45: Disconnected beam test 6: support and T-beam deformations

6.5.3. TEST 6

T HE results of test 6 are given in Figure 6.44b and Figure 6.45. In Figure 6.45a, the
support deformation shows a highly nonlinear behaviour. The loading scheme for

test 6 is shown in Figure 6.44b, with initial load increments of 500 kN, followed by load
increments of 150 kN and 100 kN until failure. Test 6 results in a flexural shear failure
of the T-beam, similar to tests 4 and 5, see Figure 6.46. In tests 4–6, the unreinforced
concrete filling at the anchorage of tendon 7 broke out, see Section 6.5.1 and Figure 6.40.
Prior to failure, the photos show comparable widths of the shear and bending cracks (not
measured).

6.5.4. TEST 7

T HE results of test 7 are given in Figures 6.48–6.49. Note that the load measurement
starts at 78 kN and that at a load of 1002 kN a complete unloading is applied to ad-

just the safety chains (see Section 6.3.4). In tests 4 and 5, the load is not reduced to zero
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since the safety chains are adjusted from the top side. However, in test 7 the safety chains
needed to be adjusted from underneath the bridge deck, using a mobile manlift (see Sec-
tion 6.3.5 Figure 6.23), and therefore the load had to be completely removed. In Figure
6.48a, the support deformation shows a highly nonlinear behaviour. A bending crack is
first observed at a load of approximately 505 kN, see Figure 6.49a. The loading scheme
for test 7 is shown in Figure 6.49b, with an initial load increment of 500 kN, followed by
load increments of 100 kN. After the unloading, the load is again increased in two steps
of 450 kN, followed by load increments of 100 kN until failure.

Figure 6.46: Flexural shear failure T-beam test 6 (top) and test 7 (bottom)

(a) Detail of shear crack (view towards span) (b) Support uplift and shift

Figure 6.47: Shear fracture and support uplift T-beam test 7

Test 7 results in a flexural shear failure of the T-beam, see Figure 6.46. In this test the
T-beam almost completely separated into two parts being kept together only by the pre-
stressing tendons, see also Figure 6.47a. Prior to failure, the video shows multiple shear
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and bending cracks (not measured). Post failure, an uplift and shift of the elastomeric
bearing is observed, see Figure 6.47b. In addition, a torsion crack is observed in the end
cross-beam on the opposite side. Note that this end cross-beam is not sawn, see Section
6.3.1.
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Figure 6.48: Disconnected beam test 7: support and T-beam deformations
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Figure 6.49: Disconnected beam test 7: average strain and loading scheme

6.6. SUMMARY

T HE test objectives, considerations for full-scale collapse tests, observations during
the execution and the results of the seven collapse tests are summarised in this sec-

tion.

Test objectives:

• In total seven collapse tests are carried out on the Vecht bridge on two different
spans of the southern bridge, using a single concentrated load at the centre of the
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T-beam.

• Three experiments are carried out with the original structural system unchanged;
these are referred to as the connected beam tests.

• In four experiments, the integrated deck slab is sawn in the longitudinal direction
so that the individual T-beams can be tested; these are referred to as the discon-
nected beam tests.

• In order to compare the results of the disconnected beam tests to the connected
beam tests, the same load positions are chosen; one at 2.25 m and the second at
4.00 m.

• The load position at 2.25 m is assumed to be governing for a (flexural) shear failure
of the T-beam.

• The load position at 4.00 m is selected for studying arching effects, in case of con-
nected T-beams, as it is centred exactly between the cross-beams.

Considerations for the design of the full-scale collapse tests:

• The loading system consists of a steel bridge with ballast. A sliding track facilitates
the changing of loading position on the same span. A 6000 kN hydraulic jack is
used to apply the load.

• The steel bridge has a span length of 24.3 m, and a maximum load capacity of
approximately 4000 kN.

• The hydraulic jack is chosen for its capacity as well as its stroke capability (250 mm).

– In the connected beam tests, due to the relatively high load needed, the total
jack extension is governed primarily by the steel bridge deformation.

– In the disconnected beam tests, the total jack extension is governed primarily
by the concrete T-beam deformation.

• For the disconnected beam tests, a comprehensive safety system is used to prevent
beams falling to the ground below. This system consists of a static and a dynamic
steel beam connected to the concrete T-beam(s) using chains.

Observations made during the execution of the full-scale collapse tests:

• In the case of collapse tests, several dynamic aspects need to be taken into ac-
count.

– The uplift of the steel bridge, due to the high jack forces, can be considered
as a temporary excitation in a dynamic system. At failure, the elastic energy
is suddenly released which causes a significant downward movement, i.e. vi-
bration, of the steel bridge as well as a noticeable movement of the concrete
bridge. This situation is different from proof loading in which the load is
gradually reduced back to zero (Lantsoght et al. 2017a,b, Waarts et al. 2015).

– To prevent plastic behaviour or even damage, the dynamic loading should be
considered when checking the cross-section of the steel bridge. For the Vecht
bridge tests, only the static loading was taken into account with a safety factor
of 1.5.
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– During several disconnected beam tests, the chains for the connection with
the dynamic steel beam needed to be adjusted to allow for a larger deflec-
tion, resulting in unforeseen unloading. The safety system used could be op-
timised to allow for larger deflections.

• In the connected beam tests 1 and 2, the (premature) punching of the deck can
possibly be avoided, or postponed, by using a larger loading plate or by using mul-
tiple concentrated loads. However, higher loading may also require a higher ca-
pacity of the loading setup (see Table 6.2).

• For on-site testing of individual beams, the saw cut proved sufficiently wide and no
contact between a loaded beam and the adjacent beams is observed. In addition,
the uncut end cross-beam, opposite to the load location, sufficiently prevents tilt-
ing of the loaded beam. However, for post analysis, it also creates a semi-clamped
end which needs to be taken into account1.

• In future tests, an additional measurement of the jack stroke could be considered
to check its deformation during testing.

• In the first connected beam test, the measurements of the relative vertical defor-
mations of the integrated deck slab largely failed due to concrete spalling from the
integrated deck slab.

Results connected beam tests 1–3:

• Test 1 and 2 resulted in an instantaneous punching of the deck slab and subse-
quent shear failure of the T-beam, with a failure load of 3004 kN and 3444 kN.

• In Test 3 no failure occurred since the edge T-beam is not loaded beyond 2506 kN
because of safety concerns.

Results disconnected beam tests 4–7:

• All disconnected beam tests resulted in a flexural shear failure of the T-beam.

• In the identical tests 4–6, with the load position at 2.25 m, the ultimate load is
1678 kN, 1703 kN and 1774 kN, with an average of 1718 kN (scatter in the ultimate
load ≈ 6%).

• In test 7, with the load position at 4.00 m, the ultimate load is 1022 kN, i.e. 59% of
the average ultimate load of tests 4–6.

• In tests 4–6, the unreinforced concrete filling at the anchorage of tendon 7 is bro-
ken out.

1this is treated in Chapter 7
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CASE STUDY: THE VECHT BRIDGE

NONLINEAR ANALYSIS

In this chapter the full-scale collapse tests, as treated in Chapter 6, are analysed using
nonlinear finite element analysis (NLFEA). In addition, a baseline simply supported T-
beam is also analysed. A numerical parameter study, in which the element size and the
solution method are varied, is carried out to investigate their respective sensitivity and
to optimise the analyses. Modelling aspects, related to the large bridge deck model are
treated, including the use of solid versus shell elements, the application of prestressing
and mesh optimisations.

Parts of this chapter have been published in (Ensink et al. 2019).
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7.1. INTRODUCTION

T HE case study of the Vecht bridge is split into three parts, and is treated in Chap-
ters 5–7. A detailed description of the Vecht bridge and its structural components is

given in Chapter 5. For the results of the full-scale collapse tests the reader is referred
to Chapter 6. In this chapter the details and the results of the nonlinear finite element
analysis (NLFEA) are treated. An overview of all analyses is given in Section 7.2.2.

7.2. FINITE ELEMENT ANALYSIS

T HIS section introduces the finite element software and gives an overview of the dif-
ferent adopted FEM models and analyses as well as a brief description of the Python

scripting used.

7.2.1. DIANA 10.3 FINITE ELEMENT SOFTWARE

F INITE element modelling is an important tool for engineers and researchers. Within
the scope of this research a large number of finite element models are created with

the finite element software DIANA version 10.3 (DIANA 2019)1.

DIANA (DIsplacement ANAlyzer) is a finite element software package with extensive el-
ement and material model libraries as well as a wide range of nonlinear analysis ca-
pabilities. From version 10.0 onwards, the graphical user interface (GUI) has been re-
designed so that now all tasks can be performed from within the same program, from
pre-processing to performing the analysis to post-processing. In addition, Python script-
ing is supported meaning that all tasks can be written to a text file, to rerun and repro-
duce the same analysis. Python scripting also enables the use of variables or parameters,
within the script, for creating standardised models and/or analyses.

7.2.2. FEM MODELS AND ANALYSES

T HE collapse tests (see Chapter 6 Table 6.1) are analysed with a nonlinear finite ele-
ment analysis for each test, see Table 7.1. Test 3 is not included as this test did not

result in a failure of the deck or the T-beam (see Chapter 6 Section 6.4.3). Note that in
tests 4–7 the T-beams are not completely disconnected. Additional baseline analyses are
therefore carried out of a simply supported T-beam, see Table 7.2. For all analyses three
different FEM models are utilised, designated with FEM model A, B and C:

FEM model A: Bridge deck with fully connected T-beams

Model of the bridge deck consisting of 15 prestressed T-beams and four cross-beams.
FEM model A represents span 4 of the Vecht bridge, see Chapter 6 Figure 6.1. This model
is used for the analysis of the connected beam tests 1–2, see Tabel 7.1.

FEM model B: Bridge deck with partially disconnected T-beams

Model of the bridge deck consisting of 15 prestressed T-beams and four cross-beams.
This model represents span 2 of the Vecht bridge and includes the saw cuts of the in-

1System used: Intel Core i9-9900K, 128 GB 2666 MHz DDR4, M.2 1 TB PCIe Class 40 SSD (RAID 0), Nvidia
Quadro P2200
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tegrated deck slab and three of the four cross-beams to create partially disconnected
T-beams, see Chapter 6 Figure 6.2. Note that a small part of the integrated deck slab as
well as the end cross-beam at the non-loaded side are not sawn (see Chapter 6 Section
6.3.1). FEM model B is used for the disconnected beam tests 4–7, see Tabel 7.1.

FEM model C: Simply supported T-beam

Model of an individual, simply supported, prestressed T-beam of the Vecht bridge. This
model is used for reference and is primarily used for the numerical parameter study, see
Table 7.2.

Table 7.1: Overview of nonlinear analyses (test simulations)

analysis FEM test a loaded model description
model mm beama

A-T1 A 1 4000 11 bridge deck (connected T-beams)
A-T2 A 2 2250 6 bridge deck (connected T-beams)
B-T4 B 4 2250 12 bridge deck (disconnected T-beams)
B-T5 B 5 2250 11 bridge deck (disconnected T-beams)
B-T6 B 6 2250 10 bridge deck (disconnected T-beams)
B-T7 B 7 4000 9 bridge deck (disconnected T-beams)

a see Section 6.2 Figures 6.1–6.2

Numerical parameter study

The numerical parameter study consists of an investigation of the most relevant param-
eters used in the nonlinear analysis, i.e. the element size and the solution method, to in-
vestigate their respective sensitivity and optimise the analyses. This study is performed
using FEM model C and is treated in Section 7.7.

Table 7.2: Overview of nonlinear analyses (numerical parameter study)

analysis FEM a model description
model mm

C1 C 2250 simply supported T-beam
C2 C 4000 simply supported T-beam

Analysis designation

In the following sections, the analysis designation, as given in Tables 7.1–7.2, is further
extended with a number, representing the element size, and a letter combination, repre-
senting the solution method used, for example:

‘C1-100-FNR’

refers to analysis ‘C1’, see Table 7.2, using a general element size of 100 mm and the Full
Newton-Raphson (FNR) solution method. Other solution method abbreviations used
are given in Section 7.7.2. In some cases two different element sizes are adopted: a fine
mesh near the load position and a coarse mesh for the remaining parts of the model. In
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these cases the fine/coarse mesh is included in the designation by a double number, for
example:

‘A-T1-60/180-QNR’

refers to analysis ‘A-T1’, see Table 7.1, using a local fine element size of 60 mm and a gen-
eral coarse element size of 180 mm as well as the Quasi Newton-Raphson (QNR) solution
method.

7.2.3. PYTHON SCRIPTING

T O create the FEM models given in Section 7.2.2 a single comprehensive parametric
Python script is adopted to automate the modelling process. The key advantages of

using a single script is that it speeds up the modelling process and that it creates uni-
formity across all models. The Python script evolved continuously during the course of
the research in order to create variations of the different models as needed. In this sec-
tion only a brief description of the main features of the script are given. The models are
created using different parameters to control the modelling and/or analysis process, the
main parameters related to the geometry are:

• number of T-beams, cross-sectional and longitudinal dimensions, spacing etc.;

• dimensions of integrated deck slab, cross-beams, supports, etc.;

• embedded reinforcements: location, diameter, spacing, etc.

In addition to the geometry settings, many toggle switches are included in the script to
turn features on and off, such as reinforcements, prestressing, loads, meshing, linear or
nonlinear analysis etc.

7.3. FEM MODELS - GENERAL

T HIS section describes the general aspects of the FEM models A, B and C, introduced
in Section 7.2.2, such as the (nonlinear) material properties and material models

used, as well as some general modelling and analysis details. The material modelling,
meshing, convergence and other nonlinear settings, used throughout all analyses, are,
as much as possible, in accordance with the Dutch ‘Guidelines for Nonlinear Finite Ele-
ment Analysis of Concrete Structures’, referred to as RTD 1016-1 (Hendriks et al. 2017). If
alternative choices are made, these will be indicated.

7.3.1. MATERIAL PROPERTIES

T HE material (strength) properties are based on the material investigation. For more
details the reader is referred to Chapter 5 Section 5.3.

Concrete

The tensile (Gf) and compressive (Gc) fracture energy are determined in accordance with
RTD 1016-1 (Hendriks et al. 2017) and Model Code 2010 (fib 2012), see Equations 7.1–7.2
(Gf in N/m, fcm in N/mm2).
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Gf = 73 f 0.18
cm (7.1)

Gc = 250Gf (7.2)

The mean tensile strength and Young’s modulus are determined in accordance with NEN-
EN 1992-1-1 (NNI 2011a), see Equations 5.21 and 7.3.

Ecm = 22[ fcm/10]0.3 ×103 (7.3)

The concrete FEM material properties used are summarised in Table 7.3. For high strength
concrete, the variation of the fracture energy, as obtained from experiments, is reported
in fib bulletin 42 (fib 2008) and shown in Figure 7.1. With reference to Figure 7.1, the
fracture energy Gf obtained using Equation 7.1, see Table 7.3, seems reasonable in re-
lation to the large aggregates (Chapter 5 Figure 5.9) and the relatively high compressive
strength fcm of the T-beam.

Reinforcement and prestressing steel

The reinforcement and prestressing steel FEM material properties are given in Table 7.4.
For reinforcement steel diameters other than ø10 mm the ultimate strain is in accor-
dance with NEN-EN 1992-1-1 (NNI 2011a)2. In the nonlinear analyses the values for
ultimate strain, as given in Table 7.4, are reduced to 0.9εu or 0.9εuk.

Reinforced elastomeric bearing (supports)

As a first approximation, the vertical stiffness of the reinforced elastomeric bearings (see
Chapter 5 Section 5.2.6) is determined by using a general rule of thumb, according to the
Dutch guideline for assessing existing bridges, RTD 1006 (Rijkswaterstaat 2013), which
assumes a 1 mm vertical compression as a result of the self-weight. This rule of thumb
results in a vertical stiffness of the bearing of approximately 167 MN/m.
Alternatively, the vertical stiffness of reinforced elastomeric bearings can be determined
using the formulations from the old Dutch code NEN 6723 (NNI 1995), see Equations
7.4–7.5 (equations for rectangular bearings).

δ= h3σ

Gb2T
+ σh

C
(7.4)

T =
(
1−0.631

b

l
tanh

(
πl

2b

))
(7.5)

Where:

δ compression rubber sheet (mm)

σ average compressive stress (N/mm2)

b width rubber sheet (mm)

2In the Dutch guideline for assessing existing bridges, RTD 1006 (Rijkswaterstaat 2013), the ductility of steel
grade QR24 is classified as Class B.
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Table 7.3: Concrete FEM material properties

T-beam

mean compressive strength fcm 87.7 N/mm2

mean tensile strength fctm 4.83 N/mm2

fracture energya Gf 0.163 Nmm/mm2

compressive fracture energy Gc 40.83 Nmm/mm2

Poisson’s ratio ν 0.15 -
Young’s modulus Ecm 42200 N/mm2

integrated deck slab and cross-beam

mean compressive strength fcm 60.3 N/mm2

mean tensile strength fctm 4.13 N/mm2

fracture energya Gf 0.153 Nmm/mm2

compressive fracture energy Gc 38.17 Nmm/mm2

Poisson’s ratio ν 0.15 -
Young’s modulus Ecm 37715 N/mm2

kerb

mean compressive strength fcm 55.4 N/mm2

mean tensile strength fctm 3.98 N/mm2

fracture energya Gf 0.150 Nmm/mm2

compressive fracture energy Gc 37.59 Nmm/mm2

Poisson’s ratio ν 0.15 -
Young’s modulus Ecm 36768 N/mm2

a alternatively referred to as mode I fracture energy, i.e. GI
f

Fig. 3-8: Relation between compressive strength and fracture energy – experimental results and

corresponding relations
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Figure 7.1: Relation between compressive strength and fracture energy - experimental results and
corresponding relations, fcm0 = 10 N/mm2 (taken from (fib 2008))
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Table 7.4: Reinforcement and prestressing steel FEM material properties

reinforcement steel

mean yield strength fym 288 N/mm2

ultimate tensile strength fu 352 N/mm2

Young’s modulus Es 200000 N/mm2

ultimate strain (ø10 mm)a εu 10.0 %
ultimate strain (other diameters) εuk 5.0 %
prestressing steel

mean yield strength fym 1505 N/mm2

ultimate tensile strength fu 1770 N/mm2

Young’s modulus Ep 195000 N/mm2

ultimate straina εu 7.5 %
a minimum value for εu, see Table 5.2

h thickness rubber sheet (mm)

l length rubber sheet (mm)

C volumetric compressive modulus, equal to 1000 N/mm2

G shear modulus rubber, equal to 0.9 N/mm2

T ratio coefficient, dependent on l and b

The dimensions of the bearings are: l = 306 mm, b = 206 mm and h = 15.5 mm (layer
thickness). Using Equation 7.5 results in T = 0.58. With σ = F /(l × b) and F = K ×δ,
Equation 7.4 can be rewritten to Equation 7.6 to determine the vertical stiffness of a sin-
gle rubber layer (K ). Using Equation 7.6 results in K = 345 MN/m for each layer, giving a
total vertical stiffness, for two layers, of 173 MN/m.

K =
(

h3

Gb2T lb
+ h

AC

)−1

(7.6)

Both the rule of thumb and the Dutch code NEN 6723 (NNI 1995) give comparable re-
sults, and therefore initially a stiffness of 173 MN/m is assumed in the nonlinear analy-
sis. The support measurements of tests 1–73 are then compared to the nonlinear analysis
results (Appendices A–B). In order to obtain comparable deformations, the vertical sup-
port stiffness in the NLFEA models has to be increased significantly, by a factor of 2.75,
to a value of 475 MN/m.

This difference could indicate a significant underestimation by the initially used stan-
dard analytical formula. In this regard it is also worth mentioning that the bearing are 54
year old. Based on previous results from testing rubber bearings in the laboratory at TU
Delft (Reinders 2016), a more realistic stiffness can be obtained by using the analytical
formula by Banks, Pinter and Yeoh (Banks et al. 2002), which in this case would result in

3Note that due to the position of the support measurement (Chapter 6 Figure 6.20a), the vertical support stiff-
ness cannot be directly determined.
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a stiffness of 398 MN/m.
In particular in tests 4–7, a nonlinear relation between the load and the support dis-

placement is observed (see Chapter 6 Section 6.5). This is the combined effect of crack-
ing of the T-beam and the nonlinear behaviour of the rubber bearing (Amir and van der
Veen 2013). However, from the support measurements it is not possible to isolate one
of these effects. Therefore, in all analyses a linear support stiffness of 475 MN/m is as-
sumed. The supports are modelled using a 2D plane interface, and the distributed spring
stiffness, in vertical (Kz ) and horizontal (Kx,y ) direction(s), is given by Equations 7.7–7.8.

Kz = K

lb
= 475×103

306×206
= 7.54 N/mm3 (7.7)

Kx,y = G

h
= 0.9

2×15.5
= 0.029 N/mm3 (7.8)

Concentrated load (plywood)

A plywood plate is placed on top of the concrete deck underneath the loading plate, for
details see Chapter 6 Section 6.3.5. The plywood plate has a thickness h of 18 mm and
is modelled using a 2D plane interface. Assuming a Young’s modulus of E = 300 N/mm2

and a shear modulus of G = 172.5 N/mm2, the distributed spring stiffness, in vertical and
horizontal direction(s), is given by Equations 7.9–7.10.

Kz = E

h
= 300

18
= 16.7 N/mm3 (7.9)

Kx,y = G

h
= 172.5

18
= 9.58 N/mm3 (7.10)

7.3.2. CONSTITUTIVE MODELLING

F OR concrete a smeared crack approach is adopted using a total strain rotating crack
model (DIANA 2019), as recommended by RTD 1016-1 (Hendriks et al. 2017). Com-

pared to a fixed crack model, the rotating crack model is considered to result in a lower
bound failure load and is less susceptible to stress-locking. An overview of all constitu-
tive models used for concrete is given in Table 7.5.

Table 7.5: Concrete constitutive modelling (DIANA 2019)

aspect model used
tensile behaviour Hordijk softening
compressive behaviour parabolic stress-strain diagram
tension-compression interaction Vecchio and Collins 1993
compression-compression interaction -
Poisson’s ratio damage based
equivalent length (crack-band width) Rots

Note that compression-compression interaction is not taken into account which is a
conservative approach. The equivalent length, or crack-band width heq, is automatically
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determined by DIANA, using the model by Rots, and is based on the element size (for
solid elements it is calculated as 3pV with V the volume of the element and for quadratic
2D elements as

p
A with A the area of the element). For the concrete tensile behaviour,

the exponential softening curve by Hordijk is adopted. This curve is dependent on the
tensile strength fctm, the fracture energy Gf and the crack-band width heq, see Figure
7.2a. For the compressive behaviour, a parabolic diagram is used. This diagram is de-
pendent on the compressive strength fcm, the fracture energy Gc and the crack-band
width heq and therefore also includes a softening branch, see Figure 7.2b. The reduction
of the compressive strength, as a result of lateral cracking, is taken into account by the
tension-compression interaction model by Vecchio and Collins 1993 (DIANA 2019). The
maximum reduction is 60%, i.e. a minimum of 40% of the compressive strength always
remains. Finally, a damage-based reduction of the Poisson’s ratio, due to cracking, is also
adopted.

For the reinforcement and prestressing steel an elasto-plastic material model with
strain hardening is adopted, see Figure 7.3. The yield strength, tensile strength and the
ultimate strain are determined by the material investigation, see Chapter 5 Section 5.3
and Table 7.4. An overview of the constitutive models used for the reinforcement and
prestressing steel is given in Table 7.6. Note that bond-slip, between concrete and rein-
forcement, is not taken into account.

7.3.3. ELEMENT TYPES AND SIZES

F OR all FEM models A, B and C, see Section 7.2.2, 3D solid elements are used. In FEM
models A and B, some parts of the structure are modelled using 2D curved shell el-

ements4, to limit the amount of elements and thereby reduce computing time. Using
3D solid elements for the complete structure in these cases is not feasible, due to com-
puting limitations, but also not necessary since the 2D shell elements are generally used
outside the area of interest (see Sections 7.4–7.5). In all cases, quadratic elements are
used with full integration, except for the quadratic 2D shell elements which by default
use a reduced integration. In 3D, hexahedrons or brick elements are used, whereas in
2D, quadrilaterals are used, see Figure 7.4. Depending on the complexity of the geome-
try and the mesher, these are sometimes supplemented with tetrahedrals or triangles, in
3D or 2D respectively.

Maximum element size

For the exponential concrete tensioning softening curve by Hordijk (see Figure 7.2a), a
maximum value for the crack-band width can be determined to avoid a snap-back in the
softening curve, according to Equation 7.11 (DIANA 2019).

heq,max = 0.739
EGf

f 2
ctm

(7.11)

With the material properties given in Table 7.3, Equation 7.11 results in a maximum
crack-band width of 218 mm (concrete of T-beam) and 250 mm (concrete of integrated
deck slab and cross-beam). For equilateral elements the crack-band width is equal to

4Curved shells are used for their compatibility with embedded bar reinforcement (DIANA 2019).
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Figure 7.2: Concrete in tension and compression
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Figure 7.3: Stress-strain diagram reinforcement and prestressing steel (see also Table 7.4)

Table 7.6: Reinforcement and prestressing steel constitutive modelling (DIANA 2019)

aspect model used
tensile and compressive behaviour Von Mises plasticity
hardening hypothesis strain hardening
bond-slip full bond
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Figure 7.4: Base element types used in 3D and 2D (figures taken from DIANA manual (DIANA 2019))
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Figure 7.5: Example of embedded reinforcement, bar in 3D brick element (taken from (DIANA 2019))

the element size, therefore these values also represent the maximum element size.
Additionally, the choice for the maximum element size is related to the modelled

structure. For beams and slabs using solid elements, RTD 1016-1 (Hendriks et al. 2017),
recommends a minimum of 6 elements for the height. The T-beam has a height of
1150 mm, therefore this recommendation results in a maximum element size of 192 mm.
Due to its acting width, the integrated deck slab is considered as part of the top flange
of the T-beam. Otherwise, a maximum element size of 180/6 = 30 mm would be rec-
ommended to model the integrated deck slab, which is not feasible. In conclusion, a
maximum element size of 200 mm will be used and, in addition, the element size de-
pendency will be investigated in Section 7.7.

Embedded reinforcement

Reinforcement can be modelled in DIANA independently from the surrounding struc-
tural elements either with bars, i.e. lines, or grids, i.e. sheets. As part of the meshing
procedure, the intersections of the reinforcement with the 2D or 3D elements are iden-
tified and the reinforcement is automatically ‘embedded’ and thus become part of the
intersected or mother elements in which it is located, see Figure 7.5. The embedded
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reinforcement does not influence the space occupied and does not increase the weight
of the mother element, but it does increase the stiffness of the mother element. In this
research, all reinforcement and prestressing tendons are modelled as embedded rein-
forcement using individual bars with full bond. The curved prestressing tendons are ap-
proximated by straight lines at 750 mm interval with the vertical coordinates determined
using the polynomials as described in Chapter 5 Section 5.4. In addition, the horizontal
curvature, of tendons 1, 3, 4 and 6, although limited, is also taken into account using the
coordinates provided on the original drawings. In general, using individual bars, instead
of grids, and more precise coordinates for embedded reinforcements becomes more rel-
evant when using a finer mesh.

7.3.4. LOADING AND CONVERGENCE

T HE loading consists of the self-weight, the transverse prestressing of the bridge deck,
the longitudinal prestressing of the T-beam(s) and a displacement load, see Table

7.7. The self-weight of the concrete is taken from the material investigation, see Chapter
5 Section 5.3 Table 5.1. The prestressing loads are applied to the embedded reinforce-
ment, representing the prestressing tendons, using an initial stress of σpw = 0.8σpi =
0.8×1084 = 867 N/mm2, see Chapter 5 Section 5.4 Equation 5.1. When using an imposed
deformation or displacement load, a support is needed at the same node(s), and there-
fore a phased analysis is required. In the first phase, the self-weight and the prestressing
load(s) are applied. Then, in the second phase, the additional support is activated to
apply the displacement load.

Table 7.7: Load cases in DIANA

load name used load type
case in DIANA
LC1 1 SW self-weight
LC2 2 TP transverse prestressing (slab and cross-beams)
LC3 3 LP longitudinal prestressing (T-beam)
LC4 4 load displacement load

The convergence tolerances used in the nonlinear phased analyses are based on the rec-
ommendations of RTD 1016-1 (Hendriks et al. 2017) and are given in Table 7.8. To im-
prove convergence, different convergence norms are set to be satisfied simultaneously
whenever possible 5. In the first phase, both energy, displacement and force norms are
set for convergence. The second phase is then split into two parts, i.e. phase 2a and
phase 2b. In phase 2a, both the energy and force norms are set for convergence and this
analysis phase is extended for as long as possible. When convergence of both norms is
no longer achieved, phase 2b is initiated where only one, either energy or force norm, is
required for convergence.

For the displacement load in phase 2a and phase 2b, an automatic step size routine
is utilized 6. Using this routine, a maximum and minimum step size can be defined as

5This is more strict than RTD 1016-1 (Hendriks et al. 2017).
6In DIANA this feature is referred to as: cutback based automatic incremental loading (DIANA 2019).
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Table 7.8: Convergence settings

phase energy displacement force satisfy load
norm norm norm all norms case(s)

tolerance tolerance tolerance

1 10−3 10−2 10−2 YES LC1, LC2, LC3
2a 10−3 - 10−2 YES LC4
2b 10−3 - 10−2 NO LC4

well as the total displacement load. When non-convergence occurs, the routine auto-
matically adjusts, i.e. decreases, the step size and tries again until either: 1) convergence
is reached and loading is continued, or 2) the minimum step size is reached and the
analysis is aborted. Conversely, when few iterations are needed the step sizes are au-
tomatically increased. If non-convergence occurs and the analysis is aborted, it can be
continued from the last converged step. In this case, several very small user-defined
steps are used to try to regain convergence. If convergence is regained, the analysis is
again continued using the automatic step size routine. This procedure is repeated until
the ultimate failure load is reached. The ultimate failure load is defined as the highest
load obtained in a converged step. In the following sections, the non-converged steps
will be reported and indicated in the load-displacement curves.

7.4. FEM MODEL A: BRIDGE DECK (CONNECTED T-BEAMS)

T HIS section gives a detailed description of FEM model A. This model represents a
bridge deck span with connected T-beams and is used for analyses A-T1 and A-T2,

see Section 7.2.2 Table 7.1. For the general aspects used throughout all models see Sec-
tion 7.3. FEM models A–C are created using the same parametric Python script to con-
struct the model; for more details see Section 7.2.3.

7.4.1. GEOMETRY, ELEMENTS AND MESHING

A N overview of FEM model A is given in Figure 7.6. In this model, five T-beams, cen-
tered around the loaded beam, are modelled with 3D solid elements and the remain-

ing T-beams are modelled with 2D shell elements (see also Section 7.3.3). Note that in
the connected beam tests, measurements are taken of the loaded beam and the adjacent
beams (two on either side), see Chapter 6 Section 6.3.5. Table 7.9 gives an overview of
the 2D/3D modelling and the adopted element size(s) for analyses A-T1 and A-T2. The
full length of a T-beam, including the integrated deck slab and the corresponding parts
of the cross-beam(s), is modelled in either 2D or 3D, see Figure 7.7. The vertical 2D shell
elements, used for modelling the T-beam, use a spatial thickness function, see Figure
7.8a. The accuracy of the resulting varying thickness depends on the selected element
size. At the solid-shell transition, the shell elements connect to the center lines of the
connecting solid parts, i.e. the integrated deck slab and the cross-beam(s), see Figure
7.7. For this connection the ‘auto-tying’ option is selected. This option ensures compat-
ibility at the transition, by connecting the translational degrees of freedom of the solid
nodes to the translational and rotational degrees of freedom of the shell nodes (DIANA
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2019). At the intersection of the shell T-beam and the shell cross-beam, the latter takes
precedence, see Figure 7.7. In case of a shell T-beam, the integrated deck slab is overlap-
ping with the top flange of the T-beam. In addition, the shell cross-beam is overlapping
with the shell T-beam. To compensate the excess weight, the weight of the shell slab and
the shell cross-beam is reduced. In addition, the Young’s modulus of the shell T-beam is
calibrated, i.e. increased by 2.5%, to give the same deflection as the solid T-beams7. To
prevent badly shaped elements in the mesh, the transition piece near the end block is
partly omitted and only the part on the straight web is modelled, see Figure 7.8b. For the
shell T-beam the transition piece is completely omitted.

Table 7.9: FEM model A, 2D/3D modelling and element size

analysis beam beam element size element size
numbera numbera 3D solid 2D shell
3D solid 2D shell mm mm

A-T1 9–13 1–8 & 14–15 90 180
A-T2 4–8 1–3 & 9–15 90 180
a for the beam numbering see Chapter 6 Figure 6.1

7.4.2. SUPPORT AND CONCENTRATED (LIVE) LOAD MODELLING

F OR the 3D solid beams, a 2D surface interface is used to model the rubber bearings
and to connect the bottom side of the T-beam to a rectangular steel (base) plate (2D

shell, l×b = 206 × 306 mm, see also Chapter 5 Section 5.2.6). The support interface stiff-
ness is given in Section 7.3.1 by Equations 7.7–7.8. A tying is adopted to connect the
translations X, Y and Z, of the steel (base) plate, to a single master node. The master
node is subsequently constrained in all directions, X, Y and Z, thereby constraining the
entire steel (base) plate. This simplifies the boundary conditions needed and results in
the support reaction to be automatically available in post-processing as a single inte-
grated value, in each direction, from the master node.

Similarly, for the 2D shell beams, a 1D line interface is adopted with a thickness
(width) of 306 mm and a stiffness given in Section 7.3.1 by Equations 7.7–7.8. A tying
is again adopted to connect the translations X, Y and Z, of the steel (base) plate, to a sin-
gle master node. The master node is subsequently constrained in all directions, X, Y and
Z, thereby constraining the entire steel (base) plate.

The concentrated (live) load is applied by a 100 mm thick steel loading plate (2D
shell, 400 × 400 mm), to represent the steel plate with load cell used in the experiments
(see Chapter 6 Section 6.3.5 Figure 6.18a). A 2D surface interface is used to model the ply-
wood and to connect the top side of the T-beam to the steel loading plate. The interface
stiffness is given in Section 7.3.1 by Equations 7.9–7.10. The displacement controlled
load is applied to a single node at the center of the loading plate.

7For this calibration a model consisting of three T-beams is constructed in 3D. The maximum deflection at
midspan of the 3D model is used to calibrate the same model constructed in 2D.
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Figure 7.6: Geometry FEM model A (nonlinear parts indicated in blue), top view

Figure 7.7: Mesh FEM model A, detail of solid-shell transition, bottom view
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(a) Spatial thickness function, shell T-beam (b) Detail of transition piece, solid T-beam

Figure 7.8: Details of FEM model A
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7.4.3. REINFORCEMENT AND PRESTRESSING

T HE reinforcement layout is taken from the original drawings and all reinforcement
and prestressing tendons are modelled using bars (embedded reinforcement) with

full bond, see Section 7.3.3. The reinforcement is only applied in the parts of the model
with 3D solid elements having nonlinear material properties (see Figure 7.6). For a more
detailed description of the reinforcement see also Chapter 5 Sections 5.2.3–5.2.5. The
(nonlinear) material properties are given in Section 7.3.1 Table 7.4 and in Section 7.3.2
Figure 7.3a. The reinforcements consist of stirrups and longitudinal bars (T-beam, in-
tegrated deck slab and cross-beams(s)) as well as splitting reinforcement (anchorage
zone(s) prestressing tendons). For a single T-beam, the applied reinforcements are shown
in Figure 7.9. In FEM model A, five T-beams, modelled with 3D solids (see Table 7.9), are
applied with reinforcements up until the first intermediate cross-beam as is shown in
Figure 7.6 and in Figure 7.9. For a single T-beam, the reinforcement representing pre-
stressing tendons 1–7, is shown in Figure 7.10. All 15 T-beams, using either solids or
shells, are provided with prestressing tendons 1–7. For the prestressing load see Section
7.3.4. The (nonlinear) material properties are given in Section 7.3.1 Table 7.4 and in Sec-
tion 7.3.2 Figure 7.3b. The transverse prestressing consists of 59 straight tendons located
in the integrated deck slab and the cross-beams. The locations are taken from the orig-
inal drawings. For a more detailed description of the transverse prestressing, see also
Chapter 5 Sections 5.2.4–5.2.5. For FEM model A, the reinforcement representing the
transverse prestressing tendons 8–66, is shown in Figure 7.11. For the prestressing load,
see Section 7.3.4. The (nonlinear) material properties are given in Section 7.3.1 Table 7.4
and in Section 7.3.2 Figure 7.3b.

7.4.4. COMPOSED LINE AND SURFACE ELEMENTS

C OMPOSED line elements integrate the stresses of the surrounding 3D solid elements
and embedded reinforcements to 1D sectional forces Nx , Qy , Qz , Mx , My and Mz .

The stresses are integrated over the plane perpendicular to the reference line (DIANA
2019). In FEM model A, composed line elements are applied in the five T-beams mod-
elled with 3D solids (see Table 7.9), see Figure 7.12. The composed line elements are
modelled as a horizontal line, at the center of gravity of the cross-section of the T-beam,
between the end cross-beam and the intermediate cross-beam, in the nonlinear part
of the model (see Figure 7.6). The selected integrated parts are: the T-beam, the inte-
grated deck slab and the regular longitudinal reinforcement. Note that the longitudinal
prestressing tendons are not selected. Otherwise, because of equilibrium, the sectional
forces resulting from the prestressing load(s) become zero.

Likewise, composed surface elements integrate the stresses of the surrounding 3D
solid elements and embedded reinforcements to 2D distributed sectional forces Nxx ,
Ny y , Nx y , Qxz , Qy z , Mxx , My y and Mx y . In FEM model A, composed surface elements are
applied in the integrated deck slab between the T-beams modelled with 3D solids (see
Table 7.9), see Figure 7.12. The composed surface elements are modelled as a horizontal
plane, at the center of gravity of the integrated deck slab, between the end cross-beam
and the intermediate cross-beam, in the nonlinear part of the model (see Figure 7.6).
The selected integrated parts are: the integrated deck slab, the regular reinforcement
and the transverse prestressing tendons.
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Figure 7.9: Embedded (regular) reinforcements FEM model A
(end cross-beam (left), intermediate cross-beam (right))

Figure 7.10: Embedded reinforcements prestressing tendons 1–7 T-beam

Figure 7.11: Embedded reinforcements transverse prestressing tendons 8–66 FEM model A
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Figure 7.12: Composed line and surface elements FEM model A, top view

7.5. FEM MODEL B: BRIDGE DECK (DISCONNECTED T-BEAMS)

T HIS section gives a detailed description of FEM model B. This model represents a
bridge deck span with disconnected T-beams and is used for analyses B-T4, B-T5,

B-T6 and B-T7, see Section 7.2.2 Table 7.1. For the general aspects used throughout all
models, see Section 7.3. FEM models A–C are created using the same parametric Python
script to construct the model; for more details see Section 7.2.3.

7.5.1. GEOMETRY, ELEMENTS AND MESHING

A N overview of FEM model B is given in Figure 7.13. In this model, 8 T-beams are mod-
elled with 3D solid elements and the remaining T-beams are modelled with 2D shell

elements (see also Section 7.3.3). Table 7.10 gives an overview of the 2D/3D modelling
and the adopted element size(s) for analyses B-T4, B-T5, B-T6 and B-T7. The general as-
pects related to the 2D shell elements, described in Section 7.4.1 for FEM model A, also
apply to FEM model B. The saw cuts, in the integrated deck slab and cross-beams, are
modelled by a 2 mm gap (see also Chapter 6 Figure 6.2). For the support and concen-
trated (live) load modelling the reader is referred to Section 7.4.2. At the clamped end, a
composed line element is adopted for post-processing of the hogging bending moment.
For a detailed description of composed elements, the reader is referred to Section 7.4.4.

7.5.2. REINFORCEMENT AND PRESTRESSING

T HE general aspects of the reinforcement layout, described in Section 7.4.3 for FEM
model A, also apply to FEM model B. The reinforcement is applied to the loaded

part of the T-beam and to the clamped end, see Figure 7.14. The nonlinear (reinforced)
parts are shown in Figure 7.13. The T-beam prestressing tendons 1–7 are described in
Section 7.4.3 (see Figure 7.10). All 15 T-beams are provided with prestressing tendons
1–7. The saw cuts, in the integrated deck slab and cross-beams, also cause the trans-
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Table 7.10: FEM model B, 2D/3D modelling and element size

analysis beam beam element size element size
numbera numbera 3D solid 2D shell
3D solid 2D shell mm mm

B-T4 6–13 1–5 & 14–15 60b/180 180
B-T5 6–13 1–5 & 14–15 60b/180 180
B-T6 6–13 1–5 & 14–15 60b/180 180
B-T7 6–13 1–5 & 14–15 60b/180 180
a for the beam numbering see Chapter 6 Figure 6.2, b fine mesh applied to loaded T-beam

and clamped end cross-beam, see nonlinear parts in Figure 7.13

Figure 7.13: Geometry FEM model B (nonlinear parts indicated in blue), top view

verse prestressing tendons to be sawn. The distance between the saw cuts is 1225 mm
(equal to the T-beam spacing). Therefore, the affected transverse prestressing tendons
have insufficient transmission length and have lost all tension. The affected transverse
prestressing tendons are therefore modelled as (regular) reinforcements. At the clamped
end, 5 transverse prestressing tendons at the end cross-beam remain intact (for the pre-
stressing load see Section 7.3.4). The transverse prestressing tendons 8–66, adopted in
FEM model B, are given in Figure 7.15.

7.6. FEM MODEL C: SIMPLY SUPPORTED T-BEAM

T HIS section gives a detailed description of FEM model C of an individual simply sup-
ported T-beam of the Vecht bridge. This model is used for analyses C1 and C2, see

Section 7.2.2 Table 7.2. For the general aspects used throughout all models, see Section
7.3. FEM models A–C are created using the same parametric Python script to construct
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Figure 7.14: Embedded (regular) reinforcements FEM model B

Figure 7.15: Embedded reinforcements transverse prestressing tendons 8–66 FEM model B
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the model, for more details see Section 7.2.3. An overview of FEM model C is given in
Figure 7.16. FEM model C consists of 3D solid elements only. For the support and con-
centrated (live) load modelling the reader is referred to Section 7.4.2. The general aspects
of the reinforcement layout, described in Section 7.4.3 for FEM model A, also apply to
FEM model C. The reinforcement is applied to the loaded part of the T-beam, see Figure
7.17. The nonlinear (reinforced) parts are shown in Figure 7.16.

7.7. NUMERICAL PARAMETER STUDY

I N this section a numerical parameter study is performed by investigating the influence
of:

• element size: 50 mm, 100 mm or 200 mm;

• solution method: full Newton-Raphson, Modified Newton-Raphson or
Quasi-Newton.

The basis for this investigation is FEM model C, i.e. a simply supported T-beam, using
the two load positions ‘a’ equal to the experiments (see Chapter 6 Section 6.2).

7.7.1. ELEMENT SIZE

T HE element size dependency is investigated with element sizes 50 mm, 100 mm and
200 mm. Note that an element size larger than 200 mm is not recommended for

this investigation, see Section 7.3.3. Conversely, an element size smaller than 50 mm is
not feasible due to computing limitations. An overview of the analyses is given in Table
7.11. The loading procedure and convergence settings are given in Section 7.3.4 using
the minimum and maximum step size given in Table 7.11. The various element sizes are
shown in cross-sectional view in Figure 7.18. Note that by doubling the element size,
the number of degrees of freedom (DOF) decreases by a factor of approximately 4–5, see
Table 7.11. Analysis C2-50/100-QNR failed at the start of phase 2b due to a convergence
problem. Alternatively, an analysis is run with an element size of 60 mm (C2-60/100-
QNR, see Table 7.11).

Table 7.11: Overview analyses for element size dependency investigation

analysis FEM a element size DOF min/max step size
model mm mm mm

C1-50/100-QNRa C 2250 50/100 1.20E+06 0.0625/0.5b

C1-100-QNR C 2250 100 2.36E+05 0.0625/0.5b

C1-200-QNR C 2250 200 6.26E+04 0.0625/0.5b

C2-50/100-QNRa C 4000 50/100 1.20E+06 0.0625/0.5
C2-60/100-QNRa C 4000 60/100 7.44E+05 0.0625/0.5
C2-100-QNR C 4000 100 2.36E+05 0.0625/0.5
C2-200-QNR C 4000 200 6.26E+04 0.0625/0.5
a fine mesh size applied to 2/3 of the model, b in phase 2b the maximum step size is reduced to 0.25 mm
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Figure 7.16: Geometry FEM model C (nonlinear parts indicated in blue), top view

Figure 7.17: Embedded (regular) reinforcements and prestressing tendons 1–7 FEM model C
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(a) 50 mm (b) 60 mm (c) 100 mm (d) 200 mm

Figure 7.18: Element size T-beam cross-section

Table 7.12: Results various element sizes

analysis a δ2a F2a δu Fu non-converged
mm mm kN mm kN steps

C1-50/100-QNR 2250 23.9 1124 63.3 1512 0
C1-100-QNR 2250 20.9 1043 54.2 1420 0
C1-200-QNR 2250 17.9 980 71.4 1550 0
C2-60/100-QNR 4000 47.7 805 175.2 1151 0
C2-100-QNR 4000 43.3 758 166.8 1142 0
C2-200-QNR 4000 40.8 727 185.2 1155 0
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(a) Analyses C1
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(b) Analyses C2

Figure 7.19: Analyses C1 (left) and C2 (right) load-deflection with various element sizes
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))
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The results of the investigation are shown in Figure 7.19 (load-deflection) and Figures
7.21–7.22 (cracking behaviour). Figure 7.20 shows the color segments, used in all FEM
principal strain plots, related to the various parts of the Hordijk softening curve. The
results are also summarised in Table 7.12. In all analyses all load steps, up until the ul-
timate failure load, are converged (for convergence settings see Table 7.8). The conver-
gence graph of analysis C1-50/100-QNR and C1-200-QNR is shown in Figures 7.23–7.24.

For analyses C1, the maximum stress in the prestressing tendons is equal to 1532 N/mm2

(C1-50/100-QNR), 1505 N/mm2 (C1-100-QNR) and 1512 N/mm2 (C1-200-QNR), see also
Figure 7.3b. It appears analysis C1-100-QNR does not converge at the onset of plasticity,
and therefore the ultimate failure load seems underestimated, see Figure 7.19a. From
Table 7.12 and Figure 7.19 it can be concluded that phase 2a is extended when the ele-
ment size is reduced. In addition, the force norm is better satisfied in phase 2b (see Table
7.8); compare Figure 7.23 to Figure 7.24.

Conclusion element size

The optimal element size to be used in this research is between 50–100 mm, in order to
obtain sufficiently detailed cracking patterns for failure analysis and for comparison to
the experiments. In addition, a smaller element size performs better in relation to the
force norm in both phase 2a and phase 2b.

7.7.2. SOLUTION METHOD

T HE performance of the incremental-iterative solution method is investigated with
three methods: full (regular) Newton-Raphson (FNR), modified Newton-Raphson

(MNR) and Quasi-Newton (QNR) with the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method (DIANA 2019). An overview of the analyses is given in Table 7.13. In all models,
an element size of 100 mm is adopted. In addition, a fixed step size is used equal to
0.3 mm for analyses C1 and 0.5 mm for analyses C2. These step sizes are selected based
upon the average step sizes of analyses C1-100-QNR and C2-100-QNR, see Section 7.7.1.
The analyses using a fixed step size are marked with (f), i.e. fixed step size, see Table 7.13.
With the exception of the adaptive step size, the loading procedure and convergence
settings are given in Section 7.3.4. For analyses using fixed step sizes, an isolated non-
converged step in phase 2a is accepted. However, after two successive non-converged
steps, phase 2b is initiated.

Table 7.13: Overview analyses for solution method investigation

analysis FEM a element size solution step size
model mm mm method mm

C1-100-FNR(f) C 2250 100 FNR 0.3
C1-100-MNR(f) C 2250 100 MNR 0.3
C1-100-QNR(f) C 2250 100 QNR 0.3
C2-100-FNR(f) C 4000 100 FNR 0.5
C2-100-MNR(f) C 4000 100 MNR 0.5
C2-100-QNR(f) C 4000 100 QNR 0.5
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Figure 7.20: Total strain Hordijk softening curve with color segments used in FEM crack plots (not to scale)

(a) C1-50-QNR, δu = 63.3 mm, Fu = 1512 kN
(color segments: α1 = 2, α2 = 4, see Figure 7.20)

(b) C1-100-QNR, δu = 54.2 mm, Fu = 1420 kN
(color segments: α1 = 2, α2 = 4, see Figure 7.20)

(c) C1-200-QNR, δu = 71.4 mm, Fu = 1550 kN
(color segments: α1 = 4, α2 = 8, see Figure 7.20)

Figure 7.21: Analyses C1 maximum principal strain E1 at failure load
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(a) C2-60/100-QNR, δu = 175.2 mm, Fu = 1151 kN
(color segments: α1 = 3, α2 = 6, see Figure 7.20)

(b) C2-100-QNR, δu = 166.8 mm, Fu = 1142 kN
(color segments: α1 = 3, α2 = 6, see Figure 7.20)

(c) C2-200-QNR, δu = 185.2 mm, Fu = 1155 kN
(color segments: α1 = 6, α2 = 12, see Figure 7.20)

Figure 7.22: Analyses C2 maximum principal strain E1 at failure load

The results of the investigation are given in Figure 7.25 (load-deflection). The solution
method convergence performance is summarised in Table 7.14 which also includes anal-
yses C1-100-QNR and C2-100-QNR (see Section 7.7.1). Finally, the solution method iter-
ation speed and run time are given in Table 7.15. The lower iteration speed for analyses
C2, as compared to analyses C1, can be explained by the increase in nonlinear activ-
ity (larger cracked area), see Figures 7.21–7.22. In all cases, the Quasi-Newton method
performs best in relation to the force norm. This method is able to extend phase 2a fur-
ther than the other two methods, see Table 7.14 and Figure 7.25e–f. In terms of iteration
speed, the Modified-Newton and the Quasi-Newton methods are very comparable, with
the latter showing a 10% higher speed. The full Newton-Raphson method shows a de-
crease in speed of approximately 49% as compared to the other two methods. This can
be explained by the fact that this method derives the tangent stiffness matrix in every it-
eration. Considering all analyses, the average number of iterations needed for each step
(iter/step) is 24.0 in phase 1–2a and 10.4 in phase 2b. This illustrates the numerical ‘cost’
of satisfying both force and energy norms simultaneously. Contrary to the Quasi-Newton
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Figure 7.23: C1-50/100-QNR, convergence (Quasi-Newton)
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Figure 7.24: C1-200-QNR, convergence (Quasi-Newton)
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method, the convergence graph of the Modified-Newton and the full Newton-Raphson
method, show a similar constantly increasing deviation from the force norm in phase 2b,
compare Figures 7.23–7.24 to Figure 7.26.

Table 7.14: Solution method convergence performance

analysis phase 1–2a phase 2b
steps iter/step non- steps iter/step non-

(average) converged (average) converged
C1-100-FNR(f) 72 15.4 1.4% 111 13.5 4.5%
C1-100-MNR(f) 75 21.1 4.0% 89 12.5 1.1%
C1-100-QNR(f) 180 23.7a 1.7% 5 6.4 0%
C1-100-QNR 52b 20.2 0% 139c 11.9 0%
C2-100-FNR(f) 81 27.3 3.7% 256 6.9 2.7%
C2-100-MNR(f) 74 29.2 8.1% 148 8.5 0%
C2-100-QNR(f) 107 31.4d 7.5% 234 11.4 0%
C2-100-QNR 99e 23.6 0% 251 11.7 0%
a first 75 steps: iter/step (average) = 16.3 (for comparison to other methods)
b resizing steps not included, i.e. 5 times with 100 iter/step (see Table 7.11)
c resizing steps not included, i.e. 3 times with 100 iter/step (see Table 7.11)
d first 81 steps: iter/step (average) = 21.7 (for comparison to other methods)
e resizing steps not included, i.e. 6 times with 100 iter/step (see Table 7.11)

Table 7.15: Solution method iteration speed and run time (min = minutes)

analysis iter/min phase 1–2a phase 2b total
(average) min min min

C1-100-FNR(f) 10.34 107.23 144.92 252.15
C1-100-MNR(f) 20.25 78.15 54.94 133.09
C1-100-QNR(f) unknown - - -
C2-100-FNR(f) 9.29 238.03 190.14 428.17
C2-100-MNR(f) 17.26 125.19 72.88 198.07
C2-100-QNR(f) 18.92 177.58 140.99 318.57

Conclusion solution method

The optimal incremental-iterative solution method to be used in this research is the
Quasi-Newton (QNR) with BFGS method. This method performs best in terms of achiev-
ing convergence especially in combination with an adaptive step size. Of the three meth-
ods, the QNR with BFGS method also requires the least amount of iterations for each step
(except for analyses C2 phase 2b, see Table 7.14). Considering run time, the QNR with
BFGS method shows an iteration speed (iter/min) comparable to the modified Newton-
Raphson method, see Table 7.15. Finally, the QNR with the BFGS method does not ex-
hibit the deviation from the force norm, in phase 2b, observed with both the Modified-
Newton and the full Newton-Raphson method.
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(e) C1-100-QNR(f) and C1-100-QNR
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(f) C2-100-QNR(f) and C2-100-QNR
(Quasi-Newton)

Figure 7.25: Analyses C1 (left) and C2 (right) load-deflection using various solution methods
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))
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Figure 7.26: C2-100-FNR, convergence (Full Newton-Raphson)

7.8. RESULTS CONNECTED T-BEAMS (FEM MODELS A)

T HIS section gives the results of the connected T-beams analyses A-T1 and A-T2, see
Section 7.2.2 Table 7.1. For a detailed description of FEM model A the reader is re-

ferred to Section 7.4.

7.8.1. ANALYSIS A-T1

T HE main results of analysis A-T1-90/180-QNR are summarized in Table 7.16 with the
load versus deflection diagram given in Figure 7.27. The non-converged steps, re-

ported in Table 7.16, are cross-marked in Figure 7.27. More detailed results of the anal-
ysis, such as the convergence graph and the comparison to the test measurements, are
given in Appendix A Section A.1. The ultimate failure load is 87% compared to the test
result (see Chapter 6 Section 6.4). The (linear) support and beam stiffnesses, as well as
the T-beam cracking moment, are consistent with the test results, see Appendix A Sec-
tion A.1. However, some limited stiffness deviation is observed in the supports of T-beam
9–10, see Appendix A Figures A.3a–b.

Table 7.16: Analysis A-T1-90/180-QNR results

analysis δ2a F2a δu Fu total non-converged
mm kN mm kN steps steps

A-T1-90/180-QNR 13.2 2509 20.5 2760 227 2 (0.9%)
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Figure 7.27: A-T1-90/180-QNR, load - deflection
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))

Principal strains (cracking)

The cracking evolution of the loaded T-beam is shown in Figure 7.28 and in Figure 7.29,
showing the loaded T-beam and the adjacent T-beams in cross-sectional view at the load
position. The first cracking occurs at the bottom side of the T-beam’s top flange, due to
transverse sagging bending moments, see Figure 7.29a. These cracks then extend from
the load position in the longitudinal directions. Next, T-beam bending cracks are ini-
tiated followed by cracking at the top side of the adjacent T-beam’s top flange, due to
transverse hogging bending moments, see Figures 7.29b–c. The T-beam bending cracks
remain concentrated near the load position throughout the analysis, see Figure 7.28a–d.
Next, a flexural shear crack develops from the load position in the direction of the in-
termediate cross-beam, see Figure 7.28a. The initial shear crack angle, of approximately
65◦, rotates to an angle of 45◦. Next, in the thin web of the T-beam, a large and sudden al-
most horizontal shear tension crack is initiated from the flexural shear crack, see Figure
7.28b. The initiation of this crack causes the first drop in the load - deflection diagram,
see Figure 7.27. The location of this shear tension crack coincides with the compres-
sive strut from the loading point towards the intermediate cross-beam, see Figure 7.31.
Note that the minimum values of E3, reported in Figure 7.31, do not exceed εu (see Fig-
ure 7.30) and are located on the top side of the T-beam, underneath the loading plate
(not visible in Figure 7.31). The shear tension crack continues to grow and widen until
failure, see Figures 7.28b–d. At the same time, punching in the integrated deck slab and
the top flange of the T-beam is initiated, see Figure 7.28c and Figure 7.29d (first non-
converged step). Just prior to failure, a secondary shear tension crack is initiated from
the load position in the direction of the end support, see left side of Figure 7.28d (second
non-converged step). Finally, the deck slab punching failure is shown in Figures 7.28d–e
and Figure 7.29e, causing an immediate overload and failure of the T-beam. Figure 7.28e
also shows the cracking at the anchorage of cable 7.

T-beam sectional forces

The sectional forces of the loaded T-beam, resulting from the composed line elements
(see Section 7.4.4), are given in Figures 7.33–7.35 (normal force), 7.36 (shear force) and
7.37 (bending moment). Note that Figures 7.34–7.35 include the increase of the force



7

146 7. CASE STUDY: THE VECHT BRIDGE - NONLINEAR ANALYSIS

(a) F = 2531 kN, δz = 13.5 mm, T-beam flexural shear crack (side view)

(b) F = 2412 kN, δz = 13.8 mm, T-beam shear tension crack (side view)

(c) F = 2580 kN, δz = 17.2 mm, deck slab punching initiation (side view)

(d) Fu = 2760 kN, δu = 20.5 mm, T-beam shear tension crack, deck slab punching failure (side view)

(e) Fu = 2760 kN, δu = 20.5 mm, deck slab punching failure (top view)

Figure 7.28: A-T1-90/180-QNR, maximum principal strain E1 T-beam 11 (loaded beam)
(end cross-beam on the left side, intermediate cross-beam on the right side)

(color segments: α1 = 4, α2 = 8, see Figure 7.20)
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(a) F = 1425 kN, δz = 6.1 mm, T-beam top flange crack initiation

(b) F = 2135 kN, δz = 10.2 mm, T-beam bending crack

(c) F = 2412 kN, δz = 13.8 mm, adjacent T-beam cracking, deck slab cracking (top side)

(d) F = 2580 kN, δz = 17.2 mm, deck slab punching initiation

(e) Fu = 2760 kN, δu = 20.5 mm, deck slab punching failure

Figure 7.29: A-T1-90/180-QNR, maximum principal strain E1 T-beam 9–13 (cross-section at load position)
(color segments: α1 = 4, α2 = 8, see Figure 7.20)
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Figure 7.30: Total strain parabolic compression curve with color segments used in FEM crack plots (reduction
of the compressive strength, as a result of lateral cracking, not included in this figure, see Section 7.3.2)

Figure 7.31: A-T1-90/180-QNR, minimum principal strain E3 T-beam 11 (loaded beam), Fu = 2760 kN,
δu = 20.5 mm (color segments see Figure 7.30)

Figure 7.32: A-T1-90/180-QNR, stress SY Y T-beam 11 (loaded beam), Fu = 2760 kN, δu = 20.5 mm

in the prestressing tendons (∆Np) whereas Figure 7.33 shows the normal force Nx only.
The initial sectional forces, as a result of the self-weight and the prestressing load(s), are
given in Appendix A Section A.1 Figure A.5 and are equivalent to the linear analysis, see
Chapter 5 Section 5.4 Figure 5.11b–d. The initial normal force and shear force corre-
spond well to the linear analysis, compare Figures A.5a–b to Figures 5.11b–c. However,
the initial bending moment is higher, by approximately 25–35%, as compared to the lin-
ear analysis (compare Figure A.5c to Figure 5.11d). It appears that the bending moment
is more susceptible to the differences in modelling approach as compared to the normal
force and the shear force.

With increased loading, the compressive normal force in the loaded T-beam initially
decreases (tension) by approximately 630 kN and then increases significantly (compres-
sion) by approximately 1740 kN (loading point), compared to the initial value, see Figure
7.35 8. The initial compressive normal force, at the loading point, is recovered at a load
of F = 2443 kN (89% Fu), see Figure 7.33b and Figure 7.35. Conversely, the compressive

8The ‘loading point’ in Figures 7.34–7.35 is defined as the location of |Nx |max shown in Figure 7.33c. The ‘end
cross-beam’ is equal to the left side of Figure 7.33. The ‘intermediate cross-beam’ is equal to the right side of
Figure 7.33.
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(a) F = 1877 kN, δz = 8.5 mm

(b) F = 2443 kN, δz = 12.5 mm

(c) Fu = 2760 kN, δu = 20.5 mm ( |Nx |max = 4949 kN)

Figure 7.33: A-T1-90/180-QNR, normal force Nx T-beam 11 (loaded beam)

normal force in the adjacent T-beam 10 decreases (tension) by approximately 740 kN
(loading point), compared to the initial value, see Figure 7.34. A similar behaviour is ob-
served in the adjacent T-beam 12. The normal forces in the loaded T-beam, as a result
from the point load, are therefore counteracted by the adjacent T-beams. The increase in
compressive normal force, in the loaded T-beam, is relatively localised and diminishes
towards the cross-beams, see Figure 7.33 and Figure 7.35.

Towards the end support the shear force, as a result of the point load, is reduced by
the shear force of the self-weight and prestressing load(s), see left side of Figure A.5b.
Initially, the shear force on either side of the loading point is almost equal, see Figure
7.36a. After the initiation of the shear tension crack, the shear force towards the inter-
mediate cross-beam is reduced, see Figure 7.36b. Note that the maximum shear force
of the analysis is shown in Figure 7.36c. The shape of the shear force graph corresponds
well to the linear analysis, compare Figure 7.36 to Figure 5.17c.

After the initiation of the shear tension crack, the hogging bending moment at the
intermediate cross-beam is also reduced, see Figure 7.37b.
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Figure 7.34: A-T1-90/180-QNR, normal force Nx +∆Np T-beam 10 (adjacent beam)
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))
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Figure 7.35: A-T1-90/180-QNR, normal force Nx +∆Np T-beam 11 (loaded beam)
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))
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(a) F = 2531 kN, δz = 13.5 mm

(b) F = 2412 kN, δz = 13.8 mm

(c) F = 2692 kN, δz = 16.9 mm ( |Qz |max = 1322 kN)

(d) Fu = 2760 kN, δu = 20.5 mm

Figure 7.36: A-T1-90/180, shear force Qz T-beam 11 (loaded beam)
(end cross-beam on the left side, intermediate cross-beam on the right side)

Reinforcement and prestressing tendons stresses (yielding)

The stresses of the reinforcement, at the ultimate load, are given in Figure 7.38. All pre-
stressing tendons remain linear elastic (see also Figure 7.3b). Stress peaks are visible
at the location of the bending cracks and the shear tension crack towards the end sup-
port, see Figure 7.38a. Yielding does take place in the regular reinforcement. The T-
beam stirrups, longitudinal and splitting reinforcements (anchorages of tendons 1–7)
and the cross-beam reinforcement show a maximum stress of Sxx = 337 N/mm2, see
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(a) F = 2531 kN, δz = 13.5 mm

(b) F = 2412 kN, δz = 13.8 mm

(c) Fu = 2760 kN, δu = 20.5 mm ( |My |max = 1844 kNm)

Figure 7.37: A-T1-90/180, bending moment My T-beam 11 (loaded beam)
(end cross-beam on the left side, intermediate cross-beam on the right side)

Figure 7.38b. However, no fracture occurs as the ultimate strain 0.9εu or 0.9εuk is not
exceeded (see also Figure 7.3a). At the ultimate load, the top side regular longitudinal
reinforcement is just starting to yield in compression.

Stresses, in-plane forces and (relative) displacements concrete deck slab

The initial transverse stresses SX X in the integrated deck slab, as a result of the self-
weight and the (transverse) prestressing load(s), are given in Appendix A Section A.1
Figures A.6–A.7 and at the failure load in Figures A.8–A.99. The stresses of the loaded T-
beam and the adjacent T-beams, in cross-sectional view at the load position, are shown
in Figure 7.39. Initially, as a result of the transverse prestressing (see also Figure 7.11), an
average transverse compressive stress in the integrated deck slab, at the position of the
load, is present of approximately SX X = -2.9 N/mm2, see Figure 7.39a. The distributed in-
plane forces of the integrated deck slab, resulting from the composed surface elements
(see Section 7.4.4), are given in Figure 7.41. The initial transverse in-plane force, at the

9Note that the shell elements have three layers in the thickness direction. For Figures A.6 and A.8 the output of
layer 3 is selected (top side). For Figures A.7 and A.9 the output of layer 1 is selected (bottom side).
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(a) Prestressing tendons 1–7

(b) Regular reinforcements

Figure 7.38: A-T1-90/180-QNR, stress Sxx embedded reinforcements T-beam 11 (loaded beam), Fu = 2760 kN,
δu = 20.5 mm

position of the load, is equal to approximately Nxx = -2.9 × 180 = -522 N/mm, see Figure
7.41a. The distribution of the in-plane force Nxx in the longitudinal direction, along the
edge of the composed surface elements closest to the loading point (see Figure 7.41), is
given in Figure 7.42. At the ultimate load, the average transverse compressive stress in
the integrated deck slab, at the load position, increases to a maximum of approximately
SX X = -13.9 N/mm2, see Figure 7.39b. The corresponding in-plane force increases to
approximately Nxx = -13.9 × 180 = -2500 N/mm, see Figure 7.41b and Figure 7.42. The
evolution of the vertical displacement of the loaded T-beam and the adjacent T-beams,
in cross-sectional view at the load position, is shown in Figure 7.40. At the edge of the
bridge, close to the end support, the compressive stresses in the deck branch out to the
center line of the adjacent T-beams, see Figure A.8.
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(a) Self-weight and prestressing load(s)

(b) Fu = 2760 kN, δu = 20.5 mm

Figure 7.39: A-T1-90/180-QNR, stress SX X T-beam 9–13 (cross-section at load position)

(a) F = 2412 kN, δz = 13.8 mm

(b) F = 2580 kN, δz = 17.2 mm

(c) Fu = 2760 kN, δu = 20.5 mm

Figure 7.40: A-T1-90/180-QNR, deformation δz T-beam 9–13 (cross-section at load position)
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(a) Self-weight and prestressing load(s) (b) Fu = 2760 kN, δu = 20.5 mm

Figure 7.41: A-T1-90/180-QNR, in-plane force Nxx (transverse direction)
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Figure 7.42: A-T1-90/180-QNR, in-plane force Nxx , horizontal axis in span direction with load at y = 4.00 m
(see also Figure 7.41), grey area indicates integrated membrane force ∆F (see Chapter 8 Section 8.2.4)
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7.8.2. ANALYSIS A-T2

T HE main results of analysis A-T2-90/180-QNR are summarized in Table 7.17 with the
load versus deflection diagram given in Figure 7.43. All load steps of the analysis

are converged. More detailed results of the analysis, such as the convergence graph and
the comparison to the test measurements, are given in Appendix A Section A.2. The ul-
timate failure load is 95% compared to the test result (see Chapter 6 Section 6.4). The
(linear) support and beam stiffnesses, as well as the T-beam cracking moment, are con-
sistent with the test results, see Appendix A Section A.2. However, some limited stiffness
deviation is observed in the supports of T-beam 5 and 8, see Appendix A Figures A.12b,e.

Table 7.17: Analysis A-T2-90/180-QNR results

analysis δ2a F2a δu Fu total non-converged
mm kN mm kN steps steps

A-T2-90/180-QNR 10.5 2915 16.4 3256 192 0
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Figure 7.43: A-T2-90/180-QNR, load - deflection
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))

Principal strains (cracking)

The cracking evolution of the loaded T-beam is shown in Figure 7.46 and in Figure 7.47,
showing the loaded T-beam and the adjacent T-beams in cross-sectional view at the load
position. The first cracking occurs at the bottom side of the T-beam’s top flange, due to
transverse sagging bending moments, see Figure 7.47a. These cracks then extend from
the load position in the longitudinal directions. Towards the end support, they continue
in the thin part of the web, between the top flange and the transition piece (see also
Figure 7.8b), see Figure 7.46a. At the same time, T-beam bending cracks are initiated fol-
lowed by cracking at the top side of the adjacent T-beam’s top flange, due to transverse
hogging bending moments, see Figures 7.47b–c. The T-beam bending cracks continue
to extend from the load position throughout the analysis, mainly in the span direction,
see Figure 7.46a–d. Next, a flexural shear crack develops from the load position in the
direction of the intermediate cross-beam, see Figure 7.46b. The initial shear crack an-
gle, of approximately 45◦, ultimately rotates to an angle of 20◦, see Figure 7.46d. Next,
a shear tension crack develops from the load position in the direction of the end sup-
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Figure 7.44: A-T2-90/180-QNR, minimum principal strain E3 T-beam 6 (loaded beam), Fu = 3256 kN,
δu = 16.4 mm (color segments see Figure 7.30)

Figure 7.45: A-T2-90/180-QNR, stress SY Y T-beam 6 (loaded beam), Fu = 3256 kN, δu = 16.4 mm

port, see Figure 7.46c. At the same time, punching in the integrated deck slab and the
top flange of the T-beam is initiated, see Figure 7.46c and Figure 7.47d. Finally, the deck
slab punching failure is shown in Figure 7.46d–e and Figure 7.47e, causing an immediate
overload and failure of the T-beam. The minimum principal strains E3, at the ultimate
load, are shown in Figure 7.44. The location of the flexural shear crack, shown in Figure
7.46d coincides with the compressive strut shown in Figure 7.44. Note that the minimum
values of E3, reported in Figure 7.44, do not exceed εu and are located on the top side of
the T-beam, underneath the loading plate (not visible in Figure 7.44).

T-beam sectional forces

The sectional forces of the loaded T-beam, resulting from the composed line elements
(see Section 7.4.4), are given in Figures 7.48–7.50 (normal force), 7.51 (shear force) and
7.52 (bending moment). Note that Figures 7.49–7.50 include the increase of the force in
the prestressing tendons (∆Np) whereas Figure 7.48 shows the normal force Nx only. For
the initial sectional forces, as a result of the self-weight and the prestressing load(s), the
reader is referred to Appendix A Section A.1 Figure A.5.

With increased loading, the compressive normal force in the loaded T-beam initially
decreases (tension) by approximately 370 kN and then increases significantly (compres-
sion) by approximately 2010 kN (loading point), compared to the initial value, see Fig-
ure 7.50 10. The initial compressive normal force, at the loading point, is recovered at
a load of F = 2356 kN (72% Fu), see Figure 7.48b and Figure 7.50. Conversely, the com-
pressive normal force in the adjacent T-beam 5 initially increases slightly (compression)
by approximately 80 kN and then decreases (tension) by approximately 760 kN (loading
point), compared to the initial value, see Figure 7.49. A similar behaviour is observed

10The ‘loading point’ in Figures 7.49–7.50 is defined as the location of |Nx |max shown in Figure 7.48c. The ‘end
cross-beam’ is equal to the left side of Figure 7.48. The ‘intermediate cross-beam’ is equal to the right side of
Figure 7.48.
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(a) F = 2288 kN, δz = 6.5 mm, T-beam shear tension crack (side view)

(b) F = 2899 kN, δz = 10.4 mm, T-beam flexural shear crack (side view)

(c) F = 2915 kN, δz = 11.7 mm, T-beam shear tension crack, deck slab punching initiation (side view)

(d) Fu = 3256 kN, δu = 16.4 mm, deck slab punching failure (side view)

(e) Fu = 3256 kN, δu = 16.4 mm, deck slab punching failure (top view)

Figure 7.46: A-T2-90/180-QNR, maximum principal strain E1 T-beam 6 (loaded beam)
(end cross-beam on the left side, intermediate cross-beam on the right side)

(color segments: α1 = 4, α2 = 8, see Figure 7.20)
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(a) F = 1190 kN, δz = 2.6 mm, T-beam top flange crack initiation

(b) F = 1686 kN, δz = 4.0 mm, T-beam bending crack

(c) F = 2472 kN, δz = 7.5 mm, deck slab cracking (top side)

(d) F = 2915 kN, δz = 11.7 mm, deck slab punching initiation

(e) Fu = 3256 kN, δu = 16.4 mm, deck slab punching failure

Figure 7.47: A-T2-90/180-QNR, maximum principal strain E1 T-beam 4–8 (cross-section at load position)
(color segments: α1 = 4, α2 = 8, see Figure 7.20)



7

160 7. CASE STUDY: THE VECHT BRIDGE - NONLINEAR ANALYSIS

(a) F = 1676 kN, δz = 3.7 mm

(b) F = 2356 kN, δz = 6.9 mm

(c) Fu = 3256 kN, δu = 16.4 mm ( |Nx |max = 5250 kN)

Figure 7.48: A-T2-90/180-QNR, normal force Nx T-beam 6 (loaded beam)

in the adjacent T-beam 7. Similar to analysis A-T1, see Section 7.8.1, the normal forces
in the loaded T-beam, as a result from the point load, are counteracted by the adjacent
T-beams. The increase in compressive normal force, in the loaded T-beam, is relatively
localised and diminishes towards the cross-beams, see Figure 7.48 and Figure 7.50.

Towards the end support the shear force, as a result of the point load, is reduced by
the shear force of the self-weight and prestressing load(s), see left side of Figure A.5b.
Initially, the shear force on either side of the loading point is almost equal. After the
initiation of the second shear tension crack, the shear force towards the end support is
reduced, see Figure 7.51a. The maximum shear force of the analysis is reached at the
failure load, see Figure 7.51b. The shape of the shear force graph corresponds well to the
linear analysis, compare Figure 7.51 to Figure 5.17c.

Reinforcement and prestressing tendons stresses (yielding)

The stresses of the reinforcement, at the ultimate load, are given in Figure 7.53. All pre-
stressing tendons remain linear elastic (see also Figure 7.3b). Stress peaks are visible
at the location of the bending cracks and the shear tension cracks towards the end sup-
port, see Figure 7.53a. Yielding does take place in the regular reinforcement. The T-beam
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Figure 7.49: A-T2-90/180-QNR, normal force Nx +∆Np T-beam 5 (adjacent beam)
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))
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Figure 7.50: A-T2-90/180-QNR, normal force Nx +∆Np T-beam 6 (loaded beam)
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))
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(a) F = 2923 kN, δz = 11.2 mm

(b) Fu = 3256 kN, δu = 16.4 mm ( |Qz |max = 1440 kN)

Figure 7.51: A-T2-90/180, shear force Qz T-beam 6 (loaded beam)
(end cross-beam on the left side, intermediate cross-beam on the right side)

stirrups, longitudinal and splitting reinforcements (anchorages of tendons 1–7) and the
end cross-beam reinforcement show a maximum stress of Sxx = 338 N/mm2, see Figure
7.53b. However, no fracture occurs as the ultimate strain 0.9εu or 0.9εuk is not exceeded
(see also Figure 7.3a). At the ultimate load, the top side regular longitudinal reinforce-
ment is just starting to yield in compression.

Stresses, in-plane forces and (relative) displacements concrete deck slab

The initial transverse stresses SX X in the integrated deck slab, as a result of the self-
weight and the (transverse) prestressing load(s), are given in Appendix A Section A.2 Fig-
ures A.14–A.15 and at the failure load in Figures A.16–A.1711. The stresses of the loaded T-
beam and the adjacent T-beams, in cross-sectional view at the load position, are shown
in Figure 7.54. Initially, as a result of the transverse prestressing (see also Figure 7.11), an
average transverse compressive stress in the integrated deck slab, at the position of the
load, is present of approximately SX X = -3.1 N/mm2, see Figure 7.54a. The distributed in-
plane forces of the integrated deck slab, resulting from the composed surface elements
(see Section 7.4.4), are given in Figure 7.56. The initial transverse in-plane force, at the
position of the load, is equal to approximately Nxx = -3.1 × 180 = -558 N/mm, see Figure
7.56a. The distribution of the in-plane force Nxx in the longitudinal direction, along the
edge of the composed surface elements closest to the loading point (see Figure 7.56), is
given in Figure 7.57. At the ultimate load, the average transverse compressive stress in
the integrated deck slab, at the load position, increases to a maximum of approximately
SX X = -12.5 N/mm2, see Figure 7.54b. The corresponding in-plane force increases to

11Note that the shell elements have three layers in the thickness direction. For Figures A.14 and A.16 the output
of layer 3 is selected (top side). For Figures A.15 and A.17 the output of layer 1 is selected (bottom side).



7.8. RESULTS CONNECTED T-BEAMS (FEM MODELS A)

7

163

(a) F = 2923 kN, δz = 11.2 mm

(b) Fu = 3256 kN, δu = 16.4 mm ( |My |max = 1956 kNm)

Figure 7.52: A-T2-90/180, bending moment My T-beam 6 (loaded beam)
(end cross-beam on the left side, intermediate cross-beam on the right side)

(a) Prestressing tendons 1–7

(b) Regular reinforcements

Figure 7.53: A-T2-90/180-QNR, stress Sxx embedded reinforcements T-beam 6 (loaded beam), Fu = 3256 kN,
δu = 16.4 mm

approximately Nxx = -12.5 × 180 = -2250 N/mm, see Figure 7.56b and Figure 7.57. The
evolution of the vertical displacement of the loaded T-beam and the adjacent T-beams,
in cross-sectional view at the load position, is shown in Figure 7.55.
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(a) Self-weight and prestressing load(s)

(b) Fu = 3256 kN, δu = 16.4 mm

Figure 7.54: A-T2-90/180-QNR, stress SX X T-beam 4–8 (cross-section at load position)

(a) F = 2472 kN, δz = 7.5 mm

(b) F = 2915 kN, δz = 11.7 mm

(c) Fu = 3256 kN, δu = 16.4 mm

Figure 7.55: A-T2-90/180-QNR, deformation δz T-beam 4–8 (cross-section at load position)
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(a) Self-weight and prestressing load(s) (b) Fu = 3256 kN, δu = 16.4 mm

Figure 7.56: A-T2-90/180-QNR, in-plane force Nxx (transverse direction)
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Figure 7.57: A-T2-90/180-QNR, in-plane force Nxx , horizontal axis in span direction with load at y = 2.25 m
(see also Figure 7.56), grey area indicates integrated membrane force ∆F (see Chapter 8 Section 8.2.4)
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7.9. RESULTS DISCONNECTED T-BEAMS (FEM MODELS B)

T HIS section gives the results of the disconnected T-beams analyses B-T4, B-T5, B-T6
and B-T7, see Section 7.2.2 Table 7.1. For a detailed description of FEM model B the

reader is referred to Section 7.5.

7.9.1. ANALYSIS B-T4

T HE main results of analysis B-T4-60/180-QNR are summarized in Table 7.18 with the
load versus deflection diagram given in Figure 7.58. All load steps of the analysis are

converged. More detailed results of the analysis, such as the convergence graph and the
comparison to the test measurements, are given in Appendix B Section B.1. The ultimate
failure load is 89% compared to the test result (see Chapter 6 Section 6.5). The (linear)
support stiffness, as well as the T-beam cracking moment, are consistent with the test
results, see Appendix B Section B.1. However, some stiffness deviation is observed at the
position of the intermediate cross-beam, see Appendix B Figure B.3b.

Table 7.18: Analysis B-T4-60/180-QNR results

analysis δ2a F2a δu Fu total non-converged
mm kN mm kN steps steps

B-T4-60/180-QNR 20.9 1148 50.6 1486 218 0

0 10 20 30 40 50 60 70 80 90

0

250

500

750

1000

1250

1500

1750

B-T4-60/180-QNR

test 4 (LP08)

Figure 7.58: B-T4-60/180-QNR, load - deflection
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))

Principal strains (cracking)

The cracking evolution of the loaded T-beam is shown in Figure 7.60 and in Figure 7.61,
showing the clamped end. The first cracking occurs at the clamped end due to the hog-
ging bending moment. In addition, horizontal cracking starts in the T-beam, near the
load position, between the transition piece and the T-beam’s top flange (see also Figure
7.8b). Next, bending cracks are initiated in the T-beam, followed by flexural shear cracks,
see Figure 7.60a. At the same time, torsion cracks are initiated in the end cross-beam. In
addition, the full width of the disconnected T-beam is now cracked on the top side, see
Figure 7.61a. Next, horizontal shear tension cracks are initiated in the T-beam, below the
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transition piece, see Figure 7.60b. Finally, the T-beam fails due to a large flexural shear
crack developing from the loading point to the end support, see Figure 7.60c.

T-beam sectional forces (clamped end)

The sectional forces of the loaded T-beam at the clamped end, resulting from the com-
posed line elements (see Section 7.5.1), are given in Figure 7.59. Both the shear force and
the bending moment remain linear up until a load of approximately F = 1100 kN, when
the full width of the disconnected T-beam is cracked on the top side, see Figure 7.61a.
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Figure 7.59: B-T4-60/180-QNR, shear force Qz and bending moment My T-beam 12 (clamped end)
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))

Reinforcement and prestressing tendons stresses (yielding)

The stresses of the reinforcement, at the ultimate load, are given in Figure 7.62. Yielding
of the prestressing tendons is initiated at a load level of F = 1300 kN, in the two ten-
dons closest to the bottom of the cross-section. All other tendons remain linear elastic
throughout the analysis. At the ultimate load, the maximum stress in the tendons is
Sxx = 1519 N/mm2, see Figure 7.62a.

In the regular reinforcement yielding is initiated at a load level of F = 866 kN, in the
longitudinal reinforcement closest to the bottom of the cross-section. At a load level
of F = 1105 kN, the T-beam stirrups also start yielding at the location of the horizon-
tal crack, between the transition piece and the T-beam’s top flange (see also Figures
7.60a–b). At the ultimate load, the regular reinforcement shows a maximum stress of
Sxx = 308 N/mm2, see Figure 7.62b. In addition, the top side regular longitudinal rein-
forcement is just starting to yield in compression.

At the clamped end, the top side regular longitudinal reinforcement start yielding at
a load level of F = 971 kN. In addition, as a result of the torsion cracks (see Figure 7.61),
the stirrups and longitudinal reinforcements, at the end cross-beam, start yielding at a
load level of F = 1185 kN. No fracture occurs in either the prestressing tendons or the
regular reinforcement (see also Figure 7.3).
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(a) F = 1072 kN, δz = 15.7 mm, T-beam bending cracks, initiation of flexural shear cracks

(b) F = 1185 kN, δz = 23.7 mm

(c) Fu = 1486 kN, δu = 50.6 mm

Figure 7.60: B-T4-60/180-QNR, maximum principal strain E1 T-beam 12
(end cross-beam on the left side, half span shown)

(color segments: α1 = 2, α2 = 4, see Figure 7.20)

(a) F = 1105 kN, δz = 17.7 mm (b) Fu = 1486 kN, δu = 50.6 mm

Figure 7.61: B-T4-60/180-QNR, maximum principal strain E1 T-beam 12 (clamped end)
(color segments: α1 = 2, α2 = 4, see Figure 7.20)
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(a) Prestressing tendons 1–7

(b) Regular reinforcements

Figure 7.62: B-T4-60/180-QNR, stress Sxx embedded reinforcements T-beam 12, Fu = 1486 kN, δu = 50.6 mm

7.9.2. ANALYSIS B-T5

T HE main results of analysis B-T5-60/180-QNR are summarized in Table 7.19 with the
load versus deflection diagram given in Figure 7.63. All load steps of the analysis

are converged. More detailed results of the analysis, such as the convergence graph and
the comparison to the test measurements, are given in Appendix B Section B.2. The
ultimate failure load is 88% compared to the test result (see Chapter 6 Section 6.5). The
(linear) support stiffness is consistent with the test results, see Appendix B Section B.2.
The comparison to the intermediate cross-beam deformation measurement (LP10) is
unreliable (see also Chapter 6 Section 6.5.2), see Appendix B Figure B.5b.

Table 7.19: Analysis B-T5-60/180-QNR results

analysis δ2a F2a δu Fu total non-converged
mm kN mm kN steps steps

B-T5-60/180-QNR 20.8 1146 53.3 1505 221 0

Principal strains (cracking)

The cracking evolution of the loaded T-beam is shown in Figure 7.65 and in Figure 7.66,
showing the clamped end. The first cracking occurs at the clamped end due to the hog-
ging bending moment. Next, horizontal cracking starts in the T-beam, near the load
position, between the transition piece and the T-beam’s top flange (see also Figure 7.8b).
At the same time, bending cracks are initiated in the T-beam, see Figure 7.65a. Next,
horizontal shear tension cracks are initiated in the T-beam, below the transition piece,
followed by flexural shear cracks, see Figure 7.65b. At the same time, torsion cracks are
initiated in the end cross-beam. In addition, the full width of the disconnected T-beam
is now cracked on the top side, see Figure 7.66a. Finally, the T-beam fails due to a large
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Figure 7.63: B-T5-60/180-QNR, load - deflection
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))

flexural shear crack developing from the loading point to the end support, see Figure
7.65c.

T-beam sectional forces (clamped end)

The sectional forces of the loaded T-beam at the clamped end, resulting from the com-
posed line elements (see Section 7.5.1), are given in Figure 7.64. Both the shear force and
the bending moment remain linear up until a load of approximately F = 1100 kN, when
the full width of the disconnected T-beam is cracked on the top side, see Figure 7.66a.
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Figure 7.64: B-T5-60/180-QNR, shear force Qz and bending moment My T-beam 11 (clamped end)
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))

Reinforcement and prestressing tendons stresses (yielding)

The stresses of the reinforcement, at the ultimate load, are given in Figure 7.67. Yield-
ing of the prestressing tendons is initiated at a load level of F = 1440 kN, in the tendon
closest to the bottom of the cross-section. At the ultimate load, the maximum stress in
the tendons is Sxx = 1529 N/mm2, see Figure 7.67a. In addition, at the ultimate load,
yielding is also initiated in the second tendon from the bottom.
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(a) F = 1077 kN, δz = 15.7 mm, T-beam bending cracks

(b) F = 1174 kN, δz = 23.3 mm, T-beam flexural shear cracks

(c) Fu = 1505 kN, δu = 53.3 mm

Figure 7.65: B-T5-60/180-QNR, maximum principal strain E1 T-beam 11
(end cross-beam on the left side, half span shown)

(color segments: α1 = 2, α2 = 4, see Figure 7.20)

(a) F = 1101 kN, δz = 17.7 mm (b) Fu = 1505 kN, δu = 53.3 mm

Figure 7.66: B-T5-60/180-QNR, maximum principal strain E1 T-beam 11 (clamped end)
(color segments: α1 = 2, α2 = 4, see Figure 7.20)
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In the regular reinforcement yielding is initiated at a load level of F = 864 kN, in the
longitudinal reinforcement closest to the bottom of the cross-section. At a load level
of F = 1119 kN, the T-beam stirrups also start yielding at the location of the horizon-
tal crack, between the transition piece and the T-beam’s top flange (see also Figures
7.65a–b). At the ultimate load, the regular reinforcement shows a maximum stress of
Sxx = 311 N/mm2, see Figure 7.67b. In addition, the top side regular longitudinal rein-
forcement is starting to yield in compression.

At the clamped end, the top side regular longitudinal reinforcement start yielding at
a load level of F = 1025 kN. In addition, as a result of the torsion cracks (see Figure 7.66),
the stirrups and longitudinal reinforcements, at the end cross-beam, start yielding at a
load level of F = 1234 kN. No fracture occurs in either the prestressing tendons or the
regular reinforcement (see also Figure 7.3).

(a) Prestressing tendons 1–7

(b) Regular reinforcements

Figure 7.67: B-T5-60/180-QNR, stress Sxx embedded reinforcements T-beam 11, Fu = 1505 kN, δu = 53.3 mm

7.9.3. ANALYSIS B-T6

T HE main results of analysis B-T6-60/180-QNR are summarized in Table 7.20 with the
load versus deflection diagram given in Figure 7.68. All load steps of the analysis are

converged. More detailed results of the analysis, such as the convergence graph and the
comparison to the test measurements, are given in Appendix B Section B.3. The ultimate
failure load is 84% compared to the test result (see Chapter 6 Section 6.5). The (linear)
support stiffness shows some deviation with the test results, see Appendix B Section B.3.
However, significant stiffness deviation is observed at the position of the intermediate
cross-beam, see Appendix B Figure B.7b.

Principal strains (cracking)

The cracking evolution of the loaded T-beam is shown in Figure 7.69 and in Figure 7.70,
showing the clamped end. The first cracking occurs at the clamped end due to the hog-



7.9. RESULTS DISCONNECTED T-BEAMS (FEM MODELS B)

7

173

Table 7.20: Analysis B-T6-60/180-QNR results

analysis δ2a F2a δu Fu total non-converged
mm kN mm kN steps steps

B-T6-60/180-QNR 20.5 1146 52.0 1498 216 0
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Figure 7.68: B-T6-60/180-QNR, load - deflection
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))

ging bending moment. In addition, horizontal cracking starts in the T-beam, near the
load position, between the transition piece and the T-beam’s top flange (see also Fig-
ure 7.8b). Next, bending cracks are initiated in the T-beam, followed by horizontal shear
tension cracks in the T-beam, below the transition piece, see Figure 7.69a. Next, flexural
shear cracks are initiated, see Figure 7.69b. At the same time, torsion cracks are initiated
in the end cross-beam. In addition, the full width of the disconnected T-beam is now
cracked on the top side, see Figure 7.70a. Finally, the T-beam fails due to a large flexural
shear crack developing from the loading point to the end support, see Figure 7.69c.

T-beam sectional forces (clamped end)

The sectional forces of the loaded T-beam at the clamped end, resulting from the com-
posed line elements (see Section 7.5.1), are given in Figure 7.71. Both the shear force and
the bending moment remain linear up until a load of approximately F = 1100 kN, when
the full width of the disconnected T-beam is cracked on the top side, see Figure 7.70a.

Reinforcement and prestressing tendons stresses (yielding)

The stresses of the reinforcement, at the ultimate load, are given in Figure 7.72. Yielding
of the prestressing tendons is initiated at a load level of F = 1371 kN, in the tendon clos-
est to the bottom of the cross-section. At the ultimate load, the maximum stress in the
tendons is Sxx = 1522 N/mm2, see Figure 7.72a.

In the regular reinforcement yielding is initiated at a load level of F = 864 kN, in the
longitudinal reinforcement closest to the bottom of the cross-section. At a load level
of F = 1098 kN, the T-beam stirrups also start yielding at the location of the horizon-
tal crack, between the transition piece and the T-beam’s top flange (see also Figures
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(a) F = 1066 kN, δz = 15.7 mm, T-beam bending cracks

(b) F = 1183 kN, δz = 23.5 mm, T-beam flexural shear cracks

(c) Fu = 1498 kN, δu = 52.0 mm

Figure 7.69: B-T6-60/180-QNR, maximum principal strain E1 T-beam 10
(end cross-beam on the left side, half span shown)

(color segments: α1 = 2, α2 = 4, see Figure 7.20)

(a) F = 1120 kN, δz = 18.7 mm (b) Fu = 1498 kN, δu = 52.0 mm

Figure 7.70: B-T6-60/180-QNR, maximum principal strain E1 T-beam 10 (clamped end)
(color segments: α1 = 2, α2 = 4, see Figure 7.20)
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Figure 7.71: B-T6-60/180-QNR, shear force Qz and bending moment My T-beam 10 (clamped end)
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))

7.69a–b). At the ultimate load, the regular reinforcement shows a maximum stress of
Sxx = 309 N/mm2, see Figure 7.72b. In addition, the top side regular longitudinal rein-
forcement is starting to yield in compression.

At the clamped end, the top side regular longitudinal reinforcement start yielding at
a load level of F = 1029 kN. In addition, as a result of the torsion cracks (see Figure 7.70),
the stirrups and longitudinal reinforcements, at the end cross-beam, start yielding at a
load level of F = 1237 kN. No fracture occurs in either the prestressing tendons or the
regular reinforcement (see also Figure 7.3).

(a) Prestressing tendons 1–7

(b) Regular reinforcements

Figure 7.72: B-T6-60/180-QNR, stress Sxx embedded reinforcements T-beam 10, Fu = 1498 kN, δu = 52.0 mm
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7.9.4. ANALYSIS B-T7

T HE main results of analysis B-T7-60/180-QNR are summarized in Table 7.21 with the
load versus deflection diagram given in Figure 7.73. All load steps of the analysis are

converged. More detailed results of the analysis, such as the convergence graph and the
comparison to the test measurements, are given in Appendix B Section B.4. The ultimate
failure load is 118% compared to the test result (see Chapter 6 Section 6.5). The (linear)
support stiffness shows some stiffness deviation with the test results, see Appendix B
Section B.4. However, significant stiffness deviation is observed at the position of the
intermediate cross-beam, see Appendix B Figure B.10b.

Table 7.21: Analysis B-T7-60/180-QNR results

analysis δ2a F2a δu Fu total non-converged
mm kN mm kN steps steps

B-T7-60/180-QNR 54.2 904 162.6 1203 548 0
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Figure 7.73: B-T7-60/180-QNR, load - deflection
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))

Principal strains (cracking)

The cracking evolution of the loaded T-beam is shown in Figure 7.74 and in Figure 7.75,
showing the clamped end. The first cracking occurs at the clamped end due to the hog-
ging bending moment. Next, bending cracks are initiated in the T-beam, see Figure
7.74a. At the same time, torsion cracks are initiated in the end cross-beam. In addition,
the full width of the disconnected T-beam is now cracked on the top side, see Figure
7.75a. Next, flexural shear cracks are initiated, see Figure 7.74b. Finally, the T-beam fails
due to a large flexural shear crack developing from the loading point to the end support,
see Figure 7.74c.

T-beam sectional forces (clamped end)

The sectional forces of the loaded T-beam at the clamped end, resulting from the com-
posed line elements (see Section 7.5.1), are given in Figure 7.76. Both the shear force and
the bending moment remain linear up until a load of approximately F = 750 kN, when
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(a) F = 725 kN, δz = 23.4 mm, T-beam bending cracks

(b) F = 931 kN, δz = 60.2 mm, T-beam flexural shear cracks

(c) Fu = 1203 kN, δu = 162.6 mm

Figure 7.74: B-T7-60/180-QNR, maximum principal strain E1 T-beam 9
(end cross-beam on the left side, half span shown)

(color segments: α1 = 3, α2 = 6, see Figure 7.20)

(a) F = 688 kN, δz = 19.9 mm (b) Fu = 1203 kN, δu = 162.6 mm

Figure 7.75: B-T7-60/180-QNR, maximum principal strain E1 T-beam 9 (clamped end)
(color segments: α1 = 3, α2 = 6, see Figure 7.20)
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the full width of the disconnected T-beam is cracked on the top side, see Figure 7.75a.
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Figure 7.76: B-T7-60/180-QNR, shear force Qz and bending moment My T-beam 9 (clamped end)
(bullet indicates start of phase 2b see Table 7.8, dashed line = non-converged (post-peak))

Reinforcement and prestressing tendons stresses (yielding)

The stresses of the reinforcement, at the ultimate load, are given in Figure 7.77. Yielding
of the prestressing tendons is initiated at a load level of F = 1010 kN, in the tendon closest
to the top of the cross-section. At the ultimate load, the maximum stress in the tendons
is Sxx = 1544 N/mm2, see Figure 7.72a. In addition, at the ultimate load, yielding is ob-
served in all tendons.

In the regular reinforcement yielding is initiated at a load level of F = 600 kN, in the
longitudinal reinforcement closest to the bottom of the cross-section. At a load level of
F = 785 kN, the T-beam stirrups also start yielding at the location of the flexural shear
crack, towards the end support. In addition, the top side regular longitudinal reinforce-
ment starts yielding in compression at a load level of F = 1146 kN. At the ultimate load,
the regular reinforcement shows a maximum stress of Sxx = 331 N/mm2, see Figure
7.77b.

At the clamped end, the top side regular longitudinal reinforcement start yielding at a
load level of F = 626 kN. In addition, as a result of the torsion cracks (see Figure 7.75), the
stirrups and longitudinal reinforcements, at the end cross-beam, start yielding at a load
level of F = 763 kN. No fracture occurs in either the prestressing tendons or the regular
reinforcement (see also Figure 7.3).
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(a) Prestressing tendons 1–7

(b) Regular reinforcements

Figure 7.77: B-T7-60/180-QNR, stress Sxx embedded reinforcements T-beam 9, Fu = 1203 kN, δu = 162.6 mm

7.10. RESULTS SIMPLY SUPPORTED T-BEAMS (FEM MODELS

C)

T HIS section gives the results of the simply supported T-beams analyses C1 and C2,
see Section 7.2.2 Table 7.2. For a detailed description of FEM model C the reader

is referred to Section 7.6. As part of the numerical parameter study, the main results of
these analyses are also reported in Section 7.7.1.

7.10.1. ANALYSIS C1

T HE main results of analysis C1-50/100-QNR are summarized in Section 7.7.1 Table
7.12 with the load versus deflection diagram given in Section 7.7.1 Figure 7.19a. In

this section the results are described in more detail.

Principal strains (cracking)

The cracking evolution of the T-beam is shown in Figure 7.78. The first cracking con-
sists of horizontal cracks, near the load position, between the transition piece and the
T-beam’s top flange (see also Figure 7.8b). Next, bending cracks are initiated, followed
by horizontal shear tension cracks, below the transition piece, see Figures 7.78a–b. Next,
flexural shear cracks are initiated, see Figure 7.78b–c. Finally, the T-beam fails due to a
large flexural shear crack developing from the loading point to the end support, see Fig-
ure 7.78d.

Reinforcement and prestressing tendons stresses (yielding)

The stresses of the reinforcement, at the ultimate load, are given in Figure 7.79. Yielding
of the prestressing tendons is initiated at a load level of F = 1404 kN, in the tendon clos-
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(a) F = 989 kN, δz = 15.9 mm, T-beam bending cracks

(b) F = 1124 kN, δz = 23.9 mm, T-beam flexural shear cracks

(c) F = 1264 kN, δz = 36.4 mm

(d) Fu = 1512 kN, δu = 63.3 mm

Figure 7.78: C1-50/100-QNR, maximum principal strain E1 (end cross-beam on the left side, half span shown)
(color segments: α1 = 2, α2 = 4, see Figure 7.20)

est to the bottom of the cross-section. At the ultimate load, the maximum stress in the
tendons is Sxx = 1532 N/mm2, see Figure 7.79a.

In the regular reinforcement yielding is initiated at a load level of F = 856 kN, in the
longitudinal reinforcement closest to the bottom of the cross-section. At a load level
of F = 1068 kN, the T-beam stirrups also start yielding at the location of the horizon-
tal crack, between the transition piece and the T-beam’s top flange (see also Figures
7.78a–b). At the ultimate load, the regular reinforcement shows a maximum stress of
Sxx = 312 N/mm2, see Figure 7.79b. Just prior to failure, the top side regular longitudi-
nal reinforcement is starting to yield in compression. No fracture occurs in either the
prestressing tendons or the regular reinforcement (see also Figure 7.3).
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(a) Prestressing tendons 1–7

(b) Regular reinforcements

Figure 7.79: C1-50/100-QNR, stress Sxx embedded reinforcements, Fu = 1512 kN, δu = 63.3 mm

7.10.2. ANALYSIS C2

T HE main results of analysis C2-60/100-QNR are summarized in Section 7.7.1 Table
7.12 with the load versus deflection diagram given in Section 7.7.1 Figure 7.19b. In

this section the results are described in more detail.

Principal strains (cracking)

The cracking evolution of the T-beam is shown in Figure 7.80. The first cracking consists
of bending cracks, see Figure 7.80a. Next, flexural shear cracks are initiated, see Figure
7.80a–b. Finally, the T-beam fails due to a large flexural shear crack developing from the
loading point to the end support, see Figure 7.80c.

Reinforcement and prestressing tendons stresses (yielding)

The stresses of the reinforcement, at the ultimate load, are given in Figure 7.81. Yielding
of the prestressing tendons is initiated at a load level of F = 965 kN, in the tendon closest
to the top of the cross-section. At the ultimate load, the maximum stress in the tendons
is Sxx = 1547 N/mm2, see Figure 7.81a. In addition, at the ultimate load, yielding is ob-
served in all tendons.

In the regular reinforcement yielding is initiated at a load level of F = 581 kN, in the
longitudinal reinforcement closest to the bottom of the cross-section. At a load level of
F = 750 kN, the T-beam stirrups also start yielding at the location of the flexural shear
crack, towards the end support. In addition, the top side regular longitudinal reinforce-
ment start yielding in compression at a load level of F = 1118 kN. At the ultimate load, the
regular reinforcement shows a maximum stress of Sxx = 319 N/mm2, see Figure 7.81b.
No fracture occurs in either the prestressing tendons or the regular reinforcement (see
also Figure 7.3).
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(a) F = 750 kN, δz = 37.9 mm, T-beam bending cracks

(b) F = 947 kN, δz = 80.2 mm, T-beam flexural shear cracks

(c) Fu = 1151 kN, δu = 175.2 mm

Figure 7.80: C2-60/100-QNR, maximum principal strain E1 (end cross-beam on the left side, half span shown)
(color segments: α1 = 3, α2 = 6, see Figure 7.20)

(a) Prestressing tendons 1–7

(b) Regular reinforcements

Figure 7.81: C2-60/100-QNR, stress Sxx embedded reinforcements, Fu = 1151 kN, δu = 175.2 mm
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7.11. SUMMARY

T HE modelling approach for the different FEM models, the results of the numerical
parameter study and the results of the analyses of the Vecht bridge are summarised

in this section.

Modelling and analysis:

• FEM models A–C are created using the same parametric Python script to construct
each model.

• The material modelling, meshing, convergence and other nonlinear settings used,
are in accordance with the Dutch ‘Guidelines for Nonlinear Finite Element Analy-
sis of Concrete Structures’, i.e. RTD 1016-1 (Hendriks et al. 2017).

• The material properties for concrete, reinforcement steel and prestressing steel
used are based on the material investigation.

• The vertical stiffness of the reinforced elastomeric bearings needed to be increased
significantly, by a factor of 2.75, compared to the initial values based on standard
analytical formulas, in order to obtain results comparable to the tests.

• A more realistic stiffness of the reinforced elastomeric bearings can be obtained by
using the analytical formula by Banks, Pinter and Yeoh (Banks et al. 2002).

• 3D solid elements are used in combination with shell elements, wherever possible,
to limit the number of elements and thereby computing time. In addition, outside
the area of interest, linear elements without reinforcement are used.

• A maximum element size of 200 mm is derived in accordance with RTD 1016-1
(Hendriks et al. 2017) and in order to avoid a snap-back in the concrete softening
curve.

• The reinforcements and prestressing tendons are modelled as embedded elements
using individual bars with full bond.

• The curved prestressing tendons are approximated by straight lines at 750 mm
intervals with the vertical coordinates determined using the polynomials as de-
scribed in Chapter 5.

• The loading consists of the self-weight, the transverse prestressing of the bridge
deck, the longitudinal prestressing of the T-beam(s) and a displacement load. For
the latter a phased analysis is required.

• To improve convergence, different convergence norms are set to be satisfied si-
multaneously whenever possible. In addition, an automatic step size routine is
utilized.

• In all analyses the ultimate failure load is defined as the highest load obtained in a
converged step.

• For FEM models A–B, the stiffness of the shell T-beam is calibrated to give the same
deflections as the T-beam modelled with solid elements.

• The transition piece near the end block is (partly) omitted to prevent badly shaped
elements.
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• Composed line elements are applied in the T-beam, at the area of interest, in order
to obtain 1D sectional forces. Likewise, composed surface elements are applied in
the integrated deck slab, in order to obtain 2D distributed sectional forces.

Results of the numerical parameter study:

• Using a model for a simply supported T-beam (FEM model C) and the two load
positions of the tests, element sizes of 50 mm, 100 mm and 200 mm are investi-
gated. In addition, three different solution methods are investigated: full Newton-
Raphson (FNR), Modified Newton-Raphson (MNR) and Quasi-Newton (QNR).

• With one exception, 100% convergence is achieved, using the QNR method, and
the difference in ultimate load, for all element sizes, is between 1–3%. In one case,
the analysis does not convergence at the onset of plasticity.

• Better convergence is obtained for smaller element sizes. In addition, in the last
phase, when either an energy or a force norm is required for convergence, the force
norm is better satisfied for smaller element sizes.

• Of all solution methods, the QNR with the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method performs best in relation to the force norm with the other two methods
showing a constantly increasing deviation from the force norm in the last phase of
the analysis.

• The QNR method with BFGS method performs best in achieving convergence, es-
pecially in combination with an adaptive step size. Generally, it also requires the
least amount of iterations and shows an iteration speed (iter/min) comparable to
the MNR method.

Results of the Vecht bridge analyses:

• The analyses of the connected T-beam tests (A-T1 and A-T2) show an ultimate
failure load of 87–95% compared to the tests. Analysis A-T1 shows only two non-
converged load steps, whereas analysis A-T2 shows zero non-converged load steps.
In addition, the results of the analyses are consistent with the test measurements.

• Analyses A-T1 and A-T2 show a failure mode consistent with the tests, i.e. deck
slab punching causing an immediate overload and failure of the T-beam.

• At loads exceeding 72–89% of the ultimate load, analyses A-T1 and A-T2 show indi-
cations of compressive arch action (CAA), with strut-like compressive stresses and
increasing cross-sectional compressive normal forces in the T-beam, in both lon-
gitudinal directions, from the load position towards the end cross-beam and the
intermediate cross-beam. The additional compressive normal forces in the loaded
T-beam are balanced by tensile normal forces in the adjacent T-beams.

• Analyses A-T1 and A-T2 show compressive membrane action (CMA) in the trans-
verse direction in the integrated deck slab and the top flange with compressive
stresses approximately 4–5 times higher then the initial values.

• The analyses of the disconnected T-beam tests (B-T4, B-T5 and B-T6), with the
load positioned at 2250 mm, show an ultimate failure load of 84–89% compared to
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the tests with all load steps converged. In addition, the results of the analyses are
consistent with the test measurements.

• Analyses B-T4, B-T5 and B-T6 show a failure mode consistent with the tests, i.e. a
flexural shear failure of the T-beam.

• The analysis of the disconnected T-beam test B-T7, with the load positioned at
4000 mm, shows an ultimate failure load of 118% compared to the test with all
load steps converged. The results of this analysis are not consistent with the test
measurements.

• The analysis A-T7 has shown that the load-deflection behaviour is very sensitive
to the stiffness of the connected end cross-beam, at the non-loaded side, as well
as to the order of cracking (T-beam bending and shear cracks at the load position,
hogging bending moment cracks due to the partial clamping effect and torsional
cracks at the connected end cross-beam).

• The ultimate failure load of the simply supported T-beams (analyses C1 and C2) is
very close to the ultimate failure load of the disconnected T-beams (analyses B-T4,
B-T5, B-T6 and B-T7) with the difference in ultimate load between 4–5%.





8
SYSTEM BEHAVIOUR IN BRIDGES

ANALYSIS OF THE CASE STUDY

In this chapter the additional load capacity, due to the effects of ‘system behaviour’ in pre-
stressed concrete T-beam bridges, is analysed using the theory of arch action (Chapters
3–4) and the different parts of the case study of the Vecht bridge (Chapters 5–7). The anal-
ysis consists of the T-beam shear behaviour, the compressive membrane action in the slab
(CMA), the compressive arch action in the T-beam (CAA) and the combined effects of CMA
and CAA.

187



8

188 8. SYSTEM BEHAVIOUR IN BRIDGES - ANALYSIS OF THE CASE STUDY

8.1. INTRODUCTION

I N this chapter the additional load capacity, due to the effects of ‘system behaviour’ in
prestressed concrete T-beam bridges, is analysed using the results of the case study of

the Vecht bridge as treated in the previous chapters. The analysis is aimed at the research
objectives, as stated in Chapter 1 Section 1.2, and the research questions, as stated in
Chapter 1 Section 1.3. For an overview of the different parts of the research, and how
they connect, the reader is referred to Chapter 1 Figure 1.3.

8.2. ANALYSIS OF THE CASE STUDY

T HE following aspects of system behaviour are analysed, based on the results of Chap-
ters 5–7 and using the theory of arch action as treated in Chapters 3–4:

• shear behaviour and resistance of an individual, disconnected and connected T-
beam (Sections 8.2.1–8.2.3);

• compressive membrane action (CMA) (Section 8.2.4);

• compressive arch action (CAA) (Section 8.2.5).

• combined CMA (slab) and CAA (T-beam) test 1 (Section 8.2.6).

The results of the analysis of system behaviour of the case study of the Vecht bridge are
summarised in Section 8.3.

8.2.1. SHEAR RESISTANCE INDIVIDUAL T-BEAM

I N this section, the shear resistance of an individual T-beam of the Vecht bridge is anal-
ysed, using the results from the linear analyses (Chapter 5), the full-scale collapse tests

(Chapter 6) and the nonlinear analyses (Chapter 7).
For a simply supported T-beam, the results are based on the linear and the nonlin-

ear analysis. Note that in the full-scale collapse tests 4–7 the T-beams are not fully dis-
connected and therefore these results will be treated separately. For a simply supported
T-beam, the comparison of the ultimate load, between the linear and the nonlinear anal-
ysis, at the two investigated load positions (a), is given in Table 8.1. The linear analysis
results, with the corresponding cross-sectional verification, are also shown in Figure 8.1.
At both load positions, the governing failure mode is flexural shear, with Fmax,VFS = 766 kN
(Figure 8.1a at x = 2.20 m) and Fmax,VFS = 710 kN (Figure 8.1b at x = 4.00 m). Note that, at
a load position of a = 4.00 m, the failure mode is very close to a flexural failure.

The next step is to determine the shear resistance at the critical cross-section from
the ultimate loads given in Table 8.1. For the linear analysis, with the load positioned at
a = 2.25 m, Fmax,VFS = 766 kN, with the critical cross-section at x = 2.20 m. Combining the
acting shear of the dead weight and the prestressing (Vdw +Vpw, see Chapter 5 Section
5.4 Figure 5.11c) and using the ratio between the load position and the span, the shear
resistance of the linear analysis is determined by Equation 8.1 (for VRm,c see Chapter 5
Section 5.6.2 Figure 5.18a).

VR,(8.1) = (Vdw +Vpw)+VF = (127−303)+ (21.75/24.00)×766 =VRm,c = 518 [kN] (8.1)
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Table 8.1: Ultimate load comparison between nonlinear analyses (Fu,NL) and linear analysis (Fmax)
(simply supported T-beam)

analysis a Fu,NL
a Fmax,VFS

b ratio Fmax,Mu
b,c ratio

mm kN kN kN
C1-50/100-QNR 2250 1512

766
1.97

1526
0.99

C1-100-QNR 2250 1420 1.85 0.93
C1-200-QNR 2250 1550 2.02 1.02
average 1494 1.95 0.98
C2-60/100-QNR 4000 1151

710
1.62

1054
1.09

C2-100-QNR 4000 1142 1.61 1.08
C2-200-QNR 4000 1155 1.63 1.10
average 1149 1.62 1.09
a see Chapter 7 Section 7.7.1 Table 7.12, b see Chapter 5 Section 5.6.5 Figure 5.27
c in the linear analysis Mu is underestimated by approximately 10% (see Chapter 5 Section 5.6.4)
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Figure 8.1: Cross-sectional verification with fixed load positions (simply supported T-beam)

For the nonlinear analyses C1, with the load positioned at a = 2.25 m, Fu,NL = 1494 kN (av-
erage). For a direct comparison to the linear analysis, the critical cross-section is again
taken at x = 2.20 m. Assuming the acting shear of the dead weight and the prestress-
ing from the linear analysis (the shear force of the nonlinear analysis corresponds well
to the linear analysis, see Chapter 7 Section 7.8.1), and using the ratio between the load
position and the span, the shear resistance of the nonlinear analyses C1 is determined
by Equation 8.2.

VR,(8.2) = (Vdw +Vpw)+VF = (127−303)+ (21.75/24.00)×1494 = 1177 [kN] (8.2)

Likewise, for the linear analysis, with the load positioned at a = 4.00 m, Fmax,VFS = 710 kN,
with the critical cross-section at x = 4.00 m. Combining the acting shear of the dead
weight and the prestressing (Vdw+Vpw, see Chapter 5 Section 5.4 Figure 5.11c) and using
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the ratio between the load position and the span, the shear resistance of the linear anal-
ysis is determined by Equation 8.3 (for VRm,c see Chapter 5 Section 5.6.2 Figure 5.18a).

VR,(8.3) = (Vdw +Vpw)+VF = (106−149)+ (20.00/24.00)×710 =VRm,c = 548 [kN] (8.3)

Likewise, for the nonlinear analyses C2, with the load positioned at a = 4.00 m,
Fu,NL = 1149 kN (average). For a direct comparison to the linear analysis, the critical
cross-section is again taken at x = 4.00 m. Assuming the acting shear of the dead weight
and the prestressing from the linear analysis like before, and using the ratio between the
load position and the span, the shear resistance of the nonlinear analyses C2 is deter-
mined by Equation 8.4.

VR,(8.4) = (Vdw +Vpw)+VF = (106−149)+ (20.00/24.00)×1149 = 914 [kN] (8.4)

In addition to a simply supported T-beam, the results of the disconnected T-beam tests
4–7 (partially clamped) and the corresponding nonlinear analyses are analysed. The
comparison of the ultimate load, between the nonlinear analyses and the disconnected
beam tests, at the two investigated load positions (a), is given in Table 8.2.

Table 8.2: Ultimate load comparison between nonlinear analyses (Fu,NL) and tests (Fu,test)
(disconnected T-beam)

analysis a Fu,NL
a Fu,test

b ratio
mm kN kN

B-T4-60/180-QNR 2250 1486 1678 0.89
B-T5-60/180-QNR 2250 1505 1703 0.88
B-T6-60/180-QNR 2250 1498 1774 0.84
average 1496 1718 0.87
B-T7-60/180-QNR 4000 1203 1022 1.18
a see Chapter 7 Section 7.9 Tables 7.18–7.21, b see Chapter 6 Section 6.5 Table 6.9

The next step is to determine the shear resistance at the critical cross-section from the
ultimate loads given in Table 8.2. For the nonlinear analyses B-T4, B-T5 and B-T6, with
the load positioned at a = 2.25 m, Fu,NL =1496 kN (average). The load distribution is
complicated by the fact that the T-beam is not fully simply supported (see Chapter 7
Section 7.5). From analysis B-T6 (closest to the average failure load) the reaction forces at
the ultimate load (Fu,NL = 1498 kN) are: RA = 1486 kN (loaded side) and RB = 335 kN (non-
loaded side). These reaction forces include the dead weight. The reaction force, due to
the dead weight on either side, is equal to approximately 166 kN (note that the difference
between either sides is negligible). From these values, the ratio between the load and the
support reaction RA, at the loaded side, can be determined as: (1486-166)/1498 = 0.88.
Note that for a simply supported beam, this ratio is: (21.75/24.00) = 0.91. The difference
is due to the partial clamping effect of the connected end cross-beam at the non-loaded
side. Using this factor, and assuming the acting shear as a result of the dead weight and
the prestressing at the critical cross-section at x = 2.20 m from the linear analysis like
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before, the shear resistance of the nonlinear analyses B-T4, B-T5 and B-T6 is determined
by Equation 8.5.

VR,(8.5) = (Vdw +Vpw)+VF = (127−303)+0.88×1496 = 1140 [kN] (8.5)

From the experiments, tests 4–6, with the load positioned at a = 2.25 m, Fu,test = 1718 kN
(average). The critical cross-section is again taken at x = 2.20 m. Using the ratio be-
tween the load and the support reaction RA from the nonlinear analysis and assuming
the acting shear as a result of the dead weight and the prestressing like before, the shear
resistance of the tests 4–6 is determined by Equation 8.6.

VR,(8.6) = (Vdw +Vpw)+VF = (127−303)+0.88×1718 = 1335 [kN] (8.6)

For the nonlinear analysis B-T7, with the load positioned at a = 4.00 m, Fu,NL = 1203 kN.
The load distribution is again complicated by the fact that the T-beam is not fully simply
supported (see Chapter 7 Section 7.5). From analysis B-T7, the reaction forces at the ulti-
mate load (Fu,NL = 1203 kN) are: RA = 1129 kN (loaded side) and RB = 524 kN (non-loaded
side). These reaction forces include the dead weight, which is equal to approximately
166 kN. From these values, the ratio between the load and the support reaction RA, at
the loaded side, can be determined as: (1129-166)/1203 = 0.80. Note that for a simply
supported beam, this ratio is: (20.00/24.00) = 0.83. The difference is due to the partial
clamping effect of the connected end cross-beam at the non-loaded side. Using this fac-
tor, and assuming the acting shear as a result of the dead weight and the prestressing
at the critical cross-section at x = 4.00 m from the linear analysis like before, the shear
resistance of the nonlinear analysis B-T7 is determined by Equation 8.7.

VR,(8.7) = (Vdw +Vpw)+VF = (106−149)+0.80×1203 = 918 [kN] (8.7)

Finally, from the experiment, test 7, with the load positioned at a = 4.00 m,
Fu,test = 1022 kN. The critical cross-section is again taken at x = 4.00 m. Using the ratio
between the load and the support reaction RA like before and assuming the acting shear
as a result of the dead weight and the prestressing like before, the shear resistance of test
7 is determined by Equation 8.8.

VR,(8.8) = (Vdw +Vpw)+VF = (106−149)+0.80×1022 = 774 [kN] (8.8)

The results of the calculated shear resistances, from the linear analyses, the full-scale
collapse tests and the nonlinear analyses (Equations 8.1–8.8), at the two investigated
load positions (a) and critical cross-sections (x), are summarised in Figure 8.2.

In conclusion, with the load positioned at 2.25 m, compared to the linear analysis,
the flexural shear resistance from the nonlinear analyses is increased by 120–127%, see
Figure 8.2a. In addition, comparing the linear analysis to the tests, the flexural shear re-
sistance is increased, on average, by 158%.

Likewise, with the load positioned at 4.00 m, compared to the linear analysis, the
flexural shear resistance from the nonlinear analyses is increased by 67–68%, see Figure
8.2b. In addition, comparing the linear analysis to the test, the flexural shear resistance
is increased by 41%. Note that in the nonlinear analyses, for the shear resistance at the
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Figure 8.2: Summary of shear resistance individual T-beam

critical cross-section, similar results are obtained for a disconnected beam as compared
to a simply supported beam.

Note that the experimental shear resistance, with the load positioned at 4.00 m, is
based on just one experiment, i.e. test 7. In addition, during this experiment, a signif-
icant unloading was necessary to adjust the safety chains (see Chapter 6 Section 6.5.4).
As this unloading took place very close to the ultimate load, this might have influenced
the ultimate load capacity. In addition, the nonlinear analysis of test 7 (B-T7) has shown
that the load-deflection behaviour is very sensitive to the stiffness of the connected end
cross-beam, at the non-loaded side, as well as to the order of cracking (T-beam bending
and shear cracks at the load position, hogging bending moment cracks due to the partial
clamping effect and torsional cracks at the connected end cross-beam). Based on the
shear resistance of 914 kN (Equation 8.4), resulting from the nonlinear analyses C2, test
7 shows a somewhat unexpected low shear resistance.

8.2.2. SHEAR RESISTANCE CONNECTED T-BEAM

I N this section, the shear resistance of a connected T-beam of the Vecht bridge is anal-
ysed, using the results from the linear analyses (Chapter 5), the full-scale collapse tests

(Chapter 6) and the nonlinear analyses (Chapter 7).
For a connected T-beam, the comparison of the ultimate load, between the linear

and the nonlinear analysis, at the two investigated load positions (a), is given in Table
8.3. In addition, the comparison of the ultimate load, between the nonlinear analyses
and the connected beam tests 1–2, at the two investigated load positions (a), is given in
Table 8.4. The linear analysis results, with the corresponding cross-sectional verification,
are also shown in Figure 8.3. At both load positions, the governing failure mode is shear
tension, with Fmax,VST = 1693 kN (Figure 8.3a at x = 1.80 m) and Fmax,VST = 1641 kN (Figure
8.3b at x = 4.20 m). Note that in the case of a = 4.00 m, the shear tension resistance is
defined by the cracking moment (Mcr), see Figure 8.3b (see also Chapter 5 Section 5.6.3).

The next step is to determine the shear resistance at the critical cross-section from the
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Table 8.3: Ultimate load comparison between nonlinear analyses (Fu,NL) and linear analysis (Fmax)
(connected T-beam)

analysis a Fu,NL
a Fmax,VST

b ratio Fmax,Mu
b,c ratio

mm kN kN kN

A-T2-90/180-QNR 2250 3256 1693d 1.92 3642c 0.89
A-T1-90/180-QNR 4000 2760 1641 1.68 3417 0.81
a see Chapter 7 Section 7.8 Tables 7.16–7.17, b see Chapter 5 Section 5.6.5 Figure 5.29
c in the linear analysis Mu is underestimated by approximately 10% (see Chapter 5 Section 5.6.4)
d in the linear analysis the difference between T-beam number 5 and 6 and between the load

position a = 2.20 m and a = 2.25 m is neglected

Table 8.4: Ultimate load comparison between nonlinear analyses (Fu,NL) and tests (Fu,test)
(connected T-beam)

analysis a Fu,NL
a Fu,test

b ratio
mm kN kN

A-T2-90/180-QNR 2250 3256 3444 0.95
A-T1-90/180-QNR 4000 2760 3004 0.92
a see Chapter 7 Section 7.8 Tables 7.16–7.17, b see Chapter 6 Section 6.4 Table 6.7
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Figure 8.3: Cross-sectional verification with fixed load positions (connected T-beam)

ultimate loads given in Tables 8.3–8.4. For the linear analysis of connected T-beam num-
ber 5, with the load positioned at a = 2.20 m, Fmax,VST = 1693 kN, with the critical cross-
section at x = 1.80 m. Combining the acting shear of the dead weight and the prestressing
(Vdw +Vpw, see Chapter 5 Section 5.4 Figure 5.11c) with the acting shear of the load, the
shear resistance of the linear analysis is determined by Equation 8.9.

VR,(8.9) = (Vdw +Vpw)+VF = (132−172)+942 =VR,ST = 902 [kN] (8.9)

For the nonlinear analysis of connected T-beam number 6, with the load positioned at
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a = 2.25 m, Fu,NL = 3256 kN. In the nonlinear analysis, the critical cross-section is at
x = 1.818 ≈ 1.80 m, i.e. similar to the linear analysis (Chapter 7 Section 7.8.2 Figure
7.51b). Assuming the acting shear of the dead weight and the prestressing from the linear
analysis (the shear force of the nonlinear analysis corresponds well to the linear analy-
sis, see Chapter 7 Section 7.8.1), the shear resistance of the nonlinear analysis A-T2 is
determined by Equation 8.101.

VR,(8.10) = (Vdw +Vpw)+VF = (132−172)+1480 = 1440 [kN] (8.10)

From the experiment, test 2, with the load positioned at a = 2.25 m, Fu,test = 3444 kN. The
critical cross-section is again taken at x = 1.80 m. Assuming the acting shear as a result
of the dead weight and the prestressing like before, as well as taking the ratio between
the acting shear (VF) and the ultimate load (Fu) from the nonlinear analysis, the shear
resistance of test 2 is determined by Equation 8.11.

VR,(8.11) = (Vdw +Vpw)+VF = (132−172)+ (1480/3256)×3444 = 1525 [kN] (8.11)

Likewise, for the linear analysis of connected T-beam number 11, with the load posi-
tioned at a = 4.00 m, Fmax,VST = 1641 kN, with the critical cross-section at x = 4.20 m.
Combining the acting shear of the dead weight and the prestressing (Vdw+Vpw, see Chap-
ter 5 Section 5.4 Figure 5.11c) with the acting shear of the load, the shear resistance of
the linear analysis is determined by Equation 8.12. Note that, for cross-sections x >a, VF

is negative.

VR,(8.12) = (Vdw +Vpw)+VF = (103−141)−531 =VR,ST =−569 [kN] (8.12)

For the nonlinear analysis of connected T-beam number 11, with the load positioned
at a = 4.00 m, Fu,NL = 2760 kN. In the nonlinear analysis, the critical cross-section is
at x = 4.335 ≈ 4.20 m, i.e. similar to the linear analysis (Chapter 7 Section 7.8.1 Figure
7.36d). Assuming the acting shear of the dead weight and the prestressing from the linear
analysis, the shear resistance of the nonlinear analysis A-T1 is determined by Equation
8.131.

VR,(8.13) = (Vdw +Vpw)+VF = (103−141)−1057 =−1095 [kN] (8.13)

Finally, from the experiment, test 1, with the load positioned at a = 4.00 m, Fu,test = 3004 kN.
The critical cross-section is again taken at x = 4.20 m. Note that in test 1, prior to the
shear punching failure, shear cracks occurred in the web of the T-beam in both longi-
tudinal directions (Chapter 6 Section 6.4.1 Figure 6.31). Assuming the acting shear as a
result of the dead weight and the prestressing like before, as well as taking the ratio be-
tween the acting shear (VF) and the ultimate load (Fu) from the nonlinear analysis, the
shear resistance of test 1 is determined by Equation 8.14.

VR,(8.14) = (Vdw +Vpw)+VF = (103−141)− (1057/2760)×3004 =−1188 [kN] (8.14)

1Note that in the nonlinear analysis the signs of the acting shear are reversed, see Chapter 7.
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The results of the calculated shear resistances from the linear analyses, the full-scale col-
lapse tests and the nonlinear analyses (Equations 8.9–8.14), at the two investigated load
positions (a) and critical cross-sections (x), are summarised in Figure 8.4 (in absolute
values).
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Figure 8.4: Summary of shear resistance connected T-beam

Note that, due to the premature punching failure of the deck, the ‘real’ shear resistance
of the connected T-beam, at the two investigated load positions, from both the nonlinear
analysis as well as the tests, might be underestimated.

In conclusion, with the load positioned at 2.25 m, compared to the linear analysis,
the shear tension resistance from the nonlinear analysis is increased by 60%, see Figure
8.4a. In addition, comparing the linear analysis to the test, the shear tension resistance
is increased by 69%.

Likewise, with the load positioned at 4.00 m, compared to the linear analysis, the
shear tension resistance from the nonlinear analysis is increased by 92%, see Figure 8.4b.
In addition, comparing the linear analysis to the test, the shear tension resistance is in-
creased by 109%.

8.2.3. SHEAR RESISTANCE INDIVIDUAL VERSUS CONNECTED T-BEAM

F OR several reasons, the results of the shear resistance of an individual T-beam, see
Section 8.2.1, cannot be readily compared to the results of the shear resistance of a

connected T-beam, see Section 8.2.2.
Firstly, the difference in load distribution causes the failure mode to switch from flex-

ural shear, in case of an individual T-beam, to shear tension, in case of a connected T-
beam, compare Figure 8.1 to Figure 8.3. The linear analysis shows that this difference in
behaviour becomes more apparent for connected T-beams at a greater distance from the
edge beam (see Chapter 5 Section 5.6.5, compare Figures 5.27–5.30). In addition to the
change of failure mode, the load distribution also causes a (minor) shift of the location
of the critical cross-sections, with x = 2.20 m and x = 4.00 m, in case of an individual T-
beam (Figure 8.1), and x = 1.80 m and x = 4.20 m, in case of a connected T-beam (Figure
8.3).
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Secondly, in case of a connected T-beam, due to the constraints provided by the sur-
rounding members, the nonlinear analyses A-T1 and A-T2 show a significant additional
compressive normal force in the loaded T-beam (see Chapter 7 Section 7.8), which will
affect the shear resistance.

Despite the above-mentioned caveats, Figure 8.5 shows the increase in shear resis-
tance of a connected T-beam compared to an individual T-beam. For the connected T-
beam results, it is noted that the load distribution is strongly influenced by the presence
of the cross-beams. For cross-sections closer to a cross-beam, the shear tension resis-
tance tends to related to a maximum principal tensile stress (σ1) in the web, whereas
for cross-sections closer to the area in-between the cross-beams, the shear tension re-
sistance tends to relate to a maximum principal tensile stress at the bottom fibre, i.e. the
cracking moment (Mcr), see Chapter 5 Section 5.6.3 Figure 5.21.

The shear tension resistance of the linear analyses can possibly be improved by tak-
ing into account the additional compressive normal forces from the nonlinear analyses.
With the load positioned at a = 2.25 m (analysis A-T2), the additional compressive nor-
mal force at failure equals 2010 kN (Chapter 7 Section 7.8.2 Figure 7.48). For the linear
analysis of connected T-beam number 5, taking the additional compressive normal force
into account, Fmax,VST = 2017 kN (x = 1.80 m). Combining the acting shear of the dead
weight and the prestressing (Vdw +Vpw), with the acting shear of the load, the shear re-
sistance of the improved linear analysis is determined by Equation 8.15.

VR,(8.15) = (Vdw +Vpw)+VF = (132−172)+1123 =VR,ST = 1083 [kN] (8.15)

With the load positioned at a = 4.00 m (analysis A-T1), the additional compressive nor-
mal force at failure equals 1740 kN (Chapter 7 Section 7.8.1 Figure 7.33). For the lin-
ear analysis of connected T-beam number 11, taking the additional compressive normal
force into account, Fmax,VST = 2000 kN (x = 4.20 m). Combining the acting shear of the
dead weight and the prestressing (Vdw+Vpw), with the acting shear of the load, the shear
resistance of the improved linear analysis is determined by Equation 8.16.

518

1159

1335

902

1440
1525

LIN NONLIN TEST

0

500

1000

1500

2000

V
R

 [
k
N

]

individual connected

(a) a = 2.25 m

548

916

774

569

1095
1188

LIN NONLIN TEST

0

500

1000

1500

V
R

 [
k
N

]

individual connected

(b) a = 4.00 m

Figure 8.5: Summary of shear resistance individual versus connected T-beam
(results of Sections 8.2.1–8.2.2)



8.2. ANALYSIS OF THE CASE STUDY

8

197

518

1159

1335

1083

1440
1525

LIN NONLIN TEST

0

500

1000

1500

2000

V
R

 [
k
N

]

individual connected

(a) a = 2.25 m

548

916

774
685

1095
1188

LIN NONLIN TEST

0

500

1000

1500

V
R

 [
k
N

]

individual connected

(b) a = 4.00 m

Figure 8.6: Summary of shear resistance individual versus connected T-beam
(linear analysis improved with additional compressive normal force)

VR,(8.16) = (Vdw +Vpw)+VF = (103−141)−647 =VR,ST =−685 [kN] (8.16)

With the results of the improved linear analysis, Figure 8.6 shows the increase in shear
resistance of a connected T-beam compared to an individual T-beam. In both cases, the
improved linear analysis shows an increase of the shear resistance of 20%.

In all cases and at both loading positions, due to the effects of system behaviour,
the shear resistance of a connected T-beam is increased as compared to an individual
T-beam, see Figures 8.5–8.6. Based on the experiments, tests 1–7, and the corresponding
nonlinear analyses, the shear resistance is increased by 14–53%. As stated in the previous
section, due to the premature punching failure of the deck, the ‘real’ shear resistance of
the connected T-beam might be underestimated.

8.2.4. COMPRESSIVE MEMBRANE ACTION

I N this section, the ultimate load related to compressive membrane action (CMA), of a
connected T-beam of the Vecht bridge is analysed, using the analytical model for arch

action, as derived in Chapter 4, and comparing the results to the full-scale collapse tests
1–2 (Chapter 6) and the corresponding nonlinear analyses (Chapter 7).

In both tests, the load is situated at the center of the T-beam. The main difference
between test 1 and 2, is the location of the load in the longitudinal direction (Chapter
6 Section 6.2 Figure 6.1). In Figure 8.7, the cross-section of the deck and the assumed
arch, at the location of the concentrated load, are indicated. As shown in Figure 8.7, the
arch is assumed to develop from the loading point, in the top flange of the loaded T-
beam and the integrated deck slab, to the adjacent T-beams on either side. The shape of
the arch shown in Figure 8.7 is in accordance with the results of the nonlinear analysis,
see Chapter 7 Section 7.8.1 Figure 7.39b (analysis A-T1) and Section 7.8.2 Figure 7.47b
(analysis A-T2). The length of the arch is taken approximately equal to the distance be-
tween the cracks resulting from the transverse hogging bending moments on the top
side of the slab, see Chapter 7 Section 7.8.1 Figure 7.29c (analysis A-T1) and Section 7.8.2



8

198 8. SYSTEM BEHAVIOUR IN BRIDGES - ANALYSIS OF THE CASE STUDY

Figure 7.47c (analysis A-T2). Note that the sagging bending cracks on the bottom side
are located on either side of the T-beam web. The location of the plastic hinges can
therefore be modelled as shown in Figure 8.7 model (b). However, with the analytical
model for arch action this is simplified to model (a). With these assumptions, the slab
slenderness is equal to: λ = L/h = 1950/180 = 10.83. The transverse prestressing in the
deck results in an initial compressive stress, at the position of the load, of approximately
SXX = -2.9 N/mm2, see Chapter 7 Section 7.8.1 (analysis A-T1) and SXX = -3.1 N/mm2, see
Section 7.8.2 (analysis A-T2).

Figure 8.7: Assumed slab arching (CMA) in connected beam tests 1–2 (measurements in mm)

In both tests 1 and 2, the failure mode is punching of the deck slab (Chapter 6 Section
6.4). The failure load can therefore not be predicted by the analytical model for arch
action (Chapter 4), as this model relates to the flexural CMA capacity. In order to pre-
dict the punching shear capacity of the deck slab, the presence of the loaded T-beam is
temporarily neglected, resulting in a free span of the deck slab of 1950 mm. The punch-
ing shear capacity is then predicted using the results of the experimental program on
transverse prestressed slabs by Amir (2014). These experiments are a 1:2 scale of the
Van Brienenoord bridge, see also Chapter 2. The selected experimental tests, with a sin-
gle concentrated load at midspan, and corresponding parameters and results are sum-
marised in Table 8.5. In all tests, the slab has a free span of L = 1050 mm and a thickness
of h = 100 mm. In addition, the top and bottom transverse reinforcement in the span is
equal to ø6-200 mm ( fy = 525 N/mm2).

The first step is to demonstrate the analytical model for arch action for the 1:2 scale
experimental results summarised in Table 8.5. Assuming a linear horizontal stiffness2

(khor), the calibration of the analytical model consist of obtaining a load versus displace-
ment curve which includes a data point at a load of Fu = 338.7 kN at a vertical deflection
of δu = 5.50 mm, see Table 8.5. The results of the first step calibration are given in Figure
8.8 (detailed results are given in Appendix C Sections C.1–C.2). For the acting width of the
slab, a load distribution at an angle of 45◦, from the load to the slab edges, is assumed re-
sulting in a width of the slab equal to the span, i.e. B = 1050 mm. In Figure 8.8b, the influ-
ence of the transverse bending moments in the slab is taken into account assuming full
plasticity of the reinforcement in the span, i.e. NMu,span = 1/4×π×62 × (1050/200)×525 =
78× 103 N, resulting in ζspan = 0.067 (Equation 4.16), whereas in Figure 8.8a the trans-
verse bending moments are neglected. The flexural CMA capacity is also derived in the
thesis by Amir (2014), using the model by Park and Gamble (2000), resulting in an ulti-
mate load capacity of approximately 410 kN. Figure 8.8 demonstrates that similar values

2Using a linear horizontal stiffness Chapter 4 Equation 4.1 simplifies to ∆F = khor ×∆u.
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Table 8.5: Punching shear capacity of transverse prestressed slabs with CMA, selected experimental results
with a single concentrated load at midspan and corresponding parameters (Amir 2014)

test λ fcm TPLa loading plate ∆ub δu Fu

- N/mm2 N/mm2 mm×mm mm mm kN
BB01 10.50 65 2.50 200×200 0.368 5.80 348.7
BB02 10.50 65 2.50 200×200 0.414 4.92 321.4
BB07 10.50 65 2.50 200×200 0.152 5.77 345.9
average 0.311 5.50 338.7
a TPL = transverse prestressing level, b horizontal displacement, average from both sides
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(a) khor = 995000 N/mm, ζspan = ζsupp = 0,
δu = 13.17 mm, Fu,max = 454.4 kN
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(b) khor = 1009000 N/mm, ζspan = 0.067,
ζsupp = 0, δu = 12.99 mm, Fu,max = 450.8 kN

Figure 8.8: Ultimate concentrated load, L = B = 1050 mm, h = 100 mm (1:2 scale),
fcm = 65 N/mm2, TPL = 2.5 N/mm2, dashed line indicates punching failure at Fu = 338.7 kN

(for detailed results see Appendix C Sections C.1–C.2)
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(a) khor = 1990000 N/mm, ζspan = ζsupp = 0,
δu = 26.37 mm, Fu,max = 1818 kN

0 20 40 60

u
 = a

v
+ l

v
 [mm]

0

500

1000

1500

2000

F
u
 [

k
N

]

(b) khor = 2018000 N/mm, ζspan = 0.067,
ζsupp = 0, δu = 25.98 mm, Fu,max = 1803 kN

Figure 8.9: Ultimate concentrated load, L = B = 2100 mm, h = 200 mm (1:1 scale),
fcm = 65 N/mm2, TPL = 2.5 N/mm2, dashed line indicates punching failure at Fu = 1355 kN

(for detailed results see Appendix C Sections C.3–C.4)
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are obtained by the analytical model for arch action. Note that the horizontal deforma-
tion (∆u) is not well predicted by the analytical model, as the obtained values are much
higher (Appendix C Sections C.1–C.2) compared to the deformations from the experi-
ments (Table 8.5). Figure 8.8 shows that the punching failure load is approximately equal
to 75% of the flexural failure load. Note that with ζspan = 0.067 (Figure 8.8b), a somewhat
higher stiffness is required in order to obtain the same load capacity for punching.

The next step is to repeat the analysis, using the real dimensions of the Van Brieneno-
ord bridge and by applying a force scale factor of x2, resulting in a punching load capac-
ity of Fu = 4×338.7 ≈ 1355 kN. Note that an additional size factor, as reported by Amir
(2014) and dependent on the transverse prestressing level (TPL), is ignored (0.98–1.08
for TPL = 2.5 N/mm2). The results of the analysis are shown Figure 8.9 (detailed results
are given in Appendix C Sections C.3–C.4).

The result of the two-step calibration is a horizontal stiffness for the Van Brienenoord
bridge, equal to khor ≈ 1990000–2018000 N/mm. The Vecht bridge is assumed to have at
least a similar or, more likely, a much higher horizontal stiffness. This is because the
calibration is based upon the setup of the 1:2 scale bridge, consisting of only 4 T-beams,
and the Vecht bridge tests 1–2 are conducted with at least five adjacent T-beams (Chap-
ter 6 Section 6.2 Figure 6.1). In addition, the setup of the 1:2 scaled bridge includes two
cross-beams with a spacing of 10950 mm compared to 8000 mm in the case of the Vecht
bridge (Chapter 5 Section 5.2.4 Figure 5.5).

As shown in Table 8.5 the main parameters for CMA are very similar to the Vecht
bridge, i.e. the slab slenderness (λ) and the concrete compressive strength ( fcm). How-
ever, the transverse prestressing level is slightly lower as compared to the Vecht bridge. In
the numerical parameter study by Amir (2014) the transverse prestressing level is inves-
tigated between 0.5–4.5 N/mm2, and a linear relation was found between the punching
failure load and the transverse prestressing level (TPL): Fu = 25.139×TPL + 240.31 [kN].
For the Vecht bridge, with an average transverse prestressing level of SXX = -3.0 N/mm2

(tests 1–2), this results in Fu = 315.7 kN. Note that the experiments resulted in higher
failure loads as compared to the numerical study, with an average ratio of 1.12 for the
selected tests listed in Table 8.5.

For the Vecht bridge, the slab thickness is increased by a factor of 1.8. Therefore,
the resulting size factor for the ultimate load, including the increase of the punching
perimeter, is equal to 2×1.8 = 3.6. The punching load capacity for the Vecht bridge is
therefore equal to approximately Fu = 3.6×338.7 = 1219 kN (average from tests). When
taking into account the slightly higher transverse prestressing level, and using the ratio
between the experiments and the numerical parameter study, the punching capacity in-
creases to Fu = 3.6×1.12×315.7 = 1273 kN.

For the analysis of tests 1 and 2 of the Vecht bridge, the next step is to apply the an-
alytical model for arch action using a horizontal stiffness, obtained from the calibration,
of khor ≈ 1990000 N/mm (Figure 8.9a). Note that, in the case of the Vecht bridge, due
to the lower reinforcement ratio and yielding strength of the transverse reinforcement
(Chapter 5 Section 5.2), the influence of the bending moments can be neglected. Conser-
vatively, the lower concrete compressive strength of the integrated deck slab ( fcm = 60.3 N/mm2)
will be used in the analysis. Note that for the Vecht bridge, part of the punching cone is
located in the top flange of the T-beam which has a 45% higher concrete compressive
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strength ( fcm = 87.7 N/mm2). For the acting width of the slab see also Chapter 7 Section
7.8.1 Figures 7.41–7.42 (analysis A-T1) and Section 7.8.2 Figures 7.56–7.57 (analysis A-
T2). With these assumptions, the load versus vertical deflection is shown in Figure 8.10a
(detailed results are given in Appendix C Section C.5).
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(a) khor = 1990000 N/mm, ζspan = ζsupp = 0,
Fu,max = 1442 kN (δu = 21.87 mm)
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(b) khor = 2710000 N/mm, ζspan = ζsupp = 0,
Fu,max = 1533 kN (δu = 17.82 mm)

Figure 8.10: Ultimate concentrated load, L = B = 1950 mm, h = 180 mm,
fcm = 60.3 N/mm2, TPL = 3.0 N/mm2, dashed line indicates punching failure at Fu = 1273 kN

(for detailed results see Appendix C Sections C.5–C.6)

As detailed vertical slab deformations are not available from tests 1–2, the deformations
are taken from the nonlinear analysis. Note that the global deformations of the T-beams
need to be subtracted in order to obtain the local, relative, slab deformations. The max-
imum relative slab deformation at failure, between the loaded T-beam and the adjacent
T-beams (at the ends of the arch), is approximately equal to δu = |-12.5+3.5| = 9.0 mm
(analysis A-T1, Chapter 7 Section 7.8.1 Figure 7.40c), and δu = |-11.5+2.0| = 9.5 mm (anal-
ysis A-T2, Section 7.8.2 Figure 7.55c). Figure 8.10a shows that the relative slab deforma-
tion, at the punching failure load of 1273 kN, is equal to δu = 12.9 mm, i.e. approximately
40% higher as compared to the nonlinear analysis. As previously discussed, the hori-
zontal stiffness for the Vecht bridge is expected to be higher. In addition, due to the
presence of the loaded T-beam at midspan, the (relative) slab deformations are reduced.
Assuming the punching failure load of 1273 kN is correct, a load versus displacement
curve can be derived by increasing the horizontal stiffness, which includes a data point
at a load of Fu = 1273 kN and a vertical deflection of δu = 9.25 mm (average from tests
1 and 2). The result of this final analysis is shown in Figure 8.10b (detailed results are
given in Appendix C Section C.6). The horizontal stiffness is now increased by 36%. The
punching failure load is approximately equal to 83–88% of the flexural failure load, see
Figure 8.10. Note that at Fu = 1273 kN, for the case of Figure 8.10a, the membrane force
is equal to∆F = 3960 kN, and for the case of Figure 8.10b equal to∆F = 3740 kN. With the
assumption of an acting width symmetrically around the loading point, the numerically
obtained values are ∆F = 3467 kN (analysis A-T1, Chapter 7 Section 7.8.1 Figure 7.42)
and ∆F = 2825 kN (analysis A-T2, Chapter 7 Section 7.8.2 Figure 7.57). When a non-
symmetrical acting width is assumed, the maximum numerical values are ∆F = 3536 kN
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(analysis A-T1), with the centre of the acting width shifted by 0.29 m (Figure 8.11), and
∆F = 3247 kN (analysis A-T2), with the centre of the acting width shifted by 0.58 m (Fig-
ure 8.12). As the slab and T-beam are connected, a more comprehensive combined CMA
(slab) and CAA (T-beam) analysis will be given in Section 8.2.6.
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Figure 8.11: A-T1-90/180-QNR, in-plane force Nxx, horizontal axis in span direction with load at y = 4.00 m
(see also Figure 7.41), grey area indicates maximum integrated membrane force ∆F
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Figure 8.12: A-T2-90/180-QNR, in-plane force Nxx, horizontal axis in span direction with load at y = 2.25 m
(see also Figure 7.56), grey area indicates maximum integrated membrane force ∆F
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8.2.5. COMPRESSIVE ARCH ACTION

I N this section, the ultimate load related to compressive arch action (CAA), of a con-
nected T-beam of the Vecht bridge is analysed, using the analytical model for arch

action, as derived in Chapter 4, and comparing the results to the full-scale collapse test
(Chapter 6) and the corresponding nonlinear analysis (Chapter 7).

For the analysis of CAA the results of test 1 are utilised. In this test, the load is cen-
tered between the end cross-beam and the intermediate cross-beam, see Figure 8.13.
As indicated in this figure, the arch is assumed to develop from the loading point to the
inner edges of the cross-beams, which are assumed to provide a significant horizontal
stiffness. This behaviour is also observed from the results of the nonlinear analysis, see
Chapter 7 Section 7.8.1 Figures 7.31 and 7.32. With these assumptions, the beam slen-
derness is equal to: λ= L/h = 7550/950 = 7.95.

As a first approach for the analysis, some assumptions have to be made regarding
the stiffness of the edge restraints. On the left side of the arch, at the end support, the
horizontal stiffness is taken as the horizontal bending stiffness of the end cross-beam,
whereas on the right side an ‘infinite’ stiffness is assumed (Figure 8.13). For simplicity,
the horizontal stiffness is derived by taking the end cross-beam as a simply supported
beam, spanning between the center lines of the adjacent T-beams, and loaded horizon-
tally at midpoint by the arch, see left of Figure 8.13. Therefore, the clamped ends (con-
tinuous beam) and the rotation due to torsion of the end cross-beam are neglected.

Figure 8.13: Assumed beam arching (CAA) in connected beam test 1 (measurements in mm)

With L = 2450 mm, b = 400 mm and h = 950 mm (Figure 8.13), Ecm = 37715 N/mm2

(assumed uncracked, see Chapter 7 Section 7.3.1 Table 7.3), Ic = 1⁄12hb3 = 5067×106 mm4,
the linear horizontal stiffness of the end cross-beam is given by Equation 8.17.

khor =
48EcmIc

L3 = 48×37715×5067×106

24503 = 623705 [N/mm] (8.17)

Due to the symmetry of the arch action model, and with the assumption of an ‘infinite’
stiffness at the location of the intermediate cross-beam, the equivalent stiffness, at ei-
ther end, is equal to: khor = 2× 623705 = 1247410 ≈ 1250000 N/mm.
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For the analysis, the T-beam cross-section including the acting width of the inte-
grated deck slab is taken. To account for the lower concrete compressive strength of the
deck, the acting width of the integrated deck slab is reduced, similar to the approach
used for the ultimate bending moment (Chapter 5 Section 5.6.4). The resulting cross-
sectional properties are shown in Appendix E Figure E.3a.

Test 1 resulted in punching of the deck thereby significantly reducing the height of
the T-beam available for arching due to the damaged top flange. In a separate analysis,
this is taken into account by omitting the part of the top flange with a width larger than
400 mm, i.e. approximately equal to the loading plate as well as the punching perimeter
(Chapter 6 Section 6.4.1 Figure 6.30). With this approach, the height of the arch is re-
duced from 950 mm to approximately 742 mm. The resulting cross-sectional properties
after punching are shown in Appendix E Figure E.3b.

The results of the analytical arch action model, for various prestressing levels, are
summarised in Tables 8.6–8.7 (full arch height) and in Tables 8.8–8.9 (reduced arch height
after punching). In Tables 8.7 and 8.9, the influence of the bending moments in the
T-beam are taken into account by taking the average additional stress in the tendons
1–7 in the span from the nonlinear analysis (Chapter 7 Section 7.8.1 Figure 7.38a), i.e.
NMu,span = ∆σp × Ap = 160 × 7 × 462 = 517 × 103 N, whereas in Tables 8.6 and 8.8 the
bending moments are neglected. Detailed results of all calculations with 100% prestress-
ing are given in Appendix D.

A key parameter for CAA is the level of restraint, i.e. the assumed horizontal stiffness
khor used in the calculation. For the case of a T-beam with an integrated deck slab and
100% prestressing, see Table 8.6, the influence of the level of restraint is investigated by
using halve and double the original stiffness. Using halve stiffness (khor = 625000 N/mm2),
results in Fu = 2903 kN with ∆u = 12.55 mm and δu = 59.52 mm. Using double stiffness
(khor = 2500000 N/mm2), results in Fu = 3146 kN with ∆u = 3.30 mm and δu = 21.47 mm.
Therefore, using halve stiffness, the ultimate load is reduced by just 5%, whereas using
double stiffness, the ultimate load is increased by just 3%.

From the results in Tables 8.6–8.9 and Appendix D the following general observations
regarding CAA are made:

• The ultimate failure load is largely independent of the level of prestressing.

• With increasing prestressing (Np), the membrane force (∆F ) decreases, whereas
the total normal force (Ftot) remains almost constant. This indicates that CAA is
a structural phenomenon which is mostly dependent on the level of restraint, the
beam slenderness and the concrete compressive strength.

• With increased prestressing, the ductility decreases resulting in reduced horizontal
(∆u) en vertical (δu) deformations.

• Typically, a bridge deck will be loaded by concentrated (wheel) loads as well as
distributed loads. The CAA results demonstrate a significant load capacity for both
types of loadings.

• Due to the relatively low additional force in the tendons in the span (NMu,span ), and
the corresponding low ratio for ζspan (Equation 4.16), the bending moment in the
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Table 8.6: CAA results at ultimate load, T-beam with integrated deck slab (Appendix E Figure E.3a),
L = 7550 mm, h = 950 mm, khor = 1250000 N/mm, ζspan = ζsupp = 0, various prestressing levels

prestressing Np
a ∆F Ftot ∆ub δu z Fu qu

% kN kN kN mm mm mm kN kN/m
0 0 10690 10690 8.55 45.59 518 2925 773

25 675 10060 10740 8.05 42.86 521 2960 782
50 1350 9500 10850 7.60 40.41 522 2996 792
75 2025 8875 10900 7.10 37.70 526 3030 801

100 2700 8310 11010 6.65 35.27 527 3066 811
a Np = max(Np,span, Np,supp), see Chapter 4 Section 4.6 Equation 4.29
b step size equal to 0.05 mm

Table 8.7: CAA results at ultimate load, T-beam with integrated deck slab (Appendix E Figure E.3a),
L = 7550 mm, h = 950 mm, khor = 1250000 N/mm, ζspan = 0.047 and ζsupp = 0

prestressing Np
a ∆F Ftot ∆ub δu z Fu qu

% kN kN kN mm mm mm kN kN/m
100 2700 8310 11010 6.65 35.27 523 3048 806

a Np = max(Np,span, Np,supp), see Chapter 4 Section 4.6 Equation 4.29
b step size equal to 0.05 mm

Table 8.8: CAA results at ultimate load, T-beam with reduced cross-section after punching
(Appendix E Figure E.3b), L = 7550 mm, h = 742 mm, khor = 1250000 N/mm,

ζspan = ζsupp = 0, various prestressing levels

prestressing Np
a ∆F Ftot ∆ub δu z Fu qu

% kN kN kN mm mm mm kN kN/m
0 0 5440 5440 4.35 38.74 415 1193 316

25 675 4815 5490 3.85 34.20 418 1215 322
50 1350 4190 5540 3.35 29.68 422 1238 328
75 2025 3565 5590 2.85 25.19 426 1261 334

100 2700 2940 5640 2.35 20.71 430 1283 340
a Np = max(Np,span, Np,supp), see Chapter 4 Section 4.6 Equation 4.29
b step size equal to 0.05 mm

Table 8.9: CAA results at ultimate load, T-beam with reduced cross-section after punching
(Appendix E Figure E.3b), L = 7550 mm, h = 742 mm, khor = 1250000 N/mm,

ζspan = 0.094 and ζsupp = 0

prestressing Np
a ∆F Ftot ∆ub δu z Fu qu

% kN kN kN mm mm mm kN kN/m
100 2700 2815 5515 2.25 19.82 421 1229 325

a Np = max(Np,span, Np,supp), see Chapter 4 Section 4.6 Equation 4.29
b step size equal to 0.05 mm
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span can be neglected.

• The reduced cross-section after punching results in a significant reduction of the
ultimate load capacity, caused by the combined effect of the loss of the cross-
sectional area of the top flange and the increase of the beam slenderness. After
punching, for the current case with a concentrated load, the remaining cross-
section is insufficient to carry the same load by arching (Fu,test = 3004 kN versus
Fu,CAA = 1229 kN (Table 8.9)).

8.2.6. COMBINED CMA (SLAB) AND CAA (T-BEAM) TEST 1

F OR slabs CMA enhances both the flexural resistance as well as the punching shear re-
sistance (Chapter 3). However, when considering a concentrated load, a slab will fail

in punching. Likewise for beams, CAA enhances both the flexural resistance as well as
the shear resistance. Analogously to slabs, it is reasonable to assume the same principle
holds for beams and a shear failure will be governing for beams. However, the CAA-
enhanced shear capacity of the T-beam is unknown.

In the previous section, the CAA load capacity of the T-beam is derived completely
independent of the CMA load capacity of the slab. In this section, it is assumed that part
of the load is carried by CMA and part of the load is carried by CAA. Note that the under-
lying principle in this combined CMA and CAA analysis, is assuming full plasticity and
using the principle of superposition of both mechanisms. Firstly, it is assumed the differ-
ence between the punching failure load of the slab and the total failure load is carried by
CAA. In Section 8.2.4, a punching failure load for tests 1–2 is derived of Fu,CMA = 1273 kN
at a relative slab deformation of δu,CMA = 9.25 mm. For test 1, the difference between the
total failure load and the punching failure load equals to Fu,CAA = 2760-1273 = 1487 kN
(Chapter 7 section 7.8.1 Table 7.16). In addition, there should be compatibility between
the deformations of both CMA and CAA at failure. The deformations are again taken
from the nonlinear analysis. Note that the vertical deformation at the end support and
at the intermediate cross-beam (assumed fictitious support see Chapter 3 Section 3.4.4
Figure 3.6) need to be subtracted in order to obtain the local, relative, T-beam defor-
mations. The T-beam deformations, at various locations along its length, are shown in
Figure 8.14a. At failure, the average deflection at the loading point, due to the deflections
of the (fictitious) supports equals to approximately δavg = 6.34 mm. Therefore, for test 1,
the maximum relative T-beam deformation at failure, between the loading point and the
(fictitious) supports (at the ends of the arch), is approximately equal to: δu,CAA = 20.5-
6.34 = 14.16 mm. Using this deformation the analytical model for arch action can be
applied to derive a load versus displacement curve which includes a data point at a load
of Fu,CAA = 1487 kN and a vertical deflection of δu,CAA = 14.16 mm. As can be observed
from the results in the previous section, a CAA failure load of the T-beam of 1487 kN cor-
responds to an almost zero vertical deflection, see Appendix D Sections D.1–D.2. The
load capacity at zero deformation results from the prestressing force only (Chapter 4).
Consequently, it is independent of the applied horizontal restraint. Therefore, with the
assumed full CMA punching capacity of the slab, it is not possible to find an appropriate
stiffness for CAA.

Alternatively, CAA can be calibrated independently from CMA by utilising the max-
imum acting shear in the T-beam as analysed in Section 8.2.2. By definition, the acting
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shear, in the analytical model for arch action, equals Vu = Fu/2. Based on the nonlinear
analysis, the acting shear at failure equals Vu = 1095 kN (Section 8.2.2 Figure 8.4b). With
this information the analytical model for arch action can be applied to derive a load ver-
sus displacement curve which includes a data point at a load of Fu,CAA = 2×1095 = 2190 kN
and a vertical deflection of δu,CAA = 14.16 mm. The results of the analysis are shown in
Figure 8.14b (detailed results are given in Appendix D Section D.5). Note that the hori-
zontal restraint is somewhat reduced compared to the previous section.
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Figure 8.14: Vecht bridge test 1, (relative) deformations T-beam (left), CAA analysis based on
maximum acting shear, khor = 907000 N/mm, dashed line indicates shear failure at Fu = 2190 kN (right)

From the combined CMA (slab) and CAA (T-beam) analysis, based on the maximum
acting shear, the following can be concluded:

• Assuming full plasticity, the combined analysis results in a subdivision of the load
carried by CMA (slab) and CAA (T-beam) of Fu,CMA = 570 kN (21% of total load) and
Fu,CAA = 2190 kN (79% of total load). However, for CAA this assumes a constant
normal and shear force between the load and the supports which is not the case
(Chapter 7 Section 7.8.1 Figure 7.33 and Figure 7.36).

• With the assumption of a free span, the initial CMA analysis (Section 8.2.4) resulted
in a punching shear capacity of Fu,CMA = 1273 kN. The combined analysis results
in a significantly lower CMA capacity of the slab of approximately Fu,CMA = 570 kN.

• It is possible that the required relative slab deformations, needed to achieve the
maximum membrane force and corresponding punching shear capacity, are pre-
vented by the presence of the T-beam at midspan. Contrary, the analysis in Sec-
tion 8.2.4 shows a numerical membrane force relatively close to the analytical (87–
95%), suggesting a high CMA presence.

• Figure 8.14b shows a ratio of 73% between the shear failure load and the flexural
failure load. This indicates a substantial presence of CAA in the T-beam. Further
evidence of this is shown in Chapter 7 Section 7.8.1 Figure 7.32 in which the max-
imum compressive stresses, in the direction of the intermediate cross-beam, are
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approximately equal to 33 N/mm2. Assuming the maximum effect due to lateral
cracking (Figure 7.28d), the local concrete compressive strength can be approxi-
mated by 0.4 × fcm = 0.4 × 87.7 = 35 N/mm2 (Section 7.3.2).

• If punching failure of the deck can be avoided or postponed, for instance in the
case of multiple concentrated (axle) loads or a distributed load, the CMA capacity
of the slab will increase. However, for the CAA capacity of the T-beam, considering
the concrete compressive strength of the compressive strut is limited due to the
presence of shear cracks (previous point), an increase in capacity is less likely.

• In the nonlinear analysis (A-T1), at the ultimate load of Fu = 2760 kN, the maxi-
mum membrane force of the T-beam is equal to ∆F = 1740 kN (Chapter 7 Section
7.8.1). The CAA analysis results in a significant overestimated membrane force of
∆F = 2621 kN (with ∆u = 2.89 mm and δu = av +∆lv = 14.16 mm, see Appendix
D Section D.5). This overestimation likely results from applying the full concrete
compressive strength without taking into account the effect of lateral cracking.

8.3. SUMMARY AND CONCLUSIONS CASE STUDY

I N this section the main results and conclusions from the analysis of system behaviour
of the case study are summarised.

Individual T-beam - Flexural shear resistance (Section 8.2.1)

• Combining the results of the linear and nonlinear analyses, as well as tests 4–7, the
ultimate load is analysed to determine the maximum acting shear.

• With all individual beam tests, the failure mode is flexural shear.

• Compared to NEN-EN 1992-1-1 (NNI 2011a) and RTD 1006 (Rijkswaterstaat 2013),
for a simply supported beam, the nonlinear analyses show an increase in flexural
shear resistance of 127% (a = 2.25 m) and 67% (a = 4.00 m).

• Compared to NEN-EN 1992-1-1 (NNI 2011a) and RTD 1006 (Rijkswaterstaat 2013),
for a disconnected beam, the nonlinear analyses show an increase in flexural shear
resistance of 120% (a = 2.25 m) and 68% (a = 4.00 m). Therefore, it can be con-
cluded that the nonlinear analyses show no significant difference (≤ 3%) in flex-
ural shear resistance of a simply supported T-beam compared to a disconnected
T-beam. This consistency demonstrates that on-site testing of disconnected (T-)
beams, which are only connected to the end cross-beam at the non-loaded side
for safety, can be used to determine the (flexural) shear resistance.

• Tests 4–6, with a = 2.25 m, show an average increase in flexural shear resistance of
158% compared to NEN-EN 1992-1-1 (NNI 2011a) and RTD 1006 (Rijkswaterstaat
2013), and an increase of 13–17% compared to the nonlinear analyses.

• Test 7, with a = 4.00 m, shows an increase in flexural shear resistance of 41%,
compared to NEN-EN 1992-1-1 (NNI 2011a) and RTD 1006 (Rijkswaterstaat 2013).
However, the test resulted in an unexpected low failure load and corresponding
low shear resistance (-16%), compared to the nonlinear analyses of both a simply
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supported and a disconnected T-beam. From the nonlinear analysis, it is con-
cluded that the connection to the end cross-beam, at the non-loaded side, results
in a very sensitive load-deflection and cracking behaviour. In addition, despite the
flexural shear failure in the test, the failure mode is also very close to a flexural fail-
ure. Finally, the adjustment of the safety chains during the experiment might have
influenced the ultimate load capacity.

Connected T-beam - Shear tension resistance (Section 8.2.2)

• Combining the results of the linear and nonlinear analyses, as well as tests 1–2, the
ultimate load is analysed to determine the maximum acting shear in the T-beam.

• At both load positions, the linear analyses indicate a shear tension failure of the
T-beam. For the load position at a = 2.25 m, this is related to a maximum principal
stress in the web, whereas for a = 4.00 m this is related to the cracking moment
(Chapter 5 Section 5.6.3 Figure 5.21).

• At the position of the load, bending and flexural shear cracks are observed in both
the tests and the nonlinear analyses, in the direction of the end support as well as
in the span direction. However, these remain concentrated near the load position
and, based on the nonlinear analysis, do not result in a flexural shear failure.

• Compared to NEN-EN 1992-1-1 (NNI 2011a) and RTD 1006 (Rijkswaterstaat 2013),
for a connected T-beam, the nonlinear analyses show an increase in shear tension
resistance of 60% (a = 2.25 m) and 92% (a = 4.00 m).

• Test 2 (a = 2.25 m) shows an increase of 69% and test 1 (a = 4.00 m) of 109% com-
pared to NEN-EN 1992-1-1 (NNI 2011a) and RTD 1006 (Rijkswaterstaat 2013). In
addition, the tests show an increase of 6–8% compared to the nonlinear analy-
ses. Despite the significant increases, due to the premature punching failure of
the deck, the ‘real’ shear resistance of the connected T-beam might be underesti-
mated.

• Based on the linear analysis (Chapter 5), in addition to the area close to the sup-
ports, shear tension, with a maximum principal stress in the web, can also occur
in the area surrounding the intermediate cross-beams.

Shear resistance - Individual versus connected T-beam (Section 8.2.3)

By adopting the exact same loading positions, the objective of the individual and con-
nected T-beam tests is to enable a direct comparison of the shear resistances and to iso-
late the effect of system behaviour. However, a direct comparison of the two types of
tests is complicated by the following aspects:

• Due to the difference in load distribution, the failure mode of an individual T-
beam (flexural shear) is not the same as of a connected T-beam (shear tension).
Based on the linear analysis, for connected T-beams, shear tension becomes more
apparent for T-beams at a greater distance from the edge beam. In addition, for
cross-sections closer to a cross-beam, the shear tension resistance tends to relate
to a maximum principal tensile stress (σ1) in the web, whereas for cross-sections
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closer to the area in-between the cross-beams, the shear tension resistance tends
to relate to a maximum principal tensile stress at the bottom fibre, i.e. the cracking
moment (Mcr).

• The difference in load distribution can cause a (minor) shift of the location of the
(theoretical) critical cross-section.

• Because of the unintended punching failure of the deck, the shear resistance of the
connected T-beam tests might be underestimated.

Despite these aspects, from the direct comparison of the shear resistance of the individ-
ual to the connected T-beams the following is concluded:

• In all cases and at both load locations, the shear resistance of a connected T-beam
is higher compared to an individual T-beam.

• For the load positioned at a = 2.25 m, the increase of shear resistance of a con-
nected T-beam, compared to an individual T-beam, is equal to 74% (linear analy-
sis), 24% (nonlinear analysis) and 14% (tests).

• For the load positioned at a = 4.00 m, the increase of shear resistance of a con-
nected T-beam, compared to an individual T-beam, is equal to 4% (linear analysis),
53% (nonlinear analysis) and 20% (tests).

• In case of a connected T-beam, due to the constraints provided by the surrounding
members, the nonlinear analyses show an additional compressive normal force in
the T-beam which will affect the shear resistance. If this is taken into account,
the analytical shear tension resistance can be improved, i.e. increased, for both
loading positions by approximately 20%.

Compressive membrane action slab (CMA) (Section 8.2.4)

• Combining the results of tests 1–2 and the corresponding nonlinear analyses and
adopting the analytical model for arch action (Chapter 4) the ultimate load related
to compressive membrane action is analysed.

• In tests 1 and 2, the failure mode is punching of the deck slab which cannot be
predicted by the analytical model for arch action as this model relates to the flex-
ural CMA capacity. However, it is assumed that the punching failure load, and
corresponding deflection, is a point on the failure curve obtained by the analytical
model for arch action, which may hold true for a punching failure load close to the
maximum flexural failure load.

• The punching shear capacity of the slab is predicted using the results of the ex-
perimental program on transverse prestressed slabs by Amir (2014), resulting in a
capacity of Fu = 1273 kN.

• The analytical model for arch action is adopted using the concrete compressive
strength of the integrated deck slab which is considerably lower than the T-beam.
The assumption is to consider the lowest concrete compressive strength, present
in the arch, to be the weakest link.
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• For the acting width of the slab a load distribution of 45◦, from the load to the
slab edges, is assumed resulting in a width equal to the span. This acting width
is compared to the results of the nonlinear analysis showing that the area of the
maximum in-plane force Nxx is not exactly centred around the load, especially in
the case of a load position closer to the (end) cross-beam (analysis A-T2). As CMA
is dependent on relative slab deformations, a possible explanation is that these
relative deformations can become larger in the area in-between the cross-beams.

• In the CMA analysis a free span of the deck slab is assumed in transverse direc-
tion spanning across the loaded T-beam. The shape of the resulting arch is in ac-
cordance with the results of the nonlinear analysis. However, the presence of the
loaded T-beam in the middle of the arch will naturally result in lower relative slab
deformations.

Compressive arch action T-beam (CAA) (Section 8.2.5)

• Combining the results of test 1 and the corresponding nonlinear analysis and adopt-
ing the analytical model for arch action (Chapter 4) the ultimate load related to
compressive arch action is analysed.

• In the CAA analysis the arch is assumed to develop in span direction from the load-
ing point to the inner edges of the cross-beams. The height of the arch is assumed
to be equal to the height of the cross-beam(s). The resulting shape of the arch is in
accordance with the results of the nonlinear analysis.

• For beams it is assumed that CAA enhances both the flexural resistance as well as
the shear resistance. In addition, it is assumed that a shear failure will be govern-
ing which cannot be predicted by the analytical model for arch action. However,
likewise to slabs, it is assumed that the shear failure load, and corresponding de-
flection, is a point on the failure curve obtained by the analytical model for arch
action, which may hold true for a shear failure load close to the maximum flexural
failure load.

• In test 1, the failure mode is punching of the deck slab resulting in a loss of load
transfer to the adjacent T-beam(s). In a separate analysis this is taken into account
by adopting a reduced cross-section of the T-beam after punching.

• Initially, the CAA load capacity of the T-beam is derived assuming a horizontal stiff-
ness from the end cross-beam and the uncracked concrete compressive strength
of the T-beam resulting in an ultimate load capacity of the T-beam of Fu = 3048 kN
(full cross-section) and Fu = 1229 kN (reduced cross-section after punching). The
latter indicates that the remaining cross-section after punching is insufficient to
carry the full test load (3004 kN) by arching of a single T-beam.

Combined CMA (slab) and CAA (T-beam) test 1 (Section 8.2.6)

• Assuming full plasticity, and using the principle of superposition of both CMA and
CAA, the difference between the total failure load and the punching failure load
can be contributed to CAA and is equal to Fu,CAA = 1487 kN. The initial CAA analysis
indicates this capacity corresponds to an almost zero vertical deflection indicating
a low presence of CAA in the T-beam.
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• Alternatively, CAA can be calibrated independently from CMA by utilising the max-
imum acting shear in the T-beam taken from the nonlinear analysis. In the analyti-
cal model for arch action the acting shear equals to Vu = Fu/2. Using this approach
results in a load contributed to CAA of Fu,CAA = 2190 kN. However, this analysis
assumes a constant normal and shear force, between the load and the supports,
which is not the case for connected beams.

• The nonlinear analysis shows considerable (shear) cracking at failure and conse-
quently concrete compressive stresses close to the reduced concrete strength tak-
ing into account the maximum effect for lateral cracking, i.e. 0.4 × fcm.

• The analysis of the numerical membrane force for CMA shows a membrane force
close to the analytical (87–95%), suggesting a high CMA presence.

Taking all of the above into account, the following approach seems most appropriate:

• For CMA assume an uncracked concrete compressive strength due to the bi-axial
compressive stress state at the top side of the bridge deck.

• On the basis of the observed numerical membrane force, assume a close to max-
imum punching shear capacity for CMA (>85%) despite the slab spanning the
loaded T-beam.

• For CAA assume a reduced concrete compressive strength due to the effects of
lateral cracking similar to a situation of a compressive strut.

• Utilise the acting shear for the calibration of CAA. However, since the acting shear
is not constant between the load and the supports, a more average value should
perhaps be considered.



9
CONCLUSIONS AND

RECOMMENDATIONS

This chapter summarizes the main conclusions of the research and gives recommenda-
tions for future research.
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9.1. RESEARCH RECAP

A BOUT 70 prestressed concrete T-beam bridges, constructed in the Netherlands be-
tween 1953–1977, are still in use today with many located in the main highway net-

work. Using traditional assessment methods it was concluded that about 50% of these
bridges do not fulfil the current code requirements. In previous research the integrated
deck slab with transverse prestressing was investigated and a substantially higher load
capacity was found due to the presence of compressive membrane action (CMA). For the
current research, the focus is on the load capacity of the main T-beams. For the Dutch
T-beam bridge stock, the main characteristics and shear-related deficiencies are investi-
gated in Chapter 2. The presence of 2–4 cross-beams in each span, as well as transverse
prestressing, in both the cross-beams and the integrated deck slab, led to the concept of
‘system behaviour’, in which the capacity of a structure is increased due to the restraint
provided by the connected members. This concept is investigated using the theory of
compressive arching, for both the integrated deck slab (CMA) as well as the T-beams
(CAA) (chapters 3–4). For the investigation, the main part of this research is related to a
case study of a typical Dutch T-beam bridge called the Vecht bridge (chapters 5–7). Using
a single concentrated load at the centre of a T-beam, seven full-scale collapse tests are
conducted on this multispan bridge prior to its scheduled demolition. Three tests are
conducted with the original structural system unchanged. On a separate span, four tests
are conducted on individual T-beams, with the deck in-between the beams sawn in the
longitudinal direction. The two types of tests allows for a direct comparison between the
load capacity of an individual T-beam versus a connected T-beam. The case study is ex-
tensively analysed with conventional cross-sectional evaluations for shear and bending
in Chapter 5 and using nonlinear analysis in Chapter 7. In addition, a generic analyti-
cal model for arch action is derived in Chapter 4, to investigate the effects of CMA and
CAA. The results of the different parts of the research are then combined to analyse the
‘system behaviour’ in Chapter 8.

9.2. CONCLUSIONS

T HE main conclusions related to the research questions (Chapter 1 Section 1.3) are
summarised in this section and more detailed conclusions related to each subject

are given in the following subsections. For the benefits and considerations of large-scale
testing and nonlinear analysis the reader is also referred to the summaries in Chapter 6
Section 6.6 and Chapter 7 Section 7.11.

Main conclusions

• Using experimental, numerical and analytical methods, it has been demonstrated
that for T-beam bridges a combination of compressive membrane action (CMA)
and compressive arch action (CAA) contributes to the ’system behaviour’, which
differs significantly from the behaviour of an individual T-beam. This research
has explained and quantified the contribution of the aforementioned mechanisms
resulting in an increased capacity for these types of bridges. These effects are not
considered in a traditional assessment (Chapters 4–8).

• Following a traditional assessment, using a linear model for the load effect and a
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cross-sectional analysis for the verification, the governing failure mode for con-
nected T-beams is shear tension. On the contrary, analysing an individual simply
supported T-beam, the governing failure mode is either the ultimate bending mo-
ment at midpoint or flexural shear close to the support (Chapter 5 Section 5.6.5).

• Using an existing full-scale bridge in the experiments, the connected beam tests
revealed an explosive failure for both the bridge deck (punching failure) and the
T-beam (shear failure) (Chapter 6 Section 6.4).

• Using a full 3D nonlinear finite element model of the complete span with 15 beams,
the experimentally observed failure mode(s) are confirmed. In addition, the model
allowed insight in the development of the mechanisms of CMA and CAA. With the
exception of the stiffness of the elastomeric bearings, no other parameters needed
to be calibrated (Chapter 7).

• An optimal incremental-iterative solution method combined with an automatic
adaptive step size method has been found resulting in nonlinear analyses in which
all steps are converged, regardless of model size (Chapter 7 Sections 7.3.4 and
7.7.2).

• Compressive membrane action (CMA), and corresponding increased (punching)
capacity, is found in the deck in case of a (concentrated) load at the centre of a
T-beam (Chapter 8 Sections 8.2.4 and 8.2.6).

• Compressive arch action (CAA), and corresponding increased shear capacity, is
found in the T-beam in case of a (concentrated) load positioned in-between the
cross-beams (Chapter 8 Sections 8.2.5 and 8.2.6).

• A generic analytical model for arch action is derived capable of quantifying the
effects of both CMA and CAA (Chapter 4).

9.2.1. COMPRESSIVE MEMBRANE ACTION (CMA)

W ITH a concentrated load placed at the centre of a T-beam, the results of the nonlin-
ear analyses, specifically the in-plane forces, demonstrate a significant presence of

CMA in the integrated deck slab and the top flange of the T-beam. Note that in all previ-
ous CMA research the load is placed on the (integrated) deck slab. Based on the results,
for the two different loading positions, a punching shear capacity of approximately 85%
is expected as compared to a punching shear capacity with the load on the integrated
deck slab. The reduced capacity can be explained by the lack of relative deflections,
between the loading point and the ends of the arch, needed to achieve the maximum
arching effect. In this case the deflection at the loading position is partly prevented by
the presence of the T-beam. Additionally, the relative deflection is prevented in closer
proximity to a cross-beam. However, the nonlinear analyses also demonstrate that in
the latter case this is partly compensated by a non-symmetric acting width of the slab.

In conclusion, based on the results, CMA is expected to increase the load capacity
for load positions, in the area in-between the cross-beams, at a relative distance of 25–
75% of the centre-to-centre distance between the cross-beams. Due to the presence of
the T-beam, transverse sagging bending moments cause cracking on the bottom side
of the top flange, on either side of the T-beam web. Therefore, it is concluded that for
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the application of an analytical model for arch action, these positions should be taken
for the locations of the plastic hinges. Additionally, for the current case with different
concrete compressive strengths for the integrated deck slab and the T-beam, the lowest
value should be taken into account as the arch continues through both sections.

9.2.2. COMPRESSIVE ARCH ACTION (CAA)

I N the CAA analysis the arch is assumed to develop in the loaded T-beam in longitu-
dinal direction, from the loading point to the inner edges of the cross-beams, which

are assumed to provide a significant horizontal stiffness. This assumption is confirmed
by the nonlinear analyses which demonstrate arch-shaped compressive struts, for the
two investigated loading positions, in both longitudinal directions. In addition, the non-
linear analyses results show high compressive membrane forces at loads exceeding ap-
proximately 70–90%, depending on load position, of the ultimate load. The additional
normal compressive forces in the loaded T-beam are balanced by tensile normal forces
in the adjacent T-beams.

With respect to the load distribution, the linear and nonlinear analyses show that the
intermediate cross-beam has the effect of an (internal) vertical support. Despite this ef-
fect, it is concluded that the formation of plastic hinges, at the ends of the arch, is limited
by the general lack of hogging bending moments at the position of the cross-beams. Due
to the connections with the integrated deck slab, along its longitudinal axis, the analysis
has also shown that the sectional forces, including the axial membrane force, naturally
dissipate away from the loading position further limiting the hogging bending moments
as well as complicating the use of an analytical model.

For the application of an analytical model for arch action, the influence of the com-
pression zone resultants as a result of bending moments, in both the span and the (fic-
titious) supports, is found to be negligible. Additionally, different concrete compressive
strengths, for the integrated deck slab and the T-beam, can be taken into account us-
ing a similar approach as for the ultimate bending moment. However, contrary to CMA,
for CAA the concrete compressive strength should be reduced taking into account the
effect of lateral cracking. It is also concluded that for analytical modelling the horizon-
tal restraint provided by the intermediate cross-beam will be much more significant as
compared to the end cross-beam.

The punching failure of the deck (as observed in the experiments and confirmed by
the nonlinear analyses) results in a loss of load transfer to the adjacent T-beam(s). It can
be concluded that the remaining cross-section after punching is insufficient to carry the
same load by arching of a T-beam. From the analysis it is concluded that this is caused by
the combined effect of the loss of cross-sectional area at the top flange and the increase
of the beam slenderness.

9.2.3. INDIVIDUAL VERSUS CONNECTED T-BEAM

T HE shear resistance of an individual, disconnected and connected T-beam is anal-
ysed, using the results from the linear analysis, the full-scale collapse tests and the

nonlinear analyses. A difference in failure mode is found, with flexural shear in case of
an individual or disconnected T-beam, and shear tension in case of a connected T-beam.
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The linear analysis shows that this difference becomes more apparent for connected T-
beams at a greater distance from the edge beam. In addition, for connected T-beams, the
failure mode is strongly dependent on the proximity to a cross-beam. For cross-sections
closer to a cross-beam, the shear tension resistance tends to be related to a maximum
principal tensile stress (σ1) in the thin web, whereas for cross-sections closer to the area
in-between the cross-beams, the shear tension resistance tends to relate to a maximum
principal tensile stress at the bottom fibre, i.e. the cracking moment (Mcr). In all in-
vestigated cases, the shear resistance of a connected T-beam is found to be increased,
between 14–53%, compared to an individual T-beam. In addition, due to the premature
punching failure of the deck in tests 1–2, the ‘real’ shear resistance of the connected T-
beams might still be underestimated. The shear tension resistance can be improved for
connected T-beams by taking into account the additional compressive membrane force
in the loaded T-beam increasing the resistance by 20%, for the two investigated loading
positions.

9.3. RECOMMENDATIONS FOR FUTURE RESEARCH

B ASED on the research presented in this dissertation the following recommendations
are made for future research:

• The different geometries and bridge layouts, as investigated and tabulated in Chap-
ter 2, should be further analysed to verify if the conditions for CMA and CAA to
occur are met for the T-beam bridges in the Netherlands.

• The application of CMA and CAA to an edge beam should be further investigated.
As a first step, the experimental result of test 3 (Chapter 6 Section 6.4) can be con-
tinued numerically to failure. As a second step, additional experiments are ad-
vised.

• A general mechanical model for CMA should be derived which includes two-way
bending, a punching failure criterium, as well as the boundary conditions found
in a bridge superstructure with the load at the centre of a T-beam.

• An overall multi-level assessment approach for T-beam bridges needs to be devel-
oped.





BIBLIOGRAPHY

Alampalli, S., Frangopol, D. M., Grimson, J., Halling, M. W., Kosnik, D. E., Lantsoght,
E. O. L., Yang, D., and Zhou, Y. E. Bridge load testing: State-of-the-practice. Jour-
nal of bridge engineering, 26(3), 2021. https://doi.org/10.1061/(ASCE)BE.
1943-5592.0001678.

Amir, S. Compressive membrane action in prestressed concrete deck slabs. PhD thesis,
Delft University of Technology, 2014. 282 pp.

Amir, S. and van der Veen, C. Bearing capacity of transversely prestressed concrete decks.
Stevin Report 25.5.13-06, Delft University of Technology, 2013.

Anonymous. Concrete structures at the Festival of Britain. South Bank, london, exibi-
tion. Concrete and Constructural Engineering, pages 199–206, July 1951.

Anonymous. Test of a prestressed concrete footbridge. Concrete and Constructural En-
gineering, pages 185–188, June 1952.

Bagge, N. Structural assessment procedures for existing concrete bridges: Experiences from
failure tests of the Kiruna Bridge. PhD thesis, Luleå University of Technology, 2017. 310
pp.

Bagge, N., Popescu, C., and Elfgren, L. Failure tests on concrete bridges: Have we learnt
the lessons? Structure and Infrastructure Engineering, 14(3):292–319, 2018. https:
//doi.org/10.1080/15732479.2017.1350985.

Banks, H. T., Pinter, G. A., and Yeoh, O. H. Analysis of bonded elastic blocks. Mathemat-
ical and Computer Modelling, 36(7-8):875–888, 2002. https://doi.org/10.1016/
S0895-7177(02)00234-0.

Batchelor, B. d. Concrete Bridge Engineering: Performance and Advances, chapter 6,
pages 189–213. Department of Civil Engineering, Queens University, Kingston, On-
tario, Canada, 1987. Membrane Enhancement in Top Slabs of Concrete Bridges.

Bundesministerium für Verkehr, B. u. S. Richtlinie zur Nachrechnung von Strassenbrür-
cken im Bestand (Nachrechnungsrichtlinie). Bundesministerium für Verkehr, Bau und
Stadtentwicklung, 2011. 108 pp.

Burdette, E. G. and Goodpasture, D. W. Tests of four highway bridges to failure. In Journal
of the structural division, volume 99, pages 335–348, 1973.

Cement. Het vervaardigen en plaatsen van freyssinet-kabels 12-5 en 12-7. Cement, (8):
469–472, 1956.

219

https://doi.org/10.1061/(ASCE)BE.1943-5592.0001678
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001678
https://doi.org/10.1080/15732479.2017.1350985
https://doi.org/10.1080/15732479.2017.1350985
https://doi.org/10.1016/S0895-7177(02)00234-0
https://doi.org/10.1016/S0895-7177(02)00234-0


9

220 BIBLIOGRAPHY

Cement. Access viaducts, medium-size precast beams. Cement, (XVIII):227, 1966.

CSA. CAN/CSA-S6-06: Canadian Highway Bridge Design Code (CHBDC). Canadian Stan-
dards Association, 2006. 930 pp.

den Boef, D. Proefbelasting KW ‘Vechtbrug A1’, materiaalkundig onderzoek betondruk-
sterkte. Technical Report RW2100-1/16-021.480, Witteveen+Bos, 2016. 79 pp.

DIANA. Diana user’s manual – release 10.3. www.dianafea.com, 2019.

Ensink, S. W. H., van der Veen, C., Hordijk, D. A., Lantsoght, E. O. L., van der Ham, H., and
de Boer, A. Full-size field test of prestressed concrete T-beam bridge. In Euro-bridge,
2018. Edinburgh, Scotland.

Ensink, S. W. H., Hendriks, M. A. N., and van der Veen, C. Non-linear analysis of pre-
stressed concrete T-beams. In Advances in Engineering Materials, Structures and Sys-
tems: Innovations, Mechanics and Applications - Proceedings of the 7th International
Conference on Structural Engineering, Mechanics and Computation, pages 1360–1365,
2019.

fib. fib bulletin 42 Constitutive modelling of high strength/high performance concrete,
chapter 3, page 14. fib, 2008.

fib. Model code 2010 Volume 1. CEB-FIP, 2012. 311 pp.

Floyd, R., Pei, J., Murray, C., and Cranor, B. Understanding the behavior of prestressed
girders after years of service. Technical Report FHWA-OK-16-03, Oklahoma Depart-
ment of Transportations, Office of Research and Implementation, 2016. 166 pp.

Freyssinet. Guide for Freyssinet methods. Freyssinet international organization, 3rd edi-
tion, 1972.

Gijsbers, F., Steenbergen, R., and van der Veen, C. Werkset factoren plaatconstructies
van gewapend beton zonder dwarskrachtwapening. Technical Report 2011:24, TNO /
Delft University of Technology, 2011.

Gleich, P. Das Erweitere Druckbogenmodell zur Beschreibung des Betontraganteils bei
Querkraft. PhD thesis, Technische Universität Dortmund, 2020. 324 pp.

Gleich, P. and Maurer, R. Bridge reassessment in Germany: shear capacity computation
based on arch action model. Engineering History and Heritage, 170(3):112–124, 2017.
https://doi.org/10.1680/jenhh.16.00024.

Gleich, P. and Maurer, R. Bridge Reassessments - Realistic Shear Capacity Evaluation
Using Arch Action Model. In High Tech Concrete: Where Technology and Engineering
Meet, 2018. Maastricht, The Netherlands.

Godart, B. Pathology, appraisal, repair and management of old prestressed concrete
beam and slab bridges. Structure and Infrastructure Engineering, 11(4):501–518, 2015.
https://doi.org/10.1080/15732479.2014.951865.

https://doi.org/10.1680/jenhh.16.00024
https://doi.org/10.1080/15732479.2014.951865


BIBLIOGRAPHY

9

221

Goedhart, W. De IJ-oververbinding bij schellingwoude. Technical report, Rijkswater-
staat, Directie Bruggen, 1956.

Hendriks, M., de Boer, A., and Belletti, B. Guidelines for nonlinear finite element anal-
ysis of concrete structures. Rijkswaterstaat centre for infrastructure, report RTD 1016-
1:2017, 2.1 edition, 2017. 69 pp.

Huber, P., Huber, T., and Kollegger, J. Influence of loading conditions on the shear ca-
pacity of post-tensioned beams with low shear reinforcement ratios. Engineering
structures, (170):91–102, 2018. https://doi.org/10.1016/j.engstruct.2018.
05.079.

Jeong, J. and Kim, W. Shear Resistant Mechanism into Base Components: Beam
Action and Arch Action in Shear-Critical RC Members. International Journal of
Concrete Structures and Materials, 8(1):1–14, 2014. https://doi.org/10.1007/
s40069-013-0064-x.

Jiaquan, X., Zanping, W., Bing, H., Guanhua, F., Yufeng, Z., and Jianfei, Z. Practical Exper-
imental Study on Ultimate Bearing Capacity of Actual Bridge in Huning Expressway
Extension Project. Modern Transportation Technology, 3(5):77–84, 2006.

Kamp, C. Quick scan T-liggers 2017 samenvatting en advies. Technical Report RM192358,
Movares, 2017. 19 pp.

Kiziltan, H. Zum einfluss des druckbogens auf den schubwiderstand von spannbeton-
balken. PhD thesis, Technische Universität Dortmund, 2012. 219 pp.

Koekkoek, R. Measurement report loading of vechtbrug (25H-100). Stevin Report 25.5-
17-03, Delft University of Technology, Faculty of Civil Engineering and Geosciences,
2017. 52 pp.

Kolodziejczyk, A. and Maurer, R. Arch action model applied to existing prestressed con-
crete bridges in Germany. Engineering History and Heritage, 170(3):99–111, 2017.
https://doi.org/10.1680/jenhh.16.00025.

König, G. and Fischer, J. Model uncertainties concerning design equations for the shear
capacity of concrete members without shear reinforcement. CEB Bulletin, (224):49–
100, 1995.

Lantsoght, E. O. L., Koekkoek, R. T., van der Veen, C., Hordijk, D. A., and de Boer, A. Pilot
proof-load test on viaduct De Beek: Case study. Journal of Bridge Engineering, 22(12),
2017a. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001131.

Lantsoght, E. O. L., van der Veen, C., de Boer, A., and Hordijk, D. A. Proof load testing
of reinforced concrete slab bridges in the Netherlands. Structural Concrete, 18(4):597–
606, 2017b. https://doi.org/10.1002/suco.201600171.

Lu, X., Lin, K., Li, C., and Li, Y. New analytical calculation models for compressive arch
action in reinforced concrete structures. Engineering Structures, 168:721–735, 2018.
https://doi.org/10.1016/j.engstruct.2018.04.097.

https://doi.org/10.1016/j.engstruct.2018.05.079
https://doi.org/10.1016/j.engstruct.2018.05.079
https://doi.org/10.1007/s40069-013-0064-x
https://doi.org/10.1007/s40069-013-0064-x
https://doi.org/10.1680/jenhh.16.00025
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001131
https://doi.org/10.1002/suco.201600171
https://doi.org/10.1016/j.engstruct.2018.04.097


9

222 BIBLIOGRAPHY

Matlab. Matlab release 2019b. www.mathworks.com, 2019.

McClure, R. and West, H. Full-scale testing of a prestressed concrete segmental bridge.
Canadian Journal of Civil Engineering, 11:505–515, 1984. https://doi.org/10.
1139/l84-070.

McIlmoyle, R. Prestressed Concrete Bridge Beams Being Tested in England. Railway Age
volume 123 no. 12, 1947.

Murray, C. and Floyd, R. Shear and anchorage failure of scale prestressed concrete I-
girders and scale bridge section. In Euro-bridge, 2018. Edinburgh, Scotland.

Murray, C., Diaz Arancibia, M., Okumus, P., and Floyd, R. Destructive testing and com-
puter modeling of a scale prestressed concrete I-girder bridge. Engineering Structures,
183:195–205, 2019. https://doi.org/10.1016/j.engstruct.2019.01.018.

Nemetschek. Scia engineer. www.scia.net, 2020.

NNI. NEN 1009: Gewapend Betonvoorschriften GBV 1962. Nederlands Normalisatie-
Instituut, 1962. 112 pp.

NNI. NEN 3865: Voorschriften Beton VB 1974, Deel E. Nederlands Normalisatie-Instituut,
1977. 112 pp.

NNI. NEN 6723: Regulations for concrete - Bridges (VBB 1995) - Structural requirements
and calculation methods. Nederlands Normalisatie-Instituut, 1995. 67 pp.

NNI. NEN-EN 1992-1-1 Eurocode 2: Design of concrete structures - Part 1-1: General rules
and rules for buildings. Nederlands Normalisatie-Instituut, 2011a. 239 pp.

NNI. NEN 8700: Assessment of existing structures in case of reconstruction and disap-
proval - Basic Rules. Nederlands Normalisatie-Instituut, 2011b. 54 pp.

NNI. NEN-EN 1991-2 Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges.
Nederlands Normalisatie-Instituut, 2015. 180 pp.

NNI. Nederlands Normalisatie-Instituut. www.nen.nl, 2020.

Oh, B., Kim, K., and Lew, Y. Ultimate Load Behavior of Post-Tensioned Prestressed Con-
crete Girder Bridge through In-Place Failure Test. ACI Structural Journal, pages 172–
180, March-April 2002. https://doi.org/10.14359/11542.

Park, R. and Gamble, W. L. Reinforced concrete slabs, chapter 12, pages 636–694. John
Wiley & Sons, New York, 2nd edition, 2000.

Plos, M., Gylltoft, K., and Cederwall, K. Full-Scale Shear Tests on two Bridges. IABSE
reports, (62):649–654, 1991. http://doi.org/10.5169/seals-47696.

Reinders, S. Service life monitoring of concrete bridges. Master’s thesis, Delft University
of Technology, 2016.

https://doi.org/10.1139/l84-070
https://doi.org/10.1139/l84-070
https://doi.org/10.1016/j.engstruct.2019.01.018
https://doi.org/10.14359/11542
http://doi.org/10.5169/seals-47696


BIBLIOGRAPHY 223

Rijkswaterstaat. Technical drawings vechtbrug (objectcode 25H 100). Technical report,
Rijkswaterstaat, 1962.

Rijkswaterstaat. Inventarisatie kunstwerken (bruggen, tunnels en viaducten), version: 6.
Technical report, Rijkswaterstaat, 2007. 47 pp.

Rijkswaterstaat. Richtlijnen Beoordeling Kunstwerken (RBK). RTD 1006:2013, Rijkswa-
terstaat, 2013. 117 pp.

Rijkswaterstaat. Beeldarchief rijkswaterstaat. www.rijkswaterstaat.nl/over-ons/
onze-organisatie/ons-beeldarchief, 2020.

Roosen, M. Beschrijving nader te onderzoeken T-liggers. Technical report, Rijkswater-
staat, 2015. 43 pp.

Roosen, M. Shear failure of prestressed girders in regions without flexural cracks. PhD
thesis, Delft University of Technology, 2020. 269 pp.

Roosen, M. and Sliedrecht, H. Areaalbeoordeling objecten met T-liggers. Technical re-
port, Rijkswaterstaat, 2018. 43 pp.

Sato, Y., Prayoonwet, W., and Oshima, Y. Investigation on structural behavior of existing
prestressed post-tensioned concrete bridge superstructure. In Proceedings of the fib
symposium 2019, Concrete - Innovations in Materials, Design and Structures, pages
1021–1028, 2019. Krakow, Poland.

SBR CUR. CUR-Aanbeveling 77:2014 Rekenregels voor ongewapende onderwaterbeton-
vloeren (Design rules for unreinforced underwater concrete slabs). SBR CUR, 2014. 76
pp.

Taylor, S., Rankin, G., and Cleland, D. Guide to compressive membrane action. Technical
paper 3, Concrete Bridge Development Group, 2002. 46 pp.

TNZ. New Zealand Bridge Manual. Transit New Zealand, 2 edition, 2003.

Tonnoir, B., Carde, C., and Banant, D. Curvature: An indicator of the mechanical condi-
tion of old prestressed concrete bridges. Structural Engineering International, 28(3):
357–361, 2018. https://doi.org/10.1080/10168664.2018.1490585.

UK HA. BD 81/02: Use of Compressive Membrane Action in bridge decks, Design Manual
for Roads and Bridges. UK Highways Agency, 2002. 16 pp.

Waarts, P., Hordijk, D. A., Fennis, S., and Steenbergen, R. Proefbelasten van viaducten.
Cement, (5):58–64, 2015.

Walraven, J. C. and Braam, C. R. Prestressed concrete (course CIE3150/4160). Delft Uni-
versity of Technology, Faculty of Civil Engineering and Geosciences, 2018. 372 pp.

www.rijkswaterstaat.nl/over-ons/onze-organisatie/ons-beeldarchief
www.rijkswaterstaat.nl/over-ons/onze-organisatie/ons-beeldarchief
https://doi.org/10.1080/10168664.2018.1490585




A
DETAILED RESULTS CONNECTED

T-BEAMS

225



A

226 A. DETAILED RESULTS CONNECTED T-BEAMS

A.1. ANALYSIS A-T1
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Figure A.1: A-T1-90/180-QNR, convergence
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Figure A.2: Average longitudinal strain T-beam 11 (LP21)
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Figure A.3: Support deformations: T-beam 9–13 (LP01–05)
(dashed line = non-converged (post-peak))
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Figure A.4: Beam deformations: T-beam 9–10 (LP06–07), T-beam 12–13 (LP09–10) and
T-beam 11 cross-beam (LP11) (dashed line = non-converged (post-peak))
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(a) Normal force Nx

(b) Shear force Qz

(c) Bending moment My

Figure A.5: A-T1-90/180-QNR, self-weight and prestressing load(s), sectional forces Nx, Qz and My T-beam 11
(loaded beam)
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Figure A.6: A-T1-90/180-QNR, self-weight and prestressing load(s), stress Sxx (transverse direction)
(top view, half of span shown, for complete model geometry see also Figure 7.6)

Figure A.7: A-T1-90/180-QNR, self-weight and prestressing load(s), stress Sxx (transverse direction)
(bottom view, half of span shown, for complete model geometry see also Figure 7.6)
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Figure A.8: A-T1-90/180-QNR, Fu = 2760 kN, δu = 20.5 mm, stress Sxx (transverse direction)
(top view, half of span shown, for complete model geometry see also Figure 7.6)

Figure A.9: A-T1-90/180-QNR, Fu = 2760 kN, δu = 20.5 mm, stress Sxx (transverse direction)
(bottom view, half of span shown, for complete model geometry see also Figure 7.6)
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A.2. ANALYSIS A-T2
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Figure A.10: A-T2-90/180-QNR, convergence
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Figure A.11: Average longitudinal strain T-beam 6 (LP12)
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Figure A.12: Support deformations: T-beam 4–8 (LP01–05)
(dashed line = non-converged (post-peak))
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Figure A.13: Beam deformations: T-beam 4–5 (LP06–07), T-beam 7–8 (LP09–10) and
T-beam 6 cross-beam (LP11) (dashed line = non-converged (post-peak))
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Figure A.14: A-T2-90/180-QNR, self-weight and prestressing load(s), stress Sxx (transverse direction)
(top view, half of span shown, for complete model geometry see also Figure 7.6)

Figure A.15: A-T2-90/180-QNR, self-weight and prestressing load(s), stress Sxx (transverse direction)
(bottom view, half of span shown, for complete model geometry see also Figure 7.6)
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Figure A.16: A-T2-90/180-QNR, Fu = 3256 kN, δu = 16.4 mm, stress Sxx (transverse direction)
(top view, half of span shown, for complete model geometry see also Figure 7.6)

Figure A.17: A-T2-90/180-QNR, Fu = 3256 kN, δu = 16.4 mm, stress Sxx (transverse direction)
(bottom view, half of span shown, for complete model geometry see also Figure 7.6)
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B.1. ANALYSIS B-T4
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Figure B.1: B-T4-60/180-QNR, convergence
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Figure B.2: Average longitudinal strain T-beam 12 (LP21)
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Figure B.3: Support and cross-beam deformation
(dashed line = non-converged (post-peak))
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B.2. ANALYSIS B-T5
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Figure B.4: B-T5-60/180-QNR, convergence
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Figure B.5: Support and cross-beam deformation
(dashed line = non-converged (post-peak))
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Figure B.6: B-T6-60/180-QNR, convergence
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Figure B.7: Support and cross-beam deformation
(dashed line = non-converged (post-peak))
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B.4. ANALYSIS B-T7
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Figure B.8: B-T7-60/180-QNR, convergence
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Figure B.9: Average longitudinal strain T-beam 9 (LP21)
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Figure B.10: Support and cross-beam deformation
(dashed line = non-converged (post-peak))
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C.1. CMA CALIBRATION 1:2 SCALE NO BENDING
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Figure C.1: Detailed results of Chapter 8 Section 8.2.4.
L = B = 1050 mm, h = 100 mm, fcm = 65 N/mm2, TPL = 2.5 N/mm2,

khor = 995000 N/mm, ζspan = ζsupp = 0
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Figure C.2: Detailed results of Chapter 8 Section 8.2.4.
L = B = 1050 mm, h = 100 mm, fcm = 65 N/mm2, TPL = 2.5 N/mm2,

khor = 1009000 N/mm, ζspan = 0.067, ζsupp = 0
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C.3. CMA CALIBRATION 1:1 SCALE NO BENDING
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Figure C.3: Detailed results of Chapter 8 Section 8.2.4.
L = B = 2100 mm, h = 200 mm, fcm = 65 N/mm2, TPL = 2.5 N/mm2,

khor = 1990000 N/mm, ζspan = ζsupp = 0
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Figure C.4: Detailed results of Chapter 8 Section 8.2.4.
L = B = 2100 mm, h = 200 mm, fcm = 65 N/mm2, TPL = 2.5 N/mm2,

khor = 2018000 N/mm, ζspan = 0.067, ζsupp = 0
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C.5. CMA TESTS 1–2 VECHT BRIDGE CALCULATION 1
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Figure C.5: Detailed results of Chapter 8 Section 8.2.4.
L = B = 1950 mm, h = 180 mm, fcm = 60.3 N/mm2, TPL = 3.0 N/mm2,

khor = 1990000 N/mm, ζspan = ζsupp = 0
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Figure C.6: Detailed results of Chapter 8 Section 8.2.4.
L = B = 1950 mm, h = 180 mm, fcm = 60.3 N/mm2, TPL = 3.0 N/mm2,

khor = 2710000 N/mm, ζspan = ζsupp = 0
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D.1. CAA RESULTS T-BEAM WITH SLAB NO BENDING
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Figure D.1: Detailed results of Chapter 8 Section 8.2.5 Table 8.6.
T-beam with integrated deck slab (Appendix E Figure E.3a), L = 7550 mm, h = 950 mm,

khor = 1250000 N/mm, ζspan = ζsupp = 0 and prestressing = 100%
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Figure D.2: Detailed results of Chapter 8 Section 8.2.5 Table 8.7.
T-beam with integrated deck slab (Appendix E Figure E.3a), L = 7550 mm, h = 950 mm,

khor = 1250000 N/mm, ζspan = 0.047, ζsupp = 0 and prestressing = 100%
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D.3. CAA RESULTS T-BEAM AFTER PUNCHING NO BENDING
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Figure D.3: Detailed results of Chapter 8 Section 8.2.5 Table 8.8.
T-beam with reduced cross-section after punching (Appendix E Figure E.3b),

L = 7550 mm, h = 742 mm, khor = 1250000 N/mm, ζspan = ζsupp = 0 and prestressing = 100%
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Figure D.4: Detailed results of Chapter 8 Section 8.2.5 Table 8.9.
T-beam with reduced cross-section after punching (Appendix E Figure E.3b),

L = 7550 mm, h = 742 mm, khor = 1250000 N/mm, ζspan = 0.094, ζsupp = 0 and prestressing = 100%
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D.5. CAA RESULTS TEST 1 VECHT BRIDGE
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Figure D.5: Detailed results of Chapter 8 Section 8.2.5.
T-beam with integrated deck slab (Appendix E Figure E.3a), L = 7550 mm, h = 950 mm,

khor = 907000 N/mm, ζspan = 0.044, ζsupp = 0 and prestressing = 100%
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Figure E.1: Sectional properties T-beam and T-beam end block
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(b) T-beam end block with integrated deck slab

Figure E.2: Sectional properties T-beam and T-beam end block including acting width integrated deck slab
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Figure E.3: Sectional properties T-beam used in CAA analysis
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