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Abstract

The Induced Dimension Reduction method (IDR(s)) [1] is a short-recurrences Krylov method
to solve systems of linear equations. In this work, we accelerate this method using the spectral
information. We construct a Hessenberg relation from the IDR(s) residual recurrences formu-
las, from which we approximate the eigenvalues and eigenvectors. Using the Ritz values, we
propose a self-contained variant of the Ritz-IDR((s) method [2] for solving a system of linear
equations. In addition, the Ritz vectors are used to speed-up IDR(s) in the solution of a se-
quence of linear systems.
Keywords: Induced Dimension Reduction method, system of linear equations, sequence of
systems of linear equation, eigenvalues and eigenvectors.

1 Introduction

In this paper, we are interested in accelerating the convergence of the Induced Dimension Reduction
method (IDR(s)) [1] to solve a system of linear equations,

Ax = b, with A ∈ Cn×n and b ∈ Cn, (1)

and also to solve sequences of systems of linear equations,

Ax(i) = b(i), with A ∈ Cn×n and bi ∈ Cn, for i = 1, 2, . . . , p, and p > 1. (2)

The vectors x, x(1), . . . ,x(p) represent the unknowns in Cn, and we only consider the case when
the coefficient matrix A is a non-Hermitian and non-singular matrix.

∗R.A.Astudillo@tudelft.nl
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‡M.B.vanGijzen@tudelft.nl

3



IDR(s) is a Krylov subspace method which has been proved to be effective for solving large and
sparse systems of linear equations. Both theoretical and practical aspects of the IDR(s) have been
studied in different works, e.g. [3], [4], [5], and [2] among others. Simoncini and Szyld reformulate
IDR(s) as a Petrov-Galerkin method in [2]. The authors prove that in IDR(s) the subspace of
constraints or left space is a block rational Krylov subspace. Based on this connection with the
rational subspaces, they propose to use the Ritz values to accelerate the convergence of IDR(s).
This idea originates Ritz-IDR(s), which is an effective IDR(s) variant to solve systems of linear
equations (1) where the spectrum is highly complex.

To obtain a subset of the Ritz values, Ritz-IDR(s) requires a preceding call to an external sparse
eigensolver routine, for example the Arnoldi method [6] or Bi-Lanczos method [7]. In the first part
of this work, we present a self-contained version of the Ritz-IDR(s), i.e., a Ritz-IDR(s) variant that
does not require an external call to an eingensolver routine. We compute the upper Hessenberg
matrix Hm from a Hessenberg relation as,

AWm = WmHm + fe∗
m, (3)

during the first iterations of IDR(s). Then, we obtain the Ritz values from the matrix Hm, and use
them as input parameter of the subsequent iterations of IDR(s).

In the second part of this work, we apply IDR(s) to solve sequences of systems of linear equations
(2). We only consider the case when the coefficient matrix does not change and the right-hand side
vectors {b(i)}pi=1 are not available simultaneously. This kind of problems arises naturally from
the discretization of linear time-dependent differential equations and the solution of systems of
non-linear equations using modified Newton-type methods with constant Jacobian matrix.

Subspace recycling is a common technique to accelerate the Krylov method. This process
consists of approximating invariant subspaces or calculating a “good” Krylov subspace basis and
use this information to save matrix-vector products at the solution of the system of linear equations.
For methods as GMRES [8] and GCR [9] the recycling idea has been incorporated to accelerate the
solution of a single linear system of equations in [10] and [11] respectively. In the case of solving
sequences of systems of linear equations, these methods have been adapted in [12] and [13]. Also,
other Krylov methods have been adapted to solve sequences of systems of linear equations, for
example BiCG [14], GMRES(m) [13], and IDR(s)stab [15].

GCROT [12] and GMRES are long-recurrences methods, it means that they have the optimal
residual minimization property, but also these methods can be expensive in terms of memory and
CPU consumption. For this reason, we propose an IDR(s) variant, that is a short recurrences and
memory limited method to solve (2). First, we show how to obtain Ritz values and Ritz vectors from
IDR(s) for solving a system of linear equations. Second, we present how to enrich the searching
subspace of IDR(s) with the Ritz vectors. Finally, we apply IDR(s) with the Ritz vectors to solve
sequences of linear equations as a main application of this enrichment.

This document is organized as follows. A review of IDR(s) and its recurrences is presented in
the second section. In section 3, we present an IDR(s) variant to solve system of linear equations.
We present how to obtain an underlying Hessenberg relation from the IDR(s) residual recurrences.
This allows us to find approximation to the eigenvalues of the coefficient matrix involved. This
eigenvalues approximations are used to accelerate the IDR(s). Section 3.1 shows the numerical
examples related to the solution of system of linear equations. In section 4, we explain how to
add the Ritz vectors to the initial searching space of IDR(s) to save computational effort. As a
main application of this idea, we apply IDR(s) to solve a sequence of system of linear equations, we
compute a set of Ritz vectors, using the Hessenberg relation deduced in section 3. Them, we use
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this Ritz vectors to accelerate the subsequent systems of linear equations. Numerical experiment
for the solution of a sequence of systems of linear equations using IDR(s) are presented in section
4.2. In section 5, we present the general conclusions and remarks.

Throughout this document, we use the following notation. Complex scalars are denoted by
lower case Greek letters. Bold lower case letters represent vectors. Matrices are denoted by capital
case letters, in particular, the identity matrix of order n is denoted by In, and when the context is
clear the subindex is dropped. The symbol ’*’ as super-index of a vector or a matrix represents the
conjugate transpose of it. Subspaces are denoted by upper case calligraphic letters.

2 Review on IDR(s)

In this section, we first review the recurrence formulas of IDR(s) for solving a system of linear
equations, and then the work of Simoncini and Szyld in [2]. This allows us to present of our first
proposed algorithm in Section 3.

The Induced Dimension Reduction method is based on the following theorem,

Theorem 1 (IDR(s) Theorem). Let A be any matrix in Cn×n, let v0 be any nonzero vector in Cn,
and let G0 be the full Krylov subspace Kn(A,v0). Let S any (proper) subspace of Cn such that S
and G0 do not share a nontrivial invariant subspace of A, and define the sequence Gj, j = 1, 2, . . .
as:

Gj ≡ (I − ωjA)(Gj−1 ∩ S) (4)

where ωj’s are nonzero scalars. Then,

1. Gj+1 ⊂ Gj, for j ≥ 0 and

2. dimension(Gj+1) < dimension(Gj) unless Gj = {0}.

Proof. See [1].

The main idea is to create approximation vectors xm such that their corresponding residual
vectors rm = b − Axm belong to the nested and shrinking subspaces Gj . IDR(s) creates s + 1
residuals vectors in Gj , and uses those vectors for the creation of the s + 1 subsequent residuals
Gj+1. This process is repeated iteratively until convergence.

Our implementation of IDR(s) is based on IDR(s) with biorthogonal residuals (see [3]). In
practice, this variant has proved to be more stable, and is also slightly less expensive. Next, we
present the recurrences used by this IDR(s) variant. For sake of simplicity, we introduce new
notation. The subspace S is represented by the left null space of some full-rank n × s matrix
P = [p1, . . . ps] (called shadow space). The superindex of a vector or a scalar represents the
number of subspace Gj where the current residual belongs. The subindex represents the position

in the sequence of intermediate residuals. For r
(j)
k represents the k-th residual in Gj . The first

residual vectors in Gj+1 and its respective approximation are,

x
(j+1)
0 = x(j)

s + ωj+1r
(j)
s , (5)

and,

r
(j+1)
0 = (I − ωj+1A)r(j)s , (6)
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and the recurrences to create the intermediate residuals in Gj+1, are

x
(j+1)
k = x

(j+1)
k−1 + β

(j+1)
k u

(j+1)
k , (7)

and
r
(j+1)
k = r

(j+1)
k−1 − β

(j+1)
k g

(j+1)
k , for k = 1, 2, . . . , s. (8)

The scalar β
(j+1)
k is selected such that,

pTk r
(j+1)
k = 0. (9)

The direction vectors are defined as,

u
(j+1)
k = û

(j+1)
k −

k−1∑
i=1

α
(j+1)
i u

(j+1)
i , (10)

and

g
(j+1)
k = ĝ

(j+1)
k −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i . (11)

Where the vector û
(j+1)
k and ĝ

(j+1)
k are,

û
(j+1)
k = ωj+1

(
r
(j+1)
k−1 −

s∑
i=s−k

γ
(j+1)
i g

(j)
i

)
+

s∑
i=s−k

γ
(j+1)
i u

(j)
i , (12)

ĝ
(j+1)
k = Aû

(j+1)
k , (13)

The scalars {α(j+1)
i }k−1

i=1 are selected, such that,

pTi gk = 0 for i = 1, . . . , k − 1, (14)

and the scalar {γ}si=k are selected as,

pTj

(
r
(j+1)
k −

s∑
i=k

γig
(j)
i

)
= 0 (15)

The conditions (9), (14), and (15) not only ensure that the residual r
(j+1)
k belongs to Gj+1, but

also, that the residual r
(j+1)
k is orthogonal to the vectors p1, p2, . . . , pk for k = 1, 2, . . . , s.

An important property needed for the deduction of the IDR(s)-Hessenberg relation presented
in the section 3, is that for any IDR(s) variant a residual in Gj can be also written as,

r
(j)
k = Ωj(A)Ψ(A)s×j+kr0, (16)

where,

Ωj(t) =

j∏
i=0

(1− ωit), ωi 6= 0, i = 1, . . . , j, (17)

Ω0(t) = 1, and Ψm(t) is a multi-Lanczos-type polynomial [16] of order m, that uses s + 2 terms
recurrences such that Ψ0 = 1 (see section 5 in [1]). When the first residual vector is created in
Gj+1, the polynomial Ωj(A) increases by one degree. Then, the degree of the polynomial Ψm(A)
is increased by one for each matrix-vector product during the creation of the others intermediate
residuals.
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2.1 IDR(s) as a Petrov-Galerkin method and Ritz-IDR(s)

As we mention in the introduction of this work, Simoncini and Szyld showed that IDR(s) can be
viewed as a Petrov-Galerkin method in [2]. Particularly IDR(s) finds the approximation xk+1 in
the right or search subspace x0 + Kk+1(A, r0), by imposing the condition that rk+1 is orthogonal
to the subspace Wj , defined as,

Wj = Ωj(A
∗)−1Kj(A∗, P ), (18)

where Ωj(A) is the polynomial defined in (17), and Kj(A∗, P ) is the block Krylov subspace of order
j, associated with the matrix A and the block P .

This link between IDR(s) and the rational block subspaces leads to the development of the vari-
ant Ritz-IDR(s). The authors in [2] argue that selecting the scalars ωj as the inverse of Ritz values
of the coefficient matrix A, is a good choice for the creation of the left space Wj . This is because,
this selection enriches the left subspace with information about the associated eigencomponents.
This would damp the eigenvector components from the residual vector in a quick way, which leads
to a faster convergence. The Ritz values required are computed with a call to an eigenvalue routine
as the Arnoldi method. Note that Ritz-IDR(s) might require complex arithmetics even when the
matrix and right-hand size vector are real, in the case when complex Ritz values are encountered.

In the following section we present how to obtain a Hessenberg relation from the IDR(s) re-
currences. Using this Hessenberg relation, we can obtain approximations to the eigenvalues of
the coefficient matrix, and in this form we obtain a self-contained variant of the Ritz-IDR(s). To
distinguish it, we label our algorithm as SC-Ritz-IDR(s).

3 Part 1: Accelerating IDR(s) using the Ritz values

IDR(s) has been previously used to obtain spectral information of a matrix. In [17], the authors
adapt IDR(s) to solve the eigenvalue problem, and they obtain the matrices Ĥm and Tm from a
generalized Hessenberg relation,

AWmTm = WmĤm + f̂ eTm. (19)

where Wm ∈ Cn×m (not explicitly available) represents a Krylov subspace basis for K(A,w1), Tm
is a s-banded, upper triangular matrix; Ĥ is a s-banded, upper Hessenberg matrix, and f̂ ∈ Cn.
The approximation of the eigenvalues of A are obtained from the eigenvalue pencil (Tm, Ĥm). In
[18], the authors create a standard Hessenberg relation,

AWm = WmHm + feTm, (20)

where Wm ∈ Cn×m, and Hm is a Hessenberg matrix. This matrix Hm has the same eigenvalues as
the matrix pencil (Tm, Ĥm).

The mentioned works [17] and [18] target specifically the eigenvalue/eigenvector approximation
problem. Following, we describe how to obtain a matrix Hm part of a standard Hessenberg relation
(20) from the underlying IDR(s)-recurrences used to solve systems of linear equation. This allows
us to obtain the solution of a system of linear equation whose coefficient matrix is A, and in
parallel obtain approximations to the eigenvalues of this matrix. Particularly, we use this spectral
information as is suggested in [2], and we proposed a Ritz-IDR(s) variant labeled as SC-Ritz-IDR(s).
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In order to derive this Hessenberg matrix, let us consider the IDR(s) relations described in
section 2. Substituting Eqs. (11), (13), and (12), in Eq. (8), we obtain,

r
(j+1)
k−1 − r

(j+1)
k

β
(j+1)
k

= ĝ
(j+1)
k −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= Aû
(j+1)
k −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= A

[
ωj+1

(
r
(j+1)
k−1 −

s∑
i=s−k

γ
(j+1)
i g

(j)
i

)
+

s∑
i=s−k

γ
(j+1)
i u

(j)
i

]
−
k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= ωj+1Ar
(j+1)
k−1 − ωj+1A

s∑
i=s−k

γ
(j+1)
i g

(j)
i +

s∑
i=s−k

γ
(j+1)
i Au

(j)
i −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= ωj+1Ar
(j+1)
k−1 − ωj+1A

s∑
i=s−k

γ
(j+1)
i g

(j)
i +

s∑
i=s−k

γ
(j+1)
i g

(j)
i −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= ωj+1Ar
(j+1)
k−1 + (I − ωj+1A)

s∑
i=s−k

γ
(j+1)
i g

(j)
i −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= ωj+1Ar
(j+1)
k−1 + (I − ωj+1A)

s∑
i=s−k

γ
(j+1)
i

β
(j)
i

(r
(j)
i−1 − r

(j)
i )−

k−1∑
i=1

α
(j+1)
i

β
(j+1)
i

(r
(j+1)
i−1 − r

(j+1)
i ).

From the equations above, we obtain the following relation,

ωj+1Ar
(j+1)
k−1 =

r
(j+1)
k−1 − r

(j+1)
k

β
(j+1)
k

− (I−ωj+1A)

s∑
i=s−k

γ
(j+1)
i

β
(j)
i

(r
(j)
i−1− r

(j)
i ) +

k−1∑
i=1

α
(j+1)
i

β
(j+1)
i

(r
(j+1)
i−1 − r

(j+1)
i ).

(21)
Using Eq. (16), we obtain that each vector in Gj can be written as,

r
(j)
i = Ωj(A)r̂

(j)
i for i = 0, . . . , s, (22)

and equivalently, any residuals in Gj+1 can be written as,

r
(j+1)
i = Ωj+1(A)r̂

(j+1)
i for i = 0, . . . , s. (23)

Taking into account Eqs. (23) and (22), we can multiply Eq. (21) by Ωj+1(A)−1 and obtain,

ωj+1Ar̂
(j+1)
k−1 =

r̂
(j+1)
k−1 − r̂

(j+1)
k

β
(j+1)
k

−
s∑

i=s−k

γ
(j+1)
i

β
(j)
i

(r̂
(j)
i−1 − r̂

(j)
i ) +

k−1∑
i=1

α
(j+1)
i

β
(j+1)
i

(r̂
(j+1)
i−1 − r̂

(j+1)
i ). (24)

The set of vectors r̂i represents the Krylov basis associated with the polynomial Ψ(A). In fact, one
can see that the basis grows with the degree of the polynomial Ψ(A). Substituting Eqs. (22) and
(23) in (6), we obtain that,

r̂
(j+1)
0 = r̂(j)s . (25)
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This implies that every s+ 1 matrix-vector products, IDR(s) creates s new vectors basis r̂i. Using
(25), Eq. (24) can be written as,

ωj+1Ar̂
(j+1)
k−1 = −γ

(j+1)
s−k

β
(j+1)
s−k

r̂
(j)
s−k−1 −

s−1∑
i=s−k

(
γ
(j+1)
i+1

β
(j)
i+1

− γ
(j+1)
i

β
(j)
i

)
r̂
(j)
i

+

(
γ
(j+1)
s

β
(j+1)
s

+
α
(j+1)
1

β
(j+1)
1

)
r̂(j)s +

k−1∑
i=1

(
α
(j+1)
i+1

β
(j+1)
i+1

− α
(j+1)
i

β
(j+1)
i

)
r̂
(j+1)
i − 1

β
(j+1)
k

r̂
(j+1)
k . (26)

One can see in Eq. (26) that the vector Ar̂
(j+1)
k−1 is a linear combination of the vectors {r̂(j)i }si=s−k−1

and {r̂(j+1)
i }ki=1. This defines a Hessenberg relation of the form,

AR̂m0
= R̂m0+1H̄m0

, (27)

where m0 is the number of steps performed, and R̂m0
is a Krylov subspace basis defined as,

R̂m0 = [r̂
(0)
0 , . . . , r̂(0)s , r̂

(1)
1 , . . . , r̂(1)s , . . . , r̂

(j)
1 , . . . , r̂(j)s , r̂

(j+1)
1 , . . . , r̂

(j+1)
k ]n×m0 . (28)

The vectors r̂i are not constructed explicitly, however, it is easy to see that,

r̂
(0)
0 = r0. (29)

The matrix H is an upper and s+ 1 banded Hessenberg matrix whose columns are define as,

Hî =



0
...

hî−s,̂i
...

hî+1,̂i
...
0


∈ Cm0+1, (30)

where,



hî−s,̂i
hî−s+1,̂i

...
hî−s+m,̂i
hî−s+m+1,̂i

...
hî+1,̂i


=

1

ωj+1



− γ
(j+1)
s−k

β
(j+1)
s−k

γ
(j+1)
s−k+1

β
(j)
s−k+1

− γ
(j+1)
s−k

β
(j)
s−k

...
γ(j+1)
s

β
(j)
s

+
α

(j+1)
1

β
(j+1)
1

α
(j+1)
2

β
(j+1)
2

− α
(j+1)
1

β
(j+1)
1

...

−1/β
(j+1)
k



∈ Cs+2, (31)

Our implemention of SC-Ritz-IDR(s) is based on the IDR(s) with biorthogonal residuals. The
memory consuption of the SC-Ritz-IDR(s) is similar to the IDR(s) (see section 3.5 in [3]). The sets
of coefficients {α}si=1, {γ}si=1, and {βi}si=1, used in the SC-Ritz-IDR(s), are stored in three extra
vectors of size s. Algorithm 1 shows an implementation of SC-Ritz-IDR(s).
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Algorithm 1 IDR(s) accelerated with Ritz values

1: procedure IDR(A, b, s, tol, x0)
2: Input: A ∈ Cn×n, b ∈ Cn, s ∈ N+, tol ∈ (0, 1), x0 ∈ Cn.
3: x = x0, r = b−Ax
4: P a random matrix in Cn×s.
5: G = 0 ∈ Cn×s), U = 0 ∈ Cn×s
6: M = Is ∈ Cs×s.
7: ω = 1.0, î = 0, Hm0

= 0 ∈ Cm0+1×m0 , c = 0, α = 0, β = 0 ∈ Cs.
8: while ‖r‖ ≤ tol × ‖b‖ do . Loop overGj spaces
9: f = PT r

10: for k = 1 to s do . Compute s independent vectors gk in Gj space
11: Solve c from Mc = f , (γ1, . . . , γs)

T = c . Note that M = PHG
12: v = r−∑s

i=k γigi
13: v = B−1v . Preconditioning operation
14: uk = ωv +

∑s
i=k γigi

15: gk = Auk
16: for i = 1 to k − 1 do . Make gk orthogonal to P
17: αi = pTi gk/µi,i
18: gk = gk − αigi
19: uk = uk − αiui
20: end for
21: µi,k = pTi gk Mi,k = µi,k, for i = k, . . . , s . Update M
22: βk = φk/µk,k . Make the residual orthogonal to pi for i = 1, . . . , k
23: r = r− βkgk
24: x = x + βkuk
25: if k + 1 ≤ s then
26: fi = 0 for i = 1, . . . , k
27: fi = fi − βkMi,k for i = k + 1, . . . , s
28: end if
29: î = î+ 1
30: if î ≤ m0 then
31: Hî−s:̂i−k,̂i = ck:s/βk:s
32: Hî−k+1:̂i−1,̂i = α1:k−1/β1:k−1

33: Hî,̂i = 1.0/βk
34: Hî−s+1:̂i+1,̂i = Hî−s+1:̂i+1,̂i +Hî−s:̂i,̂i
35: Hî−s:̂i+1,̂i = Hî−s:̂i+1,̂i/ω
36: end if
37: Overwrite k−th columns of G and U by gk and uk respectively.
38: end for . Entering Gj+1

39: v = B−1r . Preconditioning operation
40: t = Av
41: if î ≤ m0 then . Select new ω
42: ω is selected using the converge maintenance strategy [3].
43: else
44: ω is selected using the spectral information provided by Hm0

.
45: end if
46: r = r− ωt
47: x = x + ωv
48: end while
49: return x and Hm0

(if required).
50: end procedure
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3.1 Numerical experiments

To illustrate the numerical behavior of the proposed algorithm, we repeat all the experiments
presented in [2]. We compare our proposed variant SC-Ritz-IDR(s) with IDR(s), Ritz-IDR(s) and
full GMRES. All the experiment are performed in Matlab 2015a running on a 64 bit GNU/Debian
Linux computer with 32 GB of RAM. The right-hand side vector b = b̂/‖b̂‖ with b̂ = 1, and the
initial vector is x0 = 0. As stopping criteria, we use.

‖b−Axk‖
‖b‖ < ε, (32)

with ε = 10−10.
For Ritz-IDR(s) and SC-Ritz-IDR(s), we use as parameter,

ωj =
1

λi
, (33)

where λi is an eigenvalue of the matrix Hm0 . We select m0 = 20 and the 15 smallest magnitude
eigenvalues. For Ritz-IDR(s), the matrix Hm0

is obtained with a preliminary call to the Arnoldi
method. In the case of SC-Ritz-IDR(s) the matrix Hm0

is computed as is explained in section 3.
Before the creation of the matrix Hm0

, SC-Ritz-IDR(s) uses the converge maintenance strategy,
proposed in [3], to select the first ωj parameters.

3.1.1 Convection-diffusion-reaction equation examples

The linear systems of equations used in the next three examples are based on the finite difference
discretization of the simple convection-diffusion-reaction model problem

− ε4u+ vT∇u+ ρu = f, in Ω = [0, 1]d (34)

with d = 2 or d = 3, and homogeneous Dirichlet boundary conditions on ∂Ω. Particularly, it is
known that IDR(s) with s > 1 outperforms Bi-CGSTAB [19] when the ‖v‖ >> ε (see for example
[20], [21]).

Example 1. In this example the coefficient matrix A is given by,

A = A0 − γI + (Pe)B,

where A0 is the discretization of the Laplacian operator in the unit square. B is the bidiagonal
matrix with -1 and 1 on the lower and upper diagonals, respectively. Figure 1 (a) shows the
convergence of the norm of the residual for the matrix A of order 400 with the parameters γ = 1
and Pe = 0.1, Ritz-IDR(s) and SC-Ritz-IDR(s) do not show any improvement over IDR(s). Using
a convection-dominated example with A ∈ C1600×1600 and Pe = 1 and γ = 0.5, we can see a better
performance of Ritz-IDR(s) and SC-Ritz-IDR(s) over IDR(s).

Example 2. We consider two matrices of order 8000 from the discretization of the 3D problem
(34) with ε = 1, v = β[1, 1, 1], and ρ = 0. First using β = 100, we can see in Figure 2 (a) a similar
behavior between the IDR(s) variants. However, Ritz-IDR(s) and the SC-Ritz-IDR(s) are clearly
superior with respect to the IDR(s) when the parameter β is increased to 500 (see Figure 2 (b)).
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Figure 1: (Example 1) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and
Ritz-IDR(4)-2.
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Figure 2: (Example 2) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and
Ritz-IDR(4)-2.

Example 3. The coefficient matrix used in this example is the unsymmetric matrix or order 8000
that comes from the finite difference discretization of the 3D (34), with parameter ε = 1, γ = 0, and
v = [0, 0, 1000]T . As in the previous example, IDR(4) does for converge for the maximum number
of iterations allowed, while Ritz-IDR(4) and Ritz-IDR(4)-2 converge using almost the same number
of matrix-vector products (see Figure 3).
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Figure 3: (Example 3) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and
Ritz-IDR(4)-2.
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Figure 4: (Example 4) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and
Ritz-IDR(4)-2 for the matrix Sherman5 using ILU preconditioner.

3.1.2 Examples from Matrix Market

The matrices used in the next two examples are part of the Matrix Market collection [22].

Example 4. We consider the highly indefinite matrix Sherman5 of order 3312. As is reported
in [2], Ritz-IDR(s) diverges for this example. SC-Ritz-IDR(s) exhibits a similar behavior. On
the other hand, Figure 4 shows that both Ritz-IDR(s) variants converge using the Incomplete LU
factorization of the matrix A+ I as preconditioner with threshold tolerate 10−2. In this example,
IDR(s) and its variant behave similar in term of matrix-vector products required.

Example 5. In this example, we consider the linear system of equations ADD20 which arises from
computer component design. In Eq. 32, ε = 10−8 is selected. As in proposed in [2], we also consider
20 Leja points located in the interval where the 20 real Ritz values are located. The Leja points
are computed using the algorithm proposed in [23]. Figure 5 shows a similar behavior between all
the IDR(s) variants.

4 Part 2: Accelerating IDR(s) using Ritz vectors

In the previous sections we use the recurrences of IDR(s) to obtain an upper Hessenberg matrix H.
From this matrix H, we obtain the Ritz values to accelerate the IDR(s) method. In this section, we
incorporate the Ritz vectors to the Krylov basis generated by IDR(s). First, we present how to add
additional vectors to the IDR(s) searching subspace basis, i.e., the augmented Krylov subspace,

Ks+m(A, r0) = span{r0, y1, . . . ,ys, Ar0, . . . , A
m−1r0}. (35)

Secondly, we use the matrix H to recover the Ritz vectors of the coefficient matrix, and add these
Ritz vectors in IDR(s).
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Figure 5: (Example 5) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and
Ritz-IDR(4)-2 for the matrix ADD20.

In order to add additional direction vectors to the Krylov basis created by IDR(s), we exploit
the fact that G0 is Cn. We can choose freely the first s+ 1 linearly independent direction vectors in
IDR(s) and obtain their corresponding approximations and residuals associated. In the case of the
biorthogonal variant, we have to ensure that each residual ri is orthogonal to pj for i = 1, 2, . . . , s
and j = 1, 2, . . . , i, and each vector gi is orthogonal to pj for i = 1, 2, . . . , s and j = 1, 2, . . . , i−1.
In order to do so, we present the Algorithm 2, to create the first s biorthogonal residuals.

Algorithm 2 Injecting basis vectors in G0
1: Input: {yi}si=1

2: for k = 1 to s do
3: uk = yk
4: gk = Auk
5: for i = 1 to k − 1 do . Make gk orthogonal to P
6: α = pTi gk/µi,i
7: gk = gk − αgi
8: uk = uk − αui
9: end for

10: µi,k = pTi gk Mi,k = µi,k, for i = k, . . . , s . Update M
11: β = φk/µk,k . Make the residual orthogonal to pi for i = 1, . . . , k
12: r = r− βgk
13: x = x + βuk
14: φi = 0 for i = 1, . . . , k
15: φi = φi − βµi,k for i = k + 1, . . . , s
16: end for . Entering Gj+1
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Figure 6: (Example 6) Evolution of the residual norm of full IDR(5) and IDR(5) with recycling
with the four eigenvectors associated with the smallest magnitude eigenvalues of the matrix (36).

In order to add the vectors {yi}si=1 to the IDR(s), we should replace Algorithm 2 by the lines 5
and 6 in Algorithm 1. As is proposed in [10], [11], and [24], we use as extra basis vectors the Ritz
vector associated with the smallest-magnitude Ritz values.

Example 6. (A Motivating Example.) To exemplify the idea of using the spectral information in
the initial subspace G0, we consider solving a system of linear equation with the following bidiagonal
matrix,

A =



1× 10−8 1× 10−5

2× 10−8 1× 10−5

. . .

5× 10−8 1× 10−5

6 1× 10−5

. . .

100


100×100

, (36)

and the right-hand side vector is b = 1. We compare IDR(5) and IDR(5) with recycling. As
recycling vectors, we use the five eigenvectors associated with the smallest magnitude eigenvalues
of the bidiagonal matrix A. The initial guess vector is x0 = 0. Figure 6 shows the evolution of
the norms of the residuals, one can see a considerable reduction in the number of matrix-vector
products for IDR(s) with recycling.

It is worth mentioning, the approach recently proposed the M(s)STAB(`) method by Neuenhofen
[15]. M(s)STAB(`) is a variant of the IDR(s)stab(`) [20], that is also specialized to solve sequences
of system of linear equations where the coefficient matrix is constant and different right-hand size
vectors. Based on a generalization of the IDR theorem, M(s)STAB(`) transform the last Gj space
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created to solve one system to linear equation into the initial G0 space of the next system of linear
equations. In this form, this method reduces the computation and accelerates the solution of (2).

4.1 Adding the Ritz vectors to the IDR(s): application to sequence of
system of linear equations

Here we present the main application of the IDR(s) with recycling, the solution of a sequence of
systems of linear equations. We consider the case where the coefficient matrix A is constant, and
the right-hand side vectors {b(i)}pi=1 are not available simultaneously.

The main idea is to compute a subset of Ritz vectors of the matrix A during the solution of
the first system of linear equation, and then use these Ritz vectors to accelerate the solution of the
subsequent system of linear equations. The upper Hessenberg matrix Hm0

∈ Cm0×m0 is computed
using Algorithm 1. To compute the Ritz vectors after the first execution of IDR(s), we need to
compute the Krylov basis R̂ in Eq. (27). In order to compute this R̂, we use Eq. (16) and obtain
that,

r̂0 = r0, (37)

and taking into account the upper Hessenberg structure of the matrix Hm0 , we obtain the following
recurrence formula for the vector r̂i,

r̂i =
1

hi+1,i

Ar̂i−1 −
i−1∑

j=max(0,i−s)
hj,ir̂j

 (38)

Due the fact that (38) uses only the last s+1 vectors, we can even obtain the Ritz vector saving
temporarly only the last s + 1 basis vectors. Algorithm 3 presents how to obtain the Ritz vectors
of A, after we had obtained the matrix H.

Algorithm 3 Obtaining the Ritz vectors

1: procedure Ritz vectorsIDR(A, s, H, r0)
2: Input: A ∈ Cn×n, s ∈ N+, x ∈ Cn.
3: Obtain (λi, ŷi) as the eigenpairs associated with the smallest magnitude eigenvalues of H.
4: r̂0 = r0
5: Y = r̂0 × [[ŷ1]1, [ŷ2]1, . . . , [ŷm0

]1]
6: for i = 1 to m0 − 1 do

7: r̂i = 1
hi+1,i

[
Ar̂i−1 −

∑i−1
j=max(0,i−s) hj,ir̂j

]
8: Y = Y + r̂i × [[ŷ1]i+1, [ŷ2]i+1, . . . , [ŷm0

]i+1]
9: end for

10: return {λ}m0
i=1, Y .

11: end procedure

Once we compute the s Ritz vectors associated with the smallest magnitude, we proceed to use
these vectors in IDR(s) with recycling to solve the remaining systems of linear equations. Algorithm
4 summarizes this procedure.
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Algorithm 4 IDR(s) with recycling for sequences of system of linear equations

1: procedure IDR(A, {bi}, s, tol, x0)
2: call IDR(A, b1, s, tol, x0) to obtain x1 and the matrix Hm0 (Algorithm 1).
3: call Ritz vectorsIDR(A, s, Hm0 , r1) to obtain the Ritz vectors {yj}sj=1 (Algorithm 3).
4: for each right-hand side vector bi with i = 2, 3, . . . , p do
5: call IDR(s) to solve Axi = bi with the Ritz-vector {yj}sj=1.
6: end for
7: return x
8: end procedure
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Method MATVECs CPU time [s]
Full GMRES 718 185.93
GCRot(20, 4) 525 33.72
GCRot(20, 16) 332 51.2

BiCG [25] 1946 19.85
BiCGSTAB 1900 12.13
QMR [26] 1884 22.62

IDR(4) without recycling 889 20.34
IDR(4) with recycling 618 16.86

IDR(16) without recycling 845 36.61
IDR(16) with recycling 523 34.15

Table 1: (Example 7). Matrix-vector multiplications and time used for each method in the solution
of (40) (diffusion dominated example)

4.2 Numerical experiments

In this section, we conduct two numerical examples of solving sequences of systems of linear equa-
tions (Algorithm 4). We use the same computer setting described in section 3.1. The stopping
criteria consider in this experiment is,

‖bi −Axk‖
‖bi‖

< 10−6, for i = 1, 2, . . . , p. (39)

As initial guess for the first system of linear equations is the zero vector, and for the subsequent
linear system, we use the approximate solution of the previous linear system of equation.

Example 7. In this example, we consider the linear time-dependent convection-diffusion-reaction,

∂u

∂t
+ vT∇u = ε∆u+ ρu+ f (40)

with homogeneous Dirichlet conditions on the unit cube, and u(t0) = 0, v = [1, 1, 1], ε = 0.1
(diffusion dominated) or ε = 0.005 (convection dominated), the reaction parameter ρ is 5, the
function f is obtained from u =

√
x(1− x)y(1− y)z(1− z). We solve (40) using Euler backward

for time integration for t ∈ [0, 10] with δt = 1. For space discretization, we use h = 0.02 obtaining
a linear system of equation of size 125000×125000 per time-step. Figures 7 and 8 show the residual
norm behavior for full GMRES, GCROT, and IDR(s) with and without Ritz vector enrichment.
First, we can see a good decrement in number of matrix-vector multiplication when IDR(s) is
enriched with the Ritz vectors. Second, the long recurrences methods solve all the system of linear
equation using less number of matrix-vector multiplication. However, Tables 1 and 2 show that the
IDR(s) with Ritz vectors solves the convection and diffusion dominated problems much faster that
GMRES and GCROT, and other short recurrences methods.

5 Conclusions and remarks

In this work, we have derived a Hessenberg relation from the IDR(s) method while it solves a
system of linear equations. This is a key component to obtain approximations to the eigenvalues
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Figure 7: (Example 7). Convergence residual history for the solution of (40) (diffusion dominated
example)
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example)
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Method MATVECs CPU time [s]
Full GMRES 962 281.43
GCRot(20, 4) 1380 96.01
GCRot(20, 16) 514 83.61

IDR(4) without recycling 1360 31.46
IDR(4) with recycling 1066 22.57

IDR(16) without recycling 1089 54.44
IDR(16) with recycling 578 37.58

Table 2: (Example 7). Matrix-vector multiplications and time used for each method in the solution
of (40) (convection dominated example)

22



and eigenvectors of the coefficient matrix involved. We have used this spectral information to
accelerate the IDR(s) method.

In the first part of this work, we have proposed a Ritz-IDR(s) variant, named SC-Ritz-IDR(s),
to solve systems of linear equations based on the work by Simoncini and Szyld [2]. This algorithm
uses the inverse of the Ritz values as parameter ωj for the creation of the residuals vectors into the
subspaces Gj . In contrast to Ritz-IDR(s), our proposed variant SC-Ritz-IDR(s) is a self-contained
algorithm, i.e., it does not use an external sparse eigensolver to compute the Ritz values. SC-Ritz-
IDR(s) has a similar computational behavior as Ritz-IDR(s) [2]. Implementations of both methods
Ritz-IDR(s) and SC-Ritz-IDR(s) may use complex arithmetic, even when the coefficient matrix
and the right-hand side vectors are real, in the case of complex Ritz values as parameters ωj .

In the second part of the work, we have suggested how to enrich the searching subspace of
IDR(s) with the Ritz vectors. In particular, we have applied this enrichment to IDR(s) for solving
sequences of systems of linear equations. After approximating the eigenvector during the solution
of the first system of linear equations, IDR(s) uses this spectral information for the subsequent
systems of equations. Numerical experiments show a significant reduction of the computational
time.
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