
MODULO (1,1) PERIODICITY OF CLIFFORD ALGEBRAS 
AND 

GENERALIZED (ANTI-)MÖBIUS TRANSFORMATIONS 

J.G. MAKS 
TR diss 
1726 



MODULO (1,1) PERIODICITY OF CLIFFORD ALGEBRAS 

AND 

GENERALIZED (ANTI-)MÖBIUS TRANSFORMATIONS 

PROEFSCHRIFT 

ter verkrijging van de graad van doctor aan de 
Technische Universiteit Delft, op gezag van de 

Rector magnificus, Prof .drs. P.A. Schenck, 
in het openbaar te verdedigen ten overstaan van een 
commissie aangewezen door het College van Dekanen 

op donderdag 25 mei 1989 te 14.00 uur 

door 

JOHANNES GERRIT MAKS 
geboren te 's-Gravenhage 

wiskundig ingenieur 

TR diss 
1726 



Dit proefschrift is goedgekeurd door de promotor: 

Prof.dr.ir. T.H.M. Smits 

en door de leden van de commissie: 

Prof.dr. J.H. de Boer 

Prof.dr. H.J.A. Duparc 

Prof.dr. A.W. Grootendorst 

Prof.dr. P. Lounesto 

Prof.dr. H.G. Meijer 



i 

Preface 

The contents of this thesis originated from my interest in the Clifford algebra 

approach to non-Euclidean geometry, roused some four years ago by Vahlen's paper [8]. 

It was a fortunate coincidence that I got acquainted with Ahlfors' paper (I] on Möbius 

transformations in Euclidean spaces employing Clifford algebras. For this encouraged me 

to develop a theory of (anti-)Möbius transformations in a quadratic vector space of 

general signature. 

In the first chapter the reader meets a synoptic introduction in Clifford algebras 

and spin representations. For more details one is referred to Porteous [6]. 

A constructive method is given to determine the scalar products on the spinor spaces. The 

results can also be found in Lounesto [5]. 

Chapter 2 presents my theory of generalized (anti-)Mobius transformations, based 

on the modulo (1,1) periodicity of Clifford algebras. 

Chapter 3 is a reminiscence of Vahlen's paper |8]. The hyperbolic group is seen to 

be covered by a subgroup of (anti-)Möbius transformations belonging to a positive 

definite vector space. 

In chapter 4 we discuss the geometry of the Siegel domains of type four. My theory 

of (anti-)Möbius transformations, also valid for complex vector spaces, makes it possible 

to give a non-linear representation of the groups of biholomorphic self-mappings. 
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CHAPTER I 

CLIFFORD ALGEBRAS AND SPIN REPRESENTATIONS 

Let V(p,q) denote a real n-dimensional vector space equipped with a non-degenerate 

quadratic form of signature (p,q), i.e., a form Q which can be diagonalized in the fol­

lowing way (n = p + q) 

Q(v) = v ( + ... + v - (v ! + ... + vn), v e V(p,q). 

We say that a real associative algebra A with unity I is compatible with V(p,q) if a 

linear injection i: V(p,q) — A exists such that 

(i(v))2 + Q(v) l A = 0 VveV(p.q). 

Identifying TR and V(p,q) with their copies in A we simplify the notation 

v2 + Q(v) = 0 V v e V(p,q). 

The equation Q(v+w) = Q(v) + Q(w) + 2B(v,w), B denoting the associated bilinear form, 

implies that 

vw + wv + 2B(v,w) = 0 Vv,w e V(p,q). 

In particular v and w anticommute whenever they are orthogonal. An algebra A which is 

compatible with V(p,q) is called a Clifford algebra for V(p,q) if it is generated by 

V(p,q) and not by any proper subspace of V(p,q). The existence of such an algebra for 

any V(p,q) follows by construction, but first we settle the question of uniqueness. Let A. 

and A . be a Clifford algebra for V.(p,q) and V.(p,q), respectively, and suppose that <j>: 
V,(p,q) -» V_(p,q) is an orthogonal map. Then there is a unique algebra isomorphism 

a: A. — A , and a unique algebra anti-isomorphism a: A. —• A- such that the following 

diagrams commute 
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V^p.q) - V2(p.q) V^p.q) - . V^p.q) 

1 inc i inc J inc J inc 

Ai r A
2

 A, r A: 

The first diagram expresses the universal properly in case V (p,q) = V7(p,q) and ^ 

stands for the identity map. 

The Clifford algebra for V(p,q), unique up to isomorphism, will be denoted by Cl(p.q). 

Now select an orthonormal basis {e. e ) of V(p,q). Then the Clifford algebra Cl(p.q) is 

generated over ]R by a unity 1 and the n symbols e. subject to the relations 

•?--5—-g—«. 
£ . — * - « . 
e.e. + e.e. = 0, i * j € (l,...,n). 

Every element of Cl(p,q) is an K-linear combination of the 2 n basis elements 

i . i - i 1 2 n 
e l e 2 " e i i w i l h ' k £ , 0 , l ) -

In other words, any element of Cl(p.q) is the sum of a scalar, a vector, a bivector and 
an n-vector. 

The two orthogonal transformations v — cv of V(p,q) (« = 1 or £ = -1) are uniquely ex­
tended to the anti-automorphisms a of Cl(p,q). Applied to the basis elements of Cl(p.q) 
these anti-automorphisms read like this 

( '1 '2 ' n 1 'n '2 '1 a. (.e. e , ... e n J = en ... e , e. 

1 2 nï , ,.d n 2 1 . . 

Hence a reverses order and a subjects a basis element to reversion combined with plus 
or minus the identity mapping according as it is a product of an even or odd number of 
generators. The composite map Q.OQ . = a ,oa . . which will henceforth be denoted by A, 
is an automorphism of Cl(p,q) inducing the standard ZZ,-grading 
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CI(p,q) = Clü(p,q) + C l , (p ,q) , 

where Cl (p.q) = Ja e Cl(p,q): a = a Y is a subalgebra of dimension 2 , called the 

even Clifford algebra for V(p,q). The even Clifford algebra is a Clifford algebra by 

itself: the following isomorphisms are easy to prove 

CI°(p+l,q)=CI(p,q) and Cl°(p,q+I) = Cl(q,p). 

Before realizing the Clifford algebras in terms of matrices we discuss their structural 

properties. 

Cl(p,q) and Cl (p,q) are semi-simple algebras over TR and their centres are given in the 

following table 

n even 

n odd 

Cent Cl(p.q) 

TR 

Cent Cl°(p4) 

TR 

where j = e.e....e . Thus Cl(p,q) and C! (p.q) are central simple algebras over TR when n 

is even and odd, respectively. 

Concerning the other cases, it is clear that {l,j)TO is a field if and only if j = - I . Hence 

if j = - I , Cl(p,q) and Cl (p,q) are simple when n is odd and even, respectively. Other­

wise, if j = 1 , they are the direct sum of two mutually annihilating simple ideals 

\ (1 + j) Cl(0)(p,q) and \ (I - j) Cl(0)(p,q). 

Spin representations 

We distinguish between the two cases n even, n odd. 

(i) n even: 
Cl(p,q), being simple, admits an irreducible representation />(p,q) (unique up to equi­
valence), which is called the spin representation. The corresponding representation space 
S(p,q) is called the space of spinor.s. In fact, S(p,q) may be identified with a minimal left 
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ideal of Cl(p.q) and p(p,q) with the restriction of the left regular representation to that 

ideal. The spin representation p(p,q) induces a representation p (p,q) of Cl (p.q) which is 

irreducible if j = -1 (Cl (p.q) simple) and reducible otherwise. Indeed, if Cl (p.q) is 

not simple p (p.q) breaks down into two irreducible inequivalent representations p.(p.q). 

known as the half-spin representations. They act on the spaces of half-spinors S.(p.q). In 

this case S(p,q) = S (p.q)©S-(p,q), i.e., every spinor can be written in one and only one 

way as the sum of two half-spinors. 

(ii) n odd: 
Cl (p.q), being simple, admits an irreducible representation p (p.q) (unique up to equi­

valence). acting on the space of spinors S (p.q). The spin representation p (p.q) can be 

extended to a representation p(p.q) of Cl(p.q) in a unique way if Cl(p.q) is simple and in 

exactly two ways if Cl(p.q) is not simple. To create a faithful representation of Cl(p.q) 

take S(p.q) = S (p.q) or S(p.q) = S0(p,q)©S°(p.q), according as Cl(p.q) is simple or a 

direct sum of two simple ideals. Concerning the second case, the two components of the 

space of what we call double-spinors are subjected to the two possible extensions of 

P (p.q). 

Matrix algebras 

Now we proceed to realize the Clifford algebras and their anti-automorphisms in 

terms of matrices. We start with some low-dimensional cases. In the first place we have 

the isomorphisms 

C\(Q,0) = TR, CI(I.O)=<C. CI(2.0)=IH. 

There are no other real associative division algebras than these (Frobenius' theorem). Fur­

ther, we need 

C1(0.1)= 2 E, C1(I ,1)5K(2). CI(3.0) = 2IH, CI(4.0) = IH(2). 

To convince the reader we list the generating sets of these algebras in the following table. 
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CI(0,1) 

C l ( l , l ) 

Cl(3,0) 

Cl(4,0) 

e , = ( l . - l ) 

e = f ° '1 e = f ° '1 
e l l - ] 0>' e2 l 1 0} 

ej«( i , - l ) , e2 = (j,-j), e3=(ij,-i j) 

e - f 1 ° 1 e - f J ° ] e - f i j ° ) e 
e l l 0 - i J ' e2 l 0 - j J ' e 3 " L 0 - i j J ' e 

= f° 
i ( 1 

S 
To construct any Cl(p,q) use these isomorphisms together with the following recurrence 

relations, all of them easy to prove 

Cl(p+1 ,q+1) = Cl(p,q) ® Cl( 1,1) = CI(p,q)®H(2) 

Cl(p,q+I) = Cl(q,p+l) 

Cl(p+4,q) = CI(p,q)0Cl(4,O) = Cl(p,q)® IH(2) 

Cl(p,q+4) = CI(p,q)®CI(0.4)®CI(p,q)®IH(2) 

Cl(p+8,q) = CI(p,q)®]R(16) (IH(2)® H(2) =3R<16)) 

CI(p,q+8) = CI(p,q)®]R(16) (the same). 

Now the following results are readily obtained. 

1.1. Table - Clifford algebras Cl(p,q) for n = p+q < 8 

- 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 

0 3R 

1 C TR 

2 IH IRQ) K(2) 

3 2IH <C(2) 2K(2) <C(2) 

4 IH(2) 1H(2) B(4) IR(4) IH(2) 

5 C(4) 2IH(2) C(4) 2R(4) C(4) 2IH(2) 

6 ]R(8) IH(4) H(4) 3R(8) K(8) Dl(4) IH(4) 

7 ^ S ) 1(8) 2IH(4) C(8) ^ W C(8) 2IH(4) C(8) 

p+q 

-p+q 
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Hence any Clifford algebra Cl(p.q) is isomorphic to a matrix algebra over 3R. C. 1H. '"IR 
2 

or "III. The following consideration shows that the structure of CKp.qlonh depends on 

q-p (mod 8). The isomorphism 

Cl(p+l,q+l) = CI(p,q)0]R(2) implies. 
Cl(p.q) = Cl(p-q,O)0]R(2q) if p > q. 

Cl(p,q) = CI(0,q-p)®m(2P) if p < q. 

Observation of the algebras Cl(n.O) 3nd Cl(O.n) up to n = 7 from Table I.I then leads to 

the following result. 

1.2. Table - Clifford algebras Cl(p,q). k = 2 [ n / 2 | ~ ' 

q-p (mod 8) 

Cl(p.q) 

0 

M2k) 

1 

23R(2k) 

2 

]R(2k) 

3 

C(2k) 

4 

W(k) 

5 

2lH(k) 

6 

W(k) 

7 

C(2k) 

Having realized the Clifford algebras Cl(p,q) in terms of matrices, we feel obliged to do 
the same for the anti-involutions a . According to Table 1.2 we may identify the space of 

* 2 2 
(double-jspinors S(p.q) with a right module over TR. C. H , 3R or ~IH. Any non-

degenerate scalar product on S(p,q) induces an anti-involution of Cl(p.q). to wit the 

appropriate adjoin! involution. The converse is also true: any anti-involution of Cl(p.q) is 

the adjoint involution belonging to a non-degenerate scalar product on S(p.q) (cf. 

Porteous [6], chapter II). 

1.3. Example 

The Clifford algebra Cl( l . l ) is isomorphic to K(2), the generators being 

e. = ( „J and e . = ( . - J . say. The adjoint belonging to the skew scalar product 

4>: 3R2xK2 - ]R, #x,y) = - X ^ + x ,y 2 is given by the map (_? tf] - [_c '*). 

Applied to the generators it yields e. — -e.. Hence the anti-involution a_. is the adjoint 

of the standard skew scalar product on 5(1,1). On the other hand, the adjoint of the 
7 7 symmetric scalar product </>: 3R xIR' — 3R, $x ,y ) = x .y + x . y , turns out to be the 

map ( a ) — ( ) . Preserving the generators this anti-involution is the unique rea­

lization of a. . 
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Now let us classify the scalar products on S(p,q). The classification is up to isomorphism 

and equivalence. Two scalar products <t>. and <j>. on a right IL-module are called equiva-
2 2 

lent if <j>. = X<t>., for some invertible A e IL = IR, C, IH, ]R or IH. 
We introduce the following nine classes of scalar products. 

]R symmetric over TR. 
<x,y> = <y,x>; 

1R , skew over I t 

+ 
<x,y> = <y,x>; x,y € TR . 

<x,y> = -<y,x>; x,y e TR . 
C , symmetric over C. 

<x,y> = <y,x>; x,y € 

C , skew over C. 

<x,y> = -<y,x>; x,y e C . 

C , symmetric over C with conjugation a -• a. 

<x,y> = <y,x> ; x,y e C . 

IH , symmetric over IH with conjugation a -» a. 

<x,y> = <y,x> ; x,y G IH . 

IH , symmetric over IH with reversion a — a = jaj 

<x,y> = <y,x> ; x,y € IH . 
2 2 
]R , symmetric over K with swap (a,b) -* sw(a.b) = (b,a). 

<x,y> = sw<y,x>; x,y e TR . 
2— . 2 . — " -

IH , symmetric over IH with swap-conjugation (a,b) -* sw(a,b) = (b,a). 
— _ 2n .m 

<x,y> = sw<y,x>; x,y e IH . 

Comment 

C_-scalar products are equivalent to C -scalar products, for if # is I then \ij> is 

C_. In the same way left multiplication by j yields the equivalence of IH±-scalar products 

to IH -sclar products. The equation (l,-l)sw(a,b) = -sw(l,-l)(a,b) implies that 
2 ^ . 2 2— 

3R -scalar products are equivalent to K -scalar products. For the same reason IH -
+ . 2— 2~ * 

scalar products are equivalent to IH -scalar products. What about IH±-scalar products? 
Since (j,j)sw(a,b) = (jb.ja) = (bj.aj) = (-(jb)~,-(ja)~) = sw(-ja.-jb) = -sw(j,j)(a,b), we 

2— 2 ~ 
may conclude that IH±-scalar products are equivalent to 'IH -scalar products. One final 
remark, before we classify the scalar products on S(p,q). Concerning the right modules 
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over the double fields ]R and IH, it is also possible to have scalar products like *(x,y) = 
= (^(x, ,y.) ,^(x, ,y.)) , where ^ is a scalar product on ]Rm or IHm. respectively. These 

I I i. C 

reducible scalar products, of which the relation between *(x.y) and "J>(y.x) does not in­
volve the swap operation, will be denoted in the most obvious wav: 3R x3R , III xIH . 

■f + + + 
etcetera. 

G 

It will become clear that the scalar products on S(p.q) with adjoint a are completely 
determined by those on S(n,0) and S(0,n) up to n = 7. These cases are easy to deal with. 

1.4.1. Table - Scalar products on S(n,0) with adjoint o 

N \ n 

1 

-1 

0 

IR 
+ 

TR 
+ 

1 

C 
+ 

+ 

2 

IH 
+ 

IH 
+ 

3 

2iH 
+ 

IH xIH 
+ t 

4 

in 
+ 

IH 
+ 

5 

C 

+ 

6 

]R_ 

^ + 

7 

+ 

+ + 

1.4.2. Table - Scalar products on S(0,n) with adjoint a 

S \ n 

1 

-1 

0 

]R 
+ 

+ 

1 

TR x]R 
+ + 

2JR 
i 

2 

+ 

1R_ 

3 

+ 

C_ 

4 

IH 
+ 

« 4 

5 

M xS 
+ + 

% 

6 

IH 
+ 

IH 
+ 

7 

+ 

+ 

Note that the product on S(n,0) with adjoint a is of the same type as the one on S(0.8-n) 
with adjoint a . For the classification of the Clifford algebras Cl(p.q) themselves (Table 
1.2) we used the isomorphism Cl(p+l,q+l) = CI(p,q)®CI(l. 1). Now we need more 
information for we consider the pairs (Clip,q).a ). We prove 
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1.5. Theorem 

(Cl(p+1 ,q+ i ),a£) = (Cl(p,q),a_()®(Cl( 1,1 ),a£. 

Proof 
It is only a matter of verification. 

(e.) and {f.( being a set of generators for CI(p,q) and Cl(l , l ) , respectively, take 

{e.Of.f, , 10f . ) as a generating set for Cl(p,q)®Cl(l,l) = Cl(p+I,q+I). Apply the 

anti-automorphism o_ &a to this set, where a_ and a are of Cl(p,q) and Cl(l , l ) , 

respectively. (Although the new notation a (p.q) would be very convenient here, we do 

not introduce it and thereby undertake a small risk on confusion). 

(a_e®Q f)(e.®f,f2) = a_ É (e . )®Q e ( f^ = - « . « ^ f , = e(e.®f,f2), and 

(a_ ®a£)(l®f.) = a_ f(l)®c«(f.)= l®«f. = «(l®f.). 

The generators are multiplied by «. 

1.6. Corollary 

[ ] 

The scalar product on S(p+1 ,q+l) with adjoint a . is of the same type as the one on 

S(p,q) with adjoint a On the other hand, the scalar product on S(p,q) with adjoint a. 
determines the one on S(p+l,q+l) with adjoint a in the following way. 

®CI(1,I) 
a l 

tt-l 

K t ( x K t ) 

mf(x]RT) 

c ± 

S 

+ 

+ 

H+(xIH+) 

H+(xIH+) 

IH+(xIH+) 

IH (xiR ) 

2M 
+ 

2 * + 

2fi 
+ 

2IH 
+ 

Proof 
Example 1.3 shows that a on Cl(l , l ) is the adjoint of an 3R±-scalar product on 

S(l , l ) . Consequently, tensoring (Cl(p.q).a ) with (Cl( l , l ) ,a ) preserves the type of 

scalar product if e = 1 and swaps symmetric and skew ones if e = - I. 
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With regard to the second case (e = -1), to obtain the result recall that C - C , 
— ~ 2 2 2 — 2— + 

lH t - III ]R - 3R and IH - 1H , where - denotes equivalence of scalar products. 
D 

Of course we also need to extend the modulo 8 periodicities Cl(p+8.q) = Cl(p.q+8) = 

= CI(p,q)0]R(16) to isomorphisms of algebras with anti-involutions. 

1.7. Theorem 

(CI(p+8.q),oe) = (Cl(p,q),Q<)Q(Cl(8,0),af), 

(Cl(p,q+8).af) = (Cl(p.q),ae)©(Cl(0.8).oe). 

Proof 
We discuss the first isomorphism, the second one being provable in exactly the same 

way. By verification we show 

(Cl(p+4.q).oe) 3 (CI(p,q),at)O(CI(4.0),ot). 

Let (e.) and (f) generate Cl(p.q) and Cl(4,0), respectively. Then {e .0a . l®f. ) with 

a = r
1*"2

f3f4 is a 8 e n e r a l i n 8 s e t f o r CI(p.q)0CI(4.O) = Cl(p+4,q). Since a (a) = a for 

( = 11, we have 

(Q 0 a Xe-0a) = c (e .0a) . 

(a 0 a X l ® f ) = « ( I0f - ) . 

Hence a on Cl(p+4,q) is a ®a on Cl(p.q)0CI(4.O). Repetition of this argument yields 

the required result. 

1.8. Theorem 

The scalar products on S(p+8,q) and S(p,q+8) with adjoint a are of the same type as 

the one on S(p,q) with adjoint a . 



1 ] 

Proof 
It has to be shown that a on Cl(8,0) = Cl(0,8) = 1R(I6) is the adjoint of a symmetric 

product on ]R , this being the case if and only if the dimension of the subspace of 

IR(I6) fixed by the adjoint is equal to -=--16( 16+1) = 136. We shall see. For the basis 

elements e.e,...e. of Cl(p,q) 

o . (e....ek) = e....e. iff k = 0 , l (mod4) 

a , (e r . .ek) = e . - e ^ iff k = 0,3 (mod 4). 

Consequently, if n = 8 the dimension of the subspace fixed by a . and a . is (respec­

tively) 

O ♦ CJ) • O ♦ [«) • («) = '36 

CJ) ♦ © ♦ CJ) ♦ C?) ♦ © - 136. 
D 

Now we are able to classify the scalar products on S(p,q) with adjoint a . Supposing p > q 
we have 

Cl(p,q) 3 CI(p-q,0)®CI( I, I)®...®C1( 1,1). 

q times 

According to Theorem 1.5 and its Corollary 1.6 a on Cl(p.q) is determined by a (a_ ) 

on Cl(p-q,0) if q is even (odd), the type of corresponding scalar product being the same 

(other) if the number of transitions a —• a during q times tensoring with Cl( 1,1) is 

even (odd). Hence the result depends on q modulo 4. We begin with a Recall Table 

1.4.1. 
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p > q. Scalar products on S(p,q) with adjoint a 

\ p-q 

" ^ V 
0 

l 

2 

3 

0 

+ 

TR 
+ 

R_ 

H_ 

1 

C 
+ 

+ 

c_ 

+ 

2 

IH 
+ 

JH 
+ 

+ 

IH 
+ 

3 

2JH 
+ 

H+xiH+ 

2 S 
+ 

IH xIH 
+ + 

4 

+ 

IH 
+ 

IH 

IH 

5 

C 

+ 

« 4 

+ 

6 

ZR 

TR 
+ 

+ 

]R_ 

7 

+-

K x]R 
+ ♦ 
2]R_ 

]R_x]R_ 

Note that p-q has to be taken modulo 8 (Theorem 1.8). If p < q. needless to say. the 
starting-point is 

Cl(p,q)=Cl(O,q-p)0CI(l,l)®...®CI(l.l). 

p times 

Referring to Table 1.4.2 we give the result. 

p < q. Scalar products on S(p,q) with adjoint a 

""N. q-p 
\ ^ 

P >> 

0 

l 

2 

3 

0 

+ 

TR 
+ 

K 

3R_ 

1 

TR xTR 
+ + 
2m 

+ 
K xH 

*»_ 

2 

+ 

K_ 

H 

+ 

3 

+ 

G 

+ 

c 
+ 

4 

IH 

+ 

IH 
+ 

IH 
+ 

5 

DM K W + + 
2 S 

IH xIH + + 

2IH 
+ 

6 

IH 
+ 

IH 
+ 

IH 
+ 

ÜM 
+ 

7 

+ 

c 
+ 

♦ 

c 

These tables are to be united. Compare column j of the first table with column 8-j of the 

second one. With the new variable p+q mod 8 their true combination emerges as follows. 
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Consequently, the group of automorphisms which preserve the scalar product <i> is iso-

morphic to Inv (p,q). 

For the classification of the invariance groups we need the following review of well-

known Lie groups (cf. Porteous [6], table 11.53). 

Scalar product 

+ 

E_ 

+ 
<C 

+ 
IH 

+ 
+ 

2m 
■f 

21H 
+ 

fn variance group 

0(r,s) 

Sp(2r,3R) 

0(r,C) 

Sp(2r.C) 

U(r,s) 

0(r,IH)=SO*(2r) 

Sp(r,s) = SU*(2r,2s) 

GL(r,]R) 

GL(r,IH) 

Comment 

By definition SO (2r) = 0(2r ,C) n Sp(2r,C). 

The isomorphism 0(r,lH) = SO (2r) is based on the unique decomposition of the IH -

scalar product into two complex scalar products. Write q. 6 H r as q. = a. + jb . where 
2 r i i i i 

a.,b. 6 <E . Then 
l l 

Q.j q 2 - ( a j - b J
tjXa2 + jb 2 ) = a |

t a 2 + b , ^ + j C - b , ^ + a , b2) = 

= ( a l b | ) 
r 

0 I t£**fil> 
r o i i 

r 
-I 0 

r 
©• 
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- t, On the other hand, let be given the IH -scalar product (q..q-,) — q. I ^q-,.1 being 

diagonal with r limes +■! and s times - 1 . Then 

* l \ ^ 2 - £ / - * l t j ) I r . S
( a 2 + j b 2 ) -

-6**1*1 <\.s ° 1 
0 I 

r,s 
(„!) ** ,V> 

0 I 1 r.s 
-I 0 r,s 

fc. 
Hence Sp(r,s) = U(2r,2s) n Sp(2r,2s;C) djf SU*(2r,2s). Perhaps surprisingh we also find 

the general linear groups GL(r,3R) and GL(r.IH) among the invariance groups. The stan­

dard ]R -scalar product is 

<x,y> = (x, y , . x , y .) , x = (x . ,x , ) and y = (y y . ) £ ' K . 

For any (a,b) e 'lR(r) the following relation holds 

<(a,b)x,y> = <x,(b ,a )y>. 

Since (b ,a Ka,b) = (1,1) implies b = (a )" , the invariance group is isomorphic to 
2— 5 

GL(r,lR). With respect to the standard "IH -scalar product the adjoint of (a.b) e ~IH(r) is 

(b ,a ). The invariance group consists of the elements (a,(a ) ) with a £ GL(r.IH). 

□ 
The scalar products i> . and <t>. are positive definite on S(n.O) and S(O.n). respectively. 

In all other except the one-dimensional cases <t> is neutral on S(p.q). This follows from 

the existence of r £ Cl(p,q) with N (r) = - 1 . The result is the following classification of 

invariance groups (cf. Tables 1.2 and 1.9). 
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1.10.1. Table - Invariance groups Inv (p,q), k = 2 

p = 0 

0(2k) 

20(2k) 

0(2k) 

U(2k) 

SU*(2k) 

2SU*(2k) 

SU*(2k) 

U(2k) 

X . Q-P 

p+q \ ^ 

0 

i 

2 

3 

4 

5 

6 

7 

0.2 

0(k,k) 

0(k,k) 

Sp(2k,]R) 

Sp(2k,]R) 

1 

20(k,k) 

GL(2k,]R) 

2Sp(2k,]R) 

GL(2k.]R) 

3,7 

0(2k,C) 

U(k,k) 

Sp(2k,C) 

U(k,k) 

4,6 

SO*(2k) 

SO*(2k) 

SU*(k,k) 

SU*(k,k) 

5 

2SO*(2k) 

GL(k,IH) 

2SU*(k,k) 

GL(k,IH) 

1.10.2. Table - Invariance groups Inv , (p,q) , k = 2' 

q = 0 

0(2k) 

U(2k) 

SU*(2k) 

2SU*(2k) 

SU*(2k) 

U(2k) 

0(2k) 

20(2k) 

\ q - p 

p+q \ s 

0 

1 

2 

3 

4 

5 

6 

7 

0,2 

0(k,k) 

Sp(2k,]R) 

Sp(2k,3R) 

O(k.k) 

I 

GL(2k,]R) 

2Sp(2k,K) 

GL(2k,]R) 

20(k,k) 

3,7 

U(k,k) 

Sp(2k,C) 

U(k,k) 

0(2k,C) 

4,6 

SO*(2k) 

SU*(k,k) 

SU*(k,k) 

SO*(2k) 

5 

GL(k,IH) 

2SU*(k,k) 

GL(k,IH) 

2SO*(2k) 



IX 

Spin groups 

The largest group contained in the Clifford algebra Cl(p,q) is the set of invertible 

elements, to be denoted by Cl (p,q). In fact, CKp.q) may be regarded as the Lie algebra 

of Cl (p,q), the Lie product being defined as [r,s] = rs - sr. We briefly review the sub­

groups of Cl (p,q) covering the orthogonal group O(p.q) and its familiar subgroups 

SO(p,q) and oT(p,q). As usual, we start with the Lipschitz group 

r<p,q) = ( t e Cï*(p,q): rV(p,q) r~ ' C V(p,q)}. 

For any r € T(p,q) the transformation 

Pt- V(p,q) — V(p,q), pfv) = rvf" 

belongs to the orthogonal group O(p.q). 

T(p,q) is generated by the set of non-isotropic vectors v € V(p,q), p being the reflection 
in the orthogonal complement of v. With r and r 6 T(p,q) the identity p = p is 

r I r2 
valid if and only if r = Ar? for some X G GL(1,3R). To summarize, we have the exact 
sequence of groups 

I - GL(IJR) - r(p,q) t 0(p,q) - I. 

The norm N is real valued on T(p,q). For let r = v v v G T(p.q) with v. 6 V(p,q) 

non-isotropic. Then 

N£(r) = (-<)kQ(v |)Q(v2)...Q(vk). 

We use the norm N to construct the two-fold covering group 

Pin(p.q) = ( r e Tfp.q): N_ {(r) G S 0 } , 

where S = {±1}, which fits into the exact sequence 

1 - S° - Pin(p.q) t O(p.q) 
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Define the even subgroup 

Spin(p,q) = Pin(p.q) n Cl°(p,q). 

Since r € Spin(p.q) is the product of an even number of non-isotropic vectors, p is a 

special orthogonal transformation (even number of hyperplane reflections) for any 

r e Spin(p,q). Hence we have the exact sequence 

I - S° - Spin(p,q) t SO(p.q) - I. 

Another natural subgroup of Pin(p.q) is 

Pin+(p,q) = ( r e Pin(p,q): N_ ,(r) = I } . 

Let r = v.v v e Pin+(p,q). Then N (r)= Q(v )Q(v )...Q(v ) = 1 implies that r con­

tains an even number of negative vectors (Q(v.) < 0). Hence p preserves the orientation 

of the maximal negative subspaces of V(p,q) for any r 6 Pin (p,q). Obviously, 

Pin (p,0) = Pin(p.O). Now we have the exact sequence 

I - S° - Pin+(p,q) - OT(p,q) - I. 

The identity component SOT(p.q) of the orthogonal group is doubly covered by the group 

Spin+(p,q) = Pin+(p,q) n Cl°(p,q). 

For any r e Spin (p,q) the transformation p preserves the orientations of the maximal 
positive and negative subspaces of V(p,q). The following diagram reviews the groups dis­
cussed above, where /* and x symbolize the parity condition, imposed on the number 
of vectors and the number of negative vectors, respectively. 
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1.1 I. Diagram - Orthogonal groups and their coverings 

Pin(p.q) 

Spin(p.q) 

Pin (p.q 

Spin (p.q) 

O(p.q) 

SO(p,q 

'O l (p . 

SOT(p.q) 

By its very definition Pin (p.q) is a subgroup of the invariance group Inv (p.q). With 

regard to Spin (p.q) we can say more. Since the norms N and N coincide on the even 

subgroup, r e Spin (p.q) implies N (r) = I for both t = 1 and i = - I . Consequently. 

Spin (p.q) C Inv (p.q) for< = ± l . 

The isomorphisms 

CI° (p+ l .q ) = CI(p,q) and Cl°(p.q+ I) = Cl(q,p) 

respect a . but not a.. To determine the group Spin (p.q) we may therefore use the 

alternative embeddings 

Spin (p+l ,q) C Inv (p.q). 

Spin+(p.q+l) C Inv (q.p). 

The following examples show that it is possible to achieve immediate success whenever 

the dimensions are low enough. 
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1.12. Example 

The Clifford algebra Cl(2,l) is isomorphic to C(2). According to Table 1.10 the in-

variance groups are 

tav.(2,J) =U(1,I) , 

lnv_ j(2,1) S Sp(2, C) = SL(2, C). 

The group Spin (2,1) lies in the intersection SU(I,1). Both dimensions equal 3 and there­

fore 

Spin+(2,1) = SU(I,I). 

Alternatively, start from the isomorphism Cl (2,1) = Cl(l,l). This algebra is isomorphic 
to]R(2)and 

fov , (1,1)3 Sp(2,K) = SL(2,3R). 

Again this is a three-dimensional group, so 

Spin+(2,1) = SL(2,]R). 
ü 

1.13. Example 

Take the Clifford algebra Cl(3,1) = IH(2). 
Its invariance groups are 

fov.(3,l) =SU*(2,2) = Sp(l, l) , 

I n v ^ 3 , l ) S S U * ( 2 , 2 ) S S p ( l , l ) . 

Since dim Sp( 1,1) = 10 we can say no more than 
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S p i n + ( 3 , l ) C S p ( l , l ) . 

Proceeding in the alternative way, we need 

Inv (2,1)SSL(2,C). 

But this is a six-dimensional group, so 

Spin+(3,1) = SL(2,C). O 

Paravectors 

The vectors from V(p,q), orthogonally transformed by means of the group Pin(p.q). are 

not endowed with a real part. In this sense V(2,0) deviates from the standard complex 

plane, an indigence which is not acceptable for it is especially the Mobius geometry 

which we are intended to generalize. For that reason we also consider the vector space 

V (p,q) d i f JR © V(p,q) 
71 

in the Cl i f ford algebra Cl(p.q). 

The elements of V (p,q), being the sum of a scalar and a vector, are called paro-

vectors. For any w = v . + v G V (p,q) we set 

Q(w)= N_,(w)= v^ + Q(v). 

Provided with this quadratic form we have 

V ( p , q ) = V(p+l,q). 
7T 

Naturally enough, we introduce the analogue of the Lipschitz group 

T (p.q) = {s 6 Cl*(p,q): sV (p,q)s~' C V (p.q)}. 

Though F(p,q) C T (p,q) there is a substantial difference between the groups Hp.q) and 

lyp.q). 
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For any s 6 r (p,q) the transformation 

P.- V (p,q) — V (p,q), p(w) = sws" 
a n 71 3 

belongs to the special orthogonal group of V (p,q), which is isomorphic to SO(p+l ,q). 

Employing the algebra isomorphism 

CI(p,q)SCI°(p+l,q) 

one easily ascertains the group isomorphism 

r j r (p ,q)=r 0 (p+l ,q) . 

Any s e T (p,q) is a product s = w w . w of non-isotropic paravectors w. 6 V (p,q), 
■ J Z K J 5T 

Ps being s| 

the group 

p being special whether k is even or odd. A double covering of SO(p+l,qj is given by 

Pin^p.q) = {s G y p , q ) : N_ ,(s) e S°). 

The identity component SO (p+l.q) is doubly covered by the subgroup 

Pin*(p,q) = {s € y p . q ) : N_ |(s)= 1). 

Ascertain the isomorphisms 

Pin^kqJSSpin^Wl.q). 

The complete orthogonal group 0(p+l,q) may be represented by taking not only the 

transformations 

w —• p (w), but also w—'p(-w) , 

w 6 V (p,q) and s £ Pin (p,q). 
f ir 
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invertible entry in question is placed in the position left above. Such permutations amount 
rO I1 

Bn+2~ l l 0' to left or right multiplication of the matrix g by e -, = ( , nj e Twist(p.q). 

In the definite cases q = 0 we know that rr = 0 if and only if r = 0. Condition (1) 

combined with the theorem above then affords the property 

fa b (* k) 6 Twist(n) => a.b.c.d e T(n) u (0) (cf. Ahlfors [1]). 

Notably, condition (6) ad - be = ±1 implies that at least two entries of any 
[ . J e Twist(n) are invertible. In the indefinite cases this is not true. For example, the 

matrix 

8 = ~2 H - J (7 -w) € TwktfP.Q). w h e r e 

Q(v) = - I, Q(w) = 1 and B(v,w) = 0. has four non-invertible entries. 

Conformal spaces 

A first step towards the definition of conformal spaces is the consideration of the 

generalized stereographic projection. Written homogeneously, this projection maps V(p.q) 

onto some locus in PV(p+l,q+l), the projeciive space associated with V(p+I.q+I). The 

point in PV(p+l,q+l) represented by the punctured line Av in V(p+I,q+I) will be 

denoted by <v> henceforth. 

It is readily seen that the map 

fv Q(v) 
V — s(v) = 

maps any vector v € V(p,q) to a vector lying on the punctured null-cone 

C(p+l,q+l) = (0 * v e V(p+l,q*I): Q(v) = 0). 
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Consequently, the induced map 

v — <s(v)>, 

well-defined for any v e V(p,q), has its image on the conic section or projective cone 

PC(p+1 ,q+1) ^ f {<v> € PV(p+1 ,q+1): Q(v) = 0>. 

This generalized stereographic projection is injective but not surjective. More precisely, 

the stereographic projection 

v -» <s(v)> 

maps V(p,q) onto the part 

{<y> e PC(p+l,q+l): v n + 1 * v n + 2 ) . 

Given <w> = <s(v)> for some v e V(p,q) one easily verifies v = (w - w ) w. 

Suggestively, the hyperpiane given by the equation v - v . = 0 is called the hyper­

piane at infinity. The pole of this hyperpiane with respect to PC(p+l,q+l) is 

<e , + e ,>, n+l n+2 
The aim of this chapter is to develop a formalism, by which the stereographic 

projection may be extended to some completion of V(p,q) such that the points at infinity 

on PC(p*-1 ,q+1) are no longer exclusive. 

To understand the geometrical meaning of such an extension, let us investigate the inter­

section of an arbitrary hyperpiane in PV(p+l,q+l) with <s(V(p,q))> C PC(p+l,q+l). The 

intersection of <s(V(p,q))> with the polar hyperpiane of <a > 6 PV(p+l,q+l) is given by 

the equation B(s(v),a) = 0, i.e., by the equation 

2 B(v,a) + ( a n + 1 - a n + 2 ) Q ( v , - ( a n + 1 + a n + 2 ) = 0(*). 
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Distinguish between the cases 

(i) a ,-a , * 0. 
n+1 n+2 - -

Normalize the pole such that a , - a . = I. Then we have a , + a , = a , - a , 
n+1 n+2 n+l n+2 n+1 n+2 

= Q(a) - Q(a). This reduces equation (*) to 

Q(v + a) = Q(a). 

This is the equation of a pseudo-sphere or a null-cone in V(p,q) according as Q(a) * 0 or 

Q(a) = 0. 

fit) a ,-a , ■ 0. n+1 n+2 
If a # 0 equation (*) is reduced to 

B(v,a).^(an+1+an+2), 

describing a hyperplane in V(p,q). 

If a = 0 we are concerned with the hyperplane at infinity. Equation (») O.Q(v) = 

= a . + a . (# 0) shows that the intersection with <s(V(p,q))> is empty, a fact already 

known to us. As a remedy, multiply equation (•) by Q(v ). Then the hyperplane at 

infinity corresponds with the "locus" Q(v ) = 0 which, tentatively, has to be regarded as 

a cone at infinity added to V(p,q). 

To realize this conformal completion of V(p,q), thus bijectively corresponding to the 

compact manifold PC(p+l,q+l), we first introduce the pre-conformal space pre-V(p.q) 

which may be regarded as the column set of the matrix group Twist(p.q). 

According to the modulo (1,1) periodicity of Clifford algebras we may identify 

Cl(p+I,q+1) with the algebra of right Cl(p.q)-linear endomorphisms of the right 

Cl(p,q)-module 

M(p,q) d i f Cl(p.q) 0 IR2. 

Obviously, this module may be realized in the Clifford algebra Cl(p+I,q+1) as the left 

ideal which is generated by the idempotent e = -r (e(l) + e
n + i e

n + 2 ) = IQ fJ • 
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r x l ° Ï In the sequel we thus identify the element x = [x Q) e Cl(p+I ,q+1) with 
x 

x = ( ' ) G M(p.q). 

Projection of Twist(p.q) onto M(p,q) affords 

2.3. Definition 

pre-V(p.q) = Twist(p.q) e. 

X X V 

Hence x = ( x J G pre-V(p.q) if and only if ( x y J 6 Twist(p.q) for some 
y . , y . G Cl(p,q). According to definition 2.1 it is necessary that x.x. 6 TR and x x G 
G V(p,q). Moreover, if x. is invertible, then x. G I"(p,q) (Theorem 2.2). 
The following theorem shows that the pre-conformal space pre-V(p,q) contains a copy of 
V(p,q). 

2.4. Theorem 

For any v G V(p,q), x = K J G pre-V(p.q). 

Proof 
Twist(p.q) is generated by the set of non-isotropic vectors v = [^ vJ GV(p+l,q+l). 

1 v 

Projection onto M(p,q) yields the required result x = ve. 

Imposing ii = 1 we thus have v = G Twist(p.q). 

D 

We construct a map from pre-V(p.q) onto the punctured null-cone C(p+l,q+l). Let be 

given any g = ( a . ] e Twist(p,q). We know that gyg* G V(p+l,q+l) for all 

v G V(p+l.q+I). In particular this is true for v ^ = -=■ ( e n ) 1 + e n + 2 ) = l 0 0 J - The 
^ ^ac aa -v 

result gv g =[~ - J apparently depends only on the first column of g G Twist(p.q), 
— OO CC C3 

i.e., on the projection ge G pre-V(p,q). This suits nicely to our purpose. For any x = ge G 

6 pre- V(p,q) we are invited to define 
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S(x) = gv^g . 

Since v e C(p+1 ,q+l) and p acts transitively on the punctured null-cone, the map 

S: pre-V(p,q)-C(p+l .q+l ) . S(x) = 
x l x 2 x l x l 

X2X2 X 2 X I 

is a surjection. However, it is obvious that S is not injective. 

Recall the map 

fv Q(v) 
s: V(p,q) -C(p+l ,q+ l ) , s(v) = 

Identify v e V(p,q) with x = [v] E pre-V(p.q). Then the equation S(x) = s(v) shows 

that the restriction of S to V(p.q) is exactly the map s. We have seen that the stereo-

graphic projection 

V(p,q) -PC(p+I ,q+l) , v—<s(v)> 

is injective but not surjective. For that reason we proceed with the extended map 

pre-V(p,q) - PC(p+1 ,q+1), x - <S(x)> 

which is surjective but not injective. 

Naturally enough, we provide pre-V(p.q) with the equivalence relation x - y iff 

<S(x)> = <S(y)>. 

2.5. Definition 

The set of classes <x> thus obtained, denoted by V(p,q), is what we call the 

conformal space belonging to V(p,q). 
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Now it is obvious that the map 

V(p,q) - PC(p+1 ,q+1), <x> - <S(x)> 

is a bijection. The considerations above are reflected in the following commutative 

2.6. Diagram 

_ S 
pre-V(p.q) - C(p+l,q+l) 

projection i 1 projection 
V(p,q) - PC(p+l,q+l) 

bijection 
□ 

Let us conceive V(p,q) in terms of the group Twist(p.q), as we did with regard to 

pre-V(p.q). Suppose x = g e, y = g-e e pre-V(p.q) with x - y. We gather 

<p (v )> = <p (v )> <=> p <(v )> = p <(v )> <=> 

-I <=> p p <v > = <v > <=> p ,<v > = <v >. 
i ^ g , g 2 

Hence g . g , e U, where U denotes the subgroup of Twist(p,q) which represents the 
stabilizer of <v > e PC(p+l ,q+l). To determine U, impose p <v > = <v > for arbitrary -oo K 'M ' _ _ g -oo -oo 

fa b\ Cac a a "> f0 11 8 = L .J G Twist (p,q). The resulting equation < I - - J > = < I. „ n J > is equivalent c o cc ca \j u 
to c = 0. Consequently, U is the subgroup of upper triangular matrices in Twist(p.q). 

These considerations amount to the following 

2.7. Theorem 

V(p.q) = (Twist(p.q) / U) e. 

More honestly, there is a one-to-one correspondence between PC(p+l,q+l) and 

Twist(p.q) / U. But since p (v ) depends only on the first column of g G Twist(p,q), the 
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projection of the factor space Twist(p,q)/U onto the module M(p.q) does not interfere 
with that bijection. The following characterization of the equivalence relation on 
pre-V(p.q) affording V(p,q) is a very useful one. 

2.8. Coro l l a ry 

For any pair x,y e pre-V(p,q) 

x - y <=> xr = y for some r 6 I"(p,q). 

Proof 
Let be given any x e pre-V(p.q), i.e., any x = ge with g = ( a ) s Twist(p.q). 

Then y € pre-V(p.q) is equivalent to x if and only if y = (gu)e for some 

r s 

0 ±(rV' 
e U. We have seen that r e Hp.q), necessarily. Hence indeed we have 

y = {*) r with r 6 Hp.q). 

This brings us to the following geometrical characterization of the conformal space 

V(p,q). Let <x> € V(p,q) be represented by x = ( x J e pre-V(p.q) such that 

2 

(i) X_jL # 0 (<=> x . £ T(p.q)). 

We have x - [ J with v = X,X- S V(p,q) in a unique way. Hence it seems natural to 
identify this part of V(p,q) with V(p.q) itself. As we have seen, the restriction of the 
map S to this part yields the stereographic projection: <S(x)> = <s(v)>. 

(ii) x,x = 0 and x x # 0 (.x. € r(p,q)). 

Here we have x - [ J , again uniquely, where W = x,x . 6 V(p,q) lies on the null-
cone C(p,q). This part may be regarded as the image of C(p.q) under the transformation 
w — w , lying on the so-called cone at infinity (mentally added to V(p,q)). 
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(iii) x.x = 0 and x^x, = 0. 

This part may be viewed as the intersection of the null-cone C(p,q) and the cone at infi­

nity. If p = 0 or q = 0 this part is empty. Otherwise, x represents the point at infinity of 

the null-line Ax.X.. 

In the definite cases p = 0 or q = 0 the cone at infinity (like all cones) contains only 

one point. Only in those cases the conformal compactification is a one-point compactifi-

cation. 

Conformal transformations 

The group 0(p+l ,q+l) acts transitively on the punctured null-cone C(p+l ,q+ 1) and 

thereby on the projective manifold PC(p+l,q+l). Referring to the bijection between 

V(p,q) and PC(p+l,q+l), induced by the map 

S: pre-V(p.q) - C(p+I,q+I), S(x) = 
x , x 2 x , x , 

X2X2 X 2 X I 

we may ask for the corresponding transitive action of 0(p+l,q+l)on the conformal space 

V(p,q). 

For any g = ( J 6 Twist(p.q) the action 

v -• p (v) on C(p+1 ,q+1) 

induces the action 

<v> —. p <v> = <p (v)> on PC(p+ l.q+1). 

On the other hand, let A denote the transformation of pre-V(p.q). trivialh defined by 
g 

left multiplication 

, , , def — A (x) = gx = 
f a x . + bx . 

cx + dx, 

This action of 0(p+l,q+l) on pre-V(p.q), easily seen to be transitive, induces the action 
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<x> - A <(x)> *^f <A (x)> on V(p,q). 
o 5 

In fact, this representation of 0(p+l,q+l) on V(p,q) agrees with the representation of left 

translations on the (left) factor space Twist(p,q)/U. 

For any g e Twist(p,q) the transformations p and A fit into the following commutative 

2.9. Diagram 

A 
V(p,q) i V(p,q) 

bijection | 1 bijection 

PC(p+l,q+l) - PC(p+l,q+l) 

Now let us consider the restriction of A g = ( J e Twist(p.q). to the vector space 

V(p,q). Identify v G V(p,q) with <x> G V(p,q) represented by x = () G pre-V(p.q). 

Assume that the image <A (x)> represented by A (x) = ( + . J G pre-V(p.q) does not 

lie on the cone at infinity, i.e., assume that cv + d is invertible, i.e.. assume that cv + d G 

G T(p,q). Then we extract the nonlinear transformation in V(p,q), given by 

v - . n (v) = (av + b)(cv + d) 

by choosing the unique representative 

Ag(x) -
, g (v ) 

I 

It has to be emphasized that ft , called a (generalized) Möhius transformation, is not 
globally defined on V(p,q) unless c = 0. More precisely, the locus of singularities, given 
by the equation N .(cv + d) = 0, is a null-cone or a hyperplane with isotropic normal 
direction according as N (c) * 0 or N (c) = 0 (c * 0). The open subset of V(p.q), 
obtained by leaving out that singular locus, will be denoted by Dom(/i ) henceforth. 
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We provide the manifold V(p,q) with the pseudo-metric 

(ds)2 = Q(dv), 

classically regarded as the squared pseudo-length of the infinitesimal vector 

dv = (dv ) e. + ... + (dv ) e e V(p,q). 

With respect to this pseudo-metric n is a conformal transformation. We prove 

2.10. Theorem 

For any g = ( .J 6 Twist(p.q) the induced Móbius transformation 

u : Dom(/i ) — V(p,q), p (v) = (av + b)(cv + d) 
o o o 

respects the pseudo-metric (ds) = Q(dv) up to a (non-zero) magnification factor, accord­

ing to the equation 

Q(d/ig(v))=N"_2
1(cv + d)Q(dv). 

Proof 
Given any g = ( .J e Twist(p.q), we draw attention to the equations 

* * a c = c a 

b*d = d*b 

a d - c b = ±1, 

which follow from the normalization N .(g) = ± e(l) . 
To express n (w) - /i (v) in terms of the difference w - v, we gather 

M (w) - u (v) = u (w) - u (v) = 

= (wc* + d*)" '(wa* + b*) - (av + bXcv + d )" ' = 

= (wc* + d*)"1 [(wa* + b*)(cv + d) - (wc* + d*Xav + b)] (cv + d)" 

= t (wc + d ) (w - vXcv + d) 
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Infinitesimally, dp (v) = ± (vc* + d*)~ dv (cv + d) 
Subjecting both sides to the map N . we arrive at the required result 

Q(d/» (v))-N"_*(cv + d)Q<dv). 

It is clear that the Möbius transformations preserve pseudo-angles. Concerning the inde­

finite cases pq * 0 it is more significant that p preserves the null-structure of V(p,q). 

i.e., that any Möbius transformation respects the equation (ds)^ = 0. 

To put this invariance in a wider context, we co-ordinate the p -action on Domf/i ) and 
o o 

the p -action on <s(Dom(/i ))>. For any g e Twist(p.q) the orthogonal transformation p 
leaves invariant the set of hyperplanes in PV(p+l,q+l) with isotropic pole. 

As we have seen (cf. page 30), any such hyperplane (except the one at infinity) corre­

sponds to a null-cone in V(p,q), possibly degenerated into a hyperplane with isotropic 

normal direction. Consequently, the induced Möbius transformation p. carries "null-

cones" into "null-cones". A similar reasoning shows that p. carries "pseudo-spheres" into 

"pseudo-spheres" (pseudo-spheres or hyperplanes with non-isotropic normal direction). 

Obviously, the set of Möbius transformations u is not a group. To remedy this gap 

we have to pass to the conformal space V(p,q), upon which the linearized Möbius trans­

formations A are free from singularities. 

2.10. Definition 

The group of transformations A on V(p.q) is called the conformed group of V(p.qi 
o 

ind will be denoted by Con(p.q) henceforth. 

□ 

Observe that the covering 

Twist(p.q) — Con(p.q), g — X 

is fourfold, thepre-image of the identity being j t ( 0 i J • * U -*J f w ' , h J = ete2"'en" 
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The generating conformal transformations are the inversions with respect to 

"pseudo-spheres". These correspond to the hyperplane reflections in PV(p+l,q+l). Recall 

that Twist(p,q) is generated by the set of non-isotropic vectors a e V(p+I,q+1). 

To examine the Möbius transformation u induced by a = [ A] e V(p+l,q+l), 
3 — II 3 

Q(a) # 0, we distinguish between the cases 

(i) p * 0. 

Assume that a has been normalized such that a = 
a Q(a) - Q(a)] 

-1 A 
a 

. Then we have 

*»,<v) = (av ♦ Q(a) - Q(a» (0 + t)'' = -a + Q(a) Q ^ ^ . 

which is the inversion with respect to the pseudo-sphere Q(v + a) = Q(a). 

(ii) M = 0. 

It is clear that the Möbius transformation 

v - . ^ ( v ) = (av + A)a-'=,>a<v) + A-ö^y 

is the orthogonal reflection with respect to the hyperplane B(v,a) = •* X. 

Subgroups and decompositions 

Dimensional arguments make clear that Con(p.q) is generated by the following 

well-known subgroups. 

Dilatations 

sgn (A) >/ | A| 0 

g -
/ A| 

- I 
, A e G L O . K ) . 

a (v) = Av. 
8 
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Orthogonal transformations 

- (Ü A) . a € Pin(p.q). l 0 V 

Mg(v) = />a(v). 

Translations 

g= ( j , " ) . U6 Vfp.q). 

ft (v) = v + u. 

Transversions 

I - ( i ?)- weV(p.q). 
/j (v) = v(wv +1) = (w + v ) 

Dilatations, orthogonal transformations and translations are represented by upper tri­
angular matrices. We have seen that the subgroup U C Twisi(p.q) of upper triangular 
matrices represents the stabilizer subgroup of <v > £ PC(p+l,q+l). Consequently, for 
any g e U the transformation p maps the hyperplane at infinity (the polar hyperplane 
of <v >) onto itself. Concerning the induced Möbius transformation /i this amounts to 
the property Dom(fi ) = V(p,q) , which is also clear by prompt inspection. 
Now consider any g = ( J e U. 

Necessarily, d = ± (a ) and b = au for some u € V(p.q), Then since a e Hp.q) admits 

the polar decomposition 

a = Aa , where A = V | N ,(a) | e TR* and a e Pin(p.q). 

0 ± (a * ) " ' 
can be written as the product 
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X O 

O i X -1 

fa 0 1 n 

o a 
n 

1 

0 

u 1 

i 

We thus have proved 

2.11. Theorem 

A Möbius transformation is globally defined on V(p,q) if and only if it is a product 

of one dilatation, one orthogonal transformation and one translation. 

D 

Is it possible to decompose any g = ( . ) e Twist(p.q) in a similar way, using an addi­

tional fourth factor which induces a transversion? 

According as a e I"(p,q) or d e f(p,q) we can factorize 

1 0] 

-1 . ca 0 ±(a*f' or 

f* (dV' bl 
g = 

r i oi 

d- 'c 1 

In both cases n can be written as a product of one dilatation, one orthogonal transforma-

tion, one translation and one transversion. Conversely, the assumption that \i is the 
o 

product in whatever order of such four factors readily leads to the conclusion a 6 T(p,q) 
or d e T(p,q). We thus have cleared up a widespread misunderstanding with regard to a 
decomposition of the conformal group Con(p.q): 

2.12. Theorem 

The conformal transformation represented by g = ( .J e Twist(p.q) can be 
written as a product of one dilatation, one orthogonal transformation, one translation and 
one transversion if and only if a is invertible or d is invertible. 

n 
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If both a and d are non-invertible a weaker decomposition remains to be considered. 

Application of the preceding theorem to e - g = ( . J yields a factorization which 
n - . a D 

involves one additional inversion (represented by e ? ) if and only if b is invertible or c 

is invertible. If all entries are non-invertible. which is impossible if q = 0, repetitional 

types of factors inevitably occur. 

Twistors 

The spin representation of the Clifford algebra Cl(p.q) constitutes a representation 

of the orthogonal group O(p.q) on the space of spinors S(p.q). 

For any r € Pin(p.q) the endomorphism 

S(p.q) - S(p,q), s - r s . 

preserves the scalar product <t> up to sign, as a result of the equation N (r) = ±1. 
Similarly, the covering Twist(p.q) of the amformal group Con(p.q) affords a represen-

def 2 
tation of Con(p.q) on the space of iwi.uors T(p,q) = S(p.q)®]R . We thus deliberately 
demythologize the twistor concept. T(p,q) is nothing more than the representation of 

2 
S(p+I.q+I) as the space of hispinors Slp.q)®!?", this in accordance with the modulo 

(1,1) periodicity. 

Assume that T(p,q) is realized as a subideal of the left ideal M(p.q) in the Clifford 

algebra Cl(p+I,q+I). Recall the recurrence relation of the anti-automorphism a 

Cï)-*»-
' a_ (d) ea_ (b) 

(a (c) a_ (a) 

The restriction to T(p,q) 

x = 

f x , 0 

x 2 0 
- a (x) = 

r o o i 
eo_ ((x2) a_£(x,) 

then yields the relation between the scalar products <t> on the twistor space T(p,q) and # 

on the spinor space S(p,q): 
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This scalar product is preserved up to sign by the endomorphism 

T(p,q) — T(p,q), x — gx, 

for all g e Twist(p,q). 

Passage to the space of paravectors 

The complete machinery developed in this chapter applies equally well to the 

conformal geometry of V (p,q). Advantageously, the space of paravectors V (p,q) 

requires the same Clifford algebra as the space of vectors V(p,q). We shall meet the 

classical Möbius transformations of the plane, at last, as an example of this minimal 
representation of conformal groups. 

Let us briefly comment upon the analogies involved. 

Twist^p.q) 

Representation of Pin (p+l,q+l) as a group of (2x2)-matrices over Cl(p,q), in 

accordance with the modulo (1,1) periodicity. 

g= ( J e Twist (p,q) if and only if 

(1) aa,bb,cc,dd e 3R 

(2) ac.bd e V (p,q) 

(3) awb + bwa, cwd + dwc € 3R for all w E V (p,q) 

(4) awd + bwc € V (p,q) for all w e V (p,q) 

(5) ab* = ba*, cd* = dc* 

(6) ad* - be* = * I. 

Recall that Pin (p+l.q+l) is a double covering of the special orthogonal group of 

V (p+l.q+1). 
71 
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pre-V^p.q) 

Projection of Twist (p,q) onto the left ideal generated by the idempotent 
I 0--^«"♦•„♦I 'nrfMb I). 

C^p+l.q+1] 

Punctured null-cone (0 * w € V (p+ l.q+1): Q(w) = 0). 

PC (p+J.q+l) 
71 

Projective cone (<w> e PV (p+l.q+l): Q(w) = 0). 

S : pre-V (p.q) - C (p+I,q+l), S (x) = 
fl TT n n 

xlx2 V l 
X X X X 

2 2 2 1 

Map which gives rise to the commutative 

2.1 3. Diagram 

pre-V^fp.q) Cyp+I ,q + I ) 

projection I l projection 

bijection 

V^p.q) PCMp+l.q+l) 

There is a one-to-one correspondence between the conformal space V (p.q) and the 
quotient space Twist (p.q)/U , where U denotes the subgroup of upper triangular 

7T X IT 

matrices. Geometrically. V (p.q) is the conformal compactification of V (p.q). Any 

<x> € V (p.q) with x .x ? = 0 lies on what is conceived as the cone at infinity. 

Twist (p.q) acts on V (p.q) according to the commutative 



45 

2.14. Diagram 

VP.Q) 
bijection | 

PC^p+l.q+1) 

X 
g 

"g 

Vff(p.q) 
i bijection 

PC Jp+I.q+1) 
n 

For any g = P .) G Twist (p,q) the extracted Möbius transformation in V (p,q) 
C Q f f 71 

w -• /i (w) = (aw + b)(cw + d) 

is conformal with respect to the pseudo-metric 

(ds)2 = Q(dw). 

So far vectors and paravectors are seen to be dealt with in exactly the same way. 
To represent the improper part of the orthogonal group, as distinct from the vector case 

we now additionally have to consider the Twist (p.q)-actions 

w—»p (-w) on V (p+l,q+l). 
g * 

— A A 
For any x 6 pre-V (p,q) the equation S (x) = -S (x) holds 

7T T 7T 

x 0 x 0 
(warning: x = ( ^ 0 ) - * = ( - x 2 o ) ) -

Consequently, the Twist (p.q)-action 
7T 

<w> -• p <-w> on PC (p+l,q+l) 
g 7T 

corresponds with the action 

<x> —• A <x> on V (p,q). 

The latter induces what we call the anii-Möbius transformation in V (p,q) 
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w —• fi (-w) = (-aw + b)(-cw + d) 

which in fact is a Möbius transformation combined with the reflection in the subspace of 

vectors V(p,q). Needless to say, any anti-VIobius transformation is also conformal with 

respect to the pseudo-metric (ds) = Q(dw) on V (p,q). 

In the paravector case the inversion 

w -» -a + Q(a) w + a 
- ' Q(w +a) 

with respect to the pseudo-sphere Q(w + a) = Q(a), happens to be an anti-Mobius trans­
formation 

w —»ft (-w) with a = a — 

a Q(a)-Q(a)" | 

- I 
Twist (p.q). 

Since Twist(p.q) and Twist (p,q) are subsets of the same Clifford algebra 

CI(p+i,q+I) = Cl(p,q)® ]R(2), the conformal groups of V(p,q) and V (p.q) give rise to 
2 * 

the same twistor space T(p,q) = S(p,q)@K . 
For any g e Twist (p.q), N (g) = t e(l) only for e = - 1 , so the endomorphism sr É 

T(p,q) - T(p,q), x — gx, 

only preserves the scalar product (up to sign) 

( x , y ) - 0 . | (x ,y) = * | ( x , , y 2 ) - ^ , ( x 2 , y i ) . 

As a reminiscence of the anti-Möbius transformations we additionally have to involve the 

actions 

T(p,q) - T(p,q), x — gx 

on the twistor space (also preserving # . up to sign). 
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2.15. Examples 

The Euclidean plane may be realized as the set of paravectors V (1,0) = Cl( 1,0) = f. 
IT 

The conformal group is covered by the group Twist (1,0) = {g 6 (1(2): det(g) = i l ) , 

inducing the well-known (anti)-Möbius transformations in the complex plane. 

Let the Clifford algebra Cl(0,2) = 3R(2) be generated by e = ( ' _ . ) and 

f° ' 1 TU .u . r . fW0+ W l W2 i 
e . = I . . J . Then the set of paravectors w = w. + w e . + w . e , = I w w -w J 

has to be identified with the set of symmetric matrices. Twist (0,2) = Sp(4, 3R) induces 
7T 

the well-known linear fractional transformations in the space of symmetric (2x2)-
4 

matrices. The linear action of Sp(4, 3R) on the twistor space 1R leaves invariant the 

standard symplectic form. The remaining part of the conformal group of 3-dimensional 

Minkowski space is generated by the transformations w — -v and w — w. The corre-
4 

sponding actions on the twistor space 3R switch the sign of the symplectic form. 

The Clifford algebra Cl(0,3) = C(2) may be generated by the so-called Pauli spin 

W +W Wj+ 'W- , 

Thusly, the set of paravectors w = w + w e + w e . + w^e-j ■ Iw -iw w -w J 

happens to be the set of Hermitian matrices. Conformal transformations in 4-dimensional 

Minkowski space are linear fractional transformations in the space of Hermitian (2x2)-

matrices, induced by Twist (0,3) = SU(2,2), combined with the transformations w — -w 
IT 

and w —• w. 
4 

The corresponding linear actions on the twistor space C preserve (up to sign) the 
pseudo-Hermitian form (z,z') -• z . z ] + z . z i - ( z . z ' + z . z ' ) . 
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CHAPTER 3 

HYPERBOLIC GEOMETRY 

In this chapter we present a straightforward generalization of the Poincaré models 

of the hyperbolic plane. That is to say, we present twoconformal embeddings of hyper­

bolic k-space in Euclidean k-space: the one onto the interior of a hypersphere, the other 

(essentially the same) onto one of two parts separated by a hyperplane. 

Let the Euclidean (n+l)-space be realized as the space of paravectors V (n) in the 

Clifford algebra Cl(n) (instead of (n,0) we agree to write (n)). 

The conformal geometry of the positive definite space V (n) is relatively simple. Null-

cones in V (n) are points, the conformal compactif ication V (n) is a one-point compacti-
TT n 

fication. For any r e Cl(n) the equivalence rr = 0 <=> r = 0 is true. Consequently, 

g = ( .J 6 Twist (n) implies a e T(n) or a = 0 and the same with regard to the 

remaining entries b, c, d. The induced Möbius transformation w -« /* (w) = 
-1 - I • 

= (aw + b)(cw + d) in V (n) has the one-point singularity w = -c d. The anti-Möbius 
A A - I A 

transformation w -* p (-w) is undefined only for w = c d. The "image" of those singu-
o 

larities is represented by x e pre-V (n) with x € I"(n) and x . = 0, the point at infinity 

which compactifies V (n). 
Unit ball model 

The first model of (n+1 (-dimensional hyperbolic space we wish to discuss, is given 

by the pair (B + ,(ds) ) in the following 

3.1. Definition 

B n + I ={w Ê V (n): Q(w) < 1} 

( d s )2 . 4 Q(dw) 

o-ex*»2
 D 
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In this model, hyperbolic k-spaces (0 < k < n+1) are represented by the intersection of 

B n + with k-"spheres" orthogonal to the absolute hypersphere S = (w 6 V (n): 
7T 

Q(w) = 1). The latter is called absolute, because it is the infinitely distant horizon with 
,n+l respect to the metric on B . Two hyperbolic lines, represented by the 1 -"spheres" S 

and S?, say, are said to be parallel to each other if they intersect on the absolute hyper­

sphere S . In general, a k-space and an i-space are said to be parallel to each other if 

they do not intersect in hyperbolic (n+l)-space and do contain two parallel lines. 
2 ' 

Since the line element (ds) is proportional to the Euclidean line element (ds) = Q(dw ). 

this is a conformal model: angles have to be measured in the Euclidean way. 

Consequently, the group of hyperbolic isometries must be a group of conformal transfor­

mations in V (n). We thus need to determine a subgroup of Twist (n) such that its 
T . ^ IT 

induced (anti-)Möbius transformations respect the pair (B ,(ds) ). 

It will turn out that the group of hyperbolic isometries is covered by the following sub­

group. 
3.2. Definition 

Twisten) = {g e Twisten): g % n + , g = eR + ,} 

For any g 6 Twist (n) the transformation 

A : pre-V (n) —• pre-V (n), X (x) = gx, 
8 * ' 8 

leaves invariant the form 

( x . y ) - x e n + , y . 

Let us consider this form more closely. 
.x , 0 . v. 0 

With x = ( x Q ) and y = ( v Q ] € pre-V (n) we have 

x e . y = 
n+1 ' 

0 0 

x2 x, 

0 

-1 

1 

0 
*) 
y2 

0 

0 x 2 y 2 ' x I y l ° 
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Hence for any g € Twist (n), X leaves invariant the expression x . y . - x . y . on pre-
n g \ \ 4. £ 

Vff(n). 

Since for any x e pre-V (n) x.x. 6 3R, we are invited to extract the real-valued inva-

riant 

•t>: pre-V^n) — 3R, « x ) = XJXJ - x 2 x 2 . 

Now recall that the conformal space V (n) is the set of classes <x>, x e pre-V (n), with 

respect to the equivalence relation x - y iff y = xr for some r € T(n). Since rr > 0 for all 

r 6 T(n), the map <x> -» sign 0(x) is a well-defined class function. What is the 

geometrical significance of this invariant? We distinguish between the three parts 

(i) <x> 6 V (n) with V(x) < 0. 

Since 0 < x .x . < x-x^ it is impossible that x. = 0. 
[w\ -1 

J with w m x . x - G V (n). Then 
1 1 Z. - 7T 

0(x) < 0 amounts to the inequality Q(w) < I, i.e., to the condition w e B 

(ii) <x> £ V (n) with </>(x) = 0. 

Again it is impossible that x- = 0. Permissibly, we choose x - ( . J with 
- 1 w = x . x . e V (n). Then the equation #x ) = 0 yields Q(w) = I. 

I Z IT 

This part of V (n) thus has to be identified with the absolute hypersphere S . 

(iii) <x> € V (n) with V(x) > 0. 

Represents the exterior of S together with the point at infinity <x> with x , = 0. 

With g e Twist (n) the transformation 

V ( n ) - V (n), <x> - A <x>. 
T T g 

maps the parts distinguished above one-to-one onto themselves if and only if 

g € Twist (n). 
7C 
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Concerning the induced Möbius transformation we arrive at the following conclusion. 

3.3. Theorem 

A Möbius transformation /i maps B and S one-to-one onto themselves if and 

only if g e Twist (n). 

D 

Needless to say, this is also true with regard to the anti-Möbius transformations 
w - u (-w). 

Consequently, for any g E Twist (n) the conformal transformations 

„n+1 „ n + l , . . A . 
B — B , w —• ft (w) and w -• /i (-w) 

8 6 

respect the set of fragments of k-"spheres" orthogonal to the absolute hypersphere Sn. In 

hyperbolic terms, under these transformations hyperbolic k-spaces are carried over into 

hyperbolic k-spaces. Also observe that hyperbolic parallelism, defined in terms of inter­

section on S , is an invariant property under the (anti-)Mobius transformations induced 

by Twist (n). 

What remains to be proved, is that n leaves invariant the line element 
/ J >2 - Q(dw) , _ _ . ,»,_x

8 

(ds) = 4 =**—'—z whenever g e Twist (n). 
(I - Q(w)r 

To facilitate this task, we first give a more explicit characterization of the group 
Twist* (n). 

3.4. Theorem 

A necessary and sufficient condition for g = [ .J € Twist (n) to belong to the 

subgroup Twist (n) is 

d = ± a and c = ± b according as ad - b e = ± l . 
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Proof 
Let be given g = ( a . ] e Twist (n) with N .(g) = e(l). In terms of the pseudo-

determinant: ad - be = 1. By definition g e Twist (n) iff g e ,g = e ., i.e., iff 
a n i l T 1 I I T 1 

e" ,g*e . g = e(l). Combined with the assumption N .(g) = gg = e(l), this yields 

g e Twisten) iff g ^ e ; ; , g * e n + | . _ _ 
We have g = I * *] on the one hand, and e" . g e , = I . n) [~ ~) • 

6 *■ -c a ' n + l e n+l v l 0 ' *-c a ' 
. „ I = I r 3 I on the other. Hence g e Twist (n) iff d = a and c = b. 

- 1 U - O U IT 

The case N .(g) = -e(I) may be dealt with either in the same way or by employing the 

factorization g = ( . J [ .} with ad - b e = - 1 . 0 -\' '•-c -d 

Now it is very easy to prove 

3.5. Theorem 

For any g € Twist (n) the conformal transformations 

„ n + l „ n + l A , 
B —• B , w —♦ M (w) and w -♦ n ( -w), 

o o 

respect the metric on B , defined by the line element (ds) = 4 ^ *—z . 
(i - Q ( w > r 

Proof 
r a b i ( a \ According to the preceding theorem we may assume g = I £ A ! or g = ( £ AJ 

D a -o -a 
with aa = 1 + bb. The induced Möbius transformations are the same up to sign, so let us 

restrict ourselves to the first case 

A A _ | 
w —• /i (w) = (aw + bXbw + a) 

o 

We already know that Q(du (w)) = —- ^ W^ (cf. Theorem 2.10). Further we have 
8 NT^bw + a) 

N ( b w + a ) - N ,(aw + b) N (bvv + a) - N .(aw + b) 
l-Q(M„(w)) = - - j - ". A A 

N (bw + a) N .(bw + a) 
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Q(d/i„(w)) 

2 
( N , , ( a ) - N (b)Xl-Q<w)) _ Q(d, 

= JJ = jr/^—'— . Consequently. — 
N ^ f b w + a) N (bw + a) 

m Q(dw) 

(1 - Q(w))2 ' 

Concerning the anti-Möbius transformations it suffices to observe that the transformation 

w — -w respects the line element (ds)' on B * . 

Thusly. the group of hyperbolic isometries is seen to be covered by the group Twist (n). 

For any g € Twisten) the induced actions on the unit ball model (B .(dsD are 

n n t l n n + l , , A , 
B — B . w -• /i (w) and w — it (-w). 

The covering Twist (n) -• Iso(B + ,(ds) ) is not faithful. The pre-image of the identity 

map on B is given by the subgroup {± e(l) , ± e(j)e ,e „}, to understand in the 
n+i n+_ 

following way. 
o r - o f h o i / ^ n r , » i f v m i n ïc r * * I w i o l l t l r a n r O r o n l a H K«> J. a I I \ — •- I 

•0 I 
In the first place the identity map is trivially represented by ± e(l) = * [ - ) e 
e Twist (n): LL / i \ ' w ' = w ^o r a " w e " 

(J 0 \ j 

AJ € Twist (n), secondly, we have to distinguish between n 
U - J 7T 

odd and n even. 

If n is odd then j = e.e....e lies in the centre of the Clifford algebra Cl(n). Hence 

* [n * J = * In • J induce the Móbius transformation w - . jwj = w. 

If n is even then rj = j r for all reCI(n) . Then the o/i/i'-Möbius transformation induced by 

i L _4J = * (j, -J happens to be w - • j(-w)(-j)~ = w: the identity map on B 

In any case, the subgroup of sense-preserving hyperbolic isometries is given by the 
group of Móbius transformations 

„n+1 _n+l . . , . * A,- I 
it : B — B , it (w) = (aw + b)(bw + a) , 

a b 
where g = [£ A ] e Twist +(n) (pseudo-determinant = I). 

0 3 jr 

Thusly, Iso0(Bn+l.(ds)2) = PTwist*+(n) *^f Twist*+(n) / {± e(l)). 
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Upper half space model 

This second model is obtained by subjecting the unit ball model (B n + ,(ds) ) to the 

so-called Cayley transformation, which is nothing more than the Móbius transformation 

w — p (w) = (w + e )(e w + I)" 

I f' en (I C -> 
induced by c = —== I "I e Twist (n). 

V2 e
n ' T 

The singularity of p is given by the point w = e , so the Cayley transformation is 

globally defined on the unit ball B n + I . We denote H n + I = n (B n + I ) . 

n+1 -1 1 f ' ~e > 
To determine H , start from the inverse c = —z= \ _ nJ inducing the Móbius 
transformation 

w -» u (w) = (w - e K-e w + I) = (w - e Kw + e )" e . -1 n n n n n 

With fi _j(w) 6 B n + <=> Q(w - en) < Q(w + en) it turns out that the image of B n + 

c 
under the Cayley transformation p. is the upper half space 

H = (w = w . + w e. + ... + w e € V (n): w > 0). 

For any x e B n + there is a unique w e H n + such that x = p. (w) = (w - e ) • 
i < - 1 c • (w + e ) e . n n 

e\iA \ Q(w + e ) - Q(w - e ) w 
With Q(dx) = 4 _ Q £ d w L _ a n d | . Q ( x ) = ^ " V " ; . 4 J _ 

Q2(w + en) Q(w + en) Q(w + en) 

it follows that the pull back of ds (x) = 4 " ' x' is given by the line element 
. 2. . Q(dw) „ B + I (I - Q(x)) 

ds (w) = XN I on H 
w 

n 
Observe that with respect to this metric V (n-1) (w = 0) is the hyperplane at infinity, 

7T n 

in agreement with the fact that the Cayley transformation \i maps the absolute hyper-

sphere S onto the compactification V (n- 1). 
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The pair (H ,(ds) = " ' ?
w ' ) is our second model of (n+l)-dimensional hyperbolic 

w 
space. n 
Hyperbolic k-spaces are represented by k-"spheres" orthogonal to V (n-1). Hyperbolic 
parallelism is defined in terms of intersection on the absolute hyperplane V (n-1). The 

rt I T 

covering of the hyperbolic group belonging to the upper half space model (II .(ds)") is 
conjugate to Twist (n). For any g e Twist (n) the commutative 

jr 3r 

3.6. Diagram 

Bn+1 J Bn+I 

"c* 
.n+l 

1 *» c 
n+l 

cgc 
- I 

combined with the commutation rule -ft (w) = /j (-w) yields the hyperbolic isometries 
c c 

. ,n+1 . ,n+1 , , , A , 
H — H , w -»fi (w) and w —./i ,(-w). 

cgc" cgc" 

For the sake of completeness we characterize the group cTwist (n)c" . more explicitly. 

Let be given any g = [£ A ) 6 Twist +(n) and set a = a + a,e , b = b + b,e : 
a.,b. € Cl(n-I). 

A ^ With a.e = e a. and b.e = e b. il follows that i n n i i n n i 

cgc" = 
a. +b, vV 
A A . A 

"Vb, arb2 
e Twist (n-1). 

7T 

Conversely, for any g= (a 1 G Twist+(n- I) we find 
C O )T 

- i 
c gc = 

P q 

A A 
q p 

e Twist (n), where 
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A A A A 

p = a + d + ( b - c ) e and q = b + c + ( a - d ) e . 

Summarily, Twist (n) = Twist (n-l) . 
IT V With regard to the remaining part of the group Twist (n) (pseudo-determinant = - I ) , it 

suffices to consider its generator e .e - = [ . . J . Its conjugate 

ce ,e , c 
n+1 n+2 

-1 
0 -e 

e 0 n 
e Twist (n) 

induces the transformations 

,.n+l ,,n+l -1 . A-l H —H , w -> e w e and w — -e w e . n n n n 

The subgroup of sense-preserving hyperbolic isometries is given by the group of Möbius 

transformations 

,,n+l ,,n+l , , , , , , ,.-1 

where g = (a .) e Twist+(n-1). 
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CHAPTER 4 

SIEGEL DOMAINS OF TYPE FOUR 

In the preceding chapter the complex plane has been conceived as a two-dimen­

sional real Clifford algebra. It was that point of view, actually, from which the gener­

alized Poincaré models straightforwardly emerged. Alternatively, in this chapter we 

generalize the geometries of the upper half plane and the unit disk by considering the 

complex plane as a one-dimensional complex Clifford algebra, in such a way, that we 

arrive at two Siegel domains of type four. By definition, a subset of C is called a Siegel 

domain of type four if it is holomorphicly equivalent to the set 

( z e Cn: | z , | 2
 + ... + | z n | 2 < \ ( \ *\z] * ... * z\\2) < I). 

Observe that n = I yields the unit disk | z| < I. 

It is clear that complex Clifford algebras Cl(p,q; C) = £ ® Cl(p,q) are completely deter­

mined by the integer n = p + q: the signature of a quadratic form is an essentially real 
k 2 k 

concept. Cl(p,q; C) is isomorphic to the matrix algebra 1(2 ) or 1(2 ) according as 

n = 2k or n = 2k + I. 

If n is even, the spin representation of the even Clifford algebra Cl (p,q; C) always 

breaks down into two (irreducible) half-spin representations. For if j = - 1 (j = e.e.-.e ) 

just use ij to construct the generating idempotents, 

There are three types of scalar products <j> on the spinor spaces C , analogous to those 

on ' Mm (cf. page 7), to wit C , C and C . There is no need to discuss this 

subject as extensively as with the real Clifford algebras. The invariance groups 

Inv (p,q; I ) are given in the following 
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4.1. Table - invariance groups Inv (p,q; C), k = 2' 

n (mod 8) 

0 

1 

2 

3 

4 

5 

6 

7 

€ = I 

O(k.C) 
2 0(k ,C) 

0(k,C) 

GL(k,C) 

Sp(k.C) 
2Sp(k,C) 

Sp(k.C) 

GL(k,<C) 

t = -1 

0(k,<C) 

GL(k,(C) 

Sp(k.C) 
2Sp(k,C) 

Sp(k,«C) 

GL(k.C) 

O(k.C) 
2Q(k,C) 

(Lounesto [5], table 13). 

Throughout the discussion in chapter 2 (except a few signature-dependent remarks) the 

employed Clifford algebras may be assumed to be complexified. Thusly, in this chapter 

the analogous setting of complex conformal geometry is assumed to be extant. 

We shall be concerned with two subsets of complexified Minkowski space V (0,n; C). The 

groups of biholomorphic self-mappings of those subsets are proved to be subgroups of the 

complex conformal group. 

For any g e Twist (0,n; C) the induced transformations z — p. (z) and z — )i (-z) in 

V^O.n; C) are conformal with respect to the complex line element 

(ds)2 - Q(dz) = (dzQ)2 - ((dz,)2 + ... + (dzn)2). 

The subsets mentioned above may be endowed with a real (Hermitian) metric which is 

invariant under any biholomorphic self-mapping. 
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The tube domain 

Consider the space of complex paravectors 

Z . z 0 + z 1 e 1 + . . . + Z neneV i r(0,n;O, 

equipped with the complex quadratic form 

Q(z) = z 5 - ( z ; + ... + z2
n). 

Any z e V (0,n; C) can be written as a sum z = x + iy, where 

x = X{) ♦ x ,e , + ... ♦ xnen and y = yQ + y ^ + ... + y ^ € V^O.n) 

belong to the real (n+l)-dimensional Minkowski space. 
Consequently, Q(z) = Q(x) - Q(y) + i2B(x,y). 

Certain restrictions with regard to the imaginary part bring us to the following 

4.2. Definition 

T n = (z = x + iy e V (0,n; C): Q(y) > 0} 
X 

-r-n < • , - -r-n e\\ 

T + = ( z= x + iy € T : yQ > 0} 

T = {z = x + iy e T : y . < 0} D 

It is obvious that T = T u T . T happens to be Poincaré's upper half plane and, 

pictorially, for n = l we find 

T1 = 3R2 + i 
+ 

Domains like these are often called tube domains: they are invariant under real trans­

lations. We shall determine the group of biholomorphic self-mappings of the connected 

component T n . In view of that we think it advisable to examine the image of T under 

the stereographic projection z -• <s(z)>. For any z e V (0,n; <C) we have 
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s(z) = e(z) + \ (Q(z) - I) e n + , + 4 (Q(z> ♦ I) e n + 2 e C ^ l . n + I ; C). 

Assume z = x + iy 6 Tn . Then B(s(z),s(z)) = B(z,z) + - | | Q(z) - I | 2 - - | | Q(z) + I 12 = 

= B(z,z) - Re(Q(z)) = 2Q(y) > 0. 

(Remark: the involution r — r on Cl(0,n; C) by definition subjects the complex coeffi­

cients to complex conjugation.) 

Since the sign of the pseudo-Hermitian form t — B(t,t) on V (l ,n+I; C) is a class func-
jr 

tion, we may conclude 

z e T n =* <s(z)> e PC (I ,n+1; C) with B(s(z),s(z)) > 0. 

n 

Conversely, let be given <w> 6 PC (I,n+I; C) such that B(w,w) > 0. The conditions 

2 2 , 2 2 2 , „ 
w 0 + wn+l - ( w | + " + Wn + W n + 2 , = 0 a n d 

| w 0 | 2 + | w n + l | 2 - ( | w | | 2 + " + | w n | 2 + | w n + 2 | 2 ) > 0 

imply that <w> does not lie in the hyperplane at infinity. 

For the assumption w = w yields n+l n+2 ' 

2 2 ** 2 2 
' w o ' = ' w l + •• + w n ' * ' W l ' + "" + ' W n ' 

which is absurd. 

Consequently, <w> = <s(z)> with z = (w , - w .)~ w e V (O.n; C). 

2 w2 

Wi,hQ(Z) = QLZI w n + 2 - w n + l V 2 < w n t | 
2 w - w 

(w . - w ,) (w - w ) n+2 n+l 
n+2 n+l n+2 n+ l ' 

B(w,w) 
it follows that Q(z - z) = Q(z) + Q(z) - 2B(z,z) = -2 — ^ < 0. 

I w - - w I 1 n+2 n+l 

Hence z = x + iy € V (0,n; C) with Q(y) > 0, i.e., z € Tn . 

Consequently, 

<s(Tn)> = {<w> e PC (I ,n+1; C): B(w.w) > 0). 
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The stereographic projection is a continuous mapping, so the image of T consists of the 

two disjoint connected components <s(T )> and <s(Tn)>. 

In order to determine these components, we express the conditions Q(w) = 0 and 

B(w,w) > 0, necessary and sufficient for <w> e PV ( l ,n+l ; C) to belong to <s(Tn);>, in 

terms of the real and imaginary part. Set w = u + iv. Then Q(w) = 0 iff Q(u) = Q(v) and 

B(u,v) = 0 while B(w,w) > 0 iff Q(u) + Q(v) > 0. Hence <w? e <s(Tn)> iff 

u . + u_ . - ( u . + . . . + u + u . ) = v . + v - ( v , + . . . + v + v . ) > 0 and 0 n+l I n n+2' 0 n+l I n n+2' 

u . v„ + u . v . - (u. v, + ... + u v +u -v -) = 0. 0 0 n+l n+l I I n n n+2 n+2' 

In matrix notation: 

0 n+l 

V0 Vn+1 

0 n+l 

v0 V l 

f 1 0" 

0 1 
J 

+ 
U . . . . U U -

1 n n+2 
V....V V . 

1 n n+2 

U . . . . U U . 
1 n n+2 

V , ...V V 
I n n+2 

for some A e 3RT. 

Inferentially, det ( ( /° , , n + l ) * 0. 
V0 vn+l 

Hence the set of 2-frames consists of two disjoint connected components, one with 

del ( v ° v
n + l J > 0, the other with det [tl° „ n + 1 j < 0. Returning to complex nota-vo V . rU, 

v0 vn+l 
tion we observe that det I " n + 1 J =Im(w„w ,). "•v. v ' ' 0 n+ l ' 0 n+l 
Inspection of the image of i S T , say. brings us to the following conclusion. 

4.3. Theorem 

<s(T")> = {<w> 6 PC ( l ,n+I ; C): B(w,w) > 0 and Imfw.w , ) > 0 ) + T u n+l 
D 

It is clear that pn G 0(2,n+l; C) maps <s(T )> one-to-one onto itself if and only if 
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p G U(2,n+1). Hence p G 0(2,n+l; <C) n U(2,n+I) = 0(2,n+l), the real orthogonal 
° 8 n 

group. What about the connected component <s(T )>? 
Let be given A = (a..) £ 0(2,n+l) leaving invariant the quadratic form 

™ v 2 2 . 2 2X 
Q ( u ) = U 0 + u n + l - ( U 1 + ~ + V 

It is well-known that A respects the sign of det 

det 
'00 "0 n+l 

V l 0 an+l n+l 

U0 V l 
V0 V l 

i f and onlv i f 

> 0. 

After having realized that our arrows Tl indicate the sign of the complementary minor. 

we recognize 

SOT(2,n+l)u N O ^ . n + l ) 

u0 V l 
as the subgroup which leaves invariant the sign of det 

vo V i . 
(By definition, NO(2,n+l) = {A G 0(2,n+l): det (A) = -I}). 

Correspondingly, g = [ .J G Twist (O.n) induces the T self-mapping z — /i (z) or 

z —• n (-z) according as ad - be = I or ad - be = - I . More conveniently, the same 

group may be given by the transformations z — p. (z) and z — n (z) with 

g G Twist+(0.n) (ad* - be* = I). 

It is obvious that all such self-mappings are biholomorphic. Applying the results of 

Hirzebruch in [3] we find, conversely, that the group of all biholomorphic self-

mappings is generated by the orthochronous Lorentz group, the real translations and the 

involution z — -z . We thus arrive at the conclusion 

4.4. Theorem 

The group of biholomorphic T self-mappings is given by the transformations 

T —• T , z —• (az + bXcz + d) and z — (az + b)(cz + d) 

with ( a °.) G Twist+(0,n). vc aJ JT 



65 

4.5. Examples 

n = 0 yields the classical action of SL(2,E) on Poincaré's upper half plane (hoc loco 

z = z ) . 

Cl(0,2; <C) = C(2). We choose e [ = ( ' _° ] and e2 = ( ° l
Q) . Then the set of paravectors 

z = z . + z e + z . e . is exactly the set of symmetric matrices, z = x + iy lies in the tube 

2 f V y i y 2 •» 
domain T if and only if y . > 0 and Q(y) > 0. With y = l y y -y J t h e s e condi­

tions amount to a positive trace and determinant of the matrix y. Hence z = x + iy 6 T + 

if and only if y is positive definite: incidentally, T is a Siegel domain of type three. 

It is easy to identify Twist+(0,2) = Sp(4,]R). 

Let the real Clifford algebra Cl(0,3) = <E(2) be generated by the Pauli spin matrices 

1 0i fO h f 0 il 
" (f) J ' e2= (l 0^ e3 = U <P-

The set of paravectors x = x . = x e. + x ? e . + x^e^ is the set of Hermitian matrices. The 

complex ificat ion V (0,3; C) thus may be identified with C(2), its elements being written 

fx.+x x.-ix,-, /-yn+yi y-«+'yTi 
as H +iH , where H = I ° . ' 2 3] and H = f 0 . ' 2 31 a r e Hermitian. x y x 4 2 - . x 3 x 0 -x , y V 2 - . y 3 y ^ y , 
Concerning the tube domain, we find H + iH e T if and only if H is positive definite. 6 x y + y 
The group of biholomorphic self-mappings is given by the transformations z -• u (z) and 

z — n (z) with g 6 Twist+(0,3) = SU(2,2). 
D 

2 l d z l 2 
Recall that the metric (ds) = — r — is invariant under the SL(2, 3R)-action on the 

, m ( z ) 

upper half plane. It is a natural desire to generalize this metric on the tube domain T . 

Given a real paravector y 6 V (0,n), let P denote the matrix representation (along the 
* y 

basis l,e.,...,e ) of the linear transformation w — ywy in V (0,n). i n " 
One easily verifies that the matrix P has the entries 
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poo " 2>o - QM 
p k k = 2 > k + Q ( y ) - k e ( 1 - 2 "» 
Pij = 2 y i y j ' i * j e { O . I n). 

Obviouslv, the structure of P is the same for all n > I. 
y 

A continuitv argument makes clear that det (P ) > 0 whenever y lies in the convex domain 
y 

( y e V^O.n): yQ > 0 and Q(y) > 0}. 

Recurrently, if v lies in this domain we find det (P ) > 0, k 6 {0.1 n). where 
y 

k 
P = 

y 

Too» 
p ko-

" P 0k 

•pkk 

Hence, for any z = x + iy e T the matrix P is positive definite. 

To generalize the Poincaré metric, we must require an infinitely distant position of the 

null-cone Q(y) = 0. For that reason we employ P . (also positive definite) instead of P . 

Now let the metric on T (lm z = y) be given by the line element 

(ds)2 = (dz)1 P . dz. 

(With impunity we use the same symbol dz to denote both the paravector dz. + (dz ) e. + 

+ ... + (dz ) e and its representation (dz.,dz. dz ) ). To find the Clifford algebra 

notation of this line element, we need the relation <u,v> = B(u.v) between the Euclidean 

inner product <•,•> and the bilinear form B on the Minkowski space V (O.n). The alter-

native expression (below) enables us to prove the following, expected 

4.6. Theorem 

The biholomorphic T self-mappings leave invariant the positive definite line 

element 

(ds)2 = B(dz,(y"'dzy"')~). 
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Proof 
Consider the self-mapping z — p. (z). induced by g = ( . ) € Twist*(0,n). We set 

- I s c -1 * 
z = x + ly and w = (az + bXcz + d) = u + iv. With p = (cz + d) e r (O.n; C) we have 
J * J J * - -« . « i « i . -1 i - -I - I , - I r -K *-l 
dw = p dzp and v = p yp = p yp , implying that v dw v = p (y dzy ) p 
Consequently, B(dw,(v dwv" ) ) = B(p dzp, p (y dzy ) p " ) = 

rw * ' I *J ~ * - I A- 1 , - I T " - I . l ~ v 

= B(p p dzpp , p p (y dzy ) p p) = 
= B(N_,(p)dz, N_ 1 (p" ' ) (y" l dzy" 1 )~ )= B(dz, (y" ' dzy" ' ) " ) . 

As far as the self-mappings z — p. (z) are concerned, it suffices to observe that the 
A 8 2 n 

transformation z —» z respects the line element (ds) on the tube domain T . 

The bounded domain 

Our final exposure concerns the bounded realization of the tube domain, which is 

obtained by subjecting T to the (biholomorphic) Cayley mapping 

z — /J. (z) = (z - i)(-iz +1) , induced by 

k = y = ( J "j) e Twist+(0.n; C). 

, n Observe that T does not contain any singularity of y.. : we are allowed to define 
D! ■ V T > 
Hence z G D if and only if ft (z) = (z + i)(iz +1) £ T . 

k" 
Since the imaginary part of n Az) is 

k~' 

(z - i f ' ( I - zz)(z + i )~ ' 

and Q(z - i)Q(z t i) = | Q(z - i) | 2 > 0 (i ? D " ) , the requirement Q(Im(/i _j(z)))> 0 
amounts to the inequality 

N (I - zz) = 1 + |Q(z)|2 - 2B(z,z) > 0. 

On account of the (inequality |Q(z)| < B(z,z), the condition above implies that 
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B(z,z) < -^ (1 + B2(z,z)). Inferentially, B(z.z) < 1 or B(z,z) > I. 

Since ii. is continuous and AV(i) = 0 obeys the inequality B(z,z) < 1. we arrive at the 
determination 

Dn = { Z E V (0,n; <C): B(z.z) < 4 O ♦ IQ(z)|2)and B(z.z) < 1). 

With |Q(z)|< B(z,z) we find 

D" = {ze V (0,n;<E): B(z.z) < 4 ( ' + IQ(z)|2)< 1}. 

This bounded set is readily seen to be a Siegel domain of type four: just replace z . by iz. 

to obtain 

, _ „n+l ,2 ,2 I , . , 2 2 ,2 . , , 
{ z e l : | z 0 | + ... + | z n | < -j (I + |zQ + ... + znl ) < I). 

We proceed to determine the group of biholomorphic D self-mappings. 

For any g e Twist (O.n) the commutative 

4.7. Diagram 

*l 
"k4 

D" 
+ /* 

\ 

— 

I n 

+ 

i 

Dn 

+ 
1 

"k 

kgk 

together with the commutation rule t*J<z) = ^i.(z) yields the biholomorphic self-
mappings 

D " - D " Z - J I (Z) and z - n A). 
kgk"1 kgk"1 

It is readily ascertainable that 
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k Twist *(0,n) k~' = / [* £ ) € Twist*(0,n; <C): d = a and c = bV 

Following the same procedure as in Chapter 3 (with regard to the group of the unit ball), 

we find that this subgroup leaves invariant the expression 

X(x) = XjX( - x , x . on pre-V^O.n; <C). 

In particular, the property x(x) ■ 0 happens to be a class invariant. For any 
<x> e V (0,n; <T) with x(") = 0 we may take the unique representative x - [ J , where 

z = x .x - € V (0,n; C), so that x(") = 0 amounts to the condition zz = 1. Consequently, 

any biholomorphic D self-mapping maps the set of unitary elements 

Un d i f ( z e V (0,n;C): zz = 1) x 

one-to-one onto itself. 

We all know that U = S is the closure of pAV (0)) = Pk(lR). More generally, we prove 

4.8. Theorem 

U n is the closure of /i. (V (0,n)). 
K JT 

Proof 
For any real paravector x e V (0,n) we have n, (x)^. (x) = (x + iXx - i) (x - i) • 

. JT K K 

• (x + i) = I. Hence /J. (V (0,n)) C U . Since U is a closed set, it must also contain the 
K IT 

closure of n. (V (0,n)). 
K 7T 

Conversely, assume z e U .We distinguish between the following three cases. 

(i) Q(z - i) * 0. 

H (z) = (z + iXiz + 1 ) " is well-defined. The imaginary part is (z + i) (I - zz) • 
k -1 

• (z - i) = 0 , because zz = I. Hence M ,(z) e V (0,n). 
k"1 ' 
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(ii) Q(z - i) = 0, Q(z + i) * 0. 

Now the same reasoning applies to (II (z))~ , which means that /i (z) lies on the cone 
k k 

at infinity in V (0,n). 

(iii)Q(z - i) = Q(z+ i) = 0. 

The image is the point at infinity of the null-line A(z + i)(iz + 1). A e C (cf. page 35). 

We must show that (z + i)(iz +- I) is proportional to a real paravector. The conditions 
2 2 2 

Q(z - i) = Q(z + i) = 0 and zz = I imply z = 0. z . + ... + z" = -1 and | z | ~ + ... + 

But then z must be of the form z = iy, y e V (0,n). 
IT 

Consequently, (z + i)(iz + 1) = 2i(l + y). the required result. 

The pull back of ds'(z) = B(dz.(y dz y ) ), z = x + iy 6 T , defines a metric on D 

which is invariant under any biholomorphic self-mapping. 

We substitute z = (w + i)(iw + I)" , w e Dn. 
Then the equations dz = 2(iw + I) dw(iw + I) and 

y = (w - i) (1 - ww)(w + i) = (w + i) (I - wwKw- - i) 

bring us to the line element 

ds2(w) = 4B(dw,[( I - w-wf ' dw( 1 - w w f ' ]~) on Dn. 

Observe that n = 0 yields the familiar line element 

2 Idwl 2 

ds (w) = 4 — ' — ~ T ~ ? o n I n e u n ' 1 c''s'<-
(I - | w | ) 
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Samenvatting 

De kern van dit proefschrift bestaat uit de generalisatie van de (anti-)Möbius trans­

formaties in het complexe vlak. Er wordt een formalisme ontwikkeld waarmee de 

(anti-)Möbius transformaties in een reële vectorruimte met een kwadratische vorm van 

willekeurige signatuur kunnen worden beschreven. Een tweede orde periodiciteit van 

Clifford algebra's stelt ons in staat om de niet-lineaire (anti-)Möbius transformaties in 

bovenstaande vectorruimte te laten samenhangen met de lineaire orthogonale transforma­

ties in een omhullende projectieve ruimte. De (anti-)Möbius transformaties zijn conforme 

transformaties wat betreft de door de kwadratische vorm geïnduceerde pseudo-metriek. 

Vanwege de singulariteiten wordt er een kegel op oneindig aan bovenstaande vector­

ruimte toegevoegd. Deze compactificatie is een homogene ruimte van de conforme groep. 

Als toepassing van de theorie beschouwen we twee generalisaties van de meetkunde 

van het halfvlak (de cirkelschijf). Een reële generalisatie van de Poincaré-geometrieën 

verschaft ons tw'ee conforme modellen van de hyperbolische meetkunde van willekeurige 

dimensie. De hyperbolische groep wordt in beide modellen gerepresenteerd door een 

ondergroep van de Euclidisch conforme groep. Anderzijds geeft de ophoging van de 

complexe dimensie ons twee modellen van het Siegei domein van de vierde soort. De 

groep van biholomorfe bijecties wordt in beide modellen gerepresenteerd door een onder­

groep van de complex conforme groep. 
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