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Abstract

Introduction

Prostate cancer is the most commonly diagnosed cancer in the Netherlands. Accurate assessment of
the prostate volume (PV) is a crucial step in prostate cancer (PCa) screening and risk-stratification.
In standard clinical care, the PV is obtained by measuring the prostate dimensions with the
aid of transrectal ultrasound (TRUS). However, rectal examination is characterised with patient
discomfort, for which the feasibility of transabdominal ultrasound (TAUS) is explored, as a more
accessible and patient-friendly alternative. However, manual PV measurements are prone to inter-
observer variability and require operator training. This study aims to improve the accessibility,
complexity, and robustness of PV measurements by developing a framework to automatically
estimate the PV based on TAUS acquisitions. The primary components of the framework comprise
two deep neural networks, developed for prostate segmentation on axial and sagittal TAUS images,
and an algorithm that extracts the prostate’s diameters on which the PV is calculated.

Materials and Methods

During this study, a new prostate dataset is developed, comprising sagittal and transverse TAUS
image acquisitions of 100 participants, and reference PV measurements based on TRUS and MRI
are collected. First, the feasibility of TAUS for manual PV estimation is explored, and the inter-
method agreement between TAUS, TRUS and MRI is analysed in Bland Altman diagrams. Addi-
tionally, all TAUS acquisitions are assessed on image quality. Secondly, three deep neural networks
(using the nnU-Net framework) are developed to segment the prostate on sagittal and/or axial
TAUS images. All models, are trained and validated on TAUS image data of 52 participants. Ad-
ditionally, an algorithm is designed to predict the prostate diameters when prostate segmentations
serve as input. To this extend, the PV is estimated according to the widely used Ellipsoid formula.
The proposed algorithm is evaluated on input ground-truth segmentations of 42 participants. Es-
sentially, the segmentation models combined with the proposed algorithm result in a framework
to automatically estimate the PV on TAUS. Finally, it is tested on unseen TAUS acquisitions of
17 participants, whereby the predicted PV is compared to reference PV measurements on MRI.

Results

Our results show an average volume difference of 3.0 +- 17.6 ml when manual PV estimation on
TAUS is compared to MRI. When manual PV estimation on TRUS is compared to MRI, an average
volume difference of 12.3 +- 18.8 ml is obtained. The developed segmentations models segment the
middle region of the prostate on TAUS with an average DSC = 0.91 +- 0.06 and DSC = 0.83 +- 0.09
for axial and sagittal TAUS images respectively. When the entire prostate region was evaluated, a
lower model performance was observed, whereby the prostate was segmented with a DSC of 0.76
+- 0.09 in the axial imaging-plane and DSC of 0.68 +- 0.21 in the sagittal imaging-plane. The
algorithm for automatic diameter extraction showed good correspondence with manually assigned
prostate diameters on TAUS. When the segmentation models and the algorithm are utilised for
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automatic PV estimation, an average volume difference of 2.5 +- 10.2 ml was observed, compared
to MRI reference volumes. Ultimately the PV was predicted with a volume difference < 25%
compared to MRI in 14 out of 17 test cases.

Discussion

The results of this study show that it is possible to obtain PV measurements using TAUS that are
comparable to those obtained with MRI. Moreover, the variability related to PV measurements
using TAUS seem unrelated to TAUS image quality, indicating that manual PV measurements can
be performed, even when unfavorable patient characteristics limit the image quality. Still, it is
important to note that proper operator training for TAUS examination is essential. The proposed
framework for automatic PV estimation on TAUS acquisitions shows good correspondence with
MRI reference volumes. Thus expanding the possibilities of PCa risk-stratification, whereby robust,
and straightforward PV estimations are desired. In order to adopt the framework for standard
clinical care, further research is required on a larger cohort to investigate the generalizability of
the framework and ensure reliable results on all future patients.
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1
Introduction

1.1 Introduction

Prostate cancer (PCa) is the most commonly diagnosed cancer in men in the Netherlands [1].
The high incidence of prostate cancer led to the implementation of early detection strategies to
promote disease control by identifying PCa in an earlier and less aggressive stage. In the past
years, several nomograms have been developed, aiming to stratify the risk of having PCa based
on clinically predictive parameters [2]–[5]. In short, these comprise an elevated Prostate-Specific
Antigen (PSA) blood level, abnormal digital rectal examination (DRE) outcome, age above 50,
the occurrence of PCa in family history, carriers of the BRCA2 mutation, and African race [5]–
[8]. Since PSA density (PSA level divided by prostate volume (PV)) significantly improves the
accuracy of PCa risk stratification, the PV is routinely obtained in the first stage of diagnostics
[9], [10]. Aside from prostate malignancy, the PV is a crucial parameter for the diagnosis of benign
prostate diseases such as lower urinary tract symptoms and benign prostatic hyperplasia, affecting
one-third of all men [11], [12].

When prostate-related disease is suspected, the PV is determined by measuring the dimensions
of the prostate during transrectal ultrasound (TRUS) examination (Figure 1.1a). Even though PV
estimation based on TRUS is recognized as standard clinical care, a rectal examination is primarily
characterised by patient discomfort, pain, possible tearing of the perianal skin, and infection that
particularly occur when the internal or external anal sphincter muscles are tensed [13]. These
factors contribute to the complex nature of the procedure and as a result, it is solely performed by
expert clinicians. Additionally, cultural and social beliefs play a role in the decreased accessibility
of TRUS examination. For instance, several patients cope with fears toward rectal examination,
believing that their masculinity and sexuality might be affected by it [14], [15].

An approximation of PV based on transabdominal ultrasound (TAUS) is another option to
obtain PSA density, and is often preferred since it is a percutaneous and comfortable approach
(Figure 1.1b) [16], [17]. Additionally, it enables the implementation of a PV measurement at an
earlier stage of diagnostics. According to a recent study by De Vos et al. (2023), a PSA density
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Figure 1.1: Prostate examination using ultrasound. a: Transrectal Ultrasound. Diameters of the prostate
are assigned with yellow lines. b: Transabdominal ultrasound. The prostate is delineated manually with
a yellow contour.

measurement based on TAUS at the general practitioner allows for an improved risk-stratification
workflow and may reduce unnecessary hospital visits [18].

In practice, it remains challenging to measure the PV manually due to the difficulties asso-
ciated with the interpretation of ultrasound images, whereby TAUS is considered more prone to
inaccuracies compared to TRUS [12]. Manual prostate segmentation, diameter measurements, and
annotation of the prostate’s outer boundary landmarks are the frequently performed tasks to ob-
tain the PV, and often result in over/under estimations and are susceptible to inter/intra-observer
variability [19]. This is primarily the result of poor contrast between the prostate and surrounding
tissue, resulting in ambiguous prostate boundaries (Figure B.2c). Additionally, the assessment of
ultrasound is complicated by misleading imaging artefacts such as echoic shadows and the presence
of calcifications. Notably in TAUS, the prostate can be difficult to observe when shadow artefacts
disrupt the prostate boundary as a result of ultrasonic reflection by the pelvic one (Figure B.2d)
[20], [21]. Additionally, the ultrasound signal is directly attenuated by abdominal fat which lim-
its the image quality of the prostate in patients with higher (abdominal) fat percentages [22].
The inhomogeneous intensity distribution of the prostate tissue, the presence of other anatomic
structures and the large shape variations complicate the assessment and are often considered most
challenging in the apex (lower part of the prostate) and base (upper part of the prostate). Figure
B.2 provides four TAUS images to illustrate the variety in image quality and occurring artefacts.
Finally, prostate annotations are generally conducted during the ultrasound examination. This
enhances the complexity of the procedure, since the operator is responsible for the determination
of the appropriate imaging-plane and the diameter assessment, while the patient is being exam-
ined [23]. These factors limit the implementation of TAUS in a clinical setting and therefore an
automatic and straightforward method to obtain the PV is desired.

In recent years, deep-learning (DL) has been utilised for medical imaging analysis to enhance
the accuracy, reliability and repeatability of medical image tasks [24]. Specifically, with the devel-
opment of convolutional neural networks that process the entire image as part of their training,
segmentation models enhanced the readability of computed tomography (CT), TRUS, and mag-
netic resonance imaging (MRI) acquisitions when it comes to defining the prostate borders and
volume calculation. [25], [26]. Currently, automatic prostate segmentation techniques have only
been studied on CT, TRUS and MRI. Yet, prostate segmentation on TAUS is worth to explore,
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Figure 1.2: Various presentations of the prostate on transabdominal ultrasound. The prostate is delineated
manually with a yellow line. a: The axial imaging-plane, clear visibility of the prostate. The bladder is
annotated. b: The sagittal imaging-plane, clear visibility of the prostate with bulging contours that
interrupt the bladder. The seminal vesicle is annotated. c: The axial imaging-plane, poor visibility of the
prostate due to ambiguous boundaries. d: The sagittal imaging-plane, part of the prostate boundary is
invisible due to interrupting acoustic shadow artefacts.

as a delineation of the prostate can be used to extract the prostate dimensions to enable PV
calculation.

The primary aim of this study is to investigate the feasibility of a method to automatically
estimate the PV based on TAUS examination and ease the process of PV measurements. With the
aid of deep neural networks, the prostate is segmented on TAUS. Then, the predicted segmentation
masks serve as input for an algorithm that extracts the prostate diameters to calculate the PV
according to the Ellipsoid formula. The feasibility of the framework is explored on a novel dataset
that was acquired during this study, including TAUS examinations of 100 participants along with
corresponding reference PV measurements based on TRUS and MRI. The overall contribution is
summarized as follows:

1. During this study, a new prostate dataset is formed, comprising sagittal and transverse TAUS
image acquisitions of 100 participants. For all included participants, the PV is calculated
based on TAUS, and corresponding PV measurements based on TRUS and MRI are collected
retrospectively. This study analyses the inter-method agreement for PV estimation on all
three modalities available in the dataset, namely TAUS, TRUS and MRI.

2. A TAUS image quality assessment is performed to qualify the data regarding prostate visi-
bility and imaging artefacts. One expert manually segmented the prostate in TAUS images
of 61 participants.

3. Three deep-learning models are developed to segment the prostate on TAUS acquisitions of 52
participants. The first model (Model Sagittal) is trained and validated on sagittal acquisitions,
while the second model (Model Axial) is trained and validated on axial acquisitions. A third
model, Model Sag-Ax is developed on all image data to segment the prostate regardless of
the imaging-plane. All models are evaluated on: (i) dice similarity coefficient (DSC), (ii)
DSC on correctly classified images and (iii) the performance of the models is explored on the
mid-prostate region, as this part of the prostate is crucial for the extraction of the prostate
diameters.

4. An algorithm is designed to extract the prostate diameters based on input TAUS acquisi-
tions in which the prostate is segmented, enabling PV estimation according to the Ellipsoid
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formula. The algorithm is tested on manually delineated prostate segmentations. Then, the
computed diameters are compared to manually assigned prostate diameters on TAUS.

5. Finally, unseen test data is utilised to evaluate the entire framework, whereby the predicted
PV on TAUS is compared to manual PV estimations based on MRI.

1.2 Relevant Work

1.2.1 Standard clinical care of prostate volume measurements to support
PCa risk stratification

According to Dutch health care guidelines, patients with suspected prostate disease are referred
to a urologist for further examination when they present an elevated PSA level (> 3.0 ng/ml),
unexplainable bone-related complaints, an abnormal DRE outcome or when further screening
is requested by the patient [1]. A PSA density exceeding 0.15 ng/ml/cc suggests the need for
prostate biopsy, the gold standard procedure for diagnosing PCa [27]. The necessity for prostate
biopsy is also be determined based on the outcome of multi-parametric magnetic resonance imaging
(mpMRI) scans of the prostate, but the implementation of mpMRI is not standardized in all
European clinical workflows. When mpMRI is utilised, targeted prostate biopsy is recommended
when a patient scores ≥3 on the Prostate Imaging-Reporting and Data System (PI-RADS) [1],
[4], [8]. Appendix A provides a detailed explanation of the PI-RADS. In addition, the Rotterdam
Prostate Cancer Risk Calculators (RPCRCs) are utilised to prevent unnecessary prostate biopsies
by calculating the risk of having clinically significant PCa. An estimation of the PV is one of
the key predictors that is incorporated in such nomogram and therefore required at this stage of
diagnostics [10], [28].

In clinical practice, TRUS or MRI are utilized to estimate the PV, and the PV extracted
from the segmentation masks of the entire prostate gland on MRI is considered the most accurate
[29]. Nevertheless, TRUS is frequently employed in clinical settings due to its cost-effectiveness,
portability and ability to rapidly estimate the PV with the aid of the Ellipsoid formula [17], [30].
During TRUS examination, an ultrasound probe is inserted in the rectum to view the prostate in
the sagittal and axial imaging-plane. (Figure 1.1a) In both image directions, the physician freezes
the mid-plane of the prostate whereby the PV is computed by measuring the longitudinal, anterior-
posterior (AP), and transverse diameters of the prostate gland and multiplying the product by a
coefficient c = π/6 (Equation 1.1) [13], [19], [23]. In clinical settings that allow for prostate
evaluation based on mpMRI, the PV is frequently measured using the same formula due to the
rapid nature of this approach [17].

PVEllipsoid = DTransverse × DAnteriorPosterior × DLongitudinal × π/6 (1.1)

1.2.2 Transabdominal ultrasound as an alternative imaging modality for
prostate volume estimation

When the Ellipsoid formula is performed on TAUS images, a high degree of correlation and agree-
ment with PV estimation based on TRUS (ρ = 0.958, P≤ 0.01) and MRI (ρ = 0.914, P≤ 0.01) is
shown [17], [31]. Previous investigations on the inter-method agreement of TAUS, TRUS and MRI
have yielded divergent results when the different imaging modalities were compared. For instance
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when TAUS was compared to TRUS, Kim et al. (2008) reported an average volume difference of
8.4 ±10.5 ml, indicating that PV measurements based on TAUS underestimate PV measurements
based on TRUS [32]. In contrast, recent literature reported an average volume difference of -9.9
±1.99 ml when the inter-method agreement of TAUS and TRUS was investigated [18]. An average
volume difference of -4.1 ±11.0 ml and 8.06 ±7.9 ml was reported when MRI was compared to
TAUS [17], [33]. Additionally, it has been suggested that the inter-method agreement is influenced
differently when smaller or larger PVs are analysed [17]. Currently, there is no exploration on the
inter-method agreement of manual PV estimation when TAUS, TRUS and MRI are analysed using
the same cohort group.

1.2.3 Deep-learning for automatic prostate segmentation

In recent years, computerized techniques to approximate the PV have been explored, aiming to
promote the consistency, efficiency and precision of PV measurements. Predominately, prostate
segmentation and boundary extraction methods have been developed to reconstruct the PV on
TRUS and MRI. Former research focused on prostate segmentation methods in which deformable
models, edge-based segmentation methods and region-based segmentation methods are used and
are discussed in several overviews on prostate segmentation [20], [26]. However, all aforementioned
methodologies predominantly require the extraction of prostate-related image features such as the
relative pixel intensity or prostate shape information. Especially when used in ultrasound, these
features are affected by the large contrast diversity and ultrasound artefacts resulting in inaccurate
outcomes.

On the contrary, the main advantage of DL is its ability to automatically extract and use multi-
level features that consist of abundant semantic as well as detailed image information [34]. As a
result, prostate segmentation outcomes on TRUS images have become more accurate and useful
over the years. Research in this field mainly focused on the implementation of a standard U-Net
and novel ideas have been introduced to advance the performance of deep neural networks on the
more challenging ultrasound images.

For instance, the deep neural network designed by Xu et al. (2022) outperformed other seg-
mentation techniques by implementing two novel mechanisms to encourage the network to cope
with shadow artefacts on image and feature level [35]. More specifically, shadow artefacts were
artificially added in training images to enrich the shadow diversity of the utilized dataset. This
procedure served as an innovative data augmentation strategy aiming to increase the robustness
of the network when shadow artefacts disrupt the prostate boundary. Furthermore, the shadow
features were subtracted from the created feature maps. In this way, the model was encouraged to
learn the prostate boundary using the remaining shadow-free features.

In the application of Karimi et al. (2019), prostate segmentation outcomes on TRUS were
enhanced by matching a MRI based statistical shape model with the predicted segmentations,
aiming to improve the apex and base region of the prostate segmentations[36].

In the framework proposed by Beitone et al. (2022), image input from all imaging-planes is
combined to improve segmentation outcomes [37]. The employment of multi-directional images
can be of additional value, as the visibility of the prostate varies locally. For instance, the apex
and base of the prostate are characterized with ambiguous boundaries on axial US images, while it
appears more clearly in the sagittal and coronal imaging-plane. The authors designed a framework
in which three 2D U-Nets were trained on axial, sagittal, and coronal TRUS images to produce
view-specific segmentation volumes of the prostate. Then, the resulting volumes were used to
generate view-specific confident maps upon which the final segmentation was created.
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To the best of our knowledge, there is no available literature concerning automatic prostate
segmentation on TAUS images. This can be partly explained by the existing variations in TAUS
image quality, an aspect that commonly affects the accuracy of prostate segmentation methods
[17]. Aside from frequently occurring ultrasound artefacts that challenge the prostate evaluation,
TAUS acquisitions may deviate according to the clinician’s examination technique. Additionally,
patient characteristics influence the image quality. For instance, a high abdominal fat percentage
results in poor image resolution and the prostate boundary can be more difficult to observe when
the bladder is empty. Additionally, TAUS examination is not embedded in standard clinical care
which results in a limited availability of image data, required for the development and validation
of automatic segmentation techniques. Nonetheless, automatic prostate segmentation on TAUS
could benefice the challenges that occur during prostate examination with TAUS. For instance,
medical physicians find difficulty in locating the prostate within the image. Furthermore, automatic
prostate segmentation is a crucial step in image registration with other imaging modalities, that
may be useful when TAUS is more suitable than TRUS in an operation environment [17]. Finally,
automatic prostate segmentation on TAUS can be used to extract the prostate dimensions in the
axial and sagittal imaging-planes to estimate the PV in a less complex and robust manner.

1.2.4 Current techniques for automatic prostate volume estimation

At present, solely Albayrak et al. (2022) focused on an automatic PV measurement of the prostate
using TAUS [33]. The authors automated the workflow of the Ellipsoid formula by establishing a
classification method that predicts six outer boundary landmarks to obtain the transverse, AP and
longitudinal diameter of the prostate. In their work, two deep neural networks were trained sepa-
rately for the axial and sagittal imaging-planes. One network focused on 2D axial TAUS images
to predict four landmarks related to the transverse and AP diameter, while another network was
trained on sagittal TAUS images to identify the remaining two landmarks for the prostate’s lon-
gitudinal diameter. The plane-specific networks comprised an ensemble of four ResNet-18 CNNs
(QDCNN) that were individually trained on image patches that contain the prostate in four image-
scales. The aim of both models was to classify the distance and orientation relative to the ground
truth landmark given a random point in the training image. Then, the location of each landmark
was determined by producing a landmark-specific voting map of all predicted distance and orienta-
tion outcomes. Ultimately, the landmarks served as input to utilize the Ellipsoid formula to obtain
the PV. The proposed method was validated by comparing the Mean Absolute Value Difference
(MAVD) between the predicted PV and a manually estimated PV on TAUS. An average MAVD
value of 4.95 ml was obtained, which is smaller than the average inter-expert MAVD value of 5,09
ml for manual PV estimation on TAUS. Additionally, the predicted PV was compared to a PV
estimation based on MRI that resulted in an average MAVD value of 6.22 ml. For comparison,
the inter-expert average MAVD value between TAUS and MRI was 8.06 ml. (All outcomes were
proposed by the research group).

Even though the presented results seem rewarding, there are considerable aspects of their
proposed system that warrant discussion. First, the Ellipsoid formula can only be utilized on
the mid-axial and mid-sagittal image, where the cross-section of the prostate is at maximum.
Currently, the authors only trained the network with TAUS images that satisfy this criterion.
As a result, user interaction and expertise is still required when the proposed method would be
implemented in a clinical workflow. In our proposed algorithm, the determination of the most
suitable prostate slice is implemented to measure the PV automatically as accurate as possible.
Secondly, the authors evaluated the system on MAVD of the entire PV, while the outcome relies on
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the prediction of six landmarks. Hence, it remains unclear whether the accuracy of the calculated
landmarks are contributing equally to the predicted MAVD. During our study, all parameters that
contribute to the final prediction of the PV are evaluated to understand which factors possibly
result in inaccuracies.
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2
Materials and Methods

2.1 Study overview

This research is structured into three phases, each targeting specific aspects of PV estimation
to develop and validate a comprehensive framework for automatic PV estimation using TAUS
imaging, deep neural networks and algorithms. An overview for the three phases of this study is
provided in Figure 2.1.

Phase 1 involved exploring the feasibility of estimating the PV using TAUS. A new dataset
was set up, comprising TAUS image acquisitions of 100 participants. For all included partici-
pants, the PV was measured manually on TAUS images with the aid of the Ellipsoid formula and
corresponding PV measurements based on TRUS and MRI were retrieved from the hospital’s elec-
tronic database. Then, the inter-method agreement of PV estimation using the different imaging
modalities was analysed in Bland Altman diagrams and a Wilcoxon Rank test.

Automatic prostate segmentation and prostate diameters extraction on TAUS images is the
main focus of Phase 2. In this phase, multiple experiments were conducted to investigate the ap-
plication of deep neural networks to segment the prostate on TAUS images. First, all acquisitions
were evaluated in a quality assessment on prostate visibility, and resulted in the exclusion of ac-
quisitions with poor image quality. One expert manually segmented the prostate in acquisitions of
61 participants to obtain the ground truth labels required for training, validation and testing of all
developed deep neural networks. Subsequently, an algorithm was designed to extract the prostate
diameters automatically when input prostate segmentations are provided. The proposed algorithm
was evaluated by comparing computed prostate diameters with manually assigned prostate diame-
ters on TAUS on the examinations from 42 participants. The combination of deep neural networks
to segment the prostate and an algorithm to extract the prostate diameters results in a novel
method for automatic PV estimation.

In Phase 3, an entire framework for automatic prostate volume estimation based on the meth-
ods proposed in phase 2, was tested on independent and unseen image data of 17 participants.
The predicted PV outcomes were compared to corresponding PV measurements on MRI for each
participant.
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Figure 2.1: Project overview. Phase 1: Data of 86 participants is used for analysing the inter-method
agreement between manual PV measurement using TAUS, TRUS and MRI. Phase 2: Data of 52 partici-
pants is used for the development of deep neural networks to segment the prostate on TAUS and data of 42
participants is used to validate the algorithm to extract the prostate diameters. Phase 3: The methods
developed in Phase 2 result in an framework for automatic prostate volume (PV) estimation on TAUS,
and is tested on image-data of 17 participants. Finally, the predicted PV is compared to reference PV
measurements based on MRI.
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2.2 Cohort description and data collection

To explore the feasibility of TAUS for PV estimation, a cohort study was performed at the Center
for Early Cancer Diagnostics, Antoni van Leeuwenhoek Hospital in the Netherlands between Au-
gust 2023 and February 2024. All men who underwent early diagnostic screening for PCa (including
DRE, TRUS examination and mpMRI), were offered to participate in the study and received oral
and written information on TAUS examination as well as information on study participation. After
the process of shared decision-making, written informed consent was provided by each participant.
Subjects who did not speak the Dutch language were excluded from this study. This study was
approved by the Institutional Review Board of Antoni van Leeuwenhoek Hospital (IRBd22-319).

A new dataset was formed, comprising TAUS acquisitions of 100 participants in the sagittal
and axial imaging-planes. Each acquisition exists of a sequence of 2D TAUS images such that the
apex and base of the prostate were covered maximally. For each participant, at least one axial
and one sagittal acquisition was conducted and in a few cases, additional acquisitions were carried
out to increase the number of images in the dataset. All acquisitions were obtained with a BK
Medical 3000 system (BK Medical, Herlev, Denmark) equipped with a 6C2 (9040) Curved Array
Transducer[38]. TAUS examination was carried out by one person educated in Technical Medicine
(LMK) under the guidance of an experienced urologist (PVL), or by the urologist (PVL).

2.3 Phase 1: A feasibility study on prostate volume estima-
tion using TAUS

For each participant, the AP, transverse and longitudinal diameters of the prostate were manually
assigned to enable PV estimation on TAUS according to the Ellipsoid formula (equation 1.1).
The maximum transverse diameter was assessed on the mid-axial image and the AP diameter was
measured perpendicularly between the anterior and posterior prostate boundary (Figure 2.2a). The
longitudinal diameter was assessed on the mid-sagittal image and measured from the bladder to the
prostate apex. (Figure 2.2b) When the prostate boundary in the apex region was disrupted due to
shadow artefacts, the longitudinal diameter was estimated based on visual inspection. In the case of
bulging prostate contours or when the prostate interrupted the bladder, the entire prostate area was
included in the diameter assessment. Reference measurements of the PV based on TRUS and MRI
were retrieved retrospectively for each participant from the hospital’s electronic database. For both
imaging modalities, the PV estimations were performed by an expert urologist/radiologist, utilizing
the Ellipsoid formula according to clinical standard. The TAUS, TRUS, and MRI examinations
were always conducted on the same day. To complete the dataset, clinical information was obtained
on age, PSA density based on MRI, and PI-RADS score.

2.3.1 Inter-method agreement between TAUS, TRUS, and MRI

First, the inter-method agreement of manual PV estimation based on TAUS, TRUS, and MRI is
analyzed using Bland Altman diagrams and a Wilcoxon Rank Test. Each imaging modality pair is
tested at a significance level of alpha = 0.05, that was adjusted using the Bonferroni Correction to
compensate for multiple comparisons, resulting in alpha = 0.017 (0.05/3). Statistical significance
was considered when P < alpha was verified. A Bland Altman diagram visualises the difference
between PV measurements, obtained by two imaging modalities, on the vertical axis against the
mean of the pair on the horizontal axis. The upper and lower limits of agreement (LoA) visualize
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Figure 2.2: The prostate on transabdominal ultrasound (TAUS). a: Mid-axial TAUS image depicting the
transverse diameter and the anterior-posterior (AP) diameter in yellow. b: Mid-sagittal TAUS image
depicting the longitudinal diameter in yellow.

the 95% confidence interval of the included measurements [39].
Subsequently, the inter-dependence of prostate diameters in the axial and sagittal imaging-

planes was investigated by assessing the correlation between the transverse and the longitudinal
diameter using a Spearman Correlation test. The correlation between the AP diameter and the
longitudinal diameter was also determined. A strong relation between diameters was considered
when correlation coefficient ρ > 0.75 and statistically significant when P < 0.05/2 [40].

The longitudinal diameter is considered more prone to errors when assessed on the sagittal
imaging-plane [32]. Therefore, a novel method to estimate the PV was proposed to investigate
whether image information of only the axial imaging-plane is sufficient for a PV estimation on
TAUS. In the axial-plane method (PVAxial, Equation2.1), the AP diameter acts as a surrogate
for the longitudinal diameter to calculate the volume of the hypothetical prostate shape, in a less
complex manner. Hence, for each participant, the PV was calculated according to PVAxial, and
compared to PV measurements based on MRI in a Bland-Altman diagram. All statistical analysis
was performed using statistical functions present in the SciPy library (version 1.13.0) implemented
in Python (version 3.9), or Microsoft Excel (version 2016) Python, [41], [42].

PVAxial = DTransverse × DAnteriorPosterior
2 × π/6 (2.1)

2.4 Phase 2: Deep neural networks for prostate segmenta-
tion

2.4.1 Image quality assessment

To provide insight into the existing variety of image quality in the dataset, all TAUS acquisitions
were assessed and scored by one expert (LMK) on the presentation of the volume (PPV), ranging
from 0%. 25%, 50%, 75% and 100%, the visibility of the prostate boundary (VPB) (A, B, C) and
artefacts interrupting the prostate (AIP) that contain notes regarding occurring image-artefacts.
Elaborate details regarding the quality assessment are covered in Appendix B.

The image data used for the development of all neural networks comprised solely quality A/B
acquisitions in which the prostate is visible for at least 75%. In other words, the apex, base
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Figure 2.3: Three examples of manual prostate segmentation on sagittal TAUS images. a: A manual
segmentation where a small shadow region is included as prostate tissue. b: A manual segmentation when
no shadow artefact is interrupting the prostate boundary. c: A manual segmentation where the prostate
boundary is partly estimated as shadow artefacts interrupt the prostate boundary.

and middle section of the prostate were visible in the image sequence. After excluding poor-
quality acquisitions, 139 acquisitions of 61 participants were regarded as suitable for training,
validation and testing. For each acquisition sequence in the training dataset, only one image in
every five frames was included in the training set in order to prevent the model from overfitting on
similar image data. The dataset used for training and validation contains 61 axial and 59 sagittal
acquisitions (1599 sagittal and 1764 axial images of 52 participants). The test dataset contains 17
axial and 17 sagittal acquisitions (1333 sagittal and 1436 axial images of 17 participants). Each
image was 1016× 936 pixels in size with a pixel size of 0.25×0.25 mm.

First, all acquisitions were converted from Digital Imaging and Communication in Medicine
(DICOM) to NIfTI format. Manual prostate segmentation was carried out by a trained observer
(LMK) in the open-source software 3D Slicer (version 5.4.0), to obtain the ground truth labels
of each acquisition [43]. When the prostate boundary was interrupted by shadow artefacts, the
segmentation boundary was estimated based on visual inspection. For instance, adjacent slices
were observed to estimate the prostate boundary as accurately as possible (Figure 2.3c).

2.4.2 Development of prostate segmentation models

The state-of-the-art medical segmentation framework nnU-Net is implemented, since it covers the
entire segmentation pipeline, including pre-processing, training and post-processing [44]. During
this project, two plane-specific models were trained for 1000 epochs in 2D configuration to segment
the prostate in the axial and sagittal imaging-planes and are referred to as Model Axial and Model
Sagittal. Additionally, a third model was trained on a combination of the axial and sagittal images
to segment the prostate regardless of the imaging-plane (Model Sag-Ax).

Model Axial and Model Sagittal were trained and validated in a four-fold cross-validation on
plane-specific image data, to explore the robustness of the models across the entire dataset. Folds
were selected manually, ensuring that no image of the same participant occurred in different folds.
Each fold consisted of 8-11 participants and was representative of the acquisitions in the dataset:
TAUS images contained multiple cases of shadow artefacts, clear visibility of the seminal vesicles
or bladder disruption by the prostate. Secondarily, both models were evaluated on 10 acquisitions
from the respective other imaging-plane to explore the performance of each model on image data
of controversial image direction.

Model Sag-Ax was trained on 101 sagittal/axial acquisitions of 42 participants and validated
on 10 sagittal and 10 axial acquisitions of 10 participants. Then, the performance of Model Sag-Ax
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was compared to the performance Model Axial and Model Sagittal on the same evaluation data.

2.4.3 Model evaluation

For all proposed models, the acquisitions in the validation dataset were predicted and compared
to ground truth labels. For each image in an acquisition, the Dice similarity coefficient (DSC) and
DSC on true positive images (DSC-TP) were computed and the average across all images was ob-
tained for each acquisition. The DSC measures the similarity between the predicted segmentation
and the ground truth label for each slice in the acquisitions[45]. The DSC-TP is obtained to explore
the model performance when its ability to classify the prostate is optimal. Additionally, the DSC
and the Haussdorf distance were calculated on the predicted segmentation that is in mid-plane
of the acquisition (DSC mid-plane, HD mid-plane), as the mid-plane prostate region is required
for extraction of the prostate diameters. DSC mid-plane and HD mid-plane are calculated on the
predicted segmentation, where the ground truth segmentation has the largest cross-section in pix-
els. HD mid-plane measures the maximum error between the segmentation and its corresponding
ground truth label.[45]

For each model, boxplots were generated on DSC, DSC-TP, and DSC mid-plane to visualise the
distribution of each evaluation metric outcome across all participants. When multiple acquisitions
of the same participant occurred in the validation dataset, the average result of the acquisitions was
reported for each participant. For each fold, all evaluation metrics were reported as the average
value across all participants and SD values were retrieved. The ultimate performance of Model
Axial and Model Sagittal is reported by taking the average of each evaluation metric outcome in
the four validation folds.

The inter-observer variability of manual prostate segmentation on TAUS was evaluated as a
reference standard. It was obtained by comparing the segmentations of three observers (BDB,
TN, MF) with a ground truth segmentation (LMK) on DSC in 5 sagittal and 5 axial acquisitions.
The inter-observer variability for prostate segmentation in the axial and sagittal imaging-plane
was reported as the average DSC score across all plane-specific acquisitions that were segmented
by the three observers.

2.5 Proposed Algorithm to extract the prostate diameters

An algorithm was developed to extract the prostate diameters based on one sagittal and one axial
input acquisition in which the prostate is segmented. The outcome of the algorithm is a compu-
tation of the transverse, AP and longitudinal diameter. Similarly to manual diameter assessment
on TRUS, the computation of the AP and transverse diameter is based on the axial segmentation
whereas the computation of the longitudinal diameter relies on the sagittal segmentation.

Figure 2.4 provides a schematic overview of the algorithm for automatic prostate diameters
extraction, and it is designed as follows. For the sequence of 2D prostate segmentations in the
sagittal and axial imaging-plane, the mid-axial and mid-sagittal prostate slice is determined by
taking the segmentation with the largest cross-section in terms of number of pixels for each imaging-
plane. This results in two segmentations: SegAx and SegSag. Then, the algorithm verifies whether
both segmentations consist of one continuous delineation, to ensure an appropriate determination
of the centroid of both segmentations. When multiple segments are detected, the largest continuous
segment is assigned as SegAx and/or SegSag. To approximate the maximum transverse and AP
diameter, an ellipsoid is fit to the outer boundary of SegAx. The major and minor axis lengths of
the ellipsoid then simulate the transverse and AP diameters according to the used angle of rotation.
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Figure 2.4: Proposed algorithm to extract the transverse, anterior-posterior and longitudinal prostate
diameters. The inputs of the algorithm are two sequences of TAUS images (sagittal and axial imaging-
plane) in which the prostate is segmented for each slice in the acquisition. The computation of the AP
and transverse diameter is based on the axial segmentation whereas the computation of the longitudinal
diameter relies on the sagittal segmentation. The algorithm is designed as follows: First the mid-plane
prostate segmentation is defined as the segmentation with the largest prediction area, resulting in SegAx
and SegSag. Then an ellipsoid is fit on the outer boundary of SegAx, whereby the major and minor
axis of the ellipsoid act as the transverse and anterior-posterior diameter. The longitudinal diameter is
approximated by defining the maximum line through the centroid of SegSag under 40 to 50 degrees.

The major axis corresponds to the transverse diameter when the Ellipsoid’s angle of rotation is
0-45, 135-225, and 315-360 degrees, while it corresponds to the AP diameter, when other angles of
rotation apply (46-134, 226-314 degrees). The longitudinal diameter is computed by drawing ten
lines that go through the centroid of SegSag under a range of °40 to°50 degrees. The maximum
line L is determined and its intersection coordinates with SegSag are obtained. The longitudinal
diameter is then calculated according to L = ∆x× tan(α).

To evaluate the proposed method, the algorithm is tested on 42 axial/sagittal acquisitions in
which the prostate is segmented manually. For each prostate diameter, the computed diameter
is compared to the manually assigned diameter on TAUS, visualised in a Bland Altman diagram.
Additionally, the PV is predicted according to the PVEllipsoid and PVAxial, and compared to
manual volume measurements based on TAUS to explore the algorithm performance when the
input segmentations are correct. Bland Altman diagrams are generated to show the inter-method
agreement of the computed PV against the manual measurement.

2.6 Phase 3: Automatic prostate volume estimation using
TAUS

Essentially, the combination of the developed segmentation models, and the algorithm that com-
putes prostate diameters results in a framework that enables automatic PV estimation on TAUS.
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The entire framework is tested in the last phase of this study by predicting PVEllipsoid and PVAxial

on TAUS acquisitions of 17 participants. To obtain SegAx and SegSag, the best-performing models
of the cross-validated Model Axial and Model Sagittal were assigned to segment the prostate in
both imaging-planes. Then, transverse, AP and longitudinal diameters were computed according
to the proposed algorithm. Subsequently, Equation 1.1 is used to predict PVEllipsoid, and Equa-
tion 2.1 is used to predict PVAxial. For both predictions, the PV is compared to reference PV
measurements based on MRI, whereby Bland Altman diagrams were generated to illustrate the
inter-method agreement.
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3
Results

3.1 Dataset characteristics

The baseline characteristics of all included participants are shown in Table 3.1. The participants
that were included in this study had an average age of 66.5 ±10.6 years. The average prostate
volume on MRI was 58.5 ±32.4 ml with a mean PSA density of 0.20 ±0.30 ng/ml/cc. When
the acquisitions of each participant were assessed on quality, 61 participants yielded quality A/B
images, while the acquisitions of 25 participants contained poor prostate visibility (quality C). The
prostate was not present in the acquisitions of 14 participants and were therefore excluded.

Table 3.1: Baseline characteristics of included subjects (n=100

Characteristic
Mean ±SD

Age (y) 66.5 ±10.6
PSA-density (ng/mL/cc) 0.2 ±0.3
MRI prostate volume (mL) 58.5 ±32.4

PI-RADS Number
1 3
2 48
3 14
4 10
5 25
TAUS image quality
incorrect 14
A 26
B 35
C 25

SD: standard deviation, PSA: prostate-specific antigen, MRI: magnetic resonance imaging. TAUS:
transabdominal ultrasound, PI-RADS: Prostate Imaging-Reporting and Data System.
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3.2 Phase 1: Prostate volume estimation inter-method agree-
ment: TAUS, TRUS, and MRI

3.2.1 PV estimation based on Ellipsoid formula

For 86 participants, the PV was measured on TAUS and MRI using the Ellipsoid formula (PVEllipsoid).
TRUS examination was not conducted in nine participants, resulting in 77 PV measurements based
on TRUS. When the PV measurements of MRI, TRUS and TAUS were analyzed using the Wilcoxon
Rank Test, a significant difference between the two sets of measurements was shown, regardless of
the observed imaging modality (TRUS vs TAUS P <0.001, TRUS vs MRI P < 0.001, TAUS vs
MRI P = 0.009). In other words, a significant difference was obtained when PVEllipsoid measure-
ments obtained with MRI were compared to TAUS measurements, when TRUS was compared to
MRI, and when TRUS was compared to TAUS.

The average difference between PV measurements on TAUS and MRI was 3.0 ±17.6 ml (n = 86).
Figure 3.1a shows the Bland Altman diagram, whereby the positive bias of 3.0 ml indicates that
on average, the PV acquired using TAUS tends to underestimate the corresponding measurement
obtained with MRI. When PV measurements using TAUS and TRUS were compared, an average
volume difference of -8.0 ±17.6 ml was found (n = 77), indicating that TAUS tends to overestimate
the PV compared to TRUS. The Bland Altman diagram on TRUS and TAUS shows an increase
in variability as the PV enlarges (Figure 3.1d). As a reference, the average difference between PV
measurements derived from TRUS and MRI is 12,3 ±18.8 ml (n = 77). Figure 3.1c depicts the
variance between TRUS and MRI, illustrating that the difference between volume measurements
increases when the prostate volume is enlarged.

3.2.2 PV estimation based on Axial formula

The inter-method agreement between PVAxial and MRI resulted in an average volume difference
of 11.2 ±20.3 ml (n = 86), and is shown in Figure 3.1b.

Regarding the inter-dependency of prostate diameters in different imaging-planes, the Spear-
man’s Correlation test shows that the transverse diameter correlates poorly with the longitudinal
diameter (ρ = 0.38, P < 0.001), while the AP diameter has a strong correlation with the longitu-
dinal diameter in TAUS images (ρ = 0.77 P <0.001).

3.3 Phase 2: Deep neural networks for prostate segmenta-
tion

3.3.1 Evaluation Model Sagittal and Model Axial

Table 3.2 shows the performance of Model Axial and Model Sagittal, tested on plane-specific TAUS
images in terms of average DSC, DSC-TP, DSC mid-plane, and HD mid-plane. Model Axial
segments the prostate on axial images with an average DSC of 0.76 ±0.09, while Model Sagittal
segments the prostate on sagittal images with an average DSC of 0.68 ±0.21. When the mid-plane
region of the prostate is evaluated, it shows that Model Axial and Model Sagittal segment the
prostate with an average DSC mid-plane = 0.91 ±0.06 (HD = 0.62 ±0.40 cm), DSC mid-plane =
0.83 ±0.09 (HD = 0.89 ±0.40 cm) respectively. Figure 3.2 presents boxplots on DSC, DSC-TP and
DSC- midplane for each fold in the cross-validation, illustrating the performance of both models
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Figure 3.1: The comparison of TAUS, TRUS and MRI for prostate volume estimation, whereby the
difference between two sets of PV measurements is visualised on the vertical axis and the mean of the
pair is present on the horizontal axis. The upper and lower limits of agreement (LoA) visualise the 95%
confidence interval of the included measurements. For each participant, the image quality of the TAUS
image is assigned (quality A, B, C). a: TAUS compared to MRI (PVEllipsoid). b: TAUS compared to MRI
(PVAxial). c: TRUS compared to MRI. d: TRUS compared to TAUS.

Figure 3.2: Model performance for each fold in the cross-validation, shown in boxplots. For each fold, the
dice similarity coefficient (DSC), the DSC on true positive predicted segmentations (DSC-TP) and the
DSC in the mid-prostate region were reported. a: Model Axial. b: Model Sagittal.

across all participants in the dataset. Model Axial and Model Sagittal achieve the highest DSC
score when evaluated on Fold 3.

A qualitative comparison of the performance of Model Axial and Model Sagittal on different
TAUS images is shown in Figure 3.9 and Figure 3.10, where the ground truth segmentation (green)
and the prediction (red) are overlaid in the original TAUS image. For both imaging-planes, five
cases are presented in which the apex, middle section, and the base of the prostate are displayed. In
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line with the quantitative results, the visual inspection shows that in the majority of the cases, the
prediction tends to correspond with the ground truth segmentation when the middle region of the
prostate is predicted. (Figure 3.9 b,e,h,n, Figure 3.10 b,e,k,n ) Additionally, the axial prostate area
is segmented correctly when the prostate disrupts the bladder, a sign of prostate enlargement that
frequently occurs in middle-aged men (Figure 3.9 c). Deviations in detecting the prostate boundary
on axial images mainly comprise overestimations due to present shadow artefacts (Figure 3.9 f) or
deviating/missed segmentations in the apex and base prostate region (Figure 3.9 g,o). In a single
case, the model falsely classified bladder debris as prostate tissue (Figure 3.9 j).

When the predictions of Model Sagittal are examined visually, it is observed that the predictions
deviate from the ground truth segmentations more profoundly compared to the predictions of Model
Axial tested on axial TAUS images. In several cases, the predictions are over- and underestimating
the prostate region (Figure 3.10 a,d,g), along with false negative outcomes that mostly occur in the
apex and base of the prostate region (Figure 3.10 i,j) When the performance of both models was
evaluated on TAUS images of controversy image direction, false negative outcomes were obtained
in the majority of the input images. In other words, both models have difficulty in finding the
prostate on the imaging-plane that was not included in the training phase of each model.

Figure 3.3: A comparison of the performance of Model Axial, Model Sagittal and Model Sag-Ax on Dice
similarity coefficient (DSC), DSC on true positive predicted segmentations (DSC-TP) and DSC in the
mid-prostate region (DSC mid-plane). Overall, the plane-specific models outperform Model Sag-Ax on all
evaluation metrics.a: Model Axial vs Model Sag-ax b: Model Sagittal vs Model Sag-ax

3.3.2 Evaluation Model Sag-Ax

The performance of Model Sag-Ax in terms of DSC, DSC-TP, DSC mid-plane, and HD mid-plane
is incorporated in Table 3.2. Based on the evaluation on test images, which is a union of axial and
sagittal test data, Model Sag-Ax segments the prostate with an average DSC = 0.64 ±0.25 and
DSC = 0.54 ±0.32 on axial and sagittal TAUS images respectively. When the mid-plane region of
the prostate is evaluated, Model Sag-Ax segments the prostate with an average DSC mid-plane of
0.87 ±0.09 (HD = 0.65 ±0.66 cm), 0.76 ±0.19 (HD = 0.97 ±0.28 cm) for axial and sagittal TAUS
images respectively.

Figure 3.3 displays the comparison of Model Sag-Ax to Model Sagittal and Model Axial, tested
on the same image data, on DSC, DSC-TP and DSC mid-plane, visualized in boxplots. When
Model Sag-Ax is compared to Model Sagittal, a lower model performance is shown regardless of
the observed evaluation metric. Similar results can be observed when Model Sag-Ax is compared
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to Model Axial. Nevertheless, Model Sag-Ax outperforms Model Axial in terms of HD mid-plane
(0.73 ±0.64 cm vs. 0.65 ±0.66 cm).

When the predictions of Model Sag-Ax were inspected visually, it was observed that false
positive predictions occurred more frequently compared to the plane-specific models. The false
positive segmentations mainly comprised dark shadow artefacts, occurring in the TAUS image.
Similar to the plane-specific models, the predictions of Model Sag-Ax corresponded closely to the
ground truth the mid-prostate region was evaluated. Figure 3.4 shows a comparison between
prostate segmentations of Model Sag-Ax and Model Sagittal/ModelAxial when similar images of
the same participant are provided.

Figure 3.4: A comparison of the predictions of Model Sag-Ax, Model Sagittal/Model Axial when similar
images of the same participant are provided. The examples show increased false positive predictions of
Model Sag-Ax compared to Model Sagittal. At the same time, the prediction of model Sag-Ax corresponds
closely to the prediction of Model Axial and the ground truth segmentation a: Model Sag-Ax b: Model
Sagittal c: Model Sag-Ax d: Model axial

3.3.3 Inter-observer variability of manual prostate segmentation on trans-
abdominal ultrasound

The analysed inter-observer variability of manual prostate segmentation on TAUS showed a DSC
= 0.66 ±0.17 for axial TAUS images. For prostate segmentation on sagittal TAUS images, a DSC
= 0.62 ±0.13 was reported.
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Table 3.2: Performance of Model Axial, Model Sagittal and Model Sag-Ax to segment the prostate
on transabdominal ultrasound

Model DSC DSC-TP DSC mid-plane HD mid-plane [cm]
Model Axial
Fold 0 0.70 ±0.25 0.80 ±0.13 0.89 ±0.11 0.73 ±0.64
Fold 1 0.69 ±0.14 0.87 ±0.05 0.91 ±0.04 0.65 ±0.37
Fold 2 0.78 ±0.11 0.86 ±0.04 0.93 ±0.03 0.47 ±0.15
Fold 3 0.85 ±0.07 0.89 ±0.03 0.91 ±0.05 0.61 ±0.41
mean 0.76 ±0.09 0.86 ±0.06 0.91 ±0.06 0.62 ±0.40
Model Sagittal
Fold 0 0.62 ±0.26 0.74 ±0.13 0.84 ±0.06 0.78 ±0.26
Fold 1 0.67 ±0.21 0.79 ±0.10 0.83 ±0.07 0.98 ±0.46
Fold 2 0.65 ±0.25 0.76 ±0.16 0.80 ±0.16 1,20 ±0.58
Fold 3 0.76 ±0.12 0.83 ±0.06 0.86 ±0.07 0,60 ±0.37
mean 0.68 ±0.21 0.78 ±0.12 0.83 ±0.09 0.89 ±0.40
Model Sag-Ax
Axial data 0.64 ±0.25 0.77 ±0.15 0.87 ±0.09 0.65 ±0.66
Sagittal data 0.54 ±0.32 0.70 ±0.18 0.76 ±0.19 0.97 ±0.28

The Dice similarity coefficient (DSC), DSC on true positive segmentations (DSC-TP), DSC score
in the mid-plane image of the acquisition (DSC mid-plane), Haussdorf Distance in the mid-plane
image of the acquisition (HD mid-plane) Results are reported as average outcome across all acqui-
sitions ±standard deviation. Model Axial was trained and validated on axial TAUS images, while
Model Sagittal was trained and validated on sagittal TAUS images. Model Sag-Ax is trained on
the combination of sagittal and axial TAUS images and tested individually on images of the axial
and sagittal imaging-plane.

3.4 Evaluation Algorithm to extract the prostate diameters

Figure 3.5 illustrates the expected variability related to the diameter computation when the seg-
mentation performance is optimal. Compared to manually assigned diameters, it is shown that
the proposed algorithm derives the longitudinal diameter with an average difference of 0.18 ±0.8
cm. In other words, the algorithm tends to underestimate the longitudinal diameter whereby a
maximum underestimation of 1.74 cm can be expected (Figure 3.5a). On the contrary, when the
computed transverse and AP diameters were analysed, an average difference of -0.05 ±0.4 and -0.3
±0.3 cm were observed respectively (Figure 3.5b, c).

When the computed diameters are utilized for the calculation of PVEllipsoid, an average volume
difference of -1.5 ±10.1 ml compared to manual PV estimation on TAUS is observed (Figure 3.6a).
Similar results are obtained for PVAxial, and Figure 3.6b shows that the computed PVAxial results
in an average volume difference of 1.3 ±9.4 ml when compared to manual PVAxial measurements
on TAUS.
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Figure 3.5: The difference between computed prostate diameters and manually assigned diameters visu-
alised in Bland Altman diagrams. a: The longitudinal diameter b: The transverse diameter. c: The
anteriorposterior diameter.

Figure 3.6: A comparison between PV measurements based on computed diameters and the manually
assigned diameters when ground truth segmentations are provided. a: Comparison manual PVEllipsoid

and prediction B: Comparison manual PVAxial and prediction

3.5 Phase 3: Automatic prostate volume estimation on trans-
abdominal ultrasound

This section covers the final evaluation of the framework (automatic segmentation and diameter
extraction), tested on TAUS acquisitions of 17 participants. Figure 3.8 shows the prediction of
PVEllipsoid, the prediction of PVAxial and reference PV measurements on MRI for each participant
in the test dataset. Additionally, the relative deviation of the predicted PVEllipsoid compared to
MRI is reported. For 14 out of 17 cases, the prediction of PVEllipsoid deviates with less than 25%
compared to the MRI volume. A maximum overestimation of 47% is reported for a single case
in the test dataset. In one case, the prediction of PVEllipsoid correspond with 100% to the PV
measurements based on MRI.

In figure 3.7 the inter-method agreement between PV predictions and PV estimations based on
MRI is illustrated in Bland Altman diagrams. Figure 3.7a shows that the prediction of PVEllipsoid

deviates on average with 2.5 ±10.2 ml compared to MRI. When the predictions of PVAxial are
analysed, an average volume difference of -1.2 ±10.8 ml is observed (Figure 3.7b).
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Figure 3.7: A comparison between predicted prostate volume (PV) measurements and reference volume
measurements based on MRI, whereby the mean difference and the limit of agreements (LoA) compared
to MRI are visualised.a: MRI compared to the predicted PV according to PVEllipsoid b: MRI compared
to the predicted PV according to PVAxial.

Figure 3.8: A comparison of prostate volume predictions with reference volume measurements on MRI.
The barplot shows the predicted PV according to PVAxial and PVEllipsoid and the reference MRI volume
for each participant in the test dataset. The relative difference between Predicted PVEllipsoid and the
reference MRI volume is reported. In 14/17 test cases, the relative difference compared to MRI is ≤25%.
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Figure 3.9: A qualitative comparison of the performance of Model Axial where the ground truth segmen-
tation (green) and the prediction (red) are overlaid in the TAUS image. For each case, an image from
the apex, middle, and base prostate region is provided. a, b, c: Predicted segmentations that correspond
closely to the ground truth segmentation. f: Misclassification of shadow artefact. j: False-positive seg-
mentation of bladder debris occurring in the image. o: False-negative segmentation in the base region of
the prostate.
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Figure 3.10: A qualitative comparison of the performance of Model Sagittal where the ground truth
segmentation (green) and the prediction (red) are overlaid in the TAUS image. For each case, an image
from the apex, middle, and base prostate region is provided. a, b, c: Predicted segmentations showing
more deviation in the apex and base prostate region compared to the middle region.b, e, k, n: Predictions
of the mid-prostate region that correspond closely to the ground truth segmentation. d, g: The predicted
segmentation missed the prostate region partly. i, j: False negative segmentation in the apex/base region
of the prostate.
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4
Discussion

Prostate cancer (PCa) risk-stratification relies on accurate determination of the prostate volume
(PV) whereby transrectal ultrasound (TRUS) is predominantly utilized in clinical practice. This
study proposes a framework for automatic PV estimation based on transabdominal ultrasound
(TAUS) as a patient-friendly, and robust alternative to infer the PV. Therefore, the feasibility
of TAUS for manual PV estimation is explored and compared to PV estimation based on TRUS
and magnetic resonance imaging (MRI). Secondly, three deep neural networks are developed to
segment the prostate on TAUS images and serve as input to a proposed algorithm that computes
prostate diameters. Ultimately, the framework enables automatic PV estimation when input TAUS
acquisitions are provided.

4.1 Prostate volume estimation inter-method agreement:
TAUS, TRUS, MRI

4.1.1 PV estimation based on the Ellipsoid Formula

TAUS is a non-invasive imaging modality, well-tolerated by patients, and its general availability
makes it feasible for routine use in PCa risk stratification workflows. Former research on the topic
show that PV estimation based on TRUS, TAUS, and MRI results in correlated outcomes whereby
the Ellipsoid formula (PVEllipsoid) can be employed as a rapid technique with reasonable accuracy
and repeatability [17], [32].

When PVEllipsoid measurements based on TAUS are compared to MRI, an average volume
difference of 3.0 ±17,6 ml was observed. Figure 3.1a suggests that the variance of PV measurements
is independent of the PV in a range of 20 to 100 ml. Since our dataset only comprised six cases above
100 ml, it remains uncertain whether the increased SD in these cases can be attributed to prostate
enlargement. Furthermore, the variance in PV measurements seems unrelated to the TAUS image
quality, indicating that manual diameter assessment can be performed even when unfavorable
patient/TAUS characteristics limit the image quality. In a previous study conducted by Guo et
al.(2023), a comparison between PVEllipsoid utilizing TAUS and MRI showed an average difference
of -4.1 ±11.0 ml [17]. In contrast to our findings, their proposed Bland Altman diagram suggests
a decreased inter-method agreement when the PV increases. Additionally, TAUS overestimated
the PV measurements based on MRI whereas our results show an average underestimation of
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3.0 ml. The discrepancy in results may be attributed to the inter-observer variability related to
the Ellipsoid Formula and the variation is used datasets. [33]. Additionally, in their work the
AP diameter was assessed on the sagittal imaging-plane, while the AP diameter in our work was
derived from the axial TAUS image. Currently, there is no standard method of obtaining the
prostate’s diameters on TAUS, which may be of interest in future explorations on PV estimation
using prostate diameters on TAUS.

When PVEllipsoid measurements using TAUS and TRUS were compared, an average volume
difference of -8.0 ±17.6 was observed, whereby the variance of PV measurements increased as the
PV increases (Figure 3.1d). In line with this, Gerald et al. (1996) also observed a connection
between PV and variability when TRUS is utilised, demonstrating that TRUS underestimates PV
measurements more frequently when the PV exceeds 30 ml [46]. Moreover, De Vos et al. (2023)
explored the feasibility of PV measurements with the aid of TAUS in a primary care setting and
reported an average volume difference of -9.9 ml ±2.0 ml when TAUS was compared to TRUS
[18]. Similarly, the authors showed that the variability of PV measurements between TRUS and
TAUS increased as the PV enlarged. One possible explanation for this phenomenon is that enlarged
prostates often extend into the bladder area, which is difficult to visualize in sagittal TRUS images.
As a result, the assessment of the longitudinal diameter becomes more difficult especially when
larger PVs are encountered. On the contrary, MRI and TAUS acquisitions have in common that
the bladder region is more visible, resulting in better visualization of larger prostates even when
growing into the bladder. This may explain the larger variance of TRUS compared to TAUS
when they are analyzed against MRI volumes (Figure 3.1c). Yet, it must be acknowledged that
deviations in TRUS measurements may be the result of study limitations. In several cases, TRUS
examination was conducted by clinicians who were still in training and the diameter assessment
was always performed during patient examination. In contrast, the diameter assessment based on
TAUS and MRI were always performed after patient examination. More importantly, during this
study, all clinicians knew beforehand that an MRI-based PV estimation was conducted for each
participant and further decisions were based on this outcome.

The results from this study suggests that it is possible to achieve PV estimations through TAUS
images that are similar to MRI. Still, it is important to notice that the determination of the apex
prostate region on the sagittal imaging-plane influences the accuracy of manual PV measurements
based on TAUS. When TAUS examination is conducted improperly, shadow artefacts induced
by the reflection of the pelvic bone, limit the prostate’s visibility. As a result, the clinician is
forced to guess the longitudinal diameter, leading to undesirable variability. The variability in the
estimation of diameters, due to improper TAUS examination has been reported to decrease in more
expert users, whereby the learning curve associated with TAUS examination indicates that more
experienced clinicians learn how to perform better acquisitions [18], [32]. The same learning curve
was also accounted by the operator (LMK) when TAUS examination was performed during this
study. During the initial phase of data collection, several acquisitions were carried out improperly
(n=14), and therefore excluded, whilst the prostate was clearly visible in the acquisitions that were
acquired later on. One possible solution to minimize the (initial) complexity of TAUS examination,
is a real time prostate detection system that aids inexpert operators in finding the prostate during
TAUS examination. Recently, Natali et al.(2024) investigated an automatic prostate detection
system, to promote appropriate prostate visualisation when TAUS acquisitions are conducted.[47]
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4.1.2 PV estimation based on Axial formula

To exclude the variability related to determination of the longitudinal diameter on the sagit-
tal imaging-plane, this study introduces a new method to estimate the PV in which the (axial)
AP diameter substitutes the (sagittal) longitudinal diameter for their observed inter dependency
(ρ=0.77, P <0.001). More importantly, PVAxial enables a PV approximation that necessitates only
one axial TAUS acquisition, thereby reducing the patient examination duration. Figure 3.1b shows
the comparison of PVAxial and MRI, where an average volume difference of 11.2 ±20.3 ml was
observed. Compared to PVEllipsoid, the SD increased by 2.7 ml, showing that the approximation of
PVAxial results in a less accurate estimation. The increased variability of PVAxial can be explained
as the interdependence of the AP diameter and the longitudinal diameter is an assumption that
not always agrees. Yet, in several cases PVAxial corresponded closely to MRI and further research
is required to explore its usability. For instance, it is worth to explore in which PV range, more
accurate PV estimations are conducted when PVAxial is utilised.

4.1.3 TAUS vs TRUS vs MRI: Wilcoxon Rank Test

Regardless of the used imaging modality (TAUS vs. MRI, TRUS vs. MRI, TAUS vs.TRUS) the
difference between PV measurements was statistically significant. Similar results were observed in
a previous study that compared the employment of the Ellipsoid formula on TRUS and MRI [48].
Therefore, consistency in the choice of imaging modality is important to ensure the generation of
robust volume estimations.

In conclusion, the analysed inter-method agreement of TAUS, TRUS and MRI for PV estima-
tion indicates that TAUS and TRUS measurements vary to a similar extent when compared to
MRI reference volumes. In contrast to TRUS, TAUS seems less prone to inaccuracies when larger
prostate volumes are encountered. However, both TRUS and TAUS are characterised with a lim-
ited prostate visibility in the sagittal image-plane, which can be regarded as the main contribution
regarding differences with MRI. The employment of PVAxial excludes the necessity of a sagittal
TAUS acquisition, however, further research is required when more accurate PV estimations are
desired. Finally, statistically different PV outcomes are obtained when TAUS, TRUS and MRI
are compared. This highlights the importance of a consistent use of one imaging modality when
PV-based protocols are developed.

4.2 Deep neural networks for prostate segmentation

4.2.1 Model Axial, Model Sagittal and Model Sag-Ax

This is the first attempt to develop deep neural networks for prostate segmentation on axial and
sagittal TAUS images. It enables an automatic delineation of the prostate on which the prostate’s
diameters can be derived in both imaging-planes. Since the main objective is to estimate the
transverse, AP and longitudinal diameter in the mid-prostate region, the segmentation performance
of all proposed models was evaluated on the mid-plane TAUS images where the ground truth
prostate segmentation is the largest. The results of Table 3.2 show that Model Axial and Model
Sagittal segment the mid-plane prostate region with an average DSC score of 0.91 ±0.06 and 0.83
±0.09. Even though, Model Sag-Ax can segment the prostate regardless of the input image-plane,
a lower performance was observed when tested on axial and sagittal TAUS images (DSC = 0.87
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±0.09 on axial images, DSC = 0.76 ±0.19 on sagittal images).

The proposed models are also evaluated on all images in the TAUS acquisition to quantify
the model’s ability to segment the apex, middle and base prostate region. When Model Axial,
Model Sagittal, and Model Sag-Ax are evaluated on the entire prostate region, a decreased model
performance is found compared to the evaluation on the mid-prostate region, indicating that the
apex and base region of the prostate are segmented with less accuracy (Table 3.2). The lower
DSC score is primarily the result of false-negative predictions, occurring in apex and base prostate
region (Figure 3.9o, 3.10i,j).

Table 3.2 shows that the performance of each model evaluated on the mid-prostate region
(DSC mid-plane) outperformed the evaluation on the entire prostate region (DSC-TP). In other
words, even when the models classify the prostate tissue correctly, the predictions of the apex
and base prostate region tend to deviate more from the ground truth segmentations compared to
predictions in the mid-prostate region. These outcomes are expected when it is taken into account
that the prostate’s upper/lower parts are visualized more ambiguously on TAUS images and the
same phenomenon is reported in several studies on prostate segmentation on TRUS [26], [37]. On
the other hand, it was shown that the base prostate region was segmented correctly when the
prostate was interrupting the bladder region. This may be the result of the better contrast of
the prostate tissue against the anechoic bladder in the TAUS image (Figure 3.9 c). Furthermore,
prostate-bladder interruption was frequently seen in the training images of Model Axial, resulting
in an improved segmentation performance on unseen cases of bladder intrusion.

In one specific case, the prostate was falsely segmented when bladder debris occurred in the
TAUS image (3.9 j). False positive segmentations must be limited to maximize the reliability of
Model Axial, which can be overcome by increasing the representation of specific image/patient
characteristics in the training dataset.

Overall, Model Axial outperforms Model Sagittal on all used evaluation metrics, suggesting
that the segmentation task in the sagittal image-plane is more challenging. This is most likely
related to the presence of shadow artefacts that limit the prostate visibility in the image (Figure
3.10 a). When a higher model performance is desired for prostate segmentation in sagittal TAUS
images, additional training data may be required due to the complex nature of these images.
Another interesting approach to enhance the model performance would be to investigate the shadow
augmentation strategy proposed by Xu et al. (2022) to encourage the model to segment the prostate
while the shadow region is ignored [35].

During the qualitative and quantitative evaluation, Model Axial and Model Sagittal show a
better performance compared to Model Sag-Ax. This indicates that the increased amount of train-
ing images used for the development of Model Sag-Ax, does not contribute to better segmentation
performance. Conversely, the misclassification of shadow artefacts was observed more often in the
predictions of Model Sag-Ax compared to the models that were trained on less but task-specific
data (Figure 3.4 a). These results suggest that the improved performance of Model Sagittal and
Model Axial partly rely on the localization of the prostate in the image whereby the prostate is
usually positioned in the middle region of the axial TAUS image, or on the side of the sagittal
TAUS image. As a consequence, the usability of Model Axial and Model Sagittal may be operator-
specific, which can be regarded as a limiting factor when not taken into account when utilised.
Further explorations are required to investigate the model performances when the prostate location
varies in the images, and additional training may be required on TAUS acquisitions whereby the
prostate is positioned in uncommon image regions.

The investigation on automatic prostate segmentation performed in Section 2.4 presents several
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other limitations. First, all models are developed on higher-quality prostate images in which the
prostate boundary is visible (Quality A/B images, Appendix B). The exclusion of poor-quality
TAUS images, likely creates bias and can potentially affect future predictions on images with lower
quality that are not included in the training set of this study. Given that TAUS acquisitions
are operator-dependent, and the quality relies on the learning curve of the clinician and patient
characteristics, a model trained solely on high-quality images may prevent the generalizability of
the model. Further studies are required to analyze if the performance is affected when poor-quality
images are provided.

Moreover, all models are developed on images acquired from 52 men. To ensure the generaliz-
ability of the models and study their application for clinical application, further investigation on a
larger dataset, including a wider patient population and acquisitions from different US manufac-
turers, is desirable.

Additionally, the reference segmentations were provided by one expert. While this avoids inter-
expert variability resulting in more robust outcomes, it may introduce bias. For instance, in several
cases the ground truth prostate segmentation was guessed partly based on visual inspection when
the prostate boundary was interrupted by the presence of artefacts. A potential improvement to
avoid this bias is to create an enlarged dataset in which the prostate is segmented by multiple
experts. Then, the final ground truth segmentation can be defined by the prostate pixels occurring
in the segmentations of all experts.

This study provides the first insight on automatic prostate segmentation in TAUS. Our results
show the ability to segment the middle prostate region with a DSC > 0.85. Compared to the
variability related to manual prostate segmentation in TAUS, the developed models show a higher
performance.This is a first step towards an automatic prostate delineation, from which the PV can
be derived.

4.3 Automatic extraction of the prostate diameters

In this study, an algorithm is presented for the computation of the transverse, AP and longitudinal
diameter, whereby a sequence of prostate segmentations in the axial and sagittal imaging-plane
serve as input. Ultimately, the algorithm enables automatic PV estimation on TAUS.

To validate the algorithm design, ground truth prostate segmentations on TAUS are provided
and the computed diameters are compared to manually assigned prostate diameters on TAUS.
Figure 3.5 shows that the transverse and AP diameters are computed with an average difference
of -0.05 ±0.4 cm and 0.3 ±0.3 cm respectively. For both computations, the random scatter in
the Bland-Altman diagrams suggests that the variability is independent of the observed PV range.
The computation of the longitudinal diameter presents an increased variability, whereby an average
difference of 0.18 ±1.74 cm was observed.

The variability related to the longitudinal diameter may be explained by the algorithm design,
as the position of the computed diameter is derived from the maximum diameter that goes through
the segmentation under an angle of 40 to 50 degrees. The provided angle range results in sufficient
diameter positioning, however, the visual inspection of the extracted diameters exposed that in
several acquisitions the actual prostate position deviates due to the free-hand nature of TAUS.
Consequently, the longitudinal diameter must be estimated according to another angle to measure
the prostate length. This makes the current design prone to inter-operator variability, regarding
the TAUS examination in sagittal direction. One simple solution to address this constraint might
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be to provide a larger range of angles, that would allow more deviation in prostate position. In a
different manner, the longitudinal diameter can be approximated by resolving the relative position
between the axial TAUS images, allowing for a reconstruction of 2D TAUS images [49].

Notwithstanding the observed variability in the computation of the prostate diameters, lit-
tle variation between the computed PVAxial/PVEllipsoid compared to manual PV estimation on
TAUS can be observed from Figure 3.6 (average difference < 1.5 ml). Hence a computation the
PV according to the proposed algorithm confirms a strong level of agreement with manual PV
measurements on TAUS when the input segmentations are optimal.

4.4 Automatic prostate volume estimation on transabdom-
inal ultrasound

The combination of Model Axial and Model Sagittal and the proposed algorithm demonstrate
similar capability of extracting volume measurements from TAUS as compared to manual PV
measurements on MRI. This study provides insights for automatic PV estimation using TAUS as
an efficient and patient-friendly alternative to current methods, thus expanding the possibilities
regarding PV approximation during PCa risk -stratification workflows.

Although previous research has highlighted the value of automatic PV estimation, the majority
of the studies focus on prostate segmentation models based on TRUS and MRI, where a 3D
volume is generated [20], [26]. PV estimation with the aid of TAUS has not received sufficient
attention, primarily due to the required examination training and for the existing variability in
image quality, limiting the use of deep neural networks. Additionally, 3D volume reconstruction of
prostate segmentations is not (yet) possible in free-hand ultrasound.

Previously, one study on PV estimation using TAUS, was able to approximate the PV with
an average volume difference of 6.22 ml ±7.2 ml compared to reference PV measurements based
on MRI (Section 1.2.4).Nonetheless, the proposed method neglected the determination of the mid-
plane prostate image, and requires therefore operator input. In our study this limitation was
addressed, by developing Model Axial and Model Sagittal to segment the prostate when a sequence
of prostate TAUS images are provided in the respective image-plane. The sequence of prostate
segmentations in both directions serve as input for our algorithm to extract the prostate diameters
whereby determination of the mid-plane prostate segmentation is incorporated, enabling a fully
automatic framework.

The performance of the framework was evaluated across 17 test participants, and in the majority
of the cases (14/17), the prediction of PVEllipsoid deviates with less than ≤25% compared to MRI
reference volumes. On average, a difference of 2.5 ±10.2 ml was reported, shown in Figure 3.7a
and the following section enlightens two cases in which the largest over and underestimation was
observed.

In the first case, an underestimation of 14 ml was observed (relative deviation compared to
MRI: -32%). Further investigation showed accurate predictions of SegAx and SegSag, whereby the
mid-plane was defined properly. In other words, the segmentation step of the framework narrowly
contributed to discrepancy in PVEllipsoid outcomes. When the diameter computation was compared
to the manual diameter assessment, a difference of 0.025, 0.02 and 0.18 cm was observed for the
transverse, AP and longitudinal diameter. The small deviation for both steps of the framework
show that the difference in PV can be attributed to the employment of the Ellipsoid Formula on
TAUS. Notably, the predicted PV differed from the manual PV estimation on TAUS with 1 ml.
This confirms the ability of accurately calculating the mid-prostate images and the corresponding
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diameters. Yet, considering the existing variability of PV estimation when ultrasound is used, the
proposed framework appears less reliable.

Additionally, an overestimation of 15 ml was reported, through which a PV prediction of 47 ml
was obtained (relative deviation compared to MRI: +47%). In this case, the manual PV estimation
on TAUS was 76 ml. The discrepancy in the manual PV estimation on TAUS, the prediction and the
reference PV measurement on MRI was mostly the result of shadow artefacts limiting the prostate
boundary. As a consequence, the longitudinal diameter was overestimated by the operator, as part
of the shadow region was false positively included in the diameter assessment. In a lesser extent,
a similar result was observed in the predicted PVEllipsoid, whereby the longitudinal diameter was
overestimated by the algorithm. Limited prostate visibility in sagittal TAUS images remain a
limitation of PVEllipsoid, and this case shows how this phenomenon is translated in the proposed
framework. To address this challenge, the feasibility of using solely axial prostate diameters is
explored. PVAxial offers several advantages, as a single segmentation model is required. This
results in a reduced patient examination duration and less experience required for the clinicians
to get acquisition of acceptable quality. The prediction outcomes show that PV Axial is obtained
with an increased SD of 0.6 ml compared to a prediction based on PVEllipsoid. This suggest the
possibility of using the prostate in one imaging-plane for the approximation of the PV depending
on the required LoA.

4.4.1 Clinical application

Currently, it has been shown that a PV classification of PV < 30 ml, PV = 30 - 50 ml and PV
> 50 ml hardly affects the predictive capability of PCa risk-stratification [50]. Based on our final
evaluation, for both the predicted PVEllipsoid , and PVAxial , 16/17 participants are classified cor-
rectly when this LoA is persisted. Additionally, an accuracy, deviating with ≤25% from the ground
truth is thought to be sufficient in the first stage of PCa risk-stratification [18]. To this extent,
the proposed framework may benefice prostate cancer screening when it is centralized in a regional
care pathway. This has been established in Rotterdam by the Urology Department of the Erasmus
University Medical Center in collaboration with the primary care laboratory STAR-SHL, where
screening consultations are performed with multi-variable risk stratification to reduce redundant
hospital referrals [51]. In this setting, an approximation of the PV with the aid of a handheld
ultrasound system may be convenient. Even so, it is recommended to investigate the performance
of the framework on TAUS acquisitions of the respective manufacturer. The employment of TAUS
in combination with an automatic PV measurement, must be a straightforward approach and easy
to use for every operator. Therefore, it is suggested to expand the framework, with a real time
prostate detection system, to ensure appropriate input acquisitions for optimal PV approximation.

4.4.2 Future work

In order to adopt the framework as standard of care, further research is required. Therefore, a
larger cohort needs to be analysed to investigate the performance of the framework on different
target groups. Additionally, the framework must be tested on poor quality acquisitions and the
intended use of the product must be clearly explained: essentially, the framework serves as an
aid to diagnostics, whereby the PV can be approximated in an accessible and simple manner.
Additionally, it is recommended to explore the performance of the developed segmentation models
on TAUS images of different imaging manufacturers. More specifically, the framework must be
tested when a handheld ultrasound device is utilised. Thereafter the contribution of the proposed
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framework is suggested to be explored to understand if redundant hospital referrals are reduced
when it is utilised in an earlier stage of diagnostics.



CONCLUSIONS 35

Conclusions

Accurate determination of the PV is essential for PCa risk-stratification and therefore routinely
obtained in during an early stage of diagnostics. This study explores the feasibility of TAUS to
approximate the PV as a more patient-friendly, accessible and inexpensive approach, compared to
TRUS and MRI. The results in this study indicate that it is possible to obtain PV measurements
based on TAUS examination, that are similar to PV measurements on MRI. The existing vari-
ability of PV measurements between TAUS and MRI seems unrelated to the TAUS image quality,
suggesting that manual PV assessment can be performed, even when unfavorable patient charac-
teristics limit the image quality (e.g. patients with high abdominal fat percentages). In contrast to
TRUS, TAUS seems less prone to inaccuracies when larger PVs are encountered. Yet, when TAUS
examination is conducted improperly, shadow artefacts induced by the reflection of the pelvic bone,
may limit the prostate’s visibility, resulting unreliable PV measurements. Consequently, proper
operator training of TAUS examination and image interpretation is essential.

To minimize the initial complexity of PV estimation based on TAUS and to ensure robust PV
measurements, this study proposed a framework for automatic PV estimation based on input TAUS
acquisitions. The main components of the framework comprise: Model Axial and Model Sagittal,
two segmentation models that predict the prostate area in plane-specific TAUS images, and an
algorithm that extracts the prostate’s diameters based on the predicted prostate segmentations.
All components were evaluated individually and show good correspondence to manual prostate
delineations, especially when the mid-prostate region is assessed, and diameter assessment on
TAUS, ensuring a reliable automated framework.

Final tests on TAUS image data of unseen participants showed that is possible to achieve
automated PV measurements based on TAUS, comparable to manual PV measurements based
on MRI. In the majority of the test participants the predicted PV deviated with less than 25%
compared to the ground truth. Moreover, in the first stage of PCa diagnostics, a PV classification
of PV < 30 ml, PV = 30-50 ml and PV > 50 ml ensures a reasonable predictive capability for
PCa risk-stratification. In our final evaluation, 16/17 test participants were classified correctly
when this LoA is persisted. Thereby, the proposed framework may benefice PCa risk stratification
workflows, and expands the possibilities regarding PV estimation using TAUS.

In order to adapt the framework for clinical settings, further research on larger cohorts is
required to ensure the generalizability of the method. Additionally it is recommended to evaluate
its performance on poor quality TAUS images and images from different US manufacturers.

Ultimately, the framework must serve as an aid to diagnostics whereby the PV is approximated
in an accessible and simple manner. For this reason, it is recommended to expand it with a
real time prostate detection system, to ensure appropriate input TAUS images when utilised by
inexpert TAUS operators.
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A
Prostate Imaging-Reporting and

Data System
• PI-RADS 1: Very low. Clinically significant cancer is very unlikely to be present.

• PI-RADS 2: Low. Clinically significant cancer is unlikely to be present.

• PI-RADS 3: Intermediate. The presence of clinically significant cancer is equivocal.

• PI-RADS 4: High. Clinically significant cancer is likely to be present.

• PI-RADS 5: Very High. Clinically significant cancer very likely to be present.[52]
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B
Quality assessment TAUS

acquisitions
Each acquisition is assessed on image quality in which the following parameters are taken into
account:

Present Prostate Volume (PPV): To what extent is the prostate volume visible in the
acquisition. The acquisition can be scored on a PPV of 0%, 25%,50%, 75%, 100%.

Visibility Prostate Boundary (VPB): To what extent is the prostate visible in the acqui-
sition. A: The majority of the boarders are clear in the acquisition. B: More or less clear boarders
throughout the acquisition. C: The majority of boarders are hard to interpret in the acquisition.

Artefacts Interrupting the Prostate (AIP): To what extent are imaging artefacts present
in the acquisition leading to a reduced PPV / VPB. For instance, shadow artefacts that interrupt
the prostate boundary may lead to a decrease in PPV. The VPB may decrease in patients with
a high abdominal fat percentage. Additionally, the PPV can be reduced due to existing acoustic
shadow artefacts that occur when the pelvic bone reflects the ultrasound signal.
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Figure B.1: The prostate on transabdominal ultrasound images with diverse image quality. a: Axial
quality A image. b: Axial quality B image. c: Axial quality C image. d: Sagittal quality A image. e:
Sagittal quality B image. f: Sagittal quality C image.

Figure B.2: Various artefacts interrupting the prostate vision on TAUS. The prostate is delineated manually
with a yellow line. a: The axial imaging-plane, clear visibility of the prostate. The bladder is annotated.
b: The sagittal imaging-plane, clear visibility of the prostate with bulging contours that interrupt the
bladder. The seminal vesicle is annotated. c: The axial imaging-plane, poor visibility of the prostate due
to ambiguous boundaries. d: The sagittal imaging-plane, part of the prostate boundary is invisible due to
interrupting acoustic shadow artefacts.
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Abstract.  The high incidence of prostate cancer led to the implementation of screening strategies to demote disease burden. Prostate 
volume (PV) plays a crucial role in managing prostate-related diseases, particularly in the risk-stratification of prostate cancer. In practice, 
diagnostic ultrasound (US) is commonly utilized to obtain the PV. To alleviate the clinician’s workload and to reduce patient examination 
duration, automated methods for PV estimation are required. Hence, this review focusses on the application of deep-learning (DL) 
for PV estimation, by means of prostate segmentation on US or the employment of the Prolate Ellipsoid Formula (PEF). Currently, 
proposed DL architectures are able to segment the prostate with a Dice Similarity Score (DSC) that ranges between 0.87 and 94%.  Strong 
implementations in this field include the employment of multi-directional image data, the implementation of attention mechanisms 
and novel pre-processing techniques to combat frequently seen US image artefacts. Unfortunately, most proposed methods still suffer 
from inconsistent results that prevent clinical implementation. Limitations of the proposed explorations frequently comprise the use 
of homogeneous datasets, no implementation of ablation studies and the lack of statistical significance due to the limited availability of 
US data. Finally, the absence of public datasets complicate the comparison of DL architectures in this field and are therefore required.

Prostate cancer is the second most commonly diagnosed 
cancer in men and accounts for the third cause of cancer 
death. (1) Due to the high prevalence of prostate cancer, 
the implementation of early detection and screening 
has been widespread since the late 1980s waiming to 
demote disease burden. (2) In multiple stages of prostate 
disease management, the prostate is evaluated carefully 
with routine measurement of the prostate volume (PV). 
(3) PV is an important parameter as it is used to obtain 
prostate-specific antigen density to determine the risk of 
prostate cancer. (4) When a more invasive intervention 
like brachytherapy is required, accurate determination 
of the prostate’s clinical target volume supports the 
development of an effective therapeutic plan and PV 
is a critical prerequisite to calculate dose distribution. 
(5) Additionally, PV is acquired for the diagnosis 
of benign prostate diseases such as lower urinary 
tract symptoms or benign prostatic hyperplasia. (6) 
  In clinical practice, physicians rely on the aid 
of computed tomography (CT), magnetic resonance 
imaging (MRI) and ultrasound (US) to evaluate the 
prostate on malignancy or volume. However, the 
choice of the most suitable imaging option depends 
on the clinical purpose as each modality offers 
distinct characteristics. PV estimation based on MRI-
segmentation is considered as gold standard owing to 
the better signal-to-noise ratio. Nonetheless, transrectal 
ultrasound (TRUS) is commonly utilized in clinical 
settings due to its cost-effectiveness, portability, and 
ability to rapidly estimate the PV. (7) The evaluation 
of the prostate based on transabdominal ultrasound 
(TAUS) is another feasible option, often preferred since 
it is a percutaneous and more comfortable approach. 

(8) In regard to stratifying the risk of prostate cancer, 
estimating PV with the aid of TAUS can be of additional 
value, given that the examination can take place at an 
earlier stage of diagnosis (e.g. at the General Practitioner).
  Notwithstanding the favorable features of US, 
accurate PV estimation remains challenging due to 
difficulties associated with the interpretation of US 
images. Frequently performed tasks to obtain the PV, 
like prostate segmentation, annotation of the prostate’s 
outer boundary landmarks or diameter measurements 
often result in over/under estimations and are prone 
to inter/intra-observer variability. (9) This is primarily 
because of ambiguous boundaries resulting from 
poor contrast between the prostate and surrounding 
tissue. Additionally, the assessment is complicated by 
misleading imaging artefacts such as echoic shadows 
and the presence of calcifications. Notably in TAUS, 
the prostate can be difficult to observe when shadow 
artefacts disrupt the prostate boundary as a result of 
ultrasonic reflection by the pelvic bone. (10, 11) The 
inhomogeneous intensity distribution of the prostate 
tissue and the large shape variations also complicate the 
assessment and are often considered most demanding 
in the apex and base of the prostate. Finally, prostate 
annotations are generally conducted during US 
examination, adding complexity to the procedure.
 Hence, computer-aided methods have been 
introduced aiming to alleviate the workload on 
clinicians, decrease examination duration and improve 
the accuracy of segmentation and annotations. 
Figure 1 depicts examples of the prostate image 
obtained by TAUS, TRUS and MRI, to highlight the 
differences obtained by all three imaging modalities.  

1. Introduction
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There has been a notable increase in the demand for 
automated prostate segmentation methods, which 
allow for the derivation of the PV. Initially, deformable 
models, edge-based segmentation methods, region-
based segmentation methods have been introduced 
and are discussed in multiple overviews on prostate 
segmentation. (10, 12) However, all aforementioned 
segmentation methods predominantly require the 
extraction of prostate related image features such as the 
relative pixel intensity or prostate shape information. 
Especially when used in US, these features affected by the 
large contrast diversity and US artefacts. . Consequently, 
the generation of reliable segmentations on US remains 
challenging and this paper aims to cover recent advances 
in this field. In the past years, deep-learning (DL) 
architectures that process the entire image as part of 
their training, have been introduced as an alternative 
way to assess the prostate automatically. Compared to 
other machine learning methods, the main advantage 
of DL is its ability to automatically extract and use 
multi-level features that consist of abundant semantic 
as well as detailed image information. In spite of the 
promising aspects of DL, existing methods still suffer 
from inaccuracy in prostate boundary extraction. (13) 
Therefore experts on the topic explore the implementation 
of DL architectures to improve prostate segmentation. 
For clarity, in this review, DL architecture refers to the 
entire segmentation pipeline that includes the used 
neural network and its additional implementations. 
With this pursuit in mind, the purpose of this review 
is to provide insights in academic literature of the 

1. A systematic search to include developed    
DL architectures for prostate segmentation            
and   PV estimation on US images. 
        
2. An overview of proposed methods,  
including a quantitative comparison of results.

3. Multiple designs are enlightened and  
evaluated with respect to context. 

4. Suggestions for further research are provided.

The paper is organized as follows. The search 
methodology is explained in Section 2. In Section 3, the 
results are provided, subdivided in the application of 
DL for prostate segmentation on US and the application 
of DL to estimate the PV, utilizing the Prolate Ellipsoid 
Formula (PEF). In regard to segmentation, explicit 
decisions aiming to improve DL architectures are 
explained. The following subdivision is maintained: 
US pre-processing methods, the employment of multi-
directional image data, the implementation of additional 
shape information, introducing attention mechanisms, 
feature map refinement, and the consistency and 
robustness of DL architectures. Thereafter, a quantitative 
comparison of results is provided between DL 
architectures that focus on prostate segmentation. 
Finally, the review ends with a discussion in Section 4.

Figure 1 Cross-section of the prostate on different imaging modalities, where the prostate is manually 
delineated with a yellow color line. a Transabdominal Ultrasound. b Transrectal Ultrasound. (42)  c 
Magnetic Resonance Imaging (gold-standard for prostate evaluation).

2. Search methodology  

field, to better understand the advancements of DL 
architectures for the accurate determination of PV in 
diagnostic US imaging. In summary, this paper presents: 

The core search concepts of this review were DL, PV and 
US. A search was conducted in October 2023 on three 
scientific platforms: PubMed (14), IEEE Xplore (15) 
and Scopus (16) using the search queries included in 
Appendix A. The inclusion and exclusion criteria were 
defined a priori. During title and abstract screening, 
articles were selected if they met the following inclusion 
criteria: 1) Studies reporting on PV estimation or 

prostate segmentation using DL in US. In this manner, 
acquisitions based on TRUS and TAUS were both 
covered. 2) Studies reported on registration of US 
images were included as segmentation is frequently 
required in registration pipelines. 3) Studies written 
in the English language and published from 2016. In 
regard to exclusion criteria, articles were excluded when 
the papers focused on other organs than the prostate 
or when they were unrelated to US. Finally, invalid 
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records, reviews and duplicates were excluded as well. 
  During full-text screening, articles were included 
when the proposed segmentation architectures were 
evaluated on performance. Finally, articles were excluded 
when a proposed registration pipeline dit not comprise an 
automatic segmentation step, or when the segmentation 
was based on other imaging modalities than US.

Currently, automated PV estimation primarily relies 
on prostate segmentation methods based on TRUS. 
Based on utilized search strategy, there is no available 
literature concerning prostate segmentation based 
on TAUS. In general, DL architectures in this review 
use a traditional U-Net (18) as the back-bone for the 
proposed DL architecture. Several authors modified the 
traditional U-Net by implementing residual connections 
or substituting the encoding path with another 
model. However, the majority of architectural designs 
incorporate additional modules aimed at improved 
segmentation results and are discussed in Section 3.2.1-
3.2.7. Table 1 provides a brief summary of explorations 
that focus on prostate segmentation on TRUS.

Figure 2 Flow diagram of the search process. Ultimately, 25 papers 
were included. *The continuation of (17), (48) was also included, 
although it was not available in explored scientific platforms.

To evaluate DL architectures that were covered in this 
review, several architecture parameters were retrieved 
to illustrate the context in which the DL architectures 
are proposed: 1) The purpose of the DL-architecture 
with respect to 2D or 3D  prostate segmentation. 2) The 
amount of US data used for training and testing. 3) The 
amount of patients that comprise the dataset 4) The 
presented results concerning the used evaluation metrics.       
   Finally, innovations of the DL architecture 
that primarily played a role in an increased 
performance were explained and compared. All 
stages of screening were done by an independent 
reviewer (LMK) and senior authors (TN, MF, 
BDB, and JV) were addressed when necessary.

3. Results
3.1 Study selection
Based on the search in PubMed, IEEE Xplore and 
Scopus, a total of 280 studies were retrieved. After 
title and abstract screening, 61 studies satisfied the 
inclusion and exclusion criteria. When the following 
studies were screened thoroughly on full text, 24 
studies were included. Aside from the systematic 
search process, one paper was included as well as it 
was thought to enhance the breadth of this review. 
This is a continuation of (17) that was not available 
in Scopus, PubMed or IEEE Xplore. Hence, 25 
papers on advances in DL for PV estimation and 
prostate segmentation on US were included.  Figure 
2 illustrates the flow diagram depicting the number 
of papers identified at each step of the search process.

3.2 The application of deep-learning for prostate 
segmentation on ultrasound

3.2.1 Ultrasound pre-processing methodologies
Pre-processing techniques aimed at improving the image 
readability have been explored since many imaging 
artefacts inherent of US result in inaccurate prostate 
segmentations. (19,20) For instance, dark image areas, 
which are referred to as acoustic shadows, may arise as 
structures that have a high echogenicity (e.g. skeleton, 
calcifications) reflect the US wave signal.                                                                 
                  To alleviate this problem in prostate segmentation, 
Xu et al. (2022) designed two novel mechanisms to 
encourage a network to cope with shadow regions on 
image and feature level. (19) More specifically, shadow 
artefacts were artificially added in training images 
to enrich the shadow diversity of the data set. This 
procedure served as an innovative data augmentation 
strategy aiming to increase the robustness of the network 
on prostate images that suffer from shadow artefacts.  
The authors simulated artefacts by extracting the 
shadow region of other images using soft thresholding. 
Then, additional training data was created by fusing the 
shadow artefacts of one image to another image. (Figure 
3). Furthermore, the shadow features were subtracted 
from the created feature maps. (Figure 4) This results in a 
feature space that ignores shadow regions and can be seen 
as an approach to conduct a systematic drop-out layer.  
In this way, the model is encouraged to learn the prostate 
boundary using the remaining shadow-free features.  
  When the effectiveness of both methods was 
evaluated as an addition to a traditional U-Net architecture 
their results showed that both methods increased the 
Dice Similarity Coefficient (DSC) with 1.29% and 
reduced de Hausdorff Distance (HD) with 0.33mm. 
          Another applied method to enhance the quality 
of training data is to pre-process US images with 
handcrafted filters. Lei et al. (2019) explored the use of 
3D Mean, Median and Gaussian filters to enhance the 
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feature extraction of the prostate boundary in their DL 
architecture. (20) However, this pre-processing step had 
no significant effect when DSC, Precision and Recall were 
evaluated. Notably, the pre-processed data, decreased 
the model performance significantly in terms of HD. 
(HDoriginal = 3.911 mm, HDpre-process = 3.996 mm) 
This indicates that the use of these particular filters in this 
design is not applicable to improve segmentation results.
 
 

from all directions to improve segmentation results. (21) 
The authors designed a framework in which three 2D 
U-Nets were trained on axial, sagittal and coronal TRUS 
images to produce view-specific segmentation volumes 
of the prostate. The resulting volumes were intended to 
serve as input for a subsequent fusion network. In this 
network, the view-specific segmentations and the original 
volume were used to generate view-specific confident 
maps upon which the final segmentation was created.
 Similarly, Lei et al. (2019) trained three view-
specific V-Nets and introduced a Multi-Directional 
Contour Refinement (MDCR) method to post-process 
the view-specific volumes to estimate the PV. (20) 
The core concept of this post-processing method is to 
define the final boundary contour by taking the mean 
of boundary intersection coordinates of axial, sagittal 
and coronal directions. In this way, information from all 
directions is embedded in the final segmentation. When 
transverse segmentations of the apex and base are lacking 
in accuracy, the contour refinement is implemented 
differently by taking the average of the sagittal and 
coronal segmentation only. After evaluating the addition 
of MDCR to the DL architecture, it was shown that the 
DSC-score increased from 0.912 to 0.919 (P < 0.001).
  Orlando et al. (2020) proposed a novel 3D 
segmentation method by utilizing a modified U-Net to 
segment twelve 2D radial slices, which were subsequently 
used for a 3D volume reconstruction. (22) The decision 
to obtain radial prostate segmentations, opposed to 
transverse segmentations, was motivated by the experience 
that the prostate presents more clearly when the center of 
the gland is in plane. Figure 5 illustrates the difference 
between  radial, sagittal and axial image slices. During their  
exploration, a modified U-Net was trained on 6773 
2D images that were obtained randomly at axial, 
coronal, sagittal and radial image planes. Thereafter, the 
resulting 12 segmentations were placed in the initial 3D 
space, and the 3D prostate boundary was reconnected 
following the reconstruction method proposed by (23).  

3.2.2 The employment of multi-directional image 
data
The employment of multi-directional images for prostate 
segmentation can be useful as the visibility of the prostate 
varies locally. For instance, the apex and base of the 
prostate are characterized with ambiguous boundaries on 
transverse US images, while it appears more clearly in the 
sagittal and coronal direction.  This is the rationale 
behind the Multi-eXpert Fusion (MXF) framework 
proposed by Beitone et al. (2022) that uses image input 

Figure 3 The implementation of shadow artefacts of one image 
to another image to conduct Shadow Augmentation designed 
by (19). 

Figure 4 The subtraction of shadow features to enhance the 
attention to the prostate region. (19).

Figure 5 Illustration of different 2D slice directions (grey).  
a The prostate (blue) radially sliced from a 3D TRUS acquisition 
around its axis of rotation (red). b Sagittal prostate slices. c 
Transverse prostate slices, d Coronal prostate slices. 
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         Paper        Segmentation     Description
Anas et al. (2018)(36) 2D ResU-Net with recurrent connections to exploit temporal information.
Anas et al. (2017)(39)  2D  ResU-Net with boundary attended loss function
Beitone et al. (2022)(21)  3D  Three view-specific U-Nets are trained to produce view-specific segmentation that are the   
    input of a fusion network that produces a confidence map on which the final segmentation is  
    created.
Bi et al. (2022)(25) 2D In a traditional U-Net, the loss function is evaluated at different stages of the network with the  
    aid of a prostate boundary map
Feng et al. (2023)   2D A multi-stage network that enhances the feature space to improve segmentation results. A    
(33)    traditional U-Net is modified by replacing the encoding branch with a pre-trained VGG16     
    model. Then the output feature maps are then the input of a similar second network. This   
    process is repeated three times and the final segmentation is conducted on the refined feature  
    map and the segmentations that were created after each network stage. 
Ghavami et al.(2018) 3D  Intergration of spatial information in standart U-Net by taking 2-6 adjacent slices as training  
(38,47)    input. 
Ghavami et al.(2018) 2D  Intergration of spatial information in standart U-Net by taking 2-6 adjacent slices as training 
(38, 47)    input. 
Girum et al. (2020)  3D  A prostate shape mask reconstruction is generated based on prostate boundary coordinates  
(24)    that are predicted from a U-Net back-bone layer. Then, the final segmentation is obtained by  
    merging the shape mask reconstrution with the output of the U-Net decoder.  
Karimi et al. (2019)  2D  The final segmentation is created based on the average of 5 U-Nets and adjusted with the aid of  
(26)    MRI based statistical shape model
Lei et al. (2021) (27)                 3D Modified U-Net that learns based on ROI specific feature maps.
Lei et al. (2019) (20) 3D  Thee view-specific V-Nets that estimate prostate volume with the aid of Multi Directional   
    Contour refinement. The view specific V-Nets are optimized with the aid of deep supervision. 
Liu et al. (2022) (43) 3D  A 3D resU-net with channel attention implemented.
Liu et al. (2023) (32) 3D  Modified U-Net in which spatial attention and a detail compenstation module is    
    intergrated. 
Orlando et al. (2020)(22) 3D* Modified U-net to predict radial slices that are utilized for 3D volume reconstruction.
Palladino et al. (2022)(44) 2D  Modified U-Net that learns based on ROI specific feature maps.
Peng et al. (2024)                 2D  Architecture that inherits the ability of deep-learning models to locate the ROI with      
(41, 46)    incorporation of mathematical models to smooth the contour of ROI.    
van Sloun et al. (2021) 2D  U-Net trained by SDa to improve generalization.
(34, 45) 
Vesal et al. (2022) (30) 3D  Coordination Dilated-ResU-Net that was trained by SDa to improve generalization. 
Wang et al.(2019) (29) 3D Modified U-Net in which spatial attention is intergrated. 
Wu et al. (2020)  (40) 2D  Traditional U-Net. 
Xu et al. (2022)  (19) 3D  Modified U-Net that is trained by shadow enhanced images and a modified feature space.

Table 1 A brief summary of proposed deep learning architectures to segment the prostate on transrectalultrasound.* 3D reconstruction of twelve 
12 2D slices.

The resulting 3D segmentation after reconstruction 
was compared to a traditional V-Net and, an improved 
segmentation performance was presented. (DSC = 
0.94, vs 0.91)  Although, the quantitative comparison 
of results must be regarded carefully as the authors 
mentioned that the V-Net was not rigorously optimized. 
However, it remains a reasonable comparison to 
explore if segmentation based on computationally 
expensive 3D information allows for better results 
compared to less spatially-dense image information. 
 In clinical practice, the adjacent slices 
in a 2D acquisition are often considered during

the process of manual segmentation to distinguish the 
prostate boundary from surrounding tissue. Therefore, 
Ghavami et al. (2018) explored the integration of 
neighboring slices as input to a traditional U-Net to improve 
2D TRUS segmentation. Based on the evaluation, DSC. 
increased significantly with 1% when an addition of 
two adjacent slices on each side of the input image was 
implemented. Importantly, when three adjacent slices 
were integrated, no significant improvement was shown 
indicating that the addition of solely two adjacent slices 
is sufficient to increase the segmentation performance.
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function that considered the discrepancy between the 
boundary map and the intermediate segmentation 
outcomes and increased the DSC from 0.90 to 0.93.    
     In the application of Karimi et al. (2019), the 
implementation of a MRI based statistical shape model 
(SSM) is explored to improve the segmentation results of 
a U-Net ensemble that was trained on TRUS data. (26) By 
matching a SSM that contained MRI information of the 
expected prostate shape, the HD was decreased by ± 1 mm. 

To accurately segment ambiguous prostate regions, 
additional shape information can be incorporated in 
DL architectures to improve the final outcome. For 
instance, in the work of Girum et al. (2020), the use of  
boundary landmarks is explored to improve 
thesegmentation in 2D TRUS images. (24) 
 The authors employed automatically extracted boundary 
landmarks (Figure 6) to form a mask reconstruction that 
was fused with the output of the decoder. The aim was to 
make the final segmentation less prone to low-contrast 
and artefacts across the full organ’s boundary. In their 
design, the encoder part of a modified U-Net architecture, 
extracts anatomic landmarks from the U-Net’s bottle 
neck when the prostate is present in the image. When 
the contribution of mask reconstruction was evaluated, it 
was shown that the HD decreased averagely by 2.04mm. 
    Furthermore, Bi et al. (2022) aimed to 
improve the training phase of a traditional U-Net by 
combining boundary information with the aid of an 
active shape model. (25) In their work, a boundary 
map was generated by processing the ground truth 
segmentation with morphological operations and 
key point initialization to eliminate the disturbance 
of boundary irregularities. Thereafter, the boundary 
map was utilized to evaluate the intermediate feature 
maps / segmentations as a deep supervision strategy. 
In the end, the DL architecture was trained with a loss 

3.2.3 The implementation of additional shape 
information

3.2.4 The implementation of attention mecha-
nisms
Since US images of the prostate are commonly marked 
by artefacts, methods for diverting attention to the most 
relevant region in an image are desired. Briefly, this can 
be achieved on image-level by first defining a Region 
of interest (ROI) that directs the relevant feature space. 
This is also referred to as hard attention whereby the 
‘useless’ areas are not considered during segmentation.  
 In the work of Lei et al. (2021), the ROIs of the 
prostate is inherently obtained by a probability map of the 
organ’s center of mass. (27)  Thereafter the probability map 
is used to form a bounding box that corresponds to the ROI 
of the prostate. In contrast, in PROST-Net, the proposed 
system by Palladino et al (2022), the ROI is defined using 
the Region Proposal Network designed by (49). (44) 
When both architectures were evaluated, PROST-NET 
was able to segment 2D TRUS images with a DSC of 
0.87, whereas Lei et al. (2021) achieved a DSC of 0.93. 
     Alternatively, attention can be obtained on 
feature-level by introducing channel / spatial attention 
modules to the DL architecture, also referred to as soft 
attention. In this way, the weights of each channel or 
region in the feature space are adaptively recalibrated to 
determine what to pay attention to. (28)      
     A pioneer in introducing soft attention in the 
field of prostate segmentation on TRUS is Wang et al. 
(2019). (29) The authors integrated an attention module 
that leverages spatial information, aiming to select more 
discriminative features. Although, the proposed DL-
architecture was able to segment the prostate with as DSC 
of 0.90, the contribution of the attention module was 
not evaluated quantitatively, nor was the network tested 
on separate test data. Following this work, Vesal et al. 
(2022) retrained their architecture based on 802 training 
samples and achieved even better results, (DSC = 0.92) 
proving the robustness of their network on unseen data.
     Similarly, in the proposed architecture of Vesal et al.  
(2022) Coordinate Attention Blocks (CAM) were 
incorporated to increase the segmentation performance. 
(30) The primary aim of CAM is to perform channel 
attention while positional information is preserved. (31) 
(Figure 7a)  Ultimately, the proposed method presented 
similar DSC outcomes compared to Wang et al. (2019) 
when their method was evaluated on equal test data.
     In the proposed ADC-Net of Liu et al. 
(2023), a spatial-based attention module was 
introduced to enhance the network’s ability to learn 
more useful features and improved the DSC and 
JC metric with 3% and 4% respectively. (32) Figure 
7b illustrates the proposed attention mechanism.Figure 6 The prostate on transrectal ultrasound where four 

outer landmarks are marked in yellow.
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3.2.5 Feature map refinement

Feng et al. (2023) explored the enhancement of feature 
maps by the employment of a Multi-Stage U-Net. (33) 
Their proposed architecture consists of three U-Nets 
in which the encoding paths are replaced by a VGG16- 
model. Precisely, the first network is trained on 2D TRUS 
data to obtain a premature segmentation. Then the 
feature maps that are encoded serve as input for a second 
network upon which a second segmentation is created. 
Finally, this step is repeated and a third segmentation 
is obtained based on the second feature maps in a third 
network.  At last, the three interim segmentations are 
fused by element-wise multiplication to generate the final 
segmentation outcome. Compared to the performance of 
a single U-net with VGG16 integration, the DSC scores 
improved with 3.7%. Interestingly, the model performance 
decreased when interim segmentation outcomes were not 
included in the formation of the final segmentation. This 
indicates that certain aspects of the prostate boundary 
are learned by the different networks, as the pixels in the 
interim segmentation must agree with the other interim 
segmentations to be included in the final segmentation.  
  In the proposed ADC-Net of Liu et al. (2023), 
the feature space is refined by the introduction of a 
Detail Compensation Module (DCM). The primary 
aim of this study was to estimate the PV with the aid 
of 3D U-Net. (32) To reduce the complexity that arises 
in 3D convolution, the authors decided to decrease 
the feature channel dimensions to 16, 32, 64 and 128. 
Even though this procedure reduces the network’s 
complexity, it is also results in the loss of detailed image 
information. Hence, a DCM was introduced to enrich 
the residuary feature maps. In essence, DCM embeds 
a pre-trained ResNet-34 model that encodes detailed 
feature maps that are merged to the feature maps of the 

3D U-Net, aiming to enhance the feature space. During 
an ablation study the effect of the incorporated DCM was 
evaluated and achieved an improvement of 3%, 4%, 3% 
and 3% on DSC, JC, Precision and Recall respectively.

3.2.6 Consistency and robustness of deep-learning 
models
A common difficulty in the implementation of DL 
architectures is the achievement of robust and consistent 
results across data from multiple institutions owing 
to the diversity in US images. This is mainly due to 
the existing variety of imaging manufacturers and 
the difference in patient characteristics. For instance, 
abdominal fat limits the US signal to be processed, 
resulting in a poorer image resolution. Furthermore, 
US acquisitions may deviate according to 
the clinician’s technique of US examination. 
  Usually, to improve generalizability, large 
amount of heterogeneous data is required to optimize 
DL architectures. Nevertheless, many studies suffer 
from scarcity of available data. Therefore, van Sloun 
et al. (2021) and Vesal et al. (2022) aimed to improve 
the generalization of segmentation models on new 
data with the aid of supervised Domain Adaption 
(sDA). (30, 34) To this extent, the proposed networks 
are pre-trained on one TRUS dataset in a supervised 
manner. Thereafter the trained networks are retrained 
on a small number of TRUS images of another data 
set to improve the network on unseen image data.
  In the work of Van Sloun et al. (2021), sDA 
was implemented in a traditional U-Net architecture 
that was fine-tuned using three different datasets. (34) 
Nevertheless, the model performance did not improve 
significantly by the implementation of sDA. The lacking 
generalizability of their proposed network is most likely a 
result of the homogeneous data that was used for training 

Figure 7a Illustration of coordinate attention mechanism (CAM). The input is a single-layer feature map (SLF) with height, width and channels C. 
First each channel is encoded in x and y direction by means of Global Average Pooling (GAP). Then, a shaded 1x1 convolutional transformation 
is applied to concatenate the output weights of the two GAP layers. Then the resulting tensor is split to yield attention vectors with the same 
number of channels in x and y direction. This is multiplied by the input SLF to produce a channel attentive feature map.  
bIllustration of spatial-information attention mechanism. The fused multi-layer feature map (MLF) that contain semantic information are passed 
through multiple convolution blocks to obtain the weight scores. Normally, each block consists of a convolution layer, a batch normalization (BN) 
and a non-linear ReLU operation. Thereafter, the weights are constrained between 0 and 1 by means of a sigmoid function. Ultimately the weights 
are multiplied by the single layer features to produce attentive feature maps. 
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and fine-tuning, as the datasets contained multiple 
acquisitions per patient. (436 acquisitions of 181 patients)
  With similar ambition, Vesal et al. (2021) 
explored sDA by using a multi-class loss function. (30) 
Aside from using a segmentation loss to train a model 
on different datasets, a Knowlegde Distillation loss was 
also incorporated. The primary aim of this regularization 
technique is to reduce the effect of the changes in weights 
of the encoded features when a well-trained model is 
updated on new data. When the implementation of 
knowledge distillation was quantitatively compared on 
two other datasets, the authors showed an increased 
model performance on the transferred datasets indicating 
that their proposed architecture performs well on 
multi-institutional data. (DSC = 0.94, HD = 2.29 on 
dataset 1, 0.91, 3.69 on dataset 2, 0.82, 7.13 on dataset 
3) Given that the segmentation performance surpassed 
the performance of a network that was solely trained 
on the transferred datasets, knowledge distillation, in 
addition to a DSC loss, appears to be a promising strategy 
for handling the extensive diversity in US acquisitions

Paper      Segmentation         Patient     Dataset                     DSC    JC   ASD(mm)  HD(mm)
                           
Anas et al. (2018)  2D  18 2875/1017 0.93 ± 0.03    1.12 ± 0.79 2.97± 1.96
Anas et al. (2017)  2D   598 4284/1081 0.93 ± 0.04    1.13 ± 0.81 3.41 ± 2.18
Beitone et al. (2022)  3D  100 80/20  0.93 ± 0.04 0.86 ± 0.06 0.83 ± 0.41 5.48 ± 2.66
Bi et al. (2022)  2D - 90/10  0.93  0.93    
Feng et al. (2023) 2D  364 1638/182 0.95  0.89    
Ghavami et al.(2018) 3D  109 99/10  0.89 ± 0.05       1.79 ± 2.05
Ghavami et al.(2018) 2D  109 3017/1017 0.89 ± 0.01       1.12 ± 0.79
Girum et al. (2020)  3D 145 125/20  0.88 ± 0.02    0.10 ± 0.06 2.01 ± 0.54*
Karimi et al. (2019)  2D 675 5400/1350 0.94 ± 0.03       2.50 ± 1.7
Lei et al. (2021)   3D  50 40/10  0.93 ± 0.03    0.57 ± 0.20 2.28 ± 0.64*
Lei et al. (2019)   3D 46 35/11  0.92 ± 0.03    0.59  ± 0.26 3.938 ± 1.6
Liu et al. (2022)  3D 50 50/?  0.91  ± 0.02    1.1 ± 0.18 4.38 ± 1.13*
Liu et al. (2023)   3D 46 46/?  0.91  ± 0.06 0.84 ± 0.9     
Orlando et al. (2020) 3D** 246 5418/1355 0.94 ± 0.02    0.89 ± 0.15 2.89 ± 1.45
Palladino et al. (2022) 2D  22 -  0.87      
Peng et al. (2024) 2D  266 741/204  0.94 ± 0.04 0.93 ± 0.05    
van Sloun et al. (2021) 2D  78 158/44   0.93 ± 0.01      3.0 ± 5.7
Vesal et al. (2022)  3D  954 802/190  0.94 ± 0.03       2.29 ± 1.45*
Wang et al.(2019)  3D  40 30/10  0.90 ± 0.03 0.82 ± 0.04 3.32 ± 1.15 8.37 ± 2.52*
Wu et al. (2020)  2D  - 490/106  0.90  0.82    
Xu et al. (2022)   3D  1150 1064/ 679 0.92 ± 0.02   0.93 ± 0.29  5.89 ± 1.93

Various evaluation metrics exist in order to assess 
the segmentation performance of DL architectures. 
Most commonly DSC and Jaccard index (JC) are used 
to quantify volume similarity between two contours 
whereas HD and Average surface distance (ASD) 
are used to quantify boundary similarity. In general, 
desirable segmentation results are associated with 
lower HD and MSD and higher DSC and JC scores. 
(37) Table 2 provides an overview of proposed DL 
architectures and the corresponding evaluation scores.  
  At present, DL architectures are able to segment 
the prostate on TRUS with a DSC similarity that ranges 
between 0.87 - 0.94, and a HD distance of 1.12 – 8.37 mm. 
For comparison, manual 2D segmentations of different 
experts are characterized with a DSC of 0.93. (38) As most 
proposed architectures consist of a modified U-Net, it is 
worth to mention that a DSC score of 0.90 is obtained when a  
traditional U-Net is trained. (39, 40)  Furthermore, 
Anas et al. (2017) showed that a ResU-Net was 
able to segment the prostate with a DSC of 0.93.

3.2.7 A quantitative evaluation 

Table 2 A comparison of DL architectures on Dice Similarity Coefficient (DSC), Jaccard Index (JC), Average Surface Distance (ASD) and 
Haussdorf Distance (HD). *evaluation on HD95. ** 3D reconstruction of twelve 2D segmentations.
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Mathematically, PV can be directly derived from prostate 
segmentation or the estimation is achieved with the aid 
of the PEF. (35) In this way, the total volume is computed 
by measuring the length (L), height (H) and width (W) 
of the prostate gland and multiplying the product by a 
coefficient (c) (Formula 1). (9, 35) In clinical practice, the 
PEF is frequently used for PV estimation as it is a faster 
approach compared to manual prostate segmentation.

Prolate Ellipsoid Formula: W × H × L × π/6.            (1)

Albayrak et al. (2022) aimed to automate the workflow 
of  PEF by establishing a method to estimate the six outer 
boundary landmarks that are required to calculate the 
height, width and length of the prostate. (17, 48) In their 
work, two DL architectures were trained separately for 
different image orientations. One network focused on 
2D transverse TAUS images to predict four landmarks 
related to height and width, while another network was 
trained on sagittal TAUS images to identify the remaining 
two landmarks to determine the prostate’s length. 

3.3 Prostate volume estimation with the aid of the 
Prolate Ellipsoid Formula

The view-specific DL architectures comprised an 
ensemble of four ResNet-18 CNNs (QDCNN) that 
were designed to classify the distance and orientation 
relative to the landmarks given a random point 
in the training image. Then, the location of each 
landmark was determined by producing a landmark-
specific voting map of all predicted distance and 
orientation outcomes. Ultimately, the landmarks 
served as input to utilize Formula 1 to obtain the PV.            
  Notably, QDCNN was trained on a variety 
of image patches of different scales around a random 
point in the training image. The rationale behind 
this approach is that patches of different sizes with 
matching centers are able to extract image details 
from different scales while reducing the attention to 
surrounding structures that occur in TAUS acquisitions.  
  The proposed method was validated by comparing 
the Mean Absolute Value Difference (MAVD) between the 
predicted PV and a manually estimated PV on TAUS. An 
average MAVD value of 4.95 cm3 was obtained, which is 
smaller than the average inter-expert MAVD value of 5.09 
cm3 for manual PV estimation on TAUS. Additionally, 
the predicted PV was compared to a PV estimation 
based on MRI that resulted in an average MAVD value 
of 6.22 cm3. For comparison, the inter-expert average 
MAVD value between TAUS and MRI was 8.06 cm3.
 

4. Discussion 
To effectively manage prostate diseases, it is essential 
to determine the prostate volume (PV), whereby 
ultrasound (US) is commonly employed as it allows for 
a cost-effective and rapid assessment. Mathematically, 
PV can be obtained by means of US image segmentation 

or with the aid of the Prolate Ellipsoid Formula (PEF).  
However, in clinical practice, it remains challenging 
for physicians to obtain an accurate estimation of the 
PV since US images, are frequently marked by imaging 
artefacts that contribute to an ambiguous prostate 
appearance. Hence, computerized methods have been 
introduced to improve the determination of PV and 

Figure 8 Illustration of the patch-center (green) and its corresponding scale-specific patches to predict the distance and orientation 
to a respective landmark (red). To achieve this, an ensemble four scale-specific DCNNs are proposed.
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to reduce patient examination duration. This paper 
aims to review recent explorations that focus on the 
application of deep-learning to estimate the PV on US. 

4.1 The application of deep-learning for prostate 
segmentation on ultrasound
Based on the evaluation of DL architectures for prostate 
segmentation, the presented methods demonstrate 
comparability in regard to model performance. 
Nevertheless, a comparison merely on evaluation 
metrics remains short-sighted as various aspects 
influence the result. Briefly, the segmentation outcome 
is influenced by the architecture design and dataset 
characteristics in which dataset homogeneity, US 
image quality and quantity play a role. Experts should 
be aware of the used dataset-quality and whether the 
presented performance can be translated to clinical 
practice, where poor-quality US acquisitions occur 
frequently. This marks the necessity for the availability 
of public datasets to allow a fair comparison of DL 
architectures in the field of prostate segmentation on 
US. Moreover, standard deviation values need to be 
acknowledged to provide transparency concerning the 
consistency of results.        
 In the majority of explorations, the performance 
of the DL architecture is enlightened by the presentation 
of better- and worse segmentation results. Inaccurate 
predictions typically involve the apex and base region, 
presumably due to the poor prostate visibility in this 
area. As a result, the implementation of multi-directional 
image information has been explored, covering an 
ensemble of view-specific architectures whereby the 
final segmentation outcome is produced on prostate 
information in axial, coronal and sagittal direction.  
However, in future experiments, it is recommended 
to explore how much multi-directional image input 
contributes to the final segmentation performance as 
its implementation increases the training workload. For 
instance, when a 3D reconstruction is established on a 
certain number of 2D segmentations, it is recommended 
to explore whether the use of more slices would 
significantly increase the model performance to illustrate 
the trade-off between input size and segmentation 
accuracy. Additionally, when post-processing strategies 
like MDCR (20) are introduced, it should not be neglected 
that MDCR is dependent on a set distance parameter that 
may be prone to inconsistent results when the diversity in 
image data is increased. Even though the incorporation 
of multi-directional information appears to increase 
the segmentation performance, it remains unclear if 
the design of Beitone et al. (2022) can be translated to 
clinical practice, as the authors manually cropped each 
acquisition to a Region Of Interest (ROI): The prostate 
with 40 voxels around it. Owing to this pre-processing 

step, image artefacts that usually degrade a model 
performance may have been excluded in the evaluation.
  Multiple authors explored the employment of 
additional shape information to enhance segmentation 
outcomes in which the use of statistical shape models 
and boundary reconstructions were explored. (24, 
25, 26) Overall, all additional shape-implementations 
contributed to improved segmentation outcomes.  
 When it comes to the integration of attention 
mechanisms, the proposed soft attention strategies 
that were proposed by Wang et al. (2019), Feng et 
al. (2023), Vesal et al. (2022) and Liu et al. (2022) all 
seemed to improve segmentation results. The proposed 
experiments present a DSC score above 0.92 which 
is presumably also the result of the high number of 
patient inclusion. Usually, a low number of included 
patients results in poor segmentation generalizability 
as the network is unable to capture the diversity of the 
prostate across different patients. This aspect is possibly 
seen when the performance of Palladino et al. (2022) is 
evaluated. However, the performance of Anas et al. (2018) 
contradicts this hypothesis by achieving a DSC score of 
0.93 on an architecture that is trained on 18 patients.  
 The experiments of Vesal et al. (2022) and van 
Sloun et al. (2021) emphasize the importance of patient 
heterogeneity in used datasets. In this light, employment 
of supervised Domain Adaption is proven to be of 
additional value, to improve the generalizability of DL 
architectures that are trained on a low number of patients.
  Furthermore, inaccurate segmentations as a 
result of present shadow artefacts may be reduced with the 
aid of the pre-processing strategies proposed by Xu et al. 
(2020). Their method is worth to explore more elaborately, 
particularly in the case of transabdominal ultrasound 
images, where shadow artefacts frequently disrupt the 
prostate boundary. In contrast, pre-processing training 
data with 3D Mean, Median and Gaussian filters appear to 
be less useful for improving segmentation outcomes. (20)
  At last, it is recommended to conduct ablation 
studies when additional models are implemented or when 
an ensemble of networks is proposed. For instance, Lei et al. 
(2021) deigned a DL architecture that consists of multiple 
systems to enhance segmentation outcomes, however the 
contribution of each implementation was not explored. 
In contrast, in other experiments it is clearly reported 
which components of the proposed DL architectures 
improve segmentation outcomes. () Specifically when 
taken into account that efficient DL models are usually 
required to optimize the opportunity for real time 
employment, it is reasonable to understand how an 
addition in complexity contributes to model performance.
 The employment of DL for prostate segmentation 
is worth to explore further as it allows for a volume 
estimation based on the whole prostate region. This is 
particularly beneficial in patients suspected of prostate 
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cancer, as the prostate shape variates across patients. 
Furthermore, prostate segmentation architectures 
can be utilized in the field of image-registration. 

4.1 The application of deep-learning for prostate 
volume estimation with the aid of the Prolate 
ellipsoid formula. 
In this review, solely one research group concentrates on 
PV estimation with the aid of PEF. Strikingly, Albayrak 
et al. (2022) focused on TAUS to obtain the PV, whereas 
prostate segmentation methods are most commonly 
applied on TRUS. Even though the presented results seem 
rewarding with an average volume difference of 4.95 cm3, 
there are considerable aspects of their proposed system 
that warrant discussion. First, PEF can only be utilized 
when all diameters are present at maximum in de 2D 
TAUS image. Therefore, in both directions, the prostate 
cross-section must be at maximum when given to the 
system. Currently, the authors only trained the network 
with TAUS images that satisfy this criteria. As a result, 
human knowledge is still required when the proposed 
method would be implemented in a clinical workflow. 

Hence, the proposed design requires an
implementation that determines the most suitable
prostate slice in an acquisition.  The methods proposed 
by (21) and (palladino ) may serve as a solution when they 
are modified to classify the prostate region first on its cross 
section, before the computation of the landmarks start.
 Secondly, the system is evaluated on MAVD of 
the entire PV. Since the PV relies on the prediction of six 
landmarks, it remains unclear whether the accuracy of 
the calculated landmarks are contributing equally to the 
presented MAVD. When the predictions are evaluated 
separately, the performance is less black-boxed and 
insight is provided on which diameter, and therefore 
image direction,  inaccuracies depend.    
 The application of DL for the  employment of 
PEF is unique and can be advantageous on TAUS image 
data since the acquisitions consist of a 2D coordinate 
space that complicate the acquirement of a 3D volume 
reconstruction. Utilizing TAUS for PV estimation 
is promising as the examination is characterized by 
more patient comfort and a decreased work-load on 
clinical practitioners. Nevertheless, PEF assumes the 
prostate to be of an ellipsoid shape which may lead to 
over and under estimations of PV in clinical practice. 

.
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Appendix A 

Search Query Pubmed:             EXPORT DATE: 11 October 2023

( “deep learning”[MeSH Terms] OR (“deep”[All Fields] AND “learning”[All Fields]) OR “deep learning”[All Fields] 
OR (“deep”[All Fields] AND “neural”[All Fields] AND “network”[All Fields]) OR (“neural”[All Fields] AND 
“network”[All Fields]) OR “U-Net”[All Fields] (“deep learning” [All Fields] AND “segmentation” [All Fields] ) ) 
AND ( “prostate”[MeSH Terms] OR “prostate”[All Fields] OR “prostates”[All Fields] OR “prostatic”[All Fields] 
OR “prostatism”[MeSH Terms] OR “prostatitis”[All Fields] OR (“prostate”[All Fields] AND “volume”[All Fields]) 
OR (“prostate”[All Fields] AND “segmentation”[All Fields]) OR (“prostate”[All Fields] AND “image”[All Fields] 
AND “segmentation”[All Fields]) ) AND ( “ultrasonography”[All Fields] OR “ultrasonography”[MeSH Terms] OR 
“ultrasonographies”[All Fields] OR “ultrasound”[All Fields] OR “TRUS”[All Fields] OR “TAUS”[All Fields] OR 
“US”[All Fields] OR (“transrectal”[All Fields] AND “ultrasound”[All Fields]) OR (“transabdominal”[All Fields] AND 
“ultrasound”[All Fields]) OR (“abdominal”[All Fields] AND “ultrasound”[All Fields]) )

Search Query IEEE Xplore:            EXPORT DATE: 16 October 2023

(“Abstract”:”deep learning”  OR “Abstract”:”neural network” OR “Abstract”:”Net”) AND (“Abstract”:”prostate”) AND 
(“Abstract”:”ultrasound” OR “Abstract” OR “Abstract”:”US” OR “Abstract”:”TRUS” OR “Abstract”:”TAUS”)
Filter: 2016-2023

Search Query Scopus:             EXPORT DATE: 25 October 2023

( TITLE-ABS-KEY ( deep AND learning ) AND TITLE-ABS-KEY ( prostate ) AND TITLE-ABS-KEY ( ultrasound ) ) 
AND PUBYEAR > 2016 AND PUBYEAR < 2025 
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