
Integral Caching using Online Mirror Descent in a Networked Context

QUENTIN JOHANNES OSCHATZ1

Supervisor(s): Georgios Iosifidis1, Tareq Si Salem2, Naram Mhaisen1 

1EEMCS, Delft University of Technology, The Netherlands
2Inria, Université Côte d’Azur, France

22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
This paper explores algorithms to optimize net-
worked caching, where requests for files can be
handled by a local cache instead of a remote server.
Caches work collaboratively to prevent redundant
caching, and each new batch of file requests is used
to update the entire network. Data is cached in an
integral manner, meaning that only discrete files or
chunks can be stored, not fractions of them. Bi-
partite networks are studied, though the proposed
model supports arbitrary network topologies. The
approach is based upon an Online Mirror Descent
(OMD) policy, which has been shown to have sub-
linear regret in single cache scenarios.

1 Introduction
With the ever-expanding traffic on the internet, methods that
decrease loads on servers and provide both lower latency
when requesting information and overall increased system
performance are essential. Caching is one such method, em-
ploying a network of small storage severs called “caches”,
which are deployed close to users and can serve requests di-
rectly. These devices generally do not have the capacity of
storing all data that could be requested, leading to the re-
quirement for algorithms to determine which files to store on
a cache. Patterns in web traffic specifically can be exploited
to both design and evaluate these algorithms.

With caching being both ubiquitous and essential, a great
amount of research on both the performance of existing al-
gorithms and the development of new methods has been per-
formed. Traditionally, a large part of existing research fo-
cuses on modelling caching as a stochastic problem [1]. How-
ever, some newer work, including the algorithms presented in
[2] and [1], model caching in an adversarial setting. This
approach assumes that requests are generated by an adver-
sary—instead of being sampled from a stochastic function.
The performance of an online algorithm can then be evaluated
using a metric called regret, calculated using the cost incurred
by the algorithm under test over a time horizon T compared
to the cost incurred by an optimal, static cache state over the
same time horizon (a more thorough explanation is provided
in section 2.2) [1]. An algorithm is said to be no-regret if
its regret grows sublinearly compared to time, which effec-
tively means that its time-averaged regret becomes negligible
given enough time has passed, i.e., the policy experiences, on
average, at most the same costs as the static optimum with
hindsight knowledge [1].

The authors of [1] proposed a no-regret caching policy
based upon an online version of the mirror descent algo-
rithm. Their work was based on previous research performed
in [2], where the authors modelled caching as an Online Con-
vex Optimization (OCO) problem. Generalizing this method,
the algorithm developed in [1] is able to handle batch pro-
cessing of multiple requests in each time slot and integral
caching, where only discrete chunks or files—but not frac-
tions of them—can be stored in caches.

Building upon this online mirror descent (OMD) approach,
the work presented in this paper aims to modify the base

OMD algorithm in order to apply it to multi-cache networks.
In such a setting, multiple caches are able to serve user re-
quests, with each user connected to a subset of all caches.
Additionally, caches may be connected to each other in a va-
riety of topologies, such as in a hierarchical, tree-like struc-
ture. The goal of the new algorithm is to take the entire net-
work topology into account when updating each cache state,
reducing the chance of superfluous duplicates.

The paper structure will now be outlined. Section 2 in-
cludes both a short formal description of the caching prob-
lem, as well as a summary of related work—including the
OMD algorithm. Following this, section 3 will delineate key
improvements made to the OMD algorithm proposed in [1],
followed by a presentation of results in section 4. Then, sec-
tion 5 will include a discussion of the gathered findings, fol-
lowed by a reflection on ethical implications of the research
in section 6. Lastly, section 7 will provide a brief conclusion
and proposal for future avenues of research.

2 Background
In order to accurately describe a caching policy, a formal
model of a caching system must first be established. Once
that model has been described, related work can be addressed
to both give a summary of previous work on which this paper
is based upon, as well as a clear line of reasoning as to why
the algorithm presented in this paper contributes to the field.

2.1 Problem Description
Cache Model. The set of items that can be requested is repre-
sented by the catalog N = {1, 2, ..., N}, with a cache being
of size k < N . The system works within discrete time slots
t ∈ {1, 2, . . . , T}. Each request is modeled as xt ∈ X , where
valid requests consist of a vector the size of N , with each en-
try representing the amount of requests present for that spe-
cific item n. Mathematically, it is defined as follows:

X =

{
x ∈ {0, 1, . . . , B}N :

N∑
n=1

xn ≤ B

}
,

where B is the maximum number of requests at at any time
slot t.

The cache state is constructed from a time-dependent vec-
tor yt ∈ {0, 1}N , which denotes whether a cache contains file
n at time slot t. Furthermore, with the additional constraint
placed on the cache in terms of total capacity, a state yt is
considered a valid cache state if and only if it is a member of
set

Y =

{
y ∈ {0, 1}N :

N∑
n=1

yn ≤ k

}
.

Some caching policies described in section 2.2 define cache
state slightly differently, allowing for the elements of yt to
take any value in the interval [0, 1] instead of only 0 or 1. Such
policies are said to be “fractional” or “continuous”, whereas
the model defined by this paper is referred to as “integral”
or “discrete”. The former allow arbitrarily small chunks of
files to be cached, while the later only allows entire files or
fixed-size chunks of them to be stored.



Caching Policy. A caching policy δ maps a set of past
requests x1, ..., xt−1 and configurations y1, ..., yt−1 to a new
configuration yt(δ) ∈ Y at every time slot t.

Networked Caches. When modeling a caching system
containing multiple caches, requests come from a source
i ∈ I for an item n at time t. The information is then served
by one or more caches j ∈ J , or the repository server π. The
definition of a request xt is therefore expanded to be a matrix
containing I rows and N columns, with xt,i,n = l represent-
ing l requests for item n from source i. The cache state yt
is similarly extended, with an additional dimension added to
represent multiple caches.

A weight variable wi,j,n represents the cost associated with
transferring a file over the link between source i and cache j
for item n, being infinite if there is no link. Cost is a value
associated with each file transfer, with caching algorithms at-
tempting to minimize the overall cost of the system. Its for-
mula is algorithm-specific, and can be influenced by many
factors, such as bandwidth, and can also be tuned for reasons
such as load balancing. This will inform the system which
links it should prefer.

Modelling more complex topologies, such as a hierarchi-
cal network, can be achieved by creating virtual caches that
represent a given path of caches. For instance, given a hi-
erarchical topology with two caches j1 and j2, if j2 is the
“higher” cache and j1 the user-facing cache, getting data from
j2 is modeled as receiving files from a cache j1,2, with a link
weight of wi,1,n + wi,2,n.

2.2 Related Work
The caching problem has a long history and many algorithms
have been developed to address it, such as Least Recently
Used (LRU) and Least Frequently Used (LFU). Both algo-
rithms function in very similar ways. Every time a request is
made, they first check if the needed data is already cached. If
so, it is served to the user. Should the data not be cached, it
is requested from the main server, and subsequently added to
the cache. Whenever adding a new data chunk would violate
the cache size constraint k, another item must be removed.
Determining what data to remove is done according to the
eviction policy, which is where the two algorithms diverge:
LRU evicts data that has been used least recently, whereas
LFU removes information that has been requested least fre-
quently.

Both LRU and LFU work well under certain request pat-
terns, but perform very poorly on others [2]. Specifically, the
former works well for requests sampled from a distribution
with a shifting popularity — i.e., the likelihood of certain data
being requested — but under-performs on patterns with fixed
popularity, while LFU performs well under fixed popularity
[2]. In short, choosing the correct algorithm to use requires
knowledge of the future request pattern, which, in practice,
diminishes their usefulness.

More recently, machine learning has been used to at-
tempt to achieve better performance and eliminate the need to
choose the “correct” algorithm. In particular, offline policies
which use historical request data as training data have been
developed [3], [4]. While these methods have been shown to
be effective in certain cases, they suffer from a similar flaw

to LRU and LFU: they assume that request patterns remain
similar over time. Should the request pattern not adhere to
historical trends, the model requires re-training. Additionally,
in order to create a proper training set, a large set of previous
requests must be compiled and properly formatted, which can
be expensive and time-consuming, or even prohibitive should
no historical record exist. While some methods exist to mit-
igate this, such as using attributes of the catalog to predict
popularity [4], they do not address the fundamental issue of
dealing with changes to historical trends.

In [5], the authors propose a model-free caching policy
that does not make assumptions about the request pattern,
enabling general use and minimum performance guarantees.
This algorithm, Online Gradient Ascent (OGA), is based
upon Online Convex Optimization (OCO) [5]. It employs
gradient descent at each time slot, taking a step in the direc-
tion of the gradient of a utility function

Uxt
(yt) =

N∑
n=1

wnxt,nyt,n (1)

where w is a vector of weights for each file, which can—for
instance—be defined uniformly to maximize the raw cache
hit ratio [5]. The “step” is added to a continuous intermedi-
ate cache state. Before being able to convert the intermediate
cache to the proper cache state yt, it must be ensured that the
new cache state does not violate the size constraints. For this
purpose, the intermediate state is projected onto the set Y ,
which ensures that k is not exceeded while also choosing the
closest valid state to the current “ideal” state. The gradient al-
ways “points” towards what would be optimal for the current
request, and the existing intermediate cache is a summary of
all previous gradient steps.

The OGA algorithm, contrary to policies such as LRU and
LFU, is able to perform well even in an adversarial setting
[5]. In such an environment, requests are not simply sampled
from some distribution, but rather deliberately picked by an
adversary in an attempt to achieve a cache miss [5].

In order to more properly benchmark algorithms in terms
of pattern agnosticism and resistance to adversarial attacks,
regret is used [5]. Regret compares the cost of a given algo-
rithm to that of an optimal static cache policy created with
hindsight, meaning that it is generated after every request is
known [5]. Formally, it can be described as follows:

RegretT (δ) = sup
{x1,...,xt}∈XT

{
T∑

t=1

Cxt
(yt(δ))−

T∑
t=1

Cxt
(y∗)

}
,

(2)
where T is the time horizon, δ is the caching policy to be
evaluated, and y∗ is the optimal static cache state [1]. Ide-
ally, caching policies would see their regret grow in a sublin-
ear manner when compared to time, which means that the
caching policies would experience—on average—no more
cost than the static optimum with hindsight knowledge [2].
The result of using such a metric is that it gives a more ap-
plicable standard of comparison. Should an adversary gen-
erate a sequence of abruptly shifting, unpredictable cache re-
quests—which turns caching into a mostly luck-based affair,
both the static policy and the algorithm will perform poorly.



On the other hand, very predictable patterns will allow for
high-scoring static policies, and, therefore, a high bar for the
algorithm to pass. In short, the regret metric allows robust
evaluation of policies based on how well they can learn and
predict a broad range of request patterns. The OGA algorithm
has been shown to have the mentioned ideal sublinear regret
growth over time [5].

While possessing sublinear regret is an extremely impor-
tant feature, the OGA algorithm comes with a few key con-
straints that are not ideal, especially in the setting explored
by this paper. First, it can only process one request per time
slot, which is especially detrimental during periods of high
demand. After each request, both the gradient and projection
must be recalculated, which can be especially demanding in
a multi-cache setup with multiple users requesting files. Sec-
ond, the additive nature of the update rule used can slow down
responsiveness to sudden, extreme changes of file popularity
[1]. It will take a number of requests for the additions to pre-
viously unpopular items to overcome the existing margin of
the previously popular items. Third, the algorithm proposed
by [5] is a fractional policy, whereas this paper aims to de-
velop an integral algorithm.

In [1], the authors present a generalized version of the
OGA algorithm based on Online Mirror Descent (OMD).
This policy enables requesting multiple files per time slot
and allows usage of a broader range of update functions [1].
Specifically, it allows the use of a mirror map, an essential
function in mirror descent algorithms [1]. Such algorithms
presume that variables and gradients live in two different
spaces, linked by the mirror map [1]. Gradient updates are
performed in one space, then the change is translated using
the mirror map to the variables [1]. This leads to faster con-
vergence in several cases connected to caching [1]. The au-
thors of [1] developed a specific instance of OMD using a
negative-entropy mirror map, which brings both superior re-
gret performance when compared to OGA in cases where re-
quest batches contain many different files, while also allow-
ing for performance optimization via the Bregman projection.
This instance also uses a multiplicative update rule instead of
an additive one, increasing the reactivity to sudden popularity
changes [1].

A notable aspect of OCO-based approaches is their default
behaviour of continuous, partial caching [5]. Partial caching
refers to being able to store only needed fractions of files,
which has been studied in the context of media caching [6].
As a result of the gradient descent step used in OCO algo-
rithms, resulting cache states are fully continuous, meaning
that the algorithm assumes infinitely small fractions of files
can be stored [5]. In practice, this is rarely the case. Not
only are files constructed from discrete bits, but splitting ar-
bitrary file types may also not always be possible, especially
concerning information such as file metadata. Additionally,
the upsides of partial caching—being able to store only rel-
evant parts of large files—can also be achieved by creating
discrete file chunks, and applying integral caching methods to
them [6]. Using any deterministic rounding policy to generate
an integral cache state from the result of an OCO algorithm,
however, will have a grave impact on performance guarantees
[1].

Symbol Definition
vt Integral cache state of all caches at timeslot t
yt Fractional cache state of all caches at timeslot t
y∗ Optimal static cache state in hindsight
xt A matrix of the number of requests from source i

for file n at timeslot t
w A matrix of weights from each source i to each

cache j regarding file n
J The set of all caches in the network
I The set of all request sources in the network
N The catalog of all files
T The time horizon
η The step size
u The subgradient of the utility function
Cx(v) The cost attributed to a certain request batch un-

der a certain cache state
Ux(v) The utility attributed to a certain request batch

under a certain cache state
z A matrix of fractions representing the amount of

data transferred to source i from cache j regard-
ing file n

Table 1: A summary of the used notation

In order to derive an integral caching algorithm from an
OMD algorithm, a rounding step is added. Since [1] proves
that any deterministic rounding algorithm has a strongly
negative impact on performance in adversarial settings, as
it would allow an adversary to have perfect knowledge of
the cache state and thereby always request non-cached files,
randomness is introduced. Specifically, the online coupled
rounding, described in [1], is used to derive discrete cache
states while not overwriting the internal, continuous state
used for mirror descent.

Moving to a multi-cache environment, [5] introduced a
variant of the OGA that would function in a bipartite network.
However, this algorithm has the same constraints placed upon
it as the single-cache variant. Outside the realm of OCO-
based caching, [7] described a bipartite model to be used by
a Follow the Perturbed Leader (FTPL) policy. Even though it
was designed for a different algorithm, its basic concepts can
be adapted for an OMD-based approach.

3 OMD: Connected and Integral
Caches frequently operate as a network, with bipartite
or hierarchical topologies being common [8]. As shown
in section 4.2, in such settings, optimal results require
that the caches make network-optimal decisions, not just
individually-optimal decisions. Therefore, it is not sufficient
to simply run an OMD-variant on each cache in the network.

3.1 Multi-Cache Utility
In order for the algorithm to take the network into account
when updating cache states, the links between request sources
and caches must be modeled. For this purpose, a weight ma-
trix w ∈ I ×J ×N is introduced, which represents both the
presence of links, as well as encoding which links should be
preferred by the network over others.



With the weights matrix representing the links, the update
function of the OMD algorithm must be modified to make use
of this new variable. However, in addition the update func-
tion—i.e. the gradient of the cost function—needing to take
into account links, it must also prevent superfluous caching.
A file should not be cached by multiple caches if the requests
can be served by one of the caches, and the cost function
should reflect this. In [7], this is solved by adding a term
to the function that negates gained cost for any additional,
reachable cache storing an already-cached file. The final util-
ity (which can also be converted to cost) U of a given cache
state vt (vt is the integral cache state, different from the frac-
tional yt) can then be calculated using the cost of retrieving
the requested files from the remote server C(0), minus the
savings incurred by requests served by caches C(vt):

U(vt, xt) =

N∑
n=1

∑
i∈I

xt,i,n (C(0, i, n)− C(vt, i, n)) , (3)

where C(vt, i, n) =
∑
j∈J

(wi,j,n − wi,j−1,n)P (t, i, j, n)

and P (t, i, j, n) = 1−min

{
1,

j−1∑
k=1

vt,k,n

}
.

(4)
(5)

The cost is calculated for each item being requested, with
xt,i,n being 0 for all files not being requested. To evaluate the
cost of a certain cache state, wi,j,n − wi,j−1,n represents the
cost reduction received if—given both cache j and j−1 have
cached a file n—requesting that file from j instead of j − 1.
wi,0,n is equal to 0, since that cache does not exist. This not
only ensures that the file is retrieved from the optimal cache,
but also that unconnected caches are not used.

The second term ensures that cached files are only re-
warded once.

∑j
k=1 vt,k,n sums up the total percentage of

file n that is stored in caches 1, . . . , j at time t, while the
min function caps the sum at a maximum of 1. As long
as connected caches have not cumulatively stored the entire
file, the minimum function remains below 1, and, as such,
P (t, i, j, n) > 0. Since this algorithm is performed on in-
tegral caches, vt,j,n will always be either 1 or 0. As soon
as the first cache j is found to store the requested file n, for
all following caches, the min function will return 1, result-
ing in P (t, i, j, n) equalling 0. If the caches are sorted in
such a way that the most “ideal” servers (i.e., those with the
lowest weights) are searched first, then this equates to always
choosing the most cost-optimal cache in cases where multiple
caches are available.

In implementation, the cost function can be simplified mas-
sively. For instance, has already been noted that, as soon as
a cache is found to store the requested file, all subsequent
rewards go to 0 and can thus be ignored. Additionally, all
weights of caches inspected before that cache is found can
also be ignored. This can be demonstrated through an exam-
ple, for instance using a system made up of 3 caches, with
second cache storing the requested item. The cost function

C(vt, j, n) would then be evaluated as follows:

C(vt, i, n) = (wi,3,n − wi,2,n) · P (t, i, 3, n)+

(wi,2,n − wi,1,n) · P (t, i, 2, n)+

(wi,1,n − wi,0,n) · P (t, i, 1, n)

= (wi,3,n − wi,2,n) · 0+
(wi,2,n − wi,1,n) · 1+
(wi,1,n − wi,0,n) · 1

= (wi,2,n − wi,1,n) + (wi,1,n − wi,0,n)

= wi,2,n − wi,1,n + wi,1,n − 0

= wi,2,n

This same chain of cancelling terms works for any number of
caches and weight configurations, resulting in the far simpler
cost function

C(vt, i, n) = min
j∈J

{
wi,j,nvt,j,n

}
(6)

3.2 Multi-Cache Subgradient
In order for an OMD-based policy to be implemented, a func-
tion must be provided which will direct the cache state to-
wards a currently-optimal state based on the newest set of re-
quests. Traditionally, this is function is derived directly from
the cost function by merely taking its gradient. In this case,
however, the presence of a min operation in the cost function
complicates matters: Cx(vt) no longer has a single, defined
gradient at every point. Instead, there is a point where the
min operator caps the function, leading to a sharp change in
direction and gradient. At that intersection point, multiple
gradients exist. For this reason, a subgradient must be used
instead.

This subgradient is created using a piecewise function,
which always returns only one unique result. Crucially, it
maintains the reward gain cap of the utility function, becom-
ing 0 for file entries that, while requested, are already fully
cached in a connected cache.

ct ∈ ∂xtCx(vt) =

{∑
i∈I wixt, if

∑
j∈J

∑
n∈N vt,j,n ≤ 1

0, otherwise
(7)

3.3 Rounding
Due to the base OMD policy returning fractional cache states,
rounding is used to derive integral cache states. In [1], the
authors proved that any deterministic rounding policy would
lead to the dissolution of the regret bounds ensured by the
OMD policy. Intuitively, this can be understood by consider-
ing the adversarial setting: if the rounding can be predicted
with perfect accuracy, an adversary can always request a file
that is not cached at all, resulting in 0 utility. In a fractional
setting, this is not as much of an issue, since the caches can
store small chunks of every file, meaning that some utility
will be gained.

For this policy, the Online Coupled Rounding algorithm
presented in [1] is used. After the OMD updates and projects
the caches, rounding is applied individually on each cache.
For simplicity, the random variable used to prevent determin-
ism is drawn only once, and is the same for all caches.



3.4 The Algorithm

Algorithm 1 Bipartite OMD

Require: η ∈ R+, y1 ∈ {k|k > 0}J×N

for t← 1, 2, . . . , T do
yt+1 ← yte

(−ηut)

yt+1 ← Π(yt+1)
vt+1 ← Online Coupled Rounding(yt+1)

end for

Assembling the parts, the final algorithm broadly resem-
bles the base OMD policy with the negative-entropy map.
The algorithm loops for each new batch of requests, starting
each cycle by calculating the subgradient. Next, mirroring
the update rule used by the authors of [1] for the OMD vari-
ant using the negative-entropy map, the subgradient is applied
to the existing state via a multiplicative update rule.

yt = yte
−ηut . (8)

After the update, the cache states will have likely moved out-
side of the set of constraints placed on them, meaning that
they must be modified to become valid again. In order to
maintain the effect of the update, a projection onto the set of
valid cache states is performed using the function Π. Since
the constraints (namely cache size) are enforced on a per-
cache basis, this projection is also performed individually.
The algorithm for this is identical to that used in [1] for the
negative-entropy mirror map.

Lastly, the final cache states are derived using the rounding
described in section 3.3. It should be noted here that the inter-
nal state used for the OMD calculations remains unchanged
by the rounding; instead, merely its output is rounded. If
the internal state were to also be rounded, the policy would
loose most of its learning capabilities, with the subtle, grad-
ual updates caused by incoming requests rounded to either no
change or drastic change.

3.5 Extension: Simplified Network Model
In order to avoid enforcing the cap on reward gain for re-
dundant caching within the cache update directly, it can be
extracted as a constraint, massively simplifying the network.
In [9], the authors accomplished this through the introduc-
tion of a new variable, z, which connects the cache states and
propagates updates. For any request xt,i,n at time t ∈ T from
source i ∈ I for item n ∈ N , zi,j,n holds what percent of the
item is routed from cache j ∈ J . The gradient update then
acts on this new variable zt, instead of directly on the cache
state, using an modified version of the utility function Eq. 1,
namely Eq. 9 and its gradient Eq. 10.

ft(zt) =
∑
i∈I

∑
j∈J

∑
n∈N

xt,i,nzi,j,nwi,j,n (9)

∇ft(zt) = (xt,i,nwi,j,n)i,j,n∈I×J×N . (10)

While updating z does not directly update cache states, sev-
eral constraints connect the two, namely the ones presented
below. The changes to z are therefore propagated to the cache

states during the projection, since this step will modify yt in
order to adhere to the constraints.∑

j∈J
zi,j,n ≤ 1, ∀i ∈ I,∀n ∈ N

zi,j,n ≤ yj,n. ∀i ∈ I,∀j ∈ J ,∀n ∈ N
This removes the need for a minimum function, and

thereby the problem of multiple gradients, simplifying the en-
tire process. Unfortunately, the very factor that allows for the
simplification—the variable z—also makes rounding the re-
sult into an integral state a non-trivial problem. When the
cache state yt is rounded to an integral state, the constraints
placed on the variables are no longer guaranteed to hold, and
since, the performance guarantees no longer apply either. For
this reason, this model is not used in this paper, but rather
described as an avenue for potential future work.

4 Results
In order to properly present the results from benchmarking
the modified OMD algorithm presented in section 3, this sec-
tion first provides a brief description of the evaluation setup,
after which the key findings are outlined.

4.1 Experimental Setup
In order to properly evaluate the developed algorithm, a sim-
ulation suite was developed in Python. The program employs
an object-oriented design, with caching algorithms all inher-
iting from a base “cache” class. Additionally, data is fed into
the model via classes inheriting from an overarching “trace”
class. These data sources range from simply feeding a static
array, to generating an arbitrary-length sequence of requests
from a given seed using a certain generation method. Metrics,
such as hit ratio and cost, are recorded by the caching algo-
rithms. In order to streamline evaluation, especially for com-
paring several caching policies, a benchmarking class was
written. This class, when given a JSON configuration file,
will setup a simulation with the listed traces, caches, weights
and other parameters. If the “seed” parameter is set, the same
JSON file will always yield the same setup and results. Once
complete, it will collect the gathered results, generate the
static optimal cache used for calculating regret, and will fi-
nally record parameters such as the seed (especially when no
particular seed was provided and thus one was generated ran-
domly), plot the metrics of each algorithm, and save the raw
results, plot and JSON file to a generated folder. The entire
setup allows both reproduction of any particular run by feed-
ing the used seed, and is extremely flexible due to its modular
design.

In order to evaluate the described algorithm, a multitude of
setups were used to benchmark different scenarios. Three dif-
ferent traces were used to generate request, each taken from
[10]. First, a trace using a fixed popularity is used. This sam-
ples requests from a zipf distribution with a fixed s value of
0.6. Next, a sliding window trace is used, where the same
zipf distribution is used, though its graph is shifted 5 times.
This simulates a sudden change in what items are popular.
Lastly, an adversarial trace is also used. Here, the circular



(aka oscillator) trace is used, which requests items in a cir-
cular manner, always requesting (n + 1) mod N next, if n
was just requested. This makes it particularly hard to gain a
high utility, especially algorithms with only short-term or no
learning. These policies usually discard older items due to
them not being requested in favor of newer items, leading to
and endless cycle of evicting files needed for upcoming re-
quests in favor of items that will not be requested in the near
future. In most cases, a catalog size of 1000 was used for the
traces, as it provides an adequate amount of choice for both
the requests and the caching policies, reducing the probability
of repeated “lucky guesses”. A time horizon of 1000 is used
in most experiments for similar reasons.

Cache misses have a negative impact on performance, as
measured by Normalized Average Cost (NAC). This metric
is calculated by adding all normalized cost incurred up until
the current timeslot t, and then dividing that by the amount of
time that has passed. Normalized cost refers to cost divided
by the total number of requests received in that timeslot.

All experiments use the same network topology, con-
structed out of 2 sources and 3 caches, with caches 1 and
3 being connected to sources 1 and 2 respectively, and cache
2 being connected to both sources. All link weights are set
uniformly. This setup was chosen for its balance between
speed and variety. Speed here refers to the speed of the simu-
lation, since each additional entity adds an immense amount
of required processing, especially the already-slow projection
step. With only 5 entities, it is able to test how a multi-cache
policy is able to use network-wide collaboration to make bet-
ter use of the total cache space, while also demonstrating that
it correctly handles unlinked caches. The former is achieved
by cache 2, which acts as a shared cache for both sources.
For instance, with clever use, files common to both sources
can be cached there instead of in both cache 1 and cache 3,
freeing up more space in the network without decreasing per-
formance. Handling of unlinked caches is also tested, mainly
through the other 2 caches: only one source has access to
them, meaning that the cache state there should tailor it to that
source’s pattern, and not that of the network. Other topolo-
gies, such as a hierarchical one, are not tested in this paper,
but may be benchmarked in future work.

4.2 Findings
Observing the plots presented in figure 1, all three show the
NAC of the OMD policy decreasing over time, converging to
lower values. In addition, all three show the optimal static
policy consistently scoring a higher NAC.

In figure 2, the results show the algorithm developed in this
paper noticeably outperform two “naive” policies. The LFU
algorithm does not manage a single cache hit, while the naive
OMD policy evidently performs worse than this paper’s al-
gorithm, hovering close to the static optimal policy and con-
verging to it over time.

Investigating different step sizes, figure 3 shows different
instances of the policy applied to the same fixed-popularity
trace. The different step sizes lead to diverging convergence
rates, as well as differing end results. All variations maintain
a roughly similar shaped curve.

(a) Fixed popularity trace, catalog size 1000

(b) Sliding popularity trace, catalog size 1000

(c) Circular adversarial trace, catalog size 1000

Figure 1: Plotting the Normalized Average Cost of the Bipartite
OMD policy over three different traces. In each plot, the topology
consists of 2 sources and 3 caches (each of size 100), with cache 1
connected to source 1, cache 3 connected to source 2 and cache 2
connected to both.



Figure 2: The developed OMD policy is tested against naive versions
of OMD using negative-entropy and LFU. These naive variants only
act on an individual cache basis, making decisions unaware and in-
dependent of each other. Topology is identical to figure 1, using the
circular adversarial popularity trace with a catalog size of 250 and
cache sizes of 25 each, since higher values were infeasible on avail-
able hardware due to performance reasons.

Figure 3: Different step sizes used for the Bipartite OMD policy.
Topology is identical to figure 1, using the fixed trace with a catalog
size of 1000.

5 Discussion
From the results presented in section 4.2, it can be concluded
that the bipartite OMD algorithm performs well in a variety
of settings, even in the face of adversarial requests. It not only
consistently bested the optimal static policy, but shows clear
signs of learning, especially in figures 1a and 1a, where the
NAC is seen to decrease consistently, with the decrease slow-
ing as the network converges. Figure 1c shows more abrupt
changes, likely due to the unusual request pattern.

Recalling the regret metric introduced in earlier sections,
it can be observed that, using the NAC of both the Bipartite
OMD and the optimal static cache, the time-averaged regret
can be calculated. As described earlier, a key feature of algo-
rithms that perform well under adversarial request patterns is
that their regret grows sublinearly compare to time. In other
words, as t → ∞, the time-averaged regret should become
negligible. Looking at figure 1, it can be seen that, in all three
cases, the cost of the OMD variant either decreases or remains
at parity with that of the optimal static policy. Therefore, for
high values of t, this difference, and thereby the regret, ap-
proach 0.

Figure 2 is especially relevant for this paper. It clearly
demonstrates that networked policies vastly outperform dis-
tributed, independent instances of caching algorithms.

The performance of the LFU network is no surprise, given
that the trace is adversarial in nature and manages to “break”
the LFU in a similar manner in a single cache scenario as
well. Nevertheless, it demonstrates, should a series of re-
quests follow such a trace, a network relying on a fully dis-
tributed set of LFU policies would suffer devastating perfor-
mance loss.

Looking at the naive OMD policy, it can be observed that
it is able to serve some number of requests. However, when
comparing it to the networked algorithm, it becomes obvious
that the latter is able to more reliably produce cache hits.

Summarizing the results, the experiments seem extremely
promising, demonstrating the algorithm’s potential in a net-
worked setting. It performs consistently in the range of ex-
periments presented, and the performance implies that fur-
ther study of the policy may be fruitful. However, it must be
noted that only a handful of scenarios have been tested and
presented here. Theoretical bounds on the regret of this al-
gorithm have yet to be developed and proven, meaning that
there is still substantial work to be done before this algorithm
can receive the desirable label of a “no-regret policy”.

6 Responsible Research
In 2010, the Yale Law School Roundtable on Data and Code
Sharing released a document addressing what they called a
“credibility crisis” present in the field of computational sci-
ence [11]. A key emphasis of the remaining document was
the importance of being able to reproduce findings presented
in scientific articles in order to allow for easy peer review and
validation of results [11]. For this reason, reproducibility was
a key consideration throughout the process. In the case of this
paper and the work presented within, this tenet is baked into
the core design of the both the implementation of the algo-
rithm and the developed simulation software.



All parameters of a simulation run, including the seed used
for all random sampling and data generation, are configurable
through a JSON file. After every run, a folder is created that
stores a CSV text file of the raw results, a plot of the results
over time, and a copy of this configuration file. This ensures
that experiments can be reproduced seamlessly while only
needing to share the source code and the appropriate param-
eters file. Since the data is also generated deterministically
from the seed, it is shared directly with the the network topol-
ogy and other environment settings. This results in experi-
ments being trivial to reproduce for any reader of this paper.

Related to this, the source code of the simulator as well as
the parameters file for all experiments performed in this pa-
per are fully open source, in line with the recommendations
laid forth in [11]. In addition, to prevent dependency clash
and to ensure that the exact same setup is available for other
researchers, a tool named “Pipenv” [12] is used, which cap-
tures the entire Python environment, including exact versions
of Python and all dependencies. Through it, users can easily
and reliably recreate the exact environment used in the paper.

Next to reproducibility, the Netherlands Code of Conduct
for Research Integrity defines an entire range of principles
as best practices for responsible research [13]. These cover
a broad variety of aspects, from virtues such as honesty and
scrupulousness, which are, of course, held in high regard by
the authors of this work, over transparency (which has already
been addressed in the previous paragraphs), to independence
and responsibility [13]. These principles are then used to give
rise to a set of standards [13].

A portion of these standards reflect the need claims made
to be substantiated and presented honestly [13]. The work
in this paper is not yet fully mature; while the algorithm
has been developed, implemented, and empirical results have
been collected, the theoretical work proving bounds on per-
formance has yet to be completed. The paper attempts to hon-
estly present the accuracy of its empirical results, emphasiz-
ing that the results are not fully conclusive.

Lastly, it should be noted that the author has not, in fact,
faked any of the presented results, nor intentionally left out
data that contradicted findings.

7 Conclusion
This paper set out to develop a variant of the integral OMD
caching policy for multi-cache settings. For this, a new vari-
able was introduced to represent links between caches, and
the utility function was modified to prevent files from being
cached in more places than necessary. As a result, the gradi-
ent used in previous work had to be exchanged for a subgra-
dient, as the new utility function is not necessarily differen-
tiable.

A small set of empirical results were collected in order to
test the developed policy in a multi-cache setting, as well as
to compare it to naive, completely distributed approaches. In
all instances, the collected data shows promise, showing that
the algorithm retains sublinear regret in all three of the tested
cases, as well as comfortably outperforming two naive poli-
cies.

In conclusion, the work presented in this paper shows a

promising method of expanding the OMD algorithm to sup-
port multi-cache systems in an integral setting.

7.1 Future Work

Two immediate avenues of future work lie in theoretical val-
idation. Determining the exact regret bounds and finding a
formula for the optimal step size η could not be accomplished
before the end of the project. Inspiration could be drawn
from [2] and [7] for the regret bounds, and [1] for the step
size. The former two papers already prove regret bounds for
bipartite policies of similar nature (OGA and FTPL), while
the latter deals with the optimal step size for non-networked
OMD caches with a negative-entropy map, the same variant
of OMD employed in this work. Finding the regret bounds
would prove (or disprove) what the experimental findings im-
ply, and provide numerical guarantees for the policy, while
determining the optimal step size would likely boost perfor-
mance.

Although the algorithm was tested in a variety of settings,
extending the developed simulator in order to test the algo-
rithm against real datasets with realistic topologies would
give an insight as to how performance translates to actual im-
plementations. Here, the average performance is especially
interesting, which may not completely match the theoretical
metrics gathered here. In order to gain even better perfor-
mance in such settings, instead of using uniform weights for
links, these can be adjusted to deliberately direct the network
to prefer some caches over others for requests from a certain
source. Reasons for this may include load balancing, geo-
graphic distance (which can influence latency) or bandwidth
limitations.

In a similar vein, developing faster implementations of
parts of or even the entire presented algorithm would substan-
tially improve its feasibility in a real application. Currently,
OCO libraries such as CVXPY[14] are used for procedures
such as projection and generating the optimal static policy.
While these packages are extremely useful in academic work,
where speed is less of a concern, and being able to quickly
change formulas is essential, they are not able to deliver the
performance needed for large, real-time caching systems. In
[1], the authors were able to develop a faster projection algo-
rithm for their single-cache setup, which may be adapted for
the networked setting.

Another area of future work concerns the simplified net-
work model introduced in section 3. This model made use of
a helper variable z that would propagate changes to the cache
state, representing the percentage of a requested file retrieved
from a specific cache in the network. With the variable act-
ing as a bridge, should rounding be applied to the cache state
in order to achieve integral caching, constraints placed on the
relationship between the elements of the cache and z may no
longer hold. For this reason, it was not incorporated into the
algorithm, which used more complex sub-gradients. Future
work may be able to develop a rounding technique which is
able to derive an integral state from the fractional output of
the simplified model without violating these constraints.



8 Acknowledgements
The author would like to thank Prof. Dr. Georgios Iosfidis,
Tareq Salem and Naram Mhaisen for their repeated and in-
valuable guidance, both in regards to conducting the work as
well as in the writing of this paper presenting it. Without
them, this work would not exist.

References
[1] T. Si Salem, G. Neglia, and S. Ioannidis, “No-Regret

Caching via Online Mirror Descent,” IEEE Interna-
tional Conference on Communications, Jun. 2021,
ISSN: 15503607.

[2] G. Paschos, G. Iosifidis, and G. Caire, Cache Op-
timization Models and Algorithms, 3–4. Now Pub-
lishers, Inc., Aug. 2020, vol. 16, pp. 156–345, ISBN:
9781680835960.

[3] E. Bastug, M. Bennis, E. Zeydan, M. A. Kader, I. A.
Karatepe, A. S. Er, and M. Debbah, “Big Data Meets
Telcos: A Proactive Caching Perspective,” Journal
of Communications and Networks, vol. 17, no. 6,
pp. 549–557, Feb. 2016, ISSN: 12292370.

[4] S. M. S. Tanzil, W. Hoiles, and V. Krishnamurthy,
“Adaptive Scheme for Caching YouTube Content in
a Cellular Network: Machine Learning Approach,”
IEEE Access, vol. 5, pp. 5870–5881, 2017, ISSN: 2169-
3536.

[5] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosi-
fidis, “Learning to cache with no regrets,” in IEEE IN-
FOCOM 2019 - IEEE Conference on Computer Com-
munications, 2019, pp. 235–243.

[6] L. Wang, S. Bayhan, and J. Kangasharju, “Optimal
chunking and partial caching in information-centric
networks,” Computer Communications, vol. 61,
pp. 48–57, May 2015, ISSN: 01403664.

[7] D. Paria and A. Sinha, “LeadCache: Regret-Optimal
Caching in Networks,” NeurIPS 2021, 2021.

[8] Z. Li, G. Simon, and A. Gravey, “Caching Policies for
In-Network Caching,” in 2012 21st International Con-
ference on Computer Communications and Networks
(ICCCN), IEEE, Jul. 2012, pp. 1–7, ISBN: 978-1-4673-
1544-9.

[9] N. Mhaisen, G. Iosifidis, and D. Leith, “Online
Caching with no Regret: Optimistic Learning via Rec-
ommendations,” Apr. 2022.

[10] Y. Li, T. Si Salem, G. Neglia, and S. Ioannidis, “On-
line Caching Networks with Adversarial Guarantees,”
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 5, no. 3, Dec. 2021, ISSN:
24761249. [Online]. Available: https://dl.acm.org/doi/
abs/10.1145/3491047.

[11] V. C. Stodden, “Reproducible Research: Addressing
the Need for Data and Code Sharing in Computational
Science,” vol. 12, no. 5, pp. 8–12, 2010.

[12] Pipenv: Python Dev Workflow for Humans. [Online].
Available: https://pipenv.pypa.io/en/latest/.

[13] Netherlands Code of Conduct for Research Integrity
— NWO. [Online]. Available: https://www.nwo.nl/en/
netherlands-code-conduct-research-integrity.

[14] CVXPY 1.2. [Online]. Available: https://www.cvxpy.
org/.

https://dl.acm.org/doi/abs/10.1145/3491047
https://dl.acm.org/doi/abs/10.1145/3491047
https://pipenv.pypa.io/en/latest/
https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
https://www.cvxpy.org/
https://www.cvxpy.org/

	Introduction
	Background
	Problem Description
	Related Work

	OMD: Connected and Integral
	Multi-Cache Utility
	Multi-Cache Subgradient
	Rounding
	The Algorithm
	Extension: Simplified Network Model

	Results
	Experimental Setup
	Findings

	Discussion
	Responsible Research
	Conclusion
	Future Work

	Acknowledgements

