
Bio-Mechanical Design

Pose regression of 3D objects
in monocular framework using a
Convolutional Neural Network
Tracking multiple objects in real-time

J.C. Zwanepol

M
as

te
ro

fS
cie

nc
e

Th
es

is

Pose regression of 3D objects in
monocular framework using a
Convolutional Neural Network

Tracking multiple objects in real-time

Master of Science Thesis

For the degree of Master of Science in Bio-Mechanical Design at Delft
University of Technology

J.C. Zwanepol

April 30, 2018

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis was supported by Mainblades Inspections. Their cooperation is hereby
gratefully acknowledged.

Copyright c©
All rights reserved.

Abstract

In computer vision pose estimation of objects in everyday scenes is a basic need for a clear
understanding of the surrounding environment, fields of interests include; augmented reality,
surveillance, navigation, manipulation, and robotics in general. Pose estimation is a well
studied topic, however fast and robust solutions are still hard to obtain. The goal of this
research is to robustly and efficiently perform 3D pose estimation of multiple objects within
a single RGB image in real-time (>24 frames per second (fps)).

To achieve this goal an existing CNN is utilized, more specifically the YOLO network is used.
This provides a stable platform for object detection and classification, the network is only
slightly modified to include pose regression. The YOLOv2 network was originally designed
to generate bounding boxes around objects and classify the objects within the bounding
boxes. This research shows that using a single confidence value rather than 4 bounding
box parameters is sufficient to determine the relative location of objects within the image,
limiting the number of parameters that need to be trained. This has allowed to make the
network more efficient and to make the network focus more on training the pose parameters
(azimuth,elevation and distance) rather than the bounding box parameters.

Using several techniques like data augmentation, data clustering and data selection the state-
of-the-art AVP of 50.1% was achieved on the azimuth estimation problem. For the full 3D
pose (azimuth, elevation and distance) problem the AVP is limited to 30.1%, with no direct
comparison this is still considered to be state-of-the-art. However, normalizing the confidence
output of each image in the post-processing step has increased this accuracy further, improving
beyond the state-of-the-art results. With a normalization step the AVP score has reached
63.0% and 40.4% respectively. These results show that the pose estimation problem has
improved significantly, getting closer to a viable solution for real-world applications.

However, further improvements can be made in the post-processing step, the data augmenta-
tion step and the data selection step. The research conducted has shown that accuracy gains
are not only achieved through better network architecture but are also highly dependent on
the training and processing techniques used. This is evident from the accuracy increase of
38% from an AVP of 25% to an AVP of 63%. Optimizing these techniques specifically for the
YOLOpose architecture, might result in a solution that can be used in real-world applications.

Master of Science Thesis J.C. Zwanepol

ii

J.C. Zwanepol Master of Science Thesis

Table of Contents

1 Introduction 1
1-1 Basic Principles . 2

1-1-1 Object detection . 2
1-1-2 Pose estimation . 2

1-2 Overview . 3

2 Related Work 5
2-1 Object Detection . 5

2-1-1 R-CNN . 6
2-1-2 Single forward pass architectures . 8

2-2 Object Detection and Pose estimation . 10
2-2-1 Classification of the pose . 10
2-2-2 State-of-the-art . 10

2-3 Chapter Overview . 11

3 Methodology 13
3-1 PASCAL3D+ . 13
3-2 YOLO network architecture . 14

3-2-1 Architecture . 14
3-2-2 Convolutional layer . 17
3-2-3 Pooling layer . 21
3-2-4 Pass-Through layer . 22

3-3 Pre-processing . 22
3-3-1 Random Crop . 23
3-3-2 Horizontal Reflection . 25
3-3-3 Color Distortion . 27

3-4 Post-processing . 29

Master of Science Thesis J.C. Zwanepol

iv Table of Contents

3-5 Training procedure . 30
3-5-1 Weight initialization . 30
3-5-2 Weight Learning Algorithm . 31
3-5-3 Loss Function . 32

3-6 Chapter Overview . 34

4 Implementation and Results 35
4-1 Tuning the Network . 35
4-2 Evaluation . 36
4-3 Results . 37

4-3-1 Training choices . 37
4-3-2 Baseline . 38
4-3-3 Data clustering . 39
4-3-4 Free selection of ground truth point . 44
4-3-5 Data augmentation . 45
4-3-6 Data selection . 46
4-3-7 Normalizing the confidence . 47
4-3-8 Overview of the experiments . 47
4-3-9 Comparison with the state-of-the-art . 48

4-4 Chapter overview . 53

5 Concluding remarks 55
5-1 Conclusions . 55
5-2 Recommendations and future work . 56

A Failed loss functions 59

Bibliography 61

Glossary 67
List of Acronyms . 67

J.C. Zwanepol Master of Science Thesis

List of Figures

2-1 ILSVRC from 2010 - 2014 . 6
2-2 Illustration of the R-CNN architecture . 6
2-3 Illustrations of the fast and faster R-CNN architecture. 7
2-4 Comparison of the YOLO and SSD models . 8

3-1 Illustration of the YOLO architecture. 14
3-2 line plot of data in Table 3-2 . 16
3-3 Output structure of YOLO network . 17
3-4 Illustration of convolution between image and feature. 18
3-5 Graphs of three common activation functions. 19
3-6 Function graph of Leaky ReLU activation function 20
3-7 Illustration of pooling operation . 21
3-8 Illustration of the reorganization in the pass-through layer 22
3-9 Illustration of re-sizing network input images . 23
3-10 Illustration of random crop . 24
3-11 Illustration of pinhole model . 24
3-12 Illustration of horizontal reflection . 26
3-13 Illustration of spherical coordinate system . 26
3-14 Illustration of color distortion . 27
3-15 Illustration of the output of the network . 29
3-16 Confidence function c(x) . 33

4-1 Illustration of the AVP for the spherical pose evaluation 38
4-2 Graph of the k-means clustering operation . 39
4-3 Illustration of the AVP for the elevation structured in bins 40
4-4 Illustration of the clustering of the elevation data 40

Master of Science Thesis J.C. Zwanepol

vi List of Figures

4-5 Illustration of the loss function for the elevation structured in bins 41
4-6 Illustration of the AVP for the distance structured in bins 41
4-7 Illustration of the loss function for the azimuth structured in bins 42
4-8 Illustration of the AVP for the azimuth structured in bins 42
4-9 Illustration of the different bin types . 43
4-10 Illustration of the AVP for the azimuth structured in bins 44
4-11 Illustration of the AVP for the free selection of the ground truth point 44
4-12 Illustration of free ground truth cell selection . 44
4-13 Illustration of the loss function for the free selection of the ground truth point . . 45
4-14 Illustration of the AVP for the data augmentation case 45
4-15 Illustration of the AP, AVP azimuth and AVP azimuth, elevation and distance . . 46
4-16 Illustration of the output results of the network 51
4-17 Illustration of the output results of the network with 13x13 grid 52

A-1 Illustration of the AVP for the quaternion pose evaluation 60
A-2 Illustration of the loss function for the quaternion pose estimation 60

J.C. Zwanepol Master of Science Thesis

List of Tables

2-1 Object detection results on PASCAL VOC dataset 9
2-2 Joint Object detection and azimuth pose estimation 11

3-1 Convolutional Neural Network (CNN) model information 15
3-2 YOLOv2 accuracy and efficiency results on PASCAL VOC2007 dataset 16
3-3 Components of the training procedure used in YOLOPOSE 34

4-1 Hyper-parameters selected . 36
4-2 Overview of the experiments conducted . 47
4-3 Joint object detection and pose estimation of azimuth 48
4-4 Joint object detection and pose estimation . 49
4-5 Caption . 49

Master of Science Thesis J.C. Zwanepol

viii List of Tables

J.C. Zwanepol Master of Science Thesis

Preface

This master’s thesis is written in collaboration with Mainblades Inspections with supervision
from the Delft University of Technology. It is part of the Bio Robotics specialization in the Bio
Mechanical Design track. The work focuses on pose regression of 3D objects in monocular
framework using a Convolutional Neural Network. It builds on the research conducted in
the literature survey titled "Mapping of environments containing reflective 3-D objects for
vision-based localization".

I would like to thank my supervisors dr. ir. Jan van Gemert at the TU Delft together with
dr. ir. Hamdi Dibeklioglu and prof. dr. ir. Pieter Jonker. I would also like to thank ir. Dejan
Borota and ir. Jochem Verboom at Mainblades Inspections for their support and guidance
during the writing of this thesis.

Delft, University of Technology Jacco Zwanepol
April, 2018

Master of Science Thesis J.C. Zwanepol

x List of Tables

J.C. Zwanepol Master of Science Thesis

Chapter 1

Introduction

Visual perception is an important part of the human senses that forms an integral part of how
we interact with our environment. Through it we can play sports, drive cars and recognize
our friends and family. For this interaction we have to understand what we are looking at,
recognize the individual objects and estimate position and orientation of objects of interest.
This requires a certain level of signal processing that our brain is particularly good at, to
the point where it seems like an almost effortless and instantaneous task. Like humans,
robots have similar sensors to interact with their environment. Instead of having eyes, robots
use cameras or lasers to observer their environment. However, robots cannot (yet) accurately
mimic the functions of the brain. Robots use complex algorithms to interpret sensor data that
is often task specific and limited by its accuracy, robustness or required processing power. For
a robot to mimic part of the visual perception capabilities of our brain requires a combination
of these complex algorithms. This Results in a system that is complex in design and operation,
often requiring parameters to be tuned to fit different environments. These complex systems
require significant processing power to run in real-time. However, In recent years progress
has been made into realizing this goal of human like visual perception capabilities through
the introduction of Neural Network (NN) models. Instead of algorithms being designed for
specific tasks, NNs can be trained instead of programmed. Like our brain, that learns to
do different tasks in a unique way by learning from mistakes and past experiences, similarly
a NN learns to see patterns and correlations in a unique way through a machine learning
process. This new technique has lead to multiple breakthroughs in computer vision fields,
like in classification and object detection.
This thesis will focus on:

• Object detection: Detecting multiple objects in single RGB images.

• Object classification: Classifying individual objects that have been detected.

• Pose estimation: Estimate 3D poses of individual objects that have been detected.

• Real-time operation: Ability to Run at 24 frames per second (fps).

• Dataset: Ability to train and perform validation on PASCAL3D+ dataset.

Master of Science Thesis J.C. Zwanepol

2 Introduction

1-1 Basic Principles

1-1-1 Object detection

In the computer vision field, object detection has been around for a long time with related
work dating back to 1963 [1]. Until recently the standard techniques for object detection
were geometric based methods that extract 2D features, like [2, 3, 4, 5]. These techniques
often resulted in case variant results dependent on lighting conditions, object representation
and/or object visibility (i.e. occlusion). With the introduction of Convolutional Neural
Networks (CNNs) a new height was achieved in the precision of object detection and classi-
fication. In the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [6] the
CNN architecture called AlexNet [7] won the image classification competition scoring 11%
higher than the runner-up. From then on object detection and classification problems have
been dominated by CNNs, resulting in architectures like Recurrent Convolutional Neural
Network (R-CNN) [8], You Only Look Once (YOLO) [9] and Single Shot Detection (SSD)
[10] consistently showing improvements in accuracy and detection rate on multiple online
datasets.

1-1-2 Pose estimation

With the success of CNN in classification and object detection, with several CNNs passing
human level classification accuracy in 2015, the shift has slowly moved to pose estimation of
objects. This opened up possibilities for CNN to be used in a range of new applications. Pose
estimation of objects in everyday scenes is a basic need to understanding the surrounding
world, fields of interests include; augmented reality, surveillance, navigation, manipulation,
and robotics in general. Robotics relies heavily on pose estimation to know the location of
the robot and to understand its surroundings.

Pose estimation is a well studied topic, however fast and robust solutions are still hard to
obtain. Improvement in robustness often means a compromise on computational speed, this
particularly applies to geometric based methods. Initially pose estimation of objects was done
on single objects with their exact 3D geometries known, like [11, 12]. With the introduction
of the PASCAL3D+ dataset this moved to multiple objects pose estimation, with generalized
3D geometries for objects. PASCAL3D+ introduce a way of comparing different algorithms
on their performance renewing interest in the pose estimation problem.

The difficulty of pose estimation is that it requires the preservation of geometric information,
unlike object detection and classification that only require view-invariant representations of
the objects. In real life operating environments there are variations in shape and appearance
of objects within their respective categories as well as varying viewing conditions. i.e. a car
can be represented by different brands and models each with their own unique design, but the
same car can also have a different appearance if doors are open instead of closed. This makes
it extremely difficult to build robust models that represents the geometric properties of all
objects within a scene. CNNs have the potential to solve this problem. The deep architecture
of most state-of-the-art CNN architectures allow to decode large complex non-linear problems.

In this thesis the second version of the YOLO architecture [13] is used as it shows state-of-
the-art result in object detection and classification on both PASCAL VOC [14] and COCO

J.C. Zwanepol Master of Science Thesis

1-2 Overview 3

[15] dataset. This architecture has a unique structure that allows for single shot detection of
multiple objects at a fast rate. By directly integrating the pose estimation into the object
detection framework, rather than using a second stage for classification, the resulting system
is fast and able to train both classification and pose simultaneously.

1-2 Overview

Unlike previous works the aim is to directly regress the pose of all objects from a single 2D
image, using data provided by PASCAL3D+ [16]. Because CNNs are essentially black-boxes,
the main focus of this paper will not be on the architecture of the CNN, rather the focus
will fall on the pre-processing, training, and post-processing steps that are implemented to
solve the research problem. The state-of-the-art CNN architecture YOLO [13] is used as
basis to perform the pose estimation task. The YOLO architecture is design to detect and
classify objects, the output of the network therefore has to be modified to allow for pose
estimation. Two pose representation were tested in this research; Using x,y,z coordinates and
four quaternion values to describe the pose and a spherical coordinates (azimuth, elevation
and distance) to describe the pose. In the training phase it became evident that the first pose
representation method did not work, for this reason the results and discussion are moved to
Appendix A. The rest of the research will focus on the spherical coordinate system to desribe
the pose.
The goal of this research is to design a state-of-the-art model that can accurately predict
poses at real-time speeds of 24 fps. The methods that contribute to this solution are the main
contributions of this paper, and can be summed up by the following:

• Adding elevation and distance to the pose, where other works only look at azimuth.

• How the pose is structured in bins, using opposite poses in each bin instead of sequential
poses.

• Normalizing the confidence (objectness) scores for each image in the post-processing
step.

The research is divided into 3 parts:

Master of Science Thesis J.C. Zwanepol

4 Introduction

J.C. Zwanepol Master of Science Thesis

Chapter 2

Related Work

In this chapter an overview of the available techniques in image based object detection and
pose estimation will be reviewed. The work related to object detection will be reviewed
first, then works combining both object detection and pose estimation will be introduced and
discussed. Both approaches will include information on techniques that are most common
and techniques that are considered state-of-the-art. Decisions made for the model architecture
and related components of the model are based on these works discussed in this chapter.

2-1 Object Detection

Object detection is a core problem in computer vision with a rich history. A common approach
to detection is to start with feature extraction using robust features like; Haar [17], SIFT [18],
HOG [19] and convolutional features [20]. Then, using classifiers to identify objects from these
features, using techniques like [21, 22, 23, 5] or making use of a localizer like [24, 25]. These
techniques are run either in sliding window fashion over the whole image or on some subset
of regions in the image.

A common approach that has been implemented in multiple different cases is theDiscriminative
Part based Model (DPM). DPM is a broader term for detection algorithms that determine
where objects exist in an image by separately analyzing various parts of the image, rather
than analyzing the whole. The DPM is a decoupled pipeline, extracting features first, then
classifying the regions and finally predicting the bounding boxes. A popular DPM method is
the constellation model that detects a small number of features, determines their relative po-
sitions and then decides whether an object is inside the region. The idea behind this technique
was first introduced in [2]. However the speed, accuracy and robustness of DPM remains an
issue. With the introduction of Convolutional Neural Network (CNN) these techniques have
become less common, even obsolete.

Ever since the CNN AlexNet [7] won ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [6] in 2012, CNNs have become the gold standard for image classification. CNNs
have improved to the point where they now outperform humans on ILSVRC. Figure 2-1 shows

Master of Science Thesis J.C. Zwanepol

6 Related Work

the results of ILSVRC over the period 2010-2014. Note the sudden change in deeplearning
techniques vs traditional Computer Vision (CV) after 2012, where CNNs have dominated
the field since.

Figure 2-1: ILSVRC from 2010-2014. Sowing the results of traditional CV and deeplearning
techniques for the years 2010-2014.1

In real world cases multiple objects can co-exist, they can overlap and backgrounds can
change. CNNs are a useful tool that can help with these complex tasks. Given a more
complicated image, CNNs can be designed to go as far as to identifying the different objects,
determine their boundaries and identify the classes of each object. With the development of
CNN architectures in combination with improved computing power and expanding training
data, a CNN can now surpass human level performance in object detection. Albeit that this
is for specific tasks, such as face recognition.

2-1-1 R-CNN

One of the first techniques taking advantage of CNNs, that also showed promising results,
is Recurrent Convolutional Neural Network (R-CNN) [8]. R-CNN takes an image as input,
proposes a bunch of regions in the image where an object might exist and then classifies
and generates bounding boxes around these objects. In this pipeline R-CNN creates a bunch
of region proposals using a technique referred to as Selective Search (SS). Selective search
analyses an image using different sized windows, grouping together pixels for each window
size based on their texture, color, or intensity to detect relevant objects. Figure 2-2 shows an
illustration of the R-CNN architecture.

Figure 2-2: Illustration of the R-CNN architecture
1https://cdn-images-1.medium.com/max/800/1*kOb39xf47de-Bqr9KcK9hw.png

J.C. Zwanepol Master of Science Thesis

https://cdn-images-1.medium.com/max/800/1*kOb39xf47de-Bqr9KcK9hw.png

2-1 Object Detection 7

For the generated region proposals, the proposed regions are warped to a fixed squared size
and passed on to a modified version of AlexNet. A Support Vector Machine (SVM) is added
to the last layer that performs the classification. The SVM determines whether the region
contains an object, if so it also determines the type of object. The final step is an optimization
step that re-sizes the bounding box to better match the boundaries of the object. This process
is computationally expensive and is not yet capable of running in real time, iteration on this
concept have eventually led to the development of Faster R-CNN [26].

In R-CNN the region proposal step generates 2000 potential Regions of Interest (RoIs), each
of these proposals is converted into corresponding features maps using the AlexNet network,
this is computationally very expensive. In Fast R-CNN [27] a break through was achieved by
realizing that region proposals depend on the same features that are generated in the forward
pass of the CNN. So in R-CNN the image is passed through the network once, generating the
necessary features maps, using these feature maps the relevant RoIs can be generated. With
the use of a Region of Interest (RoI) pooling layer it is then possible to wrap the RoIs into
a single layer. From this pooling layer the feature maps are fed into a fully-connected layer
and split into two heads; One performs classification using a linear regression and softmax
operation, and the other generating bounding boxes using a linear regression. See Figure 2-3A
for an illustration of this network.

The latest iteration of the R-CNN framework is called faster R-CNN. Faster R-CNN addresses
only the SS method that creates the region proposals. This part is the bottle neck in the fast
R-CNN architecture, significantly effecting the efficiency. Instead of the SS method a second
small CNN is used to generate RoIs, getting region proposals for little computational effort.
This small network is also referred to as a Region Proposal Network (RPN). The RPN is
trained to generate RoIs from the feature maps in the last layer of the CNN, it is based on
the MultiBox approach [28, 29]. The RPN outputs a set of rectangular object proposals, each
with an objectness score. These proposals are then feed into the RoI pooling layer the same
as in Fast R-CNN. See Figure 2-3B for an illustration of the faster R-CNN architecture.

A – Fast R-CNN B – Faster R-CNN

Figure 2-3: Illustrations of the fast and faster R-CNN architecture.2

2https://jhui.github.io/2017/03/15/Fast-R-CNN-and-Faster-R-CNN/

Master of Science Thesis J.C. Zwanepol

https://jhui.github.io/2017/03/15/Fast-R-CNN-and-Faster-R-CNN/

8 Related Work

The faster R-CNN framework uses a combined loss function of bounding box regression,
bounding box confidence scoring, and object classification. This combined loss allows both
networks to be trained simultaneously. Faster R-CNN also introduces anchor boxes for the
first time. Rather than predicting each box directly, offsets are predicted for hand-picked
priors. The reasoning behind bounding boxes was the for the bounding boxes of objects their
exist certain common shapes and sizes, these common shapes and sizes are referred to as the
anchor boxes. Predicting offsets to bounding boxes of several standard shapes and sizes helps
simplify the problem for the network, it essentially gives the network several options to choose
from that are similar in either shape or size to the ground truth.

2-1-2 Single forward pass architectures

The next step in object detection is combining the RPN and classification networks into a
single CNN, where bounding boxes and class predictions are predicted from a single forward
pass of the network. The first to achieve this was the You Only Look Once (YOLO) [9]
architecture, achieving much faster detection rates. Single Shot Detection (SSD) builds on
this principle, leverages the Faster R-CNN’s RPN, using it to directly classify objects inside
each prior box instead of just scoring the object confidence. It improves the diversity of prior
boxes’ resolutions by running the RPN on multiple convolutional layers at different depth
levels. Figure 2-4 compares the architectures of both YOLO and SSD.

Figure 2-4: A comparison between two single shot detection models, SSD and YOLO. The SSD
model adds several feature layers to the end of a base network, which predict the offsets to default
boxes of different scales and aspect ratios and their associated confidences.

J.C. Zwanepol Master of Science Thesis

2-1 Object Detection 9

The YOLO network generates 1024 feature maps into a 7x7 grid, using fully connected layers
this is restructured into a 7x7 grid with a depth of 30. Each cell in the grid now contains n
predictions of bounding boxes and a confidence score for each bounding box. The confidence
score gives an indication of the accuracy of the bounding box prediction and whether an
object is present in the bounding box. Similarly YOLO generates a class probability score
for all classes in each grid cell. A big limitation of this method is that it only generates one
prediction per grid cell. This can result in smaller object not being detected that are close to
other objects in the scene.

The SSD network has a good balance between efficiency and accuracy. The SSD architecture
makes use of a modified version of the VGG network. SSD adds a small 3x3 sized convolutional
layer to the outputs of several layers at different scales, using their feature maps to predict the
bounding boxes and classify objects. Like the faster R-CNN framework SSD takes advantage
of the anchor box method, only learning the off-set rather then directly determining the
box dimensions. By predicting bounding boxes at different layers in the network it helps
the network to better predict different scales of objects. SSD with a 300x300 input size
significantly outperforms its 448x448 YOLO counterpart in accuracy on VOC2007 test while
also improving the speed, see Table 2-1.

Finally after the initial YOLO model, a new version of the model was introduced that further
increased the efficiency and accuracy, obtaining similar sate-of-the-art accuracy as SSD but
being even more efficient. Unlike Faster R-CNN and SSD that generate bounding boxes for
several scales, YOLOv2 takes a different approach. Instead of generating a prediction for
several layers at different levels, YOLOv2 simply adds a pass-through layer to the network.
The pass-through layer brings features from an earlier layer at a resolution of 26x26 to a layer
further down the pipeline at a resolution of 13x13, see Section 3-2. Like SSD, YOLOv2 uses
anchor boxes to help the network predict bounding boxes. Both SSD and YOLOv2 form the
current state-of-the-art, achieving fast and accurate object detection. Table 2-1 shows the
performance of these algorithms on the PASCAL VOC2012 dataset.

Framework mAP - 2007 mAP - 2012 fps
Fast R-CNN 70.0 68.4 0.5
Faster R-CNN 76.4 70.4 7
YOLO 63.4 57.9 45
SSD-512 76.8 74.9 19
YOLOv2-544 78.6 73.4 40

Table 2-1: Object detection results on PASCAL VOC 2007 and 2012 dataset. YOLOv2 performs
on par with state-of-the-art detectors like Faster R-CNN and SSD-512 while running 2-6x faster,
All timing information is measured on a Geforce GTX Titan X.[13]

Master of Science Thesis J.C. Zwanepol

10 Related Work

2-2 Object Detection and Pose estimation

With these advancements in object detection and classification and the introduction of PAS-
CAL3D+ [16], a slow shift toward object detection and pose estimation using CNN has
occurred. The problem of pose estimation of objects in an image however, was initially
considered a Perspective n-point Problem (PnP) [30], where the problem is seen as purely
geometric. Some methods looked at correlation between keypoints in a 2D image and a 3D
model representations of the object [31]. Other techniques focused on constructing a 3D
model of the object and using this to find the 3D pose that best match the ground truth
model [32]. All these cases involve simple datasets in controlled environments with single
objects. With the introduction of more complex dataset containing multiple objects, new
techniques using either extensions of DPM [5, 33, 34], parametric models [35, 36] or large 3D
instances collections [37, 38] were introduced.

With the introduction of Pascal3D+ dataset, which extends Pascal Visual Object Classes
(VOC) dataset by aligning a set of 3D CAD models for 12 rigid object classes, learning-based
approaches became possible. CNN-based approaches, that until the availability of Pascal3D+
were limited to special cases such as faces [39] and smaller datasets [40], now begin to be
applied to this problem at a larger scale.

2-2-1 Classification of the pose

Most techniques formulate the pose estimation problem as a classification problem rather
than a regression problem. Instead of directly determining the pose, the pose is split into
bins of equal ranges. i.e. the azimuth is split into 8 bins (360/8 = 45◦ per bin), which can
be viewed as 8 separate classes. This simplifies the problem but provides limited accuracy,
increasing the number of bins also increases the computational complexity.

The work done in Viewpoints & Keypoints (VpKps)[41] describe the same approaches as
discussed above, treating pose estimation as a classification problem and using a two stage
architecture. Using R-CNN framework to detect objects and suggest regions in which the
objects can be found. These suggested regions are then used as input for the pose estimation
network, which in this case is the VGG network [42] trained and tested using PASCAL3D+.

In RCNN+Alex[37] the same formulation is used as the earlier work of VpKps for pose
estimation. However, by generating more than 2 million synthetic images with ground truth
pose annotations the network is better suited at estimating viewpoint accuracy. Like VpKps
the network is tested using PASCAL3D+. Both techniques use a disjoint architecture, showing
slow operating speeds. As was mentioned in the previous section, to get faster operation
speeds a single CNN is suggested.

2-2-2 State-of-the-art

With the recent development of single shot architectures YOLO and SSD a significant speed
increase has been achieved. In SSDPOSE [43] the SSD pipeline is used as the basis. This
architecture allows to jointly perform the detection and pose estimation in a single forward pas
of the network reducing the required computational power. However, it still makes a discrete

J.C. Zwanepol Master of Science Thesis

2-3 Chapter Overview 11

estimate of the object’s pose, classifying the pose in bins rather than regressing the pose
directly. The techniques that are considered the current state-of-the-art on Pascal3D+are are
MT-CNN[44] and SSDPOSE . Both approaches show higher accuracy than previous approach
with MT-CNN outperforming even SSDPOSE , but the SSDPOSE approach is computationally
much more efficient, capable of running in real-time.

Framework AVP
VDPM[16] 12.1
DPM-VOC+VP[33] 13.6
RCNN+Alex[37] 19.8
VpKps[41] 31.1
MT-CNN[44] 36.1
SSDPOSE [43] 28.8

Table 2-2: Joint object detection and azimuth pose estimation results on PASCAL3D+ (24 bins
AVP).3

2-3 Chapter Overview

With the improvements in hard-ware, deep CNNs and available training data, CNNs have
grown to tackling more and more real-world problems. This also applies to vision related
problems in robotics. Works like R-CNN, YOLO and SSD have shown promising results in
object detection and are getting increasingly better at pose estimation. However there are
some limitations when it comes to pose estimation, as these networks only look at azimuth
angles, classify these angles rather then regress them and often are limited by their operating
speed. However, YOLO and SSD show promising results as both models show that it is
possible to have a good balance between accuracy and efficiency, running in real-time (>24
fps). These networks also show that it is possible to learn to detect multiple objects in
an image and estimate their pose, showing that geometric information can be preserved
in the feature maps in both models. These related techniques show that pose estimation
including azimuth, elevation and distance should be possible using an efficient single shot
CNN architecture. Below a list is given on what is possible with current techniques and what
this research aims to improve on.

Current techniques

• Object detection: done using a bounding box.

• Object classification: classify each object detected.

• Pose estimation: only looking at the azimuth and structuring poses into bins, classi-
fying which bin best represents the pose.

• Real-time operation: running at >24 fps.

• Dataset: able to train and test on PASCAL3D+ dataset.
3http://cvgl.stanford.edu/projects/pascal3d.html

Master of Science Thesis J.C. Zwanepol

http://cvgl.stanford.edu/projects/pascal3d.html

12 Related Work

Further improvements

• Object detection: using only objectness function to detect objects in the scene rather
than using bounding boxes, limiting the number of parameters needed to be learned.

• Pose estimation: including elevation and distance into the pose definition and re-
gressing the pose rather than just classifying the pose.

• Performance: increase the overall Average Viewpoint Precision (AVP) of the pose
estimation problem.

J.C. Zwanepol Master of Science Thesis

Chapter 3

Methodology

This chapter will address the design of an end-to-end trainable network that predicts a 3D
pose in real-time, using a single shot 2D object detector. The network is designed to take
a single RGB image as input and perform classification and 3D pose estimation of objects
in the image. The network is a variant of the YOLO network with a modified output layer
for pose estimation, this modification refers to a change in dimension of the output layer as
explained in Section 3-2-1. In this chapter the model architecture will be explained and the
choices made for each section of the model architecture will be addressed in further detail.
The model architecture will be covered in three parts:

The main part of the architecture is the Convolutional Neural Network (CNN), therefore the
CNN is discussed first. The pre-processing step and the post-processing step are discussed
later referring to parts discussed in the CNN section. The chapter will conclude with an
explanation of the training procedure. However, first a quick introduction of the PASCAL3D+
dataset will be given.

3-1 PASCAL3D+

Pascal3D+ dataset, re-lease 1.1 [16] is a dataset that provides 3D pose annotations for 12
common categories: aeroplane, bicycle, boat, bottle, bus, car, chair, dining-table, motorbike,
sofa, train, and tv-monitor. The annotations are made for images selected from PASCAL
VOC 2012 [14] and ImageNet [6]. For training both the ImageNet and Pascal VOC data is
used and for evaluation only the validation dataset provided by VOC Pascal 2012 is used. The
bottle category will be ignored as this is often the case in other works using PASCAL3D+.
This is due to the bottle category not having a distinct reference for the azimuth angle to be
determined, as the object is cylindrical in shape.

Master of Science Thesis J.C. Zwanepol

14 Methodology

Other dataset like KITTI[45] and ICCV2015 Occluded Object Challenge[46, 47] are similar
in that they also provide 3D pose annotations of objects. However, both dataset are task
specific datasets, KITTI is a dataset that is specific to cars driving on a road and ICCV2015
Occluded Object Challenge only has one type of scene (table with a bunch of objects on
it). PASCAL3D+ has a larger range of different environments making it harder and more
applicable for different tasks.

3-2 YOLO network architecture

In this section the network architecture will be discussed together with the network inputs
and outputs. The individual building blocks of the model will be reviewed with relevant
basic theory of each building block. The building blocks consist of the following, in order of
dependency:

3-2-1 Architecture

The architecture, as stated at the beginning of this chapter, is based on the YOLOv2 single
shot object detector architecture that is modified to include pose estimation. The decision was
between either the SSD or YOLOv2 architecture as both are capable of running in real-time
and both show state-of-the-art accuracy’s. In the end You Only Look Once (YOLO)v2 ar-
chitecture was chosen because the ratio between accuracy and efficiency was better. YOLOv2
being 1.8% more accurate than SSD on the PASCAL VOC2007 dataset and only 1.5% worse
on the PASCAL VOC2012 dataset, while running twice the amount of frames per second (fps)
(see Table 2-1).

The network described in this paper, from this point on, will be referred to as the YOLOPOSE

architecture. The complete architecture is shown in Figure 3-1.

Figure 3-1: Illustration of the YOLO architecture – pass-through module passes information
from a higher dimensional layer to a lower dimensional layer.

J.C. Zwanepol Master of Science Thesis

3-2 YOLO network architecture 15

The architecture consists of 10 different modules, 8 modules with convolutional layers, a single
pass-through module and a merge module. These modules fit in-between the boxes shown in
the Figure 3-1, these boxes represent the dimensions of each input an output of the individual
modules. Table 3-1 gives a more detailed representation of the different modules and their
components.

Modules Type Filters Size/Stride Output
module 1 Convolution 1 32 3 x 3 416 x 416

module 2 Maxpool 2 x 2/2 208 x 208
Convolution 2 64 3 x 3 208 x 208

module 3

Maxpool 2 x 2/2 104 x 104
Convolution 3 128 3 x 3 104 x 104
Convolution 4 64 1 x 1 104 x 104
Convolution 5 128 3 x 3 104 x 104

module 4

Maxpool 2 x 2/2 52 x 52
Convolution 6 256 3 x 3 52 x 52
Convolution 7 128 1 x 1 52 x 52
Convolution 8 256 3 x 3 52 x 52

module 5

Maxpool 2 x 2/2 26 x 26
Convolution 9 512 3 x 3 26 x 26
Convolution 10 256 1 x 1 26 x 26
Convolution 11 512 3 x 3 26 x 26
Convolution 12 256 1 x 1 26 x 26
Convolution 13 512 3 x 3 26 x 26

Pass-through module High Res. 2048 13 x 13

module 6

Maxpool 2 x 2/2 13 x 13
Convolution 14 1024 3 x 3 13 x 13
Convolution 15 512 1 x 1 13 x 13
Convolution 16 1024 3 x 3 13 x 13
Convolution 17 512 1 x 1 13 x 13
Convolution 18 1024 3 x 3 13 x 13
Convolution 19 1024 3 x 3 13 x 13
Convolution 20 1024 3 x 3 13 x 13

Merge module Concatinate 3072 13 x 13
module 7 Convolution 21 1024 3 x 3 13 x 13
module 8 Convolution 22 d 3 x 3 13 x 13

Table 3-1: CNN model information. Layer’s input size, output size, number of Filters, kernel
size and stride.

The table shows that there are 5 max-pooling operations with a stride of 2 in the network.
These pooling layers determine the overall size reduction of the image, reducing the image by
half with each pooling operation. Because there are 5 max-pooling layers the resulting image
reduction equals 32 (25). The image goes from an input size of 416x416 to an output size of
13x13.

The size of the input image is determined by the following:

Master of Science Thesis J.C. Zwanepol

16 Methodology

• Has to be a multiple of 32 – (224, 256, 288, ...).

• Spatial dimension of output has to be an odd number – The center of a picture
is often occupied by a large object. With an odd number grid there exists a single cell
in the center, allowing the network to be more certain on the location of the object.

• Number of objects that can be detected close to one another – A higher spatial
dimension of the output results in more objects being detected close to one another.

• Computational complexity – Spatial dimension of the input determines the number
of weights in the network, higher dimension results in a higher complexity.

The first two points are fixed constraints on the input image size, the last two points are
performance related. Increasing the spatial dimension of the output increases the accuracy
of the network but subsequently also increases the complexity, decreasing the number of fps.
Table 3-2 shows several image scales, comparing accuracy and fps between scales. Figure 3-
2 shows the accuracy plotted against the fps, after image scale of 416 the accuracy increase
starts leveling out, while the number of fps decreases at a continues rate. Therefore, the chosen
input image size is set to 416x416 being an optimal ratio between efficiency and accuracy.

Framework mAP fps
YOLOv2-288 69.0 91
YOLOv2-352 73.7 81
YOLOv2-416 76.8 67
YOLOv2-480 77.8 59
YOLOv2-544 78.6 40

Table 3-2: YOLOv2 accuracy and effi-
ciency results on PASCAL VOC2007 dataset
for different image scales, all timing informa-
tion is measured on a Geforce GTX Titan
X.[13] Figure 3-2: line plot of data in Table 3-2

Like VGG [42] the size of the kernel for each convolution layer is set to 3 x 3, they discovered
that a network with a large depth of 16-19 weighted layers performs significantly better when
only using small (3 x 3) kernels, rather than large kernels (>5). In a similar manner to
GoogLeNet [48] layers with kernels size 1 x 1 are used between layers with kernel size 3 x 3
to reduce layer dimensions (number of feature maps) in the network. This results in more
efficient and accurate features.

The output of the network is defined by a tensor of 13 x 13 x d. d is the number of predictions
per grid cell (d = n(P + V +C)) where, n is the number of bins, C the number of confidence
(objectness) values for the predictions, V the number of parameters defining the 3D pose
and P the number of classes. In this work the azimuth data is divided in 4 bins (n = 4),
the PASCAL3D+ dataset has 11 classes (excluding the bottle class as mentioned in section
3-1), there are 3 parameters related to the pose (V = 3; azimuth, elevation and distance)
and there is 1 confidence prediction for the object pose (C = 1). Figure 3-3B illustrates the
output structure of the network. In Figure 3-3A the original YOLOv2 network output is also
visualized. The difference between the two outputs is that YOLOv2 was designed to work on

J.C. Zwanepol Master of Science Thesis

3-2 YOLO network architecture 17

the PASCAL VOC dataset which has 20 class categories and instead of estimating the pose,
four bounding box parameters are estimated. In the network used in this research S = 13
and there are a total of 4 predictions per cell (n = 4).

A B

Figure 3-3: Output dimension structure of YOLO network.1A – is the output of the original
YOLOv2 network. B – is the output of the modified YOLOP OSE network.

As was shown in Table 3-1 there are several types of layers, each of these layers consists of
specific building blocks. For the convolutional layer there is the convolution operation itself,
an activation function and a batch normalization operation. For the max pooling layer it
is just the pooling operation. The pass-through layer has a reorganization operation and a
merging operation. The subsequent sections will discuss these building blocks respectively.

3-2-2 Convolutional layer

convolution operation

The convolution operation is the main component of a CNN, this is also where most of the
computational costs lie. In the convolution operation learnable weights (a.k.a. features) are
applied to the input of the convolutional layer to generate feature maps. The size of the fea-
tures can be freely selected, but often is set to a size of 3x3. In the YOLOPOSE architecture
the convolution has 2D features not taking the depth into account. i.e. a 3D feature when
applied to the input image would allow to generate a feature that incorporates all three RGB
values, whereas 2D feature only look at one color value. However, 3D feature are computa-
tionally more expensive and often don’t show better results. The reason for a convolution
operation is to reduce the number of free parameters and improve generalization, 3D features
introduce more free parameters making them less common in CNN. The 2D features are
applied on the whole image in a similar manner as a sliding window going across the image.
The convolution operation can mathematically be defined as an operation performed on two
functions to produce a third, the equation is show in Eq. (3-1).

(K ∗X)i,j =
∑
m

∑
n

Xi−m,j−nKm,n (3-1)

1https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088

Master of Science Thesis J.C. Zwanepol

https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088

18 Methodology

The convolution operation ∗ performs an operation on the kernel K (or feature) and on
the layer input X, the resulting output is defined as the feature maps. The input of the
convolutional layer can either be the RGB images (only for the first layer) or feature maps
generated in a previous layer. In the resulting function the terms m and n represent the
location of the kernel and i and j represent the points within the kernel, Figure 3-4 illustrates
this in detail for a single kernel.

Figure 3-4: Illustration of the convolution operation, applying a feature to the input data X of
size 3 x 3. The output grid is the resulting feature map after convolution, the depth is defined
by the number of feature maps.

In the training process weights are adjusted after each propagation of the network. To limit
the number of weights that need to be trained, a feature map consist of only one feature that
is applied to all regions of the input instead of multiple features applied to different regions.
The reasoning behind this is that if a feature is useful for a region i it will also be useful for a
region j. For this reason the size of the output of the convolutional layer can be determined
by four hyper-parameters:

• Depth corresponds to number of features being applied to the input.

• Filter size corresponds to the size of the feature.

• Stride is the shift of the feature over the input. With a stride of 1 the feature is shifted
1 pixel at a time. With a larger stride the output becomes smaller spatially (width and
height) as more pixels are skipped.

• Zero-padding is padding the input with zero values around the border. Increasing the
padding on the input also increases the size of the output spatially. This can be used
to make the output size the same spatially as the input size, if stride is set to 1.

In Table 3-1 these hyper-parameters are specified together with the output size of each layer.

J.C. Zwanepol Master of Science Thesis

3-2 YOLO network architecture 19

Activation Function

The activation function of a node (individual component within a layer) determines the ac-
tivation range of the node, in other words it determines whether the node plays any role in
predicting the class and pose of an object. Every activation function takes an input x and
performs a fixed mathematical operation on it. There are several activation functions that
can be used, each with its own properties. There are three standard activation functions often
used in CNNs:

• Sigmoid: Generates a non-linear output between 0 and 1 from a given input x.

φ(x) = 1
1 + exp(−x) (3-2)

• Tanh: Generates a non linear output between −1 and 1 from a given input x.

φ(x) = tanh(x) (3-3)

• Rectified Linear Unit (ReLU): Replaces negative input values with 0 and thus
thresholds the input at 0.

φ(x) = max(0, x) (3-4)

A B C

Figure 3-5: Graphs of three common activation functions. A – Sigmoid function. B – Tanh
function. C – ReLU

In machine learning ReLU is the most common activation function, it is found that it sig-
nificantly accelerates the convergence of Stochastic Gradient Descent (SGD). Likewise it is
computationally less complex than its counterparts. It is suggested that this is due to its lin-
ear and non-saturating structure [7]. Because ReLU implements a true zero cut off, neurons
are actually cut off, unlike a non-linear activation where zero is never truly reached. This is
similar to how brains of humans and animals work, neurons are neglecting if they don’t play
a role in the decision making [49]. In [50] they showed that this improved the overall accuracy
of the network.

However, with ReLU functions there is a risk of neurons becoming permanently inactive. In
some cases a large gradient can cause the ReLU to update the weights to a point (φ(x) = 0)
where it does not activate on any other data point again. Setting the learning rate lower can
prevent this from happening, a learning rate that is too high can cause a number of neurons

Master of Science Thesis J.C. Zwanepol

20 Methodology

to become inactive. Another solution is to use a new type of ReLU, also known as the Leaky
ReLU activation [51]. The difference being that instead of the activation function having a
threshold at zero when x < 0, the Leaky ReLU has a small negative slope p.

φ(x) =
{
x, if x > 0
px, otherwise

(3-5)

Figure 3-6: Function graph of Leaky ReLU activation function

In this case p can be a fixed value or it can be an adaptive value that is learning during training.
Based on research done in [52] adaptive learning of p has not yet shown any consistent
improvements. In the YOLOPOSE network the p is set to 0.1 as this is a standard value for
p.

Batch Normalization

To increase the stability of a neural network batch normalization can be used. Batch nor-
malization essentially works by adding noise to the layer’s activation in order to reduces the
effects of overfitting2. As the name suggests, the activation is normalized by subtracting the
batch mean and dividing it by the batch standard deviation.

The problem with batch normalization is that the activation output can changes with each
batch, the weights of the next layer become hard to optimize if the normalization is based
on the random selection of a batch. During training, SGD might be forced to undo the
normalization of the previous layer, if it means that the loss is kept at a minimum. For this
reason in the batch normalization step two trainable parameters are added, standard deviation
γ and mean β. This allows the SGD algorithm to denormalize the batch normalization
without having to change all the weights in the network, this helps preventing instability.
The algorithm of the batch normalization is shown in Algorithm 1.

2Refers to a model that models the training data too well, negatively impacting the performance on new
data

J.C. Zwanepol Master of Science Thesis

3-2 YOLO network architecture 21

Algorithm 1: Batch Normalization, applied to activation x over a mini-batch [53]
input : Values of x over a mini-batch: β = {x1...m};

Parameters to be learned: γ, β
output: {yi = BNγ,β(xi)};

µβ ← 1
m

m∑
i=1

xi // mini-batch mean

σ2
β ←

1
m

m∑
i=1

(xi − µβ)2 // mini-batch variance

x̂i ←
xi−µβ√
σ2
β

+ε
// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

3-2-3 Pooling layer

A standard operation after a convolution layer is to implement a pooling layer. This step
reduces the spacial size of the feature map by replacing regions of the input with summations
of the values within these regions. Similar to a convolutional layer, pooling is performed
by sliding a kernel over the input and computing one single value (maximum, average or
other) from the kernel (see Figure 3-7). The desired effect of pooling is to transform the
representation of the feature map discarding irrelevant information while retaining important
information.

Figure 3-7: Illustration of max pooling operation, 2 x 2 kernel with stride = 2

The most common is max and average pooling [54] that generate as output the maximum or
average value of the rectangular region. In the YOLOPOSE network only the max pooling
operation is used, this is similar to [13].

Master of Science Thesis J.C. Zwanepol

22 Methodology

3-2-4 Pass-Through layer

In CNN, the resolution of the feature map decreases as the layers go deeper. A higher
resolution feature map can be useful in predicting more precise poses as it gives more accurate
spatial information. To incorporate a higher resolution feature map into the resolution of the
output feature map, a pass-through layer is needed. Two channels cannot be combined if the
size of the feature maps do not match, therefore the pass-through layer changes the size of
the higher resolution feature map to match that of the output feature map. This is done by
reorganizing the higher resolution feature map into multiple lower resolution feature maps.
Figure 3-8 shows this process where a 4x4 feature map is cut into 4 separate 2x2 feature
maps. These smaller resolution feature maps are then concatenated onto the channel of the
lower resolution layer, see Figure 3-1 for the placement of the pass-through module and merge
module.

A B

Figure 3-8: Illustration of how pass-through layer reorganizes the higher resolution channel to 4
lower resolution channels. A – 1 channel of a 4 x 4 feature map B – 4 channels of 2 x 2 feature
maps.

3-3 Pre-processing

The first stage in the YOLOPOSE architecture is the pre-processing stage, where data is
modified to fit the CNN. The network is design to only work with square images of a predefined
dimension, more specifically RGB images of 416 x 416 pixels (Section 3-2 explains further
why the input has to be square and how the pixel size is chosen). The images need to be
reshaped, as the data can range from images sized 1600 x 800 pixels to images size 230 x
430 pixels. To preserve information when re-sizing images, a geometric transform is applied
instead of a crop. When cropping an image information is lost, objects can be cut out of the
image frame unwillingly. Rather scaling and compressing an images keeps all the information
in the image frame, Figure 3-9 illustrates this, where Figure 3-9-A shows the image when
applying a Geometrical transform and Figure 3-9-B shows the image when a Square crop is
applied. It shows that when cropping the image the bike can get cropped out, resulting in an
image that does not have an objects to be detected.

The warp caused by the geometric transform (elongation or squeezing) can be seen as a side-
effect. However, the network should be capable of learning around this problem, missing
objects due to cropping is a much bigger issue. Another technique that can be used is to

J.C. Zwanepol Master of Science Thesis

3-3 Pre-processing 23

fill the sides of the image with black pixels to make the image square, see Figure 3-9-C.
The problem with this is that network can learn to associate the the black pixels as part of
the image and generate feature that are not relevant for global pose estimation. Because of
these issues the chosen technique is to Geometrically transform the images, this is the same
technique used by the original YOLO architecture.

A B C

Figure 3-9: A – Geometrical transform of image to 416 x 416 px. B – Square crop of image
re-sized to 416 x 416 px. C – Pixel filling to square image.

In the pre-processing stage images are not only re-sized to fit the network, data is also
augmented to increase the amount of data available for training. The PASCAL3D+ dataset
provides only a small amount of data, with a deep Neural Networks (NNs) requiring a
significant amount of data to properly train all weights without causing overfitting. The
images are augmented in three different ways (random crops, horizontal reflection and color
distortion) and are randomly generated for each Epoch3.

3-3-1 Random Crop

Cropping an image is similar to zooming in on a specific region of the image. It increases
the number of viewpoints for each image by augmenting a change in the distance from the
camera to the objects. Because cropping an image changes the image frame and the distance
of the objects it is necessary to change the annotations accordingly, see Figure 3-10. For the
bounding box this is done using equations in Eq. (3-6).

Ĉx = Cx − xshift
S

Ĉy = Cy − yshift
S

ŵbox = wbox
S

ĥbox = hbox
S

,

(3-6)

3A full pass through of the the entire training set

Master of Science Thesis J.C. Zwanepol

24 Methodology

Where, CX and Cy are x- and y-coordinates of the center point of the bounding box, xshift
and xshift are shifts in the x and y direction of the cropped region, S is the scale of the
cropped region (SIZEoriginal

SIZEcrop) and wbox and hbox are respectively the width and height of the
bounding box. See Figure 3-10-A for an illustration of these parameters.

A B

Figure 3-10: Illustration of random crop with the green box representing the bounding box of
the object and red box the cropped region. A – Original image before crop, re-sized to 416 x 416
px. Illustrating the xshift, yshift, xcrop and ycrop parameters used in Eq. (3-6) B – Image after
random crop, re-sized to 416 x 416 px.

To transform from the annotated distance before the random crop to the distance after the
crop we look at the pinhole model shown in Figure 3-11.

A B

Figure 3-11: Pinhole model, where f is the focal length, Obj is the object size, pi is the projection
(or image frame) and di is the distance from camera to object. A – before crop B – after crop,
notice how object in the image frame becomes larger and distance smaller.

J.C. Zwanepol Master of Science Thesis

3-3 Pre-processing 25

Figure 3-11-A shows that there are two similar triangles of different scales, the triangle before
and after the lens. The correlation between these triangles is formulated in Eq. (3-7).

Pi
f

= Obj

di
(3-7)

Figure 3-11-B shows that cropping the image only changes the projection size P and the
distance d. Object size Obj and focal length f stay the same between crops. For the original
image we know the size of the image frame P1, the focal length (f=1 as used in PASCAL3D+
dataset [16]) and the distance (d1). The only unknown is the object size Obj, which can be
defined by Eq. (3-8).

Obj = P1 · d1 (3-8)

If we combine Eq. (3-7) and Eq. (3-8) we can calculate the distance of the object after the
random crop, see Eq. (3-9).

d2 = d1 ·
P1
P2

(3-9)

d2 can be described as the distance before the random crop d1 times the scale of the crop
(P1
P2
). During the random crop operation a constraint is placed on the scale of the crop and

the xshift and yshift to prevent objects being cut out of the image frame. This is done by
limiting the size of the crop to 0.7 of the original size and limiting the xshift and yshift to 0.3
of the width and high of the original image frame. A final check is then performed to see if
objects are cut out of the frame when cropped, if so the crop is discarded and the original
image is kept.

3-3-2 Horizontal Reflection

Horizontal reflection is the mirroring of the image on the vertical axis. It increases the number
of viewpoints for each image by augmenting a change in the azimuth angle, see Figure 3-12.

With horizontal reflection only the x-coordinate of the center point (Cx) of the bounding box
and the azimuth change in the annotation of the image. For the Cx parameter Eq. (3-10) is
used.

Ĉx = Iwidth − Cx, (3-10)

where the new x-coordinate of the center point (Ĉx) is the original width of the image Iwidth
minus the old x-coordinate of the center point (Cx)

Master of Science Thesis J.C. Zwanepol

26 Methodology

A B

Figure 3-12: A – Original image before horizontal reflection, re-sized to 416 x 416 px. B – Image
after horizontal reflection, re-sized to 416 x 416 px.

For the azimuth parameter we take a look at the spherical coordinate system as used in the
PASCAL3D+ dataset for pose annotation. Figure 3-13 shows an illustration of the spherical
coordinate system.

Figure 3-13: Spherical coordinate system. Illustrating the effect of horizontal reflection on the
coordinate system. The red plane illustrates the reflection plane and r, θ, ϕ respectively are the
distance, elevation and azimuth

.

Horizontal reflection can best be described as the mirroring of an image over the vertical axis,
as seen in Figure 3-12. In the spherical coordinate system the mirroring takes place over
a 2D plane in the x and z axis. This causes the azimuth to change direction, going from
positive to negative. Therefore the new azimuth is simply the negative of the old azimuth
before reflection, ϕ̂ = −ϕ.

J.C. Zwanepol Master of Science Thesis

3-3 Pre-processing 27

3-3-3 Color Distortion

Color distortion augments changes in image brightness, color representation and color in-
tensity to increase the number of unique images. The augmentation is performed on the
brightness, contrast, saturation and hue of the image. Where,

• Brightness: The addition of a random offset to the intensity of the image (α = 1 and
β = Random(−32, 32) in Eq. (3-11)).

• Contrast: The multiplication of the intensity of the image by a random scale (α =
Random(0.5, 1.5) and β = 0 in Eq. (3-11)).

IRGB = IRGB · α+ β (3-11)

• Hue: The addition of a random offset to the hue of the image, where the image is first
changed from the RGB to the HSV4 color model (α = 1 and β = Random(−18, 18) in
Eq. (3-12)).

H = H · α+ β mod 180 (3-12)

• Saturation: The multiplication of the saturation of the image by a random scale, using
the HSV color model (α = Random(0.5, 1.5) and β = 0 in Eq. (3-13)).

S = S · α+ β (3-13)

Figure 3-14 illustrates an example of a color distortion on a image from the PASCAL3D+
dataset.

A B

Figure 3-14: A – Original image before color distortion, re-sized to 416 x 416 px. B – Image
after color distortion, re-sized to 416 x 416 px.

4Alternative representation of the RGB color model

Master of Science Thesis J.C. Zwanepol

28 Methodology

Overview

The steps taken in the pre-processing stage are sequenced as followed:

J.C. Zwanepol Master of Science Thesis

3-4 Post-processing 29

3-4 Post-processing

The network outputs a tensor of 13 x 13 x 60 as was mention in Section 3-2 of this chapter,
depth of the output tensor is determined by n(P + V + C). This tensor is converted into a
tensor of size 13 x 13 x n x (P+V +C) that can be used in the post-processing stage. Each cell
in the 13 x 13 grid has an array of four separate predictions for Pose, Class and Confidence.
These four predictions fall into four separate bins that are classified by the azimuth angle.
The reason for this is to help the network with estimating the pose. By classifying the azimuth
within four bins the algorithm can first classify within what range the azimuth lies and can
then regress the pose for these smaller ranges. See Figure 3-15 for an illustration of the output
of the network, similar to Figure 3-3 only differently illustrated.

A B

Figure 3-15: Illustration of the output of the network. A – How the output corresponds to
the input image, each cell has a set of predictions for that region, red and green represent the
individual objects and their center points. B – The model is trained to focus on the prediction of
the grid cell where the center point lies, with the prediction (class probability P , pose parameters
V and pose confidence C) structured in n number of bins.

For each image the output includes 676 (13 x 13 x 4) predictions concerning the object
class, the confidence and the 3 pose parameters (azimuth, elevation and distance). It is
therefore necessary to prune the predictions that are incorrect or are not relevant. In the
original algorithm, [13] uses a cut-off value for the class probability P and bounding box
confidence C to prune the incorrect predictions and uses Intersection Over Union (IoU) to
prune predictions that have a certain percentage of overlap.

Like the original, class probability and confidence is used to prune part of the predictions.
however, unlike in YOLOv2 the confidence is normalized first before using a cut-off, this
ensures that the cut-off better matches the confidence values generated for each image. When
the confidence is not normalized some images might not reach the needed confidence threshold,
resulting in all predictions being pruned. Normalizing the confidence ensure that for each
image at least 1 prediction is generated.

Because YOLOPOSE does not predict the bounding boxes the IoU can not be used to prune
predictions that are similar. Instead of using the IoU to prune overlapping boxes the pose
similarity is used. This simply looks at adjacent cells to determine if there are pose predictions

Master of Science Thesis J.C. Zwanepol

30 Methodology

that are similar. If the predictions fall within a certain range of each other, the prediction
with the highest confidence is kept and the ones that are lower are pruned. This helps
prevent multiple correct answers being used for one object. It is similar to theNon-Maximum
Suppression (NMS) technique used in the YOLOv2 architecture. The checklist used is as
followed:

• Prune everything with a class probability P < 0.5.

• Normalize the confidence (objectness).

• Prune everything with a normalized confidence (objectness) C < 0.5.

• Determine if predictions in adjacent cells fall within 10% of each other.

• Prune everything that falls within 10%, only keep the prediction with the highest con-
fidence.

3-5 Training procedure

In this section the training procedure is discussed that is used to train the network to perform
object classification and pose estimation. Other training related issues like cost function,
confidence function, weight initialization and hyper parameters will also be included in the
discussion.

3-5-1 Weight initialization

As stated before, the CNN network has to optimize its weights that form the kernels in
convolutional layers. Before the first training iteration, these weights and biases have to be
initialized. The choice of initialization strategy can determine the convergence of the training
algorithm, how fast it converges and how accurately it converges. It also has an effect on the
network’s ability to generalize the data.

The common goal of weights initialization is to set them in a way that each neuron produces a
different activation. This motivates to initialize the weights in some random way depending on
the activation function used for nonlinearity. However transfer learning has shown promising
results and significantly cuts the training time. In transfer learning the weights of a pre-
trained network are used as the initialization weights of the new network. Or in this case the
weights of the trained YOLOv2 network are used as the initialization weights. The weights
are trained on the PASCAL VOC 2012 dataset [14] used for object detection and classification
and transferred to the YOLOPOSE network. The network architectures are similar with an
exception of the last layer, thus only requiring the last layer of weights to be randomly set.
For ReLU activations modified "Xavier" initialization [55] has been proved to be a good
initialization decision in [56]. The randomization is based on a zero mean normal distribution
with a standard deviation of 2√

n
, where n is the number of connections of response from the

previous layer.

J.C. Zwanepol Master of Science Thesis

3-5 Training procedure 31

3-5-2 Weight Learning Algorithm

During training of the network multiple images are run through the network simultaneously.
An example of such a batch training method is the limited memory Broyden, Fletcher,
Goldfarb, and Shanno (BFGS). The limited memory BFGS makes use of the full training set
to compute the next update of parameters at each iteration. This method has the ability to
converge very well to local optima and is relatively straight forward requiring little tuning as
it has few hyper-parameters that need to be tuned. The downside of using the full training
set to compute the next update is the computational costs and the memory usage it requires.
In SGD this issues is addressed by following the negative gradient of the objective after seeing
only a small batch of training examples. The advantage of using SGD is that it only uses small
amounts of data rather than an entire training set. Using a batch of training examples in
SGD rather than using a single data point is beneficial for the training process as well. Using
multiple training examples helps reduce variance in the parameter update, which can lead to
a more stable convergence. Likewise this allows to take advantage of highly optimized matrix
operations. With SGD the cost of backpropagation can be reduced while still maintaining
fast convergence.

In the standard gradient descent algorithm the parameters θ of the objective J(θ) are updated
as followed,

θ = θ − α∇θE[J(θ)] (3-14)

In the standard gradient descent the cost and gradient are still being approximated over the
full training dataset. SGD just ignores the expectation (E) in the update and computes the
gradient of the parameters using a small batch of training examples. The new update is given
by,

θ = θ − α∇θJ(θ;x(i), y(i)) (3-15)

where (x(i), y(i)) represents a pair from the training set and α represents the learning rate.

Tuning the learning rate can be difficult, a fixed learning rate can be used or a learning
schedule can be used that changes with each epoch. Generally a method that works well
is choosing a small learning rate that gives stable convergence and then slowly decrease the
learning rate by half as convergence slows down. Another approach is to perform an evaluation
after each epoch and determine the change in the objective, if the change in objective is below
a predetermined threshold the learning rate is decreased. These are relatively common and
simple approaches but there are more complex approaches that can also be used, like using a
backtracking line search to find the optimal update. Some approaches might be better than
others theoretically, this does not mean that they are better for all objectives. Testing is still
the best way to determine which method works best.

The chosen algorithm in this research is a variant of the standard SGD implementing a
momentum update [57]. The momentum update helps to better find optima in deeper archi-
tectures. When an architecture is deeper it often causes the objective to have the shape of a
long shallow ravine leading to an optimum with steep walls on the sides. In standard SGD the
gradient will point in the direction of the steep walls oscillating at a fixed point in the ravine,
not moving along the ravine to the optima. This causes an initial quick convergence, but
then slows down resulting in a long convergence time towards the optima. The Momentum

Master of Science Thesis J.C. Zwanepol

32 Methodology

update helps to push the objective more quickly along the shallow ravine by giving it, as the
name states, a momentum. The update is represented by the following equation,

v = γv + α∇θJ(θ;x(i), y(i))
θ = θ − v

(3-16)

Where v is the current velocity vector, θ the parameter vector, α the learning rate α and
γ ∈ (0, 1] determines the number of iterations for which the previous gradients are included
into the momentum update. It is common to initially set γ to 0.5 and then when learning
stabilizes increase it further to 0.9 or higher. In momentum SGD the gradient is generally
larger than in standard SGD, requiring the learning rate α to be smaller.

3-5-3 Loss Function

For a SGD algorithm to work a cost (a.k.a. loss) function is required that determines the
error of the prediction. The cost function in a supervised training scheme is the error of the
prediction compared to the ground truth. Eq. (3-17) shows the complete cost function used
to train the network.

Ltotal(I) = Lpose(I) + Lconf (I) + Lprob(I) (3-17)

The cost function is composed of the pose error Lpose, pose confidence error Lconf and the
class probability error Lprob. These errors are determined by the following equations:

Lpose(I) = λobjectpose

S2∑
i

n∑
j

1
object
ij

(
1.5 · (ϕij − ϕ̂ij)2 + (θij − θ̂ij)2 + (rij − r̂ij)2

)

Lpose(I) = λno−objectpose

S2∑
i

n∑
j

1
no−object
ij

(
4 · (0− ϕ̂ij)2 + (0− θ̂ij)2 + (0− r̂ij)2

) (3-18)

Lconf (I) = λobjectconf

S2∑
i

n∑
j

1
object
ij (cij(x)− ĉij)2

Lconf (I) =
S2∑
i

n∑
j

λno−objectconfij
1
no−object
ij (0− ĉij)2

(3-19)

Lprob(I) =
S2∑
i

n∑
j

1
object
ij (pij(c)− p̂ij(c))2 (3-20)

These equations are summations of all the cells in the 13 x 13 (S = 13) network output, and all
the predictions made for each cell (n = 4). The terms 1objectij and 1no−objectij denote whether the
objects center is present in cell i and which bin j is responsible for the prediction. The terms
λobjectpose , λno−objectpose , λobjectconf and λno−objectconf are parameters that scale the importance of the error.
The confidence is less important then the pose prediction, similarly cells containing no object

J.C. Zwanepol Master of Science Thesis

3-5 Training procedure 33

are less important then cells containing objects. Finally the azimuth (ϕ) is more important
than the elevation (θ) and distance (r) parameters because the azimuth also determines
which bin is selected, therefore the loss is multiplied by 1.5. These are hyper-parameters that
can be manually tuned to increase performance. The parameters are set to λobjectpose = 100,
λno−objectpose = 0.5, and λobjectconf = 10. For λno−objectconfij

this is dependent on the pose predictions,

λno−objectconf =
{

0, if ϕ < 15◦, θ < 7◦ and r < 4
0.1, otherwise

(3-21)

The remaining terms are ϕij , θij , rij , cij and pij that respectively represent the azimuth,
elevation, distance, pose confidence and class probability, the ˆ represents the ground truth
value. Finally the confidence function cij(x) is based on the function from Figure 3-16.

Err(x)

c(x)

0

1

0 eth

α = 2

α = 3

c(x) =

2
(

1−Err(x)
eth

)α
− 1 , if Err(x) < eth

0 otherwise

Figure 3-16: Confidence c(x) as a function of the error Err(x) between the prediction and the
ground truth. The function has a cut-off value eth and a steepness parameter α that determines
the steepness of the slope

The error Er(x) is defined as the difference between the ground truth and the model predic-
tion. To achieve precise localization of the correct prediction in the grid, a sharp exponential
function with a cut-off value eth is chosen instead of a monotonically decreasing linear func-
tion. The sharpness of the exponential function is defined by the parameter α. The confidence
function is applied to all control points and the mean of these values is then assigned as the
confidence of the prediction.

Overview

The learning process consists of several components; the learning algorithm itself, the weight
initialization and the loss function. Each of these components fulfills a task, Table 3-3 shows
each component, their specific task and the method used in this research.

Master of Science Thesis J.C. Zwanepol

34 Methodology

Component Function/Task Method

Weight initialization Helps the training algorithm with a
starting gradient to optimize from Transfer learning

Loss function
Defines the problem, helps the
learning algorithm to determine the
effects of a weight change

three part loss function
(pose, confidence and
probability loss)

Training algorithm Training of the network by learning
the weights in each layer Momentum SGD

Table 3-3: Components of the training procedure used in YOLOP OSE

In [58] it was found that both the initialization and the momentum are crucial in SGD. Due
to a poorly initialized network not being able to be trained with momentum. Similarly a well-
initialized network does not perform as well when the momentum is not included or poorly
tuned. The momentum SGD shows fast convergence and robustness to different tasks and
datasets, thus this is the algorithm chosen in this research.

3-6 Chapter Overview

The framework discussed in this chapter builds on the existing YOLOv2 architecture, re-
designing it to perform pose estimation rather than object detection using bounding boxes.
The relevant components are summarized by the following:

• Output layer: Restructured to include the pose parameters, discarding the bounding
box parameters from YOLOv2 network.

• Pre-processing:

– Re-sizing images: Using geometrical transform to re-size image to 416x416 pixels.
– Data augmentation: Random crop (ensure that no objects are lost), horizontal

flipping and random color distortion.

• Post-processing:

– Normalize the confidence for each image
– Prune everything with a class probability P < 0.5
– Prune everything with a confidence C < 0.5
– Prune everything that falls within 10% of the pose prediction of an adjacent cell,

only keeping the prediction with the highest confidence.

• Training procedure: Using momentum SGD, with transfer learning to initialize the
weights.

J.C. Zwanepol Master of Science Thesis

Chapter 4

Implementation and Results

In this chapter tuning parameters, training choices and results are discussed. First, the
different hyper-parameters are discussed. Second, the evaluation technique used to measure
the accuracy of the network is explained. Finally the results are presented, analyzed, and
compared with current state-of-the-art pose estimation techniques.

All experiments in this chapter are performed on Microsoft Azure cloud service. The virtual
machine runs on the NV-6 instance1, this instance has 6 cores (E5-2690v3) and a single Tesla
M60 GPU.

4-1 Tuning the Network

The network weights are initialized using the weights fine tuned for the YOLOv2 architecture
on the object detection task described in [14]. These weights are generated by training first on
the ImageNet dataset and then on PASCAL VOC 2007+2012 object detection dataset. The
training was performed using the momentum Stochastic Gradient Descent (SGD) technique
with a momentum of 0.9 and a weight decay of 0.0005 [13].

Each batch during the training process is set to 25 images. This is the maximum amount of
images that can be stored on the GPU at one time without exceeding the internal memory.
The maximum amount of images per batch is used to help the network learn the correct
weights. A higher number of images and thus higher diversity of scenes and objects helps
the network to generalize the weights better for the different classes and poses defined in
PASCAL3D+.

The learning rate is kept at 0.001, incrementally increasing or decreasing the learning rate did
not show any improvements. Increasing the learning rate resulted in the loss not converging,
and decreasing the learning rate did not increases the accuracy only prolonging the training
time. The momentum is set to 0.9 as this is the most common value used in momentum
SGD. Smaller values tend to cause fluctuations, averaging over a smaller number of examples

1https://azure.microsoft.com/en-us/blog/azure-n-series-general-availability-on-december-1/

Master of Science Thesis J.C. Zwanepol

https://azure.microsoft.com/en-us/blog/azure-n-series-general-availability-on-december-1/

36 Implementation and Results

means it can’t find a clear path in the data, becoming just as noisy as the data itself. Larger
values tend to smooth out the data curve to much causing it to not following the same path
as the data.

Finally the number of epochs needed to properly train the network depends on the hyper
parameters chosen, the type of data fed to the network and the type of task given to the
network, for most experiments 80 epochs is enough to see a stagnation in the learning process.
However, in some cases the number of epochs need to be higher due to the accuracy still
increasing. Table 4-1 gives an overview of the hyper-parameters used during the experiments.

Learning rate 0.001
Momentum 0.9
Batch size 25
Epochs 80

Table 4-1: Hyper-parameters selected

4-2 Evaluation

Detection evaluation

When evaluating models for binary classification on a given dataset of positive and negative
samples, usually four types of data are defined: True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN), whereas true and false refer to whether the
positives or negatives are correctly classified by the model. For multi-class classification, the
negative samples of one category refers to all the other classes. Eq. (4-1) and Eq. (4-2) define
the precision and recall metrics.

P = TP

TP + FP
(4-1)

R = TP

TP + FN
(4-2)

Basically, Precision P represents the fraction of correctly predicted instances among all re-
trieved instances. It is an measurement of the correctness of the model output. Recall R
represents the fraction of correctly predicted instances among all positive instances which
should be retrieved. It measures the instance retrieving ability of the model. The TP in this
case is defined by the pose error being less than 4%, a correctly defined class and correctly
estimated relative position of the object in the image. Multiple detections of the same object
are considered FP. The Average Precision (AP) is defined as precision averaged across all
values of recall between 0 and 1:

AP =
∫ 1

0
p(r)dr (4-3)

where r is recall and p(r) is the precision at recall r. The Interpolated Average Precision
(IAP) technique is used as the precision measure and is defined by Eq. (4-4).

AP =
N∑
k=1

max
k̃≥k

P (k̃)∆r(k) (4-4)

J.C. Zwanepol Master of Science Thesis

4-3 Results 37

Instead of using the precision that was actually observed at cutoff k similar to the traditional
11-point approach [59], the interpolated average precision uses the maximum precision ob-
served across all cutoffs with higher recall. This is a technique that is used in the PASCAL
VOC challenge to determine the accuracy of bounding box’s around objects.

Pose Evaluation

Average Viewpoint Precision (AVP) includes the pose estimation into the precision measure.
A TP is then defined by the pose similarity of the prediction (ϕ, θ, r) to the ground truth
(ϕ̂, θ̂, r̂). The pose similarity is calculated by determining the error of the azimuth ϕ, elevation
θ and distance r, see Eq. (4-5).

∆ϕ = |ϕ̂− ϕ|, ∆θ = |θ̂ − θ|, ∆r = |r̂ − r| (4-5)

The error has to fall within ϕ < 15◦, θ < 7◦ and r < 4 to be considered a TP.

4-3 Results

In this section the training choices and results will be discussed. For the training choices the
effects on the accuracy of the network will be analyzed and discussed to determine which
techniques work best. Similarly a new post-processing step will be implemented to determine
the effect. Finally the results will be compared to current state-of-the-art techniques. These
techniques will be compared using the metrics used in [16].

4-3-1 Training choices

During the training operation different experiments were conducted to determine which tech-
nique resulted in accuracy gains and which did not. The following experiments were con-
ducted:

• Baseline: Generating a baseline for the spherical pose representation to tune the hyper-
parameters and to determine which modifications in subsequent experiments yield the
best results.

• Data clustering: Clustering the data in sequential ranges for elevation, distance and
azimuth. Also a different structure of the bins is considered, in order to determine which
data clustering technique best helps the network determine the correct pose.

• Free selection: Allowing the network to learn the best ground truth reference point
for each object. To determine if this free selection helps the network to pick regions
that better represent the pose and class of an object.

• Data augmentation: Generating more data by augmenting existing data. To deter-
mine if this limits overfitting in the network.

• Data selection: Testing whether specifying how data is introduced effects the learning
process, to determine if this helps the network to better understand its objective.

Master of Science Thesis J.C. Zwanepol

38 Implementation and Results

For the first experiments the results generated are evaluated using the AVP metric only
concerning the azimuth angle, not all three parameters (azimuth, elevation and distance).
This is to determine when a similar result is obtained compared to the current state-of-the-
art, as these techniques only look at the azimuth angle. In the final experiment (data selection,
Section 4-3-6) all three metrics (AP, AVP for azimuth and AVP for azimuth, elevation and
distance) are discussed to fully analyze the end result. In cases where the resulting experiment
leads to less accurate results the loss function results are used to give an explanation as to
why this might be, in other cases the loss function nicely converges; therefor it is not included
in the explanation.

4-3-2 Baseline

First a baseline is generated to determine what effect each modification to the learning process
has on the overall accuracy. The small number of parameters that need to be trained due to
the removal of the bounding box parameters, makes it much easier to define a loss function
that can guide the network to an optimal solution. The baseline therefore already shows
descent results compared to current state-of-the-art results, reaching an AVP of 25% as is
shown in Figure 4-1. This accuracy is achieved using the YOLOPOSE framework described
in the previous chapter. No data clustering is added to the baseline method therefore the
number of bins is set to 1 (n = 1). Likewise, there is no data augmentation, no data selection
and no normalization of the confidence scores. The subsequent experiments will introduce
these methods one-by-one.

Figure 4-1: Illustration of the AVP for the spherical pose evaluation

When training for the baseline results, the hyper-parameters in the network were tuned to
obtain optimal results. A decreasing learning rate was initially used, starting at 1.0 and
decreasing every 10 epoch’s by a factor of 10. The graph shows that for the first 30 epoch’s
nothing happens, only when the learning rates reaches 0.001 does the network start to learn.
Taking smaller steps also did not effect the accuracy of the output. It was later determined
that keeping the learning rate at 0.001 showed the bests results, maintaining the same ac-
curacy yet converging much faster. The learning rate of 0.001 is applied to the remainder
of the experiments conducted in this chapter. As was discussed in Section 4-1 the hyper-
parameters are summed up in Table 4-1.

J.C. Zwanepol Master of Science Thesis

4-3 Results 39

4-3-3 Data clustering

To help the network, it is possible to guide the network in certain directions. One such tech-
nique is data clustering, where data is clustered in regions that represent a certain correlation
between points. To test this a k-means clustering technique was used to determine whether
there is a noticeable correlation between data points (azimuth, elevation and distance). K-
means clustering is used because we want to know the nearest cluster center, such that the
squared distances from the cluster are minimized. This makes it easier to regress the pose, as
a smaller range is always easier to regress over. Figure 4-2 shows the result from the k-means
clustering technique performed on the pose parameters. From this figure it is evident that
there is no real correlation that is significant, other than the azimuth seems to have the most
affect on determining the cluster regions. This is evident from the fact that the data is split
over the azimuth axis rather than elevation or distance. This is logical because the data has
a more spread out range of azimuth angles, where elevation and distance are concentrated
in the region close to zero. Most images in the dataset are made at close range (distance
< 10m) and at the same level as the object (elevation close to zero {−20◦, 20◦}). However
to test the effect of data clustered, the data is split based on elevation, distance and azimuth
respectively. This is to test the individual effects that each parameter has on the learning
process.

A - 3D view B - top view

C - front view D - side view

Figure 4-2: Graph of the k-means clustering operation. The different colors represent the clusters
generated in the k-means operation, in this case k = 4.

Master of Science Thesis J.C. Zwanepol

40 Implementation and Results

Elevation

To start, the elevation is clustered in 4 bins (n = 4) to see the effect it has on the learning
process. The number of clusters determines the complexity of the system, a higher number of
clusters means there are more parameters that need to trained and a lower number means that
the effects of clustering become less visible. Initially setting the number of bins to 4 ensure
fast convergence while still allowing to test the effects of clustering. The bins are initially
sequenced in ranges; [−90◦,−45◦], [−45◦, 0◦], [0◦, 45◦], [45◦, 90◦]. The resulting effect on the
learning process can be seen in Figure 4-3. It is evident that clustering the elevation data into
bins has a negative effect on the learning process. Figure 4-5 shows this more clearly as the
elevation loss does not converge, instead it continually fluctuates. Using different ranges in
the elevation bins (i.e. clustering by number of data points resulting in ranges [−90◦,−13.3◦],
[13.3◦, 6.9◦], [6.9◦, 16.8◦], [16.8◦, 90◦], see Figure 4-4) results in the same fluctuating elevation
loss. As the k-means clustering showed, the data is just too concentrated making it difficult
to learn to choose the correct bin. The bins with larger angles have little data to train from
(sequenced clustering) or have the data widely spread out (clustering based on number of
data points) making it difficult to learn to accurately regress the pose.

Figure 4-3: Illustration of the
AVP for the elevation structured
in bins

Figure 4-4: Illustration of the clustering of the eleva-
tion data in bins of equal number of data points.

J.C. Zwanepol Master of Science Thesis

4-3 Results 41

A - Azimuth error B - Elevation error

C - Class probability error D - Total error

Figure 4-5: Illustration of the loss function during training for the elevation structured in bins

Distance

Similar to elevation clustering, distance clustering is done in a sequence of 4 ranges (n = 4);
[0, 25], [25, 50], [50, 75], [75, 100]. The resulting graphs are shown in Figure 4-6 and Figure 4-7.
From Figure 4-7 a similar effect is noticed as was the case in the elevation clustering instance.
Instead of the elevation loss fluctuating, now the distance loss fluctuates constantly and is
not able to converge. Using other cluster ranges results in the same fluctuating distance loss.
Like in the clustering of the elevation, the distance clustering is not converging because data
is clustered in a small region, with sparse number of data points at larger distances.

Figure 4-6: Illustration of the AVP for the distance structured in bins

Master of Science Thesis J.C. Zwanepol

42 Implementation and Results

A - Distance error B - Confidence error

C - Class probability error D - Total error

Figure 4-7: Illustration of the loss function during training for the azimuth structured in bins

Azimuth

Finally the azimuth is clustered in a sequence of 4 ranges; [0◦, 90◦], [90◦, 180◦], [180◦, 270◦],
[270◦, 360◦]. The resulting graphs are shown in Figure 4-6 and Figure 4-7. Unlike the previous
two cases the clustering of the azimuth data resulted in a positive effect on the learning
process of the network. The accuracy is starting to go towards current state-of-the-art results
as accuracy increases from an AVP of 24% (see Figure 4-1) to an accuracy of 29% (see
Figure 4-8). As was mentioned in the beginning of this section (see Figure 4-2) the clustering
of the data mostly follows the azimuth axis. Therefore, it makes sense that clustering data
is most effective when applying it to the azimuth. Because the data is more spread out, each
bin has a similar range and a similar number of data points. This helps the network to have
higher confidence it its prediction for which bin to select.

Figure 4-8: Illustration of the AVP for the azimuth structured in bins

J.C. Zwanepol Master of Science Thesis

4-3 Results 43

Selecting a bin arrangement

Other bin structures are explored to test whether more optimal results can be obtained.
Instead of using a sequence of ranges as was used in the case above. Several different ap-
proaches were tested; equal number of data points per bin, selecting different starting point
of the sequential ranges ([315◦, 45◦], [45◦, 135◦], [135◦, 225◦], [225◦, 315◦]), using the opposing
pose in each bin. The first two approaches showed the same results as Figure 4-8, because the
data is evenly spread out in the azimuth, it closely represents the sequential range approach.
Likewise, shifting the sequential range did not effect the learning process. Using opposing
poses per bin did however, show an improvement in the pose estimation. Figure 4-9 shows
how the bins are structure compared to the sequential approach. The idea behind it is that
using opposing poses helps the network better distinguish between front and back view, left
and right view, etc. This is similar to adding a binary option to the bin selection, helping
the network to better distinguish between orientations. Simultaneously the idea is that this
also helps to better understand small nuances in the pose, as the ranges per side are smaller
in each bin. In the sequential method the range on one side equals 90◦ while that of the op-
posites method is 45◦ per side, taking advantage of the binary selection approach of choosing
an opposing poses. As long as the correct side is predicted, the pose has a smaller range to
regress over.

A – sequential B – opposites

Figure 4-9: Illustration of the different bin types. The red, green, blue and black highlights
represent the different bins.

The result of this technique is shown in Figure 4-10. The graph shows that the accuracy
increases from the 29% in the sequential case to 36% in the opposites case. This is a
significant performance increase of approximately 7%. The result is now on par with current
state-of-the-art approaches, see Table 2-2.

Master of Science Thesis J.C. Zwanepol

44 Implementation and Results

Figure 4-10: Illustration of the AVP for the azimuth structured in bins that are separated by
180◦

4-3-4 Free selection of ground truth point

In the previous experiments, during the training process the ground truth point of each
object is set as the grid cell where the center point of the object resides. The network learns
to estimate the pose for this cell, increasing its confidence value over that of other cells. Now
instead of using the center of the object, the ground truth point is freely selected from all grid
cells that encompass the object. During training the grid cell that has the best pose prediction
for an image after a forward pass of the network, is used as the ground truth grid cell. The
idea behind this technique is that the network is able to freely determine which regions of
the image best represent the pose. Figure 4-12 shows an illustration of this free selection.
The results of this technique are shown in Figure 4-11 and Figure 4-13. It is evident that the
network learns in the first 35 epochs but then hits a local minima, it keeps fluctuating not
gaining any more traction to be able to increase the accuracy. Figure 4-13 shows that the
confidence loss continues to fluctuate throughout the training process. Like the other cases
that failed to work, the fluctuating loss shows where the problem lies. Because the ground
truth grid cell is freely selected, the network has a hard time determining which grid cell to
use. This effects the confidence value, as the network is not able to confidently determine
which grid cell best represents the objects pose. Thus the network is not able to converge to
an optimal solution.

Figure 4-11: Illustration of the
AVP for the free selection of the
ground truth point

Figure 4-12: Illustration of free ground truth cell se-
lection. The red and green points, represent the cells
where the center points of each object resides. The
black points represent which region the network might
select when given a free choice.

J.C. Zwanepol Master of Science Thesis

4-3 Results 45

A – Distance error B – Confidence error

C – Class probability error D – Total error

Figure 4-13: Illustration of the loss function during training for the free selection of the ground
truth point

4-3-5 Data augmentation

The data augmentation step is discussed in detail in Section 3-3. In this experiment data
augmentation is applied to the dataset to determine the effect on the performance. The
reasoning for data augmentation is that it is expected to reduce overfitting of the network.
By introducing new unique data points into the learning process, it is expected that this
helps the network to better learn weights that can better distinguish between objects and
their poses. The result of data augmentation is shown in Figure 4-14. Accuracy now reaches
40%, approximately 4% points up from the previous best result. The increase in unique images
helps the network to learn weights that are less biased to specific colors or specific orientations
and positions. This shows that data augmentation helps in reducing the offer-fitting of the
network.

Figure 4-14: Illustration of the AVP for the data augmentation case

Master of Science Thesis J.C. Zwanepol

46 Implementation and Results

4-3-6 Data selection

The final experiment performed for the pose estimation task, as described throughout this
paper, is selecting how the data is fed into the network. The idea behind this experiment
is that by selecting data and feeding the network in a specific way can pushed the network
in a certain learning direction. In this case the data is fed into the network by splitting the
batches, where 10 images are selected that contain more than 1 object and 15 where there
only exist only 1 object. Because there are significantly more images with single objects, the
images with multiple objects are run through the network multiple times. Each time all the
images containing multiple objects have gone through the network, a new random sequence
is generated to make each batch unique. Because most of the data is single images, the
network tends to focuses more on single objects that are centered around the middle of the
image. Resulting in the confidence scores of grid cells in the center of the image to be higher
than those of surrounding cells, making it harder to detect multiple objects. Using this data
selection technique it is expected that the network will increase the confidence in other cells
where objects might reside.

For this last experiment the AP, AVP for azimuth and the AVP for azimuth,elevation and
distance are plotted to better analyze the results. Figure 4-15B shows the the same graph
as all previous experiments. Unlike previous experiments more than 80 epochs are used as
the network continues to learn only leveling out at around 140 epochs, due to the increased
amount of batches per epoch and increased complexity. The end result is an accuracy of
50.1% that is up 10% points from the previous results. This is a significant increase and
shows the importance of correctly selecting the data that is fed into the network. If only
PASCAL VOC data was used this would be less of an issue, because the ImageNet data is
also included during training this selection has much more effect. Most of the ImageNet data
consists of images containing a single object often centered around the middle.

Figure 4-15C shows the result of the pose estimation of all three parameters, not just azimuth.
The accuracy is significantly lower than that of the azimuth, but this is expected as one
parameter is easier to get correct than three. With an accuracy of 30.2% the accuracy is still
far from optimal.

A B C

Figure 4-15: Illustration of the AP, AVP azimuth and AVP azimuth, elevation and distance for
the data selection case. A – AP B – AVP azimuth C – AVP azimuth, elevation and distance

J.C. Zwanepol Master of Science Thesis

4-3 Results 47

4-3-7 Normalizing the confidence

In the post-processing step the predictions made by the network are filtered to determine
which of these predictions are considered to be correct. In the previous experiments the
following steps were taken in the post-processing step.

• Prune everything with a class probability P < 0.5.

• Prune everything with a confidence (objectness) C < 0.5.

• Determine if predictions in adjacent cells fall within 10% of each other.

• Prune everything that falls within 10%, only keep the prediction with the highest con-
fidence.

Because the confidence score differs significantly per image and per object in the image,
pruning everything with C < 0.5 can cause correct prediction to be overlooked. To resolve this
issue the confidence per image is normalized. Ensuring that all images contain a prediction and
so that smaller objects with lower confidence values are not ignored. After the normalization
the predictions are pruned using the same cut-off value (C < 0.5), see Section 3-4 for
the updated post-processing steps. This has shown a significant improvement on the overall
accuracy of the YOLOPOSE framework. With an AVP for azimuth of 63.0% and an AVP for
azimuth, elevation and distance of 40.4%

4-3-8 Overview of the experiments

Experiment Remarks AVP [%]
Baseline - 25
Data clustering Helping the network to find correlations

- elevation Data is too concentrated in the 0◦ region
{−20◦, 20◦} 0

- distance Data is too concentrated in the small distance
region (r < 10m) 0

- azimuth Data is nicely spread forming equal sized
clusters 29

- bin structure Using opposites poses further guides the
network in learning the pose 36

Free selection Network could not confidently point out a
region in the image 10

Data augmentation Helps with reducing overfitting of the network 40

Data selection Gives an incentive to the network to give higher
confidence to objects outside the center region 50.1

Normalizing the confidence Improves the prediction filtering in the
post-processing step 63

Table 4-2: Overview of the experiments conducted

Master of Science Thesis J.C. Zwanepol

48 Implementation and Results

4-3-9 Comparison with the state-of-the-art

Table 4-3 provides the details of the AVP 24 bins performance improvements over all classes
as well as a comparison with six baselines: VDPM [16] was the first technique used on
PASCAL3D+, which uses a modified version of Discriminative Part based Model (DPM)
[5], DPM-VOC+VP [33] also uses a modified version of DPM to predict poses, Render for
CNN [37] uses real images from Pascal VOC as well as CAD renders for training a CNN based
on AlexNet, and [41] uses a VGG16 architecture and ImageNet data to classify orientations
for each object category. More recent baselines include MT-CNN [44] which is an independent
type architecture, where two completely decoupled and different deep Neural Network (NN)
are used, and finally SSDPOSE [43] which uses Single Shot Detection (SSD) to regress the
pose of objects with a single pass of the network.

The differences between You Only Look Once (YOLO)POSE and these other techniques is
that YOLOPOSE does not look at predicting the bounding box of an object. The only concern
of the YOLOPOSE architecture is to determine how many objects are in the image, what their
individual classes are and what 3D poses they have. Not having to predict the bounding box
helps limit the number of parameters that need to be trained in the network.

Methods Joint Object Detection and Pose Estimation (24 View AVP)
aero-
plane

bi-
cycle boat bus car chair table

motor-
bike sofa train monitor

Avg.
AVP

Avg.
AP

VDPM[16] 8.0 14.3 0.3 39.2 13.7 4.4 3.6 10.1 8.2 20.0 11.2 12.1 29.5
DPM-VOC+VP[33] 9.7 16.7 2.2 42.1 24.6 4.2 2.1 10.5 4.1 20.7 12.9 13.6 27.1
RCNN+Alex[37] 21.5 22.0 4.1 38.6 25.5 7.4 11.0 24.4 15.0 28.0 19.8 19.8 56.9

VpKps[41] 37.0 33.4 10.0 54.1 40.0 17.5 19.9 34.3 28.9 43.9 22.7 31.1 56.9
MT-CNN[44] 43.2 39.4 16.8 61.0 44.2 13.5 29.4 37.5 33.5 46.6 32.5 36.1 59.9
SSDPOSE [43] 33.4 29.4 9.2 54.7 35.7 5.5 22.9 30.3 27.5 44.1 24.3 28.8 59.3
YOLOPOSE 71.8 41.1 33.6 63.7 56.3 25.8 50.1 47.5 59.6 56.3 58.3 50.1 75.3

YOLOPOSE norm. 87.9 52.7 38.9 69.0 55.5 32.8 50.7 49.0 60.6 54.4 60.7 63.0 84.5

Table 4-3: Joint object detection and pose estimation of azimuth (ϕ) (24 View AVP)

From Table 4-3 it is evident that the YOLOPOSE architecture significantly outperforms the
current state-of-the-art approaches. In all classes the AP and AVP are higher than other
techniques. This is most likely due to using less parameters by ignoring the bounding box
parameters, helping the network to more directly predict the pose. Because the YOLO
architecture is so efficient the network also outperforms all other technique in the number of
frames that can be processed each second. The only network that shows similar speeds is the
SSDPOSE architecture.

Contrary to these other techniques the YOLOPOSE architecture also allows to determine the
elevation and distance of objects. The results that are generated for this metric cannot be
compared to other techniques as this is the first case where azimuth, elevation and distance are
predicted simultaneously for PASCAL3D+. The end result of 30.2% and 40.4% is respectable
compared to what other techniques are able to achieve for just the azimuth angle.

J.C. Zwanepol Master of Science Thesis

4-3 Results 49

Methods Joint Object Detection and Pose Estimation (24 View AVP)
aero-
plane

bi-
cycle boat bus car chair table

motor-
bike sofa train monitor Avg.

YOLOPOSE 42.4 14.0 27.3 56.2 48.9 3.4 31.7 19.2 27.8 49.0 7.5 30.2
YOLOPOSE norm. 67.8 25.9 32.5 63.2 49.6 5.2 32.0 24.6 34.0 46.5 13.7 40.4

Table 4-4: Joint object detection and pose estimation of azimuth (ϕ), elevation (θ) and distance
(r) (24 View AVP)

Figure 4-16 shows some of the outputs of the network on the validation data. Table 4-5 states
whether prediction are correct and gives an observation of the scene and result.

Image Correct/
Incorrect Notes

A Correct Working under poor lighting condition.
B Correct Nicely matches the ground truth, no further remarks.
C Incorrect 1 plane has not been detected and the other has a high elevation error.

D Correct Both objects are correctly predicted, even though one occludes the
other.

E Incorrect Elevation is above threshold (θ > 7◦), making it only partially correct.

F Correct Shows that the ground truth model doesn’t always overlap nicely,
however the prediction nicely follows the ground truth.

G Correct Nicely matches the ground truth, no further remarks.

H Correct Distance error, although small, shows a big difference to the ground
truth.

I Correct Doors and hood of car are open, showing that for difficult object
representations a correct prediction can be given.

J Correct Both predictions are correct, yet the overlay does not match the
ground truth nicely.

K Correct Nicely matches the ground truth, no further remarks.
L Correct Nicely matches the ground truth, no further remarks.
M Incorrect One object is not detected and another has an incorrect pose.
N Correct Nicely matches the ground truth, no further remarks.
O Correct Nicely matches the ground truth, no further remarks.
P Correct Working under strong occlusion.
Q Correct The relatively small and partly occluded objects are nicely predicted.
R Correct Working under strong occlusion.

Table 4-5: Caption

Figure 4-17 shows some additional outputs where the class prediction was incorrect (A - C),
these problems often occur between object classes that are similar to one another (bus and
car, bicycle and motorbike, chair and sofa). Finally D shows an example where a prediction
was not properly pruned, generating two positive results for a single object.
The overall network seems to nicely predict the pose of each object when overlaying the CAD
models. However, classification between similar objects, multiple predictions for one object
and pruning of correct prediction when multiple object reside in the image are some of the
issues that can be improved on.

Master of Science Thesis J.C. Zwanepol

50 Implementation and Results

A B C

D E F

G H I

J K L

J.C. Zwanepol Master of Science Thesis

4-3 Results 51

M N O

P Q R

Figure 4-16: Illustration of the output results of the network, red represent the ground truth
CAD model overlay and blue represent the CAD model overlay for the network prediction.

Master of Science Thesis J.C. Zwanepol

52 Implementation and Results

A B

C D

Figure 4-17: Illustration of the output results of the network with 13x13 grid. The number in
the cell represent the cell with the highest confidence.

J.C. Zwanepol Master of Science Thesis

4-4 Chapter overview 53

4-4 Chapter overview

Unsuccessful experiments:

• Data clustering of the elevation and distance: The network had a hard time
selecting the correct bins for the elevation and distance based clustering, resulting in
the network not converging to a local optima.

• Free selection: Giving the network a free selection to decide which part of an ob-
ject best represents the pose did not yield any improved results. The problem was
that the network could not confidently determine which regions to focus on, constantly
fluctuating between different regions.

Successful experiments:

• Data clustering of the azimuth: Clustering the data over the azimuth angle has
allowed the network to successfully distinguish between the different bins. Because the
data in each bin is equally spread out, the network is able to confidently determine which
bin to select, unlike the elevation and distance clustering. This helps the network by
introducing a constraint on the range, over which the pose needs to be regressed. Fur-
ther improvements were made when the bin structure was modified to classify between
opposites. This has shown to significantly improve the accuracy of the pose prediction
by reducing the range over which the network has to regress even further.

• Data augmentation: Data augmentation has shown that it can be used to limit the
effect of overfitting. Improving the accuracy of the network by introducing more unique
data that the network can learn from.

• Data selection: Data selection has shown that it is important how data is fed to
the network in the learning process. By producing a batch that is split into data
containing single objects and data containing multiple objects, the confidence score
increased significantly for objects residing outside the center region of the image. The
result is a significant improvement on the overall accuracy.

• Confidence normalization: It became evident that correct predictions were being
prune in the post-processing step because the confidence scores fell bellow the thresh-
old. Normalizing the confidence in the post-processing step helped prevent images and
objects with lower confidence scores to be pruned from the output, without having to
lower the threshold resulting in an increased number of FPs.

The results have shown to be a significant improvement on the current state-of-the-art, show-
ing a 26.9% point increase over that of the next best result[44]. The output also show that
the pose prediction that are correct nicely overlap with the ground truth. The problems
mostly occur when their are multiple objects in the image and when classification goes wrong
between similar classes (bus and car, etc.).

Master of Science Thesis J.C. Zwanepol

54 Implementation and Results

J.C. Zwanepol Master of Science Thesis

Chapter 5

Concluding remarks

In the previous chapters the problem of object classification and pose estimation has been
addressed. Starting with a small introduction into the problem, stating the goals of this
research and looking into related work. After which a detailed look into the YOLOPOSE

architecture was given, discussing individual components and the roles they play in the pose
estimation problem. Finally the experiments and results were discussed, making a comparison
with state-of-the-art methods obtained from the research done on related works.

This chapter will give a conclusion based on the findings made and results obtained in this
research. The chapter will close off with some recommendations for future works.

5-1 Conclusions

The research conducted has demonstrated that the problem of "Pose regression of 3D objects
in monocular framework using a Convolutional Neural Network" was achieved. The results
have shown that there is a significant improvement in the accuracy of the pose estimation
compared to the current state-of-the-art, showing an increase of 26, 9% points.

From the experiments conducted several conclusion can be drawn:

• Discarding bounding box parameters resulted in a simplified objective that allowed the
network to focus more on the classification and pose prediction of objects.

• Data clustering only works when clustering is done properly, it is important to ensure
that each bin has an equal range and number of data points to train on. Similarly the
structure of the bins is important, constraining the network to choose between opposite
poses is beneficial, reducing the range over which the network needs to regress.

• Data augmentation has been proven to work in other networks like [37]. The results
in this research again prove that data augmentation can improve the overall accuracy,
limiting the effects of overfitting of the network.

Master of Science Thesis J.C. Zwanepol

56 Concluding remarks

• Data selection has proven to be helpful for the network to understand where it should
focus, in this particular case it is guiding the network to generate higher confidence
scores for objects that lie outside the center region of the image.

• Post-processing in the YOLOPOSE architecture can have a significant impact on the
overall accuracy. It pays to properly filter the many predictions generated by the CNN,
using a simple normalization step on the confidence scores has proven to result in a
significant accuracy increase.

The research conducted has shown that accuracy gains are not only achieved through better
network architecture but are also highly dependent on the training and processing techniques
used. This is evident from the accuracy increase of 38% obtained in this research, from an
AVP of 25% to an AVP of 63%.

5-2 Recommendations and future work

It is expected that the results obtained in this research can be improved on further. The
following research is suggested to be conducted to test whether higher accuracy’s are possible:

• Dataset:

– Making the PASCAL3D+ data more accurate because the CAD models used for
the annotations don’t take size into considerations. A bike is similar in size to a
aeroplane according to the PASCAL3D+ annotation. By implementing a scale for
each objects class, it gives a better indication of the distance of objects.

– Testing on different datasets, to determine the effectiveness of the network. This
should also show further ways to improve the network, showing weaknesses not
shown on the PASCAL3D+ dataset.

• Network: Using a different network like SSDPOSE to determine if using the same
technique as described in this research will show similar accuracy’s.

• Data augmentation: Augmenting the data in such a way that the center regions
aren’t overly represented and augment the data so that more unique poses are added
for the network to train on. Data augmentation can be expanded in a similar manner
as in [37], using renders of 3D CAD models.

• Data selection: The main problem that was partially addressed by the data selec-
tion experiment, is that confidence of the center region still remains higher than the
surrounding regions, resulting in objects being filtered out in the post-processing step.
Suggested is that data selection is further expanded, the selection process might be
improved further using techniques similar to [60].

• Post-processing: In the post processing step normalizing the confidence prediction per
image resulted in an significant increase in accuracy. However, there are still predictions
that are wrongfully pruned from the output. Different post-processing techniques like
[61] can be used, where a Recurrent Neural Network (RNN) is added to select the
correct predictions.

J.C. Zwanepol Master of Science Thesis

5-2 Recommendations and future work 57

• Computational efficiency: The YOLOPOSE network has shown to be able to run
in real-time on a powerful GPU (Tesla M60). However to run in real-time on a more
portable solution like an Intel UP board1 or NVIDIA Jetson2 a few changes need to be
made to the architecture. The tiny YOLO architecture, with a reduced number of layers
is an example. The tiny YOLO architecture has shown to be able to run in real-time
on a android phone3 with good results.

1https://www.up-board.org
2https://developer.nvidia.com/embedded/develop/hardware
3https://github.com/natanielruiz/android-yolo

Master of Science Thesis J.C. Zwanepol

https://www.up-board.org
https://developer.nvidia.com/embedded/develop/hardware
https://github.com/natanielruiz/android-yolo

58 Concluding remarks

J.C. Zwanepol Master of Science Thesis

Appendix A

Failed loss functions

Two different pose representations were tested in this research. The reason for this is that
pose representation can be done any number of ways, each with their own advantages and
disadvantages. Quaternion and spherical coordinates are used as they pertain significance in
robotics and PASCAL3D+ respectively. Quaternion pose representation, compared to Euler
angles, are simpler to compose and avoid gimbal lock. Similarly they are more compact, more
numerically stable, and more efficient when compared to rotation matrices. For these reasons
the quaternion representation is often used in fields like computer vision and robotics. Spher-
ical coordinates on the other hand are less common in robotics and are more commonly used
in geography and astronomy to determine points on earth and of heavenly bodies. However
to define the pose of multiple objects within an image the spherical coordinates are useful
as they are a compact and efficient representation of the pose, only requiring 3 parameters
(azimuth, elevation and distance). This appendix chapter will look at the failed attempt of
using the quaternion representation.

Quaternion coordinate system

A quaternion can represent 3D reflections, rotations and scaling but cannot represent the
translation, therefore the translation part needs to be handled separately. This results in
a total of 7 parameters that need to be used to represent the 3D pose of an object. This
includes the 4 quaternion parameters (p,q,r,w) and the 3 translation parameters (x,y,z). The
network becomes harder to train as the number of parameters increase. The increased number
of parameters results in a more complex loss function that has more possible local minima.
Because of this difficulty the model wasn’t able to properly train the network to perform
accurate pose estimation of objects. The graphs in Figure A-1 and Figure A-2 show how
the network struggles to accurately determine the pose. From Figure A-1 it is evident that
the network hits a local minima that it cannot get out of. The values from the loss function
show that the network learns to decrease the class probability and the confidence loss but it
is not able to learn the pose loss. It constantly fluctuates between a range of 200 and 1200,
not being able to converge. This was the case for a range of different tuning parameters and
different loss functions.

Master of Science Thesis J.C. Zwanepol

60 Failed loss functions

Figure A-1: Illustration of the AVP for the quaternion pose evaluation

A - pose error B - Confidence error

C - Class probability error D - Total error

Figure A-2: Illustration of the loss function during training for the quaternion pose estimation

J.C. Zwanepol Master of Science Thesis

Bibliography

[1] L. G. Roberts,Machine perception of three-dimensional solids. PhD thesis, Massachusetts
Institute of Technology, 1963.

[2] M. A. Fischler and R. A. Elschlager, “The representation and matching of pictorial
structures,” IEEE Trans. Comput., vol. 22, pp. 67–92, Jan. 1973.

[3] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple fea-
tures,” in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of
the 2001 IEEE Computer Society Conference on, vol. 1, pp. I–I, IEEE, 2001.

[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, vol. 1, pp. 886–893, IEEE, 2005.

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection
with discriminatively trained part-based models,” IEEE transactions on pattern analysis
and machine intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in CVPR09, 2009.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
pp. 1097–1105, 2012.

[8] M. Liang and X. Hu, “Recurrent convolutional neural network for object recognition,”
in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2015.

[9] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” CoRR, vol. abs/1506.02640, 2015.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, SSD:
Single Shot MultiBox Detector, pp. 21–37. Springer International Publishing, 2016.

Master of Science Thesis J.C. Zwanepol

62 Bibliography

[11] D. G. Lowe, “The viewpoint consistency constraint,” International Journal of Computer
Vision, vol. 1, no. 1, pp. 57–72, 1987.

[12] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using
shape contexts,” IEEE transactions on pattern analysis and machine intelligence, vol. 24,
no. 4, pp. 509–522, 2002.

[13] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016.

[14] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The pascal
visual object classes (voc) challenge,” International Journal of Computer Vision, vol. 88,
pp. 303–338, June 2010.

[15] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, Microsoft COCO: Common Objects in Context, pp. 740–755. Cham: Springer
International Publishing, 2014.

[16] Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond pascal: A benchmark for 3d object
detection in the wild,” in IEEE Winter Conference on Applications of Computer Vision
(WACV), 2014.

[17] C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object detection,”
in Computer vision, 1998. sixth international conference on, pp. 555–562, IEEE, 1998.

[18] D. G. Lowe, “Object recognition from local scale-invariant features,” in Computer vision,
1999. The proceedings of the seventh IEEE international conference on, vol. 2, pp. 1150–
1157, Ieee, 1999.

[19] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, vol. 1, pp. 886–893, IEEE, 2005.

[20] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “Decaf:
A deep convolutional activation feature for generic visual recognition,” in International
conference on machine learning, pp. 647–655, 2014.

[21] P. Viola and M. J. Jones, “Robust real-time face detection,” International journal of
computer vision, vol. 57, no. 2, pp. 137–154, 2004.

[22] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid object detec-
tion,” in Image Processing. 2002. Proceedings. 2002 International Conference on, vol. 1,
pp. I–I, IEEE, 2002.

[23] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate
object detection and semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 580–587, 2014.

[24] M. B. Blaschko and C. H. Lampert, “Learning to localize objects with structured output
regression,” in European conference on computer vision, pp. 2–15, Springer, 2008.

J.C. Zwanepol Master of Science Thesis

63

[25] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:
Integrated recognition, localization and detection using convolutional networks,” arXiv
preprint arXiv:1312.6229, 2013.

[26] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” in Advances in Neural Information Processing Systems
28 (C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, eds.), pp. 91–99,
Curran Associates, Inc., 2015.

[27] R. Girshick, “Fast r-cnn,” arXiv preprint arXiv:1504.08083, 2015.

[28] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection using
deep neural networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2147–2154, 2014.

[29] C. Szegedy, S. Reed, D. Erhan, D. Anguelov, and S. Ioffe, “Scalable, high-quality object
detection,” arXiv preprint arXiv:1412.1441, 2014.

[30] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography,” Commun. ACM,
vol. 24, pp. 381–395, June 1981.

[31] D. F. Dementhon and L. S. Davis, “Model-based object pose in 25 lines of code,” Inter-
national Journal of Computer Vision, vol. 15, pp. 123–141, Jun 1995.

[32] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce, “3d object modeling and recog-
nition using local affine-invariant image descriptors and multi-view spatial constraints,”
International Journal of Computer Vision, vol. 66, pp. 231–259, Mar 2006.

[33] B. Pepik, M. Stark, P. Gehler, and B. Schiele, “Teaching 3d geometry to deformable part
models,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, pp. 3362–3369, IEEE, 2012.

[34] M. Hejrati and D. Ramanan, “Analyzing 3d objects in cluttered images,” in Advances in
Neural Information Processing Systems, pp. 593–601, 2012.

[35] Y. Xiang and S. Savarese, “Estimating the aspect layout of object categories,” in Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 3410–
3417, IEEE, 2012.

[36] M. Z. Zia, M. Stark, B. Schiele, and K. Schindler, “Detailed 3d representations for
object recognition and modeling,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 11, pp. 2608–2623, 2013.

[37] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for CNN: viewpoint estimation in
images using cnns trained with rendered 3d model views,” CoRR, vol. abs/1505.05641,
2015.

[38] M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic, “Seeing 3d chairs:
exemplar part-based 2d-3d alignment using a large dataset of cad models,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 3762–3769, 2014.

Master of Science Thesis J.C. Zwanepol

64 Bibliography

[39] M. Osadchy, Y. L. Cun, and M. L. Miller, “Synergistic face detection and pose estimation
with energy-based models,” Journal of Machine Learning Research, vol. 8, no. May,
pp. 1197–1215, 2007.

[40] H. Penedones, R. Collobert, F. Fleuret, and D. Grangier, “Improving object classification
using pose information,” tech. rep., Idiap, 2012.

[41] S. Tulsiani and J. Malik, “Viewpoints and keypoints,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2015.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” CoRR, vol. abs/1409.1556, 2014.

[43] P. Poirson, P. Ammirato, C. Fu, W. Liu, J. Kosecka, and A. C. Berg, “Fast single shot
detection and pose estimation,” CoRR, vol. abs/1609.05590, 2016.

[44] F. Massa, R. Marlet, and M. Aubry, “Crafting a multi-task cnn for viewpoint estimation,”
arXiv preprint arXiv:1609.03894, 2016.

[45] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti
vision benchmark suite,” in Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pp. 3354–3361, IEEE, 2012.

[46] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab,
“Model based training, detection and pose estimation of texture-less 3d objects in heavily
cluttered scenes,” in Asian conference on computer vision, pp. 548–562, Springer, 2012.

[47] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother, “Learning 6d
object pose estimation using 3d object coordinates,” in European conference on computer
vision, pp. 536–551, Springer, 2014.

[48] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR,
vol. abs/1409.4842, 2014.

[49] R. J. Douglas and K. A. Martin, “Recurrent neuronal circuits in the neocortex,” Current
biology, vol. 17, no. 13, pp. R496–R500, 2007.

[50] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pp. 315–323, 2011.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–
778, 2016.

[53] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.

J.C. Zwanepol Master of Science Thesis

65

[54] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolutional
architectures for object recognition,” in International conference on artificial neural net-
works, pp. 92–101, Springer, 2010.

[55] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pp. 249–256, 2010.

[56] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

[57] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
networks, vol. 12, no. 1, pp. 145–151, 1999.

[58] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initializa-
tion and momentum in deep learning,” in International conference on machine learning,
pp. 1139–1147, 2013.

[59] C. D. Manning, P. Raghavan, H. Schütze, et al., Introduction to information retrieval.
Cambridge university press Cambridge, 2008.

[60] M. van der Wees, A. Bisazza, and C. Monz, “Dynamic data selection for neural machine
translation,” arXiv preprint arXiv:1708.00712, 2017.

[61] L. Ma, X. Kan, Q. Xiao, W. Liu, and P. Sun, “Yes-net: An effective detector based on
global information,” arXiv preprint arXiv:1706.09180, 2017.

Master of Science Thesis J.C. Zwanepol

66 Bibliography

J.C. Zwanepol Master of Science Thesis

Glossary

List of Acronyms

AP Average Precision

AVP Average Viewpoint Precision

BFGS Broyden, Fletcher, Goldfarb, and Shanno

CNN Convolutional Neural Network

CV Computer Vision

DPM Discriminative Part based Model

FN False Negative

FP False Positive

fps frames per second

GPU Graphics Processing Unit

HSV Hue-Saturation-Value

IAP Interpolated Average Precision

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IoU Intersection Over Union

NMS Non-Maximum Suppression

NN Neural Network

PnP Perspective n-point Problem

R-CNN Recurrent Convolutional Neural Network

ReLU Rectified Linear Unit

Master of Science Thesis J.C. Zwanepol

68 Glossary

RGB Red-Green-Blue

RoI Region of Interest

RoIs Regions of Interest

RNN Recurrent Neural Network

RPN Region Proposal Network

SGD Stochastic Gradient Descent

SS Selective Search

SSD Single Shot Detection

SVM Support Vector Machine

TN True Negative

TP True Positive

VGG Visual Geometry Group

VOC Visual Object Classes

VpKps Viewpoints & Keypoints

YOLO You Only Look Once

List of terms

Epoch A full pass through of the the entire training set

Regression A set of statistical processes for estimating the relationships among variables

over-fitting Refers to a model that models the training data too well, negatively impacting the performance on new data

RGB Color model based on additive color primaries

HSV Alternative representation of the RGB color model

J.C. Zwanepol Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Basic Principles
	Object detection
	Pose estimation

	Overview

	Related Work
	Object Detection
	R-CNN
	Single forward pass architectures

	Object Detection and Pose estimation
	Classification of the pose
	State-of-the-art

	Chapter Overview

	Methodology
	PASCAL3D+
	YOLO network architecture
	Architecture
	Convolutional layer
	Pooling layer
	Pass-Through layer

	Pre-processing
	Random Crop
	Horizontal Reflection
	Color Distortion

	Post-processing
	Training procedure
	Weight initialization
	Weight Learning Algorithm
	Loss Function

	Chapter Overview

	Implementation and Results
	Tuning the Network
	Evaluation
	Results
	Training choices
	Baseline
	Data clustering
	Free selection of ground truth point
	Data augmentation
	Data selection
	Normalizing the confidence
	Overview of the experiments
	Comparison with the state-of-the-art

	Chapter overview

	Concluding remarks
	Conclusions
	Recommendations and future work

	Appendices
	Failed loss functions

	Back Matter
	Bibliography
	Glossary
	List of Acronyms

