
Stability of the Numerical Schemes used for
Pricing Green Bonds

by

Patrick MacDonald

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Tuesday, September 3, 2024, at 15:30 PM.

Student number: 5875378
Project duration: November 13, 2023 - September 3, 2024
Thesis committee: Prof. dr. ir. C. Vuik

Dr. ir. mr. V.N.S.R. (Vandana) Dwarka
Prof. dr. ir. H.X. Lin

An electronic version of this thesis is available at
http://repository.tudelft.nl/

http://repository.tudelft.nl/

Acknowledgements

With these few words, I would like to thank my supervisors, Professor Cornelis Vuik and Assistant
Professor V.N.S.R. Dwarka, for their patience, guidance, and support during this project. The
Master’s program in Applied Mathematics is very challenging, but with their help, I completed
this master’s project without major problems. For this, I am very grateful. My questions were
always answered extensively and quickly and our meetings (both online and in person) helped me
to develop this thesis. Moreover, I want to thank Professor Hai Xiang Lin for being part of my
thesis committee.

Last but definitely not least, I want to thank my family, who were always there in case I needed them.

I hope you have a good time reading the thesis,

Patrick MacDonald,
Delft, August 2024

i

Abstract

This master’s thesis provides information on the subject of option pricing theory. Moreover, this
topic is linked with sustainable Finance, which is essential in the battle against climate change.
Green financing is a growing phenomenon, and a green bond is only a relatively new example of a
green financial derivative. A three-dimensional PDE is at hand to determine the price of a green
bond (also called a coupon value), but this PDE can only be solved numerically. This master thesis
aims to determine the stability of certain numerical schemes that can be used to find a solution to the
PDE. We will use both forward and backward differences to derive the numerical schemes. After the
derivation process, a Von Neumann analysis is performed to conclude whether or not the schemes
are stable. The research reveals that most of the numerical schemes are not stable. Amongst others,
this is caused by the positive value of the interest rate r, the value of the carbon price, and the
absence of damping factors. In some numerical schemes, the amplification factor is larger than one,
but not by much. In other schemes, we can reduce the amplification factor to increase the stability.
This means that the numerical schemes can still be used to find a reasonable value for a green bond.

Keywords: Option pricing theory; Black-Scholes; heat equation; green finance; finite difference
discretization; Forward Euler; Backward Euler; amplification factor; Von Neumann stability; Con-
jugate Gradient; Bi-CGSTAB; GMRES.

ii

Contents

Acknowledgements i

Abstract ii

1 Option Pricing and Green Finance 1
1.1 Option Theory . 1

1.1.1 Bonds . 1
1.1.2 Call and put options . 3
1.1.3 Payoff diagram of a call and put option . 4
1.1.4 Put-call parity . 5

1.2 The Black-Scholes equation . 6
1.2.1 Background Information . 6
1.2.2 Preliminaries . 7
1.2.3 The PDE and its boundary conditions . 9
1.2.4 Analytical solution . 10
1.2.5 Assumptions and disadvantages of Black-Scholes 11
1.2.6 Link with the heat equation . 11

1.3 Sustainable Finance . 12
1.4 Green bonds . 12

1.4.1 Classes of green bonds . 12
1.4.2 Comparing green bonds to ordinary bonds . 13

1.5 Pricing a green bond . 14

2 Numerical Analysis 15
2.1 Preliminaries . 15

2.1.1 Some definition about matrices . 15
2.2 Finite Difference Discretization . 18

2.2.1 Discretization of space . 18
2.3 Time-stepping methods . 20

2.3.1 Discretization of time . 20
2.3.2 Forward Euler method . 21
2.3.3 Backward Euler Method . 22
2.3.4 Crank-Nicolson . 23

2.4 Example heat equation . 24
2.4.1 Forward difference in time, central difference in space 26
2.4.2 Backward difference in time, central difference in space 28
2.4.3 Crank-Nicolson . 30

2.5 Local truncation error . 32
2.5.1 Local truncation error for FTCS . 32
2.5.2 Local truncation error for BTCS . 32
2.5.3 Local truncation error for Crank-Nicolson . 33

2.6 Numerical Solution Methods . 33
2.6.1 Iterative solution methods . 33
2.6.2 Preconditioning . 34

2.7 Examples of Iterative solution methods . 34

iii

2.7.1 Conjugate Gradient Method . 34
2.7.2 Bi-Conjugate gradient stabilized method . 37
2.7.3 General Minimal Residual Method . 38

2.8 Stopping criteria . 39

3 Stability Analysis of the Numerical Methods 41
3.1 Amplification factor . 41
3.2 Von Neumann stability . 44
3.3 Stability analysis of the heat equation . 45

4 Stability analysis for the green bond 49
4.1 The green bond model . 49
4.2 Methodology . 50
4.3 Part 0: the interest rate r and the carbon price c are both constant 50
4.4 Part 1: only the carbon price c is constant . 51

4.4.1 Part 1(a): constant carbon price, forward differences: derivation of the scheme 52
4.4.2 Part 1(a): Von Neumann analysis . 53
4.4.3 Part 1(b): constant carbon price, backward differences: derivation of the scheme 53
4.4.4 Part 1(b): Von Neumann analysis . 54
4.4.5 Part 1: Insert values for the parameters . 54
4.4.6 Part 1(a): constant carbon price, forward differences: determination of the

stability . 55
4.4.7 Part 1(b): constant carbon price, backward differences: determination of the

stability . 56
4.5 Part 2: only the interest rate r is constant . 57

4.5.1 Part 2(a): constant interest rate, forward differences: derivation of the scheme 58
4.5.2 Part 2(a): Von Neumann analysis . 58
4.5.3 Part 2(b): constant interest rate, backward differences: derivation of the scheme 59
4.5.4 Part 2(b): Von Neumann analysis . 60
4.5.5 Part 2: Insert values for the parameters . 60
4.5.6 Part 2(a): constant interest rate, forward differences: determination of the

stability . 61
4.5.7 Part 2(b): constant interest rate, backward differences: determination of the

stability . 61
4.6 Part 3: non-constant r and c . 62

5 Numerical Results 64
5.1 Part 1: constant carbon price . 64

5.1.1 Part 1(a): constant carbon price, forward differences 65
5.1.2 Part 1(b): constant carbon price, backward differences 67

5.2 Part 2: constant interest rate . 69
5.2.1 Part 2(a): constant interest rate, forward differences 70
5.2.2 Part 2(b): constant interest rate, backward differences 72

5.3 Part 3: neither interest rate nor carbon price is constant 74

iv

6 Conclusion and Discussion 78
6.1 Conclusion . 78
6.2 Discussion . 78

A Equivalence of the Black-Scholes PDE and the heat equation 83

B Appendix: Python code 85
B.1 Code for the 3-dimensional green bond PDE . 85
B.2 Code for Part 1(a): c is constant, r is not: forward differences 90
B.3 Code for Part 1(b): c is constant, r is not: backward differences 93
B.4 Code for Part 2(a): r is constant, c is not: forward differences 96
B.5 Code for Part 2(b): r is constant, c is not: backward differences 99

v

List of Figures

1 Payments for a zero-coupon bond with maturity time T 2
2 Payments for a coupon bond with maturity time T 2
3 Pay-off diagram European call option . 5
4 Pay-off diagram European put option . 5
5 Robert Merton, Myron Scholes, and Fischer Black 6
6 Robert Brown and Norbert Wiener . 7
7 Kiyoshi Itô . 9
8 Leonhard Euler . 21
9 Forward Euler method . 22
10 Backward Euler method . 23
11 John Crank and Phyllis Nicolson . 23
12 Crank Nicolson method . 24
13 Finite difference grid . 26
14 Stencil for FTCS . 27
15 Stencil for BTCS . 29
16 Stencil for Crank-Nicolson . 31
17 Magnus Hestenes and Eduard Stiefel . 35
18 H.A. van der Vorst . 37
19 Yousef Saad and Martin H. Schultz . 39
20 John von Neumann . 45
21 Discretization for a constant carbon price . 51
22 Discretization for a constant interest rate . 57
23 Part 1(a): constant carbon price, forward differences: Coupon values for a constant

carbon price . 66
24 Part 1(b): constant carbon price, backward differences: Coupon values for a constant

carbon price . 68
25 Part 2(a): constant interest rate, forward differences: Coupon values for a constant

interest rate . 70
26 Part 2(a): constant interest rate, forward differences: Coupon value for different

initial values of c0 and K . 72
27 Part 2(b): constant interest rate, backward differences Coupon values for a constant

interest rate . 73
28 Part 2(b): constant interest rate, backward differences: ∆t = 0.00001 73
29 Part 3: Coupon values for different values of r . 75
30 Part 3: Coupon values for different values of c . 76

vi

List of Tables

1 Values for the parameters in the green bond PDE . 64
2 Part 1(a): constant carbon price, forward differences: Values for the amplification

factor ξ for r0 = 0.05 . 67
3 Part 1(b): constant carbon price, backward differences: Values for the amplification

factor ξ for r0 = 0.05 . 69
4 Coefficients for the green bond PDE, (30), where r is constant 71
5 Coefficients for partial derivatives w.r.t. r in (35). 75
6 Coefficients for partial derivatives w.r.t. c in (35). 76

vii

List of Abbreviations

PDE Partial Differential Equation
SDE Stochastic Differential Equation
ICMA International Capital Market Association
EUGBS European Green Bond Standard
bps basis points
BS Black-Scholes
BM Brownian Motion
SPD Symmetric and Positive Definite
FE Forward Euler
BE Backward Euler
CN Crank-Nicolson
FD Finite Difference
CG Conjugate Gradient
Bi-CGSTAB Bi-Conjugate Gradient Stabilized
GMRES General Minimal Residual method
FTCS Forward difference in Time, Central difference in Space
BTCS Backward difference in Time, Central difference in Space

viii

1 Option Pricing and Green Finance

1.1 Option Theory

According to [1], an asset describes any financial object whose value is known at present but is liable
to change in the future. In this chapter, we will come across multiple options with an underlying
asset. For now, we can consider an option to be a contract between two parties. We will introduce
different types of options and elaborate on how an option’s price can be determined. This price
must be fair for both the option seller (who is also called the writer) and the option buyer (who is
also called the holder).

1.1.1 Bonds

The most common options that occur in finance are bonds. A bond is a contract between two
parties, an investor and a borrower. For the borrowing party, the money can be used to finance
important projects that might not have been possible to realize without the money. Of course, the
money has to be paid back to the investor after a pre-specified amount of time. The investor takes
a risk because the borrower might not be able to pay the money back. Therefore, the money must
be paid back with an additional feed to compensate for this risk. This fee is called the interest.
The interest is determined before the two parties sign the contract. Sometimes, the interest is paid
all at once on the final day before the money is paid back, but it could also be the case that the
interest is paid in installments (e.g., annually, semi-annually, monthly, etc.). Since both the time
when a lender gets his money back and the interest payments are known in advance, bonds are
referred to as (predictable) fixed-income securities.

The interest rate, usually denoted by r, depends on the risk the investor takes. There are tools to
measure the solvability of companies willing to borrow money. Roughly said: a company with a low
solvency ratio (indicating a bad financial position) has to pay more interest than another company
that is, from a financial point of view, perfectly healthy. Other factors that influence the value of
r are the amount of money borrowed and how quickly the borrower plans to repay the money.

The most elemental version of a bond is the so-called zero-coupon bond. The definition is de-
rived from [2].

Definition 1 (Zero-coupon bond). A zero-coupon bond with a value at time t with maturity
time T , denoted by B(t, T), is a financial instrument that can be bought at time t = 0 for a price of
B(0, T), and pays one unit of currency (for example, euro, dollar, etc.) at maturity time T , i.e.,
B(T, T) = 1.

1

Figure 1: Payments for a zero-coupon bond with maturity time T .

Assume that the interest rate r is constant and that we deal with continuously compounded interest.
Then, the value of the bond at time t ∈ [0, T], denoted by B(t, T), has to satisfy the equation

er(T−t)B(t, T) = B(T, T) = 1.

From here it follows that the value of the bond is given by

∀t ∈ [0, T] : B(t, T) = e−r(T−t).

If the interest rate is assumed to vary smoothly over time, i.e., r : [0, T] → R is a differentiable
function of time, the value of the bond is given by

B(t, T) = e−
∫ T
t

r(s)ds.

The next bond that we will consider is a coupon bond. For such a bond, intermediate payoffs can
occur before one unit of currency is paid at time T . Determining the price of such an option is
much more difficult. Normally, this value can only be computed numerically instead of analytically.

Definition 2 (Coupon bond). A coupon bond with a value at time t with maturity time T ,
denoted by B(t, T), is a financial instrument that can be bought at time t = 0 for a price of B(0, T).
At a finite number of times tj for 1 ≤ j ≤ n, the buyer receives a payment of cj. At the maturity
time, the coupon buyer gets an amount of B(T, T) = 1 + cn.

Figure 2: Payments for a coupon bond with maturity time T .

2

1.1.2 Call and put options

In addition to bonds, call and put options are also types of options that occur regularly in practice.
One reason to buy or sell such an option is to hedge risk. These types of options are often called
derivatives since the value depends on the value of an underlying asset. The next definition is
cited from [2].

Definition 3 (European call option). A European call option gives an option holder the right,
but not the obligation, to purchase an asset at a pre-specified time in the future, denoted by t = T
(the maturity time), for a prescribed amount of money. This amount is called the strike price and
is denoted by K.

The writer of a European call option hopes the asset price will fall after selling the option, whereas
the holder of such an op option hopes the asset price will rise after buying the option. At maturity
time T , the contract holder either

• makes a profit if the price of the asset exceeds the strike price, or

• does not gain or lose money if the price is lower than the strike price.

In both cases, the holder of the contract does not lose money. On the other hand, the person who
wrote out the option does not gain any money in both cases. To compensate for this dishonesty,
the contract holder is supposed to pay the writer of the contract an amount of money at time t = 0.
This amount is called the value of the call option. For any t ∈ [0, T], we denote the value of a call
option by Vcall(t, S).

The opposite of a European call option is a European put option. The definition is also cited
from [2].

Definition 4 (European put option). A European put option gives an option holder the right,
but not the obligation, to sell an asset at a pre-specified time in the future, denoted by t = T (the
maturity time), for a prescribed strike price K.

The writer of a European put option hopes the asset price will rise after selling the option, whereas
the holder hopes the asset price will fall after buying the option. At maturity time T , the contract
holder either

• makes a profit if the price of the asset is lower than the strike price, or

• does not gain or lose money if the price exceeds the strike price.

Again, the contract holder is supposed to pay the writer of the contract an amount of money at
time t = 0, which is called the value of the put option. This value is denoted by Vcall(t, S). In
general, determining the value of a European call or put option is not easy. Later in this chapter,
we will show a formula that can be used to determine the value.

If the option holder decides to buy or sell the asset at the maturity time, we say that the holder has
exercised the contract. The following example demonstrates the difference between a European
call and a European put option.

3

Example 1. Suppose person X and person Y are interested in a stock S. At time t = 0, its value
is equal to S0 = ¤10,-. Person X decides to buy a European call option on this stock with strike
price K = ¤9,- and maturity time T = 1, corresponding to one week. Person Y on the other hand
chooses to buy both the stock for ¤10,- and a European put option on this stock for the same values
of K and T .

After one week, the value of the stock is increased: S1 = ¤12,-. Both person X and Y now
have to make a decision.

• Person X has the right to buy the stock for the strike price of ¤9,-. Since the value of the
stock is now higher, person X of course decides to do this (he decides to exercise the option).
By buying the stock for ¤9,- and selling it directly on the stock market for its current price,
which is ¤12,-, person X makes a profit of ¤3,-. This amount is called the payoff of the
contract.

• Person Y can also decide whether or not to exercise his option. As a reminder, he has the
right to sell the stock for the strike price of ¤9,-. Since the value of the stock is now higher,
person Y makes a rational decision by not exercising the option, i.e., his payoff is zero. If he
exercised the option, he would sell his stock for only ¤9,-, whereas on the stock market, he
could get ¤12,-.

If someone buys or sells a European option at time t = 0, this person knows that his only chance
to exercise the contract is at the pre-specified maturity date t = T . This works differently for a
Bermudan call or put option. For this kind of option, a holder can exercise the contract at a
finite number of pre-specified dates t1, t2, . . . , tn ∈ [0, T] (for example, weekly or monthly). If the
holder of a call or put option can exercise the contract at any time t ∈ [0, T], then we speak of an
American option.

1.1.3 Payoff diagram of a call and put option

For a call option, it is not wise to exercise the contract if the asset value at the maturity time is
smaller than or equal to the strike price, i.e., ST ≤ K. If someone decides to exercise the call option
under this condition, this person would buy the asset for a price of K, while it is worth less on the
market. Therefore, the call option is not exercised and the payoff is zero. On the other hand, if
ST > K, the contract holder should exercise the contract. He buys the asset for an amount of K
and he could sell that same asset immediately on the market for an amount of ST . For this case,
the payoff is strictly positive and given by ST −K. Shortly, for the payoff function we can write

if ST < K =⇒ don’t exercise, payoff is equal to 0

else ST ≥ K =⇒ exercise, payoff is equal to ST −K

}
= max{ST −K, 0} = (ST −K)

+
.

In Figure 3, the payoff function is sketched for an arbitrary K > 0.

4

Figure 3: The pay-off diagram of a European call option: (ST −K)
+1.

For a put option, a similar way of thinking applies. For this type of option, it is not wise to exercise
the contract if the asset value is greater than or equal to the strike price, i.e., ST ≥ K. If someone
exercises, this person would sell the asset for K, while it is worth more on the market. Therefore,
the put option is not exercised and the payoff is zero. On the other hand, if ST < K, the contract
holder should exercise the contract. In this case, he sells the asset for an amount of K and he
could buy that same asset immediately on the market for an amount of ST . Therefore, the payoff
is strictly positive and given by K − ST . In short, for this payoff function, we can write

if ST < K =⇒ exercise, payoff is equal to K − ST

else ST ≥ K =⇒ don’t exercise, payoff is equal to 0

}
= max{K − ST , 0} = (K − ST)

+
.

In Figure 4, the payoff function is sketched for an arbitrary K > 0.

Figure 4: The pay-off diagram of a European put option: (K − ST)
+2.

1.1.4 Put-call parity

A beautiful equality that allows us to express the value of a call option in terms of a put option, the
value of the stock, and the (discounted) strike price is given by the put-call parity. One condition
that needs to be satisfied to have equality is that the underlying asset, the strike price K, and the
time to maturity T − t are identical for the two options.

1Image taken from [3].
2Image taken from [3].

5

Theorem 1 (Put-call parity). Let S be some asset, Vi(S, t) the value of an option at time t for
i ∈ {call, put} with S being the underlying asset, K the strike price and T − t the time to maturity.
Moreover, let r be the interest rate and assume that r is constant. If S(t) is the price of the asset
at time t, then the put-call parity is given by:

Vcall(t, S) + Ke−r(T−t) = Vput(t, S) + S(t).

The proof is omitted. The interested reader who wants to see the proof is referred to page 55 of [2].

1.2 The Black-Scholes equation

Bonds, call, and put options all have in common that they are financial contracts between two
parties. An interesting task is to find a price for these financial contracts that is considered fair for
both parties. The Black-Scholes PDE is one of the most famous PDEs used for pricing European
call and put options.

1.2.1 Background Information

In 1973, the Black-Scholes partial differential equation made its first appearance. It was developed
by three mathematicians: Fischer Black, Myron Scholes, and Robert C. Merton. Black and Scholes
published an article containing the formula in the Journal of Political Economy [4]. The writers
of [5] claim that the model showed that mathematics plays a significant role in finance. Since the
article of Black and Scholes was very focused on the economic part of the model, Merton wrote
a paper in the same year, in which he paid attention to the mathematical understanding of the
model [6]. In 1997, two after Black passed away, Scholes and Merton were awarded the Nobel
Memorial Prize in Economic Sciences for their work on this model.

Figure 5: From left to right: Robert Merton, Myron Scholes, and
Fischer Black.3

3Image taken from https://gfmag.com/features/5-black-scholes-merton-and-algorithms/.

6

https://gfmag.com/features/5-black-scholes-merton-and-algorithms/

As stated in [7], the Black-Scholes formula is a groundbreaking equation. It is the most effective
way of pricing options. Using the Black-Scholes formula, one can very quickly compute a so-called
‘fair’ price for both the option buyer and seller. John Lister states another advantage of the BS
model on the website of Smart Capital Mind [8]: “The main advantage of the model is that it works
entirely on objective figures rather than human judgment.”

The popularity of this model increased rapidly in the financial industry during the seventies and,
although there are more sophisticated models at hand today, the Black-Scholes model still remains
important for option valuation.

1.2.2 Preliminaries

Some mathematical tools must be introduced before presenting the Black-Scholes PDE. The most
important concepts are that of a Brownian motion (also called a Wiener process) and a stochastic
differential equation (SDE). To understand these concepts, we start with the definition of a stochas-
tic process. In this definition, we mention some measure theoretical notions, but we will not delve
too much into these notions. The definition below is cited from [9].

Definition 5 (Stochastic process). Let I be an ordered set (in our setting this is often R≥0),
(Ω,F ,P) a probability space, and (E,G) a measurable space. A stochastic process is a collected of
random variables X = {Xi; i ∈ I} such that for each fixed i ∈ I, Xi is a random variable from
(Ω,F ,P) to (E,G). The set Ω is the sample space, where E is the state space of the stochastic
process Xi.

The following definition is that of a Brownian motion, cited from [10]. As described in [11], the
term ‘Brownian motion’ is named after the Scottish botanist Robert Brown. Almost a century later,
in 1918, the American Jew Norbert Wiener, both a mathematician and philosopher, succeeded in
writing down a rigorous mathematical formulation. For this reason, a Brownian motion is also
called a Wiener process. [12] provides an interesting view of the history of Brownian motion.

Figure 6: Robert Brown (l) and Norbert Wiener4(r).

7

Definition 6 (Brownian motion). A real-valued stochastic process {Wt : t ≥ 0} is called a
(standard) Brownian motion if the following holds:

• W0 = 0,

• the process has independent increments, i.e., for all times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn the
increments Wtn −Wtn−1 ,Wtn−1 −Wtn−2 , . . . ,Wt2 −Wt1 are independent random variables,

• for all t ≥ 0 and h > 0, the increment Wt+h − Wt is normally distributed with expectation
zero and variance h. This is denoted by N (0, h),

• almost surely, the function t 7→ Wt is continuous.

Brownian motion can be applied in all kinds of fields. Not only is it used for option pricing, but
it also has applications in biology [13], chemistry [14], and physics [15] (obviously, these three
fields have a little overlap). It is one of the main ingredients used in the definition of a stochastic
differential equation, which is derived from [2].

Definition 7 (Stochastic Differential Equation). Let {Xt, t ≥ t0} be a stochastic process. A
stochastic differential equation (SDE) is a differential equation that incorporates a stochastic process.
An SDE can be represented as

dXt = µ̄ (Xt, t) dt + σ̄ (Xt, t) dWt with Xt0 = X0.

Each of the terms used above has the following meaning:

• X0 is the starting value,

• dXt denoted the change in the stochastic process Xt,

• µ̄ (Xt, t) is the deterministic drift term,

• σ̄ (Xt, t) is the stochastic volatility term (also called the diffusion term),

• Wt is a (standard) Brownian motion.

To find a stochastic differential equation that arises from a certain (green) derivative, an indispens-
able tool that is needed is Itô’s lemma, named after the Japanese mathematician Kiyosi Itô, who
contributed a lot to the study of SDEs around the 1940s. The lemma can be found below and is
cited from [2].

4Images taken from https://www.imdb.com/name/nm0114533/ and
https://www.onthisday.com/people/norbert-wiener.

8

https://www.imdb.com/name/nm0114533/
https://www.onthisday.com/people/norbert-wiener

Figure 7: Kiyoshi Itô5

Lemma 1 (Itô’s lemma). Suppose a stochastic process Xt follows the Itô dynamics, given by

dXt = µ̄ (t,Xt) dt + σ̄ (t,Xt) dWt with Xt0 = X0,

where drift µ̄ (t,Xt) and diffusion σ̄ (t,Xt) satisfy the standard Lipschitz conditions on the growth
of these functions. Let g(t,X) be a function of X = X(t) and time t, with continuous partial
derivatives

∂g

∂X
,
∂2g

∂X2
, and

∂g

∂t
.

A stochastic variable Y (t) := g(t,X) has the following dynamics, governed by the same Brownian
motion Wt, i.e.,

dYt =

(
∂g

∂t
+ µ̄ (t,X)

∂g

∂X
+

1

2

∂2g

∂X2
σ̄2 (t,X)

)
dt +

∂g

∂X
σ̄ (t,X) dWt.

A detailed version of the proof is provided in [16].

1.2.3 The PDE and its boundary conditions

The Black-Scholes equation is given by{
∂V
∂t + 1

2σ
2S2 ∂2V

∂S2 + rS ∂V
∂S − rV = 0,

∀S ≥ 0 : V (T, S) = F (S).

5Image taken from https://nl.wikipedia.org/wiki/Kiyoshi_Ito.

9

https://nl.wikipedia.org/wiki/Kiyoshi_Ito

Using this notation, we have that

• S = S(t) is the stock price at time t ∈ [0, T],

• V = V (S, t) is the value of the option on a stock with value S at time t.

• σ is the volatility of the stock,

• r is the interest rate.

This PDE also comes with a boundary condition. Often, it is the case that the initial condition (the
function value at t = 0) is given. For the Black-Scholes PDE, on the other hand, we are given the
terminal condition (i.e., the function value at t = T). We have already encountered these boundary
conditions, namely, if F is the payoff function, we can distinguish the cases where we have a call
and put option.

• For a call option, we have that F (S) = (ST −K)
+

:= max {ST −K, 0}.

• For a put option, we have that F (S) = (K − ST)
+

:= max {K − ST , 0}.

The boundary conditions above are so-called Dirichlet boundary conditions, i.e., the function value
at the boundary is known. There are also cases where not the function value itself, but the deriva-
tive of the function at the boundary is known. These are called Neumann boundary conditions.
Sometimes, the two types of boundary conditions are used together. The interested reader is invited
to take a look at [17].

The Black-Scholes PDE can be derived in multiple ways, see for example [18] or [19].

1.2.4 Analytical solution

The Black-Scholes equation can be solved analytically. It goes beyond the scope of this thesis, but
those who are interested are invited to see the proof of the next Theorem in [3].

Theorem 2. Write

d1 =
log
(
S0

K

)
+
(
r + 1

2σ
2
)
T

σ
√
T

and

d2 =
log
(
S0

K

)
+
(
r − 1

2σ
2
)
T

σ
√
T

= d1 − σ
√
T .

Moreover, let Φ be the cumulative distribution function of the standard normal distribution. Then,
the solution of the Black-Scholes PDE for a call option is given by

Vcall(t, S) = S(t)Φ (d1) −Ke−r(T−t)Φ (d2) .

Using the put-call parity, a similar expression can be found for Vput:

Vput(t, S) = Ke−r(T−t)Φ (−d2) − S(t)Φ (−d1) .

10

1.2.5 Assumptions and disadvantages of Black-Scholes

In the Black-Scholes model, we assume that no arbitrage opportunities are available. Simply put,
no arbitrage means nobody can make a profit without taking a risk. A formal definition of arbitrage
is stated below and is derived from [3].

Definition 8 (Arbitrage). An investment strategy with value process V is called an arbitrage if
the following all hold:

• V0 ≤ 0 (zero initial cost),

• P (V1 ≥ 0) = 1 (no losses with certainty),

• P (V1 > 0) > 0 (gain with positive probability).

Moreover, we assume that the asset price S follows a log-normal distribution, i.e. g(t, St) := ln(St)
follows a normal distribution. Furthermore, the asset price satisfies a stochastic differential equation,
see Definition 7. The formula for the dynamics of the asset price S is given by

dSt = rStdt + σStdWt.

Some advantages of the Black-Scholes model were already stated in a previous section. Although
the Black-Scholes formula forms the building blocks of option pricing theory, a few drawbacks are
worth mentioning.

• The Black-Scholes model does not take transaction costs into account despite being a common
phenomenon in practice. The same can be said about dividend payments: they are considered
vacant.

• In the real world, trading is a discrete process, but in the Black-Scholes model, we assume
this is a continuous process.

• The values of the interest rate r and the volatility σ are assumed to be constant, but the
values of these parameters change all the time.

1.2.6 Link with the heat equation

As already stated before, the Black-Scholes equation is given by

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0,

for V (S, t). It turns out that this equation is equivalent to the well-known heat equation, which is
given by

∂y

∂τ
=

∂2y

∂x2
,

for y(x, τ). The details of this statement are provided in Appendix A.

11

1.3 Sustainable Finance

The following quote comes from Jeffrey D. Sachs [20], an American economist, professor, and di-
rector of the Earth Institute at Columbia University: “Since the Industrial Revolution, finance has
been a powerful enabler of human progress. The purpose of the global financial system is to allocate
the world’s savings to their most productive uses. When the system works properly, these savings
are channeled into investments that raise living standards; when it malfunctions, as in recent years,
savings are channeled into real-estate bubbles and environmentally harmful projects, including those
that exacerbate human-induced climate change.”

The researchers of [20] claim that financial institutions mostly show more interest in fossil fuel
projects than green projects, mainly because there are still several risks associated with these new
technologies and they offer a lower rate of return. This statement is from 2017 and in the meantime,
terms like ‘green finance’ and ‘sustainable development’ have become increasingly more important.
Luckily, they have also become increasingly more popular [21]. This holds both for companies and
governments. Copying behavior is an important factor that can result in an acceleration of taking
measures against pollution. For example, governments putting a price on greenhouse gas emissions
is an increasingly occurring phenomenon. In [22] the argument is made that putting a price on
carbon provides incentives to opt for less carbon-intensive alternatives while still leaving it to mar-
kets to determine the best and most cost-effective technologies and solutions. In the same paper,
a study revealed that governments are more likely to opt for carbon pricing policies when their
trading partners or competitor countries that export goods to the same market also do so. This
means many governments tend to jump on the bandwagon after only some governments implement
a green policy.

1.4 Green bonds

A green bond is an example of a green financial derivative. It is a relatively new type of bond [23]
and is considered by the writer of [24] as one of the most prominent innovations in the field of
sustainable finance over the past decade. The green bond market was invented not earlier than in
2007 [25] but is growing rapidly [21]. In the literature, there is some inconsistency in the definition
of a green bond. [23] describes a green bond as “any type of bond instrument where the proceeds will
be exclusively applied to finance or re-finance, in part or in full, new or/and existing eligible green
projects.” In [21] it is stated that, according to Bloomberg, “green bonds are financial securities to
finance projects to minimize the impact of greenhouse gas emissions”, whereas [26] informs us that
“green bonds are earmarked to finance only projects with environmental benefits”. Unfortunately,
no clear definition of an ‘environmentally beneficial’ project is available. This can be problematic,
and [26] argues that this leads to market participants using their own (different) standards. One
of the disadvantages of the haziness is that the ‘greenness’ of a bond can be exaggerated. This is
called greenwashing.

1.4.1 Classes of green bonds

In [26], the researchers dive into a framework for classifying green bonds designed by the Inter-
national Capital Market Association (ICMA). This framework considers four criteria to classify a
bond as ‘green’. The criteria are given below.

12

• A bond is green if the Use of Proceeds is satisfied. According to ICMA, this is if the bond
issuer earmarks the bond proceeds to finance eligible green projects described in their legal
documentation.

• The Process for Project Evaluation and Selection principle is satisfied if the issuers commu-
nicate

– what the objectives of the green bond project are,

– what makes the project eligible, and

– what the associated environmental and social risks are.

• The Management of Proceeds principle is satisfied if the bond proceeds are managed and
tracked within the company’s financial structure.

• The Reporting Principle is fulfilled if a company reports on their green bond Use of Proceeds
and the projects to which funds have been allocated in the final report.

We can divide all green bonds into three groups using these indicators. The first group is formed
by the green bonds that only satisfy the Use of Proceeds principle. This is considered the lowest
form of greenness. The green bonds that fulfill all four ICMA principles form the second highest
form of greenness. If, in addition, a green bond also has received the review of a third party (an
effective measure to prevent greenwashing), it is granted the rank of highest greenness.

The above classification was used up to the end of 2023. In November 2023, the European Green
Bond Standard (EUGBS) was introduced as part of the European Green Deal investment plan [27].
The subject matter is as follows. This regulation

• lays down uniform requirements for issuers of bonds who wish to use the designation ‘European
Green Bond’ or ‘EuGB’ for their bonds that are made available to investors in the Union,

• establishes a system to register and supervise external reviewers of European Green Bonds,
and

• provides optional disclosure templates for bonds marketed as environmentally sustainable and
for sustainability-linked bonds in the Union.

1.4.2 Comparing green bonds to ordinary bonds

Although not everyone has worked with the same definition of a green bond, they share a willing-
ness to move to a ‘greener’ world. Making the green bond market successful is important, since [21]
claims that financing via green bonds is an essential mechanism to support sustainable develop-
ment. To make this market a success, both issuers and investors of green bonds should be satisfied
with the returns and safety of such security. For an investor, there is a direct financial incentive to
invest in a green bond if this bond provides better returns compared to other bonds [24]. It turns
out that there are differences between green bonds and ordinary bonds (also called brown bonds)
regarding yields. Sadly, in [28], it is shown that the returns on brown bonds are on average higher
than for green bonds. The writers claim that “the market penalizes green bonds to a higher degree
than brown bonds.” Similar results follow from [24], where the researchers discovered that the yields
of green bonds are on average two basis points (abbreviated as bps, 1 bps correspond to 0.01%)

13

lower than those of comparable brown bonds.

In search of an explanation for this phenomenon, it is worthwhile to mention that it is not only
beneficial for issuers of bonds but also for investors to have a green bond instead of a brown bond.
Some investors are even willing to pay a premium to hold a green bond instead of a brown bond.
This premium is called a greenium. According to the researchers, the most reasonable explanation
for this phenomenon is the high demand for and limited supply of green bonds. A company wants
to be involved in sustainable finance since it shows the organization’s efforts to

• secure legitimacy in the face of societal level pressures to demonstrate sustainable business
practices,

• demonstrate accountability to identifiable stakeholders with sustainability demands on the
organization,

• conform to sustainability practices of other like-organizations facing the same institutional
level pressures to engage with sustainability.

The writers of [21] recommend future studies to focus on new developments in the green bond
market and check different market sentiments’ effects of the premium of green bonds, especially
since this market is in the evolutionary phase.

1.5 Pricing a green bond

In practice, many different types of green bonds exist on the market. For this master thesis, we
will consider a green bond model that considers both the interest rate and the carbon price. This
model is derived in [29] and can be found in Chapter 4.1. It is already stated that the price needs
to be fair for the buyer and the seller of a bond; this is a delicate task. In the next chapters,
we will introduce mathematical theory that can be used to determine the price of a green bond.
This involves numerical mathematics. It should be mentioned that determining a fair price is
not the main aim of this thesis, we will evaluate stability, which plays a crucial role in numerical
mathematics.

14

2 Numerical Analysis

When we are solving an equation, the first thing that we want to do is try to find an analytical
solution. Such a solution is also referred to as a ‘closed-form solution’. Unfortunately, when solving
PDEs and SDEs, this is hardly ever possible. In [30], it is explained why most of the PDEs can not
be solved by hand. Due to this, we have to settle for a numerical solution instead of an analytical
solution. Numerical solutions can be obtained by discretizing the domain of interest and trying to
find the value of the function on the nodes in the grid. This solution is often not the exact solution,
but an approximated solution. Using the finite difference method, we obtain a system of linear
equations, denoted by Au = f . There are multiple ways to solve such a system. A distinction can
be made between direct solution methods and iterative solution methods. For this thesis, we focus
on both methods.

If matrix A were to be invertible, we could find the solution u by just multiplying the right-
hand side vector f with A−1, i.e., u = A−1f . If computing A−1 was easy, iterative solution methods
would not have been necessary. The problem is that the computation of an inverse of a matrix is
‘expensive’. That is, computing the inverse of a n×n matrix is, from a computational viewpoint, a
heavy task. Take for example Gauss-Jordan elimination: computating A−1 using this method costs
O
(
n3
)

operations.

2.1 Preliminaries

This section contains all the definitions and theorems that might be useful for the research part of
this thesis.

2.1.1 Some definition about matrices

When analyzing iterative solution methods for systems of linear equations, we come across matrices.
Good knowledge of matrices is necessary. In this section, some key results about matrices are
presented. The definitions and theorem are all cited from [31].

Definition 9 (Matrix norm). Given 1 ≤ p < ∞, the p-norm of a matrix R ∈ Rm×n, denoted as
∥R∥p, is defined by

∥R∥p = sup
u∈Rn\{0}

∥Ru∥p
∥u∥p

.

In the case of p = 1, p = 2 and p = ∞, the following expressions exist that allow us to compute the
matrix p-norm in practice

∥R∥1 = max
1≤j≤n

m∑
i=1

|rij | maximum absolute column sum,

∥R∥2 =
√

max
1≤i≤n

λi (R⊤R) =
√

λmax (R⊤R),

∥R∥∞ = max
1≤i≤m

n∑
j=1

|rij | maximum absolute row sum.

15

From linear algebra, we know that all vector norms are equivalent. The same result holds for matrix
norms. That is, if ∥·∥p and ∥·∥q are two matrix norms on n×n matrices, then there exists constant
α and β such that

∀A ∈ Rn×n : α∥A∥p ≤ ∥A∥q ≤ β∥A∥p.

We move on with the definition of the spectral radius. The (speed of) convergence of iterative
solution methods depends on the value of the spectral radius.

Definition 10 (Spectral radius). Let A ∈ Rn×n and let σ(A) be the set of eigenvalues of A. The
spectral radius ρ(A) of matrix A is defined as

ρ(A) = max
i=1,...,n

{|λi| : λi ∈ σ(A)} .

It is not always the case that ρ(A) ∈ σ(A). Think for example about the case where we have
negative or complex eigenvalues. In general, it is difficult to compute the spectral radius, but it is
possible to find an upper bound that is much easier to compute. This upper bound is given in the
next theorem. It can be seen as a link between the spectral radius and a matrix norm.

Theorem 3. Let ∥·∥ be any multiplicative norm. That is, for all 1 ≤ p < ∞ and for all A ∈ Rm×q

and B ∈ Rq×n we have that

∥AB∥p ≤ ∥A∥p∥B∥p.

Then the following inequality holds:

ρ(A) ≤ ∥A∥.

Proof. Assume (λ,u) to be any eigenvalue-eigenvector pair of A. Then Au = λu, and by making
use of the sub-multiplicative property we find

|λ|∥u∥ = ∥λu∥ = ∥Au∥ ≤ ∥A∥∥u∥ =⇒ |λ| ≤ ∥A∥.

Since the eigenvalue λ was arbitrary, the proof is finished.

One of the iterative solution methods we will analyze is the Conjugate Gradient method (see Chapter
2.7.1). The next theorem forms a link between the convergence of this method and the condition
number of a matrix. The definition of the condition number can be found below.

Definition 11 (Condition number). The condition number measured in p-norm κp(A) of an
invertible n× n matrix A is defined as

κp(A) = ∥A∥p∥A−1∥p.

Theorem 4. The condition number measured in p-norm for any invertible n×n matrix A is greater
than or equal to 1, i.e.,

κp(A) ≥ 1.

16

Proof. Let A be a matrix that satisfies the conditions of Theorem 4 and let p be any multiplicative
norm. Using the multiplicative property, we find that

κp(A) = ∥A∥p∥A−1∥p
≥ ∥AA−1∥p
= ∥In∥p
= 1.

For any n× n matrix A, the spectral radius and the matrix norm depend on the set of eigenvalues
σ(A). Computing all the eigenvalues is often too difficult, but the next theorem allows us to find
an approximation (i.e., lower or upper bound) of the eigenvalues.

Theorem 5 (Gershgorin’s Circle Theorem). Let A ∈ Rn×n. If λ ∈ σ(A), then λ is located in
one of the n closed disks in the complex plane that has centre aii and radius

ρi =

n∑
j=1,j ̸=i

|aij |,

i.e.,

λ = σ(A) =⇒ ∃i such that |aii − λ| ≤ ρi.

It is already mentioned that for this master’s thesis, the systems of linear equations are of the form
Au = f . Sometimes matrix A is symmetric and positive definite, abbreviated as SPD. The next
definition dives into this property.

Definition 12 (SPD matrix). A matrix A ∈ Rn×n is called symmetric positive definite (SPD) if
and only if A is symmetric (that is, A⊤ = A) and

∀u ∈ Rn\{0} : u⊤Au > 0.

If we allow equality in the above inequality, we call A symmetric positive semi-definite.

If a n × n matrix A is SPD, we have that all eigenvalues are real and positive. In particular, 0 is
not an eigenvalue; thus, A is invertible. We can define ∥·∥A, given by

∀u ∈ Rn : ∥u∥A := u⊤Au.

It turns out that ∥·∥A satisfies all the properties of being a norm. Therefore, ∥·∥A is a norm, which
is called the norm induced by matrix A.

In Section 2.7, we will consider several iterative solution methods. All these methods are so-called
Krylov subspace methods. Therefore, we present the definition of a Krylov subspace.

Definition 13 (Krylov subspace). The Krylov subspace of dimension k corresponding to a matrix
A and a vector v is given by

Kk := span
{
v, Av, . . . , Ak−1v

}
.

17

2.2 Finite Difference Discretization

At the beginning of this chapter, it was already stated that, unlike the Black-Scholes PDE, most
PDEs and SDEs cannot be solved analytically. Solving such equations on a given domain is still
possible, just not analytically. Therefore, we move from analytical solutions to numerical solutions.
To obtain such a solution, we first discretize the (multidimensional) domain. Later in this chapter,
we will use the heat equation as an example. This PDE is given by

∂u

∂t
=

∂2u

∂x2
,

for 0 ≤ x ≤ Smax and 0 ≤ t ≤ T , subject to

• the initial condition u(x, 0) = g(x), and

• the two boundary conditions u(0, t) = a(t) and u (Smax, t) = b(t).

We will discretize the domain both in the space direction x (or S, the initial value of the option)
and the time direction t. The domain of the space is then given by [0, Smax] × [0, T].

In the next sections, we will elaborate on how we can discretize the domain. In Section 2.2.1,
we will dive into the discretization of space and Section 2.3.1 is about the discretization of the time
direction.

2.2.1 Discretization of space

For a continuous and smooth function y : R → R, the first derivative with respect to x is a
well-known result described by the following limit.

lim
h→0

y(x + h) − y(x)

h
=

dy

dx
(x) = y′(x).

Similarly, for the second derivative of y with respect to x, we find another limit given by:

lim
h→0

y(x− h) − 2y(x) + y(x + h)

h2
=

d2y

dx2
(x) = y′′(x).

In the world of numerical mathematics, we are not in the position to take the limit of h going
to zero. We can decide to choose h to be ‘small’, which means that the above equalities become
approximations:

y(x + h) − y(x)

h
≈ y′(x) ⇐⇒ y(x + h) − y(x) ≈ hy′(x),

y(x− h) − 2y(x) + y(x + h)

h2
≈ y′′(x) ⇐⇒ y(x− h) − 2y(x) + y(x + h) ≈ h2y′′(x).

This value of h can be considered as the distance between two grid points in, for example, the
space direction. For this master thesis, we assume that this distance is the same for any two grid
points, i.e., all the points are equidistant. If this holds, we speak of a uniform grid. Note that this
doesn’t have to be the case. The interested reader is invited to consult [32], where a non-uniform
grid is used to find a numerical solution to the Black-Scholes equation without boundary conditions.

18

Suppose we have M + 1 grid points in the spatial direction, which runs from 0 to Smax, where
the space between every two consecutive points is h, i.e.,

X =

{
xm | xm = (m− 1)h; h =

1

M
, 1 ≤ m ≤ M + 1

}
,

then we can simply write y(xm) = ym. Below, we introduce several finite difference operators.
We will derive the Taylor series for each operator since this provides useful information for local
accuracy.

Forward difference: ∆ym = ym+1 − ym. Using the Taylor series and adding the left-hand and
right-hand sides, we find

ym+1 = ym + hy′m +
1

2
h2y′′m +

1

6
h3y′′′m + . . .

−ym = −ym

ym+1 − ym = hy′m +
1

2
h2y′′m +

1

6
h3y′′′m + (1)

Backward difference: ∇ym = ym − ym−1. Using the Taylor series and adding the left-hand and
right-hand sides, we find

ym = ym

−ym−1 = −ym − (−h)y′m − 1

2
(−h)2y′′m − 1

6
(−h)3y′′′m + . . .

ym+1 − ym = hy′m − 1

2
h2y′′m +

1

6
h3y′′′m + (2)

Half central difference: δym = ym+ 1
2
− ym− 1

2
. Using the Taylor series and adding the left-hand and

right-hand sides, we find

ym+ 1
2

= ym +

(
1

2
h

)
y′m +

1

2

(
1

2
h

)2

y′′m +
1

6

(
1

2
h

)3

y′′′m + . . .

−ym− 1
2

= −ym −
(
−1

2
h

)
y′m − 1

2

(
−1

2
h

)2

y′′m − 1

6

(
−1

2
h

)3

y′′′m + . . .

ym+ 1
2
− ym− 1

2
= hy′m +

1

24
h3y′′′m + (3)

19

Second order central difference: δ2ym = ym+1 − 2ym + ym−1. Using the Taylor series and adding
the left-hand and right-hand sides, we find

ym+1 = ym + hy′m +
1

2
h2y′′m +

1

6
h3y′′′m +

1

24
h4y′′′′m + . . .

−2ym = −2ym

ym−1 = ym + (−h)y′m +
1

2
(−h)2y′′m +

1

6
(−h)3y′′′m +

1

24
(−h)4y′′′′m + . . .

ym−1 − 2ym + ym+1 = h2y′′m +
1

12
h4y′′′′m + (4)

Average: µ = 1
2 (ym+ 1

2
+ ym− 1

2
). Using the Taylor series and adding the left-hand and right-hand

sides, we find

1

2
ym+ 1

2
=

1

2
ym +

1

2

(
1

2
h

)
y′m +

1

2

(
1

2
h

)2

y′′m + . . .

1

2
ym− 1

2
=

1

2
ym +

1

2

(
−1

2
h

)
y′m +

1

2

(
−1

2
h

)2

y′′m + . . .

1

2

(
ym+ 1

2
+ ym− 1

2

)
= ym +

1

4
h2y′′m + (5)

2.3 Time-stepping methods

This section is cited partly from [33].

2.3.1 Discretization of time

Suppose we have N + 1 grid points in the time direction, which runs from 0 to T , where the space
between every two consecutive points is ∆t, i.e.,

Y =

{
tn | tn = (n− 1)∆t; ∆t =

1

N
, 1 ≤ n ≤ N + 1

}
.

We will give three different elementary time-stepping methods. Each method has advantages and
disadvantages that will be described along the way. To make life simple, we introduce the time
integration methods for the following scalar first-order differential equation{

dy
dt = y′ = f(t, y), t > t0,

y (t0) = y0.

The solution of the above differential equation can be found by integrating the function f with
respect to time t:

y(t) = y(t0) +

∫ t

t0

f (τ, y(τ)) dτ.

20

Using our discretized time interval [0, T], we can compute the solution of the differential equation
step by step:

yn+1 = yn +

∫ tn+1

tn

f (t, y(t)) dt.

The next subsections will present several time-stepping methods, including background information.

2.3.2 Forward Euler method

The Forward Euler method is one of the most ordinary time-stepping methods. It is named after
the Swiss mathematician Leonhard Euler, who wrote about this method in his book Institutionum
calculi integralis [34], published in the second half of the 18th century.

Figure 8: Leonhard Euler6

This method is also called the left Rectangle rule, and this is for a good reason. To make a step
from t = tn to t = tn+1, we compute the value of f for given tn and yn (which are both known at
time tn). From here, we pretend that the function value remains constant on the interval [tn, tn+1].
In Figure 9, we see that by performing this method, we obtain small rectangles where the height is
determined by the function value in the left endpoint in the interval [tn, tn+1].

6Image taken from https://nl.wikipedia.org/wiki/Leonhard_Euler.

21

https://nl.wikipedia.org/wiki/Leonhard_Euler

Figure 9: Graphical representation of the Forward Euler method7. Time
is on the horizontal axis, and the function value f is on the vertical axis.

The approximation for yn+1 becomes as follows:

yn+1 ≈ yn + (tn+1 − tn) f (tn, yn) = yn + ∆tf (tn, yn) .

The numerical approximation at time tn+1 is denoted by wn+1 and is given by

wn+1 = wn + ∆tf (tn, wn) .

Note that at time tn, the value of wn and, thus, the value of f (tn, wn) are known explicitly. For
this reason, the Forward Euler is called an explicit method.

2.3.3 Backward Euler Method

The Backward Euler method can also be represented by using rectangles, but for this method, the
height of a rectangle is determined by the function value of f for y = yn+1 and t = tn+1. Therefore,
this method is also called the right Rectangle rule. After determining f (tn+1, yn+1), again we
pretend that the function value remains constant on the interval [tn, tn+1]. This is illustrated in
Figure 10.

7Image taken from https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-2/a/

left-and-right-riemann-sums.

22

https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-2/a/left-and-right-riemann-sums
https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-2/a/left-and-right-riemann-sums

Figure 10: Graphical representation of the Backward Euler method8.
Again, time is on the horizontal axis, and the function value f is on the

vertical axis.

The numerical approximation at time tn+1 is given by

wn+1 = wn + ∆tf (tn+1, wn+1) .

Note that at time tn, the value of wn+1 and, thus, the value of f (tn, wn+1) are not known explicitly.
This means we are left with an equation that should be solved for wn+1. Solving such an equation
can be done using Newton’s method or a different fixed point method. If such an equation occurs,
we call a time-stepping method implicit.

2.3.4 Crank-Nicolson

The Crank-Nicolson method (also called the Trapezoidal Rule) was developed by two British math-
ematicians John Crank and Phyllis Nicolson. They published a paper on this topic in 1946 [35].

Figure 11: John Crank and Phyllis Nicolson9.

8Image taken from https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-2/a/

left-and-right-riemann-sums.

23

https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-2/a/left-and-right-riemann-sums
https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-2/a/left-and-right-riemann-sums

The Crank-Nicolson method (also called the Trapezoidal method) can be interpreted as a mix
between the Forward and Backward Euler method. We do not assume the function f to be constant
on the interval [tn, tn+1]. Instead, the function f is believed to grow or decay linearly from f (tn, yn)
to f (tn−1, yn−1). This is illustrated in Figure 12 below. It should be mentioned that in this figure,
the rectangles do not have the same base whereas we already stated that the time steps are all of
size ∆t. Nevertheless, it shows very well how the method works.

Figure 12: Graphic representation of the Crank-Nicolson method10.
Again, time is on the horizontal axis, and the function value f is on the

vertical axis.

The numerical approximation at time tn+1 is given by

wn+1 = wn +
1

2
∆t (f (tn, wn) + f (tn+1, wn+1)) .

Since the f (tn+1, wn+1)-term appears on the right-hand side, we conclude that the Crank-Nicolson
method is implicit.

2.4 Example heat equation

In Section 1.2.6, we stated that the Black-Scholes equation is equivalent to the heat equation (see
also Appendix A), i.e., if we know the solution to the heat equation, we can derive the solution to
the Black-Scholes equation. This also applies when working with an approximated solution instead
of an analytical one. Therefore, it is worthwhile to study how we can approximate the solution of
the heat equation. This is what we will do in this section, where we make use of [1].

We aim to find a solution u(x, t) of the heat equation, which is given by

∂u

∂t
=

∂2u

∂x2
,

for 0 ≤ x ≤ Smax and 0 ≤ t ≤ T , subject to

9Images taken from https://en.wikipedia.org/wiki/John_Crank and https://en.wikipedia.org/wiki/

Phyllis_Nicolson.
10Image taken from https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration_small.

svg.

24

https://en.wikipedia.org/wiki/John_Crank
https://en.wikipedia.org/wiki/Phyllis_Nicolson
https://en.wikipedia.org/wiki/Phyllis_Nicolson
https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration_small.svg
https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration_small.svg

• the initial condition u(x, 0) = g(x), and

• the boundary conditions u(0, t) = a(t) and u(L, t) = b(t).

As we have already mentioned earlier, the space axis is divided into M + 1 equidistant points,
leaving us with the already introduced set

X = {mh}Mm=0 = {0, h, 2h, . . . ,Mh},

where h = 1/M . Similarly, the time axis is divided into N+1 equidistant points. To avoid confusion
with the forward difference (∆) and backward difference (∇) operator, we will write k = ∆t = T/N .
This leads to the set

Y = {nk}Nn=0 = {0, k, 2k, . . . , Nk = T}.

The grid is formed by points of the form (mh, nk) for 0 ≤ m ≤ M and 0 ≤ n ≤ N . We will search
for values Un

m that approximate the solution on the grid, i.e.,

Un
m ≈ u(mh, nk),

where 0 ≤ m ≤ M and 0 ≤ n ≤ N . Figure 13 below gives a sketch of how the grid looks. For this
sketch, the time step size appears to be equal to the spatial step size (i.e., h = k). This does not
necessarily have to be the case!

In Figure 13, the blue dots are known values (these values follow from the initial and bound-
ary conditions). Our goal is to find the values of the red dots. This can be done using finite
difference operators to form equations that the grid values Un

m must satisfy.

25

0

t

T

0 x Smax

Figure 13: Finite difference grid {mh, nk}m,n for 0 ≤ m ≤ M and
0 ≤ n ≤ N .

In Figure 13, we observe that all the values of the nodes at time t = 0 are known. If, for example,
we want to solve the Black-Scholes PDE numerically, it is the other way around: all the values of
the nodes at time t = T are known. The methods described in the sections to come will still work
because we can also step back in time by introducing the time variable τ = T − t.

2.4.1 Forward difference in time, central difference in space

To solve the heat equation numerically, we can choose to approximate the time derivative (∂/∂t) by
the forward difference in time, denoted by k−1∆t. The second order space derivative (∂2/∂x2) can
be approximated by the second order central difference in space, denoted by h−2δ2x. This method
is called FTCS (Forward difference in Time, Central difference in Space). As a reminder, the
differential operators have the following meaning:

∆tU
n
m = Un+1

m − Un
m,

δ2xU
n
m = Un

m−1 − 2Un
m + Un

m+1.

26

This leads to the following set of linear equations:

k−1∆tU
n
m − h−2δ2xU

n
m = 0

Un+1
m − Un

m

k
−

Un
m−1 − 2Un

m + Un
m+1

h2
= 0.

By moving the second fraction to the right-hand side, multiplying both sides with k, and then
moving the Un

m to the right-hand side, we obtain

Un+1
m =

k

h2
Un
m−1 +

(
1 − 2

k

h2

)
Un
m +

k

h2
Un
m+1.

By introducing ν = k/h2 as the mesh ratio, we are left with

Un+1
m = νUn

m−1 + (1 − 2ν)Un
m + νUn

m+1. (6)

If all the approximated solutions at time level n, denoted by {Un
m}Mm=0 are known, we can directly

compute the approximated solutions at the next time level n + 1. This is illustrated in Figure 14
and implies that FTCS is an explicit method.

n

n + 1

m− 1 m m + 1

Figure 14: Stencil for FTCS. The grid point values of the blue nodes
must be known to compute the grid point value of the red node.

Note that Un+1
0 = a ((n + 1)k) and Un+1

M = b ((n + 1)k) are given by the boundary condition
functions a and b, we can use (6) to compute all approximations of the inner values {Un+1

m }M−1
m=1

(the red dots in Figure 13). Together with the fact that all the values {U0
m}Mm=0 are known from

the initial condition function g, we can compute all the approximations by stepping forward in time.

All of this leads to M − 1 equalities, given by

Un+1
1 = νUn

0 + (1 − 2ν)Un
1 + νUn

2

Un+1
2 = νUn

1 + (1 − 2ν)Un
2 + νUn

3

...
. . .

. . .
. . .

Un+1
M−1 = νUn

M−2 + (1 − 2ν)Un
M−1 + νUn

M .

27

Note that Un
0 = a(nk) and Un

M = b(nk). By using this notation, we can write this system using
matrices and vectors as

Un+1 = FUn + pn, for 0 ≤ n ≤ N − 1. (7)

Each component in (7) is explained below. We start with the vectors U0 and Un.

U0 =



g(h)
g(2h)

...

...
g ((M − 1)h)

 ∈ RM−1, and Un =



Un
1

Un
2
...
...

Un
M−1

 ∈ RM−1.

From (6), it follows that matrix F (from forward time) only has non-zero elements on the main
diagonal, subdiagonal, and superdiagonal. Moreover, F is a symmetric matrix:

F =



1 − 2ν ν 0 · · · · · · 0

ν 1 − 2ν ν 0
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1 − 2ν ν

0 · · · · · · 0 ν 1 − 2ν


∈ R(M−1)×(M−1).

The vector pn only has two non-zero elements, namely, the first and the final component (these
components correspond to the boundary conditions):

pn =



νa(nk)
0
...
...
0

νb(nk)


∈ RM−1.

2.4.2 Backward difference in time, central difference in space

Instead of using forward difference, we can also use the backward difference in time (∇t) to ap-
proximate the time derivative. This method is called BTCS (Backward difference in Time, Central
difference in Space). We will perform a similar analysis as in the previous section and start by
giving a reminder of the meaning of the following differential operators:

∇tU
n
m = Un

m − Un−1
m ,

δ2xU
n
m = Un

m−1 − 2Un
m + Un

m+1.

28

This leads to the following set of linear equations:

k−1∇tU
n
m − h−2δ2xU

n
m = 0

Un
m − Un−1

m

k
−

Un
m−1 − 2Un

m + Un
m+1

h2
= 0.

We want to write this as a process that goes from time step n to time step n+ 1, so we increase the
time index with 1. Isolating the Un

m term and using again the abbreviation ν = k/h2, we obtain

−νUn+1
m−1 + (1 + 2ν)Un+1

m − νUn+1
m+1 = Un

m. (8)

Unlike (6), we can not compute Un+1-values directly from Un-values. We first have to solve an
equation. This makes BTCS an implicit method.

n

n + 1

m− 1 m m + 1

Figure 15: Stencil for BTCS. The grid point values of the blue nodes
must be known to compute the grid point value of the red node.

Note that Un+1
0 = a ((n + 1)k) and Un+1

M = b ((n + 1)k) are given by the boundary condition
functions a and b, we can use (8) to compute all approximations of the inner values {Un+1

m }M−1
m=1 .

Since BTCS is an implicit method, this can only be done by solving a system of linear equations,
which is given by

−νUn+1
0 + (1 + 2ν)Un+1

1 − νUn+1
2 = Un

1

− νUn+1
1 + (1 + 2ν)Un+1

2 − νUn+1
3 = Un

2

. . .
. . .

. . .
...

−νUn+1
M−2 + (1 + 2ν)Un+1

M−1 − νUn+1
M = Un

M−1.

We perform a similar trick as for the FTCS method by bringing Un+1
0 = a((n + 1)k) and

Un+1
M = b((n + 1)k) to the right-hand side to obtain a system of linear equations that has to be

solved for Un+1:

BUn+1 = Un + qn, for 0 ≤ n ≤ N − 1. (9)

The vectors Un and Un+1 are the same as for the FTCS method. From (8), it follows that
matrix B (from backward time) only has non-zero elements on the main diagonal, subdiagonal, and

29

superdiagonal. Just like the FTCS method, the matrix B for the BTCS method is also symmetric:

B =



1 + 2ν −ν 0 · · · · · · 0

−ν 1 + 2ν −ν 0
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1 + 2ν −ν

0 · · · · · · 0 −ν 1 + 2ν


∈ R(M−1)×(M−1).

By the Gershgorin Circle Theorem, all the eigenvalues λ of this matrix are contained in the disc D
with center 1 + 2ν and radius 2ν:

D = {z ∈ C : |z − (2ν + 1)| ≤ 2ν}.

Since the matrix is symmetric, all eigenvalues are real, i.e., the imaginary parts of the eigenvalues
are 0. Therefore, the eigenvalues are in the interval [1, 4ν + 1]. This leads to the conclusion that
all the eigenvalues are positive and together with the fact that B is symmetric, we conclude that
B is an SPD matrix.

The vector qn only has two non-zero elements, namely, the first and the final component (these
components correspond to the boundary conditions):

qn =



νa((n + 1)k)
0
...
...
0

νb((n + 1)k)


∈ RM−1.

2.4.3 Crank-Nicolson

When applying the CN method, we make use of a clever trick: we temporarily entertain the idea
of an intermediate time level at (n + 1

2)k, i.e., we make use of the half-central difference operator
δ. For this choice, the heat equation is approximated by

k−1δtU
n+ 1

2
m − h−2δ2xU

n+ 1
2

m = 0.

Since we have introduced points that are not on the grid, we apply the time-averaging operator µt

on the second term on the left-hand side. By doing this, we obtain

k−1δtU
n+ 1

2
m − h−2δ2xµtU

n+ 1
2

m = 0,

leaving us with a scheme containing only points that are actually on the grid:

k−1
(
Un+1
m − Un

m

)
− h−2δ2x

1

2

(
Un+1
m + Un

m

)
= 0.

30

Using again the mesh ratio ν = k/h2, we can write the above scheme as

2(1 + ν)Un+1
m = νUn+1

m+1 + νUn+1
m−1 + νUn

m+1 + 2(1 − ν)Un
m + νUn

m−1. (10)

n

n + 1

m− 1 m m + 1

Figure 16: Stencil for Crank-Nicolson. The grid point values of the blue
nodes must be known to compute the grid point value of the red node.

By collecting all the boundary value terms into a vector, which we denote by s, we can write (10)
in matrix-vector notation.

B̂Un+1 = F̂Un + sn, for 0 ≤ n ≤ M − 1. (11)

The vectors Un and Un+1 are the same as for the FTCS and BTCS method. The matrices B̂,
F̂ and vector sn are given in detail below. By the same reasoning as for matrix B in the BTCS
method, we can show that matrix B̂ is SPD.

B̂ =



1 + ν − 1
2ν 0 · · · · · · 0

− 1
2ν 1 + ν − 1

2ν 0
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . − 1
2ν 1 + ν − 1

2ν
0 · · · · · · 0 − 1

2ν 1 + ν


∈ R(M−1)×(M−1),

F̂ =



1 − ν 1
2ν 0 · · · · · · 0

1
2ν 1 − ν 1

2ν 0
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . 1
2ν 1 − ν 1

2ν
0 · · · · · · 0 1

2ν 1 − ν


∈ R(M−1)×(M−1).

31

The vector sn only has two non-zero elements, namely, the first and the final component (these
components correspond to a combination of the boundary conditions at time steps n and n + 1):

sn =



1
2ν (a(nk) + a((n + 1)k))

0
...
...
0

1
2ν (b(nk) + b((n + 1)k))


∈ RM−1.

2.5 Local truncation error

2.5.1 Local truncation error for FTCS

If we apply FTCS to the heat equation, we can write out the local accuracy for FTCS:

ϵnm =
∆tu

n
m

k
− δ2xu

n
m

h2
.

By making use of the Taylor series (1) and (4), we can find the local truncation error:

ϵnm =
k ∂u

∂t + 1
2k

2 ∂2u
∂t2 + O

(
k3
)

k
−

h2 ∂2u
∂x2 + 1

12h
4 ∂4u
∂x4 + O

(
h6
)

h2

=
∂u

∂t
− ∂2u

∂x2
+

1

2
k
∂2u

∂t2
− 1

12
h2 ∂

4u

∂x4
+ O

(
k2
)

+ O
(
h4
)
.

Since u satisfies the heat equation, we find that

ϵ̃nm =
1

2
k
∂2u

∂t2
− 1

12
h2 ∂

4u

∂x4
+ O

(
k2
)

+ O
(
h4
)
,

which means that FTCS behaves as O (k) + O
(
h2
)
.

2.5.2 Local truncation error for BTCS

If we apply BTCS to the heat equation, we can write out the local accuracy for BTCS:

ϵnm =
∇tu

n
m

k
− δ2xu

n
m

h2
.

By making use of the Taylor series (2) and (4), we can find the local truncation error:

ϵnm =
k ∂u

∂t − 1
2k

2 ∂2u
∂t2 + O

(
k3
)

k
−

h2 ∂2u
∂x2 + 1

12h
4 ∂4u
∂x4 + O

(
h6
)

h2

=
∂u

∂t
− ∂2u

∂x2
− 1

2
k
∂2u

∂t2
− 1

12
h2 ∂

4u

∂x4
+ O

(
k2
)

+ O
(
h4
)
.

Since u satisfies the heat equation, we find that

ϵ̃nm = −1

2
k
∂2u

∂t2
− 1

12
h2 ∂

4u

∂x4
+ O

(
k2
)

+ O
(
h4
)
,

which means that BTCS behaves as O (k) + O
(
h2
)
, just as FTCS.

32

2.5.3 Local truncation error for Crank-Nicolson

If we apply Crank-Nicolson to the heat equation, we can write out the local accuracy for CN:

ϵnm =
δtu

n+ 1
2

m

k
− δ2xu

n+ 1
2

m

h2
.

By making use of the Taylor series (3) and (4), we can find the local truncation error:

ϵnm =
k ∂u

∂t + 1
24k

3 ∂3u
∂t3 + O

(
k4
)

k
−

h2 ∂2u
∂x2 + 1

12h
4 ∂4u
∂x4 + O

(
h6
)

h2

=
∂u

∂t
− ∂2u

∂x2
+

1

24
k2

∂2u

∂t2
− 1

12
h2 ∂

4u

∂x4
+ O

(
k3
)

+ O
(
h4
)
.

Since u satisfies the heat equation, we find that

ϵ̃nm =
1

24
k2

∂2u

∂t2
− 1

12
h2 ∂

4u

∂x4
+ O

(
k3
)

+ O
(
h4
)
,

which means that CN behaves as O
(
k2
)

+ O
(
h2
)
.

2.6 Numerical Solution Methods

For the BTCS and the CN method, we have to solve a system of linear equations, given by respec-
tively (9) and (11). In this section, we aim to solve a system of linear equations given by Au = f .
Note that (9) and (11) can be written in this form by choosing

• f = Un + qn for BTCS, and

• f = F̂Un + sn for CN.

We assume that the matrix A is invertible, i.e., A−1 exists. This is a reasonable assumption, since
matrices B in (9) and B̂ in (11) are SPD (and thus invertible).

2.6.1 Iterative solution methods

For this master thesis, we will not only use an inverse matrix, but we will also consider iterative
solution methods. The name comes from the Latin word ‘iterum’, which means ‘again’. An iterative
solution method leads to a sequence of solutions {uk}k≥0. In each iteration, the goal is to obtain
a new solution that is closer to the real solution u than the previous solution, i.e.,

∥u− uk∥ ≤ ∥u− uk−1∥.

If the iterative method converges to the real solution, we have that

lim
k→∞

∥u− uk∥ = 0,

but we can not iterate forever: the algorithm has to stop at some point. We have to stop after a
finite number of iterations. The question about when to stop iterating is an amusing one to think
about and is answered later in this chapter.

33

Some interesting background information about iterative solution methods is given in [36]. The
idea of using iterative procedures for solving problems is an ancient one. Archimedes’ use of the
areas of inscribed and circumscribed regular polygons to estimate the area of a circle is a famous
instance of an iterative procedure, as is his method of exhaustion for finding the area of a section
of a parabola.

2.6.2 Preconditioning

Needless to say, we do not only want our set of approximated solutions {uk}k≥0 to converge to the
real solution u, we also want this convergence to be as fast as possible. In Theorem 6 that follows
in the next section, we will see that the convergence strongly depends on the eigenvalue distribution
of matrix A, and, under certain conditions, its condition number κp(A). The closer this condition
number is to 1, the faster convergence tends to be. A preconditioner can be used to speed up
the convergence. A preconditioner is a matrix M that can be used to describe the set of linear
equations equivalently. That is, we go from Au = f to the system M−1Au = M−1f . Note that
both systems of equations have the same solution. The potential advantage of this method lies in
the coefficient matrix M−1A, which could have better properties than matrix A. A preconditioning
matrix M must satisfy the following three conditions:

• the eigenvalues of M−1A should be clustered around 1, meaning that κ
(
M−1A

)
≪ κ(A),

• it should be possible to obtain M−1y at a low cost.

If matrix A is an SPD matrix, we can add another condition, although it can be seen more as a
godsend:

• M should be an SPD matrix.

2.7 Examples of Iterative solution methods

In this section, we will consider three iterative solution methods. All three methods are Krylov
subspace methods. As a reminder, the subspace

Kk = span{v, Av, . . . , Ak−1v},

is called the Krylov-space of dimension k corresponding to matrix A and a vector v. For each of
the iterative methods we have that the approximation at iteration k, denoted by uk is an element
of Kk(A, r0), where r0 is a residual vector that will be explained in more depth later. All three
algorithms presented in this section can also be found in [31].

2.7.1 Conjugate Gradient Method

The first iterative solution method that we will use is the Conjugate Gradient method (CG method).
Magnus Hestenes and Eduard Stiefel devised this method. They published a paper on this topic in
the Journal of Research of the National Bureau of Standards in December 1952 [37].

34

For this method, we assume that matrix A is symmetric and positive definite. This condition is
crucial for deriving the method, which is omitted in this master thesis. The derivation can be found
in [31].

Figure 17: Magnus Hestenes (l) and Eduard Stiefel (r)11.

Algorithm 1 Conjugate Gradient Method

u0 = 0; r0 = f ; ▷ initialisation
for k = 1, 2, . . . do ▷ k is the iteration number

if k = 1 then
p1 = r0;

else if

then βk =
(rk−1)

⊤
rk−1

(rk−2)⊤rk−2
; ▷ pk is the search direction vector

pk = rk−1 + βkp
k−1; ▷ to update uk−1 to uk

end if

αk =
(rk−1)

⊤
rk−1

(pk)⊤Apk
;

uk = uk−1 + αkp
k; ▷ update iterate

rk = rk−1 − αkApk; ▷ update residual
end for

The theorem below (cited from [31]) is very powerful because the convergence rate of the CG
method is linked to the condition number of matrix A.

Theorem 6. The iterates uk obtained from the CG method algorithm satisfy the following inequal-
ity:

∥u− uk∥A ≤ 2

(√
κ2(A) − 1√
κ2(A) + 1

)k

∥u− u0∥A. (12)

The proof of this theorem is beyond the scope of this master’s thesis. Instead, we give an example
that serves to demonstrate why the usage of a preconditioning matrix M is powerful. It should be

11Images taken from https://en.wikipedia.org/wiki/Magnus_Hestenes and https://en.wikipedia.org/wiki/

Eduard_Stiefel.

35

https://en.wikipedia.org/wiki/Magnus_Hestenes
https://en.wikipedia.org/wiki/Eduard_Stiefel
https://en.wikipedia.org/wiki/Eduard_Stiefel

mentioned that this example is very artificial since it can be shown that the CG method converges
in N steps if A is a N ×N matrix. Since the matrix in Example 2 is 2 × 2, the CG method would
converge in only two steps.

Example 2. Suppose we want to use the CG method to solve the following system Au = f , where
matrix A is invertible and positive definite:(

100 1
1 10

)(
u1

u2

)
=

(
100
1

)
.

Note that the exact solution is given by u = (1, 0)⊤. It can be shown that ∥A∥2 = 100.011 and
∥A−1∥2 = 0.1 and thus κ2(A) = 10.011. Using (12), we find that

∥u− uk∥A ≤ 2

(√
κ2(A) − 1√
κ2(A) + 1

)k

∥u− u0∥A ≈ 2 · 0.520k∥u− u0∥A.

The convergence is acceptable, but it can be much better. To achieve this, write

M =

(
100 0
0 10

)
=⇒ M−1 =

(
1

100 0
0 1

10

)
.

Note that M is an SPD matrix and for all y ∈ R2, M−1y can be computed at low cost. We compute
M−1A:

M−1A =

(
1

100 0
0 1

10

)(
100 1
1 10

)
=

(
1 1

100
1
10 1

)
.

The eigenvalue of this matrix are λ1,2 = 1 ± 1
100

√
10. It is safe to say that these eigenvalues are

indeed clustered around 1. We conclude that M satisfies the three properties of a preconditioning
matrix.

The new system M−1Au = M−1f (which is equivalent to the original system) now becomes(
1 1

100
1
10 1

)(
u1

u2

)
=

(
1
1
10

)
.

Observe that the solution is still given by u = (1, 0)⊤. It can be shown that ∥M−1A∥2 = 1.056 and

∥
(
M−1A

)−1∥2 = 1.057, leading to condition number κ2

(
M−1A

)
≈ 1.116. Using (12) once more,

we obtain

∥u− uk∥A ≤ 2

(√
κ2(A) − 1√
κ2(A) + 1

)k

∥u− u0∥A ≈ 2 · 0.027k∥u− u0∥A.

Now, the upper bound for the distance between u and uk is much sharper than before.

36

2.7.2 Bi-Conjugate gradient stabilized method

In the previous section, we have seen that the CG method can only be used if matrix A is SPD.
This is not always the case. Therefore, mathematicians were also looking for methods that could be
used for general systems of linear equations. One such method is the Bi-Conjugate Gradient type
method. We have short recurrences, which means that only the results of one foregoing step are
necessary; work and memory do not increase for an increasing number of iterations. Unfortunately,
we do not have an optimality property. The algorithm below makes use of a preconditioner matrix
M .

The inventor of the Bi-Conjugate gradient stabilized method (abbreviated as the Bi-CGSTAB
method) is a Dutch mathematician named Henk van der Vorst. In his paper [38], published in
1992, he states that convergence for Bi-CGSTAB is faster and smoother than for a regular Bi-CG
method.

Figure 18: Henk van der Vorst12.

12Image taken from https://elbd.sites.uu.nl/2020/01/09/henk-van-der-vorst/.

37

https://elbd.sites.uu.nl/2020/01/09/henk-van-der-vorst/

Algorithm 2 Bi-CGSTAB method

u0 is an initial guess; r0 = f −Au0;

r̄0 is an arbitrary vector, such that
(
r̄0
)⊤

r0 ̸= 0, e.g., r̄0 = r0;
ρ−1 = α−1 = ω−1 = 1;
v−1 = p−1 = 0;
for i = 1, 2, . . . do ▷ i is the iteration number

ρi =
(
r̄0
)⊤

ri; βi−1 = (ρi/ρi−1) (αi−1/ωi−1);

pi = ri + βi−1

(
pi−1 − ωi−1v

i−1
)
;

p̂ = M−1pi;
vi = Ap̂;

αi = ρi/
(
r̄0
)⊤

vi;
s = ri − αiv

i;
if ∥s∥ is small enough then

ui+1 = ui + αip̂; quit;
end if
z = M−1s;
t = Az;
ωi = t⊤s/t⊤t;
ui+1 = ui + αip̂ + ωiz;
if ui+1 is accurate enough then

quit;
end if
ri+1 = s− ωit;

end for

2.7.3 General Minimal Residual Method

The GMRES method [39] was developed in 1986 by Yousef Saad and Martin H. Schultz and stems
from the MINRES method [40], which was brought to life eleven years earlier. This type of method
features long recurrences, i.e., the amount of work per iteration, and the required memory grows
for an increasing number of iterations. An advantage of this method over the Bi-CGSTAB method
is that the GMRES-type methods do have an optimality property.

38

Figure 19: Yousef Saad (l) and Martin H. Schultz (r)13.

Algorithm 3 GMRES method

Choose u0 and compute r0 = f −Au0 and v1 = r0/∥r0∥2;
for j = 1, . . . , k do

vj+1 = Avj ;
for i = 1, . . . , j do

hij :=
(
vj+1

)⊤
vi; vj+1 := vj+1 − hijv

i;
end for
hj+1,j := ∥vj+1∥2; vj+1 := vj+1/hj+1,j

end for
The entries of the upper k + 1 × k Hessenberg matrix H̄k are the scalars hij .

In GMRES the approximate solution uk = u0 + zk with zk ∈ Kk
(
A; r0

)
is such that

∥rk∥2 = ∥f −Auk∥2 = min
z∈Kk(A;r0)

∥r0 −Az∥2.

2.8 Stopping criteria

The three algorithms which are presented in the previous section do not contain clear stopping
criteria. That is because we can make a choice. In [31], three stopping criteria are given. Some are
better than others as we will see.

• ∥rk∥ ≤ ϵ. This stopping criterium is not scaling invariant. Therefore, scaling needs to be
introduced.

• ∥rk∥/∥r0∥ ≤ ϵ. The main problem with this stopping criteria is that the required accuracy
increases with the quality of the initial guess.

13Images taken from https://www-users.cse.umn.edu/~saad/ and https://nl.wikipedia.org/wiki/Martin_

Schulz.

39

https://www-users.cse.umn.edu/~saad/
https://nl.wikipedia.org/wiki/Martin_Schulz
https://nl.wikipedia.org/wiki/Martin_Schulz

• Given that the two stopping criteria above have major disadvantages, the most reliable stop-
ping criteria given by ∥rk∥/∥f∥ ≤ ϵ. This stopping criterion is both scaling invariant and does
not increase with the quality of the initial guess.

40

3 Stability Analysis of the Numerical Methods

3.1 Amplification factor

Given the content in Chapters 2.3.2 and 2.3.3 about explicit and implicit methods, one could be
tempted to say that using an explicit method is more straightforward than an implicit method. In
particular, applying an explicit method does not lead to an equation that has to be solved for either
wn+1 or Un+1. Although this is true, there are some strong arguments in favor of implicit methods.
One of these arguments has to do with stability. According to [33], a physical phenomenon is called
stable if a small perturbation of the parameters (including the initial condition) results in a small
difference in the solution.

We perform the stability analysis for the three time-stepping methods mentioned in Chapter 2.3
(namely, Forward Euler, Backward Euler, and Crank-Nicolson). The PDE that we will use is the
so-called test equation, which, for λ ∈ R, is given by{

y′ = λy + g(t), t > t0,

y (t0) = y0.
(13)

The problem might get perturbed due to, for example, rounding errors. The perturbed system
looks similar to the original system. It is given by{

ỹ′ = λỹ + g(t), t > t0,

ỹ (t0) = y0 + ϵ0,
(14)

where ϵ0 is the error at time t = 0. Subtracting (13) from (14) gives a differential equation for the
error ϵ: {

ϵ′ = ỹ′ − y′ = λ (ỹ − y) = λϵ, t > t0,

ϵ (t0) = ϵ0,
(15)

with a solution given by

ϵ(t) = ϵ0e
λ(t−t0).

Of course, we want ϵ to be as small as possible. From this viewpoint, the following definition arises
naturally.

Definition 14. An initial value problem is called stable if

|ϵ(t)| < ∞ for all t > t0,

and absolutely stable if it is stable and

lim
t→∞

|ϵ(t)| = 0.

If |ϵ(t)| is unbounded, then the initial-value problem is unstable.

41

Since

lim
t→∞

ϵ(t) =


0 if λ < 0,

ϵ0 if λ = 0,

∞ if λ > 0.

We conclude that (15) is stable if λ ≤ 0 and strictly stable if λ < 0.

We have already stated that the numerical approximation for yn+1 is denoted by wn+1. Next
to this, we denote numerical approximation for the perturbed problem by w̃n+1. The numerical
approximation for the error is then given by ϵ̃n = wn − w̃n. The next definition is again cited
from [33].

Definition 15 (Amplification factor). Given the test equation and a time-stepping method, we
can find a recursive formula for the error:

ϵ̃n+1 = Q (λ∆t) ϵ̃n.

The value of Q (λ∆t) determines the factor by which the existing perturbation is amplified. There-
fore, this factor is called the amplification factor.

Theorem 7 (Stability and amplification factor). A time-stepping method is

absolutely stable ⇐⇒ |Q (λ∆t) | < 1,

stable ⇐⇒ |Q (λ∆t) | ≤ 1,

unstable ⇐⇒ |Q (λ∆t) | > 1.

If we assume that λ < 0, it turns out that the above-mentioned implicit methods (Backward
Euler and Crank-Nicolson) have much nicer properties regarding stability than the explicit method
(Forward Euler).

Theorem 8. Consider the test equation (13) and assume that λ < 0. Then, the Forward Euler
method is

stable ⇐⇒ ∆t ≤ − 2

λ
,

absolutely stable ⇐⇒ ∆t < − 2

λ
.

Proof. For the Forward Euler method, we can write the numerical approximation wn+1 in terms of
wn:

wn+1 = wn + ∆t (λwn + g (tn)) . (16)

For the perturbed initial-value problem, we obtain:

w̃n+1 = w̃n + ∆t (λw̃n + g (tn)) . (17)

42

Using that ϵ̃n = wn − w̃n, we can subtract (17) from (16). By doing this, we obtain:

ϵ̃n+1 = wn+1 − w̃n+1

= wn + ∆t (λwn + g (tn)) − (w̃n + ∆t (λw̃n + g (tn)))

= (1 + λ∆t) (wn − w̃n)

= (1 + λ∆t)ϵ̃n.

From here, it follows that Q (λ∆t) = 1 + λ∆t. By Theorem 7, we need to have that

−1 ≤ 1 + λ∆t ≤ 1,

which comes down to

−2 ≤ λ∆t ≤ 0.

The right inequality is automatically satisfied, since ∆t > 0 and λ < 0. Dividing both sides by λ
leads to

∆t ≤ − 2

λ
,

which finishes the proof.

Theorem 9. Consider the test equation (13) and assume that λ < 0. Then, both Backward Euler
and Crank-Nicolson are unconditionally stable, i.e., both methods are stable no matter the value of
∆t.

Proof. We start with the Backward Euler method.

For this method, we will write the numerical approximation wn+1 in terms of wn:

wn+1 = wn + ∆t (λwn+1 + g (tn+1)) . (18)

For the perturbed initial-value problem, we obtain:

w̃n+1 = w̃n + ∆t (λw̃n+1 + g (tn+1)) . (19)

Using that ϵ̃n = wn − w̃n, we can subtract (19) from (18). By doing this, we obtain:

ϵ̃n+1 = wn+1 − w̃n+1

= wn + ∆t (λwn+1 + g (tn+1)) − (w̃n + ∆t (λw̃n+1 + g (tn+1)))

= wn − w̃n + λ∆t (wn+1 − w̃n+1)

= ϵ̃n + λ∆tϵ̃n+1.

From here, we can determine the amplification factor:

ϵ̃n+1 =
1

1 − λ∆t
ϵ̃n =⇒ Q (λ∆t) =

1

1 − λ∆t
.

43

By Theorem 7, we need to have that

−1 ≤ 1

1 − λ∆t
≤ 1.

Since ∆t > 0 and λ < 0, it follows that 1 − λ∆t > 1, so this condition holds for every ∆t. We
conclude that the Backward Euler method is unconditionally stable for λ < 0.

For the Crank-Nicolson method, a similar analysis will be performed. We will again write the
numerical approximation wn+1 in terms of wn:

wn+1 = wn +
1

2
∆t (λwn + g (tn) + λwn+1 + g (tn+1)) . (20)

For the perturbed initial-value problem, we obtain:

w̃n+1 = w̃n +
1

2
∆t (λw̃n + g (tn) + λw̃n+1 + g (tn+1)) . (21)

Using that ϵ̃n = wn − w̃n, we can subtract (21) from (20). By doing this, we obtain:

ϵ̃n+1 = wn+1 − w̃n+1

= wn +
1

2
∆t (λwn + g (tn) + λwn+1 + g (tn+1)) −

(
w̃n +

1

2
∆t (λw̃n + g (tn) + λw̃n+1 + g (tn+1))

)
=

(
1 +

1

2
λ∆t

)
(wn − w̃n) +

1

2
λ∆t (wn+1 − w̃n+1)

=

(
1 +

1

2
λ∆t

)
ϵ̃n +

1

2
λ∆tϵ̃n+1.

From here, we can determine the amplification factor:

ϵ̃n+1 =
1 + 1

2λ∆t

1 − 1
2λ∆t

ϵ̃n =⇒ Q (λ∆t) =
1 + 1

2λ∆t

1 − 1
2λ∆t

.

By Theorem 7, we need to have that

−1 ≤
1 + 1

2λ∆t

1 − 1
2λ∆t

≤ 1.

Since ∆t > 0 and λ < 0, it follows that |1 − 1
2λ∆t| > |1 + 1

2λ∆t|, so the condition above holds
for every ∆t. We can conclude that the Crank-Nicolson method is also unconditionally stable for
λ < 0. This finishes the proof.

3.2 Von Neumann stability

This section is partly cited from from [1]. During the mid-twentieth century, John von Neu-
mann [41], a Hungarian mathematician who also had great knowledge about physics, astronomy,
and biology, worked among others on a method to determine the stability of a finite difference
scheme [42]. This method makes use of Fourier analysis. We will not dive into this topic, but the

44

definition of stability in the sense of von Neumann is stated below and is understandable without
much knowledge about Fourier analysis. Note that a Von Neumann analysis can only be performed
if the partial differential equation is linear. For this master’s project, this will always be the case.

Figure 20: John von Neumann14.

Definition 16 (Von Neumann stability). Let i be the unit imaginary number: i =
√
−1. A

finite difference method generating approximation Un
m is stable in the sense of von Neumann if,

ignoring initial and boundary conditions, under the substitution

Un
m = ξneiβmh,

it follows that |ξ| ≤ 1 for all βh ∈ [−π, π].

In the Chapter 2.4.1, we have introduced the mesh ratio ν = k/h2. This constant is important
for determining if a finite difference method is stable in the sense of von Neumann. This will be
emphasized in two theorems in the next section. These theorems will be stated with proof.

3.3 Stability analysis of the heat equation

In Chapters 2.4.1 and 2.4.2, we have introduced the FTCS and BTCS methods for discretizing the
heat equation (see Appendix A). We perform a stability analysis in the sense of von Neumann for
both methods in the proof of the following two theorems. This analysis is interesting since the heat
equation is equivalent to the Black-Scholes equation. Moreover, the PDE in the green bond model
(see Chapter 4.1) has some similarities with the Black-Scholes equation.

Theorem 10. The stability in the sense of von Neumann for FTCS is equivalent to

ν ≤ 1

2
.

Proof. As a reminder, the scheme for FTCS is given by

Un+1
m = νUn

m−1 + (1 − 2ν)Un
m + νUn

m+1.

14Image taken from https://www.econlib.org/library/Enc/bios/Neumann.html.

45

https://www.econlib.org/library/Enc/bios/Neumann.html

By substituting Un
m = ξneiβmh, we obtain

ξn+1eiβmh = νξneiβ(m−1)h + (1 − 2ν)ξneiβmh + νξneiβ(m+1)h.

Multiplying both sides with ξ−ne−iβmh ensures that we are left with ξ on the left-hand side.

ξ = νe−iβh + (1 − 2ν) + νeiβh

= 1 + ν
(
e−iβh − 2 + eiβh

)
= 1 + ν

(
ei

1
2βh − e−i 12βh

)2
.

We proceed by using that eix = cos(x) + i sin(x), cos(−x) = cos(x), and sin(−x) = − sin(x). This
gives

ξ = 1 + ν

(
cos

(
1

2
βh

)
+ i sin

(
1

2
βh

)
−
(

cos

(
−1

2
βh

)
+ i sin

(
−1

2
βh

)))2

= 1 + ν

(
2i sin

(
1

2
βh

))2

= 1 − 4ν sin2

(
1

2
βh

)
.

We showed that (
eiβh − 2 + e−iβh

)
= −4 sin2

(
1

2
βh

)
, (22)

and we will use this result multiple times in the proofs to come.

The condition |ξ| ≤ 1 holds true if and only if

−1 ≤ 1 − 4ν sin2

(
1

2
βh

)
≤ 1,

which can be simplified to

0 ≤ ν sin2

(
1

2
βh

)
≤ 1

2
.

For βh ∈ [−π, π], the squared sine term takes value in [0, 1]. Therefore, the stability in the sense of
von Neumann for FTCS is equivalent to

ν ≤ 1

2
.

This finishes the proof.

The above theorem implies that we should be careful when choosing values for k and h if we use
the FTCS method. We should never forget to check if the mesh ratio satisfies the inequality ν ≤ 1

2 .
BTCS is an implicit method, i.e., it requires solving an equation to make a step forward in time.
This might sound like more work has to be done. Though this is true, an advantage over FTCS is
stated in the next theorem.

46

Theorem 11. The BTCS method is unconditionally stable in the sense of von Neumann, that is,
stability in the sense of von Neumann is satisfied for all ν > 0.

Proof. As a reminder, the scheme for BTCS is given by

−νUn+1
m−1 + (1 + 2ν)Un+1

m − νUn+1
m+1 = Un

m.

By substituting Un
m = ξneiβmh, we obtain

−νξn+1eiβ(m−1)h + (1 + 2ν)ξn+1eiβmh − νξn+1e−iβ(m+1)h = ξneiβmh.

Multiplying both sides with ξ−ne−iβmh gives the following:

−νξe−iβh + (1 + 2ν)ξ − νξeiβh = 1

ξ − ξν
(
eiβh − 2 + e−iβh

)
= 1.

We use equation (22) to eliminate the imaginary terms for the next step.

ξ − ξν

(
−4 sin2

(
1

2
βh

))
= 1

ξ

(
1 + 4ν sin2

(
1

2
βh

))
= 1.

From here we can derive an expression for ξ:

ξ =
1

1 + 4ν sin2
(
1
2βh

) . (23)

Since ν > 0 and sin2
(
1
2βh

)
∈ [0, 1] for βh ∈ [−π, π], we find that ξ > 0. Moreover, the numerator

of (23) is always smaller than or equal to the denominator. By this reasoning, we can conclude
that |ξ| ≤ 1, meaning that BTCS is unconditionally stable in the sense of von Neumann. This ends
the proof.

Like BTCS, the Crank-Nicolson method is also implicit. The following theorem demonstrates that
there are more similarities between CN and BTCS.

Theorem 12. The Crank-Nicolson method is unconditionally stable in the sense of von Neumann,
that is, stability in the sense of von Neumann is satisfied for all ν > 0.

Proof. As a reminder, the scheme for CN is given by

2(1 + ν)Un+1
m = νUn+1

m+1 + νUn+1
m−1 + νUn

m+1 + 2(1 − ν)Un
m + νUn

m−1.

By substituting Un
m = ξneiβmh, we obtain

2(1 + ν)ξn+1eiβmh = νξn+1eiβ(m+1)h + νξn+1eiβ(m−1)h + νξneiβ(m+1)h

+ 2(1 − ν)ξneiβmh + νξneiβ(m−1)h.

Next, we multiply both sides with ξ−ne−iβmh. This leaves us with

2(1 + ν)ξ = νξeiβh + νξe−iβh + νeiβh + 2(1 − ν) + νe−iβh,

47

and collecting the ξ-terms on the left-hand side results in the following expression:

ξ
(
2 − ν

(
eiβh − 2 + e−iβh

))
= ν

(
eiβh − 2 + e−iβh

)
+ 2.

We will use (22) both on the left-hand and right-hand side:

ξ

(
2 + 4ν sin2

(
1

2
βh

))
= 2 − 4ν sin2

(
1

2
βh

)
.

From here, we can find an expression for ξ.

ξ =
2 − 4ν sin2

(
1
2βh

)
2 + 4ν sin2

(
1
2βh

) .
Since ν > 0 and sin2

(
1
2βh

)
∈ [0, 1] for βh ∈ [−π, π], we have that∣∣∣∣2 − 4ν sin2

(
1

2
βh

)∣∣∣∣ ≤ ∣∣∣∣2 + 4ν sin2

(
1

2
βh

)∣∣∣∣ ,
and thus we find that |ξ| ≤ 1 for all ν > 0. We conclude that the Crank-Nicolson method is
unconditionally stable in the sense of von Neumann, which finishes the proof.

48

4 Stability analysis for the green bond

In Chapter 3, we obtained results on the stability of FTCS, BTCS, and the Crank-Nicolson method
for the heat equation. These results are important since it can be shown that the heat equation is
equivalent to the Black-Scholes equation (see Appendix A).

4.1 The green bond model

The PDE for finding the value of a green bond, also called a coupon value, based on the interest
rate and the carbon price is derived by Juriaan Rutten [29]. The goal of his master’s project was
to solve this PDE on the domain

D = {(t, r, c) | 0 ≤ t ≤ T, rmin ≤ rt ≤ rmax, cmin ≤ ct ≤ cmax}.

The PDE itself is given by:

∂V

∂t
+ (µc− λcσcc)

∂V

∂c
+
(
α(β − r) − λrσr

√
r
) ∂V
∂r

+
1

2

(
σ2
cc

2 ∂
2V

∂c2
+ σ2

rr
∂2V

∂r2
+ 2cρσcσr

√
r
∂2V

∂r∂c

)
− rV = 0. (24)

The boundary conditions are as follows:

V (T, r, c) = (cT −K)
+
,

V (t, r, cmin) = 0,

V (t, r, cmax) =
(
cmax −Ke−r(T−t)

)+
,

V (t, rmin, c) = h1(t, c),

V (t, rmax, c) = h2(t, c),

where h1 can be obtained by solving the PDE below
∂V
∂t + (µc− λcσcc)

∂V
∂c + 1

2σ
2
cc

2 ∂2V
∂c2 − rminV = 0,

V (t, rmin, cmax) = 0,

V (t, rmin, cmax) =
(
cmax −Ke−rmin(T−t)

)+
,

V = (T, rmin, c) = (cT −K)
+
.

Similarly, h2 can be found by solving the following PDE:
∂V
∂t + (µc− λcσcc)

∂V
∂c + 1

2σ
2
cc

2 ∂2V
∂c2 − rmaxV = 0,

V (t, rmax, cmin) = 0,

V (t, rmax, cmax) =
(
cmax −Ke−rmax(T−t)

)+
,

V = (T, rmax, c) = (cT −K)
+
.

This partial differential equation looks somewhat similar to the Black-Scholes equation, but this
model also considers the carbon price c. Moreover, since we have a factor

√
r, this model only

allows non-negative values for the risk-free rate r. This PDE depends on several parameters, the
most important ones are listed below. For further details, such as the derivation of the model,
please consult Chapter 2 of [29].

49

• V : the value of the bond,

• c: the carbon price,

• r: the risk-free interest rate,

• λc, λr: the market prices of risk for the carbon price and the risk-free rate, and

• σc, σr: the volatility of the carbon price and the risk-free rate.

4.2 Methodology

It is more difficult to perform a stability analysis for (24) than for the heat equation in Chapter
2.4. The main reason for this fact is that (24) contains an extra dimension: the carbon price. To
go easy on ourselves, we split up the problem into subproblems, which we will solve one by one.

• In Section 4.3, we will assume that the carbon price c and the risk-free rate r are both constant.

• In Section 4.4, we will assume that c is constant, while r is not.

• In Section 4.5, we assume r to be constant, while c is not.

• In Section 4.6, we assume both r and c to be changing over time.

The first problem is relatively easy since we can find an analytical solution for the PDE. The other
problems are more difficult and require much more attention. We will use both forward and back-
ward differences for the first-order partial derivatives ∂V

∂c and ∂V
∂r . For the second order partial

derivatives ∂2V
∂c2 and ∂2V

∂r2 we will use central differences.

It is already mentioned that, unlike the initial condition for the heat equation, we have a final
condition for (24). After discretizing the grid, we want to compute the values of the nodes corre-
sponding to time t = 0. This means we take steps backward in time to obtain these values. To
obtain the values of the nodes in row n, corresponding to time tn, we make use of the fact that we
know the values of the nodes in row n + 1, corresponding to time tn+1. For this reason, forward
differences will lead to implicit methods and backward differences will lead to explicit methods.

4.3 Part 0: the interest rate r and the carbon price c are both constant

We assume that r ∈ [0, 1] (corresponding to 0% and 100%) and c ∈ R>0 are both fixed. For this
choice, we have that

∂V

∂c
=

∂V

∂r
=

∂2V

∂c2
=

∂2V

∂r2
=

∂2V

∂r∂c
= 0.

Substituting these values into the PDE leaves us with

∂V

∂t
− rV = 0.

50

For an initial value condition V (t0) = v0, this differential equation looks very similar to the test
equation (where λ = r > 0 and g ≡ 0).{

∂V
∂t = rV, t > t0,

V (t0) = v0
=⇒ V (t) = v0e

rt.

For r = 0 we find that V itself is constant. For 0 < r ≤ 1, all the time stepping methods are not
stable: since ∆t > 0 and r ∈ (0, 1), we have

• Forward Euler: Q (r∆t) = 1 + r∆t > 1,

• Backward Euler: Q (r∆t) = 1
1−r∆t > 1, and

• Crank-Nicolson: Q (r∆t) =
1+ 1

2 r∆t

1− 1
2 r∆t

> 1.

Of course, this is not a problem, since we have already found the analytical solution of the system.

Because of the rV -term in (24), together with the fact that r > 0, it might be tempting to conclude
that no numerical scheme will be stable. This is not necessarily true. Take for example the Black-
Scholes equation, where a rV -term also occurs. For this PDE, there are stable numerical schemes
available. The interested reader is invited to consult [43].

4.4 Part 1: only the carbon price c is constant

A discretization of the domain on which we want to solve the PDE will lead to the grid illustrated
in Figure 21.

t = T

∆t

∆t

∆t

∆t

t = 0

rmin ∆r ∆r rmax

Figure 21: Discrization for the case where c is considered constant.

For this choice, we have that

∂V

∂c
=

∂2V

∂c2
=

∂2V

∂r∂c
= 0.

51

This results in the following PDE:

∂V

∂t
+
(
α (β − r) − λrσr

√
r
) ∂V
∂r

+
1

2
σ2
rr

∂2V

∂r2
− rV = 0. (25)

The boundary conditions and the final condition are given by

• V (t, rmin) =
(
c0 −Ke−rmin(T−t)

)+
,

• V (t, rmax) =
(
c0 −Ke−rmax(T−t)

)+
,

• V (T, r) = (c0 −K)+.

For this part of the analysis, we use the notation V n
j for the nodes on the grid, where

• n is the time indicator: n
∆t=k−−−→ n + 1,

• j is the interest rate indicator: j
∆r=h−−−−→ j + 1.

The next few (sub)sections are as follows: first, we will use forward differences for the first-order
partial derivatives of (25). Then, a Von Neumann analysis is performed to obtain an expression
for ξ. Although we will solve this PDE for multiple values of r, in the derivation of the numerical
scheme, we will also consider r constant. This is necessary to perform a Von Neumann analysis
since Von Neumann only works for linear PDEs.

After this, we will do the same for the case where we have backward differences for the first-
order partial derivatives. From there, we will insert values for the parameters that occur in the
expression for ξ and list the approximations that will be used before we conclude whether or not
the numerical schemes are stable.

4.4.1 Part 1(a): constant carbon price, forward differences: derivation of the scheme

Here we use the following finite differences:

∂V

∂t
: forward difference: ∆nV

n
j = V n+1

j − V n
j ,

∂V

∂r
: forward difference: ∆jV

n
j = V n

j+1 − V n
j ,

∂2V

∂r2
: central difference: δ2V n

j = V n
j−1 − 2V n

j + V n
j+1.

If we substitute these three expressions into (25), and write

γ = α (β − r) − λrσr

√
r,

we are left with

V n+1
j − V n

j

k
+ γ

V n
j+1 − V n

j

h
+

1

2
σ2
rr

V n
j−1 − 2V n

j + V n
j+1

h2
− rV n

j = 0.

52

We will bring all the V n terms to the right-hand side and multiply with k.

V n+1
j = V n

j − γk
V n
j+1 − V n

j

h
− 1

2
σ2
rrk

V n
j−1 − 2V n

j + V n
j+1

h2
+ rkV n

j .

Now, the V n+1
j is isolated on the left-hand side. Then we collect all the V -terms, to obtain the

following numerical scheme.

V n+1
j = −σ2

rrk

2h2
V n
j−1 +

(
1 +

γk

h
+

σ2
rrk

h2
+ rk

)
V n
j −

(
γk

h
+

σ2
rrk

2h2

)
V n
j+1. (26)

4.4.2 Part 1(a): Von Neumann analysis

To perform a Von Neumann analysis, we write

V n
j = ξneiβjh,

and we will substitute this expression into (26), which leads to the following expression:

ξn+1eiβjh = −σ2
rrk

2h2
ξneiβ(j−1)h +

(
1 +

γk

h
+

σ2
rrk

h2
+ rk

)
ξneiβjh −

(
γk

h
+

σ2
rrk

2h2

)
ξneiβ(j+1)h.

We multiply both sides of the above expression with ξ−ne−iβjh to obtain

ξ = −σ2
rrk

2h2
e−iβh + 1 +

γk

h
+

σ2
rrk

h2
+ rk −

(
γk

h
+

σ2
rrk

2h2

)
eiβh.

We rearrange the terms:

ξ = 1 +
γk

h
+ rk − γk

h
eiβh − σ2

rrk

2h2

(
e−iβh − 2 + eiβh

)
.

Using (22), we can simplify ξ a bit further:

ξ = 1 +
γk

h
+ rk − γk

h
eiβh +

2σ2
rrk

h2
sin2

(
1

2
βh

)
.

4.4.3 Part 1(b): constant carbon price, backward differences: derivation of the
scheme

Here we use the following finite differences:

∂V

∂t
: backward difference: ∇nV

n
j = V n

j − V n−1
j ,

∂V

∂r
: backward difference: ∇jV

n
j = V n

j − V n
j−1,

∂2V

∂r2
: central difference: δ2V n

j = V n
j−1 − 2V n

j + V n
j+1.

If we substitute these three expressions into (25), and again write

γ = α (β − r) − λrσr

√
r,

53

we are left with

V n
j − V n−1

j

k
+ γ

V n
j − V n

j−1

h
+

1

2
σ2
rr

V n
j−1 − 2V n

j + V n
j+1

h2
− rV n

j = 0.

We increase the time index with 1 because these stencils are often given to go from the current
state, state n to the next state, state n + 1.

V n+1
j − V n

j

k
+ γ

V n+1
j − V n+1

j−1

h
+

1

2
σ2
rr

V n+1
j−1 − 2V n+1

j + V n+1
j+1

h2
− rV n+1

j = 0.

Multiplying both sides with k and bringing V n
j to the right-hand side leads to the following expres-

sion:

V n+1
j + γk

V n+1
j − V n+1

j−1

h
+

1

2
σ2
rrk

V n+1
j−1 − 2V n+1

j + V n+1
j+1

h2
− rkV n+1

j = V n
j .

For the next step, we collect all the V -terms, so we obtain a numerical scheme:(
σ2
rrk

2h2
− γk

h

)
V n+1
j−1 +

(
1 +

γk

h
− σ2

rrk

h2
− rk

)
V n+1
j +

σ2
rrk

2h2
V n+1
j+1 = V n

j . (27)

4.4.4 Part 1(b): Von Neumann analysis

To perform a Von Neumann analysis, we write

V n
j = ξneiβjh,

and we will substitute this expression into (27), which leads to the following equality:(
σ2
rrk

2h2
− γk

h

)
ξn+1eiβ(j−1)h +

(
1 +

γk

h
− σ2

rrk

h2
− rk

)
ξn+1eiβjh +

σ2
rrk

h2
ξn+1eiβ(j+1)h = ξneiβjh.

We multiply both sides of this expression with ξ−ne−iβjh:(
σ2
rrk

2h2
− γk

h

)
ξe−iβh +

(
1 +

γk

h
− σ2

rrk

h2
− rk

)
ξ +

σ2
rrk

h2
ξeiβh = 1.

All three terms on the left-hand side contain a ξ, we use this and (22) to rewrite the left-hand side:[
1 +

γk

h
− rk +

σ2
rrk

2h2

(
e−iβh − 2 + eiβh

)
− γk

h
e−iβh

]
ξ = 1,[

1 +
γk

h
− rk − 2

σ2
rrk

h2
sin2

(
1

2
βh

)
− γk

h
e−iβh

]
ξ = 1.

4.4.5 Part 1: Insert values for the parameters

Although we assume r as a variable, we take a constant value for r, denoted by r0, for this part
of the Von Neumann analysis. This value is used to determine the coefficient matrix to perform a
step backward in time. The other values that we will use to complete the analysis for both parts
1(a) and 1(b) follow the parameter calibration performed in from [29]:

54

• α = 0.91,

• β = 0.0451,

• r = r0 = 0.05,

• λr = 0.01, and

• σr = 0.179.

From here it follows that

γ = α (β − r0) − λrσr
√
r0

= 0.91 × (0.0451 − 0.05) − 0.01 × 0.179 ×
√

0.05

≈ −0.00486.

Moreover, we assume that rmin = 0 and rmax = 0.20, a valid assumption for h would be

• h = 1
100 (rmax − rmin) = 0.002.

Of course, this conclusion about stability in the next sections heavily depends on the values of these
parameters, i.e., the conclusion could change if we modify the value of some of the parameters. For
now, we will only focus on the values that are given above.

In the upcoming analysis, we will use the following approximations that hold for ‘small’ values
of x:

• sin(x) ≈ x,

• sin2(x) ≈ x2, and

• cos(x) ≈ 1 − 1
2x

2.

4.4.6 Part 1(a): constant carbon price, forward differences: determination of the
stability

As a reminder, we obtained the following expression for ξ, but we will replace r with r0:

ξ = 1 +
γk

h
+ r0k − γk

h
eiβh +

2σ2
rr0k

h2
sin2

(
1

2
βh

)
= 1 +

γk

h
+ r0k − γk

h
(cos (βh) + i sin (βh)) +

2σ2
rr0k

h2
sin2

(
1

2
βh

)
.

Using the above-described approximations for the sine and cosine terms, we can write

ξ ≈ 1 +
γk

h
+ r0k − γk

h

(
1 − 1

2
β2h2

)
− i

γkβh

h
+

2σ2
rr0k

h2

1

4
β2h2

= 1 + r0k +
1

2
γkβ2h− iγkβ +

1

2
σ2
rr0β

2k.

55

For the chosen values of r0, γ, h, and σr, we have that r0k is the dominating term in the expression
for ξ:

ξ ≈ 1 + r0k. (28)

Since r0 = 0.05 > 0 this means that

∀k > 0 : |ξ| ≈ |1 + r0k| > 1,

which implies no stability for all positive time-step sizes k.

4.4.7 Part 1(b): constant carbon price, backward differences: determination of the
stability

In the following analysis, we will again write r0 instead of r. As a reminder, we obtained the
following expression for ξ, which we will directly rewrite into a form with sine and cosine terms:[

1 +
γk

h
− r0k − 2

σ2
rr0k

h2
sin2

(
1

2
βh

)
− γk

h
e−iβh

]
ξ = 1[

1 +
γk

h
− r0k − 2

σ2
rr0k

h2
sin2

(
1

2
βh

)
− γk

h
(cos (−βh) + i sin (−βh))

]
ξ = 1[

1 +
γk

h
− r0k − 2

σ2
rr0k

h2
sin2

(
1

2
βh

)
− γk

h
(cos (βh) − i sin (βh))

]
ξ = 1.

We make use of the approximation for the sine and cosine terms.[
1 +

γk

h
− r0k − 2σ2

rr0k

h2

1

4
β2h2 − γk

h
(1 − iβh)

]
ξ = 1[

1 − r0k − 1

2
σ2
rβ

2r0k + iβγk

]
ξ = 1.

For the chosen values of r0, γ and σ2
r , we have that −r0k is the dominating term in the above

expression. Therefore, we can find an approximation for ξ.

[1 − r0k] ξ ≈ 1. (29)

For the absolute values of ξ, this means that

∀k > 0 : |ξ| =

∣∣∣∣ 1

1 − r0k

∣∣∣∣ > 1,

which implies that no matter the values of k, we don’t have stability.

56

4.5 Part 2: only the interest rate r is constant

A discretization of the domain on which we want to solve the PDE will lead to the grid illustrated
in Figure 22.

t = T

∆t

∆t

∆t

∆t

t = 0

cmin ∆c ∆c cmax

Figure 22: Discrization for the case where r is considered constant.

For this choice, we have that

∂V

∂r
=

∂2V

∂r2
=

∂2V

∂r∂c
= 0.

This results in the following PDE:

∂V

∂t
+ (µc− λcσcc)

∂V

∂c
+

1

2
σ2
cc

2 ∂
2V

∂c2
− rV = 0. (30)

The boundary conditions and the final condition are given by

• V (t, cmin) = 0,

• V (t, cmax) =
(
cmax −Ke−r0(T−t)

)+
,

• V (T, c) = (cT −K)+.

For this part of the analysis, we use the notation V n
m for the nodes on the grid, where

• n is the time indicator: n
∆t=k−−−→ n + 1,

• m is the carbon price indicator: m
∆c=s−−−→ m + 1.

The next few (sub)sections have the same structure as for Part 1: first, we will use forward differ-
ences for the first-order partial derivatives of (30). Then, a Von Neumann analysis is performed
to obtain an expression for ξ. Although we will solve this PDE for multiple values of c, in the
derivation of the numerical scheme, we will also consider c constant. This assumption is necessary

57

for performing a Von Neumann analysis.

After that, we will do the same for the case where we have backward differences for the first-
order partial derivatives. From there, we will insert values for the parameters that occur in the
expression for ξ and list the approximations that will be used before we conclude whether the
numerical schemes are stable.

4.5.1 Part 2(a): constant interest rate, forward differences: derivation of the scheme

Here we use the following finite differences:

∂V

∂t
: forward difference: ∆nV

n
m = V n+1

m − V n
m,

∂V

∂c
: forward difference: ∆mV n

m = V n
m+1 − V n

m,

∂2V

∂c2
: central difference: δ2V n

m = V n
m−1 − 2V n

m + V n
m+1.

If we substitute these three expressions into (30), and write

γ̃ = µc− λcσcc,

then we are left with

V n+1
m − V n

m

k
+ γ̃

V n
m+1 − V n

m

s
+

1

2
σ2
cc

2V
n
m−1 − 2V n

m + V n
m+1

s2
− rV n

m = 0.

We will multiply both sides of the above equality with k and bring some terms to the right-hand
side:

V n+1
m − V n

m = −γ̃k
V n
m+1 − V n

m

s
− 1

2
σ2
cc

2k
V n
m−1 − 2V n

m + V n
m+1

s2
+ rkV n

m.

Next, we will bring V n
m to the right-hand side. Then we collect all the V -terms, so that we obtain

the following numerical scheme:

V n+1
m = −σ2

cc
2k

2s2
V n
m−1 +

(
1 +

γ̃k

s
+

σ2
cc

2k

s2
+ rk

)
V n
m −

(
γ̃k

s
+

σ2
cc

2k

2s2

)
V n
m+1. (31)

4.5.2 Part 2(a): Von Neumann analysis

To perform a Von Neumann analysis, we write

V n
m = ξneiβms,

and we will substitute this expression into (31), which leads to the following expression:

ξn+1eiβms = −σ2
cc

2k

2s2
ξneiβ(m−1)s +

(
1 +

γ̃k

s
+

σ2
cc

2k

s2
+ rk

)
ξneiβms −

(
γ̃k

s
+

σ2
cc

2k

2s2

)
ξneiβ(m+1)s.

58

We multiply both sides of the above expression with ξ−ne−iβms to obtain

ξ = −σ2
cc

2k

2s2
e−iβs + 1 +

γ̃k

s
+

σ2
cc

2k

s2
+ rk −

(
γ̃k

s
+

σ2
cc

2k

2s2

)
eiβs.

= −σ2
cc

2k

s2
(
e−iβs − 2 + eiβs

)
+ 1 + rk +

γ̃k

s

(
1 − eiβs

)
= 2

σ2
cc

2k

s2
sin2

(
1

2
βs

)
+ 1 + rk +

γ̃k

s

(
1 − eiβs

)
.

In the final equality above, we used (22).

4.5.3 Part 2(b): constant interest rate, backward differences: derivation of the scheme

Here we use the following finite differences:

∂V

∂t
: backward difference: ∇nV

n
m = V n

m − V n−1
j ,

∂V

∂c
: backward difference: ∇mV n

m = V n
m − V n

m−1,

∂2V

∂c2
: central difference: δ2V n

m = V n
m−1 − 2V n

m + V n
m+1.

If we substitute these three expressions into (30), and again write

γ̃ = µc− λcσcc,

we are left with

V n
m − V n−1

m

k
+ γ̃

V n
m − V n

m−1

s
+

1

2
σ2
cc

2V
n
m−1 − 2V n

m + V n
m+1

s2
− rV n

m = 0.

We increase the time index with 1.

V n+1
m − V n

m

k
+ γ̃

V n+1
m − V n+1

m−1

s
+

1

2
σ2
cc

2V
n+1
m−1 − 2V n+1

m + V n+1
m+1

s2
− rV n+1

m = 0.

Multiplying both sides with k and bringing V n
m to the right-hand side leads to the following expres-

sion:

V n+1
m + γ̃k

V n+1
m − V n+1

m−1

s
+

1

2
σ2
cc

2k
V n+1
m−1 − 2V n+1

m + V n+1
m+1

s2
− rkV n+1

m = V n
m.

For the next step, we collect all the V -terms to obtain a numerical scheme:(
σ2
cc

2k

2s2
− γ̃k

s

)
V n+1
m−1 +

(
1 +

γ̃k

s
− σ2

cc
2k

s2
− rk

)
V n+1
m +

σ2
cc

2k

2s2
V n+1
m+1 = V n

m. (32)

59

4.5.4 Part 2(b): Von Neumann analysis

To perform a Von Neumann analysis, we write

V n
m = ξneiβms,

and we will substitute this expression into (32), which leads to the following expression:(
σ2
cc

2k

2s2
− γ̃k

s

)
ξn+1eiβ(m−1)s +

(
1 +

γ̃k

s
− σ2

cc
2k

s2
− rk

)
ξn+1eiβms

+
σ2
cc

2k

2s2
ξn+1eiβ(m+1)s = ξneiβms.

We multiply both sides of the above expression with ξ−ne−iβms to obtain(
σ2
cc

2k

2s2
− γ̃k

s

)
ξe−iβs +

(
1 +

γ̃k

s
− σ2

cc
2k

s2
− rk

)
ξ +

σ2
cc

2k

2s2
ξeiβs = 1.

All three terms on the left-hand side contain a ξ, we use this together with (22) to rewrite the
left-hand side: [

1 +
γ̃k

s
− rk +

σ2
cc

2k

2s2
(
e−iβs − 2 + eiβs

)
− γ̃k

s
e−iβs

]
ξ = 1,[

1 +
γ̃k

s
− rk − 2

σ2
cc

2k

s2
sin2

(
1

2
βs

)
− γ̃k

s
e−iβs

]
ξ = 1.

4.5.5 Part 2: Insert values for the parameters

In [29], a table of values for some parameters is provided. We can use this table to continue the
analysis for both parts 2(a) and 2(b).

• µ = 0.058,

• r = r0 = 0.05,

• λc = 0.2, and

• σc = 0.832.

Although we assume c as a variable, we take a constant value for c, denoted by c0, for this part
of the Von Neumann analysis. This value is used to determine the coefficient matrix to perform a
step backward in time. We assume that cmin = 20 and cmax = 120, we assume that

• c0 = 1
2 (cmax + cmin) = 1

2 (120 + 20) = 70, and

• s = 1
100 (cmax − cmin) = 1

100 (120 − 20) = 1.

From here it follows that

γ̃ = µc0 − λcσcc0

= 0.058 × 70 − 0.2 × 0.832 × 70

≈ −7.588.

60

For Part 1, we already stated that the conclusion about stability in the next sections heavily de-
pends on the values of these parameters above. For now, we will only focus on the values above,
but keep in mind that the stability can get better or worse if some of the parameter values are
modified.

We again use the Taylor series for the sine and cosine terms in the upcoming analysis, i.e.

• sin(x) ≈ x,

• sin2(x) ≈ x2, and

• cos(x) ≈ 1 − 1
2x

2.

Note that since s = 1 ≫ 0, these approximations are not as precise as for Part 1, but it is still
enough to draw a valid conclusion about the stability.

4.5.6 Part 2(a): constant interest rate, forward differences: determination of the
stability

We follow the same steps as for Part 1, which means in particular that we will write c0 instead of
c. As a reminder, we have the following scheme when we use forward differences:

ξ = 2
σ2
cc

2k

s2
sin2

(
1

2
βs

)
+ 1 + r0k +

γ̃k

s

(
1 − eiβs

)
= 2

σ2
cc

2k

s2
sin2

(
1

2
βs

)
+ 1 + r0k +

γ̃k

s
(1 − (cos (βs) + i sin (βs))) .

For the next part of the analysis, again we use the Taylor series for the sine and cosine terms.

ξ ≈ 2̃
σ2
cc

2
0k

s2

(
1

2
βs

)2

+ 1 + rk +
γ̃k

s

(
1 − 1 +

1

2
β2s2 − iβs

)
=

1

2
σ2
cc

2
0β

2k + 1 + r0k +
1

2
γ̃kβ2s− γ̃kβi.

If we look at the real part of this expression, denoted by ℜ (ξ), and keep the values of the parameter
in mind, we make the following observation:

ℜ (ξ) =
1

2
σ2
cc

2
0β

2k + 1 + r0k +
1

2
γ̃kβ2s = 1 + r0k︸ ︷︷ ︸

>1

+
1

2
β2k

(
σ2
cc

2
0 + γ̃s

)︸ ︷︷ ︸
≫0

(33)

This leads to the conclusion that ℜ (ξ) > 1, and this implies that for all k > 0, we have that |ξ| > 1,
which implies that we do not have stability.

4.5.7 Part 2(b): constant interest rate, backward differences: determination of the
stability [

1 +
γ̃k

s
− rk − 2

σ2
cc

2
0k

s2
sin2

(
1

2
βs

)
− γ̃k

s
e−iβs

]
ξ = 1[

1 +
γ̃k

s
− rk − 2

σ2
cc

2
0k

s2
sin2

(
1

2
βs

)
− γ̃k

s
(cos (βs) + i sin (−βs))

]
ξ = 1.

61

Using the Taylor series for the sine and cosine terms, we obtain an expression that can be simplified.[
1 +

γ̃k

s
− rk − 2

σ2
cc

2
0k

s2

(
1

2
βs

)2

− γ̃k

s

(
1 − 1

2
β2s2 − iβs

)]
ξ = 1[

1 +
γ̃k

s
− rk − 2

σ2
cc

2
0k

s2

(
1

2
βs

)2

− γ̃k

s
+

1

2
γ̃kβ2s + γ̃kβi

]
ξ = 1[

1 − rk − 1

2
σ2
cc

2
0β

2k +
1

2
γ̃kβ2s + γ̃kβi

]
ξ = 1.

If we insert the values, we find that the dominating term in the above expression is the 1
2σ

2
cc

2
0β

2k-
term. Therefore, we find that

|ξ| ≈
∣∣∣∣ 1

− 1
2σ

2
cc

2
0β

2k

∣∣∣∣ =
1

1
2σ

2
cc

2
0β

2k
. (34)

We have stability if and only if

−1 ≤ 1
1
2σ

2
cc

2
0β

2k
≤ 1.

The left inequality is automatically satisfied since both the numerator and denominator are positive
for all k > 0. The right inequality gives us a lower bound for k:

k ≥ 1
1
2σ

2
cc

2
0β

2
=

2

σ2
cc

2
0β

2
=

2

0.8322 · 702 · π2
≈ 0.00006.

4.6 Part 3: non-constant r and c

To simplify the derivation of the numerical scheme, we assume that the correlation coefficient
between the interest rate and the carbon price is equal to zero, i.e., ρ = 0. Using the same
notations again

γ = α (β − r0) − λrσr
√
r0, and

γ̃ = µc0 − λcσcc0,

then, the green bond PDE (24) is reduced to:

∂V

∂t
+ γ

∂V

∂r
+ γ̃

∂V

∂c
+

1

2
σ2
cc

2
0

∂2V

∂c2
+

1

2
σ2
rr0

∂2V

∂r2
− r0V = 0. (35)

The boundary conditions remain the same as for the case where ρ ̸= 0. For the discretization,
we will use backward differences and central differences. Since we have a final condition, we can
compute the ’previous state’ directly, i.e., without solving a system of equations. Therefore, this

62

results in an explicit method. To give an overview of the finite differences:

∂V

∂t
: backward difference: ∇nV

n
j,m = V n

j,m − V n−1
j,m ,

∂V

∂r
: backward difference: ∇jV

n
j,m = V n

j,m − V n
j−1.m,

∂V

∂c
: backward difference: ∇mV n

j,m = V n
j,m − V n

j,m−1,

∂2V

∂c2
: central difference: δ2mV n

j,m = V n
j,m−1 − 2V n

j,m + V n
j,m+1,

∂2V

∂r2
: central difference: δ2jV

n
j,m = V n

j−1,m − 2V n
j,m + V n

j+1,m.

Now we can discretize (35), increasing the time index again with 1.

V n+1
j,m − V n

j,m

k
+ γ

V n+1
j,m − V n+1

j−1.m

h
+ γ̃

V n+1
j,m − V n+1

j,m−1

s
+

1

2
σ2
cc

2
0

V n+1
j,m−1 − 2V n+1

j,m + V n+1
j,m+1

s2

+
1

2
σ2
rr0

V n+1
j−1,m − 2V n+1

j,m + V n+1
j+1,m

h2
− r0V

n+1
j,m = 0.

We multiply both sides with k. Moreover, we take V n
j,m to the right-hand side.

V n+1
j,m + γk

V n+1
j,m − V n+1

j−1.m

h
+ γ̃k

V n+1
j,m − V n+1

j,m−1

s
+

1

2
σ2
cc

2
0k

V n+1
j,m−1 − 2V n+1

j,m + V n+1
j,m+1

s2

+
1

2
σ2
rr0k

V n+1
j−1,m − 2V n+1

j,m + V n+1
j+1,m

h2
− r0V

n+1
j,m = V n

j,m.

Now we collect the terms to obtain the numerical scheme:(
1 +

γ̃k

s
+

γk

h
− σ2

cc
2
0k

s2
− σ2

rr0k

h2
− r0k

)
V n+1
j,m +

(
σ2
cc

2
0k

2s2
− γ̃k

s

)
V n+1
j,m−1

+

(
σ2
rr0k

2h2
− γk

h

)
V n+1
j−1,m +

σ2
cc

2
0k

2s2
V n+1
j,m+1 +

σ2
rr0k

2h2
V n+1
j+1,m = V n

j,m. (36)

Performing a Von Neumann analysis will not be necessary. When we choose backward differences
for the first-order partial derivatives, we have already seen that the numerical scheme for a constant
value of c (Chapter 4.5.6) is not stable. Moving from a 2-dimensional to a 3-dimensional scheme
will only have a negative contribution to the stability because of the extra terms.

63

5 Numerical Results

This chapter will provide numerical evidence for the claims in Chapter 4. The Python code for
Parts 1(a,b), 2(a,b) and 3 can be found in Appendix B. The pieces of code for the implicit methods
contain the iterative solution methods and a direct solution method, namely, the inverse matrix.
Note that the numerical schemes for the implicit methods, (26) and (31), are not symmetric. There-
fore, the corresponding matrix is not SPD, so the Conjugate Gradient method cannot be used to
solve this system of linear equations. Only the Bi-CGSTAB and the GMRES method can be used.
No matter the chosen solution method, all the figures in this chapter will look the same, i.e., will
lead to approximately the same green bond values, also called coupon values. For this reason, we
did not consider using a preconditioner matrix M for the iterative solution methods. The interested
reader who wants to compare the Bi-CGSTAB and the GMRES method is invited to consult [29].

A lot of different parameters appear in the model. We use the analysis performed in [29] to find
appropriate values for all these parameters. Unless specified otherwise, the values of the parameters
are as given in Table 1.

Parameter Value Parameter Value
α 0.91 c0 70
β 0.0451 K 50
µ 0.058 λr 0.01

tmin 0 λc 0.2
tmax = T 1 σr 0.179

rmin 0 σc 0.832
rmax 0.20 ∆t = k 0.001
r0 0.05 ∆r = h 0.01
cmin 20 ∆c = s 1
cmax 120 ρ 0

Table 1: Values for the parameters in the green bond PDE (24).

5.1 Part 1: constant carbon price

As a reminder, for Part 1 we consider the carbon price c to be constant. Therefore, all the partial
derivatives with respect to c vanish. For this assumption, the green bond PDE (24) can be written
as

∂V

∂t
+ (α (β − r0) − λrσr

√
r0)

∂V

∂r
+

1

2
σ2
rr0

∂2V

∂r2
− r0V = 0.

Substituting the values of the parameters in the PDE leaves us with

∂V

∂t
− 0.0049

∂V

∂r
+ 0.0008

∂2V

∂r2
− 0.05V = 0.

The boundary conditions and the final condition are given by

64

• V (t, rmin) =
(
c0 −Ke−rmin(T−t)

)+
= (70 − 50)

+
= 20,

• V (t, rmax) =
(
c0 −Ke−rmax(T−t)

)+
= 70 − 50e−0.20(1−t),

• V (T, r) = (c0 −K)+ = (70 − 50)
+

= 20.

The Python code for both Part 1(a) and 1(b) provides a plot of the coupon value and a matrix with
the coupon values. This matrix should be read as follows: the first row of values corresponds to the
case where t = T . The second row corresponds to t = T − ∆t, up till the last row, corresponding
to t = 0. Similarly, the first column corresponds to the case where r = rmin. The second column
corresponds to r = rmin + ∆r, up till the last column, corresponding to the case where r = rmax.

5.1.1 Part 1(a): constant carbon price, forward differences

In Chapter 4.4.2, we performed a Von Neumann analysis and in Chapter 4.4.6, we concluded that
the numerical scheme is not stable, since equation (28) gave us an approximation of the absolute
value of ξ that was strictly greater than 1:

∀k ≥ 0 : |ξ| = |1 + r0k| > 1.

Thus: no matter the value of the time step size ∆t = k, the scheme will not be (absolutely) stable.
Although the numerical scheme is not stable, the plots of the coupon value are what we expect
them to look like, i.e., the plots provide reasonable coupon values. This holds for different values
of ∆t, ranging from 0.1 to 0.0001, see Figure 23.

65

(a) ∆t = 0.1 (b) ∆t = 0.01

(c) ∆t = 0.001 (d) ∆t = 0.0001

Figure 23: Part 1(a): constant carbon price, forward differences:
Coupon values for different values of ∆t.

One reason for this phenomenon might be the fact that although we have that |ξ| > 1, the amplifi-
cation factor is not much larger than 1. Since r0 = 0.05, the values for |ξ| for multiple values of ∆t
are displayed in Table 2.

66

∆t = k ξ = 1 + r0k
0.1 1.005
0.01 1.0005
0.001 1.00005
0.0001 1.000005

Table 2: Part 1(a): constant carbon price, forward differences:
values for the amplification factor ξ for r0 = 0.05

Another reason that the figures look so well could be the small coefficients of the partial derivatives
(first- and second-order) with respect to r. Due to this, the error might not grow fast enough to
observe real instability.

5.1.2 Part 1(b): constant carbon price, backward differences

In Chapter 4.4.7, we concluded that the numerical scheme is not stable:

∀k > 0 : |ξ| =

∣∣∣∣ 1

1 − r0k

∣∣∣∣ > 1.

Therefore, we must choose a small value of ∆t, i.e., a large number of steps in the time direction, to
obtain reasonable graphs. This is illustrated in Figure 24, where the plots become more and more
accurate the smaller ∆t gets.

67

(a) ∆t = 0.1 (b) ∆t = 0.01

(c) ∆t = 0.001 (d) ∆t = 0.0001

Figure 24: Part 1(b): constant carbon price, backward differences:
Coupon value for different values of ∆t.

Unlike Part 1(a), choosing the time step size equal to 0.1 or 0.01 is not small enough to result in
feasible coupon values. Only smaller values will work, see Figure 24. The explanation for the bad
quality of Figures 24a and 24b cannot be found in the amplification factor ξ, since this is, like Part
1(a), close to 1 for ∆t ∈ {0.1, 0.01, 0.001, 0.0001}, see Table 3 below.

68

∆t = k ξ = 1
1−r0k

0.1 1.005025
0.01 1.000500
0.001 1.000050
0.0001 1.000005

Table 3: Part 1(b): constant carbon price, backward differences:
values for the amplification factor ξ for r0 = 0.05

The unrealistic coupon values in Figure 24a and Figure 24b could be caused by the boundary con-
ditions. The Von Neumann analysis does not consider the boundary conditions, so the effect of
the boundary conditions on the stability is not known. It might be the case that the boundary
conditions cause more instability to explicit methods, such as Part 1(b), than implicit methods,
such as Part 1(a).

It is worthwhile to mention that we observe the same behavior for different values of the car-
bon price (c0) and the strike price (K), as long as the ratio between these two parameters stays
about the same. This is because c0 and K occur together in the boundary conditions and the final
condition.

5.2 Part 2: constant interest rate

As a reminder, for Part 2 we consider the interest rate r to be constant. Therefore, all the partial
derivatives with respect to r vanish. For this assumption, the green bond PDE (24) can be written
as

∂V

∂t
+ (µc0 − λcσcc0)

∂V

∂c
+

1

2
σ2
cc

2
0

∂2V

∂c2
− r0V = 0.

Substituting the values in the PDE leaves us with

∂V

∂t
− 7.588

∂V

∂c
+ 1695.9

∂2V

∂c2
− 0.05V = 0.

The boundary conditions and the final condition are given by

• V (t, cmin) = 0,

• V (t, cmax) =
(
cmax −Ke−r0(T−t)

)+
= 120 − 50e−0.05(1−t),

• V (T, c) = (cT −K)
+

= (cT − 50)
+

.

As for Part 1, the Python code for both Part 2(a) and 2(b) provides a plot of the coupon value
and a matrix with the coupon values. This matrix should be read as follows: the first row of values
corresponds to the case where t = T . The second row corresponds to t = T − ∆t, up till the last
row, corresponding to t = 0. Instead of the interest rate r, the first column for the discretization for
Part 2 corresponds to the case where c = cmin. The second column corresponds to c = cmin + ∆c,
up till the last column, corresponding to the case where c = cmax.

69

For both Part 2(a) and 2(b), we were forced to change the value of ∆c from 1 to 10. A value
of ∆c smaller than 10 will lead to computational errors.

5.2.1 Part 2(a): constant interest rate, forward differences

As for Part 1(a) and 1(b), we conclude that the numerical scheme in Part 2(a) was not stable. The
main difference that we observe here is that no matter how small we choose ∆t, we do not obtain
pictures that accurately describe the coupon value.

(a) ∆t = 0.01 (b) ∆t = 0.0001

Figure 25: Part 2(a): constant interest rate, forward differences:
Coupon value for different values of ∆t, where c0 = 70 and K = 50.

To find a reason for this behavior, we first look at the amplification factor ξ. As a reminder, in
Chapter 4.5.6, we found that

ℜ (ξ) = 1 + r0k︸ ︷︷ ︸
>1

+
1

2
β2k

(
σ2
cc

2
0 + γ̃s

)︸ ︷︷ ︸
>0

=⇒ ℜ (ξ) > 1,

where the value of β was equal to π. This led to the conclusion that |ξ| > 1. Whereas the value of
ξ was close to 1 for Part 1(a) and 1(b), now we have that

ℜ (ξ) = 1 + r0k +
1

2
β2k

(
σ2
cc

2
0 + γ̃s

)
≈

{
164.34, if k = 0.01,

2.64, if k = 0.0001.

In both cases, we observe that the (real part of the) amplification factor is much bigger than 1.
This explains the shape of the graphs in Figure 25.

70

Another explanation for the badly shaped graphs in Figure 25 can be found when we examine
the PDE, which, as a reminder, is given by

∂V

∂t
+ (µc− λcσcc)

∂V

∂c
+

1

2
σ2
cc

2 ∂
2V

∂c2
− rV = 0.

In Chapter 4.5.5, after writing down the first steps of the Von Neumann analysis, we inserted values
for the parameters. This led to the following coefficients for the partial derivatives with respect to
c:

• γ̃ := µc− λcσcc ≈ −7.588, and

• η := 1
2σ

2
cc

2 ≈ 1695.9.

It turns out that the approximations for the coupon values become more accurate if the ratio |γ̃/η|
is smaller. We can do this by choosing a smaller value for the initial carbon price c0. The boundary
conditions must also be considered, and since c0 and the strike price K occur together in these
boundary conditions, K should also be modified. By choosing smaller values for c0 and K, the
amplification factor ξ takes values closer to 1. As a result, the stability of the numerical scheme
increases. Recall that the formula for the amplification factor for this numerical scheme is given by

ξ =
1

2
σ2
cc

2
0β

2k + 1 + r0k +
1

2
γ̃kβ2s− γ̃kβi.

In Table 4, we have computed the ratio |γ̃/η| and the absolute value of the amplification factor |ξ|
for multiple values of c0 and K, where the value of ∆t is equal to 0.0001.

c0 K γ̃ η |η/γ̃| |ξ|
70 50 -7.588 1695.9 223.5 2.64
50 35 -5.42 865.28 159.6 1.83
20 14 -2.17 138.44 63.9 1.13
7 5 -0.76 16.96 22.4 1.01

Table 4: Coefficients for the green bond PDE, (30), where r is constant.

For each of the choices for c0 and K, a plot of the coupon value is made and can be seen in Figure
26 below. For each plot, we have that ∆t = 0.0001. Observe that the quality graphs of the coupon
values increase when the amplification factor gets closer to 1.

71

(a) c0 = 70, K = 50, |ξ| = 2.64 (b) c0 = 50, K = 35, |ξ| = 1.83

(c) c0 = 20, K = 14, |ξ| = 1.13 (d) c0 = 7, K = 5, |ξ| = 1.01

Figure 26: Part 2(a): constant interest rate, forward difference:
Coupon value for different initial values of c0 and K.

5.2.2 Part 2(b): constant interest rate, backward differences

In Chapter 4.5.7, the Von Neumann analysis allowed us to conclude that the numerical scheme is
stable if ∆t = k ≥ 0.00006. After numerical simulations, we observed that this conclusion is not
completely valid. In Figure 27, we see that the graph of the coupon value is not nicely shaped for
∆t = 0.1. For ∆t values of 0.01 and 0.001, we don’t have to modify the values of c0 and K to
obtain reasonable plots for the coupon values, unlike Part 2(a).

72

(a) ∆t = 0.1 (b) ∆t = 0.01 (c) ∆t = 0.001

Figure 27: Part 2(b): constant interest rate, backward differences:
Coupon value for different values of ∆t.

In Figure 27, we see that for ∆t = 0.1, we do not end up with reasonable coupon values, although
0.1 ≥ 0.00006. This is not the only observation that does not correspond with the conclusion drawn
after the Von Neumann analysis. In Figure 28, we choose a ∆t value smaller than 0.00006, and by
the Von Neumann analysis, we should not have stability. The Figure on the other hand is nicely
shaped. This can caused by the change of ∆c from 1 to 10. Therefore, the approximations used
in the Von Neumann analysis in Chapter 4.5.7 become less accurate and it could very well be the
case we do have stability.

Figure 28: Part 2(b): constant interest rate, backward differences:
∆t = 0.00001

An explanation for the fact that the analytical results do not match the numerical results can
be found in the computation of the amplification factor in Chapter 4.5.6. Here we used Taylor
approximations for the sine and cosine terms. Normally, approximations for cos(x) and sin(x) are

73

only accurate for small x. In our analysis, ∆c occurred inside the sine and cosine terms. For the
numerical part of this thesis, this parameter is modified from 1 to 10. Therefore, the approximations
become less accurate.

5.3 Part 3: neither interest rate nor carbon price is constant

We assume that both r and c are not constant for this part of the analysis. Unlike Part 1 and 2,
no partial derivatives vanish and we are left with a three-dimensional PDE, which, as a reminder,
is given below.

∂V

∂t
+ (µc− λcσcc)

∂V

∂c
+
(
α(β − r) − λrσr

√
r
) ∂V
∂r

+
1

2

(
σ2
cc

2 ∂
2V

∂c2
+ σ2

rr
∂2V

∂r2
+ 2cρσcσr

√
r
∂2V

∂r∂c

)
− rV = 0.

In the parameter calibration performed in [29], it followed that ρ = 0.2. To make life a little bit
more easy, we assumed that ρ = 0. Using this value for ρ, the cross partial derivative drops out of
the PDE. Moreover, we have written

• γ = α (β − r0) − λrσr
√
r0, and

• γ̃ = µc0 − λcσcc0.

Using these notations, we are left with a PDE given by

∂V

∂t
+ γ

∂V

∂r
+ γ̃

∂V

∂c
+

1

2
σ2
cc

2
0

∂2V

∂c2
+

1

2
σ2
rr0

∂2V

∂r2
− r0V = 0.

Substituting the value of the parameters in this PDE leads to the following expression:

∂V

∂t
− 0.0049

∂V

∂r
− 7.588

∂V

∂c
+ 1695.9

∂2V

∂c2
+ +0.0008

∂2V

∂r2
− 0.05V = 0.

For these parameter values, the boundary conditions for the green bond PDE (24) are as follows:

V (T, r, c) = (cT −K)
+

= (cT − 50)
+
,

V (t, r, cmin) = 0,

V (t, r, cmax) =
(
cmax −Ke−r(T−t)

)+
= 120 − 50e−r(1−t),

V (t, rmin, c) = h1(t, c),

V (t, rmax, c) = h2(t, c),

where h1 can be obtained by solving the PDE below
∂V
∂t − 7.588∂V

∂c + 1695.9∂2V
∂c2 = 0,

V (t, rmin, cmax) = 0,

V (t, rmin, cmax) =
(
cmax −Ke−rmin(T−t)

)+
= (120 − 50)

+
= 70,

V = (T, rmin, c) = (cT −K)
+

= (cT − 50)
+
.

74

Similarly, h2 can be found by solving the following PDE:
∂V
∂t − 7.588∂V

∂c + 1695.9∂2V
∂c2 − 0.20V = 0,

V (t, rmax, cmin) = 0,

V (t, rmax, cmax) =
(
cmax −Ke−rmax(T−t)

)+
= 120 − 50e−0.20(1−t),

V = (T, rmax, c) = (cT −K)
+

= (cT − 50)
+
.

In the Python code, we observed that we can choose at most 50 grid points in the interest rate and
carbon price direction, but for this choice, the code’s running time is long. In Figures 29 and 30
below, we have that ∆r = 0.1 and ∆c = 10. Thus, we make 10 steps both in the interest rate and
carbon price direction.

In Figure 29, the coupon values are given for three different interest rates: r = 0.02, r = 0.08,
and r = 0.18.

(a) r = 0.02 (b) r = 0.08 (c) r = 0.18

Figure 29: Part 3: Coupon value for different values of r.

The value of the interest rate does not influence the shape of the plot of the coupon value. A reason
for this can be found by closely examining the coefficients for the partial derivatives with respect
to r in (35).

• ∂V
∂r : α (β − r0) − λrσr

√
r0,

• ∂2V
∂r2 : 1

2σ
2
rr0.

In Table 5, these coefficients are computed for the three different values of r0 in Figure 29.

α (β − r0) − λrσr
√
r0

1
2σ

2
rr0

r0 = 0.02 0.0226 3.2041 · 10−4

r0 = 0.08 −0.0323 1.2816 · 10−3

r0 = 0.18 −0.1235 2.8837 · 10−3

Table 5: Coefficients for partial derivatives w.r.t. r in (35).

75

The values of the coefficients are not heavily changed when r0 changes. Therefore, the PDE stays
almost the same and it is not surprising that the three plots in Figure 29 look very similar.

On the other hand, changing the value of the carbon price leads to different graphs for the coupon
value. This is shown in Figure 30, where the carbon price c0 is respectively 40, 80, and 120.

(a) c = 40 (b) c = 80 (c) c = 120

Figure 30: Part 3: Coupon value for different values of c.

To find a reason why the plots are so different, we again look at (35). In particular, we look at the
coefficients of the partial derivatives w.r.t. the carbon price.

• ∂V
∂c : µc0 − λcσcc0,

• ∂2V
∂c2 : 1

2σ
2
cc

2
0.

In Table 6, these coefficients are computed for the three different values of r0 in Figure 30.

µc0 − λcσcc0
1
2σ

2
cc

2
0

c0 = 40 −4.336 665.6
c0 = 80 −8.672 2666.2
c0 = 120 −13.008 5990.4

Table 6: Coefficients for partial derivatives w.r.t. c in (35).

First of all, note that the values in Table 6 are much larger than the coefficients in Table 5. Mod-
ifying c0 causes the PDE to change more than modifying r0. Moreover, Table 6 shows that the
values of the coefficients are heavily changed if c0 is modified. Therefore, the PDE is changed and
this leads to a different solution.

Without performing a Von Neumann analysis, we concluded in Chapter 4.6 that the numerical
scheme is unstable, i.e., |ξ| > 1. Still, the coupon value graphs in Figure 29 and 30 look realistic,
in the sense that we do not obtain Coupon values of order 1029, such as in Figure 26a. This might

76

be an indication that the amplification factor is not much bigger than 1. It can also be the case
that the boundary conditions have a positive influence on the stability. This is something that a
Von Neumann analysis does not take into account.

77

6 Conclusion and Discussion

6.1 Conclusion

The main aim of this master’s thesis was to determine the stability of numerical schemes that are
used for pricing green bonds. To this end, we consulted the master’s thesis of Juriaan Rutten [29]
to obtain a green bond model including a partial differential equation.

Before we were in the position to say something about stability, we started in Chapter 1 by pre-
senting basic option valuation theory. Moreover, some mathematical preliminary definitions and
theorems that can be used to derive a green bond model were shown. Then we shifted from pure
mathematics to the subject of sustainable finance, which is very important in the battle against
climate change. In Chapter 1.4, the notion of a green bond was introduced.

In Chapter 2, we focused again on mathematics. In particular, some basic notions for solving
a PDE numerically were introduced. We dived into the theory of the finite difference method and
time-stepping methods. Using the heat equation as an example, we learned how to derive a numer-
ical scheme. We used both the inverse matrix and iterative solution methods for implicit schemes
to make a step forward in time.

After Chapter 2, we gained enough knowledge to solve a PDE numerically, but this was not the
goal of this master’s project. The goal was to perform a stability analysis on a numerical scheme.
Theory about this topic was introduced in Chapter 3, such as the amplification factor and Von
Neumann stability. From here, we introduced the green bond model. After deriving multiple nu-
merical schemes for this PDE in Chapter 4, we concluded that most schemes are unstable.

In Chapter 5, the numerical schemes were implemented in Python to check if the numerical re-
sults were correct. We concluded that some measurements can be taken to obtain reasonable
results without having stability, such as choosing a small value of ∆t and changing the values of
some parameters to reduce the amplification factor.

6.2 Discussion

We already mentioned that the green bond market, and green bonds in general, is a relatively
new subject. Therefore, there is much to discover. This master’s thesis presents opportunities for
further research. For instance, in Chapter 4.4, we assumed the carbon price to be constant, unlike
the interest rate r. That is, we solved the PDE for multiple values of r. However, in the derivation
of the numerical schemes, we chose r to be constant as well. This was done to make sure that
we could perform a Von Neumann analysis. It might be interesting to check to what degree the
stability gets better or worse if the value r is allowed to change. The same goes for the carbon price
c in Chapter 4.5.

For this master’s project, we derived multiple numerical schemes using forward and backward
differences. We did not consider the two methods combined, i.e., the Crank-Nicolson method.
Further research is required to conclude whether or not this method can be used to obtain stable
numerical schemes. Moreover, in Chapter 5, we changed the value of some of the parameters, for
example, ∆c in Chapter 5.2. This was done to avoid computation errors, but this should be taken

78

into account in the Von Neumann analysis in Chapter 4.5.5. The sine and cosine approximations
become less accurate if we increase the value of ∆c and future research could clarify to what degree
the stability is changed.

Furthermore, in Chapter 4.6, we discretized a three-dimensional PDE, but the correlation coef-

ficient ρ was assumed to be zero. This assumption caused the ∂2V
∂c∂r -term to vanish. In real life, this

does not have to be the case. Further study could show how a nonzero ρ could influence the stability.

Finally, for this master project, we performed multiple Von Neumann analyses. This type of
stability analysis does not take the boundary conditions or a final condition into account. It re-
mains unclear what effect these conditions have on the stability of a numerical scheme. It is very
worthwhile to dive into this topic.

79

References

[1] Desmond J Higham. An introduction to financial option valuation: mathematics, stochastics
and computation, volume 13. Cambridge University Press, 2004.

[2] Cornelis W Oosterlee and Lech A Grzelak. Mathematical modeling and computation in finance:
with exercises and Python and MATLAB computer codes. World Scientific, 2019.

[3] Hans Föllmer and Alexander Schied. Stochastic finance: an introduction in discrete time.
Walter de Gruyter, 2011.

[4] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of
political economy, 81(3):637–654, 1973.

[5] Md Nurul Anwar and Laek Sazzad Andallah. A study on numerical solution of black-scholes
model. Journal of Mathematical Finance, 8(2):372–381, 2018.

[6] Robert C Merton. Theory of rational option pricing. The Bell Journal of economics and
management science, pages 141–183, 1973.

[7] Martin Bohner and Yao Zheng. On analytical solutions of the black–scholes equation. Applied
Mathematics Letters, 22(3):309–313, 2009.

[8] The advantages and disadvantages of the black-scholes model. https://www.

smartcapitalmind.com/what-are-the-advantages-of-the-black-scholes-model.htm,
note = Accessed: 2010-09-30.

[9] Grigorios A Pavliotis. Stochastic processes and applications. Springer, 2016.

[10] Peter Mörters and Yuval Peres. Brownian motion, volume 30. Cambridge University Press,
2010.

[11] AG Malliaris. Wiener process. Time Series and Statistics, pages 316–318, 1990.

[12] Arthur Genthon. The concept of velocity in the history of brownian motion: From physics to
mathematics and back. The European Physical Journal H, 45(1):49–105, 2020.

[13] PG Saffman and M Delbrück. Brownian motion in biological membranes. Proceedings of the
National Academy of Sciences, 72(8):3111–3113, 1975.

[14] HC Brinkman. Brownian motion in a field of force and the diffusion theory of chemical reac-
tions. Physica, 22(1-5):29–34, 1956.

[15] Frederik J Belinfante. On the mechanism of brownian motion in liquids. American Journal of
Physics, 17(8):468–476, 1949.

[16] Steven E Shreve et al. Stochastic calculus for finance II: Continuous-time models, volume 11.
Springer, 2004.

[17] Wolfgang Arendt and Mahamadi Warma. Dirichlet and neumann boundary conditions: What
is in between? Nonlinear Evolution Equations and Related Topics: Dedicated to Philippe
Bénilan, pages 119–135, 2004.

80

https://www.smartcapitalmind.com/what-are-the-advantages-of-the-black-scholes-model.htm
https://www.smartcapitalmind.com/what-are-the-advantages-of-the-black-scholes-model.htm

[18] Brandon Washburn and DİK Mehmet. Derivation of black-scholes equation using itô’s lemma.
Proceedings of International Mathematical Sciences, 3(1):38–49, 2021.

[19] Fabrice Douglas Rouah. Four derivations of the black scholes pde. Mathematical finance notes.
http://www. frouah. com/pages/finmath. html. Accessed July, 2020.

[20] Jeffrey D Sachs, Wing Thye Woo, Naoyuki Yoshino, and Farhad Taghizadeh-Hesary. Why is
green finance important? 2019.

[21] Umair Saeed Bhutta, Adeel Tariq, Muhammad Farrukh, Ali Raza, and Muhammad Khalid
Iqbal. Green bonds for sustainable development: Review of literature on development and
impact of green bonds. Technological Forecasting and Social Change, 175:121378, 2022.

[22] Yves Steinebach, Xavier Fernández-i Maŕın, and Christian Aschenbrenner. Who puts a price
on carbon, why and how? a global empirical analysis of carbon pricing policies. Climate Policy,
21(3):277–289, 2021.

[23] Gianfranco Gianfrate and Mattia Peri. The green advantage: Exploring the convenience of
issuing green bonds. Journal of cleaner production, 219:127–135, 2019.

[24] Aaron Maltais and Björn Nykvist. Understanding the role of green bonds in advancing sus-
tainability. Journal of Sustainable Finance & Investment, pages 1–20, 2020.

[25] SPINACI STEFANO. European green bonds: A standard for europe, open to the world. 2022.

[26] Allegra Pietsch and Dilyara Salakhova. Pricing of green bonds: drivers and dynamics of the
greenium. 2022.

[27] European green bond standard (eugbs). https://eur-lex.europa.eu/legal-content/EN/

TXT/?uri=celex:32023R2631, note = published 22 November 2023.

[28] Andreas Karpf and Antoine Mandel. Does it pay to be green? Available at SSRN 2923484,
2017.

[29] Jurriaan Rutten. Green bond valuation: A numerical mathematics perspective: Assessing the
influence of environmental factors. 2024.

[30] Martin Braun and Martin Golubitsky. Differential equations and their applications, volume 2.
Springer, 1983.

[31] C Vuik and DJP Lahaye. Scientific computing (wi4201). Lecture notes for wi4201, 2012.

[32] Darae Jeong, Minhyun Yoo, and Junseok Kim. Finite difference method for the black–scholes
equation without boundary conditions. Computational Economics, 51:961–972, 2018.

[33] Cornelis Vuik, FJ Vermolen, MB van Gijzen, and Thea Vuik. Numerical methods for ordinary
differential equations. 2023.

[34] Leonhard Euler. Institutionum calculi integralis volumen tertium. 1770.

[35] John Crank and Phyllis Nicolson. A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type. In Mathematical proceedings of the
Cambridge philosophical society, volume 43, pages 50–67. Cambridge University Press, 1947.

81

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32023R2631
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32023R2631

[36] Charles L Byrne. Applied iterative methods. AK Peters Wellesley, 2008.

[37] Magnus Rudolph Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving
linear systems, volume 49. NBS Washington, DC, 1952.

[38] Henk A Van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg for the
solution of nonsymmetric linear systems. SIAM Journal on scientific and Statistical Computing,
13(2):631–644, 1992.

[39] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing,
7(3):856–869, 1986.

[40] Christopher C Paige and Michael A Saunders. Solution of sparse indefinite systems of linear
equations. SIAM journal on numerical analysis, 12(4):617–629, 1975.

[41] Stanislaw Ulam, Harold William Kuhn, Albert William Tucker, and Claude E Shannon. John
von neumann, 1903-1957. In The Intellectual Migration: Europe and America, 1930-1960,
pages 235–269. Harvard University Press, 1969.

[42] Jules G Charney, Ragnar Fjörtoft, and J von Neumann. Numerical integration of the barotropic
vorticity equation. Tellus, 2(4):237–254, 1950.

[43] Heath Windcliff, Peter A Forsyth, and Ken R Vetzal. Analysis of the stability of the linear
boundary condition for the black-scholes equation. Journal of Computational Finance, 8:65–92,
2004.

82

A Equivalence of the Black-Scholes PDE and the heat equa-
tion

Theorem 13. The Black-Scholes partial differential equation, given by

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (37)

for V (S, t) is equivalent to the heat equation, given by

∂y

∂τ
=

∂2y

∂x2
(38)

for y(x, τ).

Proof. To do this, we proceed as follows. Write τ(t) = T − 1
2σ

2t, where T is the maturity time.
Then by the chain rule, we find that

∂V

∂t
=

∂V

∂τ

∂τ

∂t
=

∂V

∂τ
· −1

2
σ2 = −1

2
σ2 ∂V

∂τ
. (39)

Moreover, if we use the transformation S = Eex, we find that

S(x) = Eex ⇐⇒ x(S) = ln

(
1

E
S

)
= ln

(
1

E

)
+ ln (S) .

Now we are in the position to compute both the first and second-order derivative of x with respect
to S:

∂x

∂S
=

1

S
and

∂2x

∂S2
= − 1

S2
.

The next step is to derive expressions for ∂V
∂S and ∂2V

∂S2 using the above obtained results. We start

with ∂V
∂S :

∂V

∂S
=

∂V

∂x

∂x

∂S
=

1

S

∂V

∂x
, (40)

and continue with ∂2V
∂S2 , where we use both the product rule and the chain rule:

∂2V

∂S2
=

∂2x

∂S2

∂V

∂x
+

∂2V

∂x2

(
∂x

∂S

)2

= − 1

S2

∂V

∂x
+

1

S2

∂2V

∂x2
. (41)

If we substitute (39), (40), and (41) into the Black-Scholes equation (37), we obtain the following:

−1

2
σ2 ∂V

∂τ
+

1

2
σ2S2

(
− 1

S2

∂V

∂x
+

1

S2

∂2V

∂x2

)
+ rS

1

S

∂V

∂x
− rV = 0.

83

Multiplying both sides with −1 and dividing by 1
2σ

2 leads to the next PDE:

∂V

∂τ
− ∂2V

∂x2
+

(
1 − 2r

σ2

)
∂V

∂x
+

2r

σ2
V = 0. (42)

For the next step, let V = Eeγx+δτy(x, τ). With this notation, we obtain expressions for ∂V
∂τ ,

∂V
∂x ,

and ∂2V
∂x2 . For the next calculations, we again use the product rule for differentiation multiple times.

∂V

∂τ
= Eδeγx+δτy(x, τ) + Eeγx+δτ ∂y

∂τ
. (43)

∂V

∂x
= Eγeγx+δτy(x, τ) + Eeγx+δτ ∂y

∂x
. (44)

∂2V

∂x2
= Eγ2eγx+δτy(x, τ) + Eγeγx+δτ ∂y

∂x
+ Eeγx+δτ ∂

2y

∂x2
+ Eγeγx+δτ ∂y

∂x

= Eγ2eγx+δτy(x, τ) + 2Eγeγx+δτ ∂y

∂x
+ Eeγx+δτ ∂

2y

∂x2
. (45)

By choosing

• γ = σ2−2r
2σ2 and

• δ = −
(

σ2+2r
2σ2

)2
,

and substituting (43), (44), and (45) into equation (42), we divide by Eeγx+δτ , which is not equal
to 0, to find:

δy(x, τ) +
∂y

∂τ
− γ2y(x, τ) −

�
�
�

2γ
∂y

∂x
− ∂2y

∂x2
+ 2γ2y(x, τ) +

�
�
�

2γ
∂y

∂x
+ (1 − 2γ)y(x, τ) = 0.

After collecting the terms, observe that the obtained PDE already looks very similar to the heat
equation: (

δ + γ2 − 2γ + 1
)
y(x, τ) +

∂y

∂τ
− ∂2y

∂x2
= 0 (46)

It suffices to show that the y(x, τ)-terms cancel each other out. That is:

δ + γ2 − 2γ + 1 = δ + (γ − 1)2

= −
(
σ2 + 2r

2σ2

)2

+

(
σ2 − 2r

2σ2
− 1

)2

= −
(
σ2 + 2r

2σ2

)2

+

(
−σ2 − 2r

2σ2

)2

= −
(
σ2 + 2r

2σ2

)2

+

(
σ2 + 2r

2σ2

)2

= 0.

Since there is no y(x, τ)-term in equation (46), we have arrived at the heat equation by taking the
second-order derivative of y with respect to x in equation (46) to the right-hand side.

84

B Appendix: Python code

B.1 Code for the 3-dimensional green bond PDE

Matlab Program : Green PDE (3 dimensiona l) .
E x p l i c i t method (backward d i f f e r e n c e s) .

import numpy as np
import matp lo t l i b . pyplot as p l t
from matp lo t l i b import cm

Gamma and gammatilde : a b b r i v i t i o n s t ha t are a l s o used in the t h e s i s .
def GAMMA(alpha , beta , r 0 , lambda r , s igma r) :

gamma = alpha ∗(beta − r 0) − lambda r ∗ s igma r ∗ np . s q r t (r 0)
return gamma

def GAMMATILDE(mu, c 0 , lambda c , s igma c) :
gammatilde = mu∗ c 0 − lambda c∗ s igma c ∗ c 0
return gammatilde

Coe f f i c i e n t s f o r the numerical schemes .
def COEF1(sigma r , r 0 , dt , dr , gamma) :

return s igma r ∗∗2∗ r 0 ∗dt /(2∗ dr ∗∗2) − gamma∗dt/dr

def COEF2(sigma c , c 0 , dt , dc , gammatilde) :
return s igma c ∗∗2∗ c 0 ∗∗2∗ dt /(2∗ dc ∗∗2) − gammatilde∗dt/dc

def COEF3(gammatilde , dt , dc , dr , s igma c , c 0 , s igma r , r 0) :
co e f 3 = (1 + gammatilde∗dt/dc + gamma∗dt/dr −

s igma c ∗∗2∗ c 0 ∗∗2∗ dt /(dc ∗∗2) −
s igma r ∗∗2∗ r 0 ∗dt /(dr ∗∗2) − r 0 ∗dt)

return coe f 3

def COEF4(sigma r , r 0 , dt , dr) :
return s igma r ∗∗2∗ r 0 ∗dt /(2∗ dr ∗∗2)

def COEF5(sigma c , c 0 , dt , dc) :
return s igma c ∗∗2∗ c 0 ∗∗2∗ dt /(2∗ dc ∗∗2)

Coe f f i c i e n t s f o r the numerical schemes f o r the f unc t i on s h 1 and h 2 .
def h COEF1(sigma c , c 0 , dt , dc , gammatilde) :

return (s igma c ∗∗ 2 ∗ c 0 ∗∗ 2 ∗ dt / (2 ∗ dc ∗∗ 2) −
gammatilde ∗ dt / dc)

def h COEF2(gammatilde , dt , dc , s igma c , c 0 , r 0) :
return (1 + gammatilde ∗ dt / dc −

85

s igma c ∗∗ 2 ∗ c 0 ∗∗ 2 ∗ dt / (dc ∗∗ 2) − r 0 ∗ dt)

def h COEF3(dt , dc , s igma c , c 0) :
return s igma c ∗∗ 2 ∗ c 0 ∗∗ 2 ∗ dt / (2 ∗ dc ∗∗ 2)

I n i t i a l i s a t i o n o f the parameters .
alpha = 0.91
beta = 0.0451
mu = 0.058
t min = 0
t max = 1
r min = 0
r max = 0.20
c min = 20
c max = 120
r 0 = 0.05
c 0 = 0 . 5∗ (c max + c min)
lambda r = 0.01
lambda c = 0 .2
s igma r = 0.179
s igma c = 0 .2
gamma = GAMMA(alpha , beta , r 0 , lambda r , s igma r)
gammatilde = GAMMATILDE(mu, c 0 , lambda c , s igma c)
T = 1.0 # Time ind i c a t o r (t max − t min = 1−0=1).
K = 70 # St r i k e p r i c e .

Step s i z e s
maxt = 1000 # Number o f time s t e p s .
maxr = 10 # Number o f i n t e r e s t s t eps , upper l im i t : 50 .
maxc = 10 # Number o f carbon pr i c e s t eps , upper l im i t : 50 .
t l e n g t h = t max−t min
r l e n g t h = r max−r min
c l e n g t h = c max−c min
dt = t l e n g t h /maxt
dr = r l e n g t h /maxr
dc = c l e n g t h /maxc

Python i n i t i a l i s a t i o n
time = np . z e r o s (maxt+1) # Time to matur i ty .
r = np . z e ro s (maxr+1)
c = np . z e ro s (maxc+1)

V = np . z e ro s ([maxt+1, maxr+1, maxc+1])
for i in range (maxt+1):

time [i] = t min + i ∗dt

86

for i in range (maxr+1):
r [i] = r min + i ∗dr

for i in range (maxc+1):
c [i] = c min + i ∗dc

Fina l cond i t i on .
V i (T i , r , c) = (c T { i } − K i)ˆ{+}.
for i in range (maxr+1):

for j in range (maxc+1):
V[: , i , j] = np . maximum(c [j]−K, 0)

Boundary cond i t i on s .
V i (t , r , c min) = 0.
V[: , : , 0] = 0

V i (t , r , c max) = (c max − K i∗eˆ{−r∗ t })ˆ{+}.
for i in range (maxr+1):

for j in range (maxt+1):
V[j , i , maxc] = np . maximum(c max−K∗np . exp(−r [i]∗ time [j]) , 0)

The func t i on s h 1 and h 2 w i l l a l s o be computed
numer ica l l y us ing an e x p l i c i t method .
The numerical scheme i s de r i v ed in case 2(b) (Backward D i f f e r enc e s) .
V i (t , r min , c) = h 1 (t , c)
h1 coe f1 = h COEF1(sigma c , c 0 , dt , dc , gammatilde)
h1 coe f2 = h COEF2(gammatilde , dt , dc , s igma c , c 0 , r min)
h1 coe f3 = h COEF3(dt , dc , s igma c , c 0)

Implementation o f the e x p l i c i t method
for i in range (maxt) : # Time loop

for j in range (1 , maxc) : # Carbon pr i c e loop
V[maxt−i −1 ,0 , j] = (h1 coe f1 ∗V[maxt−i , 0 , j −1] +

h1 coe f2 ∗V[maxt−i , 0 , j] +
h1 coe f3 ∗V[maxt−i , 0 , j +1])

V i (t , r max , c) = h 2 (t , c)
h2 coe f1 = h COEF1(sigma c , c 0 , dt , dc , gammatilde)
h2 coe f2 = h COEF2(gammatilde , dt , dc , s igma c , c 0 , r max)
h2 coe f3 = h COEF3(dt , dc , s igma c , c 0)

Implementation o f the e x p l i c i t method
for i in range (maxt) : # Time loop

for j in range (1 , maxc) : # Carbon pr i c e loop
V[maxt−i −1,maxr , j] = (h1 coe f1 ∗V[maxt−i , maxr , j −1] +

87

h1 coe f2 ∗V[maxt−i , maxr , j] +
h1 coe f3 ∗V[maxt−i , maxr , j +1])

Now we w i l l compute the s o l u t i o n o f the o r i g i n a l green PDE.
coe f 1 = COEF1(sigma r , r 0 , dt , dr , gamma)
coe f 2 = COEF2(sigma c , c 0 , dt , dc , gammatilde)
coe f 3 = COEF3(gammatilde , dt , dc , dr , s igma c , c 0 , s igma r , r 0)
coe f 4 = COEF4(sigma r , r 0 , dt , dr)
coe f 5 = COEF5(sigma c , c 0 , dt , dc)

for i in range (maxt) :
for j in range (1 , maxr) :

for k in range (1 , maxc) :
V[maxt−1−i , j , k] = (coe f 1 ∗V[maxt−i , j −1,k] +

coe f 2 ∗V[maxt−i , j , k−1] +
coe f 3 ∗V[maxt−i , j , k] +
coe f 4 ∗V[maxt−i , j +1,k] +
coe f 5 ∗V[maxt−i , j , k+1])

#Generating a p l o t
timeMatrix = np . z e ro s ([maxt+1, maxc+1])
i n t e r e s t M a t r i x = np . z e r o s ([maxt+1,maxr+1])
carbonMatrix = np . z e ro s ([maxt+1,maxc+1])

for i in range (maxt+1):
timeMatrix [i , :] = time [i]

for i in range (maxr+1):
i n t e r e s t M a t r i x [: , i] = r [i]

for i in range (maxc+1):
carbonMatrix [: , i] = c [i]

Plot the su r f a c e f o r a f i x e d r .
f i g = p l t . f i g u r e (1)
ax = f i g . gca (p r o j e c t i o n=’ 3d ’)
ax . p l o t s u r f a c e (timeMatrix , carbonMatrix , V[: , 3 , :] , c o l o r = [1 , 0 . 5 , 1])
p l t . x l a b e l (’ time to maturity ’)
p l t . y l a b e l (’ carbon p r i c e ’)
p l t . t i t l e (’Coupon Value f o r r = ’+ str (r [3]))
p l t . show ()

print (r)
print (c)
Plot the su r f a c e f o r a f i x e d c .
f i g = p l t . f i g u r e (2)

88

ax = f i g . gca (p r o j e c t i o n=’ 3d ’)
ax . p l o t s u r f a c e (timeMatrix , i n t e r e s tMat r ix , V[: , : , 1 0] , c o l o r = [1 , 0 . 5 , 1])
p l t . x l a b e l (’ time to maturity ’)
p l t . y l a b e l (’ i n t e r e s t r a t e ’)
p l t . t i t l e (’Coupon Value f o r c = ’+ str (c [1 0]))
p l t . show ()

89

B.2 Code for Part 1(a): c is constant, r is not: forward differences

Matlab Program : Part 1(a)
Imp l i c i t Method

import numpy as np
import matp lo t l i b . pyplot as p l t
from matp lo t l i b import cm
from s c ipy . spar s e . l i n a l g import b i cg s tab
from s c ipy . spar s e . l i n a l g import gmres

def GAMMA(alpha , beta , r 0 , lambda r , s igma r) :
gamma = (alpha ∗(beta − r 0) −

lambda r ∗ s igma r ∗ np . s q r t (r 0))
return gamma

def COEF1(dt , dr , s igma r , r 0) :
co e f 1 = −s igma r ∗∗2∗ r 0 ∗dt /(2∗ dr ∗∗2)
return coe f 1

def COEF2(gamma, dt , dr , s igma r , r 0) :
co e f 2 = (1 + gamma∗dt/dr

+ s igma r ∗∗2∗ r 0 ∗dt /(dr ∗∗2) + r 0 ∗dt)
return coe f 2

def COEF3(gamma, dt , dr , s igma r , r 0) :
co e f 3 = (−gamma∗dt/dr −

s igma r ∗∗2∗ r 0 ∗dt /(2∗ dr ∗∗2))
return coe f 3

I n i t i a l i s a t i o n o f the parameters .
alpha = 0.91
beta = 0.0451
t min = 0
t max = 1
r min = 0
r max = 0.20
r 0 = 0.05
c 0 = 70
lambda r = 0.01
s igma r = 0.179
gamma = GAMMA(alpha , beta , r 0 , lambda r , s igma r)
T = 1 .0 # Time ind i c a t o r (t max − t min = 1−0=1).
K = 50 # St r i k e p r i c e .

Step s i z e s

90

maxt = 1000 # Number o f time s t e p s .
maxr = 100 # Number o f i n t e r e s t s t e p s .
t l e n g t h = t max−t min
r l e n g t h = r max−r min
dt = t l e n g t h /maxt
dr = r l e n g t h /maxr

Python i n i t i a l i s a t i o n
time = np . z e r o s (maxt+1) # Time to matur i ty .
r = np . z e ro s (maxr+1)
V = np . z e ro s ([maxt+1, maxr+1])

for i in range (maxt+1):
time [i] = t min + i ∗dt

for i in range (maxr+1):
r [i] = r min + i ∗dr

Boundary cond i t i on s :
V(t , r min) = (c 0 − K∗eˆ{−r min∗ t })ˆ{+}
V(t , r max) = (c 0 − K∗eˆ{−r max∗ t })ˆ{+}
for i in range (maxt+1):

V[i , 0] = np . maximum(c 0 − K∗np . exp(−r [0] ∗ time [i]) , 0)
V[i , maxr] = np . maximum(c 0 −

K∗np . exp(−r [maxr]∗ time [i]) , 0)

Fina l cond i t i on :
V(T, r) = (c 0 − K)ˆ{+}.
V[0 , :] = np . maximum(c 0−K, 0)

coe f 1 = COEF1(dt , dr , s igma r , r 0)
coe f 2 = COEF2(gamma, dt , dr , s igma r , r 0)
coe f 3 = COEF3(gamma, dt , dr , s igma r , r 0)

Implementation o f the im p l i c i t method
B = np . z e ro s ([maxr−1,maxr−1])
for i in range (maxr−1):

B[i , i] = coe f 2
i f i != maxr−2:

B[i +1, i] = coe f 1
B[i , i +1] = coe f 3

B inv = np . l i n a l g . inv (B)
u = np . z e r o s (maxr−1)
Implementation o f the im p l i c i t method
for k in range (1 , maxt+1): # Time Loop

91

u [0] = coe f 1 ∗V[k , 0]
u [maxr−2] = coe f 3 ∗V[k , maxr]
Inver se matrix
V[k , 1 : maxr] = np . matmul (B inv , V[k−1 ,1:maxr] − u)
Bi−CGSTAB:
V[k , 1 : maxr] , ex i t code = b i cg s tab (B, V[k−1 ,1:maxr] − u , x0=None , a t o l =0.0)
GMRES:
V[k , 1 :maxr] , e x i t c od e = gmres (B, V[k−1 ,1:maxr] − u , x0=None , a t o l =0.0)

pr in t (V)

#Generating a p l o t
timeMatrix = np . z e ro s ([maxt+1, maxr+1])
i n t e r e s t M a t r i x = np . z e r o s ([maxt+1,maxr+1])

for i in range (maxt+1):
timeMatrix [i , :] = time [i]

for i in range (maxr+1):
i n t e r e s t M a t r i x [: , i] = r [i]

Plot the su r f a c e f o r a f i x e d c .
f i g = p l t . f i g u r e (1)
ax = f i g . gca (p r o j e c t i o n=’ 3d ’)
ax . p l o t s u r f a c e (timeMatrix , i n t e r e s tMat r ix , V, c o l o r = [1 , 0 . 5 , 1])
p l t . x l a b e l (’ time to maturity ’)
p l t . y l a b e l (’ i n t e r e s t r a t e ’)
p l t . t i t l e (’Coupon Value f o r c = ’+ str (c 0))
p l t . show ()

92

B.3 Code for Part 1(b): c is constant, r is not: backward differences

Matlab Program : Part 1(b)
Ex p l i c i t Method

import numpy as np
import matp lo t l i b . pyplot as p l t
from matp lo t l i b import cm

def GAMMA(alpha , beta , r 0 , lambda r , s igma r) :
gamma = (alpha ∗(beta − r 0) −

lambda r ∗ s igma r ∗ np . s q r t (r 0))
return gamma

def COEF1(gamma, dt , dr , s igma r , r 0) :
co e f 1 = (−gamma∗dt/dr +

s igma r ∗∗2∗ r 0 ∗dt /(2∗ dr ∗∗2))
return coe f 1

def COEF2(gamma, dt , dr , s igma r , r 0) :
co e f 2 = (1 + gamma∗dt/dr

− s igma r ∗∗2∗ r 0 ∗dt /(dr ∗∗2) − r 0 ∗dt)
return coe f 2

def COEF3(dt , dr , s igma r , r 0) :
co e f 3 = s igma r ∗∗2∗ r 0 ∗dt /(2∗ dr ∗∗2)
return coe f 3

I n i t i a l i s a t i o n o f the parameters .
alpha = 0.91
beta = 0.0451
t min = 0
t max = 1
r min = 0
r max = 0.20
r 0 = 0.05
c 0 = 70
lambda r = 0.01
s igma r = 0.179
gamma = GAMMA(alpha , beta , r 0 , lambda r , s igma r)
T = 1 .0 # Time ind i c a t o r (t max − t min = 1−0=1).
K = 50 # St r i k e p r i c e .

Step s i z e s
maxt = 1000 # Number o f time s t e p s .
maxr = 100 # Number o f i n t e r e s t s t e p s .

93

t l e n g t h = t max−t min
r l e n g t h = r max−r min
dt = t l e n g t h /maxt
dr = r l e n g t h /maxr

Python i n i t i a l i s a t i o n
time = np . z e r o s (maxt+1) # Time to matur i ty .
r = np . z e ro s (maxr+1)
V = np . z e ro s ([maxt+1, maxr+1])

for i in range (maxt+1):
time [i] = t min + i ∗dt

for i in range (maxr+1):
r [i] = r min + i ∗dr

Boundary cond i t i on s :
V(t , r min) = (c 0 − K∗eˆ{−r min ∗(T−t)})ˆ{+} .
V(t , r max) = (c 0 − K∗eˆ{−r max ∗(T−t)})ˆ{+} .
for i in range (maxt+1):

V[i , 0] = np . maximum(c 0 − K∗np . exp(−r [0] ∗ time [i]) , 0)
V[i , maxr] = np . maximum(c 0 −

K∗np . exp(−r [maxr]∗ time [i]) , 0)

Fina l cond i t i on :
V(T, r) = (c 0 − K)ˆ{+}.
V[0 , :] = np . maximum(c 0−K, 0)

coe f 1 = COEF1(gamma, dt , dr , s igma r , r 0)
coe f 2 = COEF2(gamma, dt , dr , s igma r , r 0)
coe f 3 = COEF3(dt , dr , s igma r , r 0)

Implementation o f the e x p l i c i t method
for i in range (1 , maxt+1): # Time loop

for j in range (1 , maxr) : # In t e r e s t ra t e loop
V[i , j] = (coe f 1 ∗V[i −1, j −1] + coe f 2 ∗V[i −1, j]

+ coe f 3 ∗V[i −1, j +1])

pr in t (V)

#Generating a p l o t
timeMatrix = np . z e ro s ([maxt+1, maxr+1])
i n t e r e s t M a t r i x = np . z e r o s ([maxt+1,maxr+1])

for i in range (maxt+1):
timeMatrix [i , :] = time [i]

94

for i in range (maxr+1):
i n t e r e s t M a t r i x [: , i] = r [i]

Plot the su r f a c e f o r a f i x e d c .
f i g = p l t . f i g u r e (1)
ax = f i g . gca (p r o j e c t i o n=’ 3d ’)
ax . p l o t s u r f a c e (timeMatrix , i n t e r e s tMat r ix , V, c o l o r = [1 , 0 . 5 , 1])
p l t . x l a b e l (’ time to maturity ’)
p l t . y l a b e l (’ i n t e r e s t r a t e ’)
p l t . t i t l e (’Coupon Value f o r c = ’+ str (c 0))
p l t . show ()

95

B.4 Code for Part 2(a): r is constant, c is not: forward differences

Matlab Program : Part 2(a)
Imp l i c i t Method

import numpy as np
import matp lo t l i b . pyplot as p l t
from matp lo t l i b import cm
from s c ipy . spar s e . l i n a l g import b i cg s tab
from s c ipy . spar s e . l i n a l g import gmres

def GAMMATILDE(mu, c 0 , lambda c , s igma c) :
gammatilde = mu∗ c 0 − lambda c∗ s igma c ∗ c 0
return gammatilde

def COEF1(sigma c , c 0 , dt , dc , gammatilde) :
co e f 1 = sigma c ∗∗2∗ c 0 ∗∗2∗ dt /(2∗ dc ∗∗2) − gammatilde∗dt/dc
return coe f 1

def COEF2(gammatilde , dt , dc , s igma c , c 0 , r 0) :
co e f 2 = 1 + gammatilde∗dt/dc − s igma c ∗∗2∗ c 0 ∗∗2∗ dt /(dc ∗∗2) − r 0 ∗dt
return coe f 2

def COEF3(dt , dc , s igma c , c 0) :
co e f 3 = sigma c ∗∗2∗ c 0 ∗∗2∗ dt /(2∗ dc ∗∗2)
return coe f 3

I n i t i a l i s a t i o n o f the parameters .
mu = 0.058
t min = 0
t max = 1
c min = 20
c max = 120
r 0 = 0.05
c 0 = 7
lambda c = 0 .2
s igma c = 0.832
gammatilde = GAMMATILDE(mu, c 0 , lambda c , s igma c)
T = 1.0 # Time ind i c a t o r (t max − t min = 1−0=1).
K = 5 # St r i k e p r i c e .

Step s i z e s
maxt = 1000 # Number o f time s t e p s .
maxc = 10 # Number o f carbon pr i c e s t e p s .
t l e n g t h = t max−t min
c l e n g t h = c max−c min

96

dt = t l e n g t h /maxt
dc = c l e n g t h /maxc

Python i n i t i a l i s a t i o n
time = np . z e r o s (maxt+1) # Time to matur i ty .
c = np . z e ro s (maxc+1)
V = np . z e ro s ([maxt+1, maxc+1])

for i in range (maxt+1):
time [i] = t min + i ∗dt

for i in range (maxc+1):
c [i] = c min + i ∗dc

Boundary cond i t i on :
V(t , c min) = 0.
V(t , c max) = (c max − K∗eˆ{− r t })ˆ{+}
for i in range (maxt+1):

V[i , 0] = 0
V[i , maxc] = np . maximum(c [maxc] −

K∗np . exp(− r 0 ∗ time [i]) , 0)

Fina l cond i t i on :
V(T, c) = (c T − K)ˆ{+}.
for j in range (maxc+1):

V[0 , j] = np . maximum(c [j]−K, 0)

coe f 1 = COEF1(sigma c , c 0 , dt , dc , gammatilde)
coe f 2 = COEF2(gammatilde , dt , dc , s igma c , c 0 , r 0)
coe f 3 = COEF3(dt , dc , s igma c , c 0)

Implementation o f the im p l i c i t method v ia
an inve r s e matrix .
B = np . z e ro s ([maxc−1,maxc−1])
for i in range (maxc−1):

B[i , i] = coe f 2
i f i != maxc−2:

B[i +1, i] = coe f 1
B[i , i +1] = coe f 3

B inv = np . l i n a l g . inv (B)
u = np . z e r o s (maxc−1)
Implementation o f the im p l i c i t method
for k in range (1 , maxt+1): # Time Loop

u [0] = coe f 1 ∗V[k , 0]
u [maxc−2] = coe f 3 ∗V[k , maxc]

97

Inver se matrix
V[k , 1 : maxc] = np . matmul (B inv , V[k−1 ,1:maxc] − u)
Bi−CGSTAB:
V[k , 1 : maxc] , e x i t c od e = b i c g s t a b (B, V[k−1 ,1:maxc] − u , x0=None , a t o l =0.0)
GMRES:
V[k , 1 :maxc] , e x i t c od e = gmres (B, V[k−1 ,1:maxc] − u , x0=None , a t o l =0.0)

pr in t (V)

#Generating a p l o t
timeMatrix = np . z e ro s ([maxt+1, maxc+1])
carbonMatrix = np . z e ro s ([maxt+1,maxc+1])

for i in range (maxt+1):
timeMatrix [i , :] = time [i]

for i in range (maxc+1):
carbonMatrix [: , i] = c [i]

Plot the su r f a c e f o r a f i x e d r .
f i g = p l t . f i g u r e (1)
ax = f i g . gca (p r o j e c t i o n=’ 3d ’)
ax . p l o t s u r f a c e (timeMatrix , carbonMatrix , V, c o l o r = [1 , 0 . 5 , 1])
p l t . x l a b e l (’ time to maturity ’)
p l t . y l a b e l (’ carbon p r i c e ’)
p l t . t i t l e (’Coupon Value f o r r = ’+ str (r 0))
p l t . show ()

98

B.5 Code for Part 2(b): r is constant, c is not: backward differences

Matlab Program : Part 2(b)
Ex p l i c i t Method

import numpy as np
import matp lo t l i b . pyplot as p l t
from matp lo t l i b import cm

def GAMMATILDE(mu, c 0 , lambda c , s igma c) :
gammatilde = mu∗ c 0 − lambda c∗ s igma c ∗ c 0
return gammatilde

def COEF1(sigma c , c 0 , dt , dc , gammatilde) :
co e f 1 = sigma c ∗∗2∗ c 0 ∗∗2∗ dt /(2∗ dc ∗∗2) − gammatilde∗dt/dc
return coe f 1

def COEF2(gammatilde , dt , dc , s igma c , c 0 , r 0) :
co e f 2 = 1 + gammatilde∗dt/dc − s igma c ∗∗2∗ c 0 ∗∗2∗ dt /(dc ∗∗2) − r 0 ∗dt
return coe f 2

def COEF3(dt , dc , s igma c , c 0) :
co e f 3 = sigma c ∗∗2∗ c 0 ∗∗2∗ dt /(2∗ dc ∗∗2)
return coe f 3

I n i t i a l i s a t i o n o f the parameters .
mu = 0.058
t min = 0
t max = 1
c min = 20
c max = 120
r 0 = 0.05
c 0 = 70
lambda c = 0 .2
s igma c = 0.832
gammatilde = GAMMATILDE(mu, c 0 , lambda c , s igma c)
T = 1.0 # Time ind i c a t o r (t max − t min = 1−0=1).
K = 50 # St r i k e p r i c e .

Step s i z e s
maxt = 1000 # Number o f time s t e p s .
maxc = 10 # Number o f carbon pr i c e s t e p s .
t l e n g t h = t max−t min
c l e n g t h = c max−c min
dt = t l e n g t h /maxt
dc = c l e n g t h /maxc

99

Python i n i t i a l i s a t i o n
time = np . z e r o s (maxt+1) # Time to matur i ty .
c = np . z e ro s (maxc+1)
V = np . z e ro s ([maxt+1, maxc+1])

for i in range (maxt+1):
time [i] = t min + i ∗dt

for i in range (maxc+1):
c [i] = c min + i ∗dc

Boundary cond i t i on :
V(t , c min) = 0.
V(t , c max) = (c max − K∗eˆ{−r (T−t)})ˆ{+} .
for i in range (maxt+1):

V[i , 0] = 0
V[i , maxc] = np . maximum(c [maxc] −

K∗np . exp(− r 0 ∗ time [i]) , 0)

Fina l cond i t i on :
V(T, c) = (c T − K)ˆ{+}.
for j in range (maxc+1):

V[0 , j] = np . maximum(c [j]−K, 0)

coe f 1 = COEF1(sigma c , c 0 , dt , dc , gammatilde)
coe f 2 = COEF2(gammatilde , dt , dc , s igma c , c 0 , r 0)
coe f 3 = COEF3(dt , dc , s igma c , c 0)

Implementation o f the e x p l i c i t method
for i in range (1 , maxt+1): # Time loop

for j in range (1 , maxc) : # In t e r e s t ra t e loop
V[i , j] = (coe f 1 ∗V[i −1, j −1] + coe f 2 ∗V[i −1, j]

+ coe f 3 ∗V[i −1, j +1])

pr in t (V)

#Generating a p l o t
timeMatrix = np . z e ro s ([maxt+1, maxc+1])
carbonMatrix = np . z e ro s ([maxt+1,maxc+1])

for i in range (maxt+1):
timeMatrix [i , :] = time [i]

for i in range (maxc+1):
carbonMatrix [: , i] = c [i]

100

Plot the su r f a c e f o r a f i x e d r .
f i g = p l t . f i g u r e (1)
ax = f i g . gca (p r o j e c t i o n=’ 3d ’)
ax . p l o t s u r f a c e (timeMatrix , carbonMatrix , V, c o l o r = [1 , 0 . 5 , 1])
p l t . x l a b e l (’ time to maturity ’)
p l t . y l a b e l (’ carbon p r i c e ’)
p l t . t i t l e (’Coupon Value f o r r = ’+ str (r 0))
p l t . show ()

101

	Acknowledgements
	Abstract
	Option Pricing and Green Finance
	Option Theory
	Bonds
	Call and put options
	Payoff diagram of a call and put option
	Put-call parity

	The Black-Scholes equation
	Background Information
	Preliminaries
	The PDE and its boundary conditions
	Analytical solution
	Assumptions and disadvantages of Black-Scholes
	Link with the heat equation

	Sustainable Finance
	Green bonds
	Classes of green bonds
	Comparing green bonds to ordinary bonds

	Pricing a green bond

	Numerical Analysis
	Preliminaries
	Some definition about matrices

	Finite Difference Discretization
	Discretization of space

	Time-stepping methods
	Discretization of time
	Forward Euler method
	Backward Euler Method
	Crank-Nicolson

	Example heat equation
	Forward difference in time, central difference in space
	Backward difference in time, central difference in space
	Crank-Nicolson

	Local truncation error
	Local truncation error for FTCS
	Local truncation error for BTCS
	Local truncation error for Crank-Nicolson

	Numerical Solution Methods
	Iterative solution methods
	Preconditioning

	Examples of Iterative solution methods
	Conjugate Gradient Method
	Bi-Conjugate gradient stabilized method
	General Minimal Residual Method

	Stopping criteria

	Stability Analysis of the Numerical Methods
	Amplification factor
	Von Neumann stability
	Stability analysis of the heat equation

	Stability analysis for the green bond
	The green bond model
	Methodology
	Part 0: the interest rate r and the carbon price c are both constant
	Part 1: only the carbon price c is constant
	Part 1(a): constant carbon price, forward differences: derivation of the scheme
	Part 1(a): Von Neumann analysis
	Part 1(b): constant carbon price, backward differences: derivation of the scheme
	Part 1(b): Von Neumann analysis
	Part 1: Insert values for the parameters
	Part 1(a): constant carbon price, forward differences: determination of the stability
	Part 1(b): constant carbon price, backward differences: determination of the stability

	Part 2: only the interest rate r is constant
	Part 2(a): constant interest rate, forward differences: derivation of the scheme
	Part 2(a): Von Neumann analysis
	Part 2(b): constant interest rate, backward differences: derivation of the scheme
	Part 2(b): Von Neumann analysis
	Part 2: Insert values for the parameters
	Part 2(a): constant interest rate, forward differences: determination of the stability
	Part 2(b): constant interest rate, backward differences: determination of the stability

	Part 3: non-constant r and c

	Numerical Results
	Part 1: constant carbon price
	Part 1(a): constant carbon price, forward differences
	Part 1(b): constant carbon price, backward differences

	Part 2: constant interest rate
	Part 2(a): constant interest rate, forward differences
	Part 2(b): constant interest rate, backward differences

	Part 3: neither interest rate nor carbon price is constant

	Conclusion and Discussion
	Conclusion
	Discussion

	Equivalence of the Black-Scholes PDE and the heat equation
	Appendix: Python code
	Code for the 3-dimensional green bond PDE
	Code for Part 1(a): c is constant, r is not: forward differences
	Code for Part 1(b): c is constant, r is not: backward differences
	Code for Part 2(a): r is constant, c is not: forward differences
	Code for Part 2(b): r is constant, c is not: backward differences

