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Abstract—Reliability is a critical issue for modern multi-level
cell memories. We consider a multi-level cell channel model such
that the retrieved data is not only corrupted by Gaussian noise,
but hampered by scaling and offset mismatch as well. We assume
that the intervals from which the scaling and offset values are
taken are known, but no further assumptions on the distributions
on these intervals are made. We derive maximum likelihood (ML)
decoding methods for such channels, based on finding a codeword
that has closest Euclidean distance to a specified set defined by
the received vector and the scaling and offset parameters. We
provide geometric interpretations of scaling and offset and also
show that certain known criteria appear as special cases of our
general setting.

Index Terms—multi-level cell memories, maximum likelihood
decoding, Euclidean distance, Pearson distance, scaling and offset
mismatch

I. INTRODUCTION

As the on-going data revolution demands storage systems
that can store large quantities of data, multi-level cell mem-
ories are gaining attention. A multi-level cell is a memory
element capable of storing more than a single bit of informa-
tion, compared to a single-level cell which can store only one
bit per memory element [1]. For example, in multi-level cell
NAND flash technology, information is stored by introducing
more voltage levels that are used to represent more than one
bit [2].

It is obvious that, as the number of levels increases, the
storage capacity of multi-level cell memories is enhanced.
However, due to the increase in the per-cell storage density, the
reliability of multi-level cell memories experiences a diverse
set of short-term and long-term variations.

Unpredictable stochastic errors are exacerbated with the
short-term variation. For example, random errors occur in the
programming/reading process, and sometimes it is hard to
initialize a cell with the exact voltage. As a result, error cor-
recting techniques are usually considered and applied in multi-
level cell memories, such as BCH codes [3], Reed-Solomon
codes [4], LDPC codes [5], trellis coded modulation [6], and
so on.

In the long term, the performance of multi-level cell mem-
ories degrades with age. As documented in [7], the number
of electrons of a cell decreases and some cells even become
defective over time. The amount of electron leakage depends

on various physical parameters, e.g., the device’s temperature,
the magnitude of the charge, the quality of the gate oxide or
dielectric, and the time elapsed between writing and reading
the data. It is hard to precisely model these long-term effects
on multi-level cell memories. In this paper, we focus on the
mean change over time, while variance issues were discussed
in [8].

Scaling and offset can weaken the cell’s state strength by
moving its level closer to the next reference voltage. Various
techniques have been proposed to improve the detector’s
resilience to scaling and offset mismatch. Estimation of the
unknown shifts may be achieved by using reference cells,
but this is very expensive with respect to redundancy. Also,
coding techniques can be applied to strengthen the detector’s
reliability in case of scaling and offset mismatch; these include
rank modulation [9], balanced codes [10], and composition
check codes [11]. However, these methods often suffer from
large redundancy and high complexity.

Immink and Weber [12] advocate the use of Pearson dis-
tance decoding instead of traditional Euclidean distance de-
coding, in situations which require resistance towards scaling
and/or offset mismatch. We use the same channel model as
used in [12]: besides the noise, which varies from symbol
to symbol, a multiplicative factor a and an additive term b
specify the scaling and offset mismatch, respectively, which
are assumed to be constant within one block of code symbols,
but may be different for the next block. Even though this
model neglects certain aspects of multi-level cell memories,
such as inter-cell coupling or dependent noise, it still captures
key properties of the data corruption process in multi-level cell
memories.

The contribution of this work is two-fold. Firstly, in Sec-
tion III, we derive a maximum likelihood (ML) decoding
criterion for multi-level cell channels with Gaussian noise and
also suffering from the scaling a and the offset b, which are
known to be within certain ranges, specifically 0 < a1 ≤
a ≤ a2 and b1 ≤ b ≤ b2. The ML decoding criterion will
also be illustrated with geometric interpretations. Secondly,
the proposed ML criterion provides a general framework,
including the scaling-only case and the offset-only case. Some
known criteria [13] [14] are shown to be special cases of this
framework for particular a1, a2, b1, and b2 settings.



This paper aims to generalize ML decoding for multi-
level cell channel with Gaussian noise and scaling and offset
mismatch. We start by providing the multi-level cell channel
model in Section II, starting with several definitions and end-
ing with the Euclidean distance-based and Pearson distance-
based decoding criteria. In Section III, we show how to achieve
ML decoding for this channel. We continue in Section IV
considering several special cases, which relate to known results
in this area. We wrap up the paper with some comments and
ideas for future work in Section V.

II. PRELIMINARIES AND CHANNEL MODEL

We start by introducing some notations. For any vector u =
(u1, u2, . . . , un) ∈ Rn, let

ū =
1

n

n∑
i=1

ui

denote the average symbol value, let

σu =

(
n∑
i=1

(ui − ū)2

)1/2

denote the unnormalized symbol standard deviation, and let

‖u‖ =

(
n∑
i=1

|ui|2
)1/2

denote the (Euclidean) norm. We write 〈u,v〉 for the standard
inner product (the dot product) of two vectors u and v, i.e.,

〈u,v〉 =
n∑
i=1

uivi = ‖u‖ ‖v‖ cos θ,

where θ is the angle between u and v. Note that 〈u,u〉 =
‖u‖2.

Consider transmitting a codeword x = (x1, x2, . . . , xn)
from a codebook S over the q-ary alphabet Q = {0, 1, . . . , q−
1}, q ≥ 2, where n is a positive integer. This is based on the
fact that each cell is initialized with one of a finite discrete
set of voltages. The transmitted symbols xi are distorted by
additive noise vi, by a factor a > 0, called scaling/gain, and
by an additive term b, called offset, i.e., the received symbols
ri read

ri = a(xi + vi) + b,

for i = 1, . . . , n. The parameters vi ∈ R are zero-mean i.i.d.
Gaussian noise samples with variance of σ2 ∈ R, that is, the
noise vector v has distribution

φ(v) =

n∏
i=1

1

σ
√
2π
e−v

2
i /(2σ

2). (1)

The scaling and offset (unknown to both the sender and the
receiver) may slowly vary in time due to various factors in
multi-level cells. So we assume they may differ from codeword
to codeword, but do not vary within a codeword. The received
vector when a codeword x is transmitted is

r = a(x + v) + b1, (2)

where 1 = (1, 1, . . . , 1) is the real all-one vector of length n.

A. Euclidean Distance-Based Decoding

A well-known decoding criterion upon receipt of the vector
r is to choose a codeword x̂ ∈ S which minimizes the
(squared) Euclidean distance between the received vector r
and codeword x̂, i.e.,

Le(r, x̂) = ‖r− x̂‖2 =

n∑
i=1

(ri − x̂i)2. (3)

It is known to be ML with regard to handling Gaussian
noise, but not optimal in situations which require resistance
towards scaling and/or offset mismatch.

B. Pearson Distance-Based Decoding

The Pearson distance measure [12] naturally lends itself
to immunity to scaling and/or offset mismatch. The Pearson
distance between the received vector r and a codeword x̂ ∈ S
is defined as

Lp(r, x̂) = 1− ρr,x̂, (4)

where ρr,x̂ is the Pearson correlation coefficient

ρr,x̂ =

〈
r− r̄1, x̂− ¯̂x1

〉
σrσx̂

. (5)

A Pearson decoder chooses a codeword which minimizes
this distance. As shown in [12], a modified Pearson distance-
based criterion leading to the same result in the minimization
process reads

L′p(r, x̂) =

n∑
i=1

(ri − x̂i + ¯̂x)
2
, (6)

if there is no scaling mismatch, i.e., a = 1. Use of the Pearson
distance requires that the set of codewords satisfies certain
special properties [12].

A geometric meaning for Pearson distance is provided
in [14]. Since the offset b changes the mean of a vector, it
seems reasonable to consider normalized vectors x̂− ¯̂x1 and
r− r̄1 rather than x̂ and r. On the other hand, scaling a vector
of mean 0 by a only changes its standard deviation by a factor
of a. So it seems reasonable to scale the normalized vectors so
that they have standard deviation 1. It is not difficult to show
that this is ρr,x̂.

III. MAXIMUM LIKELIHOOD DECODING

If a vector r is received, optimum decoding must determine
a codeword x̂ ∈ S maximizing P(x̂ |r ). If all codewords are
equally likely to be sent, then, by Bayes Theorem, this scheme
is equivalent to maximizing P(r |x̂ ), that is, the probability
that r is received, given x̂ is sent.

From (2), we know v = (r− b1)/a− x̂ when a and b are
fixed, and since a is nonzero, the likelihood P(r |x̂ ) in this
case is

φ((r− b1)/a− x̂).

Here, we consider the situation that the scaling and the offset
take their values within certain ranges, specifically 0 < a1 ≤
a ≤ a2 and b1 ≤ b ≤ b2, but do not make any further
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Fig. 1. Subdivision of U ′ = {cr + d1|c, d ∈ R}.

assumptions on the distributions on these intervals. Thus, in
order to achieve ML decoding, the criterion to maximize
among all candidate codewords x̂ is

max
0<a1≤a≤a2,b1≤b≤b2

φ((r− b1)/a− x̂). (7)

Since the logarithm function is strictly increasing on the
positive real numbers and φ is a positive function, an equiv-
alent formulation of the problem is to find x̂ ∈ S that
maximizes

max
0<a1≤a≤a2,b1≤b≤b2

log φ((r− b1)/a− x̂).

Since

log φ((r− b1)/a− x̂) = −n log(σ
√
2π)

− 1

2σ2

n∑
i=1

((ri − b)/a− x̂i)2
(8)

has a component −n log(σ
√
2π) that is independent of x̂ and

r, and since 1
2σ2 is a positive constant, a maximum likelihood

decoder finds a codeword x̂ that minimizes

min
0<a1≤a≤a2,b1≤b≤b2

n∑
i=1

((ri − b)/a− x̂i)2,

i.e., it minimizes the squared Euclidean distance between the
candidate codeword x̂ and the points in

U = {(r− b1)/a|0 < a1 ≤ a ≤ a2, b1 ≤ b ≤ b2},

which is a subset of the subspace

U ′ = {cr + d1|c, d ∈ R}

in Rn.

The squared Euclidean distance between a vector x̂ and the
set U is defined as

Le(U, x̂) =

n∑
i=1

(pi − x̂i)2,

where p = (p1, p2, . . . , pn) is the point in U that is closest
to x̂. The most likely candidate codeword xo for a received
vector has the smallest Le(U, x̂), that is

xo = argmin
x̂∈S

Le(U, x̂). (9)

Hence, x̂ ∈ S closest to U is chosen as the ML decoder output.
In order to calculate Le(U, x̂) for a codeword x̂, we first

find the point in U ′ that is closest to x̂ and then check if this
point is in U . Applying the first derivative test gives that the
closest point in U ′ to x̂ is p0 = c0r + d01 with

c0 =
〈r, x̂〉 − nr̄¯̂x

〈r, r〉 − nr̄2

and

d0 =
〈r, r〉 ¯̂x− 〈r, x̂〉 r̄
〈r, r〉 − nr̄2

.

In Fig. 1, we depict the subset U in gray when a1 < 1 < a2
and b1 < 0 < b2. Four vertices A, B, C, D are also shown
in the picture:

A = (r− b11)/a1,

B = (r− b21)/a1,

C = (r− b21)/a2,

D = (r− b11)/a2.

Perpendicular lines (blue dash) in U ′ to sides of U through ver-
tices are pictured in Fig. 1. These perpendicular lines and the
sides of U separate U ′ into 9 subsets, namely, R1, R2, . . . , R9.
For instance, the perpendicular lines to side BC and BC itself
form the boundaries of R5. We use the notation R9 in Fig. 1
for the subset U for clerical convenience.

Theorem 1. If p0 is in the subset Ri, i = 1, . . . , 9, then the
closest point in U to x̂ is

p =



〈r− b11, x̂〉
‖r− b11‖2

(r− b11) if i = 1,

〈r− b21, x̂〉
‖r− b21‖2

(r− b21) if i = 5,

(r− (r̄− a1¯̂x)1)/a1 if i = 3,

(r− (r̄− a2¯̂x)1)/a2 if i = 7,

A if i = 2,

B if i = 4,

C if i = 6,

D if i = 8,

p0 if i = 9.

(10)

The ML decoding criterion is minimizing Le(p, x̂) among all
candidate codewords.
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Fig. 2. The distance of a candidate codeword x̂ to the subset
{r/a |0 < a1 ≤ a ≤ a2 }: three cases in (11), (a) 〈r, x̂〉 > 〈r, r〉 /a1, (b)
〈r, x̂〉 < 〈r, r〉 /a2 and (c) otherwise, assuming a1 < 1 < a2.

Proof. If p0 is in the subset R1, maximizing (7) is equivalent
to minimizing the smallest squared Euclidean distance from
the codeword x̂ to the line segment

AD = {(r− b11)/a|0 < a1 ≤ a ≤ a2},

which is shown in Fig. 1. Let θ be the angle between x̂ and
r − b11. The point on AD closest to x̂ is p = α(r − b11)
with

α = (‖x̂‖ cos θ)/‖r− b11‖ = 〈r− b11, x̂〉 /‖r− b11‖2.

Similarly, when p0 is in the subset R5, the point on BC =
{(r−b21)/a|0 < a1 ≤ a ≤ a2} closest to x̂ is p = α(r−b21)
with

α = 〈r− b21, x̂〉 /‖r− b21‖2.

If p0 is in the subset R3, the point p ∈ U that is closest to
x̂ must be on the line segment

AB = {(r− b1)/a1|b1 ≤ b ≤ b2},

which is shown in Fig. 1. The point on AB that is closest to
x̂ is p = (r−β1)/a1, with β = r̄−a1¯̂x, which follows from
the first derivative test. The proof is similar when p0 is in the
subset R7, with the line segment CD taking the role of AB.

If p0 is in the subset R2, then the closest point in U to x̂ is
the vertex A = (r− b11)/a1, as can be observed from Fig. 1.
Similar results are found for the situations that p0 is in the
subset R4, R6, and R8, where the closest point in U to x̂ is
B, C, and D, respectively.

Obviously, the closest point in U to x̂ is p0 itself when p0

is in the subset R9 = U .

IV. SPECIAL CASES

Several special values of a1, a2, b1 and b2 are considered,
leading to typical cases for maximizing (7); these include the
scaling-only and offset-only cases. Not only ML decoding
criteria are discussed, but also conventional decoding criteria
as introduced in Section II.

A. Scaling-Only Case

In the scaling-only case, i.e., b = 0, we simply have

r = a(x + v),

where the scaling, a, is unknown to both sender and receiver.
In Theorem 2 of [13], the following ML criterion was

presented for the case that there is bounded scaling (0 < a1 ≤
a ≤ a2) and no offset mismatch (b = 0):

La1,a2(r, x̂) =


Le(r/a1, x̂) if 〈r, x̂〉 > 〈r, r〉 /a1,
Le(r/a2, x̂) if 〈r, x̂〉 < 〈r, r〉 /a2,

‖x̂‖2 −
(
〈r,x̂〉
‖r‖

)2
otherwise.

(11)
This result can also be simply found from the general frame-
work presented in the previous section, by setting b1 = b2 = 0
in Theorem 1. Note that this gives indeed that p = r/a1 if
p0 ∈ R2 ∪R3 ∪R4, which corresponds to the situation that

‖x̂‖ cosϕ
‖r‖

=
〈r, x̂〉
〈r, r〉

> 1/a1,

where ϕ is the angle between x̂ and r. Similarly, note that
p = r/a2 if p0 ∈ R6 ∪ R7 ∪ R8, which corresponds to the
situation that

‖x̂‖ cosϕ
‖r‖

=
〈r, x̂〉
〈r, r〉

< 1/a2.

Finally, note that p = 〈r,x̂〉
‖r‖2 r if p0 ∈ R1 ∪ R5 ∪ R9, which

corresponds to the ‘otherwise’ case in (11), and that

Le(p, x̂) = Le

(
〈r, x̂〉
‖r‖2

r, x̂

)
= ‖x̂‖2 −

(
〈r, x̂〉
‖r‖

)2

.

In Fig. 2, we draw the three cases in (11), where the subset
{r/a |0 < a1 ≤ a ≤ a2 } is a line segment in the direction of
r. The circle points are the closest points on this line segment
to x̂.

Next, we consider the situation that a1 → 0 and a2 →
∞, i.e., the only knowledge on the gain a is that it is
a positive number, without further limitations. The subset
{r/a |a ∈ R, a > 0} is a ray from the origin in the direction
of r. In this case, it follows from the above that ML decoding
can be achieved by minimizing

La(r, x̂) =

{
‖x̂‖2 −

(
〈r,x̂〉
‖r‖

)2
if 〈r,x̂〉〈r,r〉 > 0,

‖x̂‖2 otherwise.
(12)

One reason for this choice is that it behaves well with respect
to an affine scaling function (a > 0), since

La(r, x̂) = La(r/a, x̂).

That is, scaling a vector r by a does not change the angle ϕ
between x̂ and r.
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Fig. 3. The distance of a candidate codeword x̂ to the line segment {r −
b1 |b1 ≤ b ≤ b2 }: two cases in (13), (a) r̄ − ¯̂x < b1 and (b) r̄ − ¯̂x > b2,
assuming b1 < 0 < b2.

B. Offset-Only Case

In the offset-only case, i.e., a = 1, we simply have

r = x + v + b1,

where the offset b is unknown to both sender and receiver.
In Theorem 1 of [13], the following ML criterion was

presented for the case that a = 1 and b1 ≤ b ≤ b2:

Lb1,b2(r, x̂) =

 Le(r− b11, x̂) if r̄− ¯̂x < b1,
Le(r− b21, x̂) if r̄− ¯̂x > b2,
Le(r− (r̄− ¯̂x)1, x̂) otherwise.

(13)
This result also follows from the general setting presented in
the previous section, by substituting a1 = a2 = 1. Note that
the first case in (13) corresponds to the situation that p0 ∈
R1 ∪ R2 ∪ R8, the second case to p0 ∈ R4 ∪ R5 ∪ R6, and
the last case to p0 ∈ R3 ∪R7 ∪R9.

We illustrate the first two situations of Lb1,b2(r, x̂) in Fig. 3
and the last one in Fig. 4, where {r − b1 |b1 ≤ b ≤ b2 } is
shown by a line segment passing through r with direction 1.
The point in {r−b1 |b1 ≤ b ≤ b2 } that is closest to x̂ is r−b11
or r−b21 for the situations in Fig. 3. For the ‘otherwise’ case
in (13), we consider in Fig. 4 the normalized vectors x̂− ¯̂x1
and r− r̄1 rather than x̂ and r.

By letting b1 → −∞ and b2 → ∞, we obtain from (13)
that the criterion

Lb(r, x̂) = Le(r− (r̄− ¯̂x)1, x̂)

=

n∑
i=1

(ri − x̂i + ¯̂x)
2 − nr̄2

= L′p(r, x̂)− nr̄2,

when there is no knowledge at all of the magnitude of the
offset [13]. Noting that the last term nr̄2 is irrelevant in the
minimization process, we conclude that the modified Pearson
criterion L′p(r, x̂) achieves ML decoding in this case.

C. Unbounded Scaling and Offset Case

In this subsection, an ML decoding criterion derived by
Blackburn [14] for the situation when both the scaling a and

o

r

x̂

ˆ ˆx x1

r r1

Fig. 4. The distance of a candidate codeword x̂ to the line segment {r −
b1 |b1 ≤ b ≤ b2 } for the ‘otherwise’ case in (13), assuming b1 < 0 < b2.

the offset b are unbounded (a1 → 0, a2 → ∞, b1 → −∞,
b2 → ∞) is reconsidered as a special case of the results
presented in Section III. In [14], Blackburn shows that an ML
decoder chooses a codeword x̂ minimizing

lr(x̂) =

{
σ2
x̂(1− ρ2r,x̂) when ρr,x̂ > 0,

σ2
x̂ otherwise.

(14)

His argument was that when the scaling factor a and the
offset term b are fully unknown, except for the sign of a,
then maximizing (7) is equivalent to minimizing the smallest
squared Euclidean distance from the codeword x̂ to the subset

U+ = {(r− b1)/a|a, b ∈ R, a > 0},

which is a half-subspace of U ′ ⊂ Rn. Note that when a1 → 0,
a2 → ∞, b1 → −∞, b2 → ∞, our U is indeed equal to
Blackburn’s set U+. Note that p0 = c0r + d01 is either in
R9 = U = U+ or in R7. By (5), c0 and d0 can be rewritten
as

c0 =
ρr,x̂σx̂
σr

(15)

and
d0 = ¯̂x− c0r̄. (16)

In case p0 ∈ R9, which happens if and only if ρr,x̂ > 0,
then Theorem 1 says p = p0 = c0r + d01. Note that

Le(c0r + d01, x̂)

=

n∑
i=1

[c0ri + d0 − x̂i]2

=

n∑
i=1

[
c0(ri − r̄)− (x̂i − ¯̂x)

]2
=

n∑
i=1

[
c20(ri − r̄)

2 − 2c0(ri − r̄)(x̂i − ¯̂x) + (x̂i − ¯̂x)
2
]

=c20σ
2
r − 2c0ρr,x̂σrσx̂ + σ2

x̂

=

(
ρr,x̂σx̂
σr

)2

σ2
r − 2

(
ρr,x̂σx̂
σr

)
ρr,x̂σx̂σr + σ2

x̂

=σ2
x̂(1− ρ2r,x̂),

which is indeed the same as in (14) when ρr,x̂ > 0.
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In case p0 ∈ R7, then Theorem 1 says p = ¯̂x1 since
a2 →∞. Hence,

Le(p, x̂) = Le(¯̂x1, x̂) = σ2
x̂.

This shows that Blackburn’s criterion (14) indeed appears as
a special case of our general setting.

D. Simulation Results

Thus far, we have discussed ML decoding for Gaussian
noise channels with scaling and offset mismatch, and have
mentioned that Euclidean distance decoding is ML decoding
for Gaussian noise channels in Section II, while the Pearson
distance criterion (4) is optimal for channels with scaling and
offset mismatch, due to its intrinsic immunity to both scaling
and offset mismatch.

Figure 5 shows simulation results of Pearson distance de-
coding, Euclidean distance decoding, and ML decoding (14)
when q = 4 and n = 8. The word error rate (WER) of
10,000 trials is shown as a function of the signal-to-noise
ratio (SNR = −20 log10 σ). Results are given for 2-constrained
codes [12], [15], while a = 1.07 and b = 0.07. The simula-
tions indicate that for this case Pearson distance decoding has
a comparable performance as ML decoding, while Euclidean
distance decoding performs considerably worse.

V. CONCLUSION

We have derived a maximum likelihood decoding criterion
for multi-level cell memories with Gaussian noise and scaling
and/or offset mismatch. In our channel model, scaling and
offset are restricted to certain ranges, 0 < a1 ≤ a ≤ a2 and
b1 ≤ b ≤ b2, which is a generalization of several prior art
settings. For instance, by letting a1 → 0, a2 → ∞, b1 →
−∞, b2 →∞, we obtain the same ML decoding criterion as
proposed by Blackburn for the case of unbounded gain and

offset. We also provided geometric interpretations illustrating
the main ideas.

Scaling and offset mismatch are important issues in multi-
level cell memories, but not the only ones. As future work,
one could try to derive ML decoding criteria for multi-level
cell memories for which the channel model includes dependent
noise and/or inter-cell interference as well.
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