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Barrierless Transition
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†Department of Engineering Fluid Dynamics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
‡Twister Supersonic Gas Solutions, Einsteinlaan 10, 2289 CC Rijswijk, Netherlands
§Department of Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands

ABSTRACT: We study the process of cluster formation at extreme supersaturations and
identify the temperature-supersaturation domain where evaporation can be neglected
resulting in a barrierless process with kinetics dominated by the dimer formation. The
cluster size distribution obeys the coalescence equation with the pressure−temperature-
dependent association rate coefficients ki, j. In view of the crucial role played by kinetics
under these extreme conditions, the values of these coefficients calculated within the free
molecular collision model are insufficient for the prediction of the nucleation rate and
cluster distribution. An alternative is the use of ki, j obtained from the ab initio calculations.
We apply these considerations to the analysis of recent water nucleation experiments in
the postnozzle flow of a Laval nozzle. Theoretical predictions of nucleation rate are in an
excellent agreement with experiment. At the same time, there is a discrepancy in the
densities of small clusters. The latter can be attributed to the difference in ki, j extracted
from the experimental data and those resulted from the ab initio calculations.

I. INTRODUCTION

The phenomenon of nucleation is associated with the
nonequilibrium first-order phase transitions transforming a
metastable parent phase to a thermodynamically stable
daughter phase. The transformation proceeds through creation
of small clusters (nuclei). Nucleation is ubiquitous in nature,
playing an important role in a number of scientific fields
ranging from atmospheric sciences to nanotechnology and
medicine. In spite of the familiarity of these phenomena,
accurate calculation of the nucleation rate and cluster
distribution function for a number of practically relevant
cases encounters serious difficulties. This is because the
properties of small clusters are insufficiently well-known.
Classical nucleation theory (CNT), which has long been the

most widely used theoretical model, fails to predict nucleation
rates in situations when small, molecular-sized clusters play the
leading role in the system’s behavior. This shortcoming gave
rise to a number of efforts aimed at understanding nucleation
at the molecular level which requires taking into account
intermolecular interactions (see ref 1 and references therein).
One such model is the mean-field kinetic nucleation theory
(MKNT)2 which treats small clusters using statistical
mechanical considerations and provides a smooth interpolation
to the limit of big clusters obeying the classical capillarity
approximation.
The majority of theoretical efforts refers to the development

of thermodynamics of nucleation since the nucleation rate
depends exponentially on the free energy barrier of cluster
formation. Meanwhile, kinetics of nucleation, i.e., the rates of
cluster formation and evaporation, in most studies remain the
same as in the CNT. For the gas-to-liquid transition

(condensation), the association rate in the CNT is described
by the free molecular collisions based on the ideal gas kinetics.
However, in the situations when the parent phase (vapor) is
characterized by extremely high supersaturations, the vapor
phase becomes unstable resulting in the disappearance of the
nucleation barrier.3 Under such conditions the role of kinetics
of cluster formation becomes crucial, with the collisions rates
being very sensitive to intermolecular interactions.
Among various substances for which nucleation has been

studied theoretically and experimentally, water is of particular
importance in view of the role played by water in various
natural processes.
In recent experiments of Lippe et al.4 formation of water

clusters was studied in the uniform postnozzle flow of a Laval
nozzle at flow temperatures T = 87 K and T = 47.5 K and
extremely high supersaturations of ln S = 41 and ln S = 104,
respectively. The cluster size distribution was measured using
mass spectrometry after single-photon vacuum ultraviolet
ionization. In the subsequent paper from the same group,5

the results of these experiments were used to deduce the
association rate coefficients of water molecules and to compare
them with the results of ab initio calculations with the master
equation approach of Bourgalais et al.6

In the present paper we undertake an opposite route: using
theoretical considerations combined with ab initio collision
rates,6 we calculate the steady-state nucleation rate and cluster
size distribution for the experimental conditions of ref 4.
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The paper is organized as follows. In Section II we use the
MKNT considerations to identify the domain of temperatures
and supersaturations in which nucleation represents a
barrierless process with kinetics dominated by the dimer
formation and discuss the corresponding nucleation rate. In
Section III we calculate the cluster distribution within this
domain within the framework of the coalescence theory.
Section IV is devoted to the analysis of water nucleation
experiments of Lippe et al.4 Calculations of the steady-state
nucleation rate and cluster distribution with ab initio based
association rate coefficients6 are compared with experimental
results.4 Conclusions are summarized in Section V.

II. NUCLEATION AT HIGH SUPERSATURATIONS
The kinetics of cluster formation in nucleation theories is
based on the Becker−Döring (BD) model7 in which the
evolution of clusters is considered as a sequence of elementary
processes of attachment and detachment of monomers.
According to the BD model, the rate of change of the n-
cluster number density ρ(n, t) with time t is balanced by the
net fluxes to the n-clusters, J(n − 1, t), and f rom them, J(n, t),
as

ρ∂
∂

= − − =n t
t

J n t J n t n
( , )

( 1, ) ( , ) for 2, 3, ...

The cluster flux is constructed by considering the forward
(association) rate, f(n), and backward (dissociation) rate, b(n)

ρ ρ= − + +J n t f n n t b n n t( , ) ( ) ( , ) ( 1) ( 1, )

The forward rate represents the number of collisions per
unit time of vapor monomers with the surface of the cluster.
The backward rate is determined from the detailed balance
condition at equilibrium. CNT uses the notion of a constrained
equilibrium, which would exist for a vapor at the same
temperature T and the supersaturation S > 1 as the vapor in
question.
An alternative, the kinetic approach, introduced by Katz and

co-workers,8 refers to the true equilibrium at liquid−vapor
coexistence (saturation), corresponding to S = 1. Within this
approach, which is particulary useful for the purposes of the
present paper, b(n) is determined from the detailed balance
condition at saturation resulting in

ρ
ρ

+ =
+

b n f n
n

n
( 1) ( )

( )

( 1)sat
sat

sat (1)

where ρsat(n) is the cluster distribution function at saturation at
temperature T, and

= = ···f n
f n

S
n( )

( )
1, 2,sat (2)

is the forward rate at saturation; b(n) is assumed to be
independent of the vapor density. In the steady state, J(n, t) = J
with J being the steady-state nucleation rate. Within the kinetic
approach1
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At a given T there exists a value of S beyond which the
maximum of the Gibbs free energy of cluster formation ΔG(n)
disappears, and so does the critical cluster corresponding to it.
This happens at the so-called pseudospinodal Spsp(T). The

model for Spsp(T) is based on the generalized Kelvin equation.
9

The height of the nucleation barrier ΔG* at pseudospinodal is
on the order of the energy of thermal fluctuations in the
liquids: ΔG* ≈ kBT, where kB is the Boltzmann constant. In
what follows we consider the range of S higher than the
pseudospinodal.
Let us rewrite eq 3 as
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From eq 1
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Thus, for arbitrary n > 1
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Combining this expression with eq 2 and substituting into eq
4, we find
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Within the purely phenomenological approach based on the
capillarity approximation

ρ ρ= θ− ∞n( ) e n
sat
CNT

sat
v 2/3

(6)

where ρsat
v (T) is the vapor number density at saturation. γ∞ is

the (macroscopic) surface tension; θ∞ = γ∞s1/(kBT) is the
reduced macroscopic surface tension. s1 = (36π)1/3(ρl)−2/3 is
the “surface area of a monomer”, and ρl is the number density
of the liquid. An important feature of the CNT, particularly
relevant for our considerations, is that eq 6 is valid for
sufficiently big clusters and fails for small ones: for n → 1 the
macroscopic surface tension is not defined.
In order to treat all clusters on the same footing, we calculate

ρsat(n) using the MKNT.1,2 Its main result states that within
the mean-field approach ρsat(n) is given by

ρ ρ= θ− [ − ]n( ) e n n
sat sat

v ( ) 1micro
s

where ns(n) is the average number of surface molecules in the
n-cluster and θmicro(T) is the reduced (in the units of kBT) f ree
energy per surface particle

i
k
jjjjj

y
{
zzzzzθ = − −T

B p

k T
( ) lnmicro

2 sat

B (7)

Here psat(T) is the saturation vapor pressure, and B2(T) is
the second virial coefficient. As seen from eq 7, θmicro reflects
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the nonideality of the vapor described by the second virial
coefficient. The Gibbs free energy of n-cluster formation in
MKNT is

θΔ ≡ = − + [ − ]G
k T

g n n S n n( ) ln ( ) 1T S
s

B
, micro

(8)

For small clusters n ≤ N1, where N1(T) is the coordination
number in the liquid phase, ns(n) = n yielding

ρ ρ= θ− −n( ) e n
sat sat

v ( 1)micro

The backward rate eq 1 is then

i
k
jjjjj

y
{
zzzzz+ =

θ
b n

S
f n( 1)

e
( )

micro

In the present paper we consider the XS-domain of
temperatures and supersaturations, satisfying the condition

≡ ≪
θ

r
S

e
1

micro

(9)

For sufficiently low temperatures this also implies that

≫Sln 1 (10)

For n ≥ N1 + 1, ns(n) grows slower than O(n) recovering the
CNT behavior ns(n) ∼ n2/3 for big clusters (for details see ref
1, Chapter 7). In the XS-domain the contribution of clusters
with n ≥ N1 + 1 to J is negligible: g(n) is negative and
monotonically decreases. Therefore, summation in eq 3 can be
truncated at n = N1. In eq 5, we have

=
−

=
b j
f j

r
f j

f j
j N

( )
( )

( 1)
( )

2, ..., 1
(11)

The ratio of successive association rates in the right-hand side
of this expression is O(1) or less, so at r ≪ 1

≪ =
b j
f j

j N
( )
( )

1 2, ..., 1

which implies that in the XS-domain evaporation can be
neglected and cluster formation is a barrierless process with
kinetics dominated by the dimer formation; its rate (eq 4) with
the high degree of accuracy can be set to

ρ≈J f (1)v
(12)

where ρv = ρsat(1)S is the vapor number density.

III. CLUSTER FORMATION IN THE XS-DOMAIN AS A
COALESCENCE PROCESS

Considerations presented in the previous section show that in
the XS-domain the nucleation process is purely kinetically
driven (rather than thermodynamically driven) with dimer
formation with the forward rate f(1) being the critical step.
Usually in the nucleation models f(n) is found from the ideal
gas kinetics:10 since f(n) enters the prefactor in the nucleation
rate expression, its value is of minor importance compared to
the exponential contribution of the free energy barrier. In the
case of a barrierless transition, the situation is drastically
different: an adequate quantitative prediction of the nucleation
rate requires that f(n) has to be found from the microscopic
arguments taking into account intermolecular interactions.
Since evaporation rates for all cluster sizes are negligible, the

growth of an arbitrary cluster is kinetically controlled by

sequences of association (coalescence) processes. This
observation is in line with the results of Monette and Klein11

who considered the formation of nucleating droplets in the
vicinity of the classical spinodal for the systems with long-range
forces. Calculations based on the BD model and Monte Carlo
simulations suggested that nucleation near spinodal represents
a coalescence process.
According to coalescence (coagulation) theory,12 the rate at

which two single particles (droplets) of radii R1 and R2 collide
to form doublets due to coalescence is proportional to the
product of their number densities ρ1 and ρ2

ρ ρ=J K R R( , )coal 1 2 1 2 (13)

The coalescence kernel K(R1, R2; T, p) with the
dimensionality cm3/s depends on particles’ radii as well as
on pressure and temperature. For equal-sized droplets of radius
R and number density ρ, eq 13 reads Jcoal = K ρ2 with K = K(R;
T, p). According to eq 12 the steady-state nucleation rate is
equal to the rate of coalescence of two monomers resulting in
the dimer formation:

ρ ρ≈ =J f k(1) ( )v
1,1

v 2
(14)

where the forward rate f(1) = k1,1ρ
v. The quantity k1,1(T, p)

represents the coalescence kernel for monomer−monomer
association.
Within the framework of coalescence theory, the n-cluster is

formed by association of i and (n − i) clusters

+ − → ≤ ≤ −i n i n i n( ) ( ) ( ) 1 1

and disappears as a result of its association with other clusters
in the system

+ → + ≤ ≤n i n i i N( ) ( ) ( ) 1 max

where Nmax is the maximum cluster size. Evolution of ρ(n, t)
can be described by the discrete coalescence equation12

∑

∑

ρ ρ ρ

ρ ρ

∂
∂

= −

− =

=

−

−

=

n t
t

k n i t i t

n t k i t n N

( , ) 1
2

( , ) ( , )

( , ) ( , ) 2, 3, ...,

i

n

n i i

i

N

i n

1

1

,

1
, max

max

(15)

where ki, j(T, p) is the temperature- and pressure-dependent
kernel representing an association rate coef f icient for i − j
cluster collisions. The first term in eq 15 describes the
formation of an n-mer from coalescence of two smaller
clusters: i-mer and (n − i)-mer. The second term describes the
rate of depletion of the n-mer due to collisions with other
clusters.
For the steady-state distribution ρs(n) = limt→∞ρ(n, t), eq 15

represents the system of Nmax − 1 polynomial equations for
Nmax − 1 unknowns ρs(2), ..., ρs(Nmax):

∑ ∑ρ ρ ρ ρ− − =

=
=

−

−
=

k n i i n k i

n N

1
2

( ) ( ) ( ) ( ) 0

2, 3, ...,

i

n

n i i s s s
i

N

i n s
1

1

,
1

,

max

max

(16)

with ρs(1) = ρv. It is convenient to introduce the reduced
cluster densities

ρ
ρ

= ≤ =X
i

i N
( )

(1)
1 1, ...,i

s

s
max
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and reduced association rate coefficients

= =a
k

k
i j N, 1, ...,i j

i j
,

,

1,1
max

Then, taking into account that X1 = a1,1 = 1, eqs 16 take the
form
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a X X n N
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1
2

0 2, 3, ...,

n n n n
i

n

n i i n i i

i

N

i n i n

1, 1 1 1,
2

2

,

2
, max

max

(17)

The simplest approximation for Xi results from linearization of
eqs 17 in Xi, implying the neglect of the terms in the square
brackets, which yields

≈ = =X
a

k

k
i N

1
1, ...,n

n n1,

1,1

1,
max

(18)

Physically this means that collisions of an arbitrary cluster
with clusters other than monomers are excluded: thus, the n-
cluster is formed by collision of an (n − 1)-cluster with a
monomer and disappears, becoming the (n + 1)-cluster as a
result of its collision with a monomer.
In CNT and its modifications, collision rates are described

by the ideal gas kinetics. For the XS-domain, where cluster
formation is a kinetically driven process, in order to calculate
ki, j(T, p), one has to employ a more advanced approach taking
into account intermolecular interactions. In particular, the
association rate coefficients can be calculated using the ab initio
transition state theory (TST).13,14 By making the fundamental
assumption of TST,15 an inherently dynamic process can be
characterized in terms of equilibrium statistical mechanical
averages.16

IV. RESULTS: WATER NUCLEATION IN THE
XS-DOMAIN

We apply considerations of the previous sections to the case of
water nucleation in the postnozzle flow of a Laval nozzle at low
temperatures and high supersaturations studied experimentally
by Lippe et al.4 Table 1 shows the values of the MKNT

parameters for the experimental conditions.4 Calculations are
made using the same correlations for thermodynamic proper-
ties as in ref 4 (see Supporting Information there). It can be
seen that both experimental points (T = 87 K, ln S = 41) and
(T = 47.5 K, ln S = 104) fall in the XS-domain.
Figure 1 shows the behavior of the Gibbs free energy g(n)

for the experimental conditions.4 The free energy is negative
and decreases with n; beyond N1, the decrease is much faster
than for n ≤ N1.
In order to predict the steady-state nucleation rate and

cluster distribution, one needs to know association rate
coefficients ki, j(T, p). With this in mind we use the results

of Bourgalais et al.6 who performed ab initio calculations of
ki, j(T, p) for water for the temperature range (20−100 K) and
total pressures 10−6−10 bar using the master equation
approach.17 The main idea behind this approach is coupling
of the TST based evaluations of the microcanonical
dissociation rate coefficients with simple models for collision
induced energy transfer rates to obtain a master equation for
the time dependence of the energy resolved state populations.
The association rate coefficient, ki, j(T, p), is then obtained
from the eigensolutions of this master equation. This approach
requires potential energy values for the interaction between
reactants at arbitrary separations and orientations, which are
obtained via direct ab initio evaluations.
Experiments4 were carried out for total pressures p ≈ 0.4

mbar (with argon and nitrogen used as carrier gases) and
temperatures T = 87 K and T = 47.5 K and thus fall within the
pressure−temperature range of ref 6. Table 2 contains the
values of k1,n(T, p) coefficients (n = 2, 3, 4, 5) from Table S3 of
the Supplemental Material of the Bourgalais et al. paper.6

Choosing the data set closest to the experiment,4 we used the
(100 K, 1 mbar) data for the T = 87 K experiment, and (50 K,
1 mbar) data for the T = 47.5 K experiment.
It is instructive to compare the values of k1,n from Table 2

with the corresponding values resulting from the free
molecular collisions used in CNT:1

ρ π
= =k

f n k T
m

s n
( )

2n1,
CNT

CNT

v
B

1
1

2/3

(19)

where f(n)CNT is the CNT forward rate based on free
molecular collisions of monomers with n-clusters, and m1 is
the mass of a molecule of the condensable. Figure 2 illustrates
this comparison for small clusters n = 1, ..., 5. While the free
molecular (“CNT”) values of k1,n slowly increase with n as
O(n2/3), the ab initio based values demonstrate essentially
nonmonotonic behavior with the pronounced difference
(about order of magnitude) between neighboring points.
The ab initio dimerization rate coefficients k1,1 for both
experimental temperatures lie 2−3 orders of magnitude below
the corresponding free molecular values. At the same time the
ab initio collision rates of monomers with 4-mers, k1,4, exceed
the free molecular values.

A. Steady-State Nucleation Rate. In ref 4 the steady-
state nucleation rate Jexpt(T, S) was determined by means of
the time-dependent threshold (or Yasuoka−Matsumoto)
method (known in molecular dynamics simulations) using
the experimentally obtained cluster statistics. In the present
paper we calculate the steady-state nucleation rate from eq 14
using the k1,1 values from Table 2 and setting ρv = pcond/(kBT),
where pcond is the partial pressure of the condensable (water).
As can be seen from Table 3, theoretical predictions Jth(T, S)
are in an excellent agreement with experimental data Jexpt(T,
S).
The steady-state nucleation rate found from eq 14 with the

dimerization rates corresponding to free molecular collisions
are 2−3 orders of magnitude higher than those presented in
Table 3. This is an implication of the difference in k1,1 values
discussed earlier.

B. Steady-State Cluster Distribution. The accessible
time scale for experiments4 is on the order of a few hundred
microseconds, while the steady state is achieved at ts ≈ 50 μs.5

For the times larger than ts we can apply the steady-state
coalescence model of Section IV to calculate the cluster

Table 1. MKNT Parameters for Water at the Conditions of
Experiment4

T N1 θmicro ln S r(T, S)

87 K 5 29.12 41 6.9 × 10−6

47.5 K 5 60.84 104 1.8 × 10−19
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distribution. [Note that in our terminology coalescence refers to
collisions of all (i, j)-clusters in the system, whereas in ref 5

coalescence refers to collisions of clusters bigger than monomers
(i > 1, j > 1)]. Figure 3 shows cluster statistics Xn = ρs(n)/
ρs(1) for small clusters obtained from the linearized model (eq
18) as well as the experimental data.4,5

To test the validity of the linearized model (eq 18), we also
solved the full (nonlinearized) system of polynomial eq 17 for
T = 47.5 K and Nmax = 4:

Figure 1. Gibbs free energy of cluster formation g(n) for water nucleation corresponding to the experiment:4 (a) T = 87 K, ln S = 41; (b) T = 47.5
K, ln S = 104.

Table 2. Association Rate Coefficients (cm3/s) from the Supplemental Material for the Bourgalais et al. Paper6 Approximately
Corresponding to the Experimental Conditions of Reference 4a

k1,1 k1,2 k1,3 k1,4 k1,5

87 K expt 4.46 × 10−14 2.84 × 10−12 9.47 × 10−12 1.98 × 10−10 4.27 × 10−12

47.5 K expt 8.72 × 10−13 6.06 × 10−11 1.54 × 10−10 5.93 × 10−10 1.73 × 10−10

aThe “87 K expt” line refers to the (T = 87 K, ln S = 41) experiment, and “47.5 K expt” refers to the (T = 47.5 K, ln S = 104) experiment.

Figure 2. Association rate constants k1,n, n = 1, ..., 5 for water
corresponding to conditions of ref 4. Open symbols (CNT): free
molecular collisions eq 19. Closed symbols (ab initio): simulation
results of ref 6. Squares refer to the (T = 87 K, ln S = 41) experiment,
and circles refer to the (T = 47.5 K, ln S = 104) experiment.4

Table 3. Steady-State Nucleation Rate for Experiments:4

Theoretical Estimates According to Equation 14 (Jth) and
Experimental Data (Jexpt)

Jth (cm−3 s−1) Jexpt (cm−3 s−1)

T = 87 K, ln S = 41 3.2 × 1015 (4−5) × 1015

T = 47.5 K, ln S = 104 4.6 × 1014 2 × 1015
Figure 3. Reduced cluster densities Xn = ρs(n)/ρs(1) for experimental
conditions of ref 4 theoretical estimates using eq 18 (“th”) and
experimental data4,5 (“expt”). Blue labels refer to T = 47.5 K, and red
labels refer to T = 87 K. Also shown is the solution of the full system
of polynomial coalescence eqs 20 for T = 47.5 K and Nmax = 4: blue
triangles labeled “th-full: 47.5 K”. Lines are drawn to guide the eye.
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− = + +

− = + +

− = − + + +

a X a X a X X a X X

a X a X a X X a X a X X

a X a X a X a X X a X X a X

1

1
2

1,2 2 2,2 2
2

2,3 2 3 2,4 2 4

1,2 2 1,3 3 2,3 2 3 3,3 3
2

3,4 3 4

1,3 3 1,4 4 2,2 2
2

2,4 2 4 3,4 3 4 4,4 4
2

(20)

There is only one real solution X2
full, X3

full, X4
full for this system

(shown by triangles in Figure 3), belonging to the interval

< <X X X0 , , 12
full

3
full

4
full

(21)

Its comparison with the linearized model (eq 18) reveals
that the latter overestimates the exact solution (eq 21) by
approximately 17−27%.
For T = 87 K the coalescence model predicts the decrease of

cluster densities up to n = 4 followed by an increase at n = 5.
Experimental data shows the decrease of densities for the
whole range studied, 2 ≤ n ≤ 5. The absolute values of
densities differ by 1−2 orders of magnitude except for n = 4
where they differ by a factor of 3. For T = 47.5 K the model
results and experimental data are qualitatively different. While
theoretical predictions show the same trend as for T = 87 K,
experimental densities demonstrate an increase up to n = 4
followed by a slight decrease at n = 5. The absolute values of
densities differ by 1−2 orders of magnitude except for n = 4
where they differ by a factor of 4.
These discrepancies are due to the difference in the values of

the association rate coefficients k1,n extracted from the
experimental data, as discussed in ref 5 and those resulting
from the ab initio calculations.6

V. CONCLUSION
In the present paper we studied the cluster formation at
extreme supersaturations and showed that in the XS-domain
eq 9 evaporation can be neglected and cluster formation is a
barrierless process with kinetics dominated by the dimer
formation. We showed that the cluster distribution function
obeys the coalescence equation with the pressure−temper-
ature-dependent coalescence kernels. Since the collision
processes are dominated by collisions of various clusters with
monomers, one can derive the cluster distribution from the
linearized coalescence model. The steady-state solution of this
simplified model is given by eq 18.
In view of the crucial role played by kinetics at these

conditions, the association rate coefficients found from the free
molecular (ideal gas) collision model are insufficient to predict
nucleation rate and cluster distribution. A better alternative is
the use of association rate coefficients from the ab initio
calculations.
We applied these considerations to the analysis of water

nucleation in the postnozzle flow of a Laval nozzle at high
supersaturations experimentally studied by Lippe et al.4 For the
association rate coefficients ki, j the values found in the ab initio
calculations of Bourgalais et al.6 were used. Theoretical
predictions of nucleation rate are in an excellent agreement
with experiment. At the same time there is a discrepancy in the
densities of small clusters between the model and experiment.4

The latter can be attributed to the difference in the values of
k1,n extracted from the experimental data, and the correspond-
ing ab initio results.
We thank Prof. Ruth Signorell and Dr. Martina Lippe for

stimulating discussions and for sending us the experimental
data on cluster distribution prior to publication.
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