Delft University of Technology

Accelerating the Induced Dimension Reduction method using spectral information

Astudillo, R.; de Gier, J.M.; van Gijzen, M.B

Publication date
 2017

Document Version
Final published version
Citation (APA)
Astudillo, R., de Gier, J. M., \& van Gijzen, M. B. (2017). Accelerating the Induced Dimension Reduction method using spectral information. (Reports of the Delft Institute of Applied Mathematics; Vol. 17-04). Delft University of Technology.

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim

DELFT UNIVERSITY OF TECHNOLOGY

REPORT 17-04

Accelerating the Induced Dimension Reduction method using SPECTRAL INFORMATION

R. Astudillo ${ }^{1}$, J. M. de Gier ${ }^{2}$ and M. B. van Gijzen ${ }^{1}$
${ }^{1}$ Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
${ }^{2}$ TNO Technical Sciences, Distributed Sensor Systems, Oude Waalsdorperweg 63, 2597 AK The Hague, The Netherlands

Copyright © 2017 by Delft Institute of Applied Mathematics, Delft, The Netherlands.
No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission from Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands.

Accelerating the Induced Dimension Reduction method using spectral information

R. Astudillo* ${ }^{* 1}$, J. M. de Gier ${ }^{\dagger 2}$ and M. B. van Gijzen ${ }^{\ddagger 1}$
${ }^{1}$ Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
${ }^{2}$ TNO Technical Sciences, Distributed Sensor Systems, Oude Waalsdorperweg 63, 2597 AK The Hague, The Netherlands

2017

Abstract

The Induced Dimension Reduction method $(\operatorname{IDR}(s))[1]$ is a short-recurrences Krylov method to solve systems of linear equations. In this work, we accelerate this method using the spectral information. We construct a Hessenberg relation from the $\operatorname{IDR}(s)$ residual recurrences formulas, from which we approximate the eigenvalues and eigenvectors. Using the Ritz values, we propose a self-contained variant of the $\operatorname{Ritz-IDR}((s)$ method [2] for solving a system of linear equations. In addition, the Ritz vectors are used to speed-up $\operatorname{IDR}(s)$ in the solution of a sequence of linear systems.

Keywords: Induced Dimension Reduction method, system of linear equations, sequence of systems of linear equation, eigenvalues and eigenvectors.

1 Introduction

In this paper, we are interested in accelerating the convergence of the Induced Dimension Reduction $\operatorname{method}(\operatorname{IDR}(s))[1$ to solve a system of linear equations,

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b}, \quad \text { with } A \in \mathbb{C}^{n \times n} \text { and } \mathbf{b} \in \mathbb{C}^{n} \tag{1}
\end{equation*}
$$

and also to solve sequences of systems of linear equations,

$$
\begin{equation*}
A \mathbf{x}^{(i)}=\mathbf{b}^{(i)}, \quad \text { with } A \in \mathbb{C}^{n \times n} \text { and } \mathbf{b}_{i} \in \mathbb{C}^{n}, \text { for } i=1,2, \ldots, p, \text { and } p>1 \tag{2}
\end{equation*}
$$

The vectors $\mathbf{x}, \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(p)}$ represent the unknowns in \mathbb{C}^{n}, and we only consider the case when the coefficient matrix A is a non-Hermitian and non-singular matrix.

[^0]$\operatorname{IDR}(s)$ is a Krylov subspace method which has been proved to be effective for solving large and sparse systems of linear equations. Both theoretical and practical aspects of the $\operatorname{IDR}(s)$ have been studied in different works, e.g. [3] [4], [5], and [2] among others. Simoncini and Szyld reformulate $\operatorname{IDR}(s)$ as a Petrov-Galerkin method in [2]. The authors prove that in $\operatorname{IDR}(s)$ the subspace of constraints or left space is a block rational Krylov subspace. Based on this connection with the rational subspaces, they propose to use the Ritz values to accelerate the convergence of $\operatorname{IDR}(s)$. This idea originates $\operatorname{Ritz}-\operatorname{IDR}(s)$, which is an effective $\operatorname{IDR}(s)$ variant to solve systems of linear equations (1) where the spectrum is highly complex.

To obtain a subset of the Ritz values, $\operatorname{Ritz-IDR}(s)$ requires a preceding call to an external sparse eigensolver routine, for example the Arnoldi method [6] or Bi-Lanczos method [7]. In the first part of this work, we present a self-contained version of the $\operatorname{Ritz-IDR}(s)$, i.e., a Ritz-IDR (s) variant that does not require an external call to an eingensolver routine. We compute the upper Hessenberg matrix H_{m} from a Hessenberg relation as,

$$
\begin{equation*}
A W_{m}=W_{m} H_{m}+\mathbf{f e}_{m}^{*} \tag{3}
\end{equation*}
$$

during the first iterations of $\operatorname{IDR}(s)$. Then, we obtain the Ritz values from the matrix H_{m}, and use them as input parameter of the subsequent iterations of $\operatorname{IDR}(s)$.

In the second part of this work, we apply $\operatorname{IDR}(s)$ to solve sequences of systems of linear equations (2). We only consider the case when the coefficient matrix does not change and the right-hand side vectors $\left\{\mathbf{b}^{(i)}\right\}_{i=1}^{p}$ are not available simultaneously. This kind of problems arises naturally from the discretization of linear time-dependent differential equations and the solution of systems of non-linear equations using modified Newton-type methods with constant Jacobian matrix.

Subspace recycling is a common technique to accelerate the Krylov method. This process consists of approximating invariant subspaces or calculating a "good" Krylov subspace basis and use this information to save matrix-vector products at the solution of the system of linear equations. For methods as GMRES [8] and GCR [9] the recycling idea has been incorporated to accelerate the solution of a single linear system of equations in [10] and [11] respectively. In the case of solving sequences of systems of linear equations, these methods have been adapted in [12] and [13]. Also, other Krylov methods have been adapted to solve sequences of systems of linear equations, for example BiCG 14, $\operatorname{GMRES}(m)$ [13], and $\operatorname{IDR}(s)$ stab [15].

GCROT 12 and GMRES are long-recurrences methods, it means that they have the optimal residual minimization property, but also these methods can be expensive in terms of memory and CPU consumption. For this reason, we propose an $\operatorname{IDR}(s)$ variant, that is a short recurrences and memory limited method to solve (22. First, we show how to obtain Ritz values and Ritz vectors from $\operatorname{IDR}(s)$ for solving a system of linear equations. Second, we present how to enrich the searching subspace of $\operatorname{IDR}(s)$ with the Ritz vectors. Finally, we apply $\operatorname{IDR}(s)$ with the Ritz vectors to solve sequences of linear equations as a main application of this enrichment.

This document is organized as follows. A review of $\operatorname{IDR}(s)$ and its recurrences is presented in the second section. In section 3, we present an $\operatorname{IDR}(s)$ variant to solve system of linear equations. We present how to obtain an underlying Hessenberg relation from the $\operatorname{IDR}(s)$ residual recurrences. This allows us to find approximation to the eigenvalues of the coefficient matrix involved. This eigenvalues approximations are used to accelerate the $\operatorname{IDR}(s)$. Section 3.1 shows the numerical examples related to the solution of system of linear equations. In section 4, we explain how to add the Ritz vectors to the initial searching space of $\operatorname{IDR}(s)$ to save computational effort. As a main application of this idea, we apply $\operatorname{IDR}(s)$ to solve a sequence of system of linear equations, we compute a set of Ritz vectors, using the Hessenberg relation deduced in section 3. Them, we use
this Ritz vectors to accelerate the subsequent systems of linear equations. Numerical experiment for the solution of a sequence of systems of linear equations using $\operatorname{IDR}(s)$ are presented in section 4.2. In section 5 , we present the general conclusions and remarks.

Throughout this document, we use the following notation. Complex scalars are denoted by lower case Greek letters. Bold lower case letters represent vectors. Matrices are denoted by capital case letters, in particular, the identity matrix of order n is denoted by I_{n}, and when the context is clear the subindex is dropped. The symbol ${ }^{\prime *}$, as super-index of a vector or a matrix represents the conjugate transpose of it. Subspaces are denoted by upper case calligraphic letters.

2 Review on $\operatorname{IDR}(s)$

In this section, we first review the recurrence formulas of $\operatorname{IDR}(s)$ for solving a system of linear equations, and then the work of Simoncini and Szyld in [2]. This allows us to present of our first proposed algorithm in Section 3 .

The Induced Dimension Reduction method is based on the following theorem,
Theorem $1\left(\operatorname{IDR}(s)\right.$ Theorem). Let A be any matrix in $\mathbb{C}^{n \times n}$, let \mathbf{v}_{0} be any nonzero vector in \mathbb{C}^{n}, and let \mathcal{G}_{0} be the full Krylov subspace $\mathcal{K}_{n}\left(A, \mathbf{v}_{0}\right)$. Let \mathcal{S} any (proper) subspace of \mathbb{C}^{n} such that \mathcal{S} and \mathcal{G}_{0} do not share a nontrivial invariant subspace of A, and define the sequence $\mathcal{G}_{j}, j=1,2, \ldots$ as:

$$
\begin{equation*}
\mathcal{G}_{j} \equiv\left(I-\omega_{j} A\right)\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right) \tag{4}
\end{equation*}
$$

where ω_{j} 's are nonzero scalars. Then,

1. $\mathcal{G}_{j+1} \subset \mathcal{G}_{j}$, for $j \geq 0$ and
2. dimension $\left(\mathcal{G}_{j+1}\right)<\operatorname{dimension}\left(\mathcal{G}_{j}\right)$ unless $\mathcal{G}_{j}=\{\mathbf{0}\}$.

Proof. See [1].
The main idea is to create approximation vectors \mathbf{x}_{m} such that their corresponding residual vectors $\mathbf{r}_{m}=\mathbf{b}-A \mathbf{x}_{m}$ belong to the nested and shrinking subspaces \mathcal{G}_{j}. $\operatorname{IDR}(s)$ creates $s+1$ residuals vectors in \mathcal{G}_{j}, and uses those vectors for the creation of the $s+1$ subsequent residuals \mathcal{G}_{j+1}. This process is repeated iteratively until convergence.

Our implementation of $\operatorname{IDR}(s)$ is based on $\operatorname{IDR}(s)$ with biorthogonal residuals (see [3]). In practice, this variant has proved to be more stable, and is also slightly less expensive. Next, we present the recurrences used by this $\operatorname{IDR}(s)$ variant. For sake of simplicity, we introduce new notation. The subspace \mathcal{S} is represented by the left null space of some full-rank $n \times s$ matrix $P=\left[\mathbf{p}_{1}, \ldots \mathbf{p}_{s}\right]$ (called shadow space). The superindex of a vector or a scalar represents the number of subspace \mathcal{G}_{j} where the current residual belongs. The subindex represents the position in the sequence of intermediate residuals. For $\mathbf{r}_{k}^{(j)}$ represents the k-th residual in \mathcal{G}_{j}. The first residual vectors in \mathcal{G}_{j+1} and its respective approximation are,

$$
\begin{equation*}
\mathbf{x}_{0}^{(j+1)}=\mathbf{x}_{s}^{(j)}+\omega_{j+1} \mathbf{r}_{s}^{(j)} \tag{5}
\end{equation*}
$$

and,

$$
\begin{equation*}
\mathbf{r}_{0}^{(j+1)}=\left(I-\omega_{j+1} A\right) \mathbf{r}_{s}^{(j)} \tag{6}
\end{equation*}
$$

and the recurrences to create the intermediate residuals in \mathcal{G}_{j+1}, are

$$
\begin{equation*}
\mathbf{x}_{k}^{(j+1)}=\mathbf{x}_{k-1}^{(j+1)}+\beta_{k}^{(j+1)} \mathbf{u}_{k}^{(j+1)} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{r}_{k}^{(j+1)}=\mathbf{r}_{k-1}^{(j+1)}-\beta_{k}^{(j+1)} \mathbf{g}_{k}^{(j+1)}, \quad \text { for } k=1,2, \ldots, s \tag{8}
\end{equation*}
$$

The scalar $\beta_{k}^{(j+1)}$ is selected such that,

$$
\begin{equation*}
\mathbf{p}_{k}^{T} \mathbf{r}_{k}^{(j+1)}=0 \tag{9}
\end{equation*}
$$

The direction vectors are defined as,

$$
\begin{equation*}
\mathbf{u}_{k}^{(j+1)}=\hat{\mathbf{u}}_{k}^{(j+1)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{u}_{i}^{(j+1)} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{g}_{k}^{(j+1)}=\hat{\mathbf{g}}_{k}^{(j+1)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \tag{11}
\end{equation*}
$$

Where the vector $\hat{\mathbf{u}}_{k}^{(j+1)}$ and $\hat{\mathbf{g}}_{k}^{(j+1)}$ are,

$$
\begin{gather*}
\hat{\mathbf{u}}_{k}^{(j+1)}=\omega_{j+1}\left(\mathbf{r}_{k-1}^{(j+1)}-\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}\right)+\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{u}_{i}^{(j)}, \tag{12}\\
\hat{\mathbf{g}}_{k}^{(j+1)}=A \hat{\mathbf{u}}_{k}^{(j+1)} \tag{13}
\end{gather*}
$$

The scalars $\left\{\alpha_{i}^{(j+1)}\right\}_{i=1}^{k-1}$ are selected, such that,

$$
\begin{equation*}
\mathbf{p}_{i}^{T} \mathbf{g}_{k}=0 \quad \text { for } i=1, \ldots, k-1 \tag{14}
\end{equation*}
$$

and the scalar $\{\gamma\}_{i=k}^{s}$ are selected as,

$$
\begin{equation*}
\mathbf{p}_{j}^{T}\left(\mathbf{r}_{k}^{(j+1)}-\sum_{i=k}^{s} \gamma_{i} \mathbf{g}_{i}^{(j)}\right)=0 \tag{15}
\end{equation*}
$$

The conditions (9), 14), and (15) not only ensure that the residual $\mathbf{r}_{k}^{(j+1)}$ belongs to \mathcal{G}_{j+1}, but also, that the residual $\mathbf{r}_{k}^{(j+1)}$ is orthogonal to the vectors $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{k}$ for $k=1,2, \ldots, s$.

An important property needed for the deduction of the $\operatorname{IDR}(s)$-Hessenberg relation presented in the section 3 is that for any $\operatorname{IDR}(s)$ variant a residual in \mathcal{G}_{j} can be also written as,

$$
\begin{equation*}
\mathbf{r}_{k}^{(j)}=\Omega_{j}(A) \Psi(A)_{s \times j+k} \mathbf{r}_{0} \tag{16}
\end{equation*}
$$

where,

$$
\begin{equation*}
\Omega_{j}(t)=\prod_{i=0}^{j}\left(1-\omega_{i} t\right), \quad \omega_{i} \neq 0, \quad i=1, \ldots, j, \tag{17}
\end{equation*}
$$

$\Omega_{0}(t)=1$, and $\Psi_{m}(t)$ is a multi-Lanczos-type polynomial [16] of order m, that uses $s+2$ terms recurrences such that $\Psi_{0}=1$ (see section 5 in [1]). When the first residual vector is created in \mathcal{G}_{j+1}, the polynomial $\Omega_{j}(A)$ increases by one degree. Then, the degree of the polynomial $\Psi_{m}(A)$ is increased by one for each matrix-vector product during the creation of the others intermediate residuals.

2.1 $\operatorname{IDR}(s)$ as a Petrov-Galerkin method and Ritz-IDR(s)

As we mention in the introduction of this work, Simoncini and Szyld showed that $\operatorname{IDR}(s)$ can be viewed as a Petrov-Galerkin method in [2]. Particularly $\operatorname{IDR}(s)$ finds the approximation \mathbf{x}_{k+1} in the right or search subspace $\mathbf{x}_{0}+\mathcal{K}_{k+1}\left(A, \mathbf{r}_{0}\right)$, by imposing the condition that \mathbf{r}_{k+1} is orthogonal to the subspace \mathcal{W}_{j}, defined as,

$$
\begin{equation*}
\mathcal{W}_{j}=\Omega_{j}\left(A^{*}\right)^{-1} \mathcal{K}_{j}\left(A^{*}, P\right) \tag{18}
\end{equation*}
$$

where $\Omega_{j}(A)$ is the polynomial defined in (17), and $\mathcal{K}_{j}\left(A^{*}, P\right)$ is the block Krylov subspace of order j, associated with the matrix A and the block P.

This link between $\operatorname{IDR}(s)$ and the rational block subspaces leads to the development of the variant Ritz-IDR (s). The authors in [2] argue that selecting the scalars ω_{j} as the inverse of Ritz values of the coefficient matrix A, is a good choice for the creation of the left space \mathcal{W}_{j}. This is because, this selection enriches the left subspace with information about the associated eigencomponents. This would damp the eigenvector components from the residual vector in a quick way, which leads to a faster convergence. The Ritz values required are computed with a call to an eigenvalue routine as the Arnoldi method. Note that Ritz-IDR (s) might require complex arithmetics even when the matrix and right-hand size vector are real, in the case when complex Ritz values are encountered.

In the following section we present how to obtain a Hessenberg relation from the $\operatorname{IDR}(s)$ recurrences. Using this Hessenberg relation, we can obtain approximations to the eigenvalues of the coefficient matrix, and in this form we obtain a self-contained variant of the Ritz-IDR (s). To distinguish it, we label our algorithm as SC-Ritz-IDR(s).

3 Part 1: Accelerating $\operatorname{IDR}(s)$ using the Ritz values

$\operatorname{IDR}(s)$ has been previously used to obtain spectral information of a matrix. In [17], the authors adapt $\operatorname{IDR}(s)$ to solve the eigenvalue problem, and they obtain the matrices \hat{H}_{m} and T_{m} from a generalized Hessenberg relation,

$$
\begin{equation*}
A W_{m} T_{m}=W_{m} \hat{H}_{m}+\hat{\mathbf{f}} \mathbf{e}_{m}^{T} \tag{19}
\end{equation*}
$$

where $W_{m} \in \mathbb{C}^{n \times m}$ (not explicitly available) represents a Krylov subspace basis for $\mathcal{K}\left(A, \mathbf{w}_{1}\right), T_{m}$ is a s-banded, upper triangular matrix; \hat{H} is a s-banded, upper Hessenberg matrix, and $\hat{\mathbf{f}} \in \mathbb{C}^{n}$. The approximation of the eigenvalues of A are obtained from the eigenvalue pencil $\left(T_{m}, \hat{H}_{m}\right)$. In [18], the authors create a standard Hessenberg relation,

$$
\begin{equation*}
A W_{m}=W_{m} H_{m}+\mathbf{f e}_{m}^{T} \tag{20}
\end{equation*}
$$

where $W_{m} \in \mathbb{C}^{n \times m}$, and H_{m} is a Hessenberg matrix. This matrix H_{m} has the same eigenvalues as the matrix pencil $\left(T_{m}, \hat{H}_{m}\right)$.

The mentioned works [17] and [18] target specifically the eigenvalue/eigenvector approximation problem. Following, we describe how to obtain a matrix H_{m} part of a standard Hessenberg relation (20) from the underlying $\operatorname{IDR}(s)$-recurrences used to solve systems of linear equation. This allows us to obtain the solution of a system of linear equation whose coefficient matrix is A, and in parallel obtain approximations to the eigenvalues of this matrix. Particularly, we use this spectral information as is suggested in [2], and we proposed a Ritz-IDR (s) variant labeled as SC-Ritz-IDR (s).

In order to derive this Hessenberg matrix, let us consider the $\operatorname{IDR}(s)$ relations described in section 2 , Substituting Eqs. (11), (13), and (12), in Eq. (8), we obtain,

$$
\begin{aligned}
\frac{\mathbf{r}_{k-1}^{(j+1)}-\mathbf{r}_{k}^{(j+1)}}{\beta_{k}^{(j+1)}} & =\hat{\mathbf{g}}_{k}^{(j+1)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =A \hat{\mathbf{u}}_{k}^{(j+1)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =A\left[\omega_{j+1}\left(\mathbf{r}_{k-1}^{(j+1)}-\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}\right)+\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{u}_{i}^{(j)}\right]-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =\omega_{j+1} A \mathbf{r}_{k-1}^{(j+1)}-\omega_{j+1} A \sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}+\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} A \mathbf{u}_{i}^{(j)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =\omega_{j+1} A \mathbf{r}_{k-1}^{(j+1)}-\omega_{j+1} A \sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}+\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =\omega_{j+1} A \mathbf{r}_{k-1}^{(j+1)}+\left(I-\omega_{j+1} A\right) \sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =\omega_{j+1} A \mathbf{r}_{k-1}^{(j+1)}+\left(I-\omega_{j+1} A\right) \sum_{i=s-k}^{s} \frac{\gamma_{i}^{(j+1)}}{\beta_{i}^{(j)}}\left(\mathbf{r}_{i-1}^{(j)}-\mathbf{r}_{i}^{(j)}\right)-\sum_{i=1}^{k-1} \frac{\alpha_{i}^{(j+1)}}{\beta_{i}^{(j+1)}}\left(\mathbf{r}_{i-1}^{(j+1)}-\mathbf{r}_{i}^{(j+1)}\right)
\end{aligned}
$$

From the equations above, we obtain the following relation,

$$
\begin{equation*}
\omega_{j+1} A \mathbf{r}_{k-1}^{(j+1)}=\frac{\mathbf{r}_{k-1}^{(j+1)}-\mathbf{r}_{k}^{(j+1)}}{\beta_{k}^{(j+1)}}-\left(I-\omega_{j+1} A\right) \sum_{i=s-k}^{s} \frac{\gamma_{i}^{(j+1)}}{\beta_{i}^{(j)}}\left(\mathbf{r}_{i-1}^{(j)}-\mathbf{r}_{i}^{(j)}\right)+\sum_{i=1}^{k-1} \frac{\alpha_{i}^{(j+1)}}{\beta_{i}^{(j+1)}}\left(\mathbf{r}_{i-1}^{(j+1)}-\mathbf{r}_{i}^{(j+1)}\right) \tag{21}
\end{equation*}
$$

Using Eq. 16), we obtain that each vector in \mathcal{G}_{j} can be written as,

$$
\begin{equation*}
\mathbf{r}_{i}^{(j)}=\Omega_{j}(A) \hat{\mathbf{r}}_{i}^{(j)} \quad \text { for } i=0, \ldots, s \tag{22}
\end{equation*}
$$

and equivalently, any residuals in \mathcal{G}_{j+1} can be written as,

$$
\begin{equation*}
\mathbf{r}_{i}^{(j+1)}=\Omega_{j+1}(A) \hat{\mathbf{r}}_{i}^{(j+1)} \quad \text { for } i=0, \ldots, s \tag{23}
\end{equation*}
$$

Taking into account Eqs. (23) and (22), we can multiply Eq. 21) by $\Omega_{j+1}(A)^{-1}$ and obtain,

$$
\begin{equation*}
\omega_{j+1} A \hat{\mathbf{r}}_{k-1}^{(j+1)}=\frac{\hat{\mathbf{r}}_{k-1}^{(j+1)}-\hat{\mathbf{r}}_{k}^{(j+1)}}{\beta_{k}^{(j+1)}}-\sum_{i=s-k}^{s} \frac{\gamma_{i}^{(j+1)}}{\beta_{i}^{(j)}}\left(\hat{\mathbf{r}}_{i-1}^{(j)}-\hat{\mathbf{r}}_{i}^{(j)}\right)+\sum_{i=1}^{k-1} \frac{\alpha_{i}^{(j+1)}}{\beta_{i}^{(j+1)}}\left(\hat{\mathbf{r}}_{i-1}^{(j+1)}-\hat{\mathbf{r}}_{i}^{(j+1)}\right) \tag{24}
\end{equation*}
$$

The set of vectors $\hat{\mathbf{r}}_{i}$ represents the Krylov basis associated with the polynomial $\Psi(A)$. In fact, one can see that the basis grows with the degree of the polynomial $\Psi(A)$. Substituting Eqs. 22 and (23) in (6), we obtain that,

$$
\begin{equation*}
\hat{\mathbf{r}}_{0}^{(j+1)}=\hat{\mathbf{r}}_{s}^{(j)} \tag{25}
\end{equation*}
$$

This implies that every $s+1$ matrix-vector products, $\operatorname{IDR}(s)$ creates s new vectors basis $\hat{\mathbf{r}}_{i}$. Using (25), Eq. (24) can be written as,

$$
\begin{align*}
\omega_{j+1} A \hat{\mathbf{r}}_{k-1}^{(j+1)}= & -\frac{\gamma_{s-k}^{(j+1)}}{\beta_{s-k}^{(j+1)}} \hat{\mathbf{r}}_{s-k-1}^{(j)}-\sum_{i=s-k}^{s-1}\left(\frac{\gamma_{i+1}^{(j+1)}}{\beta_{i+1}^{(j)}}-\frac{\gamma_{i}^{(j+1)}}{\beta_{i}^{(j)}}\right) \hat{\mathbf{r}}_{i}^{(j)} \\
& +\left(\frac{\gamma_{s}^{(j+1)}}{\beta_{s}^{(j+1)}}+\frac{\alpha_{1}^{(j+1)}}{\beta_{1}^{(j+1)}}\right) \hat{\mathbf{r}}_{s}^{(j)}+\sum_{i=1}^{k-1}\left(\frac{\alpha_{i+1}^{(j+1)}}{\beta_{i+1}^{(j+1)}}-\frac{\alpha_{i}^{(j+1)}}{\beta_{i}^{(j+1)}}\right) \hat{\mathbf{r}}_{i}^{(j+1)}-\frac{1}{\beta_{k}^{(j+1)}} \hat{\mathbf{r}}_{k}^{(j+1)} \tag{26}
\end{align*}
$$

One can see in Eq. (26) that the vector $A \hat{\mathbf{r}}_{k-1}^{(j+1)}$ is a linear combination of the vectors $\left\{\hat{\mathbf{r}}_{i}^{(j)}\right\}_{i=s-k-1}^{s}$ and $\left\{\hat{\mathbf{r}}_{i}^{(j+1)}\right\}_{i=1}^{k}$. This defines a Hessenberg relation of the form,

$$
\begin{equation*}
A \hat{R}_{m_{0}}=\hat{R}_{m_{0}+1} \bar{H}_{m_{0}} \tag{27}
\end{equation*}
$$

where m_{0} is the number of steps performed, and $\hat{R}_{m_{0}}$ is a Krylov subspace basis defined as,

$$
\begin{equation*}
\hat{R}_{m_{0}}=\left[\hat{\mathbf{r}}_{0}^{(0)}, \ldots, \hat{\mathbf{r}}_{s}^{(0)}, \hat{\mathbf{r}}_{1}^{(1)}, \ldots, \hat{\mathbf{r}}_{s}^{(1)}, \ldots, \hat{\mathbf{r}}_{1}^{(j)}, \ldots, \hat{\mathbf{r}}_{s}^{(j)}, \hat{\mathbf{r}}_{1}^{(j+1)}, \ldots, \hat{\mathbf{r}}_{k}^{(j+1)}\right]_{n \times m_{0}} \tag{28}
\end{equation*}
$$

The vectors $\hat{\mathbf{r}}_{i}$ are not constructed explicitly, however, it is easy to see that,

$$
\begin{equation*}
\hat{\mathbf{r}}_{0}^{(0)}=\mathbf{r}_{0} \tag{29}
\end{equation*}
$$

The matrix H is an upper and $s+1$ banded Hessenberg matrix whose columns are define as,

$$
\mathbf{H}_{\hat{i}}=\left[\begin{array}{c}
0 \tag{30}\\
\vdots \\
h_{\hat{i}-s, \hat{i}} \\
\vdots \\
h_{\hat{i}+1, \hat{i}} \\
\vdots \\
0
\end{array}\right] \in \mathbb{C}^{m_{0}+1}
$$

where,

$$
\left[\begin{array}{c}
h_{\hat{i}-s, \hat{i}} \tag{31}\\
h_{\hat{i}-s+1, \hat{i}} \\
\vdots \\
h_{\hat{i}-s+m, \hat{i}} \\
h_{\hat{i}-s+m+1, \hat{i}} \\
\vdots \\
h_{\hat{i}+1, \hat{i}}
\end{array}\right]=\frac{1}{\omega_{j+1}}\left[\begin{array}{c}
-\frac{\gamma_{s-k}^{(j+1)}}{\beta_{s-k}^{(j+1)}} \\
\frac{\gamma_{s-k+1}^{(j+1)}-\frac{\gamma_{s-k}^{(j+1)}}{\beta_{s-k}^{(j)}}}{\beta_{s-k+1}^{(j)}}\left[\begin{array}{c}
\vdots \\
\frac{\gamma_{s}^{(j+1)}}{\beta_{s}^{(j)}}+\frac{\alpha_{1}^{(j+1)}}{\beta^{(j+1)}} \\
\frac{\alpha_{2}^{(j+1)}}{\beta_{2}^{(j+1)}}-\frac{\alpha_{1}^{(j+1)}}{\beta_{1}^{(j+1)}} \\
\vdots \\
-1 / \beta_{k}^{(j+1)}
\end{array}\right] \in \mathbb{C}^{s+2}, . \text {, }
\end{array}\right]
$$

Our implemention of $\operatorname{SC-Ritz-~} \operatorname{IDR}(s)$ is based on the $\operatorname{IDR}(s)$ with biorthogonal residuals. The memory consuption of the SC-Ritz-IDR (s) is similar to the $\operatorname{IDR}(s)$ (see section 3.5 in 3]). The sets of coefficients $\{\alpha\}_{i=1}^{s},\{\gamma\}_{i=1}^{s}$, and $\left\{\beta_{i}\right\}_{i=1}^{s}$, used in the $\operatorname{SC}-\operatorname{Ritz-IDR}(s)$, are stored in three extra vectors of size s. Algorithm 1 shows an implementation of SC-Ritz-IDR (s).

```
Algorithm \(1 \operatorname{IDR}(s)\) accelerated with Ritz values
    procedure \(\operatorname{IDR}\left(A, \mathbf{b}, s, t o l, \mathbf{x}_{0}\right)\)
        Input: \(A \in \mathbb{C}^{n \times n}, \mathbf{b} \in \mathbb{C}^{n}, s \in \mathbb{N}^{+}\), tol \(\in(0,1), \mathbf{x}_{0} \in \mathbb{C}^{n}\).
        \(\mathbf{x}=\mathbf{x}_{0}, \mathbf{r}=\mathbf{b}-A \mathbf{x}\)
        \(P\) a random matrix in \(\mathbb{C}^{n \times s}\).
        \(G=0 \in \mathbb{C}^{n \times s)}, U=0 \in \mathbb{C}^{n \times s}\)
        \(M=I_{s} \in \mathbb{C}^{s \times s}\).
        \(\omega=1.0, \hat{i}=0, H_{m_{0}}=0 \in \mathbb{C}^{m_{0}+1 \times m_{0}}, \mathbf{c}=\mathbf{0}, \alpha=\mathbf{0}, \beta=\mathbf{0} \in \mathbb{C}^{s}\).
        while \(\|\mathbf{r}\| \leq\) tol \(\times\|\mathbf{b}\|\) do \(\quad \triangleright\) Loop over \(\mathcal{G}_{j}\) spaces
            \(\mathbf{f}=P^{T} \mathbf{r}\)
            for \(k=1\) to \(s\) do \(\quad \triangleright\) Compute \(s\) independent vectors \(\mathbf{g}_{k}\) in \(\mathcal{G}_{j}\) space
                Solve \(\mathbf{c}\) from \(M \mathbf{c}=\mathbf{f},\left(\gamma_{1}, \ldots, \gamma_{s}\right)^{T}=\mathbf{c} \quad \triangleright\) Note that \(M=P^{H} G\)
            \(\mathbf{v}=\mathbf{r}-\sum_{i=k}^{s} \gamma_{i} \mathbf{g}_{i}\)
            \(\mathbf{v}=B^{-1} \mathbf{v} \quad \triangleright\) Preconditioning operation
            \(\mathbf{u}_{k}=\omega \mathbf{v}+\sum_{i=k}^{s} \gamma_{i} \mathbf{g}_{i}\)
            \(\mathbf{g}_{k}=A \mathbf{u}_{k}\)
            for \(i=1\) to \(k-1\) do \(\quad\) Make \(\mathbf{g}_{k}\) orthogonal to \(P\)
                    \(\alpha_{i}=\mathbf{p}_{i}^{T} \mathbf{g}_{k} / \mu_{i, i}\)
                    \(\mathbf{g}_{k}=\mathbf{g}_{k}-\alpha_{i} \mathbf{g}_{i}\)
                            \(\mathbf{u}_{k}=\mathbf{u}_{k}-\alpha_{i} \mathbf{u}_{i}\)
            end for
            \(\mu_{i, k}=\mathbf{p}_{i}^{T} \mathbf{g}_{k} M_{i, k}=\mu_{i, k}\), for \(i=k, \ldots, s \quad \triangleright\) Update \(M\)
            \(\beta_{k}=\phi_{k} / \mu_{k, k} \quad \triangleright\) Make the residual orthogonal to \(\mathbf{p}_{i}\) for \(i=1, \ldots, k\)
            \(\mathbf{r}=\mathbf{r}-\beta_{k} \mathbf{g}_{k}\)
            \(\mathbf{x}=\mathbf{x}+\beta_{k} \mathbf{u}_{k}\)
            if \(k+1 \leq s\) then
                \(\mathbf{f}_{i}=0\) for \(i=1, \ldots, k\)
                    \(\mathbf{f}_{i}=\mathbf{f}_{i}-\beta_{k} M_{i, k}\) for \(i=k+1, \ldots, s\)
            end if
            \(\hat{i}=\hat{i}+1\)
            if \(\hat{i} \leq m_{0}\) then
                \(H_{\hat{i}-s: \hat{i}-k, \hat{i}}=\mathbf{c}_{k: s} / \beta_{k: s}\)
                    \(H_{\hat{i}-k+1: \hat{i}-1, \hat{i}}=\alpha_{1: k-1} / \beta_{1: k-1}\)
                    \(H_{\hat{i}, \hat{i}}=1.0 / \beta_{k}\)
                \(H_{\hat{i}-s+1: \hat{i}+1, \hat{i}}=H_{\hat{i}-s+1: \hat{i}+1, \hat{i}}+H_{\hat{i}-s: \hat{i}, \hat{i}}\)
                \(H_{\hat{i}-s: \hat{i}+1, \hat{i}}=H_{\hat{i}-s: \hat{i}+1, \hat{i}} / \omega\)
            end if
            Overwrite \(k\)-th columns of \(G\) and \(U\) by \(\mathbf{g}_{k}\) and \(\mathbf{u}_{k}\) respectively.
        end for \(\quad \triangleright\) Entering \(\mathcal{G}_{j+1}\)
        \(\mathbf{v}=B^{-1} \mathbf{r} \quad \triangleright\) Preconditioning operation
        \(\mathbf{t}=A \mathbf{v}\)
        if \(\hat{i} \leq m_{0}\) then \(\quad \triangleright\) Select new \(\omega\)
            \(\omega\) is selected using the converge maintenance strategy [3].
        else
            \(\omega\) is selected using the spectral information provided by \(H_{m_{0}}\).
        end if
        \(\mathbf{r}=\mathbf{r}-\omega \mathbf{t}\)
        \(\mathbf{x}=\mathbf{x}+\omega \mathbf{v}\)
            end while
            return \(\mathbf{x}\) and \(H_{m_{0}}\) (if required).
    end procedure
```


3.1 Numerical experiments

To illustrate the numerical behavior of the proposed algorithm, we repeat all the experiments presented in [2]. We compare our proposed variant $\operatorname{SC-Ritz-IDR}(s)$ with $\operatorname{IDR}(s), \operatorname{Ritz-IDR}(s)$ and full GMRES. All the experiment are performed in Matlab 2015a running on a 64 bit GNU/Debian Linux computer with 32 GB of RAM. The right-hand side vector $\mathbf{b}=\hat{\mathbf{b}} /\|\hat{\mathbf{b}}\|$ with $\hat{\mathbf{b}}=\mathbf{1}$, and the initial vector is $\mathbf{x}_{0}=\mathbf{0}$. As stopping criteria, we use.

$$
\begin{equation*}
\frac{\left\|\mathbf{b}-A \mathbf{x}_{k}\right\|}{\|\mathbf{b}\|}<\epsilon \tag{32}
\end{equation*}
$$

with $\epsilon=10^{-10}$.
For Ritz-IDR(s) and SC-Ritz-IDR(s), we use as parameter,

$$
\begin{equation*}
\omega_{j}=\frac{1}{\lambda_{i}} \tag{33}
\end{equation*}
$$

where λ_{i} is an eigenvalue of the matrix $H_{m_{0}}$. We select $m_{0}=20$ and the 15 smallest magnitude eigenvalues. For Ritz- $\operatorname{IDR}(s)$, the matrix $H_{m_{0}}$ is obtained with a preliminary call to the Arnoldi method. In the case of SC-Ritz- $\operatorname{IDR}(s)$ the matrix $H_{m_{0}}$ is computed as is explained in section 3 . Before the creation of the matrix $H_{m_{0}}$, $\operatorname{SC-Ritz-IDR}(s)$ uses the converge maintenance strategy, proposed in [3], to select the first ω_{j} parameters.

3.1.1 Convection-diffusion-reaction equation examples

The linear systems of equations used in the next three examples are based on the finite difference discretization of the simple convection-diffusion-reaction model problem

$$
\begin{equation*}
-\epsilon \Delta u+\mathbf{v}^{T} \nabla u+\rho u=f, \quad \text { in } \Omega=[0,1]^{d} \tag{34}
\end{equation*}
$$

with $d=2$ or $d=3$, and homogeneous Dirichlet boundary conditions on $\partial \Omega$. Particularly, it is known that $\operatorname{IDR}(s)$ with $s>1$ outperforms Bi-CGSTAB 19] when the $\|\mathbf{v}\| \gg \epsilon$ (see for example [20], 21].

Example 1. In this example the coefficient matrix A is given by,

$$
A=A_{0}-\gamma I+\left(P_{e}\right) B
$$

where A_{0} is the discretization of the Laplacian operator in the unit square. B is the bidiagonal matrix with -1 and 1 on the lower and upper diagonals, respectively. Figure 1 (a) shows the convergence of the norm of the residual for the matrix A of order 400 with the parameters $\gamma=1$ and $P_{e}=0.1$, Ritz-IDR (s) and $\operatorname{SC-Ritz-IDR~}(s)$ do not show any improvement over $\operatorname{IDR}(s)$. Using a convection-dominated example with $A \in \mathbb{C}^{1600 \times 1600}$ and $P_{e}=1$ and $\gamma=0.5$, we can see a better performance of $\operatorname{Ritz-IDR}(s)$ and $\operatorname{SC-Ritz-IDR}(s)$ over $\operatorname{IDR}(s)$.

Example 2. We consider two matrices of order 8000 from the discretization of the 3D problem (34) with $\epsilon=1, \mathbf{v}=\beta[1,1,1]$, and $\rho=0$. First using $\beta=100$, we can see in Figure 2 (a) a similar behavior between the $\operatorname{IDR}(s)$ variants. However, Ritz-IDR (s) and the $\operatorname{SC}-\operatorname{Ritz-IDR}(s)$ are clearly superior with respect to the $\operatorname{IDR}(s)$ when the parameter β is increased to 500 (see Figure $2(b)$).

Figure 1: (Example 1) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and Ritz-IDR(4)-2.

Figure 2: (Example 2) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and Ritz-IDR(4)-2.

Example 3. The coefficient matrix used in this example is the unsymmetric matrix or order 8000 that comes from the finite difference discretization of the $3 \mathrm{D}(34)$, with parameter $\epsilon=1, \gamma=0$, and $\mathbf{v}=[0,0,1000]^{T}$. As in the previous example, $\operatorname{IDR}(4)$ does for converge for the maximum number of iterations allowed, while Ritz-IDR(4) and Ritz-IDR(4)-2 converge using almost the same number of matrix-vector products (see Figure 3).

Figure 3: (Example 3) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and Ritz-IDR(4)-2.

Figure 4: (Example 4) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and Ritz-IDR(4)-2 for the matrix Sherman5 using ILU preconditioner.

3.1.2 Examples from Matrix Market

The matrices used in the next two examples are part of the Matrix Market collection [22.
Example 4. We consider the highly indefinite matrix Sherman5 of order 3312. As is reported in [2], Ritz-IDR (s) diverges for this example. SC-Ritz-IDR (s) exhibits a similar behavior. On the other hand, Figure 4 shows that both $\operatorname{Ritz-IDR}(s)$ variants converge using the Incomplete $L U$ factorization of the matrix $A+I$ as preconditioner with threshold tolerate 10^{-2}. In this example, $\operatorname{IDR}(s)$ and its variant behave similar in term of matrix-vector products required.

Example 5. In this example, we consider the linear system of equations ADD20 which arises from computer component design. In Eq. $32, \epsilon=10^{-8}$ is selected. As in proposed in [2], we also consider 20 Leja points located in the interval where the 20 real Ritz values are located. The Leja points are computed using the algorithm proposed in [23. Figure 5 shows a similar behavior between all the $\operatorname{IDR}(s)$ variants.

4 Part 2: Accelerating $\operatorname{IDR}(s)$ using Ritz vectors

In the previous sections we use the recurrences of $\operatorname{IDR}(s)$ to obtain an upper Hessenberg matrix H. From this matrix H, we obtain the Ritz values to accelerate the $\operatorname{IDR}(s)$ method. In this section, we incorporate the Ritz vectors to the Krylov basis generated by $\operatorname{IDR}(s)$. First, we present how to add additional vectors to the $\operatorname{IDR}(s)$ searching subspace basis, i.e., the augmented Krylov subspace,

$$
\begin{equation*}
\mathcal{K}_{s+m}\left(A, \mathbf{r}_{0}\right)=\operatorname{span}\left\{\mathbf{r}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{s}, A \mathbf{r}_{0}, \ldots, A^{m-1} \mathbf{r}_{0}\right\} \tag{35}
\end{equation*}
$$

Secondly, we use the matrix H to recover the Ritz vectors of the coefficient matrix, and add these Ritz vectors in $\operatorname{IDR}(s)$.

Figure 5: (Example 5) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and Ritz-IDR(4)-2 for the matrix ADD20.

In order to add additional direction vectors to the Krylov basis created by $\operatorname{IDR}(s)$, we exploit the fact that \mathcal{G}_{0} is \mathbb{C}^{n}. We can choose freely the first $s+1$ linearly independent direction vectors in $\operatorname{IDR}(s)$ and obtain their corresponding approximations and residuals associated. In the case of the biorthogonal variant, we have to ensure that each residual $\mathbf{r}_{\mathbf{i}}$ is orthogonal to \mathbf{p}_{j} for $i=1,2, \ldots, s$ and $j=1,2, \ldots, i$, and each vector \mathbf{g}_{i} is orthogonal to \mathbf{p}_{j} for $i=1,2, \ldots, s$ and $j=1,2, \ldots, i-1$. In order to do so, we present the Algorithm 2 to create the first s biorthogonal residuals.

```
Algorithm 2 Injecting basis vectors in \(\mathcal{G}_{0}\)
    Input: \(\left\{\mathbf{y}_{i}\right\}_{i=1}^{s}\)
    for \(k=1\) to \(s\) do
        \(\mathbf{u}_{k}=\mathbf{y}_{k}\)
        \(\mathbf{g}_{k}=A \mathbf{u}_{k}\)
        for \(i=1\) to \(k-1\) do \(\quad \triangleright\) Make \(\mathbf{g}_{k}\) orthogonal to \(P\)
            \(\alpha=\mathbf{p}_{i}^{T} \mathbf{g}_{k} / \mu_{i, i}\)
            \(\mathbf{g}_{k}=\mathbf{g}_{k}-\alpha \mathbf{g}_{i}\)
            \(\mathbf{u}_{k}=\mathbf{u}_{k}-\alpha \mathbf{u}_{i}\)
        end for
        \(\mu_{i, k}=\mathbf{p}_{i}^{T} \mathbf{g}_{k} M_{i, k}=\mu_{i, k}\), for \(i=k, \ldots, s \quad \triangleright\) Update \(M\)
        \(\beta=\phi_{k} / \mu_{k, k} \quad \triangleright\) Make the residual orthogonal to \(\mathbf{p}_{i}\) for \(i=1, \ldots, k\)
        \(\mathbf{r}=\mathbf{r}-\beta \mathbf{g}_{k}\)
        \(\mathbf{x}=\mathbf{x}+\beta \mathbf{u}_{k}\)
        \(\phi_{i}=0\) for \(i=1, \ldots, k\)
        \(\phi_{i}=\phi_{i}-\beta \mu_{i, k}\) for \(i=k+1, \ldots, s\)
    end for \(\quad \triangleright\) Entering \(\mathcal{G}_{j+1}\)
```


Figure 6: (Example 6) Evolution of the residual norm of full $\operatorname{IDR}(5)$ and $\operatorname{IDR}(5)$ with recycling with the four eigenvectors associated with the smallest magnitude eigenvalues of the matrix (36).

In order to add the vectors $\left\{\mathbf{y}_{i}\right\}_{i=1}^{s}$ to the $\operatorname{IDR}(s)$, we should replace Algorithm 2 by the lines 5 and 6 in Algorithm 1. As is proposed in [10], [11], and [24], we use as extra basis vectors the Ritz vector associated with the smallest-magnitude Ritz values.

Example 6. (A Motivating Example.) To exemplify the idea of using the spectral information in the initial subspace \mathcal{G}_{0}, we consider solving a system of linear equation with the following bidiagonal matrix,

$$
A=\left[\begin{array}{ccccccc}
1 \times 10^{-8} & 1 \times 10^{-5} & & & & & \tag{36}\\
& 2 \times 10^{-8} & 1 \times 10^{-5} & & & & \\
& & \ddots & & & & \\
& & & 5 \times 10^{-8} & 1 \times 10^{-5} & & \\
& & & & 6 & 1 \times 10^{-5} & \\
& & & & & \ddots & \\
& & & & & & 100
\end{array}\right]_{100 \times 100}
$$

and the right-hand side vector is $\mathbf{b}=\mathbf{1}$. We compare $\operatorname{IDR}(5)$ and $\operatorname{IDR}(5)$ with recycling. As recycling vectors, we use the five eigenvectors associated with the smallest magnitude eigenvalues of the bidiagonal matrix A. The initial guess vector is $\mathbf{x}_{0}=\mathbf{0}$. Figure 6 shows the evolution of the norms of the residuals, one can see a considerable reduction in the number of matrix-vector products for $\operatorname{IDR}(s)$ with recycling.

It is worth mentioning, the approach recently proposed the $\mathrm{M}(s) \operatorname{STAB}(\ell)$ method by Neuenhofen [15]. $\mathrm{M}(s) \operatorname{STAB}(\ell)$ is a variant of the $\operatorname{IDR}(s) \operatorname{stab}(\ell)$ [20], that is also specialized to solve sequences of system of linear equations where the coefficient matrix is constant and different right-hand size vectors. Based on a generalization of the IDR theorem, $\mathrm{M}(s) \operatorname{STAB}(\ell)$ transform the last G_{j} space
created to solve one system to linear equation into the initial \mathcal{G}_{0} space of the next system of linear equations. In this form, this method reduces the computation and accelerates the solution of (22).

4.1 Adding the Ritz vectors to the $\operatorname{IDR}(s)$: application to sequence of system of linear equations

Here we present the main application of the $\operatorname{IDR}(s)$ with recycling, the solution of a sequence of systems of linear equations. We consider the case where the coefficient matrix A is constant, and the right-hand side vectors $\left\{\mathbf{b}^{(i)}\right\}_{i=1}^{p}$ are not available simultaneously.

The main idea is to compute a subset of Ritz vectors of the matrix A during the solution of the first system of linear equation, and then use these Ritz vectors to accelerate the solution of the subsequent system of linear equations. The upper Hessenberg matrix $H_{m_{0}} \in \mathbb{C}^{m_{0} \times m_{0}}$ is computed using Algorithm 1. To compute the Ritz vectors after the first execution of $\operatorname{IDR}(s)$, we need to compute the Krylov basis \hat{R} in Eq. (27). In order to compute this \hat{R}, we use Eq. (16) and obtain that,

$$
\begin{equation*}
\hat{\mathbf{r}}_{0}=\mathbf{r}_{0} \tag{37}
\end{equation*}
$$

and taking into account the upper Hessenberg structure of the matrix $H_{m_{0}}$, we obtain the following recurrence formula for the vector $\hat{\mathbf{r}}_{i}$,

$$
\begin{equation*}
\hat{\mathbf{r}}_{i}=\frac{1}{h_{i+1, i}}\left[A \hat{\mathbf{r}}_{i-1}-\sum_{j=\max (0, i-s)}^{i-1} h_{j, i} \hat{\mathbf{r}}_{j}\right] \tag{38}
\end{equation*}
$$

Due the fact that 38 uses only the last $s+1$ vectors, we can even obtain the Ritz vector saving temporarly only the last $s+1$ basis vectors. Algorithm 3 presents how to obtain the Ritz vectors of A, after we had obtained the matrix H.

```
Algorithm 3 Obtaining the Ritz vectors
    procedure Ritz VEctorsIDR \(\left(A, s, H, \mathbf{r}_{0}\right)\)
        Input: \(A \in \mathbb{C}^{n \times n}, s \in \mathbb{N}^{+}, \mathbf{x} \in \mathbb{C}^{n}\).
        Obtain \(\left(\lambda_{i}, \hat{\mathbf{y}}_{i}\right)\) as the eigenpairs associated with the smallest magnitude eigenvalues of \(H\).
        \(\hat{\mathbf{r}}_{0}=\mathbf{r}_{0}\)
        \(Y=\hat{\mathbf{r}}_{0} \times\left[\left[\hat{\mathbf{y}}_{1}\right]_{1},\left[\hat{\mathbf{y}}_{2}\right]_{1}, \ldots,\left[\hat{\mathbf{y}}_{m_{0}}\right]_{1}\right]\)
        for \(i=1\) to \(m_{0}-1\) do
            \(\hat{\mathbf{r}}_{i}=\frac{1}{h_{i+1, i}}\left[A \hat{\mathbf{r}}_{i-1}-\sum_{j=\max (0, i-s)}^{i-1} h_{j, i} \hat{\mathbf{r}}_{j}\right]\)
            \(Y=Y+\hat{\mathbf{r}}_{i} \times\left[\left[\hat{\mathbf{y}}_{1}\right]_{i+1},\left[\hat{\mathbf{y}}_{2}\right]_{i+1}, \ldots,\left[\hat{\mathbf{y}}_{m_{0}}\right]_{i+1}\right]\)
        end for
        return \(\{\lambda\}_{i=1}^{m_{0}}, Y\).
    end procedure
```

Once we compute the s Ritz vectors associated with the smallest magnitude, we proceed to use these vectors in $\operatorname{IDR}(s)$ with recycling to solve the remaining systems of linear equations. Algorithm 4 summarizes this procedure.

```
Algorithm \(4 \operatorname{IDR}(s)\) with recycling for sequences of system of linear equations
    procedure \(\operatorname{IDR}\left(A,\left\{\mathbf{b}_{i}\right\}, s\right.\), tol, \(\left.\mathbf{x}_{0}\right)\)
        call \(\operatorname{IDR}\left(A, \mathbf{b}_{1}, s\right.\), tol, \(\left.\mathbf{x}_{0}\right)\) to obtain \(\mathbf{x}_{1}\) and the matrix \(H_{m_{0}}\) (Algorithm 1).
        call Ritz vectorsIDR \(\left(A, s, H_{m_{0}}, \mathbf{r}_{1}\right)\) to obtain the Ritz vectors \(\left\{\mathbf{y}_{j}\right\}_{j=1}^{s}\) (Algorithm 3).
        for each right-hand side vector \(\mathbf{b}_{i}\) with \(i=2,3, \ldots, p\) do
            call \(\operatorname{IDR}(s)\) to solve \(A \mathbf{x}_{i}=\mathbf{b}_{i}\) with the Ritz-vector \(\left\{\mathbf{y}_{j}\right\}_{j=1}^{s}\).
        end for
        return x
    end procedure
```

Method	MATVECs	CPU time $[\mathrm{s}]$
Full GMRES	718	185.93
GCRot(20, 4)	525	33.72
GCRot(20, 16)	332	51.2
BiCG [25]	1946	19.85
BiCGSTAB	1900	12.13
QMR [26]	1884	22.62
IDR(4) without recycling	889	20.34
IDR(4) with recycling	618	16.86
IDR(16) without recycling	845	36.61
IDR(16) with recycling	523	34.15

Table 1: (Example 7). Matrix-vector multiplications and time used for each method in the solution of (40) (diffusion dominated example)

4.2 Numerical experiments

In this section, we conduct two numerical examples of solving sequences of systems of linear equations (Algorithm 4). We use the same computer setting described in section 3.1. The stopping criteria consider in this experiment is,

$$
\begin{equation*}
\frac{\left\|\mathbf{b}_{i}-A \mathbf{x}_{k}\right\|}{\left\|\mathbf{b}_{i}\right\|}<10^{-6}, \quad \text { for } i=1,2, \ldots, p \tag{39}
\end{equation*}
$$

As initial guess for the first system of linear equations is the zero vector, and for the subsequent linear system, we use the approximate solution of the previous linear system of equation.

Example 7. In this example, we consider the linear time-dependent convection-diffusion-reaction,

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\mathbf{v}^{T} \nabla u=\epsilon \Delta u+\rho u+f \tag{40}
\end{equation*}
$$

with homogeneous Dirichlet conditions on the unit cube, and $u\left(t_{0}\right)=\mathbf{0}, \mathbf{v}=[1,1,1], \epsilon=0.1$ (diffusion dominated) or $\epsilon=0.005$ (convection dominated), the reaction parameter ρ is 5 , the function f is obtained from $u=\sqrt{x(1-x) y(1-y) z(1-z)}$. We solve 40) using Euler backward for time integration for $t \in[0,10]$ with $\delta t=1$. For space discretization, we use $h=0.02$ obtaining a linear system of equation of size 125000×125000 per time-step. Figures 7 and 8 show the residual norm behavior for full GMRES, GCROT, and $\operatorname{IDR}(s)$ with and without Ritz vector enrichment. First, we can see a good decrement in number of matrix-vector multiplication when $\operatorname{IDR}(s)$ is enriched with the Ritz vectors. Second, the long recurrences methods solve all the system of linear equation using less number of matrix-vector multiplication. However, Tables 1 and 2 show that the $\operatorname{IDR}(s)$ with Ritz vectors solves the convection and diffusion dominated problems much faster that GMRES and GCROT, and other short recurrences methods.

5 Conclusions and remarks

In this work, we have derived a Hessenberg relation from the $\operatorname{IDR}(s)$ method while it solves a system of linear equations. This is a key component to obtain approximations to the eigenvalues

Figure 7: (Example 7). Convergence residual history for the solution of (40) (diffusion dominated example)

Figure 8: (Example 7). Convergence residual history for the solution of 40) (convection dominated example)

Method	MATVECs	CPU time $[\mathrm{s}]$
Full GMRES	962	281.43
GCRot(20, 4)	1380	96.01
GCRot(20, 16)	514	83.61
IDR(4) without recycling	1360	31.46
IDR(4) with recycling	1066	22.57
IDR(16) without recycling	1089	54.44
IDR(16) with recycling	578	37.58

Table 2: (Example 7). Matrix-vector multiplications and time used for each method in the solution of (40) (convection dominated example)
and eigenvectors of the coefficient matrix involved. We have used this spectral information to accelerate the $\operatorname{IDR}(s)$ method.

In the first part of this work, we have proposed a Ritz-IDR (s) variant, named $\operatorname{SC-Ritz-IDR}(s)$, to solve systems of linear equations based on the work by Simoncini and Szyld [2]. This algorithm uses the inverse of the Ritz values as parameter ω_{j} for the creation of the residuals vectors into the subspaces \mathcal{G}_{j}. In contrast to Ritz-IDR (s), our proposed variant $\operatorname{SC-Ritz-IDR}(s)$ is a self-contained algorithm, i.e., it does not use an external sparse eigensolver to compute the Ritz values. SC-Ritz$\operatorname{IDR}(s)$ has a similar computational behavior as Ritz-IDR(s) 2]. Implementations of both methods Ritz-IDR(s) and SC-Ritz-IDR (s) may use complex arithmetic, even when the coefficient matrix and the right-hand side vectors are real, in the case of complex Ritz values as parameters ω_{j}.

In the second part of the work, we have suggested how to enrich the searching subspace of $\operatorname{IDR}(s)$ with the Ritz vectors. In particular, we have applied this enrichment to $\operatorname{IDR}(s)$ for solving sequences of systems of linear equations. After approximating the eigenvector during the solution of the first system of linear equations, $\operatorname{IDR}(s)$ uses this spectral information for the subsequent systems of equations. Numerical experiments show a significant reduction of the computational time.

References

[1] P. Sonneveld, M. B. van Gijzen, $\operatorname{IDR}(s)$: A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations, SIAM J. Sci. Comput. 31 (2) (2008) 10351062. doi:10.1137/070685804.
[2] V. Simoncini, D. B. Szyld, Interpreting IDR as a Petrov-Galerkin method, SIAM J. Sci. Comput. 32 (4) (2010) 1898-1912. doi:10.1137/090774756.
[3] M. B. van Gijzen, P. Sonneveld, Algorithm 913: An Elegant IDR(s) Variant that Efficiently Exploits Bi-orthogonality Properties, ACM Trans. Math. Software 38 (1) (2011) 5:1-5:19. doi:10.1145/2049662.2049667.
[4] P. Sonneveld, On the Convergence Behavior of $\operatorname{IDR}(s)$ and Related Methods, SIAM J. Sci. Comput. 34 (5) (2012) A2576-A2598. doi:10.1137/100789889.
[5] T. P. Collignon, M. B. van Gijzen, Minimizing synchronization in $\operatorname{IDR}(s)$, Numer. Linear Algebra Appl. 18 (5) (2011) 805-825. doi:10.1002/nla. 764
[6] W. E. Arnoldi, The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem, Quart. Appl. Math. 9 (1951) 17-29.
[7] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand. 45 (4) (1950) 255-281.
[8] Y. Saad, M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986) 856-869. doi:10.1137/0907058.
[9] S. C. Eisenstat, H. C. Elman, M. H. Schultz, Variational Iterative Methods for Nonsymmetric Systems of Linear Equations, SIAM J. Numer. Anal. 20 (2) (1983) 345357. doi:10.1137/ 0720023 .
[10] R. B. Morgan, A Restarted GMRES Method Augmented with Eigenvectors, SIAM J. Matrix Anal. Appl. 16 (4) (1995) 1154-1171. doi:10.1137/S0895479893253975.
[11] E. de Sturler, Truncation Strategies for Optimal Krylov Subspace Methods, SIAM J. Numer. Anal. 36 (3) (1999) 864-889. doi:10.1137/S0036142997315950.
[12] M. L. Park, E. de Sturler, G. Mackey, D. D. Johnson, S. Maiti, Recycling Krylov Subspaces for Sequences of Linear Systems, SIAM J. Sci. Comput. 28 (5) (2006) 1651-1674. doi:10.1137/ 040607277 .
[13] H. V. Nguyen, Krylov methods for solving a sequence of large systems of linear equations, Ph.D. thesis, Baylor University (2015). URL http://hdl.handle.net/2104/9511
[14] K. Ahuja, Recycling Krylov Subspaces and Preconditioners, Ph.D. thesis, Virginia Polytechnic Institute and State University (2011). URL http://hdl . handle . net/10919/29539
[15] M. P. Neuenhofen, $\mathrm{M}(s) \operatorname{stab}(\ell)$: A Generalization of $\operatorname{IDR}(s) \operatorname{stab}(\ell)$ for Sequences of Linear (2016). arXiv:arXiv:1604.06043
[16] M.-C. Yeung, T. F. Chan, ML (k) BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos Starting Vectors, SIAM J. Sci. Comput. 21 (4) (1999) 1263-1290. doi:10.1137/ S1064827597321581.
[17] M. H. Gutknecht, J.-P. M. Zemke, Eigenvalue Computations Based on IDR, SIAM J. Matrix Anal. Appl. 34 (2) (2013) 283-311. doi:10.1137/100804012.
[18] R. Astudillo, M. B. van Gijzen, A Restarted Induced Dimension Reduction method to approximate eigenpairs of large unsymmetric matrices, J. Comput. Appl. Math. 296 (2016) 24-35. doi:10.1016/j.cam.2015.09.014.
[19] H. A. van der Vorst, Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput. 13 (2) (1992) 631-644. doi:10.1137/0913035.
[20] G. L. G. Sleijpen, M. B. van Gijzen, Exploiting BiCGstab(ℓ) Strategies to Induce Dimension Reduction, SIAM J. Sci. Comput. 32 (5) (2010) 2687-2709. doi:10.1137/090752341.
[21] R. Astudillo, M. B. van Gijzen, The Induced Dimension Reduction Method Applied to Convection-Diffusion-Reaction Problems, Springer International Publishing, Cham, 2016, pp. 295-303. doi:10.1007/978-3-319-39929-4_29.
[22] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, J. Dongarra, Proceedings of the IFIP TC2/WG2.5 working conference on Quality of numerical software: assessment and enhancement, Chapman \& Hall Ltd., London, UK, 1997, Ch. Matrix market: a web resource for test matrix collections, pp. 125-137.
[23] J. Baglama, D. Calvetti, L. Reichel, Fast Leja points, Electron. Trans. Numer. Anal. 7 (1998) 124-140.
[24] R. B. Morgan, Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations, SIAM J. Matrix Anal. Appl. 21 (4) (2000) 1112-1135. doi:10.1137/ S0895479897321362.
[25] R. Fletcher, Conjugate gradient methods for indefinite systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 1976, pp. 73-89. doi:10.1007/BFb0080116.
[26] R. W. Freund, N. M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math. 60 (1) (1991) 315-339. doi:10.1007/BF01385726.

[^0]: *R.A.Astudillo@tudelft.nl
 \dagger jan.degier@tno.nl
 ${ }^{\ddagger}$ M.B.vanGijzen@tudelft.nl

