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Preface
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that made this journey both rewarding and successful.

My deepest gratitude goes to my friends and family, who stood by me throughout this journey. They
had to deal with my research-induced mood swings—the frustrations of days spent chasing a stubborn
bug and the endless dinner stories about why a 0.0001-second speedup in my algorithm truly mattered.
Despite all this, they stood by me and were there when needed.

A special thank you goes to my girlfriend, whom I met in the final stretch of this project. Her support
and encouragement provided the last push I needed to complete this work, even though explaining the
so-called ”lines and dots” remains an ongoing task.

Indy Dekker
Barendrecht, March 2025
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Abstract

Support Vector Machines (SVMs) are widely used in various domains, with their performance heavily
dependent on hyperparameter selection. However, hyperparameter tuning is computationally demand-
ing due to the SVM training complexity, which is at best O(n2), where n represents the number of
training samples. To mitigate this challenge, we propose integrating a validation-based early stopping
criterion into the Sequential Minimal Optimization (SMO) algorithm to enhance tuning efficiency.

We evaluate this approach within Random Search and Successive Halving frameworks, aiming to re-
duce tuning runtime while preserving model performance. We introduce a composite score function
to facilitate a balanced assessment of accuracy and efficiency. Our empirical analysis reveals that
incorporating early stopping into SMO significantly reduces hyperparameter tuning time under RS but
provides limited benefits in successive halving, given its inherent efficiency. Additionally, while dataset
characteristics influence the effectiveness of early stopping, we found evidence that dimensionality
does not. We also observe that frequent early stopping objective assessments introduce computa-
tional overhead, which can offset runtime improvements. Reducing assessment frequency alleviates
this issue, but it diminishes the effectiveness of early stopping.

Our findings highlight the potential of early stopping in SMO for optimizing SVM hyperparameter tun-
ing, particularly within random search-based approaches. They also identify trade-offs in assessment
frequency and dataset-specific factors.
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1
Introduction

1.1. Background
In an era where the field of machine learning is becoming more and more mainstream through Chat-
GPT and other similar applications, the inability of humans to understand these models also grows [41].
The problem is that these models are also used in critical areas like medicine or the criminal justice
system [32]. Interpretability is still being defined in the machine learning field. While many deep learn-
ing methods function as black boxes, offering limited interpretability, some models, such as Support
Vector Machines, stand out for their theoretical guarantees on stability and sample complexity, provid-
ing a foundation for transparent and robust decision-making in critical applications [39]. Support Vector
Machines (SVMs) are supervised learning models that classify data by finding the optimal hyperplane
that best separates different classes in a high-dimensional space. They maximize the margin between
each class’s closest data points (support vectors).

Support Vector Machines (SVMs) remain a prominent tool in contemporary research across various
fields [11]. In healthcare, they play a crucial role in disease diagnosis, prognosis prediction, and gene
expression analysis, helping to uncover patterns in complex biological data [21]. SVMs are also ex-
tensively used in computer vision applications, such as image classification, facial recognition, and
object detection, demonstrating their versatility [4, 24, 50]. Additionally, SVMs remain a staple in natu-
ral language processing tasks, including text categorization and sentiment analysis, due to their robust
performance in high-dimensional spaces [11].

The SVM optimization problem can be formulated and solved in primal and dual forms. While the dual
formulation is useful for certain computational advantages, particularly in handling high-dimensional
data, the primal approach is often preferred when seeking an approximate solution to the SVM optimiza-
tion problem. Stochastic gradient descent is commonly used to solve the primal problem, benefiting
from faster convergence since it avoids problem decomposition [13, 40].

Several primal solving algorithms, such as Pegasos [40] and Liblinear [17], offer faster convergence
times due to their lower runtime complexity (e.g., O(d) for Pegasos, where d is the data dimensionality),
making them well-suited for larger datasets. However, a key limitation of these primal methods is
their inefficiency when applying non-linear SVM kernels. Even though multiple improvements have
been proposed, LibSVM is still considered to be state-of-the-art when used in combination with the
subsampling of the data [23].

Dual solvers face challenges such as slow convergence. For instance, LibSVM has a runtime complex-
ity that scales between O(n2) and O(n3), where n is the number of training samples [8]. Despite this,
LibSVM continues to set the standard by implementing the Sequential Minimal Optimization algorithm
[44]. The library receives frequent updates. For example, extensions like warm-starting techniques
have been proposed to accelerate convergence [43]. Additionally, GPU-powered dual solvers such as
ThunderSVM significantly leverage modern hardware to boost performance [47]. This continued inno-
vation highlights the adaptability and relevance of dual solvers in addressing computational bottlenecks
and expanding their applicability in real-world scenarios.

SVMs are a supervised learning technique. The accuracy of the final model depends on the choice of
hyperparameters. Figure 1.1 shows the validation error throughout the training of SVMs using different
hyperparameter configurations. The figure highlights how the validation accuracy varies with different

1



1.2. Research Goal 2

hyperparameters, demonstrating the importance of hyperparameter tuning for SVMs. Default methods
often used for hyperparameter tuning are random search and grid search [6]. While these methods can
be considered brute-force approaches, multiple improvements have been proposed. One example is
the successive halving algorithm [27].
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Figure 1.1: Figure illustrating the validation accuracy across various hyperparameter selections for a
classification task utilizing SVMs. This figure emphasizes the significant influence of hyperparameter choices on
training iterations and convergence behaviour, underscoring the necessity of meticulous hyperparameter tuning

for optimal SVM performance.

Hyperparameter optimization (HPO) for Support Vector Machines has been extensively explored in the
literature, leading to various algorithmic approaches aimed at improving efficiency [20, 35, 46]. For
instance, [20] introduces a multi-objective strategy to optimize hyperparameters, particularly in imbal-
anced datasets. Given the computational challenges associated with tuning, strategies that integrate
adaptive techniques can further enhance the efficiency of the process.

In HPO, we see how network architecture search baselines combine a random search with early stop-
ping; this approach achieves state-of-the-art results in this field [15]. Early stopping is a regularization
technique to fight overfitting to the training data. Early stopping is widely applied because of its simple
nature and is a superior regularization method, according to [38]. We also see how early stopping is
introduced as a dynamic early stopping condition for Random search optimization, where the effective-
ness is tested using Support Vector Machines [18].

1.2. Research Goal
Significant progress has been made in SVMs and hyperparameter optimization. Most of the work fo-
cuses on designing efficient HPO algorithms that speed up the convergence of the process. However,
little attention has been given to incorporating early stopping into the sequential minimal optimization
(SMO) algorithm. Figure 1.1 shows us how different hyperparameter combinations influence the vali-
dation accuracy throughout training. However, it also shows how, for specific configurations, minimal
progress is being made in this objective in the latter stages of training, indicating a potential for early
stopping to be beneficial, reducing the overall time to perform such an HPO procedure.

This thesis aims to answer the following question:

”To what extent can early-stopping in the SMO algorithm reduce the runtime of hyperparameter tuning
procedures while preserving good performance?”
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To answer this question, we defined the following subquestions:

1. Which early stopping configurations yield the best balance of runtime reduction and performance
across a range of datasets with diverse characteristics?

2. How does the dimensionality of the dataset impact the effectiveness of early stopping in the SMO
algorithm?

3. How do successive halving and random search compare when performing a hyperparameter
tuning procedure using the SMO algorithm with early stopping?

To address these questions, we implement the SMO algorithm from scratch in Python. This code will
be available as part of my graduation, contributing to future research and reproducibility.

1.3. Thesis Outline
This thesis is organized as follows. Chapter 2 presents the background of this research. Chapter 3
describes the experimental setup used to evaluate the effectiveness of early stopping in hyperparam-
eter tuning for SVMs trained with the SMO algorithm. Chapter 4 details the experimental results. The
results are discussed in section 5. Finally, chapter 6 discusses the results and concludes the thesis by
providing our main findings.



2
Support Vector Machines

2.1. Support Vector Machines
Support Vector Machines (SVMs) are widely used for classification and regression tasks due to their
robust mathematical foundation and strong performance in various applications. At their core, SVMs
aim to find a hyperplane that optimally separates two data classes while maximizing themargin between
them. Determining the model’s parameters is framed as a convex optimization problem, guaranteeing
that any local minimum corresponds to the global optimum. This property ensures that the SVM reliably
achieves the best possible separation of the data.

The used notations and equations are based on [7]. We define a classification problem where the
input vectors are x ∈ Rd with corresponding class labels ti ∈ {−1,+1}. Given that w ∈ Rd is the
weight vector determining the orientation of the hyperplane and b is the bias term, we can define the
hyperplane as:

wTx+ b = 0 (2.1)

The points that lie precisely on the margin boundaries, where ti(w
Txi + b) = 1, are known as support

vectors. These points are critical because they define the optimal hyperplane. The margin depends
entirely on them [11]. Figure 2.1 visually represents a hyperplane for a dataset with two dimensions.
Figure 2.1 shows how the support vectors influence the hyperplane.

y = 1

y = 0

y = -1

margin

Figure 2.1: Figure showing the optimal hyperplane for a 2D dataset. The margin and support vectors are also
indicated.

The primal optimization problem for a Support Vector Machine is given by:

min
w

C

N∑
n=1

ξn +
1

2
∥w∥2 (2.2)

4



2.1. Support Vector Machines 5

The first term in the objective function penalizes misclassified points or those within the margins of the
decision boundary. The chosen loss function determines the slack variable ξ and assigns a penalty to
each training point that violates the margin constraint. The parameter C controls the trade-off between
maximizing the margin and minimizing classification errors; a larger value of C results in stricter penal-
ization of misclassified points. The second term in the objective function involves the parameter vector
w, which determines the orientation and position of the decision boundary.

SVMs commonly use the hinge loss function to measure a data point’s misclassification and margin
violations. The hinge loss for vector xn, given parameter vector w is noted as ξn(w; (xn, tn)). The
term ⟨w,xn⟩ represents the inner product between the weight vector w and the feature vector xn,
corresponding to the model’s prediction before applying the sign function. We can write the formula of
the Hinge Loss as:

ξn(w; (xn, tn)) = max{0, 1− tn⟨w,xn⟩}. (2.3)

Points on the correct side of the decision boundary with a sufficient margin do not contribute to the
loss, while points within the margin do. One problem, however, is that outliers in the data will lead to a
considerable loss and thus heavily influence the decision boundary. Due to this, SVMs using the hinge
loss are sensitive to noise in the data. This behaviour is illustrated in figure 2.2 since the assigned loss
grows linearly with the prediction for data points on the wrong side of the decision boundary.
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Figure 2.2: The hinge loss function ξn(w; (xn, tn)) based on the models prediction ⟨w,xn⟩.

The SVM model shown in figure 2.1 has a linear decision boundary. Given equation (2.2), we see that
we use the data without any feature-space transformations. However, linear decision boundaries may
not effectively capture complex patterns in the data. To address this, we introduce a feature-space
transformation denoted by ϕ(x). The equation of the hyperplane becomes:

wTϕ(x) + b = 0 (2.4)

In the primal formulation, solving the optimization problem becomes computationally challenging when
the dimension of the feature mapping ϕ(x) is large. This is because ϕ(x) needs to be entirely stored
to solve equation (2.4). The dual formulation leverages the kernel trick to overcome this problem,
which allows computations to be performed implicitly by evaluating the kernel function k(xn,xm) with-
out explicitly storing ϕ(x). We rewrite the problem using the Lagrangian dual function that introduces
Lagrange multipliers to solve the optimization problem. A detailed explanation of the derivation of this
function is provided in [10]. The resulting dual optimization problem becomes a maximizing margin
problem, where we maximize:

L(α) =

N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmtntmK(xn,xm), (2.5)
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The optimization in (2.5) is subject to the following constraints:

0 ≤ αn ≤ C, (2.6)

N∑
n=1

αntn = 0. (2.7)

Constraint (2.6) ensures that the Lagrange multipliers remain within a feasible range, with C acting as
a regularization parameter that balances the trade-off between maximizing the margin and minimizing
classification errors. Constraint (2.7) enforces the separability condition, ensuring that the sum of the
weighted Lagrange multipliers aligns with the class labels.

Another advantage of using the dual form optimization is that it inherently exploits the sparsity of the
solution, as the Lagrange multipliers αn are non-zero only for the support vectors. These support
vectors are the data points closest to the decision boundary and are crucial for defining the classifier.
Finally, the dual formulation reduces the problem to a quadratic programming task, which can be solved
efficiently using algorithms such as Sequential Minimal Optimization (SMO) [37].

Once the optimization is complete, the support vectors determine the decision function f(x) for a new
input x. Given b is the bias term and K(xn,x) the kernel function that captures the similarity between
a support vector xn and the input x, determining its contribution to the decision function. Then f(x) is
given by:

f(x) =
∑
n

αntnK(xn,x) + b (2.8)

2.2. Sequential Minimal Optimization
To solve the SVM problem, we calculate the Lagrange multipliers (α) using the dual formulation (2.5),
which results in a quadratic programming (QP) problem [37]. This QP is subject to linear equality
and box constraints, where the Karush-Kuhn-Tucker (KKT) conditions ensure optimality by enforcing
stationarity, feasibility, and complementary slackness. For all i, the solution satisfies:

αi = 0 ⇐⇒ tif(xi) ≥ 1,

0 < αi < C ⇐⇒ tif(xi) = 1,

αi = C ⇐⇒ tif(xi) ≤ 1.

(2.9)

Decomposition techniques are essential for addressing memory issues when solving the SVM problem,
especially for large datasets. Storing the entire kernel matrix with a space complexity of O(n2) can
lead to memory problems, particularly when non-linear kernels are used. To overcome this, methods
like Chunking, introduced by Vapnik [45], simplify the optimization by removing kernel-matrix rows
and columns corresponding to zero Lagrange multipliers, reducing the problem’s size. This allows
the larger QP problem to be decomposed into smaller subproblems. SMO is an example of such a
decomposition technique, enabling more efficient optimization by solving subproblems with fixed sizes.
Other decomposition methods, such as the Osuna algorithm [25] and coordinate descent [49], have
also been proposed. However, SMO is one of the most used decomposition techniques.

The SMO algorithm decomposes the SVM quadratic programming (QP) problem into the smallest possi-
ble subproblems. Instead of solving the entire QP problem, SMO iteratively selects a pair of multipliers
(αi, αj) and optimizes them while keeping all other multipliers fixed. This reduces the problem size
to a 2D QP optimization, making the computation faster. The process ensures that the Karush-Kuhn-
Tucker (KKT) conditions are satisfied at each step, and the solution converges towards the global
optimum without needing to store or manipulate the entire kernel matrix at once.

The dual form of the optimization problem imposes two constraints on the two α’s to optimize. The
first is the box constraint 0 ≤ α ≤ C. Secondly the linear constraint

∑n
i=1 αiti = 0. These constraints
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ensure that the solution is feasible and satisfies the conditions for optimality. SMO satisfies the linear
constraint by focusing on only two variables, αi and αj . Any increase in αi is matched by a proportional
decrease in αj based on the equation tiαi + tjαj = c, where c is a constant. In the next section, we
explain how the SMO algorithm is implemented and how it performs these updates.

2.3. SMO implementation details
Now, we will discuss the SMO algorithm in detail. SMO iteratively selects pairs of α values that violate
the KKT conditions. To update αj , we define η as the second derivative of the objective function L(α)
with respect to αi and αj , given by:

η = K(xi, xj) +K(xj , xj)− 2K(xi, xj) (2.10)

The variable η measures the change in the decision function when updating αi and αj simultaneously.
Let Ei = f(xi) − ti be the error for the ith training sample. Given η and the errors Ei, Ej , the new αj

is computed as:

αj = αold
j + tj(Ei − Ej)/η (2.11)

The update rule adjusts αj by adding a term proportional to the difference in prediction errors between
two training points, scaled by the curvature of the objective function η. This step aims to reduce the
error difference while satisfying the optimization constraints. After calculating the new value for αj we
need to clip according to the box constraints enforced by variables [L,H ], where L = max(0, αold

j −αold
i )

and H = min(C,C + αold
j − αold

i ). Given these bounds we clip αj as follows:

αj =


H, if αj > H,

L, if αj < L,

αj , otherwise,
(2.12)

We define s = titj , we are then able to calculate the value of αi using the clipped value of αj :

αi = αold
i + s(αold

j − αj) (2.13)

The update for αi is derived from the constraint that the weighted sum of changes in the Lagrange
multipliers must remain zero, so any increase in αj is balanced by a corresponding decrease in αi

scaled by the product of their labels. This ensures that both multipliers are updated in a coordinated
way that preserves the overall constraint of the SVM formulation.

The efficiency of the SMO algorithm depends on the selection of the two alphas for optimization. The
original version of the Working set selection heuristic proposed by Platt was not efficient. Thus, multiple
improvements have been proposed to speed up the algorithm’s convergence. Keerthi et al. [28] im-
prove this by introducing the maximal violating pair approach, which maximizes the objective increase.

Fan et al. [16] enhance working set selection by incorporating second-order information, accelerating
convergence. Their key improvement in SMO is using the dual objective gradient (Eq. (2.5)) to select
the two α values for optimization. The gradient Gi, representing the sensitivity of L(α) to αi, is given
by:

Gi =
∂L(α)

∂αi
= 1− yi

l∑
j=1

αjyjK(xi, xj). (2.14)

After finishing the main loop of the SMO algorithm, we must calculate the model’s bias. We follow the
explanation provided in [12]. We introduce a variable ρ, which is −b. Based on the KKT conditions we
can say that ρ = tiGi when there exists αi, such that 0 < αi < C. Note that Gi is the gradient of the
dual objective function. For stability, the value of ρ is averaged and is then calculated as follows:
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ρ =

∑
i:0<αi<C yiGi

|{i|0 < αi < C}|
(2.15)

For an optimal solution, when no Lagrange multiplier satisfies 0 < αi < C, the Karush-Kuhn-Tucker
(KKT) conditions yield the following constraints on ρ. First, we define:

M(α) = −min {yiGi | (αi = 0 ∧ yi = −1) ∨ (αi = C ∧ yi = 1)} . (2.16)

m(α) = −max {yiGi | (αi = 0 ∧ yi = 1) ∨ (αi = C ∧ yi = −1)} . (2.17)

Thus, the threshold ρ satisfies:

M(α) ≤ ρ ≤ m(α). (2.18)

In this case, we take ρ to be the midpoint of the preceding range:

ρ =
−M(α)−m(α)

2
. (2.19)

To solve the SVM equation using the SMO algorithm, we need to set the hyperparameter C. We also
need to set the stopping tolerance ϵ. In the next section, we cover two approaches to perform an HPO
procedure to find hyperparameters that lead to good model performance.

2.4. Hyperparameter tuning
The SVM model contains several hyperparameters that must be specified when training the model.
First, the kernel function must be chosen, with standard options being linear, Radial Basis Function
(RBF), or polynomial kernels [11]. This research focuses on linear and RBF kernels. The RBF kernel
introduces the γ parameter, which controls the kernel width [27]. Smaller γ values produce smoother
boundaries, while larger values result in more complex models; this is visualized in figure 2.3. Given
this hyperparameter, the RBF kernel is defined in the following way:

K(xi,xj) = exp
(
−γ∥xi − xj∥2

)
(2.20)

The regularization parameterC balances training error minimization and model complexity, with smaller
C favouring simplicity and largerC increasing complexity and training time [9]. The tolerance parameter
ϵ in SVM optimization defines the threshold for stopping by controlling how closely the solution must sat-
isfy the KKT conditions. Smaller values of ϵ lead to more precise solutions but increase computational
cost, while larger values allow faster convergence at the risk of a suboptimal margin.

There are several approaches to optimizing a model’s hyperparameters, with random and grid search
being among the most well-known. These methods have evolved into more efficient algorithms, such
as Successive Halving [27] and Hyperband [31], which aim to reduce computational costs while main-
taining effectiveness. This study focuses on random search and Successive Halving, exploring their
efficiency and application in hyperparameter optimization.

Random search is a well-known method for tuning hyperparameters, as proposed in [6]. Random
search is a hyperparameter optimization method that randomly samples configurations from the search
space. Unlike grid search, which exhaustively evaluates all combinations of predefined hyperparameter
values, random search treats each parameter as independent and samples values based on a prob-
ability distribution. This approach is efficient when only a few hyperparameters significantly influence
the model’s performance, as it avoids wasting resources on unimportant dimensions. Random search
often outperforms grid search in finding high-performing configurations, especially in high-dimensional
or complex spaces, by exploring the search space more diversely [6].



2.4. Hyperparameter tuning 9

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e 

2

Influence of  on decision boundary

0.0
1

1.0
0

10
.00

10
0.

00

Class 0
Class 1

Figure 2.3: Figure showing how γ influences the decision boundary when training SVMs on the same dataset
with the same C and ϵ. The values indicate the used value for γ. This Figure illustrates how a higher value of γ

leads to a narrower decision boundary.

Successive Halving is an iterative algorithm for hyperparameter optimization that allocates resources
progressively to configurations based on their performance [27]. It starts by evaluating many config-
urations with minimal resources, such as a few training iterations or a small subset of data. After
each iteration, the worst-performing configurations are discarded, and the remaining configurations
are allocated more resources. This process continues until the allocated budget is exhausted or a
single configuration remains; figure 2.4 visualizes this process. By focusing resources on promising
candidates early on, Successive Halving efficiently balances exploration and exploitation, making it
particularly effective in scenarios with limited computational budgets.

For the use of successive Halving, a budget B needs to be set, for example, a maximum number of
iterations or the total number of training samples in a dataset. If we then set the number of hyperparam-
eter configurations we want to try as being k, we can define the number of rounds of the successive
halving algorithm as:

r = ⌊log2(k)⌋+ 1 (2.21)

If we define kr as being the remaining models in round r, we can calculate the resources allocated to
each configuration as:

Nr =
B

kr
(2.22)

After each round, we eliminate half of the configurations based on their accuracy on a validation dataset.
In the last round, we have one remaining that we train on the entire training dataset. This is the best-
found model by the hyperparameter tuning procedure.

In addition to deploying efficient HPO strategies like Successive Halving, research also explores com-
bining HPO frameworks such as Random Search with Early Stopping [5, 18]. Early stopping is a
regularization technique that halts training once a model’s performance on a validation set ceases to
improve. ES is a regularization technique that prevents models from overfitting by halting training when
the validation loss no longer improves [19, 26].

When applying ES, setting the stopping criteria is crucial. Studies by [5, 38] show that less forgiving
stopping rules improve generalization but reduce training time gains. More aggressive ES strategies
lead to shorter runtimes but risk performance loss [5]. The aggressiveness of an ES strategy depends
on the setting of patience, which defines howmany non-progressing steps are allowed. Higher patience
results in more forgiving ES, while lower values promote more aggressive ES [26].
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Figure 2.4: Visualization of the successive halving procedure. The X-axis denotes the different rounds of
evaluation, while the Y-axis represents the accuracy of the configurations. Half of the configurations are
eliminated after each round as the process progresses, illustrating the efficiency of the successive halving

strategy in optimization. In this example, k = 8.

Note that the ”early stopping” described in the following studies is distinct from the traditional early
stopping employed in our work, where training is halted when the validation loss fails to improve. In [5],
an ES rule is introduced to reduce computational costs by sequentially evaluating CV folds and stopping
early if the remaining folds are unlikely to change the overall outcome. Similarly, [18] applies early
stopping directly to the random search process by dynamically assessing whether further evaluations
are likely to yield better models, terminating the search if additional evaluations appear unnecessary.
Both these studies highlight the potential of ES in HPO.



3
Methodology

This chapter details the methodology used to study the effects of early stopping in SMO from a hy-
perparameter optimization (HPO) perspective. Section 3.1 details our SMO implementation, including
an early stopping condition. Section 3.2 outlines the first experiment, where we examine the impact
of early stopping during random searches on multiple datasets, comparing results with and without
early stopping. We run this experiment for both RBF and linear kernel SVMs. Section 3.3 focuses
on identifying ES configurations from the first experiment that perform well on datasets with varying
complexity. These configurations are then tested on synthetic datasets with increasing dimensionality
to analyze how data dimensionality influences the effectiveness of early stopping with the best-found
configurations. Finally, Section 3.4 presents the third experiment, where the early stopping configura-
tions from Section 3.3 are applied in HPO on new, unseen datasets. This experiment compares the
behaviour of early stopping across two HPOmethods: successive halving and random search. In these
experiments, we solely focus on SVMs trained with RBF kernels.

We normalize all datasets by rescaling features so they all lie between 0 and 1. This step is crucial be-
cause it ensures that no single feature dominates the results due to its scale. Normalization significantly
improves the performance of Support Vector Machines (SVMs) by enhancing distance calculations be-
tween data points [1]. This preprocessing step is essential for achieving better accuracy and reliability
in our model predictions.

3.1. SMO with Early Stopping
We based our SMO implementation on the algorithm in [16] and followed its pseudocode in our Python
implementation, incorporating runtime optimizations detailed in Appendix A. The algorithm proceeds
as follows: first, we select the working set as described in [16]; next, we update the selected αi and
αj using equations (2.11), (2.12), and (2.13); finally, we update the gradients for all α’s according to
equation (2.14).

To apply early stopping to this version of the SMO algorithm, we first define an objective. We use the
accuracy of the model on a validation dataset for this. Defining f(xi) as the prediction model for sample
xi and nval as the number of samples in the validation dataset. We can then formulate the objective
as follows:

Oval =
1

nval

nval∑
i=1

1[f(xi) = ti] (3.1)

Given the objective function at iteration l of the SMO algorithm, let Ol
val denote the objective value

at iteration l, and Obest
val represent the best-measured objective value observed so far. Additionally,

we introduce two hyperparameters: ϵes, which specifies the early stopping tolerance, and p, which
defines the patience for early stopping. These are two standard hyperparameters associated with early
stopping. From now on, when we refer to an early-stopping configuration, we mean a combination of
hyperparameters p and ϵes.

We introduce the variable plcur, an integer indicating the algorithm’s remaining patience at iteration l.
On initialization we set p0cur = p. Using these definitions, we can express the remaining patience as:

11



3.2. Effect of early stopping in SMO on SVM HPO. 12

plcur =

{
pl−1
cur − 1 if Ol

val −Obest
val ≤ ϵes

p if Ol
val −Obest

val > ϵes
(3.2)

When the progress made by the algorithm is more significant than the set ϵes value, we reset plcur.
However, when insufficient progress is beingmade, we decrease its value. When plcur becomes smaller
than 0, we terminate the SMO algorithm due to insufficient progress in the objective.

Listing 1 gives the pseudocode for implementing the SMO algorithm. We must calculate f(x) to evalu-
ate the objective, as given in (2.8). For this calculation, the bias b is used. Thus, we calculate the bias
every iteration, as shown in line 8 of listing 1.

Algorithm 1 Implementation of the SMO algorithm with early stopping.
Require: p, ϵes, early_stopping_enabled, log_enabled
1: Obest

val ← 0
2: plcur ← p
3: while SMO not converged and l < Max_iter and plcur ≥ 0 do
4: Working_Set_Selection()
5: Optimize_Alphas()
6: Update_Gradient()
7: bias← Calculate_Bias()
8: if logging_enabled then
9: Log_Objective_Functions()

10: end if
11: if early_stopping_enabled then
12: if Ol

val −Obest
val ≤ ϵes then

13: plcur = pl−1
cur − 1

14: else
15: plcur = p
16: best← l
17: end if
18: pl−1

cur = plcur
19: end if
20: end while

3.2. Effect of early stopping in SMO on SVM HPO.
In this experiment, we investigate if speedups can be achieved for hyperparameter tuning while still
finding a good-performance model. To explore this, we perform HPO procedures on multiple datasets
with and without ES. We compare the results to see if ES can improve HPO procedures when training
SVMs using the SMO algorithm. We rely on 5-fold cross-validation with random search as an HPO
procedure. We use this method because a random search is an effective way to explore the hyperpa-
rameter space [6], and this form of cross-validation is also applied in [16]. We first perform a random
search without early stopping as a reference. We repeat this random search 100 times, using the same
configurations for C, ϵ and γ, but for different early stopping configurations. We investigate which early
stopping configurations utilize less computational budget and preserve generalization performance.

Figure 3.1 illustrates the experiment setup, where we perform an HPO procedure. We use 5-fold
cross-validation following the setup of [16]. The dataset is split into 60% training, 20% validation, and
20% test data. We try 400 different hyperparameter configurations for the reference random search,
in line with [29], evaluating the accuracy of each model on the validation set to identify the optimal
hyperparameters. After the HPO, we calculate the accuracy of the best model on the test data.

We do not retrain the model using combined validation and training data. If retraining were applied, it
would also need to be done for early stopping, which requires reserving a validation set. This would
alter the dataset used for retraining, introducing inconsistency.
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Figure 3.1: Schematic representation of reference random search for tuning hyperparameters of an SVM using
stratified 5-fold cross-validation. The hyperparameters are shared between the five runs.

We uniformly draw 400 samples for hyperparameters C, ϵ and γ using the same bounds as in [16], also
shown in table 3.1. We also set values for the early stopping hyperparameters p and ϵes. Table 3.1 also
shows the bounds for these parameters. For this experiment, we used accuracy as the early stopping
objective.

Table 3.1: Hyperparameter ranges for the random search experiments using linear and RBF kernels. For each
hyperparameter, values are uniformly sampled from a continuous distribution within the specified bounds. The

range endpoints represent the minimum and maximum values considered during the search.

kernel log2(C) log2(γ) log2(ϵ) log10(p) log10(ϵes)
linear [−3, 5] - [−8,−1] [0, 4] [−5, 0]
RBF [−5, 15] [−15, 3] [−8,−1] [0, 4] [−5, 0]

Our research goal is to study if early stopping can reduce the runtime of an HPO procedure while
still finding a model with good performance. Hence, we are dealing with a multi-objective optimization
problem. We define a scalarized score function inspired by [22] to evaluate the random search results
(accuracy and sum of iterations). We define this function, combining the accuracy and the number of
iterations, as follows:

S = β ∗ acc+ (1− β) ∗
(
1− iter

iterref

)
(3.3)

To study the effects of early stopping, for each dataset, we perform a reference random search without
early stopping, denoting its score as Sref. We repeat the random search 100 times, using identical
configurations of C, ϵ, and γ (for RBF kernels) but varying early stopping configurations. This yields a
solution set T i = Si

1, . . . , S
i
100, where Si

j indicates the score for the j’th configuration on the i’th dataset,
where j ∈ {1, · · · , 100}. To ensure Si

j ∈ T i maintains the accuracy of Si
ref, we set β = 0.995, allowing

for a trade-off when runtime reductions are significant. We deliberately pick a high value for the beta
to ensure that the HPO procedure finds a model with good performance, only allowing for a loss of
accuracy when it is traded off for a significant reduction in runtime.

Again inspired by [16], we repeat the procedure for six datasets (following [18]), being: a1a, australian,
breast-cancer, diabetes, fourclass, and splice. Following [34], the a1a and splice datasets are classified
as ”high complexity” due to their over 50 features, while the remaining four are ”low complexity”.
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3.3. Effects of data dimensionality on effectiveness of early stop-
ping in HPO.

Feature selection optimization influences SVM performance [2]. Given this impact, we examine how
data dimensionality affects early stopping (ES) in HPO. Specifically, we test the hypothesis that dimen-
sionality influences ES effectiveness. To do so, we define three ES configurations: one optimized for
low-complexity datasets (jlow), one for high-complexity datasets (jhigh), and one performing well across
all six datasets (javg).

To evaluate how dataset dimensionality affects early stopping in HPO, we perform a reference random
search using the setup from Section 3.2. For each dataset, a reference experiment (Sref) is conducted.
Let i represent one of the seven datasets. for each Si

ref, we use identical samples for the hyperparam-
eters. Each Si

ref is repeated for the three early stopping configurations javg, jlow and jhigh.

We create a synthetic dataset by generating two Gaussian blobs, where each dimension of the first
blob is sampled using µ1 = 0.0 and σ1 = 2.0 ∗

√
d, and each dimension of the second blob is sampled

using µ2 = 4.0 and σ2 = 2.0 ∗
√
d. We let the σ increase with the dimensionality to ensure that the

problem does not become linearly separable. We construct seven different datasets with the same
specifications, varying only the dimensionality d and the number of samples n. Following [33], we set
n = 10d. The first dataset has two features, and each subsequent dataset doubles the number of
features, culminating in 128 features for the final dataset.

To study the effects of dimensionality, we run HPO procedures for the eight synthetic datasets with an
increasing dimensionality and see how this affects the early stopping behaviour.

We use the results from the experiment described in section 3.2 to determine the best early-stopping
configurations. We define a new set of results Tavg containing the average score of each configuration
j across a set of N datasets.

For jlow, we only look at the low complexity datasets, which are the australian, breast-cancer, diabetes,
fourclass datasets. In the case of jhigh, we only consider the high-complexity datasets a1a, splice.
Finally, we consider all datasets when determining javg. We select the configuration that has the maxi-
mum average score. We obtain one ES configuration for each of the different complexities.

3.4. Effectiveness of early stopping for multiple HPO methods
While random search is a commonly used hyperparameter tuning method, advancements have been
made. For example, Successive Halving shows potential to reduce the runtime of the hyperparameter
tuning procedure while still finding good-performing models. To study the effectiveness of ES in HPO,
we also use our SMO implementation to perform SH procedures. We compare the results of an RS
and an SH procedure to determine how the HPO method influences the effectiveness of ES in SMO.
For this experiment, we use the configuration jhigh as defined in section 3.3.

The configurations are then tested on three new datasets for this experiment. The w1a and ger-
man.numer datasets are also used in [16]. We normalize the data for improved performance. According
to our dataset complexity definition, w1a is a complex dataset, with 784 and 300 features, respectively,
while german.numer is a low-complexity dataset with 24 features.

We apply the same bounds for the SVM hyperparameters as defined in section 3.2. For this experiment,
we use jhigh as the early stopping configuration as found in section 3.3. We apply this configuration in
both experiments to see how it translates to new unseen data.

As outlined in section 3.2, the same setup is used for studying the differences between HPO procedures.
For this experiment, we run it for 100 different samples for each hyperparameter C, ϵ and γ, following
the experiments outlined in [27]. Additionally, we perform successive halving procedures alongside the
random searches.

The comparison involves two random search approaches (with and without early stopping) and two
successive halving variants (with and without early stopping). We adopt the Scikit-learn approach for
successive halving, using the entire training dataset as the budget, rather than the unspecified iteration-
based budget from [27]. Initially, each configuration uses a fraction of the training data proportional to
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the total samples divided by the number of hyperparameter configurations. In subsequent rounds, the
number of configurations is halved, and the data allocated to each is doubled until only one model
remains.

We evaluate the effectiveness of early stopping in HPO by comparing runtimes with and without early
stopping. Instead of using the iterations in the score function, we now use the actual wall-clock times
to calculate the scores. This allows us to study the overhead induced by the objective and bias calcu-
lations, which is impossible when measuring the runtime in iterations. Additionally, it allows for a better
comparison of the differences between successive halving and random searches.



4
Results

This research investigates the benefits of Early Stopping (ES) in the SMO algorithm for reducing the
runtime of hyperparameter optimization (HPO) in SVMs while maintaining high accuracy. In chapter 3,
we introduced an SMO implementation incorporating ES and defined several experiments to evaluate
its effectiveness. This chapter presents the results of these experiments and discusses the findings.

This chapter is structured as follows. Section 4.1 explores the effects of early stopping (ES) in SMO
on SVM hyperparameter tuning. Section 4.2 investigates how dataset dimensionality influences ES.
Section 4.3 compares SH and RS, both with and without ES.

4.1. Effect of ES in SMO on SVM HPO.
Figures 4.1 and 4.2 show that specific early stopping configurations across the six datasets reduce
tuning runtime while maintaining or improving accuracy. However, they also reveal instances where Si

j

accuracy significantly drops due to aggressive early stopping. Aggressive early stopping in this context
refers to losing accuracy due to early stopping. These Figures show early stopping configurations that
enhance generalization, as seen in the a1a dataset. This leads to models with higher test set accuracy,
suggesting that the model can overfit training data, with early stopping mitigating this to a minor extent.

We also performed this experiment using the hinge loss on the validation dataset as an early-stopping
objective. The results are in the appendix B. The Hinge loss does show similar behaviour compared to
using the accuracy.
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Figure 4.1: Pareto front plots showing total HPO iterations for linear SVMs, with accuracy of the best model on
the X-axis. The dashed blue line indicates the score threshold, where points to the right outperform Si

ref. The
results demonstrate that ES can enhance performance for all six datasets.

16



4.1. Effect of ES in SMO on SVM HPO. 17

0.675 0.700 0.725 0.750 0.775 0.800 0.825

0

2

4

6

8

×105 a1a dataset

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0

1

2

3

4

5

6

7

8
×105 australian dataset

0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
×105 bc dataset

0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
×106 diabetes dataset

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0

2

4

6

8

×105 fourclass dataset

0.55 0.60 0.65 0.70 0.75 0.80 0.85

0

1

2

3

4

5

6

7

×105 splice dataset

Accuracy on test set

N
um

be
r 

of
 it

er
at

io
ns

Accuracy
Reference

Figure 4.2: Pareto front plots showing total HPO iterations for RBF SVMs, with accuracy of the best model on
the X-axis. The dashed blue line indicates the score threshold, where points to the right outperform Si

ref. The
results demonstrate that ES can enhance performance for all six datasets.

We use the Wilcoxon test to determine if early stopping benefits the Random Search regarding our
defined score function. Following [14], we account for multiple comparisons using Holm’s correction.
The H0 hypothesis is that the tested early stopping configuration does not yield gains (in terms of the
score) over the six datasets. Rejection of H0 shows that the specific early stopping configuration j
shows significant gains over the N datasets, compared to not using early stopping. We are using a
one-tailed test here because we are only interested in the early-stopping configurations that lead to a
higher score. The significance level for this test is set to be 0.05.

One reason the Wilcoxon test fails to detect significant results across the datasets can be using Holm’s
multiple testing correction. This correction becomes stringent since T i consists of 100 random experi-
ments Si

j for every dataset i. Additionally, the use of more datasets can also increase the expressive
power of the Wilcoxon test.
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Figure 4.3: Pareto front plot showing Si
ref compared to the five models with the highest average score over the

six datasets using the accuracy as an early stopping metric and linear kernels. The plot also shows the score line
for β = 0.995. We see that we do find ES configurations that work well on all six datasets.
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The configurations with the highest mean scores for linear and RBF kernel SVMs are shown in Figures
4.3 and 4.4. The results for the random search for linear kernel SVMs, as shown in figure 4.3, show us
that the light-blue configuration performs well on all datasets, indicating that this specific configuration
generalizes well.

In the experiment for RBF kernels (figure 4.4), we do not see any configurations that score well across
all datasets, indicating that the effectiveness of early-stopping configurations strongly depends on the
dataset. An example is the light-blue configuration that performs well on all datasets except for the
australian dataset. Furthermore, we note that of the best-scoring configurations, we see less prevalent
results on the breast-cancer dataset for both the linear and the RBF kernel results.

Note how there are only four dots in figure 4.3 for the australian dataset and figure 4.4 for the fourclass
dataset. For these instances, the number of iterations and accuracy are precisely equal to the reference,
which leads to the point not being visible in the plot because they are behind the reference icon.
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Figure 4.4: Pareto front plot comparing Si
ref with the top five Sj by average score across six datasets, using

accuracy as the early stopping metric with RBF kernels. The score line for β = 0.995 is also shown. The figure
highlights how some configurations excel on low-complexity datasets while others perform better on

high-complexity data.

Given the results, we see that there are Si
j for every dataset that outscores the reference without

early stopping, indicating that early stopping can be beneficial for decreasing the number of iterations
of an HPO procedure while preserving accuracy. However, we cannot detect a single configuration
that performs well across all datasets. Hence, it is evident that the effectiveness of early stopping
configurations depends on the dataset or that our test setup fails to detect configurations that show
promising performance for all datasets.
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4.2. Impact of Datasets on ES in HPO.
Figure 4.5 presents the Pareto fronts for three configurations: jlow, jhigh, and javg, across six datasets.
The configurations jlow and javg result in identical settings with p = 1356 and ϵes = 0.650653, while jhigh
uses p = 109 and ϵes = 0.000229.

From the figure, jhigh exhibits themost aggressive early stopping, significantly reducing iterations across
all datasets. However, for some low-complexity datasets (australian, breast cancer, and diabetes), this
comes at the cost of lower accuracy than the reference model. In contrast, the jlow / javg configura-
tion employs less aggressive early stopping, achieving better accuracy across all datasets except the
australian dataset. This makes it a better choice when prioritizing accuracy over runtime reductions.

The australian dataset stands out as an outlier, with none of the tested configurations improving scores.
Interestingly, the jlow / javg configuration, which performs well on other low-complexity datasets, fails
here. This highlights the significant Influence of dataset characteristics on the effectiveness of early
stopping in HPO.
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Figure 4.5: Pareto front plot comparing Si
ref with Si

jhigh
, Si

jlow
, and Si

javg
over six datasets, using accuracy as

the early stopping metric with RBF kernels. The score line for β = 0.995 is also shown. The plot indicates that
jlow excels on low-complexity datasets, while jhigh performs better on high-complexity datasets.

Figure 4.6 compares scores for the two early stopping configurations jhigh and jlow across synthetic
datasets, while Figure 4.7 presents their Pareto fronts. The key finding is that dataset dimensionality
does not significantly affect early stopping behaviour. jlow performs poorly, matching the reference
score in lower-dimensional datasets. In contrast, jhigh shows promising results for all datasets except
for d4 and d6.

Contrary to expectations, jlow improves as dimensionality increases. For lower-dimensional datasets, it
provides minimal benefit, but as dimensionality grows, it outperforms the reference score and reduces
iteration counts more effectively (Figure 4.7).

Figure 4.7 highlights that jhigh leads to aggressive early stopping on the synthetic dataset. The results
suggest that stronger early stopping is beneficial. While scores in Figure 4.6 remain similar, Figure 4.7
shows a significant reduction in iterations during HPO while still achieving a well-performing model.

Figures 4.6 and 4.7 highlight how our score function is biased towards accuracy gains over iteration
reductions. Early stopping appears ineffective in 4.6 as scores remain close. However, 4.7 reveals
significant runtime reductions, especially with jhigh. This discrepancy stems from the choice of β when
computing the score. By setting β = 0.995 to ensure reasonable accuracy, large runtime reductions
yield minimal score improvements.
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Figure 4.6: Si
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jhigh
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jlow
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over 8 datasets with a growing dimension. We do not plot

javg in this plot because it is the same as jlow. The two ES configurations show no performance difference as
dataset dimensionality increases, highlighting that dimensionality does not impact ES effectiveness in HPO.

This experiment shows that dimensionality influences the effectiveness of early stopping, as jlow be-
comes increasingly effective with higher dataset dimensionality. However, we did not find configu-
rations performing well across low- and high-complexity datasets. Synthetic data does not exhibit the
same behaviour as real datasets. As seen in Figure 4.5, jlow works well for low-complexity real datasets
but not for synthetic data. This suggests that additional dataset characteristics impact the effectiveness
of early stopping in HPO.
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jlow
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over 7 datasets with a growing dimension. The std for the

accuracy is zero for every dataset. The plots show that data dimensionality does not affect the effectiveness of
jhigh and jlow, indicating no relationship between dimensionality and ES configuration performance.



4.3. Comparing HPO methods 22

4.3. Comparing HPO methods
The results of the four HPO methods on the w1a and german.numer datasets are shown in Figures
4.8 and 4.9. SH and RS with early stopping do not improve scores on either dataset. However, suc-
cessive halving consistently runs faster than an RS. Early stopping adds significant overhead, with a
only random search on german.numer, showing reduced runtime.

When looking at the results for the w1a dataset, as shown in figure 4.8, we see that for both HPO
methods, the runtime of the experiment increases when applied with early stopping. This shows the
overhead induced by the early-stopping calculations, leading to early stopping, which leads to lower
scores for both methods.

For successive halving (SH), the best-found model achieves 97.27±0.17% accuracy without early stop-
ping and 97.33 ± 0.18% with it, indicating that early stopping does not impact final accuracy. Still, the
increased runtime does lead to a lower score. Similarly, for random search (RS), the best-found accu-
racies are 97.74± 0.30% without early stopping and 97.70± 0.29% with it, showing minimal differences.
This suggests that while early stopping affects runtime, it does not significantly alter the accuracy of
the best models found.
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Figure 4.8: Results of running random search and successive halving with five-fold cross-validation on w1a
dataset using SMO with and without early stopping. The results show that ES is not beneficial for both SH and

RS, leading to increased overhead in both HPO methods.

Figure 4.9 shows that for the german.numer dataset, we see a score improvement when performing
an RS. In the case of SH, we don’t see this improvement; for this HPO method, we see how the score
drops when applying ES. This shows that ES in this configuration is not beneficial for improving an SH
procedure.

Early stopping results in similar accuracies for RS, with 74.94±1.39%without using ES and 74.98±0.52%
with ES. When using SH, we see a drop in accuracy when using ES from 71.54±1.28% to 69.42±2.15%.
We note that with the setting of β, we penalize loss in accuracy heavily, which explains the decrease
in scores for SH.

In this experiment, we observed that early stopping in HPO introduces significant computational over-
head, which can lead to longer runtimes. This effect was evident in random search (RS) and successive
halving (SH), where the additional calculations required for early stopping delayed the overall process.
While early stopping is intended to reduce unnecessary computation, its implementation involves mon-
itoring and decision-making at each step, which can counteract its intended benefits. This finding
suggests that applying early stopping without considering its computational cost may not always yield
efficiency gains in HPO.
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Figure 4.9: Results of running random search and successive halving with five-fold cross-validation on
german.numer dataset using SMO with and without early stopping. The results show that while ES is not

beneficial for SH, it improves scores for RS, demonstrating the benefits of ES.

However, the impact of early stopping is not uniform across all datasets, as dataset characteristics
strongly influence its effectiveness. For instance, in the w1a dataset, early stopping increased the
runtime of RS, likely due to the overhead outweighing the computational savings from stopping earlier.
In contrast, for the german.numer dataset, early stopping led to a noticeable reduction in runtime,
suggesting that it can successfully eliminate unnecessary iterations and improve efficiency in some
instances. This disparity highlights that early stopping is not universally beneficial and that its impact
depends on factors such as the dataset’s structure, the number of support vectors, and the complexity
of the hyperparameter search space.

Beyond runtime, we also observed that early stopping led to lower scores for both RS and SH across
datasets, but the reasons varied. In the w1a dataset, the primary issue was the increased runtime,
which delayed the stopping decision and resulted in less effective tuning. In the german.numer dataset,
the accuracy of the best-found models was lower when early stopping was applied, suggesting that the
reduced search time limited the exploration of high-performing configurations. This reinforces the idea
that accuracy becomes the dominant factor in determining the final score when a high value of β is
used. Therefore, early stopping can reduce runtime under certain conditions and lead to suboptimal
model selection if not carefully tuned.



5
Discussion

This chapter analyzes the results presented in Chapter 4. We begin in Section 5.1 by comparing
our findings with those in the literature. Section 5.2 examines the impact of the β parameter on the
experimental results, which controls the trade-off between accuracy and runtime reduction in our score
function. Section 5.3 looks at the Wilcoxon Signed Rank test results to understand why no significant
findings emerged. Section 5.4 explores how reducing the ES objective assessment minimizes the
computational overhead of our SMO implementation. Finally, Section 5.5 outlines our experimental
setup’s limitations and suggests future research directions.

5.1. Comparing results with literature
In this section, we compare our experimental results with findings from relevant literature to provide
context and validate our conclusions. We examine the effects of early stopping (ES) on model per-
formance, considering insights from [5] and [26] regarding patience and aggressiveness. Statistical
analysis methods, including the Friedman test and the preference for the Wilcoxon test, are discussed
in light of [18]. We also assess the impact of feature selection on performance, building on the findings
of [2], and compare hyperparameter tuning methods, particularly the efficiency of Successive Halving
(SH) over Random Search (RS) as outlined by [27]. Lastly, we reflect on the potential of ES, acknowl-
edging that while prior work ([5]) demonstrates its promise, our experiments reveal mixed outcomes.

In [5], the effects of ES on reducing the runtime of a cross-validation procedure are studied. Despite
methodological differences, their insights remain relevant. Their study shows that a more forgiving ES
strategy yields significant benefits, whereas an aggressive approach can hinder the full exploration
of hyperparameter configurations. Patience p is crucial, as higher values require more iterations to
complete training [26].

We averaged scores across six datasets to assess ES aggressiveness in the SMO algorithm under
RS. We computed the mean patience for configurations yielding positive and negative scores. Positive-
scoring configurations had a mean p of 19122, while negative ones averaged 280, aligning with findings
in [5].

To compare our assessment of the results found in Section 4.1, we refer to the work of [18]. This
study introduces a dynamic stopping condition tailored for a random search to enhance efficiency while
maintaining competitive performance. The authors systematically evaluate multiple variants of their
proposed algorithm, comparing them against a range of established optimization techniques. Our ex-
periments differ by applying early stopping (ES) to terminate model training. In contrast, their study
applies ES directly to the random search process, assessing whether an additional round of random
search will yield a better-performing model.

[18] demonstrates that a dynamic early stopping condition in a random search maintains accuracy while
significantly reducing runtime—aligning with our findings in Section 4.1 on the benefits of ES in SVM
HPO.

The key difference is that [18] uses an RS-based stopping condition, while we propose an alternative
SMO algorithm. They apply the Friedman test with the Iman-Davenport statistic. We used theWilcoxon
signed rank test with Holm’s correction, following [14]. Whe Wilcoxon test is deemed superior over the

24



5.2. Influence of β setting on results 25

Friedman test as discussed in [3]. While [18] reports significant gains, our statistical setup does not
yield the same outcome. Another distinction is that we test 100 configurations, whereas [18] evaluates
only four algorithms, affecting the resulting p-values under Holm’s correction.

We compare the results from Section 4.1 with those of [2]. While the objectives of the two studies differ,
[2] shows that feature reduction or optimization improves model performance. Our study examined the
impact of dimensionality on HPO with ES using datasets with varying dimensions. Despite the different
methodologies, we expected similar results, but this was not the case.

Our study focuses on the impact of dimensionality on ES in SMO within the context of HPO, whereas
[2] investigates the effects of dimensionality on SVM performance. A key methodological difference is
that we construct seven datasets where every feature is informative. In contrast, [2]—along with other
related work [42, 48]—explores feature reduction by eliminating non-informative features.

The main discrepancy between our findings (as presented in Section 4.2) and those of [2] is that, in
our case, the reference score remains within a similar range across all datasets. We initially expected
that increasing the number of features would enable RS to find better models, leading to higher scores.
However, this was not observed, suggesting that dimensionality alone does not inherently affect per-
formance. The key takeaway is that performance improvements stem from feature selection and opti-
mization, as demonstrated in [2].

We compare the results in section 4.3 with those of [27]. Our research shows that SH outperforms RS
on the w1a and the german.numer datasets. Additionally, both RS and SH found similar accuracies in
both experiments. These findings correspond with the results found in [27], where SH is faster on all
of the datasets used for that experiment.

In the experiment from section 4.3, we evaluated runtime and found that ES in HPO does not always
provide benefits. For the w1a dataset, ES unexpectedly increased runtime. However, for the ger-
man.numer dataset, ES improved efficiency by reducing the runtime of the RS procedure.

5.2. Influence of β setting on results
This section explores how our score function’s β parameter influences experiment results. The β value
controls the trade-off between prioritizing accuracy and minimizing iterations in HPO procedures, with
zero focusing solely on iteration reduction and one on model accuracy. We analyze the impact of
different β settings on the results in sections 4.1 and 4.2.

We analyze the top-scoring configurations across the six datasets from section 4.1 for different β values.
Figures 5.1 and 5.2 display these configurations. The dot colours represent the best configuration for
the score threshold in the same color. As β decreases, the number of iterations drops, showing more
aggressive ES. This aligns with the shift in priority from accuracy to iteration reduction when lowering
β.

Configurations found for β = 0.8 (orange) and β = 0.95 (green) show similar performance, as seen in
Figures 5.1 and 5.2. This is especially evident with RBF kernels (Figure 5.2), where the dots for all six
datasets are closely clustered.

Table 5.1 lists the patience p and ES tolerance ϵes values for the configurations in Figures 5.1 and
5.2. For both linear and RBF kernels, patience increases with higher β, indicating that prioritizing
accuracy requires a more forgiving ES strategy, achieved by raising p. This finding aligns with [26],
which suggests that higher patience results in less aggressive ES.

The key insight is that β = 0.995 results in a best configuration with forgiving ES behavior, supporting our
accuracy-focused goal. However, Figures 5.1 and 5.2 show that even with lower β values ([0.8, 0.95]),
the best configurations still achieve good accuracy across all datasets for both linear and RBF kernels.

As a conclusion of experiment 1 (section 4.1), we state that there is a difference in the effectiveness
of ES configurations for low- and high-complexity datasets. We studied these effects in section 4.2
and did not find significant differences between ES configurations selected for low complexity datasets
(jlow) and high complexity datasets (jhigh), which becomes apparent in Figure 4.6.
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Figure 5.1: Pareto front plot comparing Si
ref to the best-scoring Sj for four values of β in linear-kernel SVMs.

The colour of each configuration in the Pareto front corresponds to a score threshold line of the same colour. The
plots show that as β decreases, the best ES configuration becomes more aggressive.

Table 5.1: ES configurations j with on average best scores for different values of β for both linear and RBF
kernel SVMs.

linear RBF
β p ϵes p ϵes
0.0 1 0.061308 1 0.406918
0.8 36 0.000023 44 0.000145
0.95 54 0.000020 114 0.132280
0.995 493 0.004117 1356 0.650653
1.0 493 0.004117 10987 0.017214

To analyze the effects of β on the best-found configurations, we examine the configurations identified
for jhigh, jlow, and javg across multiple β settings. These configurations are selected using the same
strategy described in Section 3.3. To evaluate their impact, we report the wins and losses for the best
configurations corresponding to the beta’s used earlier. This analysis is conducted separately for high-
and low-complexity datasets and across all six datasets, following the setup outlined in Section 3.3.

Table 5.2 presents the wins and losses for the identified configurations across different β values. As β
decreases—placing greater emphasis on runtime reduction—we observe that all three configurations
achieve wins across all datasets. These findings suggest that ES effectiveness differences only emerge
when accuracy is strictly enforced (β = 0.995). The results in Section 4.2 further indicate that this
behaviour is dataset-specific, as we could not replicate it using synthetic datasets.

Table 5.2: The number of wins on the three dataset subsets for jlow, jhigh, and javg using different values of β. A
win is defined as Si

j > Si
ref .

jlow jhigh javg
β low high avg low high avg low high avg
0.0 4 2 6 4 2 6 4 2 6
0.8 4 2 6 4 2 6 4 2 6
0.95 4 2 6 4 2 6 4 2 6
0.995 3 2 5 0 2 2 3 2 5
1.0 1 0 1 0 2 2 1 0 1
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Figure 5.2: Pareto front plot comparing Si
ref to the best-scoring Sj for four values of β in RBF-kernel SVMs. The

colour of each configuration in the Pareto front corresponds to a score threshold line of the same colour. The
plots show that as β decreases, the best ES configuration becomes more aggressive.

The results in Table 5.2 indicate that dataset dimensionality does not impact the effectiveness of ES
in HPO. Furthermore, the differences observed in Section 4.1 can be attributed to the emphasis on
maintaining accuracy combined with dataset-specific characteristics. When allowing for a more lenient
accuracy drop, no differences emerged in the effectiveness of ES configurations between low- and
high-complexity datasets. This aligns with the findings from synthetic datasets, where no significant
differences were observed between jhigh, jlow, and javg for datasets with an increasing dimension.

5.3. Statistical analysis
This section examines the Wilcoxon test with Holm’s correction from section 4.1. None of the null hy-
potheses were rejected for linear and RBF kernels, indicating no significant gains across configurations.
However, figure 4.3 shows configurations with positive scores for all six datasets, which we expected
the Wilcoxon test to identify as significant. To investigate, we analyze the Wilcoxon test results in detail.

First, we count the wins and losses for each configuration j across the six datasets in this experiment.
A win is defined as Si

j > Si
ref , meaning that configuration j achieves a higher score than the reference

for dataset i. For ties, we follow the procedure described in the Sign test by [14], where ties are split
evenly between wins and losses. Figure 5.3 displays the number of wins and losses for all 100 ES
configurations j across the six datasets. The figure reveals that for RBF kernel SVMs, more than 20
configurations have six wins, indicating that these configurations outperform the reference on all six
datasets.

Figure 5.3 shows configurations j that improve performance on all six datasets, indicating strong
Wilcoxon test results. Achieving wins on all six datasets yields the maximum Wilcoxon score, wstat,
calculated as:

wmax
stat =

n∑
i=1

(n+ 1)n

2
(5.1)

For n = 6, this results in wmax
stat = 21. However, statistical significance is not reached due to Holm’s

correction. With 100 tested configurations, the highest possible p-value for wstat = 21 is 0.015625. After
applying Holm’s correction (padj = 100 · p = 1.5625), the adjusted p-value remains above the α = 0.05
threshold, blocking statistical significance.

The number of trials limits our current setup for assessing statistical significance. Even in the ideal
scenario where a configuration wins on all six datasets, it fails the significance test. To address this, we
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Figure 5.3: Histogram showing the number of wins for each ES configuration j on the six datasets for SVMs
trained with RBF kernels. A win is defined as Si

j > Si
ref , and the scores are calculated using β = 0.995. The

figure shows how multiple configurations have wins on all six datasets.

could either increase the number of datasets, raising wmax
stat and enabling smaller p-values and adjusted

p-values (padj), or reduce the number of tested configurations j, easing the multiple testing correction.

5.4. Reducing the ES objective calculation frequency
In section 4.3, we observed that ES introduces significant overhead due to frequent objective assess-
ments. To address this, we conduct an additional experiment where we reduce the frequency of these
assessments. This section examines how this adjustment impacts the results from section 4.3.

In our SMO implementation, we introduce a new hyperparameter, r, determining the number of itera-
tions, after which the ES objective is assessed. For instance, setting r = 10 means the ES objective is
evaluated every ten iterations.

To identify a suitable ES configuration, jr, we follow the setup described in section 3.2, but instead of
testing 100 configurations, we expand the search to 1000 candidates. The configuration jr is selected
as the one that achieves the highest average score across the six datasets.

To assess whether introducing r improves the results from section 4.3, we repeat the experiment using
jr as the ES configuration.

As a result of trying different ES configurations, we find that jr has a p = 1, ϵes = 0.00012697 and r = 768.
Using this configuration when running an SH and RS procedure on the w1a and german.numer dataset
leads to the results found in figures 5.4 and 5.5.

For the w1a dataset (Figure 5.4), applying ES does not improve accuracy for either SH or RS, with
both methods yielding similar results. SH achieves 97.39 ± 0.21% without ES and 97.40 ± 0.23% with
ES, while RS reaches 97.74 ± 0.30% in both cases. This negligible impact on accuracy is primarily
due to runtime differences—Figure 5.4 shows that ES increases runtime for both methods. While SH
maintains a similar wall-clock time, RS incurs additional overhead from ES calculations, even though
the check frequency is significantly reduced (r = 768).

For the German.numer dataset (figure 5.5), ES improves scores for both SH and RS, unlike in figure
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Figure 5.4: Results of running random search and successive halving with five-fold cross-validation on w1a
dataset using SMO with and without early stopping. When performing fewer ES objective assessments, ES
provides no advantage for SH or RS, suggesting that reducing the assessment frequency does not enhance

performance.

5.4. SH achieves 71.40 ± 1.31% without ES and 71.76 ± 0.40% with ES. RS reaches 74.94 ± 1.39%
without ES and 74.86± 1.45% with ES. The SH score improves due to a slight accuracy gain, favoured
by our β setting, while for RS, the runtime reduction outweighs the minor accuracy drop, leading to a
higher score.
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Figure 5.5: Results of running random search and successive halving with five-fold cross-validation on
german.numer dataset using SMO with and without early stopping. The results show improved scores for both

RS and SH on this dataset, highlighting the potential of ES and the impact of reducing ES frequency.

Comparing with section 4.3, where objective calculations were more frequent, we find more minor score
differences for both SH and RS, partly due to reduced wall-clock time. In this setup, the gap between SH
with and without ES is smaller than in section 4.3. Compared with 3 (reduced runtimes, but gains are
not that significant) The score increase in this experiment mainly comes from slightly higher accuracies
with ES, whereas section 4.3 showed a slight drop. While runtimes are reduced, the primary factor
behind the score improvement is the better accuracies found through HPO. These results suggest that
lowering ES check frequency makes early stopping less aggressive. Though overhead is lower, the
impact of ES is also reduced, leading to no significant runtime speedups compared to section 4.3.
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In this experiment, we observed that reducing the frequency of ES objective assessments lowers the
overhead of ES in both SH and RS. We achieve comparable runtimes with and without ES for an SH
procedure while still identifying well-performing models. Furthermore, the scores for both RS and SH,
with and without ES, are more closely aligned than in cases where ES objective assessments occur
more frequently. This highlights the benefit of applying r.

However, the reduction in runtime is not as prominent as expected. While SH benefits from the lower
frequency of ES objective assessments, the runtime decreases in RS are less apparent—using r results
in less aggressive early stopping. Although the reduced frequency of assessments lowers the overhead,
it also decreases the likelihood of stopping early, limiting the runtime gains typically associated with ES.

The positive scores observed in this experiment stem from the less aggressive early stopping. This al-
lows both HPO procedures to identify higher-accuracy models when using ES, leading to scores closer
than those in section 4.3. This further underscores the strong bias in our setup towards maintaining
accuracy over reducing runtime.

We also note that the ES configuration jr selection does not explicitly consider the reduction in com-
putational overhead. The scoring function evaluates only runtime reductions and accuracy, which may
result in suboptimal configuration choices. Future work should investigate this trade-off further to refine
the selection criteria for jr.

5.5. Limitations and future work
A detailed analysis revealed a limitation in our experimental setup. While ES improved performance
on all datasets, the Wilcoxon test did not show significance due to our experiment design. Running
100 random trials and applying Holm’s multiple correction meant no results reached significance. Our
analysis in section 5.3 shows that even when an ES configuration performs well on all of the used
datasets, this result is not marked as significant, highlighting a weakness in our setup.

Adding more datasets to the experiment could help overcome this weakness as this increases the
possible maximal value of wstat, enhancing the test’s statistical power. Alternatively, adjusting the
experimental setup to evaluate fewer configurations would reduce the severity of Holm’s correction,
potentially leading to statistically significant results.

Our goal was to reduce HPO runtime while maintaining model performance. We evaluated ES con-
figurations using a score function balancing accuracy and runtime reduction, with the β parameter
controlling the trade-off. A high β prioritized accuracy, leading to more forgiving ES configurations
achieving the best scores. Conversely, lower β values (emphasizing runtime reduction) favored more
aggressive ES configurations. This demonstrates that our current approach leans towards a forgiving
ES strategy, and the trade-off merits further exploration.

Future work should explore the balance between aggressive and forgiving ES strategies. While this
study emphasizes a forgiving approach, evaluating the impact of a more aggressive ES is worthwhile.
The current score function only considers runtime reduction in iterations, but alternative score func-
tions focusing on ES overhead could offer new insights. Additionally, investigating more efficient ES
objectives may enhance performance, especially given the overhead of ES calculations.

Our experimental results indicate that dimensionality does not influence the effectiveness of ES in
SMOwhen tuning hyperparameters. However, other dataset characteristics do impact ES performance.
Factors such as noise levels, class separability, and class imbalance should be studied more to better
understand ES effectiveness in SMO.



6
Conclusion

This research explored the impact of incorporating early stopping (ES) into the Sequential Minimal Opti-
mization (SMO) algorithm for hyperparameter tuning. By introducing a validation-based stopping condi-
tion, we evaluated its performance within random search (RS) and successive halving (SH) frameworks
across diverse datasets, emphasizing trade-offs between runtime efficiency and model performance.
This study contributes to hyperparameter optimization by demonstrating how early stopping (ES) can
be strategically integrated into SMO-based SVM training to enhance efficiency while maintaining model
performance.

Our results demonstrate that ES can enhance hyperparameter tuning efficiency, particularly in random
search, but its effectiveness is highly dependent on dataset characteristics. We have shown that the
dimensionality of the data does not impact the efficacy of early stopping. Both high-dimensional and
low-dimensional datasets (≥ 50 features) benefit most from aggressive early-stopping strategies. Ad-
ditionally, we have shown that ES has the potential to improve RS, but in the current implementation,
it does not improve SH.

The overhead from ES objective calculations outweighs its benefits only in specific cases. ES increases
runtime for both SH and RS when evaluated at every iteration. This highlights a key trade-off: while
early stopping shortens training, frequent objective evaluations can offset these gains, particularly in
SH. To address this, we reduced the frequency of ES evaluations, successfully lowering computational
overhead while still identifying well-performing models.

This study provides practical insights into the role of early stopping (ES) in hyperparameter tuning for
SVMs, demonstrating that ES effectively reduces runtime in random search but offers limited gains in
Successive Halving (SH) due to SH’s inherent efficiency. The trade-off between accuracy and runtime,
controlled by the β parameter in our scoring approach, led to forgiving ES configurations being favored.
Additionally, our experimental setup, with 100 random trials and Holm’s correction, limited the statistical
power of the Wilcoxon test, resulting in no significant findings. Future work should address this by
including more datasets and reducing the number of candidates to improve the statistical analysis.

Balancing runtime savings with computational overhead requires carefully adapted ES strategies. Fu-
ture research should refine ES techniques to address the computational challenges identified here,
enhancing their efficiency and applicability across diverse machine learning tasks. These insights ex-
tend beyond SVMs and could inform ES strategies for other machine learning models, offering potential
benefits in real-world applications where computational efficiency is critical.
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A
SMO Profiling

This appendix is a supplement to section 3.1, where we give the implementation details of our version
of the Sequential Minimal Optimization algorithm (SMO). First, we compare the runtimes of the three
versions of the SMO algorithm we implemented in Python.

We use the w1a dataset in section 4.3 for all the experiments. We perform every experiment using 5-
fold stratified cross-validation similar to the other experiments, where we also split the data according
to the setup proposed in section 3.2. In this experiment, we won’t focus on hyperparameter tuning but
instead on the performance of the SMO algorithm for individual models. Thus, we perform a random
search using 100 candidates to find hyperparameters for an RBF kernel SVM that works well. As
hyperparameter ranges, we use the same bounds for C, ϵ and γ as used in section 3.2.

A.1. SMO version comparison
Multiple versions of the SMO algorithm have been proposed, and we implemented several to study
their behaviour. In this experiment, we compare the performance of our implementation of Keerthi’s
SMO version (as proposed in [28]) with the implementation from [16], as well as our optimized version
of the latter algorithm.

Section A.1.1 describes the different SMO versions we implemented, while Section A.1.2 presents the
experimental results comparing the performance of these implementations.

A.1.1. Methodology
This experiment compares the runtime of different implementations of the Sequential Minimal Optimiza-
tion (SMO) algorithm for training a model. Using a costly heuristic, Platt’s original SMO algorithm [37]
selects the working set (two alphas to optimize). Keerthi et al. [28] improve this by introducing the maxi-
mal violating pair approach, which maximizes the objective increase. The LibSVM implementation [44],
based on Fan et al. [16], further refines working set selection using second-order information, leading
to faster convergence.

We include LibSVM’s SMO implementation in our comparison to evaluate its performance against our
implementations. While LibSVM follows the approach of [16], it incorporates additional optimizations,
such as shrinking. Moreover, LibSVM is implemented in C++, whereas our version runs in Python.
Since C++ is natively faster, we also consider the impact of language-specific optimizations [36].

We implemented Keerthi’s SMO algorithm and two versions of Fan et al.’s algorithm. The first follows
the pseudocode from [16] without modifications. The second incorporates efficiency improvements to
reduce runtime while preserving convergence behaviour. These optimizations focus solely on compu-
tational efficiency, not altering SMO’s effectiveness.

One key optimization is precomputing the kernel and Q-matrices. While storing both in memory can be
challenging for large datasets, it enables batch kernel evaluations and efficient matrix multiplications in
Python, significantly accelerating the algorithm.

We vectorized the gradient update step, leveraging the precomputed kernel matrix to update the entire
Gradient in a single operation, further improving efficiency.
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Python’s interpreter overhead can limit scalability on large datasets. To address this, we use Numba
[30] to compile critical functions into machine code, achieving performance comparable to compiled
languages. Optimized functions include RBF kernel computation, model prediction, and working set
selection—operations that are frequently called and benefit significantly from Numba’s speedup.

We train four models using different versions of the SMO algorithms. The selected hyperparameters
for the RBF kernel SVMs are C = 2796.28, ϵ = 0.004713, and γ = 0.0001076. Training runs without
iteration limits or early stopping. For comparison, we measure the number of iterations required for
convergence and the total wall-clock time. The final accuracy of each model is tested on the test data
set.

A.1.2. Results
Figure A.1 presents the experimental results, showing that Fan et al.’s SMO implementation achieves
faster convergence in iterations and wall-clock time. This is expected, as the key improvement in
[16] involves selecting two alphas that yield better objective improvements, reducing the number of
iterations required.

Fewer iterations also translate to lower wall-clock time, as shown in the right plot of Figure A.1. This plot
further highlights how our optimizations significantly reduce runtime. While requiring the same number
of iterations, our optimized SMO version runs considerably faster than the unoptimized version.

Notably, this experiment teaches us that LibSVM further optimizes the SMO algorithm. Figure A.1.2
shows how LibSVM uses significantly fewer iterations than Fan’s version of the SMO algorithm. This is
interesting because the library does implement Fan’s SMO algorithm [12]. We also note how LibSVM
completes the fastest of the four tested SMO versions in this experiment.

The different implementations yield varying final accuracies. Keerthi’s algorithm produces models with
an accuracy of 93.82 ± 1.46%, while Fan’s version achieves higher performance with fewer iterations,
scoring 97.13± 0.34%. Notably, our optimized version matches the accuracy of the unoptimized Fan et
al. version, indicating that our improvements did not affect the SMO algorithm’s convergence behaviour.
Additionally, we see that Fan’s algorithm leads to a slightly higher accuracy than LibSVM, where LibSVM
has an accuracy of 97.05± 0.7%.
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Figure A.1: Performance comparison of four SMO implementations on the w1a dataset. The plot presents the
number of iterations, runtime (in seconds), and model accuracy. Our optimized version reduces runtime while
maintaining the same number as Fan’s implementation. LibSVM remains the fastest solver, converging in fewer

iterations than both Fan’s and Keerthi’s implementations.

This experiment reveals performance differences among SMO implementations. Fan et al.’s version
converges fastest in both iterations and wall-clock time. The optimized variant enhances efficiency
without modifying the SMO algorithm.

A key limitation is using a single dataset, as SMO’s behaviour is highly dataset-dependent. Additionally,
hyperparameters significantly affect runtime. Thus, differences in runtime and iterationsmay vary under
different experimental setups.



B
Hinge Loss as an Early Stopping Metric

This appendix explores hinge loss as an early stopping metric in the experiment outlined in Section 3.2.
We define the objective function employed for early stopping in Section B.1. Subsequently, Section B.2
presents the results obtained from the experiment.

B.1. Hinge loss objective
We aim to compute the total hinge loss over the validation set. The rationale is that the SMO algorithm
inherently minimizes hinge loss as it forms the foundation of the model’s optimization process. When a
reduction in hinge loss is no longer observed, we assume that training can be halted. Let f(xi) denote
the model’s i-th sample prediction. Using the hinge loss definition from Equation (2.3), we define the
following objective function:

Oval =
1

nval

nval∑
i=1

max{0, 1− tif(xi)} (B.1)

Using the adjusted objective function, we express the remaining patience pcur as follows:

pcur =

{
pcur − 1 if Ol

val −Obest
val ≤ −ϵes

p if Ol
val −Obest

val > −ϵes
(B.2)

Note how, in this case, we use the negative value of the early-stopping tolerance ϵes. This is necessary
since the hinge loss is a decreasing objective compared to the accuracy metric.

B.2. Results and Discussion
Figures B.1 and B.2 show the results of applying early stopping in a random search training SVMs
with the SMO algorithm. Similar to using the accuracy objective, we do, in this case, also see early
stopping configurations that reduce the runtime of a hyperparameter tuning procedure while still finding
good-performing models. This behaviour occurs for both linear and RBF kernel SVMs.

In this setting, the Wilcoxon test with Holm’s multiple testing correction fails to detect configurations
that work well across all six datasets. Again, this indicates that the effectiveness of an early-stopping
configuration strongly depends on the dataset in which it is used.

However, when we observe figures B.3 and B.4, we find configurations that perform well across all
six datasets. This is particularly interesting because this is not the case when using accuracy as the
objective for early stopping. Additionally, using the Hinge loss does result in configurations that work
well for the australian dataset when using RBF kernels, as shown in figure B.4. This indicates that
using hinge loss as early-stopping has advantages over using the accuracy metric.

Figures B.3 and B.4 show the five configurations that have, on average, the best score over the six
datasets. Different from the results in section 4.1, we see configurations with a positive score for all
datasets. These results indicate that the hinge loss on the validation data might better demonstrate the
training progress.
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Figure B.1: Pareto front plots displaying the total iterations of the full hyperparameter tuning procedure for linear
SVMs, with the X-axis representing the accuracy of the best-found model. The dashed blue line marks the score
threshold; any Si

j to the right of this line indicates an improved score compared to Si
ref. The results demonstrate

that ES can enhance performance for all six datasets.

Additionally, figure B.4 shows that all found configurations perform well on the australian dataset. When
using accuracy as an objective, this is not the case, showing us that there are
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Figure B.2: Pareto front plots displaying the total iterations of the full hyperparameter tuning procedure for RBF
SVMs, with the X-axis representing the accuracy of the best-found model. The dashed blue line marks the score
threshold; any Si

j to the right of this line indicates an improved score compared to Si
ref. The results demonstrate

that ES can enhance performance for all six datasets.
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Figure B.3: Pareto front plot showing Si
ref compared to the five Sj with the highest average score over the six

datasets using the accuracy as an early stopping metric and linear kernels. The plot also shows the score line for
β = 0.995.
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Figure B.4: Pareto front plot showing Si
ref compared to the five Sj with the highest average score over the six

datasets using the accuracy as an early stopping metric and RBF kernels. The plot also shows the score line for
β = 0.995.
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