
State Migration in
Stream Processing

Systems

Author: Supervisor:
Marlo Ploemen Dr. Asterios Katsifodimos

Co-supervisor:
Dr. Marios Fragkoulis

Graduation committee:
Prof.dr. Arie van Deursen

State Migration in Stream
Processing Systems

by

Marlo Ploemen
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Tuesday October 19, 2021 at 14:00 PM.

Abstract

In recent years, the interest for serverless computing has grown tremendously. The most common
form of serverless computing, Function-as-a-Service (FaaS), uses data centers of large public cloud

providers to run simple functions. The cloud providers are responsible for the operational and
deployment aspects. Non-trivial function implementations require state to perform the desired
business logic. Current FaaS implementations using an externalized database for state cannot

achieve the low latency scenarios required for some services. Previous work investigated Stateful
Function-as-a-Service (SFaaS) using Stream Processing Systems as a runtime. State migration, as a

result of schema evolution on SFaaS, remains an open challenge.
This thesis investigates common practices regarding schema evolution and their applicability to
stream processing systems. Based on the investigation, the performed work demonstrates a
schema driven approach to state migration in stream processing systems. The approach

demonstrates that a view on both the source and target state schema can also yield implicit
transformations for schema compatibility.

The work is demonstrated using a modified version of Apache Flink and evaluated based on
common evolution scenarios and hypothesized changes to real world queries from the NEXmark

benchmark.

Student number: 4276906
Project duration: Sept 1, 2020 – Oct 19, 2021
Thesis committee: Dr. A. Katsifodimos, TU Delft, supervisor

Dr. M. Fragkoulis, TU Delft, co-supervisor
Prof.dr. A. van Deursen TU Delft, graduation committee

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

I would like to thank my supervisor, Dr. Asterios Katsifodimos, and co-supervisor, Dr. Marios Fragk-
oulis, for their guidance during the thesis. I am grateful for the many discussions we had on the
topic and the questions that led to critical re-evaluations. I would also like to extend my gratitude to
all members of the AI4Fintech research group at ING. The feedback and suggestions offered during
the weekly group meetings were extremely useful. Finally I want to thank my friends and family who
supported me during my study.

Marlo Ploemen
Delft, October 2021

iii

Contents

1 Introduction 1
1.1 Cloud Providers . 2
1.2 Serverless Computing. 2
1.3 Stream Processing Systems . 5
1.4 Problem Statement . 5
1.5 Approach. 6
1.6 Research Questions. 6
1.7 Outline . 7

2 Background and Related Work 9
2.1 Migration Constraints . 9
2.2 Continuous Deployment. 10
2.3 Deployment Strategies . 11
2.4 Schema Definition and Evolution . 12

2.4.1 Using Relational Data in Applications . 13
2.5 State Migrations . 13

2.5.1 State migration in distributed dataflow graphs . 14
2.5.2 Developer interaction with streaming managed state 15

2.6 Functions-as-a-Service . 15
2.7 Stream Processing Systems . 16

2.7.1 Overview of Stream Processors . 16
2.7.2 Operations in dataflow graphs . 16
2.7.3 State Management . 17
2.7.4 Processing Semantics . 17
2.7.5 Apache Flink . 21

3 Stateful Dataflow Graph Evolution 33
3.1 Outline of the Stateful Dataflow Graph Evolution process. 33
3.2 Trigger Phase . 35
3.3 Schema Generation Phase . 35

3.3.1 Transforming nodes in the schema . 36
3.4 Diffing Phase . 37

3.4.1 Deriving (implicit) transformations for schema compatibility 37
3.5 Migration phase . 41
3.6 Deployment phase . 41
3.7 Limitations of the stream evolution process . 41

4 Evaluation 43
4.1 Evaluating the correctness of the evolution process. 43
4.2 NEXmark benchmark . 44

4.2.1 Experimental Setup . 44
4.3 Github projects . 45

4.3.1 Pre-existing state migrations. 46
4.3.2 Non existing state hydration . 47

v

vi Contents

5 Conclusion 49

6 Discussion 51
6.1 Comparison to graph based schema evolution . 51
6.2 Contributions. 51
6.3 Future improvements for Apache Flink . 52

Appendices 55

A Common Evolution Scenarios 57

1
Introduction

In the 1940s, first generation software was written using binary instructions presented as punch
cards [93]. Even though the costs of running the software was very high, the need for the comput-
ing power outweighed these costs. Years of research and development led to increasingly higher
densities of components on chips (with the rate of change often dubbed as "Moore’s law" [76]). Pro-
gramming languages and compilers hide the complexities of translating the requirements of soft-
ware to the actual executed machine code. Some high-level programming languages trade the ease
of writing with the efficiency of the executed code, and some low-level programming languages
vice-versa. The load on software services often requires a higher compute capacity than can be
supplied by a single machine. In line with the emerging cloud architectures, services are hosted in
data centers of public cloud providers. The cloud architecture model allows for a high degree of flex-
ibility in compute power by adding or removing servers, with certain cloud providers even scaling
automatically. Running software services on multiple machines introduces distributed computing
complexities, amongst other challenges. This led to the development of ‘serverless’ computing. In
serverless computing, the operational and deployment challenges are handled by a third-party.

The Function-as-a-Service (FaaS) model is an implementation of the ‘serverless’ model which
allows developers to only describe the business logic of a software service. This enables developers
to quickly grow a software service to planet-scale using the digital infrastructure of public cloud
providers without managing any of the deployment characteristics. In a way, the complexities of
current software deployment models are abstracted from the developer who is, like in the 1940s,
tasked with writing business logic.

With parallel compute power no longer being a limitation for software services, data driven soft-
ware services encounter other challenges. Three notable challenges are maintaining a consistent
state of the software service, state locality and coordinating inter-service function invocations [53].
Most non-trivial computations require some form of state. For example, calculating a rolling average
where the state represents the current average which is updated on function invocations. Such cal-
culations seem trivial but require careful coordination of updating the state in distributed systems.
When the state is stored in an external system, every function invocation has to read the state,
perform some calculation and then write back the result [3]. The latency introduced by the absence
of state locality poses challenges for time constrained services.

It can be concluded that there is a need for Stateful-Function-as-a-Service (SFaaS) implementa-
tions which solve the complexities of dealing with (distributed) state. Stream processing systems
faced challenges of parallelizing workloads and pose as a good candidate for an SFaaS runtime [53].

In section 1.1, the role of cloud providers in current day-to-day deployments is described. sec-
tion 1.2 describes the need for a ‘serverless’ model and the challenges it faces. In section 1.3, open
challenges for using stream processing systems as a runtime for SFaaS are detailed. Finally the
chapter concludes with the problem statement, approach, research questions and an outline for the
remainder of the thesis.

1

2 1. Introduction

1.1. Cloud Providers
Using the data centers of public cloud providers, organizations can quickly provide software services
to large audiences at various locations around the globe. In a self managed scenario, this would
require high upfront cost and specialized teams to maintain the compute infrastructure. In contrast,
cloud providers use a pay-as-you-go model where only the usage of the machines is billed with
no upfront commitment. Data centers of public cloud providers are strategically laid at various
geographical locations such that the client-to-server latency is minimal and to allow the tenants to
comply with local legislation.

The underutilization of physical machines led to virtualization [43]. Virtualization allows cloud
providers to share the same physical machine with multiple tenants which are isolated from each
other. Organizations can create an image containing all components needed to run the software
service. The cloud providers use the supplied image to create the virtual machines. Due to the rapid
growth of data centers worldwide the costs of using a cloud provider to run and maintain virtual
machines has decreased [50].

A survey conducted by NGINX found that 86% of the interviewed I.T. professionals use a pub-
lic cloud provider for their digital infrastructure [63]. Data centers of public cloud providers allow
corporations to grow to a planet scale, offering e.g. Netflix – an internet television network – to use
over 100.000 server instances to operate in more than 190 countries with over 200 million members
[60].

Containerization, lightweight virtualization, reduces the overhead of virtual machines [43]. Con-
tainer images contain the static runtime environment in which a software service is executed.
Docker models the steps to create an image as stacked layers. Containers share the host oper-
ating system and kernel so the first layer (the ‘base’ layer) should be identical. An advantage of the
layer model is that generic runtime environments can be created which are specialized in multiple
different environments. For example a container image with Python 3.6 and its dependencies pre-
installed where a developer only has to supply the source code. The generic images can be shared
on public repositories such as DockerHub 1.

A Dockerfile describes the creation of Docker container images. Listing 1.1 illustrates how the
runtime environment can be described in only 6 lines.

Listing 1.1: Example Flask Dockerfile [22]

FROM python:3.8−slim−buster

WORKDIR /app

COPY requirements . txt requirements . txt
RUN pip3 ins ta l l −r requirements . txt

COPY . .

CMD [”python3” , ” -m” , ” f lask ” , ”run” , ” - - host =0.0.0.0”]

Containers thus (as shown in Listing 1.1) allow fine grained control over a generic runtime envi-
ronment. Containers however do not not solve the maintenance and operational costs of the digital
infrastructure. In some situations the source code that performs the business logic is trivial com-
pared to the operational challenge of setting up the digital infrastructure running the application
[50].

1.2. Serverless Computing
Container images allow flexible creation of runtime environments. Combined with a digital infras-
tructure to rapidly deploy these images, allows for a higher flexibility of architecting applications.

1https://hub.docker.com/

https://hub.docker.com/

1.2. Serverless Computing 3

Managing a large scale digital infrastructure, however, is non trivial. In recent years, there has
been an increasing interest in serverless computing, described as the next step in cloud computing
[18] with many public cloud providers offering serverless capabilities. In serverless computing, the
operational aspects of scaling an application are handled by a third party [66]. Serverless architec-
tures are of particular interest in scenarios where the business logic of a data driven application can
be written in a few dozen lines of code which is a fraction of the effort to deploy the code [50].

The most common form of serverless computing is Function-as-a-Service (FaaS) [3]. In a FaaS
deployment architecture, only the business logic of function is supplied by a tenant. The manage-
ment of the runtime and deployment of the functions is handled by the serverless platform provider
[66]. A common misconception about serverless computing is that no servers are needed but this is
not the case [66]. The management and operational challenges are simply abstracted and invisible
to the tenant.

Current FaaS offerings are stateless. This relaxes the deployment characteristics because a sys-
tem external to the FaaS scope handles the state of the application. In order to resemble state, the
function can read some data 𝐷 from storage, process 𝐷 and write back to external storage [3]. In
data-driven serverless applications, state can be stored in a central database management system
[25] where data has a well defined schema.

Due to the stateless nature of FaaS, horizontal upscaling and horizontal downscaling can be
achieved by adding or removing nodes from a load balancer. Compute capacity is allocated ad-hoc
to incoming requests. The pay-as-you-go model applies to incoming requests and the time it takes
to handle the request instead of raw provisioned resources such as a CPU and memory. Because the
operational aspects are handled, developers can view their application as orchestrating a series of
function calls instead of provisioning servers.

Challenges of Serverless Computing
In order to deliver on the serverless computing premise, serverless platforms need to handle all de-
ployment characteristics. This leads to challenges for both the tenant and the provider. A serverless
platform might lack an implementation detail [18] such as a programming language or library. With
little control over the deployment characteristics, the tenant is dependent on the provider for up-to-
date dependencies on the platform. Packaging serverless function as containers, e.g. using Docker
[43] [18], can provide the tenant with control over the dependencies with a provider defined public
API.

A tenant needs to understand how the application is being deployed to understand the con-
straints of the application. Providers have various APIs to provide control over the process, as these
processes are non-standardized this can lead to vendor lock-in [18].

State is stored external to the function [3] [18]. The function reads from an external database
management system, processes the data and writes back to the database management system.
This introduces additional latency and is transforming the application from compute intensive to I/O
intensive [2]. Furthermore, coordination is hindered by the lack of a managed state [3]. In Figure 1.1,
a visualization of a FaaS model is shown. The figure illustrates that replicas of the same function are
scaled within the same bounded context (not local) and functions have access to a datastore specific
to the function. This is not a requirement but purely for illustrative purposes. The coordination of
function invocations, e.g. a function processing an ordered set of events, can only be guaranteed
by implementing an orchestrator responsible for orchestrating function invocations.

Amazon Web Services (AWS) offers the AWS Lambda serverless compute service [16]. AWS is a
FaaS implementation where a ‘Lambda’ refers to a function. Lambda functions can be orchestrated
using AWS Step Functions [17]. The orchestrator models events passing through a set of lambdas
as a state machine. State in the AWS Step Function context refers to the state in a state machine,
not a view on past events. Figure 1.2 illustrates this using four functions which are conditionally
connected.

4 1. Introduction

Figure 1.1: Example FaaS layout

Figure 1.2: FaaS workflow as state machine

1.3. Stream Processing Systems 5

1.3. Stream Processing Systems
Inter-function interactions modeled as a workflow and the lack of local state resemble issues solved
in the stream processing domain. Akhter, Fragkoulis, and Katsifodimos [3] show that a modified
version of a stream processing system can be used as a runtime for stateful functions. The state
machine model for FaaS function, visualized in Figure 1.2, can be translated to the dataflow graph
model used in stream processing systems.

Stream processing systems have been widely used for analytical tasks. Implementations of
stream processing systems can be found in numerous sectors where the enormous amount of data
being generated cannot be stored for later processing [28]. Event processing systems can be found
in many industries including health informatics, astronomy, telecommunication, electric grids, en-
ergy, geography, transportation [28], financial industries such as algorithmic trading [73] and fraud
detection [58]. Stream processors are implementations of event driven architectures (EDAs). Event
driven architectures in general support a fault tolerant state with support for event partitioning and
scaling out [53]. These properties make stream processing systems a candidate as a backend for
cloud applications and microservices [53] [24].

Stream processing systems such as Apache Spark employ micro-batching to simulate stream-
ing pipelines. Micro-batching increases the latency since events are buffered but also increases
throughput [88]. Batch processors have been widely used alongside stream processors in what is
referred to as the Lambda Architecture [54]. A Lambda Architecture comprises of three layers: a
speed layer for latency sensitive processing, a batch layer, and a serving layer to be queried.

Due to the support for event partitioning and scaling out, stream processors are often distributed.
The pipeline running on a stream processor can be represented as a directed acyclic graph (DAG).
Business logic is processed at each node of the DAG while edges represent the passing of data. The
physical implementation of the DAG can contain multiple parallel operators running the business
logic at each node. For consistency of the results, the stream can be partitioned based on attributes
of the events. Such a model allows for fine grained control over the parallelization of the work.

Challenges of Stream Processing Systems as a runtime for SFaaS
Leveraging stream processing systems as a runtime for SFaaS imposes additional advanced require-
ments [53]:

• Coordination — of transactions such that the state remains consistent.

• Local State — to avoid the additional latency of network calls to read and write state.

• Global State View & Analytics — for insights on the stored data.

• Loose Coupling — to retain the advantages of micro-services.

• Debugging & Auditing — to verify the integrity of the service.

• Dynamic (Re)configuration — to perform updates on the (running) service.

Software tends to be a rapidly changing environment. In 2014, Amazon’s Apollo Deployment
engine was responsible for 50 million deployments in 12 months [89]. A more recent study [75]
indicates that similar practices are used by other big tech companies such as Facebook, Google,
Netflix, and OANDA.

The absence of stateful reconfiguration is reiterated by Heus, Fragkoulis, and Katsifodimos [44]
where migrate tasks for stateful functions are proposed as an open challenge.

1.4. Problem Statement
Stateful reconfiguration is one of the open challenges for stream processing systems to be used as a
runtime for SFaaS. Reconfiguration can be the result of hardware changes or changes to the service
itself [53]. The reprocessing of state during schema evolutions is often executed by replicating the
same code which creates the streaming job [26].

6 1. Introduction

To support reconfiguration of stateful dataflow graphs, the main research goal is describing a
process which reflects on the previous runtime configuration. This process should validate the re-
configuration and orchestrate the transition into the new configuration.

The common practice of schema definitions in relational database models will be used as an
intermediate representation. The following topics are of interest to aid the research goal:

• P1: Schema Definition — the attributes and shape of a schema required for the reconfigu-
ration of a service.

• P2: Schema Transformation — where an instance of a schema is mutated to reflect a
change between a source and target version.

• P3: Schema Evolution — of identifying changes between two instances of a schema. These
changes can be checked to validate the schema compatibility.

• P4: Data Migration — how data is migrated from the source state to the target state in order
to comply with an evolved schema.

• P5: Deployment Semantics — how the reconfiguration impacts deployment semantics.

• P6: Processing Semantics — how the reconfiguration impacts the processing semantics
and data integrity.

1.5. Approach
To achieve this goal, a modified version of Apache Flink is presented 2. Apache Flink is a stream
processing system providing mechanisms for guaranteeing exactly once processing in a distributed
system.

As a starting point, version 1.12 of Apache Flink will be used. The used version contains mech-
anisms to incrementally snapshot state and generate savepoints [25], a library for manipulating
savepoints, and mechanisms for stop-and-restart deployments based on a savepoint. The used ver-
sion does not feature schema generation, nor a mechanism for unifying schema evolution, state
migration, or job deployment. The main contributions of this thesis are:

• schema generation — amechanism for deriving schemas which represent a stateful dataflow
graph

• schema comparison — a comparison of two instances of a derived dataflow graph schema

• schema transformation — a mechanism for incrementally transforming a dataflow graph
schema based on supplied migrations

The implications of the contributions are shown with a REST endpoint which controls the state-
ful dataflow graph schema evolution and state migration based on a source and target version.
Deriving implicit migrations where possible to bridge incompatible dataflow graph schemas based
on schema comparison, and a declarative API to explicitly specify changes to the stateful dataflow
graph schema.

1.6. Research Questions
With (re)configuration at the heart of the problem statement and a view on the advanced SFaaS
requirements, this thesis will investigate a code-to-schema based approach to reconfiguration. This
combines the stable expressiveness of the relational database model with the processing power
of distributed local state event streaming platforms. To achieve this, the following four research
questions are defined:

• RQ1 — How can a stateful dataflow graph be transformed to a state schema?

2https://github.com/delftdata/msc-state-migration-streams

https://github.com/delftdata/msc-state-migration-streams

1.7. Outline 7

• RQ2 — Given a state schema for a stateful dataflow graph, what evolution scenarios exist?

• RQ3 — Which transformations can be derived without user intervention that migrate state for
stateful dataflow schema evolutions?

• RQ4 — How can two instances of stateful dataflow graph schemas be used for (dynamic)
reconfiguration?

1.7. Outline
In chapter 2, a background and/or related work on migration constraints, continuous deployment,
deployment strategies, schema definition, schema evolution, state migration, functions as a service,
and stream processing systems is discussed. The chapter 2 will act as a review on the current
state of the research and best practices used in the industry. In chapter 3, the performed work
is elaborated. First by describing the general outline of the work into separate components, after
which each sub-component is discussed separately.

In chapter 4, the evaluation metrics, experiments and results are described before concluding
the research in chapter 5. Finally, chapter 6 contains the contributions of this thesis and pointers for
future work.

2
Background and Related Work

In this chapter, related work and background information on various topics related to the research is
presented. In section 2.1 a background is provided on migration constraints. Migration constraints
impose non-functional requirements on applications and their evolutionary lifecycle. In section 2.2,
a general outline of continuous deployment and its use-cases is described. Various deployment
techniques are described in section 2.3. In section 2.4, the definition and evolution schemas are
described. Building on the schema definition, section 2.5 describes the underlying physical state
migration. Finally the chapter concludes with a background on functions as a service (section 2.6)
and stream processing systems (section 2.7).

2.1. Migration Constraints
Due to business requirements, certain applications can be required to be highly-available. Highly-
available configurations require that all parts of the application are redundantly available such that
during failure of one part, another part can take over. The degree of high-availability is the degree
of failures that an application can sustain. The corresponding migration constraint is defined as:

• MC1: Availability

To support availability requirements, load balancing can be introduced. Load balancers distribute
the load of an application to multiple compute units that perform the business logic. By performing
period health checks on the compute units, whenever there is a failure the load balancer will not send
additional requests to the failed compute unit. Alternatively, a system not able to distribute load
can minimize downtime using hot-standby components. When the primary system fails, another
system takes over. In case of a database, there could be a read-replica. All writes are performed on
the primary database but read operations can occur from both the primary database and the read
replica. Whenever there is a failure in the primary database, the read-replica can be promoted to
become the new primary database.

The constraint can be measured in the degrees of failure that can be sustained. In Figure 2.1 a
0-degree and 1-degree system are visualized. The degree of failure of the component balancing the
load is excluded from the figure. The top figure illustrates that when A cannot be used to process
requests (the node failed, is updating, the traffic cannot reach the node, etc.), there is a service
outage. The bottom illustrates that introducing a secondary component mitigates this 0-degree
failure as requests can still be routed towards B.

9

10 2. Background and Related Work

Table 2.1: Compatibility Types [77]

Compatibility type Allowed schema changes Previous versions Upgrade first
Backward Delete fields, Add optional fields last consumers
Forward Add fields, Delete optional fields last producers
Full Add optional fields, Delete optional fields last any order
Backward transitive Delete fields, Add optional fields all consumers
Forward transitive Add fields, Delete optional fields all producers
Full transitive Add optional fields, Delete optional fields all any order
None All n/a n/a

Figure 2.1: 0-degree (top) and 1-degree (bottom) high availability setup

When a service exposes a public API, there might be consumers depending on the service. This
relationship can be described as a producer-consumer relationship. Additional migration constraints
are imposed on a service in a producer-consumer relationship. The evolution of the producer must
be supported by the consumer based on the defined compatibility type. Seven compatibility types
of the producer-consumer relationship can be defined depending on the type of change [77]. The
corresponding migration constraint is defined as:

• MC2: Schema Compatibility

The described compatibility types in Table 2.1, relate to a source and a target version of the
schema, the producer and the consumer. Respectively 𝑆𝑠, 𝑆𝑡, 𝑃𝑠, 𝑃𝑡, 𝐶𝑠 and 𝐶𝑡. With backwards com-
patibility, the implication is that a consumer 𝐶𝑡 using schema 𝑆𝑡 should be able to interpret events
produced by 𝑃𝑠 with schema 𝑆𝑠. When 𝑆𝑠 → 𝑆𝑡 deletes a field, 𝐶𝑡 can ignore the dropped field and
continue processing. Adding optional fields during 𝑆𝑠 → 𝑆𝑡 can be initialized as a missing value in
𝐶𝑡 as the schema states it to be optional. With the change 𝑆𝑠 → 𝑆𝑡 categorized as backwards com-
patible, the consumer can safely update. When the compatibility requirement is transitive, it should
hold for all previous versions. The inverse relation between producers-consumers is described by
forward compatibility where fields can be added and optional fields deleted. A hybrid compatibility
model being both forward and backward compatible is referred to as full compatible.

2.2. Continuous Deployment
Continuous deployment refers to the process of automating software artifact deployments. Often
in large software projects there are multiple environments where the software is deployed. These
environments correspond to different stages of testing and compliance of releasing new software
artifacts. For example a development environment to identify integration errors, an acceptance

2.3. Deployment Strategies 11

Figure 2.2: Simple continuous deployment pipeline

Table 2.2: Deployment challenges

Availability Local State Challenge
no no n/a
yes no must ensure multiple running instances
no yes must migrate local state
yes yes consistent local state, processing semantics

environment for user acceptance testing, or a production environment where no bugs should exist
at all. Manual deployment to these various environments can be a time consuming, complex process
which can introduce blocking factors such as the availability of the developers responsible for the
deployment.

Continuous Deployment implicitly documents this process as code and allows for more frequent
deployments. Benefits include the deployment without relying on key developers, saving time and
having a complex pipeline documented. Additionally, when a release introduces bugs (either re-
gressions or new bugs), it is easier to trace these bugs to the newly deployed code due to the lower
amount of changes versus large software artifact releases. The manual processes which act as bar-
riers for the transformation towards agile development can be seen as technical debt [85]. There
are different stages to agile development as stated by Olsson, Alahyari, and Bosch [64]:

1. Adopting agile practices in R&D

2. Continuous integration including automated tests and builds

3. Continuous deployment of the software artifact to a customer environment

4. Responding to instant feedback from customers

Typically, continuous integration is performed when a developer commits changes to a version
control system. The version control system is capable of statically analyzing the source code, creat-
ing builds and running tests. When all actions succeed, the system can deploy the software artifact
to a target environment [51]. A simple pipeline is visualized in Figure 2.2. If one of the steps in such
a pipeline fails, the developer introducing the change to the system can be notified of the failure.
With a version control system at the heart of the continuous deployment pipeline, the requirement
of accessible software artifacts [47] can be guaranteed.

2.3. Deployment Strategies
During the deployment step defined in section 2.2, the service is deployed. Based on the migration
constraints defined in section 2.1, various mechanisms for deployment exist. Additionally, resource
usage, local state, and processing semantics also influence the used deployment strategy. Resource
usage refers to the compute capacity that can be allocated during the deployment, local state refers
to the non-externalized state, and processing requirements refers to the processing of the underly-
ing service, a requirement further elaborated upon in subsection 2.7.4.

Compute capacity limits the available deployment strategies while requirements on local state
and availability are complex to combine. In Table 2.2, the combination of the availability and local
state requirement describes the challenges the deployment faces.

A highly available stateless deployment is visualized in Figure 2.3. Figure 2.3 also illustrates
the concept of resource usage and MC2, the compatibility requirement. The deployment strategy
can be referred to as rolling blue/green deployment strategy. The resource capacity is two with no

12 2. Background and Related Work

Figure 2.3: Deploying a new version of a stateless application

Table 2.3: Deployment strategies

Deployment Strategy Staged
In-place [30] no

Canary [32] [30] no
Blue-green [75] [36] [30] yes

Dark launches [75] yes
Staging/baking [75] yes
All-at-once [30] no

Linear Deployment [30] yes

temporary over provisioning allowed. Based on these constraints, an instance of the initial (source)
version is stopped. A new instance (target) version can now be started with the newly available
resources. The load balancer assuring high compatibility can now balance traffic to both running
instances. This imposes the MC2 requirements to be handled. Finally, the last source instance is
stopped and restarted as the target version.

Deployment strategies can be categorized as depicted in Table 2.3. In-place migrations replace
the service on the already allocated compute instance. In a cluster setup this can be performed
while guaranteeing high availability using a rolling deployment [30]. Canary deployments are a risk
averse strategy to deploy new versions [32]. A fraction of the running instance is updated to the
target version and monitored for faults. In the event of a fault, the deployment is cancelled. In a
blue/green migration, two almost identical environments are used [36]. Based on a load balancing
policy, traffic is shifted to blue or green versions of the application of which one is ahead. In the
event of failure, the traffic can be shifted to the prior version.

2.4. Schema Definition and Evolution
In data-driven serverless applications, state is often stored in a central database management sys-
tem [25]. To achieve low latency scenarios, distributed streaming systems often store state local to
the operator processing the state. State is therefore inherently sharded as well. Injecting special
control messages into the event stream can produce a consistent materialized global view of the
state [25].

A recent survey on Stack Overflow shows that the four most popular database technologies,
both among all respondents and when filtered on only professionals, are relational databases [81].
Relational databases use a tabular structure where tables represent some entity with columns as
the attributes. Rows are than structured datapoints of the entity.

Relational databases use SQL to retrieve results or manipulate the schema [71], often with some
technology specific dialect. Data Definition Language (DDL) is a subset of SQL statements which
refers to manipulating the structure of the database. These statements include (with a relevant
example):

• CREATE — to create tables with a defined set of columns

• ALTER — to alter existing table definitions

2.5. State Migrations 13

• DROP — to drop existing tables

With these three statements, it is possible to describe the schema of a database as a set of tables
and their corresponding column definitions. Future schema changes which are not additions can be
handled by running ALTER or DROP statements on the existing schema.

2.4.1. Using Relational Data in Applications
While the tabular-relational structure aids the data definition and data manipulation, there is an
impedance mismatch between applications written in an object-oriented style that have to map to
a relational data structure. This mismatch is also called the Object-relational impedance mismatch
[49]. In order to store objects in a relational database management system, the persistent attributes
of an object have to be mapped to columns in a table.

Object Relational Mapping (ORM) bridges the gap between the two runtime contexts of persis-
tence and application code. Data is often persisted in a relational form where ORM abstracts the
implementation of mapping application code objects to relational data, and the communication with
the persistence layer of an application. Implementations of ORM frameworks can be found in many
common programming languages, for example, but not limited to, Java, C++, Python, C#, PHP,
JavaScript, and Ruby [86].

To facilitate bridging the impedance mismatch, ORMs often facilitate DDL functionality to create
the initial schema. Evolution of the schema is often left as an exercise for the developers [21].
When creating a schema to persist data, the goal is to reflect the target environment as accurately
as possible. While the assumption is that the modeled schema is stable even under a changing
environment, this is often not the case [70]. To maintain compatibility between the different versions
of a service and the database, schema evolutions should be tied to the application. Tools such as
Liquibase [41] and Flyway [39] provide mechanisms to run a series of schema evolutions based on
the current state of the database. QuantumDB [51] uses a non-blocking approach for continuous
deployment pipelines using the concept of changesets.

Three techniques to schema evolution in database environments are identified by Michel, An-
dany, and Palisser [59]. The database schema is evolved without keeping the previous schema
(ignoring consequences on data), or the schema is evolved and the data transformed into the new
schema, or both versions of the schema are kept (either with historical or with parallel access).
ORION is a prototype object oriented database system that was developed with schema evolution
in mind [19]. ORION defines a formal framework for schema evolution and invariants which are
required to hold.

A methodology is proposed by Shneiderman and Thomas [78] to automatically migrate a rela-
tional model using relational algebra. Similarly, McBrien and Poulovassilis [56] detail a methodology
using hypergraph data models. If upward compatibility is required, migrating the data is inadequate
as older clients cannot use the newer version of the data [57]. Program Independency [70] relates
to the property that old schemas should still be queryable while the data is kept up-to-date.

2.5. State Migrations
When a state schema, a subset of the general schema related to state, has evolved, the physical
state should be migrated to match the new schema. When physical data changes in database man-
agement systems, often a locking mechanism is introduced [29] to support concurrent operations
not related to the current update. In section 2.4, the usage of SQL is outlined through which rela-
tional database queries are executed. To manipulate or migrate state in relational databases, DDL
(discussed in section 2.4) and Data Manipulation Language (DML), a subset of statements from SQL,
are used. Three key statements for DML are:

• INSERT — to insert new rows in the database

• UPDATE — to update existing rows in the database

• DELETE — to delete existing rows from the database

14 2. Background and Related Work

Table 2.4: Altering column type in PostgreSQL [68]

Implicit Explicit

ALTER TABLE <some table name>
ALTER COLUMN <some column name> <datatype>;

ALTER TABLE <some table name>
ALTER COLUMN <some column name> <datatype>
USING <expression>;

Combined with the Data Query Language (DQL) statements, these statements can ensure that
the data stored in a relational database is complacent with an evolving schema. Backwards incom-
patible schema evolutions can be handled using an expand-contract type of query [51].

An example query syntax is provided in Table 2.4 for both implicit and explicit conversions using
the PostgreSQL SQl dialect.

Because of the coupling between data driven applications and their persistence layer, changes
to schemas are impacted by compatibility requirements. In Object-oriented databases, the problem
of schema evolution manifests itself as type evolution [79] [19].

2.5.1. State migration in distributed dataflow graphs
The already defined evolutionary nature of services and application also translates itself to event
stream processors. The challenge in event streaming engines is that the services often continuously
process data that is processed in a distributed model. During state migration, the system cannot
produce inconsistent results [92]. The challenge of state migration can be described as a how (how
to migrate state) and what (what to migrate) [84] [31]. Often however, the underlying problem is
minimizing migration cost:

Planning: relates to the phase before the execution of a state migration. During planning, the
system analyzes the source and target state in order to describe a migration plan. Ottenwälder et al.
[65] describe migration based on pre-planning in order to orchestrate migration in a complex event
processing system. The Migration Plan model describes the time and location at which an operator
should be migrated, and the required resources.

(Dynamic) reconfiguration: when processing continuous streams of data, (state) migration
can be the result of a change of the DAG describing the dataflow graph. In streaming systems
where the state is distributed, there are three modes of state migration [45]: stop-and-restart,
partial pause-and-resume, and dataflow replication. Both stop-and-restart and pause-and-resume
type of migrations pause the current processing of the event stream to various degrees. Dataflow
replication can remedy this situation but increases the complexity of guaranteeing processing se-
mantics. Floratou et al. [35] describe the reconfiguration process to self-regulating, self-stabilizing,
and self-tuning dataflow graph through policies. A health manager detects symptoms based on col-
lected metrics which are diagnosed and turned into resolutions. Where the DAG would continuously
process events, special control events can be injected into the event stream to control operators
[55] [20] similar to how consistent checkpoints can be generated [25]. Chi [55] describes control
events to be used for continuous monitoring, dataflow reconfiguration, and auto parameter tuning
of operators. Based on the collected metrics, an upstream operator could reconfigure the parti-
tioning of the key space of downstream operators based on the imposed load. Bartnik et al. [20]
use a similar mechanism but investigate the usage on introducing new operators, migrating oper-
ators, and changing operator internals. Similarly, Zhu, Rundensteiner, and Heineman [92] propose
two strategies to ease migrations while guaranteeing high availability. The first moving state strat-
egy relates to moving identical state between old and new versions of operators while the second
parallel tracking strategy interconnects events such that during migration the system can contin-
uously process events. Ding et al. [31] uses the concept of an Migration Manager (MM), retriever
and rerouter. The migration is performed progressively with each sub-migration using a wait buffer
during migration. This is an example of the pause-and-resume type of migration. Misrouted tuples
are rerouted through the rerouter for correct processing. Finally Feng, Huang, and Wu [33] provide a
key-and-state andmembership replication scheme using a Multilevel Counting Bloom Filter (MLCBF)
data structure to decrease the cost of stateful replication.

2.6. Functions-as-a-Service 15

Cost: can be expressed as the cost of the migration. Ding et al. [31] focus on deriving the
optimal placement of new operators to minimize the migration cost. Pietzuch et al. [67] describe
the collected metrics as cost space. Based on the cost space, reconfiguration of the operators can
be performed when the cost savings of such a migration are higher than the minimum migration
threshold (MTT).

2.5.2. Developer interaction with streaming managed state
During the migration from a source streaming job to a target streaming job, the underlying state
should be migrated. The discussed relational database domain handles these migrations using
declarative SQL with occasional USING for complex migrations. Six popular streaming services
are discussed related to their exposure of managed state:

• Apache Flink: can manage state in in-memory, HDFS, or use RocksDB. Using a barrier based
checkpointing mechanism, RocksDB state can be persisted to HDFS. A similar mechanism can
be used to generate savepoints [25]. Savepoints can be modified using the Flink State Pro-
cessing API [82]. New operator state can be added to an existing savepoint (for new operator
unique identifiers) or a savepoint can be created from scratch. To use the state processor API,
developers construct a DAG similar to how a normal streaming job is built.

• Apache Storm: uses an external state model based on Redis [48]. As Redis is a key-value
store, the Apache Storm only natively features key-value state.

• Apache Spark: uses in-memory state which is persisted for fault tolerance to HDFS [80].
Community created state serialization tooling exists such using a RocksDB mechanism [42]
like Apache Flink.

• Apache Heron: compatible with Apache Storm [15]. State can be persisted to local file system
or managed by Zookeeper.

• Apache Samza: stores state co-located to the operator using the state [74]. Provides fault
tolerance by replicating the state to persistent storage. The natively supplied storage mecha-
nism builds on LevelDB, on which RocksDB is built [38].

• Apache Kafka Streams: stores state on a local database using RocksDB. Kafka Streams does
create a changelog topic on Kafka which is used for fault-tolerance [52].

Chen et al. [26] categorizes the mechanisms used by Flink and Spark to reprocess state as same
code, Storm and Heron as same DSL, and Samza as no batch.

2.6. Functions-as-a-Service
One of the recent focus domains for stream processing is as a backend for scalable cloud appli-
cations [24]. Managed offerings of cloud providers deliver on the operational aspects of stateless
applications but provide limited to no offerings for stateful applications [3].

A simple model of a FaaS application is that of a single function. The function is independently
able to perform an entire use case. For any non trivial application, this model is either too simplistic
or the application evolves into a large monolithic application. In recent years, the trend has been to
steer away from large monolithic applications. This realizes the following advantages [61]:

• Parallel development — as developers only need to understand a small part of the codebase.

• Independent Non-Functional Requirements — as the used technologies, deployment char-
acteristics and programming language can be decided on a per-service basis.

• Scaling — as the services can be scaled independently to account for the load.

16 2. Background and Related Work

Figure 2.4: Pseudocode to Dataflow Graph

When the codebase is sharded over individual functions each providing a unique set of business
logic, these functions can be referred to as micro services. A single function in a FaaS architecture
is an instance of such a micro service. For the non-trivial application, many of these micro services
tend to be deployed. As not a single micro service is able to deliver on the entire business case
of the application, there needs to be cooperation and coordination of these functions. Amazon
Step Functions, Azure Durable Functions, and IBM Composer [37] are additional services offered to
provide support for coordination.

2.7. Stream Processing Systems
Interactions with systems can be modeled as events. An ordering of such events can be referred to
as an event stream. A systemwhere interactions aremodeled as events implements an Event Driven
Architecture (EDA). EDAs should have a fault tolerant state and support horizontal scaling [53].
Stream processing systems are implementations of such an EDA. Event processing systems are able
to handle trillions of events, terabytes of state, and run on thousands of cores [14]. Traditionally,
events were processed in batches on a schedule. As batches contain a finite amount of events, these
can be referred to as bounded streams. A bounded event stream can trivially compute aggregations
by ingesting all data and assuming that the batch is only processed after all events that are part of
the batch have arrived, does not suffer from out-of-order processing. Lately, in contrast with batch
processing, events can be processed in realtime. These streams can continuously receive events,
without an explicit event that closes the stream, these streams can be referred to as unbounded.
For the remainder of this chapter, the realtime aspect, i.e. unbounded streams, will be discussed.

2.7.1. Overview of Stream Processors
On a high level, a stream processing system functions by representing the business logic applied
during the lifetime of an event as a dataflow graph. A dataflow graph is a directed graph where
nodes without incoming edges or without outgoing edges are respectively referred to as sources
or sinks. Nodes represent operators, performing business logic on the incoming data while the
edges represent the passing of events from one node to the next. Figure 2.4 provides an example
translation from pseudocode to a dataflow graph.

In a logical dataflow graph, only the computational logic is represented as part of the graph. As
stream processors are often distributed systems, a physical dataflow graph represents the physical
execution of a logical dataflow graph on the system. The stream processor handles the conversion
from a logical dataflow graph based on supplied data parallelism and compute parallelism strategies
[46] to a physical version, to be executed on a distributed system.

2.7.2. Operations in dataflow graphs
Operators in a dataflow graph can be either stateful or stateless. Like other domains as the cur-
rent FaaS domain, stateless provides advantages with respect to scaling and fault tolerance. Addi-
tional compute can simply be allocated and failing operators restarted. Stateful operators however
maintain internal state of past events to perform their business logic. There are four categories of
operators [46]:

• operators which are responsible for communication with external systems, e.g. sources and

2.7. Stream Processing Systems 17

sinks. These nodes are respectively defined in the dataflow graph as nodes without incoming
edges or without outgoing edges.

• operators which transform the data stream. Transformations use the incoming edge(s), apply
some process function on the events, and produce outgoing edge(s). Transformation operators
can be used to describe fan-out or fan-in patterns in dataflow graphs.

• operators which compute rolling aggregations on the data stream. The rolling operation uses
the state of historic events that have been processed along with incoming events to compute
a new aggregated value.

• operators that window the data stream. The data stream by default is unbounded. Windowing
operators use markers in the data stream to provide bounded windows based on a windowing
strategy.

2.7.3. State Management
State refers to values stored on the operator that resemble a view on past events. Stateful operators
can use both incoming events as well as the state to compute their result. State is therefore required
for most operations and transformations performed by the stream processor, e.g. the source oper-
ators use state to track processed events while aggregations use state to compute the aggregated
value. In contrast to stateless FaaS offerings, state is stored local to the operator processing the
events.

Managing local state includes additional operational aspects for the stream processor to handle,
such as providing fault tolerance in case of failure and (re)scaling the distributed state when the
compute capacity changes [53].

2.7.4. Processing Semantics
Using a checkpointing mechanism of processed results, stream processors can recover from failure
and restore managed state. Due to the distributed nature of a stream processor, checkpointing
has non negligible overhead which decreases throughput and increases latency for events in the
dataflow graph. By relaxing the processing requirements of events, the overhead of checkpointing
can be decreased. The following three processing semantics are identified [20]:

At Least Once
At least once guarantees that all messages are at least processed once. This implies that the strat-
egy of dealing with duplicates is left as an exercise to the developer. The process is visualized in
Figure 2.5.

At Most Once
At most once processing guarantees that messages are processed at most once. There is no explicit
guarantee that when a failure occurs the message has already been processed. The process is
visualized in Figure 2.6.

Exactly Once
Exactly once is the combination of at-most-once and at-least-once. As the event stream processor
can be a component in a larger system, there are two implementations possible. End-to-end exactly
once guarantees that the source and sinks of the messages are taken into account. Local exactly
once guarantees only the internal state managed by the event stream processor.

Guaranteeing end-to-end exactly once can be implemented using a two-phase commit algorithm
visualize in Figure 2.7.

While these three processing semantics provide constraints and bounds on the processing of
events, often the strict constraints of exactly once are not necessary. When the processing of the
event is an idempotent operation, processing the same event twice is guaranteed to give the same
result. Relaxing the exactly once processing semantics to at least once semantics improves the
event stream performance.

18 2. Background and Related Work

Figure 2.5: At least once event processing

2.7. Stream Processing Systems 19

Figure 2.6: At most once event processing

20 2. Background and Related Work

Figure 2.7: Exactly once processing semantics

2.7. Stream Processing Systems 21

2.7.5. Apache Flink
Apache Flink [14] is an implementation of a distributed stream processing system. In Apache Flink, a
logical graph is equivalent to a dataflow graph. The nodes represent operators which perform some
computation on the data stream while the edges represent the passing of data. At runtime, the logi-
cal graph is translated into a physical graph. Nodes in the physical graph represent tasks, describing
a single parallel instance of an operator [8]. Flink contains a manager component, referred to as the
JobManager responsible for:

• JobMaster — managing task instances of a physical graph

• ResourceManager — managing the allocation of resources for the logical to physical graph
transformation

• Dispatcher — managing endpoints for dispatching jobs

The resources used by a ResourceManager are managed using TaskManagers. TaskManagers
can offer slots as requested by the ResourceManager needed to start a physical graph.

The two main manager services, the JobManager and the TaskManager, illustrate how the dis-
tributed nature of Apache Flink can be achieved. A single JobMaster is responsible for many tasks
which are managed by TaskManagers. There might be multiple JobMasters on a single JobManager,
that depends on the style of deployment.

Environments & Sources
The programming model of Apache Flink uses the concept of a stream execution environment (SEE)
to interface with the logical graph of the job. The environment can be dynamically configured to
resolve local development and cluster deployments. To create a data stream, at least a single
source operator should be added to the SEE. Source operators in the dataflow graph are nodes
with no incoming edges and provide communication with external systems such as Apache Kafka to
ingest data into the data stream. A list of supported data streams can be found in Table 2.5.

Operators & User Defined Functions
Operations correspond to nodes in the dataflow graph. A complete enumeration of operators is
provided in Table 2.7. Operators are often closely related to business logic to be applied on the
data stream. An example of such custom processing is an operator which maps incoming numeric
events to twice their initial value. An accompanying operator to define the node in the graph is the
StreamMap operator. User Defined Functions (UDF) contain the user-code which is executed as part
of the operator. Using this programming model, Apache Flink can abstract the physical passing of
events and provide a clean public API to use for non-generic use-cases. An enumeration of all UDFs
is provided in Table 2.9.

Transformations
A dataflow graph resembles a directed acyclic graph (DAG) (ignoring iterative streams). The SEE is
used to construct the initial source(s) of the dataflow graph. Addition of operators and how these
operators pass data is reflected as transformations on the structure of the DAG. An enumeration
of transformations in Apache Flink is provided in Table 2.8 along with event passing partitioning
strategies in Table 2.6.

An example construction of a dataflow graph using the Apache Flink programming model is pro-
vided in Figure 2.8.

22 2. Background and Related Work

(a) use SEE to create source node of DAG

(b) keyBy using the PartitionTransformation

(c) apply OneInputTransformation containing a StreamMap operator with parallelization 2

(d) apply SinkTransformation to complete the DAG

Figure 2.8: Physical dataflow graph

2.7. Stream Processing Systems 23

Table 2.5: Different stream types in a stream execution environment

StreamTypes
ID Name Type Trans. Description
DATA DataStream <T> Base class representing a

datastream
SPLIT SplitScreen <T> SPLIT Splits the stream into multi-

ple output streams
BROAD BroadcastConnectorStream <T,R> Represents a stream with

broadcasted state
KEYED KeyedStream <T,K> Stream partitioned based on

presence of a key
CONN ConnectedStream <T,R> A union of two streams of

possibly different type
ITER IterativeStream <T> FEEDBACK Stream that is iterated upon
COGROUP CoGroupedStream <T,T2> Stream containing two in-

puts
JOINED JoinedStream <T,T2> Two datastreams that have

been joined
ALLWINDOW AllWindowedStream <T, TimeWindow> Partitions a non-keyed

stream into windows
SINGLE SingleOutputStreamOperator <T> Represents a user defined

function on a datastream
WINDOW WindowStream <T, K, W> Partitions a keyed stream

into windows
Trans. refers to the transformations as defined in table 2.8

Table 2.6: Partitioner functions used by the physical partitioner mechanism

Partitioner Functions
ID Name
BROAD BroadcastPartitioner
SHUFFLE ShufflePartitioner
FORWARD ForwardPartitioner
REBALANCE RebalancePartitioner
RESCALE RescalePartitioner
GLOBAL GlobalPartitioner

24 2. Background and Related Work

Table 2.7: Intermediate operators representing business logic on stream types

Operators
ID Name
MAP StreamMap
FMAP StreamFlatMap
PROC ProcessOperator
FILTER StreamFilter
PROJECT StreamProject
TIME TimeStampsAndWatermarksOperator
CMAP CoStreamMap
CFMAP CoStreamFlatMap
CPROC CoProcessOperator
LKCPROC LegacyKeyedCoProcessOperator
KCPROC KeyedCoProcessOperator
COKBROAD CoBroadcastWithKeyedOperator
COBROAD CoBroadcastWithNonKeyedOperator
LKPROC LegacyKeyedProcessOperator
KPROC KeyedProcessOperator
GREDUCE StreamGroupedReduce
GFOLD StreamGroupedFold
SUM SumAggregator
COMP ComparableAggregator
REDUCE StreamGroupedReduce
JOIN JoinCoGroupFunction

Table 2.8: Transformations which can be applied on the data stream

Transforms
ID Name Type
ONE OneInputTransform <IN, OUT>
TWO TwoInputTransformation <IN1, IN2, OUT>
ABSTR AbstractMultipleInputTransformation <OUT>
SOURCE SourceTransformation <OUT>
LSOURCE LegacySourceTransformation <OUT>
SINK SinkTransformation <IN>
UNION UnionTransformation <IN>
SPLIT SplitTransformation <INOUT>
SELECT SelectTransformation <INOUT>
FEEDBACK FeedbackTransformation <INOUT>
COFEEDBACK CoFeedbackTransformation <F>
PARTITION PartitionTransformation
SIDE SideOutputTransformation

2.7. Stream Processing Systems 25

Table 2.9: User defined functions accompanying an operator

Functions
ID Name Type Internal Operator State
AGGR AggregateFunction <IN, ACC, OUT> IN, KEY
BROAD BroadcastVariableInitializer <T,O>
CGROUP CoGroupFunction <IN1, IN2, O> IN1, IN2, KEY
COMB CombineFunction <IN, OUT>
CROSS CrossFunction <IN1, IN2, OUT>
FILTER FilterFunction <T>
FJOIN FlatJoinFunction <IN1, IN2, OUT>
FMAP FlatMapFunction <T, O>
FOLD FoldFunction <O,T>
GCOMB GroupCombineFunction <IN, OUT>
GREDUCE GroupReduceFunction <T,O>
MAP MapFunction <T,O>
MPART MapPartitionFunction <T,O>
REDUCE ReduceFunction <T>
KEY KeySelector <IN, KEY>
PART Partitioner <K>
JOIN JoinFunction <IN1,IN2, OUT> IN1, IN2, KEY

Streaming Functions
PROC ProcessFunction <I, O>
CMAP CoMapFunction <IN1, IN2, OUT>
CFMAP CoFlatMapFunction <IN1, IN2, OUT>
CPROC CoProcessFunction <IN1, IN2, OUT>
KCPROC KeyedCoProcessFunction <IN1, IN2, R>
KBPROC KeyedBroadcastProcessFunction <IN1, IN2, R>
BPROC BroadcastProcessFunction <KS, IN1, IN2, OUT>
KPROC KeyedProcessFunction <IN1, IN2, OUT>
WINDOW WindowFunction <IN, OUT, KEY, W> IN, KEY
AWINDOW AllWindowFunction <IN, OUT, W> IN

26 2. Background and Related Work

Figure 2.9: Barrier event in datastream

Figure 2.10: Barrier alignment on operator level [7] [25]

Managed State
In subsection 2.7.3, challenges of incorporating state management were discussed. These chal-
lenges included:

1. Fault tolerance of managed state

2. Support scaling in a stateful system

Fault tolerance of managed state The stream processor can accumulate vast amounts of state
during the lifetime of the job. In case of failure, the state should be recovered without incomplete
state manipulations that occurred during the failure. Losing the state can have catastrophic impact.
Imagine running a pipeline which depends on a rolling average. Losing past events results in an
inability of calculating a correct rolling average. In Apache Flink, fault tolerance of managed state
is implemented using a barrier based checkpointing algorithm [25]. Extracting the managed state
uses a barrier based extraction algorithm which works similar to checkpointing but using a bottom
up methodology starting from the source nodes. Barriers are injected as special control messages
in the event stream of the physical graph.

Barrier based mechanisms ensure that all events before the barrier are part of the checkpoint,
excluding later events. When an operator accepts multiple inputs, the barriers are first aligned.
During alignment, when a barrier arrives at an operator, the incoming edge containing the barrier
halts processing until a barrier has arrived at all other incoming edges. Events that are part of
an edge for which no barrier has arrived yet are still processed. After a barrier has arrived at all
incoming edges, a checkpoint or savepoint is created of the operator’s state. The final step is to
emit the barrier to all outgoing edges of the operator. The alignment algorithm is visualized in
Figure 2.10.

2.7. Stream Processing Systems 27

Based on the various processing requirements, various checkpointing intervals can be config-
ured. With at most once processing configured, events that are ingested by the data stream will not
be ingested again. With at least once, the events that are not part of a checkpoint are replayed. This
might lead to events being processed more than once. Using exactly once processing, each event
is checkpointed ensuring that no event is lost or processed more than once. As checkpointing is a
resource intensive process, this does lead to lower throughput.

To modify managed state, the Flink State Processing API [82] is used. Using the state processing
API, an existing savepoint can be modified by adding new operators or removing existing operators.
When an existing operator is modified, the State Processing API requires creation of a new save-
point. Without using the Flink State Processing API, it is possible to deploy new versions of a stateful
dataflow graph based on the following rules [11]:

• New stateful operators will be initialized with empty state

• The state of removed operators will also be removed

• Operator I/O can be updated as long as the I/O of operators containing internal operator state
(see Table 2.9) does not change

Apache Flink also supports Apache Avro and POJO datatype evolution [10]. Avro types have a
predefined set of supported evolutions [5] while POJOs follow the following set of rules:

• Fields can be removed

• New fields can be added

• Existing fields cannot change

• Classname and namespace of POJOs cannot change

Scaling state Rescaling stateless computations can be trivially resolved by adding additional
nodes and forwarding events to the new allocated compute capacity or dropping nodes. As dis-
cussed in section 1.2, to resemble state in a stateless FaaS architecture, functions resemble state
using an external system. The function first initializes by retrieving the state, processes the event
and writes back the result to the external system. The drawback of such an architecture is that while
compute capacity is trivially scalable, the bottleneck becomes an I/O challenge.

Apache Flink uses the concept of state backends [9] to manage state. State backends are re-
sponsible for the physical implementation of persisting state and guaranteeing consistency. For this
purpose, three state backends can be distinguished:

• Memory backend — a state backend which stores the state in memory. After checkpointing,
the snapshot of the state is send to the JobManager where the state is also stored in-memory.
After a failure, the state is lost.

• File system backend — a state backend which persists state to a filesystem.

• RocksdDB backend— a state backend which persists state to a RocksDB database [72]. RocksDB
is a key-value store for low latency scenario’s. During checkpointing, the RocksDB database
will be stored to a persistent file system location (like the file system backend). At runtime, the
RocksDB database is locally on the task manager.

As Apache Flink is a distributed stream processor, events might be propagated over a network
connection. This requires serialization of the events. The Type Serialization Framework [6] handles
the serialization of events and state for persistence and network propagation.

As discussed in subsection 2.7.1, in the physical dataflow graph model, parallel execution is
employed to scale the compute capacity. When re-scaling a system either fan-out or fan-in (see
Figure 2.11) the state needs to be adjusted correspondingly. Four separate state models can be
distinguished [12]:

28 2. Background and Related Work

Figure 2.11: Rescaling a dataflow graph fan-in or fan-out

2.7. Stream Processing Systems 29

1. Operator state — state local to the operator

2. Broadcast state — special case of operator state where state is broadcasted to all parallel
downstream operators

3. Keyed state — state associated with a key

4. Window state — state associated with a window

To rescale a dataflow graph, the checkpointing algorithm is used to restore the graph. Operator
state is stored as a list and divided over the parallel operators [13]. Broadcast state uses a similar
pattern where the assumption is that all parallel operators share the same state, hence identical
state is redeployed to all parallel operators. Keyed state can be employed on a keyed stream. Keyed
streams allow for efficiently parallelizing the dataflow graph. During a keying operation, the stream
is converted to a keyed stream by deterministically deriving a key. All events that are associated
with a specific key are sent to the same operator. Keyed state is therefore by definition sharded
and processed by a subset of the available parallel operators. During the rescaling, the state of
an operator must be the state that is associated with the events that the operator is assigned to
process [13].

There are two interfaces that provide state access: RichFunction and CheckpointedInterface.
Respectively, an interface that provides access to the runtime context which in turn provides access
to state, and an interface that provides access to operator state or keyed state (if applied on a keyed
stream). A high level overview of acquiring these state handles is visualized in Figure 2.12.

Figure 2.12: Visualization of state access

The gateways which implement access to the state are referred to as state descriptors. During
the described lifecycle hooks of CheckpointedInterface and RichFunction, the state descriptors can
register themselves for access to specific state. Apache Flink offers five concrete state descriptors
for various use cases:

1. ValueStateDescriptor for persisting a single value

2. ListStateDescriptor for persisting a list of values

3. MapStateDescriptor for persisting a key-value pair

4. AggregatingStateDescriptor for persisting the aggregated result of values

30 2. Background and Related Work

5. ReducingStateDescriptor for persisting the reduced value of values

API The public API for applying transformations on the DAG is enumerated in Table 2.10. The
table references previously reported tables on stream types, operator types, transformations, and
partitioner. When a column is not defined, this implies that no implicit transformations are applied
by Flink. Implicit behavior such as the existence of some user functions add internal operator state
to the dataflow graph. This operator state imposes additional complexities on the evolution of the
DAG in later stages of its lifecycle.

2.7. Stream Processing Systems 31

Table 2.10: public API of Apache Flink datastream

DataStream API

Name Input𝑎 Output𝑎 Input𝑏 Operators𝑐 Transformation𝑑 Partitioner𝑒

union DATA DATA ST.DATA CMAP
split DATA SPLIT OutputSelector CFMAP∗

connect DATA CONN ST.DATA
connect DATA BROAD ST.BROAD
keyBy DATA KEYED F.KEY
partition DATA DATA F.PART PARTITION
broadcast DATA DATA PARTITION BROAD
broadcast DATA BROAD MapStateDescriptor PARTITION BROAD
shuffle DATA DATA PARTITION SHUFFLE
forward DATA DATA PARTITION FORWARD
rebalance DATA DATA PARTITION REBALANCE
rescale DATA DATA PARTITION RESCALE
global DATA DATA PARTITION GLOBAL
iterate DATA ITER FEEDBACK∗

map DATA SINGLE F.MAP MAP ONE
flatMap DATA SINGLE F.FMAP FMAP ONE
process DATA SINGLE F.PROC PROCESS ONE
filter DATA SINGLE F.FILTER FILTER ONE
project DATA SINGLE PROJECT ONE
coGroup DATA COGROUP ST.COGROUP
join DATA JOINED ST.DATA
timeWindowAll DATA ALLWINDOW
countWindowAll DATA ALLWINDOW
windowAll DATA ALLWINDOW WindowAssigner
assignTimestampAnd
Watermarks

DATA SINGLE WatermarkStrategy TIME

select SPLIT DATA SELECT

keyBy CONN CONN
map CONN SINGLE F.KEY CMAP TWO
flatMap CONN SINGLE F.CMAP CFMAP TWO
process CONN SINGLE F.CFMAP CPROC TWO
process CONN SINGLE F.CPROC LKCPROC TWO
process CONN SINGLE F.KCPROC KCPROC TWO

process BROAD SINGLE F.KBPROC COKBROAD TWO
process BROAD SINGLE F.BPROC COBROAD TWO

process KEYED SINGLE F.CPROC LKPROC
process KEYED SINGLE F.KPROC KPROC
timeWindow KEYED WINDOW
countWindow KEYED WINDOW
window KEYED WINDOW WindowAssigner
reduce KEYED SINGLE F.REDUCE GREDUCE TWO
fold KEYED SINGLE F.FOLD GFOLD TWO
sum KEYED SINGLE SUM
min KEYED SINGLE COMP
max KEYED SINGLE REDUCE
minBy KEYED SINGLE JOIN
maxBy KEYED SINGLE JOIN
aggregate KEYED SINGLE F.AGGR JOIN

with JOINED JOINED
equalTo JOINED JOINED
window JOINED JOINED
apply JOINED SINGLE F.JOIN
apply JOINED SINGLE F.FJOIN
apply JOINED DATA F.CGROUP

with COGROUP COGROUP
equalTo COGROUP COGROUP
window COGROUP COGROUP
apply COGROUP DATA F.CGROUP

∗ marks transitive transformation due to construction of StreamType, see table 2.5
𝑎 references ID of stream type, see table 2.5, 𝑏 ST references StreamType (see 𝑎), F references UDFs (see table 2.9), 𝑐

references ID of operator, see table 2.7, 𝑑 references ID of transformation, see table 2.8, 𝑒 references ID of partitioner, see
table 2.6.

3
Stateful Dataflow Graph Evolution

This chapter will describe the implementation of the stateful dataflow graph evolution process. In
section 3.1, the general outline of the entire process is discussed. The entire process also describes
the invocation of the job evolution process as well as subsequent deployments performed to com-
plete the process. The remaining sections will describe different phases of the evolution process.

3.1. Outline of the Stateful Dataflow Graph Evolution process
Assume that there is a running streaming job1 𝐽1 with operators 𝑂𝐽1 = {𝑜1, 𝑜2, 𝑜3, ..., 𝑜𝑛 , 𝑜𝑛+1}. Oper-
ators may or may not use local state. Given some other streaming job 𝐽2 where 𝑂𝐽1 ≠ 𝑂𝐽2 using
equality based on the operator unique identifier and the attributes of the operator. It is assumed
that even though 𝑂𝐽1 ≠ 𝑂𝐽2 , there exists some transformation 𝑓(𝐽) → 𝐽∗ that when applied on 𝐽1:
𝑓(𝐽1) → 𝐽2 will ensure 𝑂𝐽1 = 𝑂𝐽2 .

The general outline invokes a trigger TRGR which triggers the evolution process. The evolution
process is agnostic to the type of trigger used. The evolution process starts by deriving a schema
representing the nodes of the DAG. Defining such a schema 𝑆 bounds the attributes in scope of the
evolution process and allows a potentially unbounded job definition 𝐽 to be bounded and compared.
With a source schema 𝑆1 and a target schema 𝑆2, the difference in schema can be referred to as
𝑆diff = {𝑑1, 𝑑2, 𝑑3, ..., 𝑑𝑛 , 𝑑𝑛+1}. For the evolution process to complete, no differences should remain:
𝑆diff = ∅. To achieve an empty 𝑆diff, the source schema is incrementally transformed using a set of
transformations 𝑇 = {𝑡1, 𝑡2, 𝑡3, ..., 𝑡𝑛 , 𝑡𝑛+1} by using some transformation function 𝑡𝑟𝑎𝑛𝑠(𝑆𝑖 , 𝑡𝑖) → 𝑆𝑖+1.
The transformations are applied iteratively and can be represented as 𝑆∗ = ∑𝑁𝑖=0 𝑡𝑟𝑎𝑛𝑠(𝑆𝑖 , 𝑡𝑖), where
𝑆0 = 𝑆1, the source schema. The set of transformations can be either user provided (explicit) or
derived by the schema differences 𝑆diff (implicit). Assuming that 𝑆diff is ∅, the transformations are
applied to the underlying physical state of 𝐽1.

The evolution can now be deployed. The evolution process is agnostic to the deployment pro-
cess, for example the methodology discussed by Bartnik et al. [20] could be used as a delivery
method for live reconfiguration. The evolution process is demonstrated using an Apache Flink na-
tive deployment method comprising of a stop-and-restart delivery using a transformed savepoint.

The outline consists of several distinct phases: the trigger phase containing the invocation of the
process, the schema extraction phase where the schema of the job is extracted, the diffing phase
where two schemas are diffed to find the transformations needed to resolve any differences, the
migration phase where the state is migrated, and a deployment phase to deploy the evolved job.

1Note that a streaming job represents a dataflow graph, which can be modeled as a directed acyclic graph (DAG)

33

34 3. Stateful Dataflow Graph Evolution

Trigger phase
When some TRGR arrives, the context of the evolution needs
to be acquired. The context relates to the prerequisites of
the evolution process which are to be validated before start-
ing the evolution process. The TRGR can be said to act as a
gateway where incorrect contexts are aborted before start.
Until the diffing phase, only the software artifacts contain-
ing 𝐽1 and 𝐽2 are required. The complete evolution process
also containing the migration phase and deployment phase
requires a running instance of 𝐽1 in order to migrate any in-
compatible state during 𝑓(𝐽1) → 𝐽2. As stated in section 3.1,
a HTTP based trigger phase is implemented as detailed in
section 3.2.

Schema Generation phase
Using the software artifacts for 𝐽1 and 𝐽2, their schema rep-
resentation should be derived, respectively 𝑆1 and 𝑆2. The
schema representation bounds the potentially unbounded
set of attributes that can represent the DAG. As handles for
local state are registered at runtime, a new type of execution
context is introduced which proxies method invocations to
the native execution context. During the invocation of proxy
method, the request made by the callee is stored for retrieval
by the schema generation algorithm. The graph transforma-
tions 2 that are supplied to construct the DAG are replayed
in an abstract DAG context to build the schema.

Diffing phase
Having two schemas 𝑆1 and 𝑆2, for the evolution process
it is imperative that both versions of the schema are com-
pared to derive differences. As the schema contains at-
tributes with various data types, a diverse set of equality op-
erations should be used to determine the type of difference
of a specific attribute. This yields an evolution type, e.g. ad-
dition or removal, which drives the schema transformation
and schema analysis components to resolve the evolutions
by describing a set of transformations. This phase can thus
either yield a complete list of transformations resulting in an
empty 𝑆diff or abort the evolution process as the schemas are
incompatible.

Migration phase
During the migration phase, a global state view is acquired
from the running job 𝐽1. The schema transformations are ap-
plied on the global state to perform state migration.

Deployment phase
For demonstration purposes, an all-at-once deployment is
used which cancels the running job 𝐽1 (during the acquisition
of the global state) and starts the target job 𝐽2 hydrated with
the migrated state. The evolution process can be adapted to
use different migration and deployment strategies.

2Note that graph transformations are not equivalent to schema transformations

3.2. Trigger Phase 35

3.2. Trigger Phase
The component processing TRGR events acts as a provider of the evolution process functionality.
Using an HTTP based delivery method, the component processing the TRGR events can be referred
to as an endpoint. Consumers who conform the public API of the endpoint should be notified of any
end state that the evolution process may reach. This includes:

1. Prerequisites of the TRGR not being met

2. Failures due to errors in user supplied software artifacts

3. Failures due to errors in the evolution process

4. Successful evolution of the streaming job

HTTP endpoints can be triggered using libraries such as cURL [27] or GNU Wget [91]. Minimal
container images can be found on public repositories 3 with over a billion downloads. These publicly
provided images enable trivial communication between the continuous deployment processes as
discussed in section 2.2 and the evolution endpoint.

The endpoint acts as a governor of the evolution process. This implies that the endpoint drives
the invocation of the phase (or sub steps) when a stage has finished. In order to govern the process,
the endpoint needs to be able to derive the following three values:

1. A reference to the source software artifact location 𝐽1 and the arguments used to start 𝐽1

2. A reference to the target software artifact location 𝐽2 and the arguments used to start 𝐽2

3. A reference to a running instance of 𝐽1
If any of these values is unknown, the governor cannot be constructed and the endpoint notifies

the consumer that the operation is aborted.

3.3. Schema Generation Phase
Reaching the schema generation phase implies that for both the source and target version of the
streaming job, there is a reference to the source software artifact location and its corresponding
arguments. As described in section 2.7, a logical dataflow graph corresponding to job 𝐽 can be
represented as a directed acyclic graph (DAG). Directed graphs are pairs of (𝑁, 𝐸 ⊆ 𝑁 ×𝑁) where 𝑁
is a node in the graph and 𝐸 is a directed edge [34]. The DAG features a source node which emits
events through the graph and a sink for events leaving the graph.

While constructing a streaming job, the underlyingmodel is a set of transformations 𝑇 = {𝑡1, 𝑡2, 𝑡3, ..., 𝑡𝑛 , 𝑡𝑛+1}
to be iteratively applied on an empty graph 𝐺0 that yields the logical graph 𝐺𝑛+1. The nodes in the
graph contain a unique identifier which provides a stable reference for redeployments. When some
graph 𝐺 is restarted, the nodes are hydrated with state related to their unique identifiers.

In subsection 2.7.5, the various types of operators and user functions are described. These
operators relate to the specific implementation of Apache Flink but describe use-cases that are
generically applicable to other stream processing systems. The operators represent nodes in graph
𝐺. To generalize the possible nodes, the list of attributes collected for a node is specified in Table 3.1.
A node which is generalized to this set of attributes can be referred to as an abstract node

To extract non-state related attributes, transformation specific extractions are executed using the
transformations described in Table 2.8. Implicit operator state (see Table 2.10) is extracted with an
identical strategy as non-state attributes. State attributes are registered at runtime. To extract these
attributes, an extraction context is introduced which shadows the default context used to initialize
the state and the UDF. The extraction context is responsible for storing all method invocations on
the shadowed target. The extraction context can then be queried for state attributes. The process
of acquiring state handles is visualized in Figure 3.1.

3https://hub.docker.com/r/curlimages/curl

https://hub.docker.com/r/curlimages/curl

36 3. Stateful Dataflow Graph Evolution

Table 3.1: Attributes collected for a generic node 𝑁 in graph 𝐺

Attribute Optional Description
id no The unique identifier of the node
output type no The data type emitted to downstream nodes
transformation no The transformation used to transform the logical dataflow graph
name yes The human readable name of the node
input type yes The data type of incoming events
secondary input type yes The data type of a node receiving ≥ incoming edges
operator state yes State handles describing operator state
window state yes State handles describing window state
keyed state yes State handles describing keyed state
key type yes The data type of the key used to partition the stream
key selector yes The UDF to derive the key
operator yes The operator introduced to the graph
trigger yes Trigger used for window operators
watermark strategy yes The watermark strategy for timing events
evictor yes The evictor used for window operations
window assigner yes The assigner used for window operations
user function yes The UDF used by the operator
max parallelism yes The maximum amount of parallel operators

Figure 3.1: Extracting state from UDFs

Processing all transformations 𝑇 that would yield 𝐺𝑛+1 through the extraction process, yields
abstract nodes for each 𝑁 ∈ 𝐺. The edges do not relate to physical processing of events and the
functionality of the edges is captured in the attributes extracted in abstract operators. Dropping the
edges yields an underlying model of the schema 𝑆 as a set of abstract operators.

3.3.1. Transforming nodes in the schema
It is assumed that the generated schemas 𝑆1 and 𝑆2, for respectively 𝐽1 and 𝐽2, differ in some abstract
node with unique identifier 𝑖: 𝑁𝑖1 ≠ 𝑁𝑖2 4. To make progress towards the desired end result of 𝑆diff = ∅,
𝑁𝑖1 is to be transformed to better match 𝑁𝑖2. As each transformation on the source schema makes
progress towards 𝑆diff = ∅, repeatedly applying transformations eventually converges at 𝑆diff = ∅.
4If no such node exists, the schemas are equivalent at which point the evolution process can simply stop

3.4. Diffing Phase 37

A transformation 𝑡 features a predicate for the source schema and target schema which uniquely
specifies the abstract node and its corresponding attribute. The second feature of a transformation 𝑡
relates to the actual mutation on the schema. A mutation might introduce new values for attributes,
update an existing value or remove an attribute value. An example transformation where a broad-
cast state handle data type is changed from {long, long} to {string, string} can be seen in Listing 3.1.

Listing 3.1: state migration of broadcast state

val s = new TupleTypeInfo[Tuple2[Long, Long]](of(classOf[Long]), of(classOf[Long])) // source type
val t = new TupleTypeInfo[Tuple2[String, String]](of(classOf[String]),of(classOf[String])) // target type
val migration = StateMigration.broadcast()

.setSource(CATEGORIZE_BIDS_UID, BROADCAST_NAME)

.setTarget(CATEGORIZE_BIDS_UID, BROADCAST_NAME)

.map(s, t,(m: Tuple2[Long, Long]) => new Tuple2(m.f0.toString, m.f1.toString))

3.4. Diffing Phase
The attributes collected in Table 3.1 can be interpreted as a set of key-value pairs (𝐾, 𝑉) where 𝐾
is the attribute name and 𝑉 the attribute value. When provided with two sets of (𝐾, 𝑉) pairs, the
underlying difference in schema can be represented by three change primitives: addition, removal,
and update. Consider the following mapping:

𝑓𝑠𝑜𝑢𝑟𝑐𝑒 ∶ 𝐾𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑉𝑠𝑜𝑢𝑟𝑐𝑒 (3.1)

𝑓𝑡𝑎𝑟𝑔𝑒𝑡 ∶ 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 → 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 (3.2)

Additions are key-value pairs for some key that exists in 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 but not in 𝑓𝑠𝑜𝑢𝑟𝑐𝑒. Removals are
key-value pairs for some key that exists in 𝑓𝑠𝑜𝑢𝑟𝑐𝑒 but not in 𝑓𝑟𝑜𝑜𝑡. Updates are key-value pairs for
keys that are identical between 𝑓𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 but contain different values:

𝐶addition = {(𝑘, 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑘)) ∶ ∀𝑘 ∈ 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 ∧ 𝑘 ∉ 𝐾𝑠𝑜𝑢𝑟𝑐𝑒} (3.3)

𝐶removal = {(𝑘, 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑘)) ∶ ∀𝑘 ∈ 𝐾𝑠𝑜𝑢𝑟𝑐𝑒 ∧ 𝑘 ∉ 𝐾𝑡𝑎𝑟𝑔𝑒𝑡} (3.4)

𝐶update = {(𝑘, 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑘), 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑘)) ∶ ∀𝑘 ∈ 𝐾𝑠𝑜𝑢𝑟𝑐𝑒 ∧ 𝑘 ∈ 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 ∧ 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑘) ≠ 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑘)} (3.5)

The set of 𝐶update can be non-trivial to determine. Equality checks for functions can be based on
an abstract syntax tree (AST) comparison but in general would require solving the halting problem
which is proven to be algorithmically unsolvable [23]. Updates on non-primitive data types are
assumed to be handled using a data structure evolution mechanism. An example data format that
implements these evolution mechanisms is Apache Avro [90], supported by major event streaming
platforms such as Apache Flink, Apache Spark, and Apache Kafka

The change primitives are captured in either unary evolutions or binary evolutions. Unary evo-
lutions rely on a single schema to capture the change while binary evolutions require values from
both a source and target schema. Finally, three additional meta change types are introduced that
simplify the evolution process: unchanged, unknown, and move. The evolution types are listed in
Table 3.2.

3.4.1. Deriving (implicit) transformations for schema compatibility
Note the two previously defined types of transformations to be applied to the schema from sec-
tion 3.1: explicit and implicit. In Listing 3.1, an example of an explicit transformations is shown.

The source schema 𝑆1 is transformed using the set of explicit transformations 𝑇explicit ⊆ 𝑇. It
is assumed that for the remainder of this section, 𝑇explicit ⊂ 𝑇 such that 𝑇implicit ≠ ∅. To derive
the transformations, the various types of evolution scenarios needs to be defined. Common evolu-
tion scenarios are defined by Jong, Deursen, and Cleve [51] and can be found in Appendix A. The
scenarios are mapped to a streaming state model:

38 3. Stateful Dataflow Graph Evolution

Table 3.2: Evolution types

Type of Evolution Type of Change Description
Unary Addition Key that exists in target schema but not in source
Unary Removal Key that exists in source schema but not in target
Unary Unchanged (𝑘, 𝑣) pair that is identical in source and target
Unary Unknown Change on non-comparable type
Binary Changed Different value for identical keys in source and target
Binary Moved Same value for different keys in source and target 5

• S1: Adding a state handle to an operator stateless

• S2: Renaming a state handle stateful

• S3: Dropping a state handle stateless

• S4: Modifying the datatype of a state handle stateful

• S5: Renaming an existing operator stateful

Note that scenarios featuring foreign keys, nullable values or default values are excluded from the
listing. These are features specific to the persistence model used by Jong, Deursen, and Cleve [51].

Two additional common scenarios related to stream processing services are identified by Bartnik
et al. [20]:

1. S6: Introduction of new operators stateless

2. S7: Changing the operator function stateless

Based on empirical usage, the following additional scenarios are identified:

1. S8: Removal of an operator stateless

2. S9: Changing the key selector function stateful

The scenarios tagged as stateless can often be captured using unary evolutions. State handles are
registered using UDFs, as the UDF is part of the source and target schema, the evolution can be
implicitly resolved. The introduction and/or removal of new operators relates to the propagation
of events through the DAG which can implicitly be resolved based on the schema. This holds for
both a stop-and-restart deployment as well as a pause-and-resume deployment as demonstrated
by Bartnik et al. [20].

Renaming a state handle (S2) and renaming an existing operator (S5) are binary move evolu-
tions. This is a special case of a unary addition evolution and a unary removal evolution. This
special relationship between two unary evolutions can only be explicitly defined.

Modifying the data type of a state handle can be handled implicitly based on the source data
type and the target data type. When both types are primitives an implicit mapping 𝑓(𝑠) → 𝑡 can be
defined which migrates physical state from the source data type to the target data type. Note that
although such a mapping can exist between two data types, the underlying physical state should
be compatible with the expected mapping input format. For example, a numerical value stored as a
list of characters can be mapped to a numerical data type based on the assumption that no single
character is of a non-numerical value. A full table containing mappings is shown in Table 3.3.

Updating the key selector might resolve in the key being of a changed data type. The state
persisted scoped to a specific key needs to be re-keyed based on the new key selector output type.
The re-keying can be resolved implicitly based on the mappings provided in Table 3.3 or be explicitly
supplied.

3.4. Diffing Phase 39

Table 3.3: Data type mappings

Datatype Mappings
soure target mapping
short int,long,float,double cast
short boolean (v: short): boolean -> v == 1
short String (v: short): String -> String.valueOf(v)
int short,long,float,double cast
int boolean (v: int): boolean -> v == 1
int String (v: int): String -> String.valueOf(v)
long short,int,float,double cast
long boolean (v: long): boolean -> v == 1
long String (v: long): String -> String.valueOf(v)
float short,int,long,double cast
float boolean (v: float): boolean -> v == 1.0
float String (v: float): String -> String.valueOf(v)
double short,int,long,float cast
double boolean (v: double): boolean -> v == 1
double String (v: double): String -> String.valueOf(v)
boolean short (v: boolean): short -> (v == true) ? 1 : 0
boolean int (v: boolean): int -> (v == true) ? 1 : 0
boolean long (v: boolean): long -> (v == true) ? 1 : 0
boolean float (v: boolean): float -> (v == true) ? 1.0 : 0.0
boolean double (v: boolean): double -> (v == true) ? 1.0 : 0.0
boolean String (v: boolean): String -> String.valueOf(v)
String short (v: short): boolean -> Short.parseShort(v)
String int (v: short): boolean -> Integer.parseInt(v)
String long (v: short): boolean -> Long.parseLong(v)
String float (v: short): boolean -> Float.parseFloat(v)
String double (v: short): boolean -> Double.parseDouble(v)
String boolean (v: short): boolean -> Boolean.parseBoolean(v)

40 3. Stateful Dataflow Graph Evolution

Provided the source schema 𝑆1 and target schema 𝑆2 with some set of explicit transformations
defined where 𝑇explicit ⊂ 𝑇. Transforming the source schema using 𝑇explicit yields 𝑆explicit. Given that
𝑆explicit ≠ 𝑆2 it must hold that:

(𝐶addition ≠ ∅) ∨ (𝐶removal ≠ ∅) ∨ (𝐶update ≠ ∅)

Categorize a change {𝑐 ∶ 𝑐 ∈ 𝐶addition or 𝑐 ∈ 𝐶removal or 𝑐 ∈ 𝐶update} based on scenario S1-S9 to a
transformation 𝑡𝑐. Apply the transformation to the schema using 𝑡𝑟𝑎𝑛𝑠(𝑆𝑖 , 𝑡𝑐) → 𝑆𝑖+1. The process
repeats by re-diffing the new schema 𝑆𝑖+1 with 𝑆2 yielding new 𝐶addition, 𝐶removal and 𝐶update for which
a change can be categorized and processed.

The process of deriving these transformations halts when:

(𝐶addition = ∅) ∧ (𝐶removal = ∅) ∧ (𝐶update = ∅)

Implying that no changes are left to process and 𝑆𝑖+1 = 𝑆2. The following is intermediate output
of the evolution process when 𝑆𝑖+1 = 𝑆2. The example shows an execution plan with the changes in
schema identified between the source and target version 6:

transformations.KeyedBroadcastStateTransformation(categorize-bids) {
key type : Long

? key selector : DataStream$$anon$2
maxParallelism : -1
types {

input : PojoType<Bid>
output : Java Tuple2<Long, Long>

}
broadcast state {
~ categories : MapStateDescriptor[Map<Long, Long>] -> MapStateDescriptor[Map<String, String>]
}

}

operators.StreamMap(average-price) {
~ user function : AveragePriceCategory -> AveragePriceCategoryV2
~ key type : Long -> String
? key selector : DataStream$$anon$2

maxParallelism : -1
types {

input : Java Tuple2<Long, Long>
output : Java Tuple2<Long, Double>

}
keyed state {

count : ValueStateDescriptor[Integer]
average : ValueStateDescriptor[Double]

}
}

Applying the following explicit migrations:
[0] - MapStateMigration

categorize-bids.categories[Java Tuple2<Long, Long>] ->
categorize-bids.categories[Java Tuple2<String, String>]

Applying the following implicit migrations:
[1] - MapKeyTypeMigration average-price -> average-price

6Classes are shortened to only show the class name in the example, no package information or additional attributes.

3.5. Migration phase 41

3.5. Migration phase
During migration, the transformations 𝑇 = 𝑇explicit ∪ 𝑇implicit are used to (re)-process the managed
state. The performed work builds on a stop-and-restart deployment mechanism. With such a mech-
anism, processing the underlying physical state is sufficient for the evolution process. Previous work
[20] has shown that injecting special events in the event stream can be used for live reconfiguration
using pause-and-resume deployments. The migration phase assumes a global state view 𝑉 for 𝐽1.

Reflect on the running streaming job modeled as a set of operators 𝑂 = 𝑜1, 𝑜2, 𝑜3, ...𝑜𝑛. With a
stop-and-restart deployment, the state migration can occur in an offline scenario. A strategy for
migrating the state of a single operator 𝑜 ∈ 𝑂 can be repeated until all operators have successfully
migrated.

The state migration process can be modeled as a special DAG 𝐽processor where the event propaga-
tion (including the keying and partitioning) is mimicked from the original and the nodes are operators
containing mapping functions. Replaying the state contained in the source job 𝐽1 through 𝐽processor
yields the new state which can be used for the stop-and-restart deployment. Apache Flink provides
a state processing API which is used as a runtime for the state migration.

To construct an operator 𝑜 for 𝐽processor, acquire the source operator 𝑜1 from 𝑆1 and the target
operator 𝑜2 from 𝑆2. The state handles from 𝑜1 can be referred to as 𝐻. These state handles relate to
the state stored for the operator including operator state, keyed state, window state, and broadcast
state. Acquire all transformations 𝑇𝑜1 = {𝑡 ∈ 𝑇|𝑜1𝑢𝑖𝑑 = 𝑡𝑢𝑖𝑑}. Apply the transformations 𝑇𝑜1 on 𝐻:

1. transformation for S3: dropping a state handle: remove the state handle from 𝐻

2. transformation for S1, S2, S4-S9: 𝐻 does not change

Using 𝐻, acquire a dataset of events from 𝑉 specific to the operator 𝑜: 𝑉𝑜. If 𝑇𝑜1 contains a
transformation for S9 (changing the key selector), map the acquired keyed events to the new data
type. Use 𝑉𝑜 to replay events on amini DAG specific to operator 𝑜. The operator 𝑜 contains the same
unique identifier as 𝑜2 (such that when 𝐽2 is started, the corresponding state is properly hydrated).
𝑜 contains the mapping functions to process S4 (changing the data type of a state handle).

This process is repeated for all operators in 𝑂 yielding 𝐽processor. 𝐽processor is executed in an offline
context as a bounded stream (note that the state of 𝐽1 is finite). Once 𝐽processor finishes, the state is
properly migrated to match the schema 𝑆2. The migrated state can be referred to as 𝑉migrated.

3.6. Deployment phase
During deployment of 𝐽2, attach the migrated state 𝑉migrated. The various deployment strategies
discussed in section 2.3 can be used for the redeployment of 𝐽2. The performed work builds on an
all-at-once deployment model where 𝐽1 is stopped during the creation of 𝑉. Once 𝑉migrated is ready,
𝐽2 is started. If the deployment of 𝐽2 fails, 𝐽1 can be restarted with 𝑉. The all-at-once migration com-
plies with exactly-once processing semantics as no new input can cross the checkpointing barrier
introduced in the event stream during the creation of 𝑉 7.

3.7. Limitations of the stream evolution process
The performed work builds on the State Processing API provided by Apache Flink. Limitations of the
State Processor API include:

• Broadcast state must fit into memory of the task manager responsible for processing the state
migration

• Only new operators can be added to an existing savepoint

This implies that updating the schema of an operator results in total state migration. Stream
processors can run for long periods of time and accumulate terabytes of state. Total (re)-processing

7Note that the checkpointing, savepointing and restart with savepoint mechanisms already exist in Apache Flink. The demon-
strated deployment phase uses these existing mechanisms for deployment

42 3. Stateful Dataflow Graph Evolution

of state can take a long time to process. When part of the schema changes, all underlying state
impacted by the schema evolution is re-processed. Mehta, Spooner, and Hardwick [57], discussed
in section 2.4, mention that state should not be re-processed upon evolution of the schema. Their
criteria are based on the incompatibility between shared objects. The proposed notion of dynami-
cally modifying the stored objects [57] can be used to avoid the need for total re-processing of state
but rather re-process on demand. This approach does suffer a runtime performance cost.

Because the state migration uses an all-at-once approach, there is no intermediate schema rep-
resentation that can be queried. This implies that transformations which rely on previous trans-
formations in the same evolution process should be applied consecutively. Database management
systems execute statements immediately or virtually if part of a transaction. Subsequent state-
ments use the modified version of the schema.

The evolution process relies on explicit transformation to be available to handle binary evolution
scenarios. When evolving a data structure, an evolution mechanism such as Apache Avro [90] can
be used. Implicit transformations could also be derived from mappings on the data structure level
based on:

1. Generic serialization scheme such as toString

2. Generic builder pattern such as public <target> from<source>(value: <source>){} where source
and targets refers to some data type. For example public NewPerson fromPerson(o: Person){}
where the data type has changed from Person to NewPerson.

The proposed evolution process targets schema evolution. As such, only state which exists in the
stateful dataflow graph is taken into account. This can be compared to the distinction between the
set of DDL statements versus DML statements in SQL. The schema can be altered implying that the
underlying state is made compatible, but no alterations that do not relate to schema compatibility
are executed. With an 𝑥 amount of physical state elements in the source schema (rows in relational
databases), the target state will also contain 𝑥 elements. In section 4.3, open-source projects are
discussed which elaborate more on the difference. Hydrating state from external systems or files
stored on a filesystem is not supported.

Renaming a state handle (S2 as defined in section 3.4) could be applied cross operator. On
partitioned streams however, the state is often stored relative to the partition key (note that the
key is stored as part of the state schema in Table 3.1). When moving state cross-operator where
the source operator has a different key type with respect to the target operator, the state should be
re-keyed. Non-partitioned state does not have this limitation. Based on these challenges, renaming
state handles cross operator is left out of scope.

The state attribute extraction mechanism visualized in Figure 3.1 does not proxy to a runtime
environment during the evolution phase. During evolution, these runtime attributes are not known.
The stop-and-restart mechanism handles the state migration in an offline scenario such that the
runtime context is not required. To use the schema with dynamic reconfiguration, e.g. using pause-
and-resume, the extraction context should proxy to the runtime context. The extraction context
should be cleared and re-calculated on each reconfiguration of the runtime context that the extrac-
tion context proxies.

The performed work does not feature migration of window state or iterative streams.

4
Evaluation

This chapter will elaborate on the evaluation of the work and conducted experiments. In section 4.1,
the setup to evaluate correctness is described. In section 4.2, the NEXmark benchmark [87] is
described and executed with hypothesized changes.

4.1. Evaluating the correctness of the evolution process
In order to validate correctness of the generated schemas, synthetic streaming jobs are created con-
taining state. These streaming jobs attempt to capture all scenarios described in subsection 3.4.1
for various state types and state descriptors.

To generate events for the experiments, a custom source function is introduced. The custom
source function uses the TypeTag feature of Scala to know the generic datatype used to instanti-
ate the class at runtime. The source function then emits an event every 1 second with a random
value using the Java Random class. To construct strings, 5 characters are drawn from a distribution
containing only letters.

When the scenario relates to a keyed stream, a custom key selector is used which partitions the
incoming stream into two output streams. For natural numbers, the stream is partitioned into even
and odd. For real numbers, the stream is partitioned into > 0 or ≤ 0. Booleans are partitioned based
on their truthiness. For strings, the sum of alphabetical indices is used to yield a natural number.
The natural number is then again used to partition into odd or even.

The sink of the scenario stores all incoming values in a generic key-value store. The store is
available statically while the results are queryable using the unique identifier of the sink. This allows
the extraction of both the key-value pairs from the source dataflow graph as well as the target
dataflow graph.

To simulate keyed state, a custom version of the RichMapFunction interface is used. The RichMap-
Function is an extension of the AbstractRichFunction interface which provides access to the state.

• ValueState is created by persisting the latest event

• ListState is created by creating a buffer of length 5 and persisting the latest event at a random
position

• MapState is created by persisting the latest event as both the key and the value

• ReducingState is created by retaining either the latest event or the previously retained value

To create operator state, a custom version of the MapFunction interface is used which implements
the CheckpointedInterface. The operator tracks the latest value that is mapped. When the snap-
shotState lifecycle hook is called, the latest event is persisted. BroadcastState is created using a
custom version of the BroadcastProcessFunction. BroadcastState uses the MapState data structure
and thus relies on the same implementation as described above.

43

44 4. Evaluation

When creating window state, a custom reduce function implementing the ReduceFunction inter-
face is used. On each reduce call, a random value of the two incoming values is selected to be
kept.

4.2. NEXmark benchmark
The NEXmark benchmark features eight different real world streaming query scenarios as described
in [87]:

• Q1 — Currency conversion

• Q2 — Selection

• Q3 — Local Item Suggestion

• Q4 — Average Price for a Category

• Q5 — Hot Items

• Q6 — Average Seller Price by Seller

• Q7 — Highest Bid

• Q8 — Monitor New Users

Query 1 is used to measure the redeployment time of a real world change when no state is
involved. A hypothesized change is introduced to the query which then runs the evolution pro-
cess. Query 4 is used to measure the deployment time when state migration occurs. Hypothesized
changes are introduced which affect the keying of the event stream and the state related to catego-
rizing bids.

4.2.1. Experimental Setup
Query 1 streams a bounded list of events. An event can either be a bid placed for some auction by
some person, a new person entering an auction, or a new auction which has started. The source
node in the dataflow graph generates these events based on a generator supplied by Apache Beam
[62]. The source stream is connected to a flat map operation which filters all non-bid events. This
yields a stream of solely bids. The bid stream is then mapped where each bid is converted using an
artificial conversion rate to now contain a price in euros instead of dollars. The converted bids are
finally sent to a sink for storage. The entire dataflow graph is stateless and can therefore be used to
measure the impact of the stop-and-restart approach agnostic to the contained state. The result is
visualized in Figure 4.1.

Figure 4.1: Query 1 ‘migration’

4.3. Github projects 45

Table 4.1: Query 4 experiment parameters, state sizes and timings.

Events Resulting state size (MB’s) (re)-processed rows SWS (ms) GP (ms) M (ms)
1.000 0,00556 62 18 ± 2.00 9 ± 3.63 2192 ± 21.47

1.000.000 0,942 60.010 91 ± 1.49 9 ± 2.72 2256 ± 17.35
10.000.000 9,15 600.010 176 ± 51.71 11 ± 2.16 4069.5 ± 60.21
25.000.000 22,8 1.500.010 217 ± 33.48 13 ± 3.63 7254.4 ± 515.83
50.000.000 45,7 3.000.010 273 ± 45.35 13.5 ± 5.19 11941 ± 1362.97
100.000.000 91,5 6.000.010 619 ± 91.14 27.5 ± 3.32 22693.5 ± 760.82

Query 4 is more complex and requires state. In a similar fashion as query 1, a source node
is created. Two flat map operations are attached to the source stream. The first flat map filters
all non bid events resulting in a stream of solely bids. The second flat map filters all non-auctions,
resulting in a stream of solely auctions. The bid stream is keyed based on the unique identifier of the
auction. The auction stream describes a broadcast state descriptor which will provide a lookup map
for an auction identifier to a category. The broadcast stream is connected with the bid stream and
a process operator is applied which will process incoming bids, use the broadcast state to derive a
category for the bid and output a tuple of the category and price. The resulting tuple stream is keyed
based on the category to maintain state solely for the categorical keys. This keyed stream is then
mapped with a rich map operator which tracks the amount of bids for some specific category and
the current average. For each incoming bid, the counter is increased and the average recalculated
before being persisted as keyed state. The map operation returns a tuple of the category and the
current average which is sent to a sink.

The experiment is repeated for a monotonically increasing number of events generated by the
NEXmark generator. The parameters, sizes, and timings are reported in Table 4.1. A visualization is
shown in Figure 4.2. SWS, GP, and M are respectively stopping with savepoint, generate plan, and
migrating.

The results as shown in Table 4.1 are achieved using a Ryzen 7 3700X running under WSL2 in
Windows 10. The state is persisted to an Intel 660p 1TB drive. The JVM is warmed up by running
the test once without using the results. This is repeated ten times for each configuration yielding
the mean and standard deviations as reported in Table 4.1. From Table 4.1, it can be seen that the
stopping with a savepoint increases with the amount of events processed. Interestingly enough,
generating a plan (GP) for evolution takes longer the more events are processed. The timings are
reported in milliseconds, so minor changes in the availability of resources can highly impact the
reported latencies. The reported timings show that there is a minimum latency of approximately 2
seconds when migrating state. This is the result of initializing the migration execution environment
for the state processor API. The latency induced by reprocessing state scales approximately linear to
the amount of rows processed (and resulting state size). The generate plan phase deviates slightly
although this time is assumed to be stable (the dataflow graph does not change). The timings are
reported in milliseconds, minor deviations in available system resources can impact this phase such
as remaining garbage collection.

4.3. Github projects
Github 1 is used to find projects using the state processor API. The deployment mechanism, de-
scribed in section 3.6, uses the state processor API to deploy the target application with updated
state. Projects are selected based on the search term BootstrapTransformation or OperatorTransformation.
Results where the project is a fork of Apache Flink or contains the Apache Flink codebase are ex-
cluded from the table in Table 4.2.

The vip-Augus/flink-learning-note Github project, contains a custom transformation class named
OperatorTransformation. This is unrelated to the state processing API and excluded from the ta-
ble. The leonardBang/flink-sql-etl Github project only contains a SavepointMetadata file referencing

1https://github.com

https://github.com

46 4. Evaluation

Figure 4.2: Query 4 migration for 1.000.000 events

Table 4.2: Github projects using the State Processor API

Project Name Search Term 2 Schema State
streamnative/pulsar-flink-state-migrate BT,OT depends depends

ChenShuai1981/flink190 BT,OT yes no
minmay/flink-patterns BT,OT yes no
hqbhoho/learn-bigdata BT,OT yes no

alpinegizmo/timing-explorer BT no no
segmentio/flink-state-management OT yes no

wikimedia/wikidata-query-rdf OT yes no
peterdeka/stateproc OT yes no

bootstrap transformation. This file does not use the state processing API and is excluded from the
table. In cheegoday/flink_djg and mumudong/forfun, a savepoint is written to and read from but no
corresponding job is present. These projects are excluded from the table.

In Table 4.2 the Schema column represents the hypothesis that the schema can be extracted
from the job. The State column represents whether the state can be migrated using the performed
work described in chapter 3. Note that the Schema and State columns are the expected outcome
by performing a static analysis on the Github project. These analysis are explained per project in
subsection 4.3.1 and subsection 4.3.2.

Addition of an operator is an identified evolution scenario (see section 3.4). Addition of an oper-
ator can however be subdivided into hydrated addition and non-hydrated addition. This partitioning
is important for the discussed Github projects as the performed work and schema migration assume
pre-existing state. The state processor API can also be used to initialize an operator with not previ-
ously existing state. The projects are categorized into either one of these partitions and discussed
separately.

4.3.1. Pre-existing state migrations
streamnative/pulsar-flink-state-migrate handles the migration of the pulsar-flink-connector. The mi-
gration cannot be reproduced using the unary and binary schema evolution models as the new state
handles depends on data from multiple sources combined using a cross join. When the pulsar-flink-
connector subName’s exist in the source, the dataflow graph evolution can be captured using:

4.3. Github projects 47

val s = new TupleTypeInfo[Tuple2[String, MessageId]](
of(classOf[String]), of(classOf[MessageId]))

val t = new TupleTypeInfo[Tuple2[TopicSubscription, MessageId]](
of(classOf[TopicSubscription]), of(classOf[MessageId]))

StateMigration.operator()
.setSource(”uid”, ”topic-partition-offset-states”)
.setTarget(”uid”, ”topic-offset-states”)
.map(s, t, (f: Tuple2<String, MessageId>) =>

Tuple2.of(TopicSubscription.builder().topic(tuple2.f0).build(), tuple2.f1)
)

In alpinegizmo/timing-explorer, the state backend is changed. Using the same-code approach
to migrate the state backend, a replication of the current data stream is mimicked in the state
processing API environment. All previously existing state is extracted from an existing savepoint
and rewritten to a new savepoint of the updated state backend. While the evolution process of
chapter 3 can extract and re-add the state and even derive all state handles implicitly (unchanged
is a special type of unary evolution), the implemented version does not support changing state
backends as state backends are of a unified format since Apache Flink 1.13.

In segmentio/flink-state-management, the schema remains unchanged but can be derived from
the job. The state processor is used to filter previously existing state, this is a type of DML operation
while the performed work targets DDL migrations.

4.3.2. Non existing state hydration
ChenShuai1981/flink190 implements a BootstrapStateProcessorApiDemo for self learning purposes.
Instead of using an existing savepoint to extract state from, the state is defined inline as a list of
values. Ignoring the hydrated state, the evolution can be captured explicitly using:

StateMigration.global()
.setTarget(”currency_converter”)
.addition()

StateMigration.global()
.setTarget(”summarize”)
.addition()

Note that the addition and removal of operators without previous state can already be resolved
implicitly by an unmodified version of Apache Flink 1.12. A similar procedure is applied inminmay/flink-
patterns where the state is extracted from an external system using JDBC. Ignoring the extracted
state, the evolution can be captured using:

StateMigration.global()
.setTarget(”boot-strap”)
.addition()

Similarly, peterdeka/stateproc, hqbhoho/learn-bigdata andwikimedia/wikidata-query-rdf only hy-
drate state. In peterdeka/stateproc, a stream of serialized objects is read from a file as a tuple
containing five elements. The tuples are hydrated to a new operator which maintains three state
handles. In wikimedia/wikidata-query-rdf, the UpdaterBootstrapJob reads Apache Kafka offsets from
a CSV file and hydrates the offsets to an operator.

5
Conclusion

To conclude the thesis, the established research questions, as defined in section 1.6, are answered.

• RQ1 — How can a stateful dataflow graph be transformed to a state schema?

In chapter 3, the outline of generating the stateful dataflow graph schemas is provided. An
implementation is provided for a modified version of Apache Flink using static software artifacts. In
section 3.3, the attributes of the stateful dataflow schema are listed which refer to dataflow graph
properties such as partitioning, windowing and processing. The provided implementation relies on
the user code exposing access to the native transformations which construct the stateful dataflow
graph 1. These transformations contain either statically the collected attributes or provide runtime
access which are collected using an extraction runtime environment. The result is a state schema
based representation of the stateful dataflow graph.

• RQ2 — Given a state schema for a stateful dataflow graph, what evolution scenarios exist?

The discretized evolution scenarios on the schema are defined in section 3.4. The scenarios are
based on common evolutions in the relational database domain [51], research on dynamic reconfig-
uration [20], and empirical usage. The scenarios can be roughly categorized into stateful evolutions
(S1-S4), operator evolutions (S5-S8), and partitioning evolutions (S9). The collected attributes that
are part of the schema reflect the attributes required to explicitly define (or implicitly derive some
of) these evolutions.

• RQ3 — Which transformations can be derived without user intervention that migrate state for
stateful dataflow schema evolutions?

Using the schema, diffing can be applied on two instances of the schema, a process detailed in
section 3.4. Based on a view of what has changed between two instances of a schema, mappings
of primitive evolutions can be derived. The predefined set of evolution scenarios allows scoping of
the possible set of analyses to perform on the two schema versions. The remaining question is then:
what scenarios support implicit migration and what are their constraints? In subsection 3.4.1, for
each scenario their implicit behavior is discussed. With the defined set of discretized evolutions,
the unary evolutions are possible to implicitly derive (addition, removal) while binary migrations
(update, move) require explicit definition. In section 6.3, a probability model for deriving implicit
transformations is discussed.

• RQ4 — How can two instances of stateful dataflow graph schemas be used for (dynamic)
reconfiguration?

1Note that these transformations refer to the construction of the DAG, not transformations on the schema.

49

50 5. Conclusion

The implementation described in section 3.5 demonstrates a stop-and-restart reconfiguration
using the code-to-schema approach. The re-processing of existing state in a stateful dataflow graph
with respect to Apache Flink is categorized as same code, described in subsection 2.5.2. Instead
with a code-to-schema approach, a stateful schema view on the running instance of the dataflow
graph can be used for extraction of existing state. The view on the target schema of the running
job is available, where the state should be loaded into. The transformations that were defined using
either explicit definition or implicit derivation represent the transforming of the state before loading.
On a high-level, the stop-and-restart follows an extraction-transform-load (ETL) process.

Advantages of the code-to-schema approach opposed to the same-code include expressiveness
and fault tolerance:

• expressiveness — as only evolution scenarios have to be described. Implicitly derivable
evolution scenarios can even be left out. In the same-code model, to hydrate state, all state
should be explicitly defined. To define evolution scenarios, only the conversion of data types
uses custom user defined implementations. The definition is agnostic to the re-processing
model used as opposed to the same-code which currently explicitly targets stop-and-restart
reprocessing.

• fault tolerance — as the generated schema captures and validates evolution scenarios.
When evolving the state schema using the same-code approach, a human-error in the defi-
nitions of state descriptors can go unnoticed as no validation.

Disadvantages of the code-to-schema approach opposed to the same-code include flexibility:

• flexibility — as the same-code approach directly uses the state processor API with complete
manual control over the re-processing. For example, hydration of not pre-existing state. When
operators are removed or added, the re-processing can modify an existing savepoint instead
of creating one. The code-to-schema approach (or the underlying libraries) can be improved
to support these operations, see section 6.3.

The problem statement in section 1.4, illustrated the problem of (dynamic) reconfiguration and the
research topics this thesis covered. With the high load, i.e. 50 million deployments in 12 months
[89], the need for a runtime of SFaaS applications to support evolutions becomes clear. The per-
formed work hopes to contribute to the road of being able to use distributed stream processors as a
runtime with a higher fault tolerance and expressive evolution syntax.

6
Discussion

In this chapter, a discussion on the implemented techniques is provided. This discussion will bridge
some of the discussed background material and related work with the process proposed in chapter 3.
The proposed pipeline can be viewed as a proof of concept on stateful dataflow graph evolution,
engineering challenges not related to the execution of the proposed job evolution pipeline were left
out and will be discussed in this chapter.

6.1. Comparison to graph based schema evolution
With a stateful dataflow graph represented as a DAG, it seems like a logical step to resolve differ-
ences using graph theory. This concept is used in Terraform [83] where infrastructure for public cloud
providers is modeled as a DAG. In Terraform, the future state of the infrastructure is referenced as
‘Config’ while the current state is simply referred to as ‘State’. The state is described using HCL
[40], a configuration format for blocks of (hierarchical) key-value pairs. A graph can be constructed
by defining relations between blocks. On the node level, the attributes of a node are compared on
a key-value basis and reduced to change primitives. Similarly, the HyperGraph model [56] models
a state schema of a relational database where edges represent inter-node relations. The nodes in
distributed stateful dataflow graphs do not contain relations to other nodes. The DAG model is used
to describe the passing of events, not the management of state. Without relations between nodes,
the state schema can be modeled as a set instead of a graph.

6.2. Contributions
The main contributions of this thesis can be summarized into two parts. First, a design and imple-
mentation are shown that derive state schemas from stateful dataflow graph definitions. Second,
the state schema definitions are used to determine incompatible state and reprocess state in case
of evolutions. As the schema generation steers the state migration, the evolution process can be
referred to as code-to-schema.

Apache Flink provides the business logic to create and run stateful dataflow graphs. The Apache
Flink State Processor API provides low-level manual control over the state contained in stateful
dataflow graphs by manipulating or hydrating operators. For the stateful dataflow graph process,
an abstraction is created on top of the Apache Flink dataflow graph definition which exposes the
execution environment and explicit migrations. This is what enables the code-to-schema approach
as the schema is directly read from the dataflow graph definition. The remainder of the process in-
cluding the REST endpoints are part of the newly developed flink-migrate package part of the mod-
ified Apache Flink codebase. The package is tested through the created flink-end-to-end-tests/flink-
migrate-test package. The tests represent evolution scenarios.

The work performed by Ottenwälder et al. [65], developing a Migration Plan to migrate stateful
operators, resembles a similar strategy towards schema-like migrations. Their implementation dif-

51

52 6. Discussion

fers in that themigration plan describes the future states of operators without a global state schema.
Themigration plan assumes immutable data where the code-to-schema evolution is designed to also
reprocess data.

The work of Bartnik et al. [20] describes dynamic reconfiguration using the pause-and-resume
deployment approach. The discussion mentions that the approach has as an advantage over stop-
and-restart that in-flight events during cancellation cannot be guaranteed to be exactly once pro-
cessed. This behavior has changed with the introduction of stop with savepoint by Apache Flink [1].
This means that both approaches can guarantee exactly once processing semantics. The work uses
the concept ofmodification markerswhich are injected into the data stream containing the modifica-
tions of the dataflow graph. No explanation other than that the modification marker is constructed in
a Modification Coordinator is provided. Additionally, the state migration does not reprocess existing
state. If the UDF contains state handles not backwards compatible with the previous UDF, the state
migration fails. In the code-to-schema approach, this is handled through transformations attached
to the evolution scenario.

6.3. Future improvements for Apache Flink
When sending a TRGR to invoke a job evolution process, the performed work asserts a trust on
the supplied arguments. The software artifact used to start 𝐽1 should instead be derived from the
running instance. The target software artifact should also be uploaded to a location accessible by
the stream processor. From the perspective of the stream processor, there is no versioning scheme
in place that handles evolutions. An evolution takes a source and evolves to a target. Both the
storage and versioning can be resolved using registries.

Versioning and distribution of software artifacts is often handled through registries. Common
traits of registries are a namespace, identifier, and versioning scheme of the uploaded artifact.
The DockerHub image registry has already been discussed. Other notable package managers are
the Node Package Manager (NPM), The Python Package Index (PyPi), Maven Central, and Advanced
Packaging Tool (APT).

A runtime using such a registry can track the artifact used to deploy a running instance of the
job. The Amazon Web Services (AWS) platform provides the Elastic Container Service (ECS) 1 which
bridges the gap between stored artifacts and a runtime using Task Definitions [4]. A Task Definition
contains references to required software artifacts, infrastructural components, and runtime param-
eters.

Two new additions to Apache Flink would allow a similar process in Apache Flink. A registry and
a service executor. The registry is where developers would upload packaged applications with a
version identifier and the service executor manages the jobs lifecycle. The service executor loads a
service definition describing execution semantics of the service to run such as the software artifact
and its version. Updating the service definition allows for a new deployment which is managed by
the service executor. A service executor acts as a gateway for a single service. The service executor
can provide the locking mechanism required to block parallel evolutions of a service. The locking
mechanism restricts additional evolution processes to be invoked while a job is under evolution.
Only after the lock has been granted should the evolution process continue.

Building on the code-to-schema approach towards reconfiguration of stateful dataflow graphs,
a deployment mechanism which allows for pause-and-resume or dataflow replication should be in-
vestigated. The schema approach is agnostic to the deployment model. Adopting the mechanism
described by Bartnik et al. [20] could produce dynamic reconfiguration of the dataflow graph.

The migrations are applied all-at-once. Although somewhat overlapping with the future work re-
lating to pause-and-resume style migrations, the schema should be able to apply a list of scenarios
as individual transformations to a running query. While this would simplify the burden on the mi-
gration process, it would also add additional challenges such as providing down type migrations to
rollback to a previous schema.

While the implicit migrations can be detected based on schema differences, explicit transforma-
tions offer more predictable behavior. The predicate based migration scenarios of the performed

1https://aws.amazon.com/ecs/

https://aws.amazon.com/ecs/

6.3. Future improvements for Apache Flink 53

Figure 6.1: Example Apache Flink architecture with a registry

work contain all information to generate source code for explicit migrations which can be then sup-
plied by the developer. With this implicit to explicit behavior, a probability model of deriving other
migrations can be possible. The user would confirm or reject implicit migrations from the probability
model.

When the time-to-live (TTL) of state is configured, state can be automatically discarded after
some period of time. Taking TTL into account when performing state migrations can yield interesting
migration scenarios where the old job can be put in a draining state until all state has expired (while
the new state is handling new events that would not update the draining state).

The evolution process (chapter 3, code-to-schema), is used for DDL based schema evolutions.
This assumes pre-existing state. Similarly, to the relational database domain, a schema approach
can be used for DML and DQL like operations.

• DML — can be subdivided into DML as part of the schema evolution process (hydrating) or
DML operations as part of a running dataflow graph. Hydration is discussed as part of the
evaluation, see section 4.3. Dynamic DML can rely on the schema to generate modification
markers (similar to [20]). The implementation of such a schema based DML approach can
follow ORM like approaches:

StateMigration.keyed()
.setTarget(”some-uid”, ”some-state-key”)
.update(UpdateFunction)
.where(Predicate)

The placeholders (UpdateFunction and Predicate) should be replaced with actual implementa-
tions.

• DQL — based on a schema can be applied on the running stateful dataflow graph. For state
consistency, a mechanism similar to the checkpointing and savepointing mechanisms can be
used to execute DQL statements. Injecting a barrier in the event stream, propagated to all op-
erators as opposed to mechanisms which enable direct access to operators [69]. This ensures
the same state consistency level as the native stateful dataflow graph. The barrier contains
a query scenario based on the schema and is decorated with the respective state on each
operator it passes.

Appendices

55

A
Common Evolution Scenarios

The following list is extracted from Zero-Downtime SQL Database Schema Evolution for Continuous
Deployment [51]:

• S1: Adding a non-nullable column to an existing table

• S2: Adding a nullable column to an existing table

• S3: Renaming a non-nullable column

• S4: Renaming a nullable column

• S5: Dropping a non-nullable column

• S6: Dropping a nullable column

• S7: Modifying the data type of a non-nullable column

• S8: Modifying the data type of a nullable column

• S9: Modifying the data type of a non-nullable column from integer to text

• S10: Making a non-nullable column nullable

• S11: Making a nullable column non nullable

• S12: Modifying the default value of a non-nullable column

• S13: Modifying the the default value of a nullable column

• S14: Creating a foreign key constraint on a non-nullable column

• S15: Creating a foreign key constraint on a nullable column

• S16: Creating an index on an existing non-nullable column

• S17: Renaming an existing index

• S18: Dropping an existing index

• S19: Renaming an existing table

57

Bibliography

[1] (DEPRECATED) Apache Flink User Mailing List archive. - Stop vs Cancel with savepoint. URL:
http://apache- flink-user-mailing- list-archive.2336050.n4.nabble.com/Stop-vs-Cancel-with-
savepoint-td41865.html.

[2] Adil Akhter and Marios Fragkoulis. Deploying Stateful FaaS on Streaming Dataflows - Adil
Akhter & Marios Fragkoulis - YouTube. Oct. 2019. URL: https ://www.youtube.com/watch?
v=wKfzDPkbAao&t=337s.

[3] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. “Stateful functions as a service in
action”. In: Proceedings of the VLDB Endowment. Vol. 12. 12. VLDB Endowment, Aug. 2018,
pp. 1890–1893. DOI: 10 .14778/3352063 .3352092. URL: https ://dl .acm.org/doi/10 .14778/
3352063.3352092.

[4] Amazon ECS task definitions - Amazon Elastic Container Service. URL: https : / / docs . aws .
amazon.com/AmazonECS/latest/developerguide/task_definitions.html.

[5] Apache Avro 1.10.2 Specification. URL: http ://avro .apache .org/docs/current/spec .html#
Schema+Resolution.

[6] Apache Flink 1.12 Documentation: Data Types & Serialization. URL: https://ci .apache.org/
projects/flink/flink-docs-release-1.12/dev/types_serialization.html.

[7] Apache Flink 1.12 Documentation: Fault Tolerance via State Snapshots. URL: https://ci.apache.
org/projects/flink/flink-docs-release-1.12/learn-flink/fault_tolerance.html.

[8] Apache Flink 1.12 Documentation: Glossary. URL: https://ci.apache.org/projects/flink/flink-
docs-release-1.12/concepts/glossary.html#flink-cluster.

[9] Apache Flink 1.12 Documentation: State Backends. URL: https://ci.apache.org/projects/flink/
flink-docs-release-1.12/ops/state/state_backends.html#state-backends.

[10] Apache Flink 1.12 Documentation: State Schema Evolution. URL: https : / / ci . apache . org /
projects/flink/flink-docs-release-1.12/dev/stream/state/schema_evolution.html.

[11] Apache Flink 1.12 Documentation: Upgrading Applications and Flink Versions. URL: https://
ci.apache.org/projects/flink/flink-docs- release-1.12/ops/upgrading.html#application-state-
compatibility.

[12] Apache Flink 1.12 Documentation: Working with State. URL: https://ci.apache.org/projects/
flink/flink-docs-release-1.12/dev/stream/state/state.html.

[13] Apache Flink: A Deep Dive into Rescalable State in Apache Flink. URL: https://flink.apache.
org/features/2017/07/04/flink-rescalable-state.html.

[14] Apache Flink: What is Apache Flink? Architecture. URL: https : / / flink . apache . org / flink -
architecture.html.

[15] Apache Heron ů A realtime, distributed, fault-tolerant stream processing engine. URL: https:
//heron.incubator.apache.org/.

[16] AWS Lambda Serverless Compute - Amazon Web Services. URL: https://aws.amazon.com/
lambda/.

[17] AWS Step Functions | Serverless Microservice Orchestration | Amazon Web Services. URL:
https://aws.amazon.com/step-functions.

[18] Ioana Baldini et al. “Serverless Computing: Current Trends and Open Problems”. In: Research
Advances in Cloud Computing. Ed. by Sanjay Chaudhary, Gaurav Somani, and Rajkumar Buyya.
Singapore: Springer Singapore, 2017, pp. 1–20. ISBN: 978-981-10-5026-8. DOI: 10.1007/978-
981-10-5026-8{_}1. URL: https://doi.org/10.1007/978-981-10-5026-8_1.

59

http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/Stop-vs-Cancel-with-savepoint-td41865.html
http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/Stop-vs-Cancel-with-savepoint-td41865.html
https://www.youtube.com/watch?v=wKfzDPkbAao&t=337s
https://www.youtube.com/watch?v=wKfzDPkbAao&t=337s
https://doi.org/10.14778/3352063.3352092
https://dl.acm.org/doi/10.14778/3352063.3352092
https://dl.acm.org/doi/10.14778/3352063.3352092
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
http://avro.apache.org/docs/current/spec.html#Schema+Resolution
http://avro.apache.org/docs/current/spec.html#Schema+Resolution
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/types_serialization.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/types_serialization.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/learn-flink/fault_tolerance.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/learn-flink/fault_tolerance.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/concepts/glossary.html#flink-cluster
https://ci.apache.org/projects/flink/flink-docs-release-1.12/concepts/glossary.html#flink-cluster
https://ci.apache.org/projects/flink/flink-docs-release-1.12/ops/state/state_backends.html#state-backends
https://ci.apache.org/projects/flink/flink-docs-release-1.12/ops/state/state_backends.html#state-backends
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/state/schema_evolution.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/state/schema_evolution.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/ops/upgrading.html#application-state-compatibility
https://ci.apache.org/projects/flink/flink-docs-release-1.12/ops/upgrading.html#application-state-compatibility
https://ci.apache.org/projects/flink/flink-docs-release-1.12/ops/upgrading.html#application-state-compatibility
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/state/state.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/state/state.html
https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html
https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html
https://flink.apache.org/flink-architecture.html
https://flink.apache.org/flink-architecture.html
https://heron.incubator.apache.org/
https://heron.incubator.apache.org/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions
https://doi.org/10.1007/978-981-10-5026-8{_}1
https://doi.org/10.1007/978-981-10-5026-8{_}1
https://doi.org/10.1007/978-981-10-5026-8_1

60 Bibliography

[19] Jay Banerjee et al. “Semantics and Implementation of Schema Evolution in Object-Oriented
Databases”. In: ACM SIGMOD Record 16.3 (Dec. 1987), pp. 311–322. ISSN: 01635808. DOI:
10.1145/38714.38748. URL: https://dl.acm.org/doi/10.1145/38714.38748.

[20] Adrian Bartnik et al. “On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing
Engines”. In: BTW 2019 (2019). Ed. by Torsten Grust et al., pp. 127–146. DOI: 10 . 18420 /
btw2019-09.

[21] Philip A Bernstein and Sergey Melnik. “Model Management 2.0: Manipulating Richer Map-
pings”. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’07. New York, NY, USA: Association for Computing Machinery, 2007, pp. 1–12.
ISBN: 9781595936868. DOI: 10.1145/1247480.1247482. URL: https://doi.org/10.1145/1247480.
1247482.

[22] Build your Python image | Docker Documentation. URL: https://docs.docker.com/language/
python/build-images/.

[23] L Burkholder. “The halting problem”. In: ACM SIGACT News 18.3 (Apr. 1987), pp. 48–60. ISSN:
0163-5700. DOI: 10.1145/24658.24665. URL: https://dl.acm.org/doi/10.1145/24658.24665.

[24] Paris Carbone et al. “Beyond Analytics: The Evolution of Stream Processing Systems”. In: Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data. Vol. 8. 20.
New York, NY, USA: Association for Computing Machinery, June 2020, pp. 2651–2658. ISBN:
9781450367356. DOI: 10 . 1145 / 3318464 . 3383131. URL: https : / / dl . acm . org / doi / 10 . 1145 /
3318464.3383131.

[25] Paris Carboney et al. “State management in Apache Flink: ő consistent stateful distributed
stream processing”. In: Proceedings of the VLDB Endowment. Vol. 10. 12. Association for
Computing Machinery, Aug. 2017, pp. 1718–1729. DOI: 10.14778/3137765.3137777. URL: https:
//dl.acm.org/doi/10.14778/3137765.3137777.

[26] Guoqiang Jerry Chen et al. “Realtime Data Processing at Facebook”. In: Proceedings of the
2016 International Conference on Management of Data. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, pp. 1087–1098. ISBN: 9781450335317. DOI: 10.
1145/2882903.2904441. URL: https://doi.org/10.1145/2882903.2904441.

[27] curl. URL: https://curl.se/.
[28] Miyuru Dayarathna and Srinath Perera. “Recent Advancements in Event Processing”. In: ACM

Comput. Surv. 51.2 (Feb. 2018). ISSN: 0360-0300. DOI: 10.1145/3170432. URL: https://doi.org/
10.1145/3170432.

[29] D J De Witt. “Direct A Multiprocessor Organization for Supporting Relational Database Man-
agement Systems”. In: IEEE Trans. Comput. 28.6 (June 1979), pp. 395–406. ISSN: 0018-9340.
DOI: 10.1109/TC.1979.1675379. URL: https://doi.org/10.1109/TC.1979.1675379.

[30] Deployment Strategies - Introduction to DevOps on AWS. URL: https://docs.aws.amazon.com/
whitepapers/latest/introduction-devops-aws/deployment-strategies.html.

[31] Jianbing Ding et al. “Optimal Operator State Migration for Elastic Data Stream Processing”. In:
(Jan. 2015). URL: https://arxiv.org/abs/1501.03619v5.

[32] Dominik Ernst, Alexander Becker, and Stefan Tai. “Rapid Canary Assessment Through Proxying
and Two-Stage Load Balancing”. In: Proceedings - 2019 IEEE International Conference on Soft-
ware Architecture - Companion, ICSA-C 2019 (May 2019), pp. 116–122. DOI: 10.1109/ICSA-
C.2019.00028.

[33] Yi Hsuan Feng, Nen Fu Huang, and Yen Min Wu. “Efficient and adaptive stateful replication for
stream processing engines in high-availability cluster”. In: IEEE Transactions on Parallel and
Distributed Systems 22.11 (2011), pp. 1788–1796. DOI: 10.1109/TPDS.2011.83.

https://doi.org/10.1145/38714.38748
https://dl.acm.org/doi/10.1145/38714.38748
https://doi.org/10.18420/btw2019-09
https://doi.org/10.18420/btw2019-09
https://doi.org/10.1145/1247480.1247482
https://doi.org/10.1145/1247480.1247482
https://doi.org/10.1145/1247480.1247482
https://docs.docker.com/language/python/build-images/
https://docs.docker.com/language/python/build-images/
https://doi.org/10.1145/24658.24665
https://dl.acm.org/doi/10.1145/24658.24665
https://doi.org/10.1145/3318464.3383131
https://dl.acm.org/doi/10.1145/3318464.3383131
https://dl.acm.org/doi/10.1145/3318464.3383131
https://doi.org/10.14778/3137765.3137777
https://dl.acm.org/doi/10.14778/3137765.3137777
https://dl.acm.org/doi/10.14778/3137765.3137777
https://doi.org/10.1145/2882903.2904441
https://doi.org/10.1145/2882903.2904441
https://doi.org/10.1145/2882903.2904441
https://curl.se/
https://doi.org/10.1145/3170432
https://doi.org/10.1145/3170432
https://doi.org/10.1145/3170432
https://doi.org/10.1109/TC.1979.1675379
https://doi.org/10.1109/TC.1979.1675379
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/deployment-strategies.html
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/deployment-strategies.html
https://arxiv.org/abs/1501.03619v5
https://doi.org/10.1109/ICSA-C.2019.00028
https://doi.org/10.1109/ICSA-C.2019.00028
https://doi.org/10.1109/TPDS.2011.83

Bibliography 61

[34] Marcelo Fiore and Marco Devesas Campos. “The Algebra of Directed Acyclic Graphs”. In: Com-
putation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky:
Essays Dedicated to Samson Abramsky on the Occasion of His 60th Birthday. Ed. by Bob
Coecke, Luke Ong, and Prakash Panangaden. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 37–51. ISBN: 978-3-642-38164-5. DOI: 10 .1007/978 - 3 - 642 - 38164 - 5{_}4. URL:
https://doi.org/10.1007/978-3-642-38164-5_4.

[35] Avrilia Floratou et al. “Dhalion: Self-Regulating Stream Processing in Heron”. In: Proc. VLDB
Endow. 10.12 (Aug. 2017), pp. 1825–1836. ISSN: 2150-8097. DOI: 10.14778/3137765.3137786.
URL: https://doi.org/10.14778/3137765.3137786.

[36] Martin Fowler. BlueGreenDeployment. 2010. URL: https://martinfowler.com/bliki/BlueGreenDeployment.
html.

[37] Pedro García López et al. “Comparison of FaaS Orchestration Systems”. In: 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion (UCC Companion). IEEE,
2018, pp. 148–153. DOI: 10.1109/UCC-Companion.2018.00049.

[38] GitHub - facebook/rocksdb: A library that provides an embeddable, persistent key-value store
for fast storage. URL: https://github.com/facebook/rocksdb.

[39] GitHub - flyway/flyway: Flyway by Redgate Database Migrations Made Easy. URL: https://
github.com/flyway/flyway.

[40] GitHub - hashicorp/hcl: HCL is the HashiCorp configuration language. URL: https ://github.
com/hashicorp/hcl.

[41] GitHub - liquibase/liquibase: Main Liquibase Source. URL: https : / / github . com / liquibase /
liquibase.

[42] GitHub - qubole/spark-state-store: Rocksdb state storage implementation for Structured Stream-
ing. URL: https://github.com/qubole/spark-state-store.

[43] Scott Hendrickson et al. “Serverless Computation with OpenLambda”. In: Proceedings of the
8th USENIX Conference on Hot Topics in Cloud Computing. HotCloud’16. USA: USENIX Associ-
ation, 2016, pp. 33–39.

[44] Martijn de Heus, Marios Fragkoulis, and Asterios Katsifodimos. “Distributed Transactions on
Serverless Stateful Functions using Coordinator Functions”. PhD thesis. Delft University of
Technology, 2021. URL: https ://repository . tudelft .nl/ islandora/object/uuid%3A25b6e54a-
116a-444f-9cb7-693d595bb058.

[45] Moritz Hoffmann Andrea Lattuada Frank McSherry Vasiliki Kalavri John Liagouris Timothy Roscoe
et al. “Megaphone: Latency-conscious state migration for distributed streaming dataflows”.
In: Proceedings of the VLDB Endowment 12.9 (2019). DOI: 10.3929/ethz-b-000387642. URL:
http://doi.org/10.14778/3329772.3329777.

[46] Fabian Hueske and Vasiliki Kalavri. Stream processing with Apache Flink: fundamentals, im-
plementation, and operation of streaming applications. First rele. O’Reilly Media, 2019. ISBN:
9781491974292.

[47] J Humble, C Read, and D North. “The deployment production line”. In: AGILE 2006 (AGILE’06).
2006, 6 pp.–118. DOI: 10.1109/AGILE.2006.53.

[48] Implementing State Management - Hortonworks Data Platform. URL: https://docs.cloudera.
com/HDPDocuments/HDP2/HDP-2.6.2/bk_storm-component-guide/content/storm-state-
mgmt.html.

[49] Christopher Ireland et al. “A Classification of Object-Relational Impedance Mismatch”. In: 2009
First International Confernce on Advances in Databases, Knowledge, and Data Applications.
2009, pp. 36–43. DOI: 10.1109/DBKDA.2009.11.

[50] Eric Jonas et al. “Cloud Programming Simplified: A Berkeley View on Serverless Computing”.
In: arXiv (Feb. 2019). URL: http://arxiv.org/abs/1902.03383.

https://doi.org/10.1007/978-3-642-38164-5{_}4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.14778/3137765.3137786
https://doi.org/10.14778/3137765.3137786
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://doi.org/10.1109/UCC-Companion.2018.00049
https://github.com/facebook/rocksdb
https://github.com/flyway/flyway
https://github.com/flyway/flyway
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/liquibase/liquibase
https://github.com/liquibase/liquibase
https://github.com/qubole/spark-state-store
https://repository.tudelft.nl/islandora/object/uuid%3A25b6e54a-116a-444f-9cb7-693d595bb058
https://repository.tudelft.nl/islandora/object/uuid%3A25b6e54a-116a-444f-9cb7-693d595bb058
https://doi.org/10.3929/ethz-b-000387642
http://doi.org/10.14778/3329772.3329777
https://doi.org/10.1109/AGILE.2006.53
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.6.2/bk_storm-component-guide/content/storm-state-mgmt.html
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.6.2/bk_storm-component-guide/content/storm-state-mgmt.html
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.6.2/bk_storm-component-guide/content/storm-state-mgmt.html
https://doi.org/10.1109/DBKDA.2009.11
http://arxiv.org/abs/1902.03383

62 Bibliography

[51] Michael de Jong, Arie van Deursen, and Anthony Cleve. “Zero-Downtime SQL Database Schema
Evolution for Continuous Deployment”. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). 2017, pp. 143–152.
DOI: 10.1109/ICSE-SEIP.2017.5.

[52] Kafka Streams Internal Data Management - Apache Kafka - Apache Software Foundation. URL:
https : //cwiki . apache .org/confluence/display/KAFKA/Kafka+Streams+Internal+Data+
Management.

[53] A ; Katsifodimos and M Fragkoulis. “Operational stream processing: Towards scalable and con-
sistent event-driven applications”. In: 2019 (2019), pp. 682–685. DOI: 10.5441/002/edbt.2019.
86. URL: https://doi.org/10.5441/002/edbt.2019.86.

[54] Mariam Kiran et al. “Lambda architecture for cost-effective batch and speed big data process-
ing”. In: 2015 IEEE International Conference on Big Data (Big Data). Institute of Electrical and
Electronics Engineers Inc., Dec. 2015, pp. 2785–2792. DOI: 10.1109/BIGDATA.2015.7364082.

[55] Luo Mai et al. “Chi: A Scalable and Programmable Control Plane for Distributed Stream Pro-
cessing Systems”. In: Proc. VLDB Endow. 11.10 (June 2018), pp. 1303–1316. ISSN: 2150-8097.
DOI: 10.14778/3231751.3231765. URL: https://doi.org/10.14778/3231751.3231765.

[56] Peter McBrien and Alexandra Poulovassilis. “Schema Evolution in Heterogeneous Database
Architectures, A Schema Transformation Approach”. In: Proceedings of the 14th International
Conference on Advanced Information Systems Engineering. CAiSE ’02. Berlin, Heidelberg:
Springer-Verlag, 2002, pp. 484–499. ISBN: 354043738X.

[57] Alok Mehta, David L Spooner, and Martin Hardwick. Resolution of Type Mismatches in an Engi-
neering Persistent Object System. Tech. rep. Computer Science Dept., Rensselaer Polytechnic
Institute, 1993.

[58] Marcelo R.N. Mendes, Pedro Bizarro, and Paulo Marques. “A Performance Study of Event Pro-
cessing Systems”. In: Performance Evaluation and Benchmarking. Ed. by Raghunath Nambiar
and Meikel Poess. Vol. 5895 LNCS. Springer Berlin Heidelberg, 2009, pp. 221–236. ISBN: 978-
3-642-10424-4. URL: https://link.springer.com/chapter/10.1007/978-3-642-10424-4_16.

[59] Léonard Michel, José Andany, and Carole Palisser. “Management Of Schema Evolution In Databases”.
In: 17th International Conference on Very Large Data Bases. Ed. by Guy M. Lohman, Amilcar
Sernadas, and Rafael Camps. Morgan Kaufmann, 1991, pp. 161–170. URL: https : / / www .
researchgate.net/publication/221310520.

[60] Netflix Innovator. URL: https://aws.amazon.com/solutions/case-studies/netflix/.
[61] Sam Newman. Monolith to Microservices: Evolutionary Patterns to Transform your Monolith.

1st Editio. O’Reilly Media, Inc, USA, 2019. ISBN: 9781492047841.

[62] Nexmark benchmark suite. URL: https://beam.apache.org/documentation/sdks/java/testing/
nexmark/.

[63] NGINX Announces Results of 2016 App Dev & Delivery Survey. URL: https : //www.nginx .
com/press/nginx-announces-results-of-2016-future-of-application-development-and-delivery-
survey/.

[64] Helena Holmström Olsson, Hiva Alahyari, and Jan Bosch. “Climbing the "Stairway to Heaven"
– A Mulitiple-Case Study Exploring Barriers in the Transition from Agile Development towards
Continuous Deployment of Software”. In: 2012 38th Euromicro Conference on Software Engi-
neering and Advanced Applications. 2012, pp. 392–399. DOI: 10.1109/SEAA.2012.54.

[65] Beate Ottenwälder et al. “MigCEP: Operator Migration for Mobility Driven Distributed Complex
Event Processing”. In: Proceedings of the 7th ACM International Conference on Distributed
Event-Based Systems. DEBS ’13. New York, NY, USA: Association for Computing Machinery,
2013, pp. 183–194. ISBN: 9781450317580. DOI: 10.1145/2488222.2488265. URL: https://doi.
org/10.1145/2488222.2488265.

https://doi.org/10.1109/ICSE-SEIP.2017.5
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+Internal+Data+Management
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+Internal+Data+Management
https://doi.org/10.5441/002/edbt.2019.86
https://doi.org/10.5441/002/edbt.2019.86
https://doi.org/10.5441/002/edbt.2019.86
https://doi.org/10.1109/BIGDATA.2015.7364082
https://doi.org/10.14778/3231751.3231765
https://doi.org/10.14778/3231751.3231765
https://link.springer.com/chapter/10.1007/978-3-642-10424-4_16
https://www.researchgate.net/publication/221310520
https://www.researchgate.net/publication/221310520
https://aws.amazon.com/solutions/case-studies/netflix/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://www.nginx.com/press/nginx-announces-results-of-2016-future-of-application-development-and-delivery-survey/
https://www.nginx.com/press/nginx-announces-results-of-2016-future-of-application-development-and-delivery-survey/
https://www.nginx.com/press/nginx-announces-results-of-2016-future-of-application-development-and-delivery-survey/
https://doi.org/10.1109/SEAA.2012.54
https://doi.org/10.1145/2488222.2488265
https://doi.org/10.1145/2488222.2488265
https://doi.org/10.1145/2488222.2488265

Bibliography 63

[66] Peeking Behind the Curtains of Serverless Platforms | USENIX. URL: https://www.usenix.org/
conference/atc18/presentation/wang-liang.

[67] P Pietzuch et al. “Network-Aware Operator Placement for Stream-Processing Systems”. In:
22nd International Conference on Data Engineering (ICDE’06). 2006, p. 49. DOI: 10 . 1109/
ICDE.2006.105.

[68] PostgreSQL: Documentation: 8.0: ALTER TABLE. URL: https://www.postgresql.org/docs/8.0/sql-
altertable.html.

[69] Queryable State | Apache Flink. URL: https://ci.apache.org/projects/flink/flink-docs-release-
1.13/docs/dev/datastream/fault-tolerance/queryable_state/.

[70] Young-Gook Ra. “Relational Schema Evolution for Program Independency”. In: Intelligent Infor-
mation Technology. Ed. by Gautam Das and Ved Prakash Gulati. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 273–281. ISBN: 978-3-540-30561-3.

[71] R Ramakrsihnan et al. “SRQL: Sorted Relational Query Language”. In: Proceedings. Tenth Inter-
national Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).
1998, pp. 84–95. DOI: 10.1109/SSDM.1998.688114.

[72] RocksDB | A persistent key-value store | RocksDB. URL: https://rocksdb.org/.
[73] Mohammad Sadoghi et al. “Efficient event processing through reconfigurable hardware for

algorithmic trading”. In: Proceedings of the VLDB Endowment 3.2 (Sept. 2010), pp. 1525–
1528. ISSN: 21508097. DOI: 10.14778/1920841.1921029. URL: https://dl.acm.org/doi/10.14778/
1920841.1921029.

[74] Samza - State Management. URL: http://samza.incubator.apache.org/learn/documentation/0.
7.0/container/state-management.html.

[75] Tony Savor et al. “Continuous Deployment at Facebook and OANDA”. In: Proceedings of the
38th International Conference on Software Engineering Companion. Austin, Texas: Association
for Computing Machinery, 2016, pp. 21–30. ISBN: 9781450342056. DOI: 10 .1145/2889160 .
2889223. URL: http://dx.doi.org/10.1145/2889160.2889223.

[76] Robert R. Schaller. “Moore’s law: past, present, and future”. In: IEEE Spectrum 34.6 (June
1997), pp. 52–59. DOI: 10.1109/6.591665.

[77] Schema Evolution and Compatibility Confluent Documentation. URL: https://docs.confluent.
io/platform/current/schema-registry/avro.html#compatibility-types.

[78] Ben Shneiderman and Glenn Thomas. “An Architecture for Automatic Relational Database
Sytem Conversion”. In: ACM Transactions on Database Systems 7.2 (June 1982), pp. 235–257.
ISSN: 0362-5915. DOI: 10.1145/319702.319724. URL: https://doi.org/10.1145/319702.319724.

[79] Andrea H Skarra and Stanley B Zdonik. “The Management of Changing Types in an Object-
Oriented Database”. In: Conference Proceedings on Object-Oriented Programming Systems,
Languages and Applications. OOPSLA ’86. New York, NY, USA: Association for Computing Ma-
chinery, 1986, pp. 483–495. ISBN: 0897912047. DOI: 10.1145/28697.28747. URL: https://doi.
org/10.1145/28697.28747.

[80] Spark Streaming - Spark 3.1.2 Documentation. URL: https://spark.apache.org/docs/latest/
streaming-programming-guide.html#checkpointing.

[81] Stack Overflow Developer Survey 2020. URL: https : / / insights . stackoverflow . com/survey/
2020#technology-databases.

[82] State Processor API | Apache Flink. URL: https://ci.apache.org/projects/flink/flink-docs-release-
1.13/docs/libs/state_processor_api/.

[83] Terraform by HashiCorp. URL: https://www.terraform.io/.
[84] Quoc-Cuong To, Juan Soto, and Volker Markl. “A Survey of State Management in Big Data

Processing Systems”. In: The VLDB Journal 27.6 (Dec. 2018), pp. 847–872. ISSN: 1066-8888.
DOI: 10.1007/s00778-018-0514-9. URL: https://doi.org/10.1007/s00778-018-0514-9.

https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://doi.org/10.1109/ICDE.2006.105
https://doi.org/10.1109/ICDE.2006.105
https://www.postgresql.org/docs/8.0/sql-altertable.html
https://www.postgresql.org/docs/8.0/sql-altertable.html
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/datastream/fault-tolerance/queryable_state/
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/datastream/fault-tolerance/queryable_state/
https://doi.org/10.1109/SSDM.1998.688114
https://rocksdb.org/
https://doi.org/10.14778/1920841.1921029
https://dl.acm.org/doi/10.14778/1920841.1921029
https://dl.acm.org/doi/10.14778/1920841.1921029
http://samza.incubator.apache.org/learn/documentation/0.7.0/container/state-management.html
http://samza.incubator.apache.org/learn/documentation/0.7.0/container/state-management.html
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1145/2889160.2889223
http://dx.doi.org/10.1145/2889160.2889223
https://doi.org/10.1109/6.591665
https://docs.confluent.io/platform/current/schema-registry/avro.html#compatibility-types
https://docs.confluent.io/platform/current/schema-registry/avro.html#compatibility-types
https://doi.org/10.1145/319702.319724
https://doi.org/10.1145/319702.319724
https://doi.org/10.1145/28697.28747
https://doi.org/10.1145/28697.28747
https://doi.org/10.1145/28697.28747
https://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
https://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
https://insights.stackoverflow.com/survey/2020#technology-databases
https://insights.stackoverflow.com/survey/2020#technology-databases
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/libs/state_processor_api/
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/libs/state_processor_api/
https://www.terraform.io/
https://doi.org/10.1007/s00778-018-0514-9
https://doi.org/10.1007/s00778-018-0514-9

64 Bibliography

[85] Edith Tom, Aybüke Aurum, and Richard Vidgen. “An exploration of technical debt”. In: Journal
of Systems and Software 86.6 (2013), pp. 1498–1516. ISSN: 0164-1212. DOI: https ://doi .
org/10 .1016/ j . jss . 2012 .12 .052. URL: https ://www.sciencedirect . com/science/article/pii /
S0164121213000022.

[86] Alexandre Torres et al. “Twenty years of object-relational mapping: A survey on patterns, solu-
tions, and their implications on application design”. In: Information and Software Technology
82 (Feb. 2017), pp. 1–18. ISSN: 0950-5849. DOI: 10.1016/J.INFSOF.2016.09.009.

[87] Peter A. Tucker et al. “NEXMark A Benchmark for Queries over Data Streams DRAFT”. In:
(2002). URL: https://datalab.cs.pdx.edu/niagaraST/NEXMark/.

[88] Giselle Van Dongen and Dirk Van Den Poel. “Evaluation of Stream Processing Frameworks”. In:
IEEE Transactions on Parallel and Distributed Systems 31.8 (Aug. 2020), pp. 1845–1858. DOI:
10.1109/TPDS.2020.2978480.

[89] Werner Vogels. The Story of Apollo - Amazons Deployment Engine - All Things Distributed.
2014. URL: https://www.allthingsdistributed.com/2014/11/apollo-amazon-deployment-engine.
html.

[90] Deepak Vohra. “Apache Avro”. In: Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-
Related Frameworks and Tools. Berkeley, CA: Apress, 2016, pp. 303–323. ISBN: 978-1-4842-
2199-0. DOI: 10.1007/978-1-4842-2199-0{_}7. URL: https://doi.org/10.1007/978-1-4842-2199-
0_7.

[91] Wget - GNU Project - Free Software Foundation. URL: https://www.gnu.org/software/wget/.
[92] Yali Zhu, Elke A Rundensteiner, and George T Heineman. “Dynamic Plan Migration for Con-

tinuous Queries over Data Streams”. In: Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’04. New York, NY, USA: Association for Com-
puting Machinery, 2004, pp. 431–442. ISBN: 1581138598. DOI: 10.1145/1007568.1007617. URL:
https://doi.org/10.1145/1007568.1007617.

[93] Igor Zinkovsky and Nikolay Topilski. A Look at Software Performance Since 1940s.

https://doi.org/https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/https://doi.org/10.1016/j.jss.2012.12.052
https://www.sciencedirect.com/science/article/pii/S0164121213000022
https://www.sciencedirect.com/science/article/pii/S0164121213000022
https://doi.org/10.1016/J.INFSOF.2016.09.009
https://datalab.cs.pdx.edu/niagaraST/NEXMark/
https://doi.org/10.1109/TPDS.2020.2978480
https://www.allthingsdistributed.com/2014/11/apollo-amazon-deployment-engine.html
https://www.allthingsdistributed.com/2014/11/apollo-amazon-deployment-engine.html
https://doi.org/10.1007/978-1-4842-2199-0{_}7
https://doi.org/10.1007/978-1-4842-2199-0_7
https://doi.org/10.1007/978-1-4842-2199-0_7
https://www.gnu.org/software/wget/
https://doi.org/10.1145/1007568.1007617
https://doi.org/10.1145/1007568.1007617

	Introduction
	Cloud Providers
	Serverless Computing
	Stream Processing Systems
	Problem Statement
	Approach
	Research Questions
	Outline

	Background and Related Work
	Migration Constraints
	Continuous Deployment
	Deployment Strategies
	Schema Definition and Evolution
	Using Relational Data in Applications

	State Migrations
	State migration in distributed dataflow graphs
	Developer interaction with streaming managed state

	Functions-as-a-Service
	Stream Processing Systems
	Overview of Stream Processors
	Operations in dataflow graphs
	State Management
	Processing Semantics
	Apache Flink

	Stateful Dataflow Graph Evolution
	Outline of the Stateful Dataflow Graph Evolution process
	Trigger Phase
	Schema Generation Phase
	Transforming nodes in the schema

	Diffing Phase
	Deriving (implicit) transformations for schema compatibility

	Migration phase
	Deployment phase
	Limitations of the stream evolution process

	Evaluation
	Evaluating the correctness of the evolution process
	NEXmark benchmark
	Experimental Setup

	Github projects
	Pre-existing state migrations
	Non existing state hydration

	Conclusion
	Discussion
	Comparison to graph based schema evolution
	Contributions
	Future improvements for Apache Flink

	Appendices
	Common Evolution Scenarios

