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SUiaiARY 

A new method is developed for the analysis and 
integration of linear partial differential equations of two 
independent variables and of arbitrary order, 

.ji. _k -p k 

ksiO A=0 ax ÖY 

for given initial conditions. It is shown that this 
equation can be replaced by systems of equations of the 
form 

^^i "^^i 
+ G. = F.(x,y,f. jfg, ... , fin) , i = 1,2,... m 

^x ^y 

where the ^^= i(x,y) are the dependent variables. 
The expression on the left hand side represents the 
derivative of f j_ with respect to x along one of the 
characteristic curves of the system. Two methods of 
•integration which are based on this fact are put forward, 
a step-by-step method, and a method of successive approx
imation, A detailed convergence proof is given for the 
latter. It is suggested that the methods csm be adapted 
to numerical calculations. 

ms. 
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1, Introduction 

In the present paper, we shall be concerned with the 
integration of linear partial differential eqioations of two 
independent variables and of arbitrary order, viz,, 

n k /^K. 

k=0 <=0 '̂̂  9x^ ^dy"^ " 3y 

where x and y are the two independent variables, z is the 
dependent variable, n is a positive integer and the a, ĵ  and a^ 
are. functions of x and y, 

The parametric representation x = x(f), y = y(t) of the 
characteristic curves associated with (1) is given by the differential 
equation 

.(1) 

^nO 

4 
^n1 

f 
± 

\2 

f 

a ^ a 
n,n-1 nn 

= 0 

i.e., 
Ln-1 ,n-1 .n-1 

n̂O ̂  - ̂ n1 ̂  i + ... + (-1) â ^̂ _̂  n + (-1) a^x = 0 

(2) 

where x = -rr-, ^ = ̂  • Putting ^ =-t = Y, equation (2) may al£ Lso 
be wr i t ten as the ' cha rac t e r i s t i c eqioation' 

^nO"^ 
n 

*n1 y"-V *Hr^a„^^. ,Y.(- l ) -a^ = 0,..(3) 

The differential equation (1) is said to be hyperbolic in a 
given region of the (x,y) plane if the roots of (3) are all real and 
distinct for all points of the region. In the sequel, we shall be 
concerned exclusively with the hyperbolic case. The significance 
of the characteristic curves - which can be defined by various 
properties, e.g., as potential carriers of discontinuities of the 
n * derivatives - will appear clearly in the present analysis, 

Our main object will be the development of a new method 
for the integration of a hyperbolic equation of type (l) for given 
initial conditions. We shall confine ourselves to the standard 
case in which the function z and its first (n-1) derivatives 
with respect to x are given over a range of values of y 
for X = 0, For analytical coefficients and analytical initial 
conditions, the existence of a solution is ensured by the fundamental 

/theorem 
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theoreni of Cauchy-Kowalewski, However-, the reqviirement of ajialyticity is 
unnaturally stringent for problems of this t3rpe. More recently, 
work by K.Friedrichs and H.Lewy (ref.l) has established the 
existence and uniqueness of the solution under weaker conditions, 
(The paper referred to goes further than this as it deals with 
the general non-linear equation of two independent variables), 
F. Rellich (ref.2) has generalised Riemann's method to cope with 
essentially the same problem as considered in the present note, 
The case of constant coefficients had been treated earlier by 
G. Herglotz by a Fo\irier integral method (ref ,3). 

The present method establishes the existence and loniqueness 
of the solution under considerably less stringent conditions than 
postvilated hitherto. Also, it leads to procedures which, with some 
modifications, should be suitable for numerical purposes. It can 
moreover be adapted to deal with some cases - discontinuity of 
coefficients, etc., - virhich may be important for the applications 
but which are outside the scope of other methods. However, in the 
present paper we shall confine ourselves to the solution of the 
standard problem mentioned above. The central idea of the method 
first arose in connection with some work on stress propagation in 
beams (refs. 4, 5). 

To introduce this idea, we consider the case of a vibrating 
string which has inspired so many other theories of partial differential 
equations, 

h - ° ' T ^ = ° ('' 
dx o y 

with the initial conditions z = 0(y), = "Û y) for x = 0, 

In this equation, x denotes the time, y the coordinate 
parallel to the undisturbed string, and z its deflection. The 
coefficient ĉ  (c>0) which, in general, is a function of y, is 
given by the ratio of the tension in the string and of its linear 
density. \'/e shall make the conventional assumption that the string 
is infinite in both directions, 

Assume first that c is constant. Then the general 
soTi.iticn' of (3) is given by 

z = f(y -ex) + g(y + ex) (4) 

and the fvmctions f and g can be determined from the boundary 
conditions, 

However, we may proceed in a different manner which, though 
considerably more complicated in the present case, can be extended to 
the general problem (1) where a functional solution is no longer 
available. 

For this purpose we put 

f.(x,y) = -: c -r— 
' 9x oy 

^ / \ '̂  z ^ z 

.(5) 

/Then, 
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Then, by (3), 

^^ ^y (6) 

1. _ c -^-^ = O 
l)x 'By 

Eqviation (é) shows that f. and f^ are propagated along 
the string without distortion, with velocities c and -c respectively, 
f-|(x,y) = h.(y - ex), fp(x,y) = hg (y + ex), say. Ths initial conditions 
for f. ana f^ are obtained f rem the initial conditions for z, viz., 

f.(o,y) =</'(y) - c0'(y) 
^ (7) 

f2(o»y) =y'(y) + °^'(y) 

Hence 

f.(x,y) =U<y - ox) - c|2̂»(y - ex) 

^ ^ (e) 
^2^^»^) =V^y + ex) + cjZJ'(y + ex) 

Having determined f. (x,y) and f 2(x,y), we may now find 
z(x,y) by solving either of the two first order equations (5) for z. 
Now the solution of the eqxaation 

^ - o 42-= F(x,y) (9) 
ox ^y 

is 
X 

z(x,y) = z(0,y + ex) + T F ( f ,y + c(x -i ) 

4) 
)d^ (10) 

Hence, from the first of the two eqviations (5), we have, 
taking into accovint (8), 

X 

z(x,y) = j2f(y + ex) +/" j y ( y + c(x - § ) - c ^ ) - c0'(y + c(x -%) 

° - c i ) j d t 
X 

= 0(y + ex) + j r'y^(y + ex - 2c^)- e0'(y + ex - 2 c i ) J d J 

Substituting ii=:y + c x - c j a s variable of integration, 
we obtain 

y+ex 

z(x,y) = JZf(y + ex) + ^ [M7) " ^'{i!^^^ 
•J y -cx 

and so 
y+cx 

(x,y) = \ [0 (y + ex) + jZf(y - cx)j + \ J y.(^)d^ . . . . (11) 

/ i n „ . . . 



in agreement v;ith the v/ell known result obtained more directly by the 
use of (4), 

Assiane now that the density of the string is variable so 
that c is a function of y. Defining f^(x,y) and f2(x,y) 
^y (5) as before, we now have 

and similarly 

z 

Now 

and so 

^^2 -^^2 dc 9 
....̂  •" C ' ' r: -* o " ' •••*• 

t'fce -̂o 

$-S-tc^-^^) 
9^2 Q^2 1 dc 

- c 5 X dy 2 ̂y (̂ 1 - "2) 

(12) 

Now the left hand sides of (12) denote differentiation with respect to 
X along the characteristic curves of the equation (3), (y ± ex = const.)o 
Therefore the right hand sides of (12) measure the distortion of the 
"waves" f̂  and fp as they travel. They are the mathematical 
expression for the exchange of energy and momentijim between the two 
waves,T/hich is due to reflection, 

Having solved (12), we may then regard either of the two 
equations in (5) as an eqioation for z(x,y) and in this way determine 
the latter function. 

The fvmdamental idea of the present work is to reduce the 
general problem (I) to the consideration of a system of "waves" 
travelling at different speeds and continuously affecting each other 
in the course of their propagation. This idea will now be expressed 
in formal language, 

We have seen hov/ the integration of the eqviation of the 
vibrating string can be reduced to the successive solution of a 
system of two linear partial differential equations of the first 
order and of a single equation of the same type. It will be shown 
in section 2 of the present paper that the integration of a hyperbolic 
equation of type (I) can always be reduced to the successive integration 
of systems of linear eqiiations of the type 

- s f . - v f . 
ï i - i + o. 2 _ i = b f + b , 5 fp + , . . + b . f „ + b . , 
a •'•'*) i l l i ^ < i i m m l ' 

i = 1 , 2 , . , , . , m m ^ n . . ( 1 3 ) 

/v/here , , 
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where the coefficients e., b. and b., are functions of x and 
y which depend on the coefficients of the differential equation (l), 
but not on the initial conditions.v However, in the process of 
determining the coefficients b., , we shall have to find particular 
solutions of systems of partial differential equations of the more 
general type 

-̂ -̂  + c. — i = F.(x,y,f.,fp, ... , fm) , i = 1,2, ... , m ..(14) 
^ x "• 'ö y "• ^ '^ 

The central feature of both (13) and (14) is that their left 
hand sides represent the derivatives of the unknovm functions along the 
characteristic curves of the system, while the right hand sides only 
involve the unknown functions hut not their derivatives, A method of 
integration for systems of this type is developed in section 3. 

2, The replacement of an equation of order n by special systems 
of first order equations 

We proceed to establish a system of equations of type (13) 
which is related to the given differential equation 

n k ";»k 

k=0 ̂ =0 9x^~^'^y^ 

on the assumption that the roots of 

(3) 

are all real and distinct in a given region of the (x,y) plane» 
We may then assume that a - = 1, We shall suppose in the first 

instance only that the coefficients a-g and &Q possess continuous 
derivatives of the first order. Then the roots If^, k=1,2, ... 5k 
of (3) are continuous and distinct fvinetions of x and 7 i:i the 
region in question, 

It will be seen that the roots of the equation 

^"^ * ̂ nl^'"'' * "• * %n-l"^" * ̂ nn = ° 

are -Y, -X, ,.., -Y. We may therefore write 

"̂ ^ + â T̂"-̂  + ,,, + a^^^_^Y+ a ^ = 

= ̂ -^m)rY""'- -/"̂  "̂'-̂  - ^ 4-1)' - = 1,2, .. n 

where the coefficients SijT^' are functions of x and y, 

/Then ... 



Then 

(2. V ^N/3""^z (m) 9""^z (m) ^""""z 
U ^ ^ - ^ i b b c H - l * - 1 ^n-2^y *^2 a , n - ^ y 2 - ^ - - * 

n-1 ^yn-1 j 

-è^ ^ -B"z ^ "z -9"z 
^ -cbĉ  ^ ^ ^ x - ^ ^ y ' ' - 23^n .2^y2 ^ - * ^nn ^ ^ n ^ 

>(°l) o("aX ^^^-^z /^B^^ ^B.^'^X -^^"''z ^^1 Ŷ ^^ I ^ 
^ x * ""^y / 9x^-2 ̂ y " \ ' 9 x "'"^ -èyjW^^ 

(m) (m). 
/ 3 < - ^ '?)V ^ ^ - ' ' z (16), 

+ . . . +1 +Y„ ' 
l^x 

'?) V l \ ^ - ^ z 
^ y / %^"' ' 

Hence, putting 
,n-1 / \ --^n-1 / \ r\n-1 

m̂  ^^n-1 1 9^n-2^y n-1 ^ ^n-l > 

m = 1,2, , . . ,m (17) 

we obtain from (1) 

-\ z -̂ z n-1 k /^ k 
o m -v̂  ^ m x~ <^ g z 

+ I + *n, ~ r ƒ "^Tö + , , . + f-~ + Y_ —:sr 
\ 9 x "̂  'Sy /^x^-^-Sy \ ^ y "̂  • S)y • 

^n-1 
;:^—4^m 1, 2, . . , , n (18) 
^y 

We now define functions f (x,y), m = 1, 2, ,,, , n, by 

"""^ ^' (m) ^^z (19) f Jx,y) = zjx,y) . X Z: bW ^'^^j 
"̂  "" k=OJ?=o ^ ^x^^^y^ 

where the coefficients t^' = b/'v (x,y) will be determined presently, 

/Prcm 



From (17) and (19) 

f (X,y) = JL^ ^ M ^ z > ) 2 ^ 

n-2 k /• '̂  'S ̂  

k=0 J?=0 ^^ Q x^^^y^ 

....(20) 

or 
^^"^z (m) ̂ "-^z (m)?^-''z ^ , >, 

r- + a) i5— + ... + a^ ; r = f (x,y) 

n-2 k / V -^k 

m = 1,2, .,,, n ....(21) 

It will be shown below that the detenninant of (20), looked 
upon as a system of equations for the derivatives 

-a n-1 ' ^ n-2-v > ••• » _ n-1 ' 
ax ox oy oy 

does not vanish. Writing [c. T for the inverse of the matrix 

C â "*) â "*) a ^ ^ n m - 1 2 n 
11,a. , aA » . . . « n—1 I * m - '»^» . • . , " > 

we t h e n have 

'C>^-^. ^ / , . ^ 2 k , . - ^ k 

r̂̂ uTT = i : -im fy-'^) - K J^.^t) ^x^-''-^9y^ 5ri ^ l " ^ ' " - Q)>?;Ö "̂  ^ x ^ ' V 

i = 0 , 1 , . . . , n-1 (22), 

A l s o , from (18) 

^ z "^.a n -2 k "^k 
*_Ea Y 'P 'ST' "ST" z 

^x ""3y '^°' fio è ^^'3x'=-Sy' 
n-1 

rT;V -^ •*• *m --, " n - 1 , i K h - l - K i = 0 N c / x (?y * / <i>x rJ 1 
y 
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where TTD define the functions a!;™'(x,y) which occur here for the 

first time for convenience by a(ni)(x,y) = 0, 

Replacing the derivatives 
-̂ n-l 
0 z 

expressions given in (22), 
-s n-1 - i -̂  i 
i)x dy 

i n (23) by the 

3x 
+ Y 

9z 
n-2 k 

?^ - , T T 1>K 
m ^ - ^ " k=0 i=0 \± -5 k - i ' ^ i O y dx cfy 

A / (m) 

•f II m fai«iii I /*>«,. 

i=0 p=0 \ <3> X 
'^- ^"'vi,ij°ipiy-'=^) 
nz2 k , •>. 

k=0 1=0 ^^ ^x^y^l 
.(24) 

Now, from ( 1 9 ) , 

9 f -Df cXz„ 
~ Y '̂  n̂  'Y' ""̂  

m '^y 9x °» ^. 
^ \ 

c>x dy i 

"^k 

7)^^^z 
+ b, (m) ^ " ^ _ 1 _ 1 _ J \ 

S*̂ „ ^ 2 . ^ ^ 

""Bx '«3y ^=0^=° LWx f ö-^k^ •T_ .^^" / 
m 

Pk-1,J?-*'Xn V i , 4 - i ; .(25) 

where we have pu t h^ i t, = h i » = U/ / . = 0 , m = 1, 2 , . . . , n 
-1,JL n-1 ,A k,k+1 ' 

k = 0,1, ,.., n - 1, Jl= 1,2, ,,',., n - 1, for convenience, 

/Substituting,,,„ 
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Substituting the value of the derivatives 

i = 0,1,«.., n-1, from (22), we obtain 

Q"-̂ z 
^ ^ n - 1 - i v . i V 

"^f 9 f 3z -^z n-2 k 

9 x ^ '^y O x ° ^ 3 y k=0 i=0 

k i " k i ./x.(m) ryM m) V 
-1,i-lj 

9 k 

9 x ^ - i ^ y 

n;1 k / (m) (ni) v . 

I - S p l l - ^ , ! ^\b^_2,i-l)°ipf 
f - ^ ' ^ b ( P ) ^ \ ^ 
P k=o4^ ^ ^ 5 ? ^ 7 

(26) 

3\ 3 \ 
Again, substituting the expressions for +Y 

given by (24), we have after some modification;, ^ 

as 

n-1 k 

n-2 k r.^M -v>,(m), 

x̂ "̂  5y M -̂̂ ' 

^ a ^ ) ^ a ^ - ) 

i - \ \ . :-i ,i-i y®ki 

Dk 

9x " 9y 
n - 1 K_ / f \ / \ <3a. 

Jn 'h^ 

i>-2 

V l , i ) ° ip |^p "" k=0 ^ "kl?' -)^k--^ ^ y l 
>(PJ - - 2 i 

) 

k rn-1 i^) •9af" )̂ aa^) 

pSi ^i=e V * * 3 x a y * / ^ 

^ - 2 ^ , ^ ^^ 9 ^ ^ ^ nt-2 k n 

k=0 /=0 \ a m -N X c/y 

n-1 n 

•f̂ -ljt% ^èl.̂ .;) - M 

n-1 n / / \ / \ c) a. ' H a. ' s, 

" 1 pit-^.i *\ ̂ lii.i - ̂  ->-« ̂  - VIA) 

c, b. (P) ^K 1 — '^^ J ^ ? ^ .(27) 

way 

It follows that if we define the fvmctions b, .' in such a 
r-jkg ki 

that the coefficients of ' V^jL—ó" ^^ (27) all vanish, then (27) 
becomes ^ 

A... (28) 



•v^ere 

- 1 1 -

^^m ^^m 
— + 7 n , ~ = b^1 1̂ + V ^2 + ••• +^mn^n*^0' "̂  = 1,2,...,n,. 

o(28) 

V<-.̂ ' = Sö (^i-li *r, >U-i * - ^ * .̂ ^ - Vi,i>«c 
niyk = 1,2, , , , ,n k ,-. . , . , . .^29J 

The system of equations (28) will be called the resolvent of (l). 
It is of the type of equation (13) quoted in the introduction. 

Referring to (27), we see that the condition that all the 
^ k 
* z 

terms involving ,_fl „ vanish v/ill be satisfied if the functions 

(m) ^ ^ ~'^y 
k̂J? > ni = ''>2,,.,,n, k = 0,1,,,, n - 2 , A = 0,..,,,k, are solutions' of 'ki 

the system of partial differential eqxaations 

ÈL Y ^ k/ r, (ra) ^ , (m) ^ 
^ *^m -^97 = \A "l̂ k-1,̂  -̂ ^ ̂k-1,i?-1 ) Qx "̂  9 y 

^ 1 —> (m) ,.-« (m) 
nd k X / V , > -̂  a^ ^ 3 a^ ̂  

\ n-i:,i "m n-^,1-1 L=ü p=l ^P^ " '^ "̂  n-^,1-1 ^ ^ "̂  'Sy 

- V i , i ) ^ ' ••(3°) 

with b_. Q = b_. _. ~ ̂ 0 -1 ~ ̂ » ̂ ^ definition, 

(30) will be called the auxiliary system. It will be seen 
that the expressions on its right hand side are quadratic functions of 
the dependent variables: it therefore constitutes a system of the type 
of (14). The number of equations in (30) is ^^(•n.-^), 

Ass-ume now that the values of z and of its first (n-l) 
derivatives with respect to x are specified for a range of values of 
y, for X = 0, 

where g.(y), i=0, ,,,, n-1 can be differentiated n-i-1 times with 

respect to y. Having solved (30) for arbitrary but sufficiently 
regular initial conditions (see section 3, below), we can then 
obtain the initial conditions for the fvinctions f (x,y) from (20) and 
(31), 

Wn ^ W ^ (m)lfn-2 ,.(m)^^-^gO 2"^ Z I ^W 
f^(o,y) = g^^^(y) + â^ - - — ^'"-^U -ri^ + é ö é ö ^ 

a y oy 

9^V ..„\ (32) 

"̂  /Having , 0. =.. 
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Having solved (28) for these initial conditions, we may then 
look upon anyone of the equations (20) as a linear partial differential 
equation of order (n-l) for z. All these equations are of hyperbolic 
type3 the roots of their chajracteristic equations consisting of (n-l) 
of the n roots of (3), By the successive application of this 
procediore, vre finally obtain a first order equation for z, which is 
itself an example of (13), 

It only remains for us to show that the determinant of (21), 

D = 

1 a (1) J1) 
••• Vi 

1 a (n) (n) 
1 , a •n-1 

.(33) 

does not vanish in the region under consideration, 

We write S^(x^, Xg,..., x̂ "̂̂  , S^ ^x^ , Xg,,.., x^^ ,. 

^m (̂ 1* ^2»***»^ ) 

for the fundamental symmetrical functions of a set of variables 
x̂ > X2J..., x^, 

^1(^1^ X2,.,., x^ = ^ i , Sg (x^, X2,...,Xjjĵ = Z ^ x^Xj^,,,., 

^m C^1*^2»'»**^m ; ~ ̂ 1^2** ̂i 

The determinant D can then be expressed as 

m 

(34) 

D = 

i S^(y2'^»****\) ̂ 2(?2»^'*"»^n^ ••• \-l(^2'^»"*»^) 

1 -̂j(̂ i » X » " * » ^ ^2Q^*^***'*n) "* ^n-lC'l*^***** nj 

1 S^^y^,Y2'^-*-»Xi-l)H^*^2"--»^-l)., S^_^(J,,2«^,...,^_^^ 

Now (35) 

l̂(5l'̂ '"*'*̂ n') ' ̂1 (^2*^**"*K) 

2̂ vl*^'"*'^^ " ̂ 2 {'*2*̂ **** * n\ 

= ̂ i -^2 

= (5-^2) S-,(^3,...,V„-) 

Vl(^1'^---\) - VlO'^—^n) = (̂ r̂ ) V25'-^n) 

/eontd, over,,, 
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Sl(̂ 1'̂ -->;-lVŝ 5'̂ 3'-'<̂  = ̂ -^n 

S2(5'^—^-lV %f2»t—1)=« -\) 1̂ C^ —^n-l) 

« 

O 

Vi(X» '̂*--»\-iy2n-iQ2'" '̂-*'»Xil =(^rWn-2(^„..,r_^'^ 

•Oe) 

Hence, subtracting the first row in (35) from the second,,.,, 
n row, we obtain 

D = 1 S^(^»^»"'»^) ^202»^»-"»Xi) •••• Vl(^'^»"*'^) 

^ (S -^2) (^r^)Si5—-^n),..(>:;-^)s^_25'—Xa) 

Cl -^) (̂ "̂ )Sl 0̂2» • • •»Vl"). (V^nyn-2 ̂ 2'''' '̂ n-j 

=(ri ~>2)C>?-^3V-(^"M C ^ ' " 

1̂ (^2*-" 

'^) ••• \-2('*^»**-'^) 

'^-1) ^n-2(^2*"'*X-^) 

..(37) 

/Regarding ,,0. 
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Regarding D as a function of the variables YjK,...,V", 

D = D^(y ,Y ».. .,V \f we see that (37) becomes 

^n(>^'^—^n^ =(̂ 1 -^2)Q; -̂ 3) - C ^ -̂ n) V l ( ^ 2 — ^ 

(38) 

Also Dg (Y^^^ ,r^ =. Ĵ _̂  -y^. Hence finally 

^n,(̂ '̂ 2 nn = J j ; ei->kl .(39) 

2 
This shows that D is simply the discriminajit of the characteristic 
eqiiation. Since T". / X for i / k, D / 0 as asserted, 

3. Integration 

We shall now discuss the integration of the system of 
eqimtions 

9fj_ ^^i 
—=• + ĉ  —i = F̂  rx,y,f,,f2,...,f > , i = 1,2,,,,,m ,.,.(14) 
«* X ay 

for given initial conditions 

fl(0,y) = h^(y), f2(0,y) = h2(y),,,., f^(0,y) = hjy) (40) 

It v/ill be assumed throughout that the c. = c.(x,y) possess 
first derivatives in the region under consideration. Other conditions 
will be laid down in the course of the ajialysis. With each one of the 
equations in (14), we associate a one-parametric family of characteristic 
curves y = 0. (x) given by 

^ = c (c,y) i = 1,2,,.,,m (41). 
dx 

We denote differentiation along a characteristic curve y = 0.(x) 

by _i , so that for any arbitrary function f(x,y), if is defined by 

D 
'^ ^ix 

V^'^'y^ lim ^̂ ''+̂ » iẐ i(x+h)) - f(x,iZl.(x)) 

- — 1,̂ 0 — ;; ' y = ̂ i(^) 
^ix ^ 

.(42) 
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\7henever that l imi t e x i s t s . Thus, i f f possesses continuous f i r s t 
derivatives-, 

— ~ = -5~' + ™ — — f (^. I A • y ; 

D.x ^ ^ cLx9y 3^ ^ ' '"'-^y 

1 ^ f dX ' i^ f '^f -^f (43) 
-— + - — - - = — + c. (x ,y) •— ^^^^ 

Equations (14) can now be written as * 

D̂ .f. 

-'-- = Pi (x,y,f.,f2,...,ftn), i = 1,2,._,m ..,......,....(44) 
D.x ^ ^ ^ 
1 

Integrating between two values x' and x" along a 
characteristic curve 0.(x), we obtain 

f̂ (.x%j:J.(x")) - fi(x',)2f̂ (x')) 

= l'"̂ i r^'^i(!)'M^^i^^O'—^mO''^i(^))) ̂ ! 

(45) 

In particular, taking x' = 0 and writing x for x", we 
have 

f. (x,;:).(x)) = f. (o,iZf.(o)) 

\ (!,0i(̂),f̂  (ï,i2^i(5)),...,f,(f,jzJi(!))) dH 
X 

0 

i = 1,2,,..,m (46) 

where 0. is any particular chaxacteristic curve which meets the y 

axis at some point of the region under consideration, 

Eq-jations (46) suggest a method of successive approximation 
by which the functions f. (x,y) can be determined for given initial valxoes, 

The functions f_.̂ (x,y)j i = 1,2,,,,,m are first defined by 

f ,,,,, ^^Q(x,y> = h., (̂ .,(0)) , f^^^ix^y) = h2 (iZf2(0)j 

where the characteristic curves in question pass through the point 
(x,y), y = 0^{x) = 0^(x) = .,, =:jZijj(x). 

/The 

file:///7henever
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The functions f^ (x,y), i = 1 ,2,,,.,m, /*•? 1 are then determined 

successively by 

v-Xï-^i^))) *^- - (w) 
where the characteristic curves are chosen as above, 

A set of conditions under which .the functions f. (x,y) can 

be constructed such that the limits f.(x,y) s lim f. .ix,y) exist 

and form a solution of (14) for the initial values (40), will now be 

given, 

It will be assvimed that the functions c.(x,y) are defined 

%nd differentiablewith respect to x and y in a closed region R in 

the right half of the (x,y) plane (xjO), The region R will be 

supposed to include an interval <a, b> of the y-axis as part of its 

boundary, such that the functions h.(y) are defined and continuous 

in that interval. It will be assumed further that the functions 

F.^x,y,H, ,,..,^i^ are continuous functions of x,y,}-î. j'̂ g».'• J \ 

for all (x,y) in R and for all u. such that there exists a y , 

a 5 y^b for which 

\ \ - \(y){^q (49) 

where q is a positive constant. For all such x,y and u. the 

fvinctions F. will be supposed to satisfy Lipschitz conditions with 

constants N., Ng,..., N , viz., 

|F.(x,y ,u',u^,...,u^^-F. (x,y,u^,v;2'--»^m')l 

< N., ̂  ŷ ,̂- û  I + Ngl ̂ ^ - ̂ 1 +...+ 

\ \ m̂ " ^ml i = 1,2,..,pm (50) 

where the (x,y) are in R, and the u. and u! satisfy (49). 

Since the h.(y) are continuous, it follows that the set 

S of points /x,y,u^,U2,...,u^\ in X̂jyj.-Û .jUg,... jU^"^ space such 

that x,y is in R while the u. satisfy (49) ? is closed, 

The F. being continuous in this set are therefore bounded in it: 

there exists a constant M such that 

JO. (F^^x,y,u^,U2,,,.Uj^^ |<M , i = 1,2,,,,,i 

(x,y,.u^,.U2»...»u^) in S (51) 

/Let ,,, 
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Let R' be the set of points X-,y-. in R which are such 

that every continuous curve y = jZJ(x), x^x-, 0Cx.ryi = yQ» which consists 

of a finite number of segments of characteristic curves 0-ix) in R, 

can reach the boundary of R only on<a,b> (except possibly also in 

(x-Qtyr^)» This condition will be satisfied by all points /XQjyQN, 

XQ>0 which are sufficiently close to any given interior point of 

<̂ a,b > • In the case of equations (28) and (30) it simply means 

that if we draw the characteristic c\arves of greatest and least slopes 

through (^o*yr)) "they will meet the boundary of R in the interval 

<a,b> . 

Let d = V M , and let R" be the subset of points (x,y) of 

R such that x A d. We denote by S" the set of points /"xjy.u „up.•,...,vA 

in S such that (x,y) is in R" while the u. satisfy (49). 

We shall show that under the stated conditions the construction 

(48) can be carried on indefinitely for all points in R". In fact, 

for all points in S", |F. \<M and so, by (48), 

\ f^ (x,y) - ĥ  (̂ i(O)) I < Md = q , y = ̂.(x) , i = 1,2,..,,m 

(52) 

It follows that whenever (x,y) is in R", (^>yf^Ai»^2i^"'^m^) 

is in S" since the u. = f. . satisfy (49). We then deduce in the 

same way that j f.2 (x,y) - h. (0.{O)M < q for all points in R" , etc, 

This shows that the fact that i^*y»^AiK»^2M."*^mix) ^^ ^" ^" ^^P^^^^ 

that (x,y,f^^^_^^, f 2 ^ ^ ^,...,f^^^^^;) also is in S", and hence 

that the construction can be continued indefinitely, 

Nov/we have, for all (x,y) in R", 

<Mx i = 1,2,,,.,m (53) 

Also, 

I^i2-^ii i=1/^\{ïA(^)>^u{^,i^i(!)) -') -^iöA(r)>^io 

^ (N., +N2+...+ N^>^M r id|=I.iN I 

Jo 
(54) 

/where .,,., 
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where N = N. + No +,,,+N , 1 z m 

Similarly, 

|f^, ~ ̂ 12! ̂  ^ ̂ ^ " ^ ^° ^ points in R" 

and, in general, 

I 1,^1 i,/^| $ (̂ ^ ^ j , ^ ^ ^̂ , 

/^= 0,1,2,..,, (55) 

Since the series 
d^ 2 d^ U fl/^+'' 

^ -̂ (r-^Di 
converges, it follows that the series 

+ (^i'i3(x,y) - fi2(^»y^) + • . * 

i = 1,2,,,.,m (56) 

are xoniformly convergent in R", Call ing the l imi t s f , ( x , y ) , we then 

have, taking in to accoimt (48) , 

^x 
f • 

1 
•/ (J 

i = 1 ,2 , . . , ,m, where j^^(x) = y . . , ( 57 ) 

(57) in turn implies 

D.f. 
-i-i = F^^x,y,f^(x,y),.,.,fj^(x,y)j i = 1,2,..,,m, (58) 
1 

everywhere in R", and 

f^(0,y) = h.(y), i = 1,2,.,,,m (59)^ 

/The,,,, 
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The above procedure has been developed in close analogy with 

Picard's method for the construction of the solution of a system of 

ordinary differential equations by successive approximation (ref.6), 

.Ey applying Lindelof's modification of Picard's method, we can show 

that the region R" may be replaced by an alternative region Rll in 

the above demonstration. To define this region, let MQ be the 

maximtim of the functions h; (y) in <a,b> • Evidently, M̂ . also 

is the maximum of the functions f.«(x,y) in R', We may then show 

successively, by a method similar to that a.dopocd earlier, that 

I V " îo! < MQX + MQN % + ,„ + MQ N^ ^^^ + ,„ 
(/̂ + l)i 

or MQ 
|f^ ~ f^QJ< — (exp Nx-1) i = 1,2,,..,m , / A = 1,2j... 

^ (60) 

Hence, so long as 

MQ 

— (exp Nx-l)j<;q 
N 

i.e., so long as 

1 -,.. /. . m\ (61) 
^ N ^°S M) 

we may cari-y on the construction given by (48) indefinitely, and then 

continue the argument as before. We define the region RQ as the 

set of all points in R' whose abscissae satisfy (6l), 

If the functions F.(x,y,u.,u„,,.. .u ) are polynomials 

of u. ,Up,.^.pU ¥d.th coefficients depending on x and y, then the 

constant q cô--. be taken to be arbitrarily large, so that (6l) does not 

impose any effective condition at all. In that case then, Rli = R'» 

^i^i We still have to consider whether in (58) can be 
^ .̂  '^fi , ^ 9fi D,x 

replaced by —-• + c, (x,y; -~- • x 
"3 X Wy 

This is certainly not necesssirily the case under the assumptions made 

so far. In fact, until now we have only ass\mied the ^̂4 (y) 'to be 

continuous J and even that assumption might have been relaxed still 

further without affecting the preceding developments in any essential 

way. However, in order to be able to replace 
D.f. ^ f . r^f. 1 1 , o> 1 / \V 1 by + e^(x,y) 
D.x Q x "Oy 

we require a set of more stringent conditions, 

/Accordinglyc.. 
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Accordingly, we shall assume that the functions h.(y) have 

continuous first derivatives in <a,b> , and also that the derivatives 
)F̂  -SF̂  -aF̂  'OF •'̂  "R ^ "P 
i i i i, k = 1,2,,,,,m exist and axe continuous in S 

Fixing our attention on a specific value of X,XQ, we may 

regard the functions y = 0.(x) passing through points XQ,yQ in R' . 

as functions of yg, 

y = ̂i(x»yo) satisfies yQ = 0^ (XoJyô j i = 1,2,,i,m 

(62) 

It then follows from known resxalts on ordinary differential 

equations that 0. is a differentiable function of y« for all 

0$ X $XQ and that the derivative is a continuous function of y^. 

To proceed, we reqxiire the following lemma, 

Let a set of functions g. J[x,y), i = 1,2,,,,,m, = 1,2,,,, be 

defined by 

and by 

Sl,o(^*y) = Pl(x,y) k..j(jZJ.,(x)̂ ,,,,, g.,̂ (x,y) = Pin(x,y)kjjj(jZî (x)̂  

(63) 

ĝ (̂x,y) =p,(x,y) k̂ (0̂ (x)) *fo^h0S)s gv^-1 (?A(t))-

for , where y s jZf.(x), (64) 

The functions 0-ix) ax-e supposed to be defined in a region R, as before, 

The ftmctions p.(x,y) are supposed to be continuous in R while the 

h.(x,y) Eire continuovis in<a,b'^ which forms part of the boundary of 

R, The functions G. /'xjyjU. ,.Up,, ,,,.u \ are supposed to be continuous 

in a region S defined with the aid of condition (49) as before, 

they are supposed to be uniformly convergent in that region, 

l ^ ^ h ^ h (x,y,u.̂ ,U2,...,u.̂  ) , say, 
jt/,-^» 

•{^5) 

and they are supposed to satisfy in S Lipschitz conditions with 

constants.which are independent of the second suffices, 

\^yJ;'^*''\*''2*"'K) " V('''̂ ''̂ 1*'*2'*••»%)! 

< N., /ujj - u.̂  I + N2 14 - U.2 (+...+ \ Y l - ̂ml 

(66), 

/It 
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It follows from the continuity and uniform convergence of the 

G. . in S that these functions are also uniformly bounded in S, 

We define the subregion of R, R', which depends only on the characteristic 

curves jZf. (x), in the same way as before, 

The required lemma then states that the functions ĝ/-*-

converge uniformly in a subregion R" of R', lim g. (x,y) = g.(x,y) 

say, where R" is defined after the manner of R" or, alternatively, 

of Rll, If the G. ĵ  are all polynomials of the variables u, R'! ..may 

be taken to coincide with R', 

The proof of the lemma is on the lines of the convergence proof 

for the functions f. ., 

Ccming back to the main problem, we shall show that the 

functions f. (x,y) defined by the procedure of (48) are differentiable 

rith respect to y in R" (or R Q ) , In fact, we have from (47) 

?^i,oC^O»yo) o . /̂  / A .. /̂  . x/^^i 

.((•1). 

Assume that we have already established differentiability with 

respect to y for all the functions f with second suffices /x.- 1, 

Then the derivative with respect to y of the integral in (48) exists 

and is continuous 

• ^ J^ Jfx ^^Iflléizi ̂  ... .,'Üi "̂ B̂ia-i ...(68) 
'3yo '^y "^y^ '̂ î "^yo B^m "^^o 

Hence 
X 

^ yQ i^yQ Jo ^ ^ 0 

We now look upon the right hand side of (68) as a linear 
/—J f • « . i A 

function of variables u, = -̂  -^^"^ vdth coefficients which are 

^ y« 0 

known functions of x and y, 

G -^-i._i + _ i u, + ,,. + - ^ u^ (70 
^^ B y ^yQ ^u^ ^ -^u^ ^ 

/where,,.., 



-22-

where & j ^ = ̂ i^(^»y»^1 •" * *'^^ <̂ epends on ̂  because it involves 

the functions f.» ^ , regarded however as known functions of x and 

y in R", We also put ^fi_ = p^ (xQ,yQ^ , i = 1,2,...,m and 

c)yo 

^l (y) = k^(y)» Then (67) is transformed into 

g.Q (x,y) = P. (x,y) k.. (̂ .̂ (0)) , ,.. .....(71) 

writing x,y for x^fyQ , Also, (69) now bucomes 

gl̂ (x,y) =P,fcy) \(%(0)) */V(?'^i(5), Si.^.,a.Oi(!)> 

(71) and (72) therefore are of the form of equations (63) and 

(64), In order to apply the lemma, we only have to verify that the 

requisite conditions are satisfied by the functions involved in (71) 

and (72)0 In particular, v/e see that the functions G. ^j^ are 

(inhomogeneous) linear functions of the u, 

(i) (i) (i) (i) 
^i = Po/i-^ P i / 1̂ + P2/. ^2 + ••• •*• Pm/. ^m 

.(73) 

where the functions p/. ^ are continuous in R" and are uniformly 

bounded in that region (since the f • ̂ ^ all satisfy (49)). It follows 

that there exist positive quantities P, such that 

[p^^j<Pk in R" i,k = 1,2,..,,m , ^ = 1,2,3,... 

...».eo.ocio..ocu..\^ (H-J 

This in turn implies that the Qr.^^ satisfy a Lipschitz 

condition with constants v/hich are independent of y»x , 

< P ^ (u' - u^{ +P2 |u^ - U2|+c.,+ 

^ml^m"'^ml '•«•-• ••(~5). 

/ J^y^ o o C' • c o o 
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By (61), vre may then take R" as the R" of the lemma, 

i,e,, in R" the functions g^J^x,y))converge uniformly towards 

limits g. (x,y). Thus, the functions '̂  ̂i/-*- converge uniformly 

'^y 

in R", and this implies that the f.(x,y) are differentiable with 

respect to y in R", the value of the derivatives being gj(x,y), 

Moreover, these derivatives are continuous functions of x and y, 

if-
Next, we shall show that —-^ exists in R", i = 1,2,,..,m, 

'dx 

For this purpose, consider the differences f"-(XQ + n. y^) - f./xQ,yQ^ 

at some specific point (xQ,yQ\ in R", Let (xQ,y^ be the point at 

which the characteristic curve 0. (x) through /'x̂-. + Ĵjyf-.'N meets the 

straight line x = x,,. Then 

^ i ( -o + ^' ^o) - ^±(^o'^o) = ^ i (^0 + ^»yo) - ^1 (fo'y(?) 

+ f. (xQ,y,) - f. (x^.y^^ 

D.f. 
1 1 Now by the cean value theorem, f. /XQ + h,yQ\ - f. (xQ,y,S = h — 

at some intermediate point of the characteristic curve in question, 

whose abscissa is _̂  , say. Also f^ (̂ 0'"̂ l) " "̂i C"̂ 0*-̂ o) ~ 

y-i - yr. '1 -0 9 

where 7) is a point between y„ and y., Hence 

f.(xQf h,yQ)-f.^xQ,yQ) D.f.(x ,ĝ .(x)) ŷ  - yQ fiCxo,y) 
— ~ — — ~ — — — — — — ~ * = — — — — — — — + •—-^—^— 

h D.x x=? h '^ y y=1 
y ^ - y o ^ i ^̂ ^̂  

But as h tends to 0, tends to = - c. (Xp.,y^\ , 
D.f. h dx 1 V o u/ 

and so, since -̂  ; is continuous along each characteristic, and 
^^i '̂' is a continuous function of y, the limit of the expression on 

9y 

the left hand side of (76) exists, eind equals 

^f. D.f. -^f. 

V = r^ - °i '"'̂ 1̂̂  '̂'' 
ax D.x '^y 
i i ^ ± / \^ 1 

This proves that can indeed be replaced by + c. (x,y; -|— 
D.x "Bx oy 

in (58), showing that the f.(x,y) represent a solution of (I4) in R". 

/Finally 
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Finally, we shall establish the uniqueness of the solution 

obtained in this way. Referring to the constants N.,N2,...,N 

in (50), we divide the half-plane x>0 into strips of width 1__ , 

where N = N. + Ng +,..+N , by means of the straight lines 

X = — , n = 0,1,2,,.. This also divides R" into a number of 
2N 

1 1 2 
closed regions R^, Rg,,., corresponding to 0^x<'^, ^ x ^ , etc. 

We are going to shovr, successively, that the solution is unique in 

every one of the regions R.. 

Assvme that there exist two sets of solutions of (14) for 

the given initial conditions, f. and f.", say, and that at least 

one f^ differs from f! in R., Let e be the greatest maximum 

attained by the differences f, - f! in R", and assume that this 

maximum is attained for a value x = x-.. Then 

'̂ O 

-p(i,j2j.(^),f»,f',. .„f^)]dS| 

^1 TN^ max |f^ - f» j + Ng max ] f2 " ̂ 2 1 ^"'* 

\ ^- l̂ m-̂ î iŷ  (78) 

where 'max' denotes maximum values in R^, Hence 

1*1 - ''ii i j " " ("1 * "2 ---^y-iï = "ï^o?^=I 
.(79) 

This is contrary to assumption, and it follows that the functions f. and 

f.' are identical in R., In a similar way we show that they are 

identical in R2,..,,etc,, and so in the entire region R", 

This completes our proof of the existence and uniqueness of the 

solution of (14) for given initial conditions (40), 

In addition to giving rise to a method of successive 

approximation, equations (44) also suggest a step-by-step method of 

integration, by which the functions f.(x,y) are determined approximately 

for X +^x and for all y if they are knovm for x and for all y, 

The formulae of regression are 

f^ (x + <fx,y) = f^(x,y - e^f x) + F^ ix, 

/However <><.»... 
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However, in this form the method is not as yet very suitable 

for numerical v/ork, since the formulae of regression require a knovdedge 

of f.(x,y) for arbitrary values of y, whereas in practice it will 

be knovm only at a number of isolated points. Hence, in general, an 

additional operation of intesrpolaticnwill be required at each step, 

The convergence of this process is a matter for further investigation, 

Ccming back to the solution of (l) through the intermediary of 

the resolvent (28) and of the auxiliary system (30), it vnll be seen 

that (30) satisfies the conditions of section 3, provided the coefficients 

a *, A= 1,2;,,,jn and a n possess continuous eeaond derivatives with 

respect to both independent variables, while the other a, » possess at 

least continuous first derivatives. Under these circumstances, we only 

have to choose the initial values for the hSJ in such a way that they 

have continuous derivatives in <a,b> , One possible choice is bĴ ^ (0,y) 

- 0 identically, but this is not the most skilful choice in all 

cases. However, if these conditions are satisfied in a region R as 

above, then the ^t-J also have first derivatives in the corresponding 

sub-region of • R, R', This in turn implies that the resolvent (28) also 

satisfies the conditions of section 3» provided (cf, (32)) the functions 

g n(y) possess continuous derivatives of order", ? = 1,2,...,n, 

Finally, in that case, equations (20) regarded as equations for z, also 

satisfy corresponding conditions, so that the reduction of (I) can be 

continued to the end, 

In conclusion, it may be said that the methods outlined in the 

present paper appear to have distinct prospects for numerical application, 

Their main advantage is that since integration is carried out along the 

characteristic curves, there is no possibility of a failure, such as may 

ccciar in the application of some lattice methods (see refs» 7>8), On 

the other hand the total number of integrations required for the solution 

of an equation of fairly high order is very large. However, even in 

these cases the procedure may still form a suitable basis for work on a 

modern calculating machine, 



26-

LIST OF REFERENCES 

Author Title, etc. 

K, Friedrichs 
and H. Lewy 

Das Anfangswertproblera einer beliebigen 
nichtlinearen hyperbolischen 
Differenzialgleichung, etc, 

Math.Ann. vol. 99, 1928. 

F, Rellich Verallgemeinerung der Riemannschen 
Integrationsmethode, etc. 

Math.Ann. vol,103, 1930. 

G, Herglotz Über die Integration linearer partieller 
Differensial gleichungen, etc.; 
I, II, III, Ber. S'̂ chs. Akad., 1926,1928. 

A, Robinson Shock transmission in beams< 

R.A.E. report no. S.M.E.3319,1945. 
To be published as part of Reports and 
Memoranda of the Aeronautical Research 
Council, No.2265. 

A. Robinson Shock transmission in beams of variable 
characteristics a 

R.A.E. report no, S.M.E. 3340,1945» 
To .be published together with ref, 4« 

E. Picard Traite d'analyse. 2nd ed, vol„ II, 1904. 

R. Courant, 
K, Friedrichs 
and H. Lewy 

Über die partiellen Differenzen-
gleichittigen der mathematischen Physik» 

Math.Ann, vol,100, 1928, 

L. Collatz Uber'das Differenzenverfahren bei 
Angangswcrtproblemen partieller 
Differenzialgleichungeno 

Z.A.M,M., vol,16, 1936, 


