An Analysis of Deep
Learning Based Pro-

filed Side-channel
Attacks

Rico Tubbing

," i

~,,

QU
N

LIl |
: JJJI;?)
e

?":!I]mnrm I~ H}&&%&ig I

%
I‘,
\\\\ )
il
L\
U R N N RO
‘%m;ﬁ‘ﬁiﬁﬁﬁﬁiﬂi“ TSN

KR
X ‘l’@ ! :
/N ‘&W (
%f@ » % X @'
- A SNNR







An Analysis of
Jeep Learning

B3ased Profilec
Side-channel
Attacks

Custom Deep Learning Layer, CNN
Hyperparameters for Countermeasures, and
Portability Settings

by

Rico Tubbing

to obtain the degree of

Master of Science
in Computer Science

at the Delft University of Technology,
to be defended publicly on Thursday December 19, 2019 at 10:00 AM.
Thesis committee: Dr. S. Picek, TU Delft, supervisor
Dr. C. Doerr, TU Delft
Dr. P. K. Murukannaiah, TU Delft

An electronic version of this thesis is available at http: //repository.tudelft.nl/.

Delft
e t University of
Technology


http://repository.tudelft.nl/




Abstract

A side-channel attack (SCA) recovers secret data from a device by exploiting unintended physical leakages
such as power consumption. In a profiled SCA, we assume an adversary has control over a target and copy
device. Using the copy device the adversary learns a profile of the device. With the profile, the adversary
exploits the measurements from a target device and recovers the secret key. As SCAs have shown to be a
realistic attack vector, countermeasures have been invented to harden these kinds of attacks.

In the last few years, deep learning has been applied in a wide variety of domains. For example, convo-
lutional neural networks have shown to be effective for object recognition in images and recurrent neural
networks for text generation. In the side-channel analysis domain, deep learning has shown to be success-
ful. Up until recently, no deep learning layer existed that was specifically designed for SCAs. In this work, we
analyze this layer, called the spread layer, and demonstrate the flaws of this layer. We improve the flaws and
show the spread layer does not enhance the performance of SCAs. Additionally, we show there is no need to
develop a deep learning layer specifically for SCAs on unprotected implementations.

For implementations where countermeasures are present, literature demonstrated that convolutional
neural networks are the most successful. However, for both the masking and random delay countermea-
sure, little is known about the influence of the kernel size and depth of the network. In this work, we illustrate
that increasing the kernel size and depth of the network both increase the attack efficiency for the random de-
lay countermeasure. For the masking countermeasure, we demonstrate that higher kernel sizes and shallow
networks perform the best.

Additionally, in this work, we consider a portability setting where the probe position has been changed in
between the measurements of the profiling and attack measurements. Here, we show that the probe position
causes a typical deep learning SCA to be ineffective. We introduce a normalization method such that the
attack becomes effective, and show this method enables the attack to perform as expected.

For countermeasures this however different. We know that CNNs work really well for SCAs where a ran-
dom delay countermeasure is present. However little is known about the influence of the hyperparameters.
We experiment with the kernel size and depth of a CNN, and show that increasing both results in more effi-
cient attacks.

We do the same for the masking countermeasure, but see that the CNN does not provide good results. We
believe the CNN is too complex, which we believe because MLP networks are significantly more efficient.

Portability experiment with a setting where the probe position has been changed in between measure-
ments of the profiling and attack traces. Difference in the traces We see that normalizing the profiling and
attack traces separately resolves the issue, and show that we can perform a standard side-channel attack
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Introduction

In 1965, a spy from the British Military Intelligence Agency, the MI5, bugged the Egyptian embassy located in
London. Dressed up as a telephone technician, a British spy infiltrated the embassy and secretively planted
a microphone near a rotor-cipher machine. Back then, such machines were used for the encryption and de-
cryption of messages, and the ‘key* for encryption or decryption would be the initial settings of the machine’s
wheels. Each morning the embassy’s cipher clerk would reset the wheels’ settings. The sound produced by
these adjustments was loud enough to be picked up by the planted microphone, which allowed the MI5 to
deduct the initial settings of two or three of the in total seven wheels. With this additional knowledge, the
keyspace was reduced significantly such that the British had sufficient computational power to break the
encryption, and thus were able to spy on the embassy’s communication [51, 56].

The attack performed by the British is now known as a side-channel attack (SCA). An SCA exploits some
unintended physical leakage while the system performs operations on sensitive values. By analyzing the
obtained physical leakages an adversary can recover the sensitive values. In the attack performed by the
British, the physical leakage was the sound produced by adjusting the wheels, and the sensitive values were
the initial settings of the wheels. SCAs have shown to be effective using various physical channels, such as
sound [2], electromagnetic radiation [1], power consumption [26], and accelerometer data [9].

Nowadays, rotor-cipher machines are no longer used for secure communication, instead, we rely on cryp-
tographic mechanisms implemented in software and hardware to securely communicate. One of these mech-
anisms that is used extensively, is called the Advanced Encryption Standard (AES) and since its introduction,
no feasible key recovery attack is known. In 2015, the best known mathematical attack requires 2'26-0! key
attempts, which takes several years with nowadays computational power [50]. However, this attack only con-
siders the cipher from a mathematical perspective and does not consider that AES is implemented or runs
on a physical chip (hardware or software). Similar to the rotor-cipher machines, electrical chips have some
physical leakage such as power and electromagnetic radiation. Depending on the implementation of AES,
the chip’s physical leakages makes it vulnerable to SCAs. Since the discovery of side-channel attacks, the
community has invented methods to protect from these attacks. In side-channel analysis, these methods are
called countermeasures and can be implemented in either software or hardware. Generally, countermeasures
are split into two categories: masking and random delay.

With the rise of IoT devices and smart-cards, the attack surface of side-channel attacks has grown. These
devices are vulnerable to side-channel attacks because typically the security is neglected to reduce costs and
keep the chips small. Since the security is neglected and AES is commonly used in these devices, it is an
interesting target for side-channel attacks.

The history of side-channel attacks started with the discovery of Simple Power Analysis (SPA), in which
an adversary visually analyzes an observed leakage to deduce sensitive information. Later, the side-channel
analysis community found Differential Power Analysis [26] and Correlation Power Analysis [6], in which multi-
ple observations are statistically analyzed to recover the sensitive data. These attacks require only access to a
target device and are known as non-profiled attacks. In a profiled attack, an adversary has access to the target
device and a copy of it. To perform the attack, the adversary creates a profile of the copy device’s observations
and uses the profile to predict the sensitive values given observations from the target device. To create the
profile, an adversary learns a statistical model.
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To generate a profile of a device, Template Attack (TA) has historically been used. It has been shown that
TA is the most powerful attack from a theoretical perspective [8]. However, as Machine Learning obtained
quite some attention in various domains, the side-channel analysis community has successfully shown that
ML is a viable approach for profiled side-channel attacks. Moreover, it has been shown that an ML approach
can outperform TA in some settings [30].

As ML techniques seem to be promising, Deep Learning (DL) techniques have become popular for side-
channel attacks. Recent works have shown that DL is an effective tool for side-channel attacks, even in the
presence of countermeasures [33]. Next to this, DL usually requires little to no pre-processing, such as fea-
ture selection, to perform successful attacks. Because of the recent success with deep learning side-channel
attacks, we investigate deep learning for profiled side-channel attacks in this thesis.

1.1. Problem Statement

In other domains than side-channel analysis, DL has been successfully applied and shown to increase per-
formance. For example, a significant performance boost was found by the image recognition domain when
using DL techniques. Moreover, the largest performance boost was found by using convolutional neural
networks (CNNs). Such networks exploit domain-specific characteristics that allow them to improve perfor-
mance. In the side-channel analysis domain, we know that CNNs perform well for both unprotected and
protected implementations. Notably, CNNs excel when attacking an implementation with a random delay
countermeasure. It thus seems that some deep learning layers can eliminate the effect of a countermea-
sure. Recently a new deep learning layer has been proposed for side-channel analysis which was shown to
improve the attack efficiency on unprotected implementations. As there has been no work done that ana-
lyzes this layer, we will perform an analysis of this layer, and pose the question if it makes sense to create a
layer specifically designed for side-channel attacks on unprotected implementations. If so, this might open
many possibilities for more successful attacks which in turn increase the quality of security assessments. For
example, this could lead to deep learning layers designed to eliminate a countermeasure’s effect.

Despite the shown success of deep learning side-channel attacks, it suffers from some disadvantages.
To perform successful attacks, a suitable network architecture has to be configured. There are a significant
amount of imaginable architectures, and only a limited amount of these architectures provide good perfor-
mance for side-channel attacks. Even with a suitable architecture, deep learning still requires careful choice
of parameters since the wrong configuration results in a non-successful attack. Additionally, deep learning
networks are considered as black-box, meaning we do not understand the internal workings of the network.
This toughens the choice of architecture and parameters, which explains why related works attempt various
configurations to obtain the best results. Current research has found some general directions for specific
SCA datasets, however, knowledge on how to configure architectures is still lacking. For countermeasures,
we know that CNNs can achieve state-of-the-art performance. However, a common baseline of parameters
is unknown. In this work, we investigate the design of CNN architectures and their respective parameters.

Another problem in this domain is that many works do not consider a realistic setting, in which profiling
and attack traces are obtained from the same device. Recently, literature has shown that in these settings the
attack efficiency is overestimated. These works showed that when using different devices for profiling and
attacking, the devices have different characteristics, making the attack harder. The literature has proposed
some methods to deal with this, however, still work is required to gain more understanding.

In general, we aim to improve the performance of side-channel attacks on AES, such that we help to
improve the quality of security assessments. This is important because by doing so we improve the security
of AES implementations. To do so we provide guidelines that have shown to work in a variety of settings.
Furthermore, the guidelines improve the understanding of SCA with deep neural networks. Although we do
not understand the decision making in a neural network, the guidelines show what configurations work well
in specific settings.

In summary, we identify the following problems:

* No extensive research has been conducted on specially designed layers for side-channel analysis.

¢ The design of network architectures has a significant influence on the attack success, but there is lim-
ited knowledge about the architecture’s configuration for side-channel analysis.

e Literature has shown that in realistic settings, the profiling measurements are different from the attack
measurements.
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In this thesis, we pose the question if there is a need for a deep learning layer designed for side-channel
attacks on unprotected implementations. Furthermore, we wonder what the influence of a subset of CNNs’
hyperparameters is for specific countermeasures. Lastly, we ask if the repositioning of the probe in-between
measurements influences the attack efficiency and if so what can be done to improve the attack efficiency.

1.2. Contributions

So far, the problems we have identified are far from trivial and require knowledge about side-channel analysis,
AES, and deep learning techniques. Furthermore, the training of deep neural networks is computationally
heavy and time-consuming, limiting the possibilities to experiment with a wide variety of settings. Despite
these difficulties, our contributions are as follows:

» Show that special designed deep learning layers for non-protected implementations are not necessary,
and the already known layers are sufficient.

¢ Provide an evaluation of the design for CNN architectures, and provide a baseline for datasets in which
the random delay countermeasure is present.

¢ Provide an evaluation of the design for CNN architectures, and provide a baseline for datasets in which
the masking countermeasure is present

* A novel approach to normalize training and test traces such that SCAs are effective in a portability
setting.

1.3. Outline

The rest of this thesis is outlined as follows. First, the background knowledge required for a basics under-
standing of the performed work is introduced. Subsequently, we will discuss the related literature in the field
of side-channel attacks using deep learning, identify where current research is lacking, and formulate our
research questions. Then we will continue with the search for a deep learning layer specifically designed
for side-channel attacks. In the following chapter, we discuss the influence of various hyperparameters of
CNN architectures for specific countermeasures. Furthermore, we investigate the effect of normalization in a
portability setting, show that a typical approach results in ineffective attacks. Therefore, we introduce a novel
method to normalize the attack traces, which improves the attack efficiency significantly. Finally, we answer
the research questions using the knowledge from the conducted experiments, discuss the limitations of the
performed work, and finally discuss possible future work.






Background

In this chapter, we discuss the background knowledge required for the research presented in this thesis. First
we discuss the encryption standard AES, the target of our attacks. Then we will provide an overview of ma-
chine learning and deep learning techniques. In the next section, we introduce side-channel attacks, in which
we discuss non-profiled and profiled side-channel attacks. Additionally, we give an overview of the datasets
used for the experiments. Finally, we describe the technical details of the conducted experiments.

2.1. AES

AES is a family name used to describe three ciphers, which each have different key sizes, that is AES-128,
AES-192, and AES-256. AES is a symmetric key algorithm which means that the same key is used for both
encryption and decryption. In AES, encryption and decryption are applied on a block of bytes, which makes
AES a block-cipher. We describe the encryption function of AES as Ey(m), where m is the message and k the
key. Similarly, we describe the decryption function Dy (c), with the cipher-text ¢ and key k. Since AES is a
symmetric key algorithm, the following equation is correct:

Dy (Ex(m)) = m.

In this work, we only discuss AES-128, other key lengths are disregarded. For simplicity, we will only discuss
the encryption process in this section, but for completeness, we mention that the decryption of a ciphertext
is obtained by applying the inverse of the encryption process.

AES exists of ten rounds, and in each round, the same sequence of operations is performed. In each
round, a round-specific key, called the round key, is used for encryption. The round keys are derived from the
master key and are the same size as the master key, the derivation of the round keys is called KEYEXPANSION.
Rijndael’s key schedule is used to calculate round keys [37], but we will not go in further detail how this key
derivation scheme works.

The operations performed during the encryption process are applied on a four by four state matrix, each
state in the matrix represents a single byte. Initially, the encryption function uses each byte of the plaintext
to fill each entry of the state matrix. Thus, each byte of the plain text represents one entry in the state matrix.
Similar to the state matrix, the round key is used to generate a matrix called the round key matrix. It is similar
to the state matrix, except that it contains the current round key. The state matrix is represented as a, and
a;,j is an entry in the state matrix where i and j are the row and columns in the state matrix respectively.
Similarly, k represents the round key matrix, and k; ; represents a single entry in the round key matrix.

After the initialization of the cipher, the encryption process starts. AES consists of four operations that
are repeatably used, called ADDROUNDKEY, SUBBYTES, SHIFTROWS, and MiXCOLUMNS. In the following sec-
tions, we will discuss these operations and how they form the AES encryption algorithm.

2.1.1. Operations
The ADDROUNDKEY operation performs a bitwise xor between each entry of the state matrix and each corre-
sponding entry of the round key matrix. Mathematically, this is described as:

ADDROUNDKEY(a, k) = ViV : a;.,j —aijoki;. 2.1

5



6 2. Background

In Figure 2.1 a visualization of the ADDROUNDKEY operation on the state matrix is shown. In this figure,
the highlighted parts on the left part of the image represent the selected entry of the state matrix and the
corresponding entry of the round key matrix. A bitwise xor is performed on these two entries, and the result
is stored in the state matrix.

! ! !
dpo do1 do2 o3 oo Gy Gpo Gog
! ! ! !
ao @, a2 a3 ajo @ 1o 3

! / !
az,0 W2 = ~Gp3= =% D == -Gy o) Qyy o3
! !
aso as1  ds2 433 0 Az 3, d3p Q33
)
koo ko1 ko2 kos '
kio kip kiz ki .
]

ka0 "02,2“]623- -=-

k3o k31 k32 k33

Figure 2.1: The ADDROUNDKEY performs the xor operation for each entry of the state matrix with the corresponding entry of the round
key matrix. The result is the updated state matrix, shown as the matrix on the right side in the figure.

The SUBBYTES function performs substitution of each entry in the state matrix a;, ; using a look-up table.
The look-up table is called the S-box in AES. The SUBBYTES operation provides AES with its non-linearity.
Mathematically this operation is described as:

SUBBYTES(a) = ViV j: a; ; — S-boxla; ;1.

In Figure 2.2, a visualization of the SUBBYTES operation is shown. In this figure, the highlighted part of the
state matrix on the left is selected and used to perform a look-up in the S-box. The result is the updated state
matrix, shown as the right matrix in this figure.

apo do1 Gp2 do3 ago Gy Gop  Agg
a a1 a2 a3 “l1,o aj “ll,z “/1,3
axo (A1) M2--G23-4-% S-box --1- aé',(f ) aé,z “é,s
aso as1 asz ass ag'o as a’3’2 ﬂé,g

Figure 2.2: The SUBBYTES operation performs for each entry of the state matrix a look up, the result of this lookup is stored in the
updated state matrix shown here as the matrix on the right.

The SHIFTROWS function performs a cyclic shift to the left on each of the rows of the state matrix, except
for the first row. The second row shifts one position to the left, the third shifts two, and the fourth shifts three.
In Figure 2.3, this operation is visualized. In the first row, there is one highlighted bar, in the second row,
the highlighted bar is divided into two, such that the bar with the rounded corner on the left is similar to the
original state matrix. This is similar for the other rows.

ap,0 dol Qo2 o3 > > > >
a a a ][a
ayo 4 A4z a3 | SHIFTRows 1,1 1,2 1,3 1,0
! !

!
a0 dp1 Gp2 a3 as “2;3]

aso as1  az2 ds3 a

Figure 2.3: The SHIFTROWS operation shift each row, except for the first row, in a cyclic manner by a fixed offset. The second row is
shifted one position to the left, the third is shifted two, and the third row is shifted three positions to the left.

The MI1xCoLUMNS function diffuses the columns. It performs matrix multiplication in the finite field
GF(s®) on the columns as shown in Figure 2.4. This figure shows that the four entries of a column are mingled
which results in a new column a’.
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!
a,i A, ; 2 3 1 1] [ao,
!
ay i | MixCoLumns | @ 1 2 3 1] |ai; .
| /| M|~ ' where0<i<3
ap, i a, ; 1 1 2 3| |az;
as,; a, 31 1 2] |as,

Figure 2.4: The MixXCOLUMNS operation combines each column of the state matrix into a new column using matrix multiplication over
the finite field GF(2%).

We have discussed all the operations used to perform AES encryption. Here we will explain in which
order AES applies these operations to encrypt a plaintext. In Algorithm 1 pseudo-code of the encryption
algorithm of AES is shown. Initially, AES deduces the round keys from the master key using the KEYEXPANSION
algorithm, which are then stored for later use. After this, the ADDROUNDKEY operation is applied and the first
round starts. In the first round the operations SUBBYTES, SHIFTROWS, MIXCOLUMNS, and ADDROUNDKEY
are applied sequentially. This sequence of operations is repeated nine times. The last round differs from the
previous rounds as it does not apply the MixXCOLUMNS operation. This operation is skipped because it does
not add any security if it would have been added.

Algorithm 1 An overview of the AES encryption algorithm.

roundKeys — KEYEXPANSION (key)
state — plaintext
state — ADDROUNDKEY(state, roundKeys[0])
fori=1,i<10,i++ do

state — SUBBYTES(state)

state — SHIFTROWS(state)

state — MIXCOLUMNS(state)

state — ADDROUNDKEY(state, roundKeysli])
end for
state — SUBBYTES(state)
state — SHIFTROWS(state)
state — ADDROUNDKEY(state, roundKeys[9])
ciphertext — state

2.2. Machine Learning

Machine learning (ML) is the science in which a computer is learned to solve a given task without the com-
puter being explicitly programmed to solve the given task [5]. Typically, ML algorithms are divided into two
categories: supervised and unsupervised learning. Supervised ML requires a dataset in which input and out-
put pairs are known. In an unsupervised ML setting only the input is known to the algorithm. In this work,
we will only discuss ML in a supervised setting.

Generally, supervised ML consists of two phases: the training and test phase. In the training phase, an
ML algorithm aims to learn patterns from training examples. Usually, the training examples are referred to as
the training data, which consists of a set of input-output pairs. Here we will refer to a single input as a feature
vector X = (x1,Xz,...,X,), where n is the number of features. Typically, ML learns by iteratively minimizing a
cost function, which indicates the costs of the predictions and the ground truth. More formally, the training
phase can be defined by learning a function f: X — Y, which maps the input domain X to the domain Y.
The configurations used to train a model are referred to as hyperparameters, which are distinct from the
parameters of an ML model. The hyperparameters are configured before the start of the learning algorithm,
while the parameters are adjusted during the learning phase.

After the training phase, the performance of the model is evaluated, this phase is referred to as the testing
phase. In the testing phase, the model is used to perform the given task on unseen data. The unseen data is
referred to as the test data. The key difference between the training and testing data is that the testing data
has not been used during the training phase.

The separation of training and test data is necessary to create an accurate evaluation of the performance
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of the learned model. If there is no separation, and the same data is used for the training and testing phase,
an inaccurate evaluation of the performance of the model is generated, because the model is learned using
the training data. As a result, a situation could occur where the model can correctly predict the output for the
training data, but not for the testing data. The learned model is thus not able to generalize and fails to predict
the ground truth of the test data. This phenomenon is well-known in the ML domain and is usually referred
to as overfitting. Overfitting generally occurs when the model is too powerful for the given task, i.e. the model
has too many parameters, and as consequence, the model is capable of identifying the feature vectors from
the training data individually, such that it can learn the ground truth. An example of when overfitting occurs
is when a non-linear model is learned on linear data. In this setting, there is a high probability that the model
learns feature vectors of the training data individually and thus fails at producing correct results for unseen
data.

Another well-known problem of ML techniques is called underfitting, which is the opposite of overfitting.
The learned model is not able to correctly predict the ground truth given the training and test data. Here we
say that the model is not able to learn anything from the training data. Generally, underfitting occurs when
a model is not powerful enough to capture the patterns in the training data. An example of such a situation
is when a linear model is learned on non-linear data. In this situation, the model will not be able to learn the
training data correctly to predict the ground truth for both the train and test data.

If we would configure the hyperparameters of a model to perform well on the test data, we introduce a
bias to the model. Therefore, we require an additional data set to be used to configure the hyperparameters,
this data set is called the validation set. Additionally, the validation set can be used to detect underfitting
or overfitting. This is particularly useful when the training phase takes a long time. The problems can be
recognized by analyzing the value of the cost function on the validation set. If a problem occurs, the training
phase can be stopped and the hyperparameters can be adjusted, and valuable training is prevented from
going to waste. In subsection 2.4.4 we will briefly discuss a technique that can automatically detect and will
quit training if a model is overfitting during the training phase.

So far we have discussed the training and testing phase, and the problems during training. Here, we will
discuss the problems ML solutions are typically used for. Typical ML tasks are regression and classification. In
aregression problem, the output of a model is a continuous value. A typical example of a regression problem
is estimating the salary of a person given features such as age, sex, job, etc. In a classification problem, the
output of a model is not a single value, but a set of values, each representing a single class. A well-known
classification problem is object recognition in images, in which a model is trained to recognize objects in
images. In this work, we will only discuss classification problems. In a classification problem, the model is
usually referred to as a classifier, we will use the notation and classifier interchangeably.

To evaluate the performance of a classifier, several metrics have been suggested by the machine learning
community. The most well-known metrics are accuracy, recall, and precision. In this work, we only use accu-
racy as a metric (see subsection 2.5.4). Trivially, the accuracy indicates the percentage of correctly predicted
outputs of the classifier. Equation 2.2 shows how accuracy is calculated.

#correct predictions
Accuracy = — 2.2)
#predictions

2.3. Deep Learning

Deep learning is a branch of the ML domain which is based on artificial neural networks (ANNs). An ANN
is said to be an engineered system inspired the brain Since the brain is able to perform and solve complex
tasks, such as image recognition and language processing, it is widely thought that gaining an understanding
of how the brain learns, could provide the scientific community insights into how to develop complex neural
networks that are capable of performing on a similar level as humans [15].

In this section, we will first discuss a classical neural network called multilayer perceptron and how these
types of networks calculate the predictions given an input. To do so first the building blocks of these types of
networks are discussed as well. Subsequently, we will discuss convolutional neural networks and the proper-
ties of these networks.

2.3.1. Multilayer Perceptron

A multilayer perceptron (MLP) is one of the simplest types of neural networks. As all deep learning neural
networks, MLP consists of an input layer, at least one hidden layer, and an output layer. The input layer is the
input of the network, and similarly, the output layer is the network’s output. The hidden layers are defined
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as the layers between the input and output layers. Each layer consists of a configured amount of neurons,
which each applies mathematical functions on its input to calculate the output. The input layer has the same
number of neurons as the length of the feature vector, while the output layer has the same number of neurons
as the total number of classes. In each layer, mathematical operations are applied to the input of the layer,
and the output is passed on to the successive layer in the network, which is either a hidden layer or the output
layer.

In an MLP network, each neuron’s output is used by each neuron of the successive layer. In Figure 2.5, we
depict an example MLP network, where a node represents a neuron and the edges the information flow. In
this figure the input feature vector X exists of six features, x; till xg, two hidden layers with four neurons in
each layer, and two output neurons, y; and y».

Input layer

Hidden layers

Output layer

)
)

Figure 2.5: A multilayer perceptron neural network with six input features, two hidden layers with each four neurons, and two output
neurons. The edges represent the weighted output of a neuron.

A neuron’s output is calculated by the activation of the sum of the weighted outputs of the previous layer
and the bias term. The output of a neuron is also called the activation of a neuron. Mathematically we
describe the activation of the kth neuron in the /th layer as shown in Equation 2.3.

Ni-1
x,lC =0( Z w,lc’l. -xffl + b,lc) 2.3)
i=0
In this equation, the superscript describe a layer’s index, and the subscript the neuron’s index. Furthermore,
o is the activation function, w a neuron’s weight, b a neuron’s bias, x a neuron’s output, and N the number of
neurons in a layer. To make this more clear, Equation 2.3 is visualized in Figure 2.6 and shows how the output
of a neuron is calculated. In this figure, the output is calculated by taking the activation of the sum of the
weighted inputs from the neurons x; to x,, and the bias.

Figure 2.6: The calculation of the output of a perceptron visualized.

Neural networks are commonly trained on GPUs since the calculations can be performed as matrix multi-
plications and additions. This makes the training phase considerably faster than on a CPU. Equation 2.3 can
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be described as matrix multiplication and addition with the following equation:
xp=o(whT - x""1+b). (2.4)

In Figure 2.5, each edge represents the weighted input of the neuron it is connected with. From this
figure, we can determine the total amount of parameters used in the network. The amount of parameters
is commonly used to compare network architectures. In the first hidden layer there are four neurons, witch
each a bias and six connections with the previous layer, thus there are 4 * 6 + 4 = 28 parameters in this layer.
Similarly, the number of parameters can be determined for the following layers. In total there are 28+20+10 =
58 parameters in this network. If we imagine that we have a large MLP network, with more neurons in a layer,
from the calculation it is clear that larger networks consist of many parameters, which is one of the reasons
why neural networks are so powerful.

2.3.2. Activation Functions
In Equation 2.3 we have described how a neural network calculates the output. However, we have not dis-
cussed the activation function o. The activation function provides neural networks with non-linearity, which
allows them to learn not only linear problems but also non-linear functions. Since the output of the activation
function is a neuron’s output, this output is also referred to as the activation. In this section, we will discuss
the most used activations.

Historically, sigmoid is the activation function that was used in all neural networks. The sigmoid activa-
tion function is defined as

SIGMOID(x) =

. 2.5
1+e™* 2.5)

Sigmoid suffers from the vanishing gradients, which is not a desirable property for a neural network. Vanish-
ing gradients prevent the network from learning new patterns. This problem occurs since it has a horizontal
asymptote and as a result: for a large x sigmoid outputs a value close to the zero, while for a significant larger
x' sigmoid will output a similar value [28]. Another problem mentioned in [28], the output of sigmoid is not
on average close to zero. To fix this problem it has been suggested to use hyperbolic tangent (also known as
tanh) as an activation function. It is defined as:

eXf—e*
TANH(x) = ———, 2.6
W= (2.6)

but it can also be expressed using sigmoid:
TANH(x) = 2SIGMOID(2x) — 1. (2.7)

Thus, tanh also suffers from vanishing gradients since it is a scaled and shifted version of sigmoid.
Nowadays, the most common activation function that is used in neural networks, is called rectified linear
unit or also called ReLU. ReLU is described as:

RELU(x) = max(0, x). (2.8)

Thus, ReLU takes the maximum of zero and the activation of a neuron.

The main advantage of ReLU is that it suffers significantly less of vanishing gradients in comparison to
sigmoid and tanh, and therefore networks that use ReLU can learn better. Another advantage of ReLU is
the computational costs, it requires only comparisons and no additional calculations. ReLU is simple and
performs extremely well in various settings.

There is one more activation function that is frequently used, which is called softmax. This activation
function has a different purpose in networks than the other discussed functions. Its main purpose is to assign
probabilities to the output classes of a network and is thus used as the last layer of the network. Without this
function, the output of a network would be harder to reason about. The softmax function is defined as:

xl—l

! e

SOFTMAX(X'™1); = x! — - (2.9)
Zlk(:l e’k

1

Here, [ refers to the layer for which the output is computed, and ! — 1 the previous layer, i is in the index of a
neuron. The result of this function is a vector of probabilities of each class, thus, the sum of the output vector
sums to one. Next to this, Equation 2.9 shows that a larger input will yield a larger probability.
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2.3.3. The Learning Process

So far we have discussed how a neural network computes a prediction given an input, and how activation
functions make neural networks non-linear such that they can compute complex functions. Here, we will
discuss how a neural network gradually learns. As previously discussed, each neuron has an associated bias
and associated weights for each neuron of the previous layer. Neural networks learn by iteratively adjusting
the weights and biases each epoch. For now, we assume that in an epoch a single forward pass and a backward
pass are performed. We define the forward pass as the calculation of the predictions on training or test data-
set. In the backward pass, the weights and biases of the model are adjusted to improve the predictions of
the network. Usually, the backward pass makes use of a technique called backward propagation. Backward
propagation requires us to define a cost function, which indicates the error between the predicted output
and the ground truth. Backward propagation determines in which direction each weight and bias should be
adjusted to minimize the cost function, the direction the parameters should be adjusted is also known as
the gradient. Backward propagation is possible because the model is differentiable which means that each
weight and bias is differentiable as well. This makes it possible to determine in which direction individual
weights should be adjusted to reach a local or global minimum [45].

Since the gradient only indicates in which direction a step should be performed to minimize the cost
function and not the magnitude of the step, another hyperparameter is introduced to control the magnitude
of the step. This hyperparameter is called the learning rate. The adjustment for a weight w is denoted as Aw
and is calculated by the formula shown in Equation 2.10.

Aw = oC 2.10
w=nx* 3w (2.10)
In this equation, 7 is the learning rate, C the cost function, and w the weight. The new weight is calculated
by adding Aw to w. If the learning rate is set too high this causes backward propagation to jump over the
local minimum and thus might never reach the local minimum. On the other hand, if the learning rate is set
too low this causes the network to learn too slow, which results in long training times. No single learning rate
suits every problem, and thus the best learning rate is found by experimental validation.

A technical problem occurs if we attempt to perform backward propagation over the entire data-set. To do
so, the entire dataset and the network’s parameters are required to be stored in memory. If either of these two
islarge, storing this might not be possible for the GPU memory. As a result of this physical limit, it is unfeasible
to calculate the cost function over the entire data set. A solution to this problem is to iteratively supply a
subset of the feature vectors to the network, this subset and its size are referred to as a batch and the batch
size respectively. The batch size thus defines the size of the subset of feature vectors for a single forward pass.
Since the data set is split into multiple batches, it is necessary to perform multiple forward and backward
passes. We now define a single epoch as the forward and backward passes to process the entire dataset. This
means that after each forward pass the weights and biases are adjusted (in the backward pass) such that it fits
better over the just supplied batch. Similar to the learning rate, there is no magic number for the batch size
that is suitable for all problems and thus the best batch size is usually experimentally discovered.

The classifications problems we discuss in this report are called one-of-many classification. In such a
problem there are C classes, in which there can be only one correct. One-hot encoding is used to encode
the ground truth values. One-hot encoding turns a class value into a vector 7 =[co, c1,-..,cc-1], where each
entry represents a class and c; is equal to one if it is the ground truth, otherwise zero. The cost function, or
also called lost function, is the error between the predicted classes and the ground truth. Typically, for one-
of-many classification problems, categorical cross-entropy is the loss function. Itis calculated by the equation
shown in Equation 2.11, where y; and J; of class i are the ground truth and predicted value respectively.

9
Ly, ) ==Y yi* log(y) (2.11)
i=0
In summary, a network is trained by iteratively supplying the training data and corresponding ground
truth values. Using backward propagation, we can determine the direction the parameters have to be ad-
justed to minimize the cost function.

2.4. Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep neural networks and are one of the most popular
types of networks that are used in the deep learning community. Their performance is one of the reasons
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why CNN architectures are commonly used. Since 2012, CNNs have emerged in many applications that are
capable of outperforming previously state-of-the-art solutions. Well-known applications in which CNNs can
reach new state-of-the-art performance are image classification, image recognition, and natural language
processing.

The first application in which a CNN outperforms any other existing solutions is presented in [27]. In this
work, the authors trained a CNN on the ImageNet dataset and competed in the ILSVRC-2012 competition.
They achieved a top-5 error rate of 15.3%, while the second-best, a non-CNN solution, was only able to reach
an top-5 error rate of 26.2%. Ever since this contribution, CNNs have gained in popularity and extensive
research have been done on these types of networks. CNNs have shown to be capable of improving state-of-
the-art performance in various domains [23, 43].

In this section, we will discuss how CNNs work, and what makes them so powerful in comparison to
other types of neural networks. To do so, we will first introduce the convolutional layer, the heart of each
CNN. Afterward, we will introduce additional layers that are commonly used in CNN architectures. Finally,
we will describe CNN architectures that are often found in the literature using the introduced layers.

2.4.1. The Convolutional Layer
The convolutional layer is the most essential layer of CNNs. In a convolutional layer, kernels slide over the
input, the output is calculated by performing element-wise multiplication between a window and a kernel. A
kernel is a set of learnable parameters. In Figure 2.7, an example visualization of applying a convolution layer
on a 4x4 matrix is shown. In this figure, a 4x4 matrix is convolved using a 2x2 kernel, the colored squares in
this figure highlight the windows that are used to calculate the corresponding colored output. Since it is not
possible to highlight all input-output pairs, only three input-output pairs are highlighted.

In a convolutional layer, the size of the kernels can be configured and is thus a hyperparameter, we refer
to this hyperparameter as the kernel size. The image classification community use kernels that are between
3x3 and 7x7 [27, 46]. In chapter 3, we will discuss the influence of the kernel size in side-channel analysis.
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Figure 2.7: The result of applying a 2x2 convolutional filter on a 4x4 matrix, resulting in a 3x3 matrix. The highlighted input-output pairs
are the result of performing element-wise multiplication on the highlighted part of the input and the filter. The other entries of the
output matrix are calculated similarly.

CNNs have a property that allows them to outclass other NNs, they are shift-invariant: the exact position
of a meaningful feature in the feature vector is not important, as long as it is roughly the same a CNN is
capable of recognizing this feature. Because the kernels slide over the input an exact position of a meaningful
feature is not important. Thus, if a kernel is able to detect a pattern in the feature vector, this kernel will also
detect this pattern at a different position in the feature vector.

The intuition behind a convolutional layer is that the kernels are able to learn patterns in the data. Since
the kernels slide over the input, a convolutional layer is capable of extracting similar patterns of the activa-
tions locations with the same set of kernels. Usually, convolutional layers are stacked on each other. The key
idea behind stacking these layers is that the first layers are able to learn small patterns in the data, while the
latter layers use these patterns to detect more complex patterns. For example, in the image recognition do-
main, the first few layers are able to recognize lines and corners, and the latter layers are able to detect objects
such as tables and chairs [34].

The example in Figure 2.7 shows that the input matrix, a 4x4 by matrix, is convolved to a smaller 3x3
matrix. The decrease in dimensionality is an immediate result of applying a convolutional layer. To prevent
a decrease in dimensionality, zero-padding is typically applied to the input. There are several ways in which
this can be done. For example, for the matrix shown on the left in Figure 2.7, adding zeros to the left and
top of the matrix will create in a 5x5 matrix, which will yield a 4x4 output matrix by applying a 2x2 kernel.
In Figure 2.8 we depict an example where we apply padding to a 4x4 matrix which finally produces the same
dimension matrix when applying a 2x2 kernel. Typically, same-padding is applied to the input data, which
tries to insert an equal amount of zeros to all possible locations, the top, bottom, left, and right of the input
matrix.
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Figure 2.8: Applying padding to a 4x4 matrix shown the left, with the output matrix shown on the right.

Another hyperparameter that can be adjusted is called the stride, which defines the magnitude of the
step a kernel slides over the input. Increasing the stride is usually done to increase the receptive field. The
receptive field is a term from the biological domain, where it denotes the ‘portion of sensory space that can
elicit neuronal responses when stimulated* [3]. Similar in the deep learning domain, the receptive field is the
region of space that is affected by a neuron [32].

Another advantage of CNNs is that the number of parameters of a convolutional layer does not depend
on the length of the input vector, but it depends on the kernel size and the number of kernels. If we compare
this property to an MLP network, where the number of parameters depends on the number of neurons of a
layer and the successive layer in the network then an MLP network has significantly more parameters. For
example, assume we have a feature vector that has 1000 features, in an MLP network this would mean that
each neuron of the following layer requires 1 000 parameters. Comparing this with a convolutional layer with
128 5x5 kernels, there are only 3 200 parameters.

In summary, the convolutional layer applies multiple kernels to its input. By sliding the kernels over the
input a CNN is able to learn patterns in the data.

2.4.2. Pooling
As we have briefly discussed, a convolutional layer calculates the output by applying numerous kernels. As a
consequence, the spatial dimension of the data increases significantly. To counter the explosion of the spatial
dimensionality of the data, a pooling layer is introduced. The key purpose of a pooling layer is to compress
the spatial dimensionality to increase training times. Similar to a convolutional layer, in a pooling layer, a
window slides over the input and produces an output. Here the features in a window will be mapped to a
smaller spatial dimension, usually a single feature.

The two most well-known pooling layers are called max-pooling and average-pooling. In Figure 2.9 and
Figure 2.10 the process of applying max pooling and average pooling, respectively, is shown. As the names
suggest, max-pooling works by selecting the maximum value in the window, while average-pooling outputs

the average in the window.
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Figure 2.9: A visualization of the max pooling operation on a 4x4
input matrix. The kernel size is 2x2, and the stride is set to two.
Each highlighted window of the output matrix is the result of
selecting the maximum value of the corresponding highlighted
square of the input matrix.

Figure 2.10: A visualization of the average pooling operation on a
4x4 input matrix. The kernel size is 2x2, and the stride is set to two.
Each highlighted square of the output matrix is the average of the
corresponding highlighted square of the input matrix.

2.4.3. Batch Normalization

In [22], the authors mention that the internal covariate shift deteriorates the learning capabilities of neural
networks. The internal covariate shift is defined as the change of distribution of the activations while a model
is learning. In simpler words, a successive layer does not account for the shift of distribution, which toughens
the learning process. To reduce the effect of this problem the authors introduce a new layer called batch
normalization (BN). As the names suggest, a BN layer is a layer that normalizes the activations of a batch,
and next to this it also shifts the normalized value by some learnable parameters. Aside from the reducing
covariance shift, BN also allows for higher learning rates, which in turn speeds up the training phase, and
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reduces the problem of exploding and vanishing gradients. Since the introduction of the BN layer in 2015,
the deep learning community has adopted this layer in many architectures and the addition has shown to be
successful in many architectures [49, 53].

To normalize the activation of a batch, the BN layer first calculates the mean ¥ and variance o of a batch.
Then, the mean and variance are used to normalize the activations. After the normalization, a scaling op-
eration is applied, this operation has two learnable parameters, f and y. Equation 2.12, Equation 2.13, and
Equation 2.14 show how the mean, variance, and the normalization plus scaling is applied respectively. In
these equations m is equal to the batch size, k is the index of a neuron for which BN is applied, i is the index
of a neuron in the batch, xy ; is the activation of a neuron k and the ith element in the batch. The output of a
single neuron of the batch normalization is yy;.
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Typically, BN layers are placed at either two positions in the network architecture, either before or after
the activation function. It is not yet clear which position enhances the performance, but it seems as if the
placement of the BN layer is problem-dependent. However, recent works have shown that BN performs better
if it is placed after the activation function.

2.4.4. Regularization

Regularization is the term used to describe the efforts to reduce the problem of overfitting. CNN networks
have an enormous amount of parameters, this means that these networks are prone to overfit. Here, we
discuss two types of regularization that are commonly used in practice and used in this work: L1-and-L2
penalties, and dropout.

L1 and L2 penalties apply a penalty to the cost function. Generally in machine learning, the cost function
is equal to the loss function, but if we would apply an L1 or L2 penalty the costs of this penalty are added to
the loss function. To be more precise, we define a loss function L, and a penalty function P (in this context it
represents either an L1 or L2 penalty). These functions all operate on the weights w of the network. We can
now describe the cost function denoted as:

C(w) = L(w) + P(w). (2.15)

Both of the L1 and L2 penalties are configured by one hyper-parameter, which is denoted as A. If we would
apply an L1 penalty, the function P is defined as P(w) = A *Y_ ¢, | x|. Thus, an L1 penalty is the absolute value
of all weights times A. If we would apply an L2 penalty, the function P is defined as P(w) = A * ¥ ¢, X*. Thus,
an L2 penalty is the square of all weights times 1. Generally, these regularization norms prevent the network
from using gigantic weights, since larger weights imply larger penalties. The effects of L1 and L2 are distinct
and depending on the problem either one of these would result in a better classifier.

The last type of regularization we discuss is called dropout. Dropout is a layer that is commonly used in
networks that have an enormous amount of parameters, such as deep CNN. Dropout is a deep learning layer
specifically designed to address the problem of overfitting [48]. The key idea of dropout is to randomly deac-
tivate activations during the training phase. The probability that an activation is deactivated is configured by
the architect of the network but is typically set to 0.5. In [48] the authors show that dropout is more effective
than the other discussed regularization methods. However, overfitting still occurs after introducing dropout,
a combination of the discussed regularization methods is usually applied.

2.4.5. CNN Architectures

So far we have discussed the layers that comprise CNN architectures, but not the order of the layers. Here,
we will discuss the order of the layers that comprise a typical CNN architecture. Typically, a CNN is divided
into two parts: a feature selection block and a classification block. The input of a feature selection block is the
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training set, the output of this block is the classification’s block input. The feature selection block is comprised
of convolutional layers, activations functions (usually ReLU), and pooling.

A feature selection block can be split into various similar blocks, such a block is called a convolutional
block. The order of the layers in a convolutional block can vary greatly but usually consists of a convolutional
layer with ReLU as activation function followed by a pooling operation. Some works vary the times a convolu-
tional layer is applied before the activation functions. Other works, first perform several times a convolutional
layer with ReLU as activation function before performing a pooling operation. Such a block only represents
a small part of the feature selection block, it is usually extended by the repetition of this block. Additionally,
batch normalization is applied if overfitting occurs and is either placer before or after an activation function.

The classification block takes as input the feature selection block’s output and performs classification on
it. Typically, this block is comprised of a dense layer with ReLU as the activation function. If overfitting is
observed dropout layers are added between the dense layers.

2.5. Side-channel Attacks

A side-channel attack (SCA) is an attack that targets the implementation of a system instead of the algorithm.
In such an attack, an adversary observes some leakage of information, such as power consumption, electronic
radiation, and timing, from a physical channel of the system. The observations are typically called traces in
the side-channel community. In an SCA, an adversary aims to deduce the sensitive information from in the
system, such as encryption keys, by analyzing the observed traces.

Broadly, SCAs can be split into two categories: active and passive attacks. In an active attack, the adversary
is capable of altering the path of execution, in a passive attack the adversary only observes some leakage. An
example of an active attack is a fault injection attack, here the adversary introduces a controlled fault in
the system, such that the adversary can exploit the observations to deduce the secret information. A key
difference between these attacks is that the victim of the attack can detect an active attack, while this is not
true for a passive attack; passive attacks are non-intrusive. In this thesis, we will only discuss passive attacks,
but mention active attacks for the sake of completeness. Passive SCAs analyze the observations to extract
sensitive information. They can be split into two categories: profiled and non-profiled attacks. In Figure 2.11
we depict the types of side-channel attacks, we discuss the depicted types in the following sections. However,
first, we discuss how the adversary can exploit the information in the traces.

Side-channel attacks
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Figure 2.11: Categories of side-channel attacks

SCA exploits the fact that power consumption and EM radiation of a system depends on the processed
data. The power consumption of a device can be split into two types, static and dynamic power. The static
power is what the system consumes without any processing. The dynamic power is what the system con-
sumes by processing the data. If a signal transition occurs, this can be observed in a power trace. This is
similar for EM radiation, however EM radiation is more precise and has less noise, which is thus the preferred
option to perform a side-channel attack.

2.5.1. Leakage Models

Usually, aleakage in traces does no directly leak the sensitive value itself. Therefore it is important to correctly
model the leakages from traces, such a model is called a leakage model. Common leakage models that are
used are intermediate value (ID), Hamming weight (HW), and Hamming distance (HD). The intermediate
value leakage model is typically used for software implementations. In this model, the adversary assumes the
sensitive value is leaked in the traces. The HW model is usually used for hardware implementations and can
be calculated by counting the number of ones from the binary representation of the sensitive value. Here, the
assumption is a physical signal transition in the system is visible in the trace. A problem of the HW model is
that it suffers from class imbalance, namely, the class four is 70 more likely, than the class zero and eight. In
Equation 2.16 we show examples of the leakage models ID and HW for the number 151. HD is typically used
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for hardware implementations. It is slightly different from HW, it calculates the XOR operation between two
HWs at each bit position.

ID(151) = 151

(2.16)
HW(151) = HW(10010111,) = 4

2.5.2. Non-profiled Attacks

The first side-channel attack technique to exist is called Simple Power Analysis (SPA). In such an attack, the
adversary deducts sensitive values by visually analyzing a trace. For example, weak RSA implementations are
vulnerable to an SPA attack, in which the adversary deduces the key bits by visually analyzing the amplitudes
of a trace. A more powerful attack is called Differential Power Analysis (DPA), for which an adversary gathers
traces to apply statistical analysis to recover the key [26].

Similar to DPA, Correlation Power Analysis (CPA) applies statistical analysis to recover sensitive values.
Here, for each possible sensitive value, the adversary correlates it with the traces. The assumption is that
if there is a leakage in a feature, the correct guess of the sensitive value correlates significantly more than
incorrect guesses of the sensitive value. Since it is unknown which feature leaks information, the adversary
correlates each feature with the sensitive values [6].

Apossible attack an adversary could perform is a CPA attack. In such an attack, the adversary requires a set
of traces of the encryption of arbitrary plaintexts encrypted with the same key and the plaintexts. With these,
the adversary calculates for each hypothetical key k the correlation between the traces and the results of
z =S-box[p @ k]. If the guess of the key k is correct, it would show a correlation between z and the traces. The
search space of all possible subkeys is small since these are eight-bit values and thus have 256 possibilities,
which causes the attack to be feasible. To retrieve the entire key, the adversary performs such an attack on
each subkey.

2.5.3. Profiled Attacks

In a profiled SCA, the adversary has access to two devices: the target device (which is the device under at-
tack), and a copy device (which is identical to the target device). Assuming the devices have similar (or even
identical) characteristics it is possible to generate a profile of the copy device to attack the target device. To
do so, the adversary gathers a set of traces from the copy device, usually referred to as the profiling traces.
Assumed is that the adversary has full control over the copy device, and thus knows the in-and-outputs of
operations (including the sensitive values). With the profiling traces and the additional knowledge, a profile
of the copy device is made. Subsequently, traces from the target device are gathered, usually referred to as the
attack traces. To recover the key, the adversary classifies the attack traces using the built profile. In a profiled
attack the success depends on the model’s quality, which is dependent on the amount of traces, quality of the
traces, and the similarity of the devices.

More formally, we denote the profiling and attack traces as T}, and T, respectively. Each trace consists of
a series of n measurements also referred to as features. A traces from T}, consists of features xo, x1,..., Xp-1.
Thus we can see a set of traces as a matrix, where a row represents a trace, and a column a feature from a trace.
Additionally to the profiling traces, the adversary knows for each profiling trace the used sensitive value y,,.
With this knowledge, the adversary builds a profile f that predicts the sensitive value given a trace. Thus, a
profile f maps a trace from domain T to the domain of the sensitive value Y, formally, f: T — Y.

One of the advantages of profiled SCA is a limited amount of traces from the target device are required to
recover the key. For example, in [25], the authors only require two traces to recover the key from a protected
implementation. However, many traces are required to build a proper model. For the remaining part of this
thesis when we refer to an SCA we refer to a profiled SCA unless otherwise specified.

Historically, Template Attack (TA) has been used to perform SCAs. It is considered as the most powerful
attack from a theoretical perspective [8, 25]. To perform the attack, the adversary builds a multivariate dis-
tribution of the profiling traces. Then the adversary uses the distribution and attack traces to find the most
likely sensitive value by enumerating all sensitive values. There is however a problem with this approach.
Commonly, the traces exist of many features that harden a TA, because a TA requires to calculate the covari-
ance between all features, making it infeasible to perform for many features. Therefore, it is important to
select point-of-interests (Pols) which leak the most. Typically this is done by selecting the features with the
most variance.

Other categories of SCAs employ machine learning techniques to learn a model in the profiling phase and
predicting the sensitive values in the attack phase. In an ML SCA, the adversary learns a model which predicts
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the classes of the sensitive values given the traces. Using this model on the attack traces the adversary is able
to predict the sensitive values of the attacks traces. A various range of machine learning techniques have
been employed for SCAs such as from random forest and support vector machines [19, 21, 29]. It has been
shown that ML performs well in various situations. However, similar to TA, ML performs better when Pols are
selected before performing the attack.

Next to ML, deep learning (DL) techniques have gained attention from the side-channel analysis commu-
nity. Related works have shown that DL is able to achieve state-of-the-art results, even when countermeasures
are present. Most notably, CNNs provide the best performance for a variety of SCA problems.

2.5.4. Metrics

In side-channel analysis, metrics such as accuracy, precision, and recall do not provide a good indication
of the performance of an SCA. Instead, in side-channel analysis guessing entropy (GE) and success rate (SR)
are commonly used. GE indicates the average number of key guesses required to recover the key. To cal-
culate the GE, we assume that the adversary outputs the predictions of the probabilities of each key guess:
g=1080,81,82-..,8k-1)1, where |K| is the size of the keyspace. Here, for example, go is the prediction of the
probability that key as zero is the correct key. The adversary sorts g in descending order, the guessing entropy
is then defined as the index or the real key’s rank k* in the sorted probabilities.

Often in SCA, we care about the amount of traces that are required to achieve a guessing entropy of zero;
thus the amount of traces required to recover the key, which we will denote as CGE. This metric depends
heavily on the order the attack traces are processed. If correctly predicted traces are used at the start and
incorrectly predicted traces at the end of the computation of the guessing entropy, then the computed guess-
ing entropy provides an inaccurate image of reality. Therefore it is suggested to calculate the partial guessing
entropy (PGE). To calculate the partial guessing entropy, the adversary runs multiple experiments in which
he calculates the GE. For each experiment, the adversary randomly permutes the order of the traces in T,
and calculates the GE using the new ordered set. The partial guessing entropy is defined as the average of the
GE over the experiments. Thus, the partial guessing entropy is the expected value of the guessing entropy. We
provide the formal definitions for the PGE and CGE in the following listing:

Definition 2.5.1. The partial guessing entropy (PGE) over n experiments is the average guessing entropy of
the experiments. In the experiments the order of the attack traces T, is randomly permuted.

Definition 2.5.2. The CGE is the minimal number of traces required to constantly achieve a PGE of zero, such
that PGE does not change after this point.

Since training a single network could give inaccurate insights into the results, we perform several folds.
In each fold, we train a neural network using the same hyperparameters. In this thesis when we refer to the
PGE and CGE, we refer to the average of the performed folds. Consequently, when we report the CGE the
worst-performing fold decides this metric.

2.5.5. Side-channel Attack on AES

Here we will discuss a side-channel attack on AES. Since AES performs its operations on the state matrix, it is
possible to use a divide and conquer approach to recover individual key bytes. Thus, as an adversary, we try
to reveal one entry or key-byte at the time. From now on we will refer to key as a key byte of the master key.
To perform the attack, an adversary first chooses a leakage model. Here, we will target the first round of AES
and the intermediate value. Formally, the leakage model is defined as

z =S-box[k ® PT], (2.17)

where z is the intermediate value, k the key, and PT the plaintext.

The adversary than learns a model from the profiling set of traces to predict the leakage model. After this,
the adversary can use the learned model to generate predictions on unseen traces and attempt to retrieve the
key.

To do so, the adversary provides the attack traces T, to the model, which outputs the probabilities of
each intermediate value of the traces. The probabilities are denoted as C’ = [C[, C{, ..., C}.], where Cj is the
predicted probability for the intermediate value zero and trace t. However, the adversary can not use this to
directly retrieve the key. First a mapping between the intermediate value and a key guess has to be made. This
is done by enumerating the keyspace, for AES it is in the interval [0 — 255], and selecting the corresponding
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intermediate value. We denote the intermediate value for a key guess k and trace ¢ as:
z' = S-box[k e PT"]. (2.18)

The adversary then creates a mapping between the probabilities of C* and the key guesses, denoted as P’ =
[P, Plt -, Picc]. With the mapping, the adversary assigns the predicted probability of the intermediate value
to the corresponding key guess. To prevent floating point issues, the probabilities are converted into log
probabilities, and thus summing the probabilities is equal to multiplication and applying the log function.
The probability of each key guess k is determined as follows:

Pp= Y PL (2.19)

€T,

P thus contains the summed log probabilities for each key guess. The adversary’s best guess is the index with
the highest probability of P.

2.5.6. Countermeasures

To decrease the success of a side-channel attack various solutions have been presented, these solutions are
called countermeasures. Some solutions implement physical countermeasures which make the obtainment
of measurements harder, which is called shielding. Adversaries can defeat this countermeasure by using more
sophisticated equipment and thus provides limited protection.

Dual-rail logic eliminates the ability to obtain power measurements by making the power consumption
constant. This ensures that for each bit level operation, the inverse operation is performed as well, and thus
the power consumption remains constant. Dual-rail logic is implemented by adding duplicate cell lines that
represent the inverse. The disadvantages of this countermeasure are that it does not protect from SCA using
EM measurements, the chip’s cost and the amount of space on the chip.

Other countermeasures attempt to decorrelate the sensitive value and obtained measurements. Typically,
these countermeasures are divided into two categories: masking and hiding.

A masking countermeasure reduces the leakage of sensitive data by masking the intermediate values. To
do so an algorithm is modified such that the intermediate value is masked before an operation is performed
with the sensitive value. Thus, an arbitrarily value r is selected to mask the intermediate value x, resulting in
the masked value x’ shown in Equation 2.20.

X=xor (2.20)

Since x' is not equal to x (unless r = 0), the algorithm will work incorrectly. Typical masked implementations
fix this by modifying the S-box such that the correct intermediate value is computed depending on r.

Masked implementations can be broken by a first-order attack in which two points-of-interest are com-
bined. The two points that are selected should correlate with the mask and key. To protect from such an attack
higher-order masking has been introduced. In an n-order masking scheme n arbitrary masks are selected and
used to mask the data as shown in the following equation:

X=x0rpene...er. . (2.21)

Adversaries can break such an n-order masking scheme by performing an n-order attack. Similarly to the
first-order attack, the adversary combines 7 points that correspond to the masks and key.

Hiding countermeasures produce a randomized timing difference between two identical encryptions.
Two well-known types of hiding are random delay and shuffling. The former type produces a timing dif-
ference by performing a random amount of nop operations. The latter does this by shuffling the order of
operations. Both types increase the noise in the measurements which makes attacking it harder.

Unfortunately, these countermeasures do no make it impossible to perform SCA but only make it harder
to attack. The best protection is obtained by combining a combination of the discussed countermeasures.

2.6. Datasets

In this section, we discuss details about the datasets used for the experiments. The traces are obtained from
various AES implementations and range from unprotected to protected. For each dataset, we discuss how
the traces are obtained, and the which S-box is targeted.
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2.6.1. ASCAD

The ASCAD database is presented in [42]. The database is set up like the MNIST database and has 50 000
profiling traces, and 10000 attack traces. The traces are recovered from an 8-bit AVR microcontroller (AT-
mega85515) from a masked implementation of AES-128. The traces were captured from electromagnetic
emanation. The database consists of raw traces that contain the measurements from the entire encryption.
Next to this, the authors have pre-selected a window in the raw traces that correspond to the S-box operation
of subkey three and consists of 700 features. This part of the dataset is used for our experiments. We denote
the masked dataset as ASCAD),, and define the leakage function as:

Y (k*) = S-box[PT> ® k*]. (2.22)
The unmasked dataset is defined as ASCADy;, and the leakage function is described as
Y (k™) =S-box[PT ® k*1 & M, (2.23)

where M is the mask. The dataset can be found https://github.com/ANSSI-FR/ASCAD.

2.6.2. DPAv4

DPAcontest v4 exists of 100 000 traces, each consisting of 3 000 features, of a masked AES implementation [44].
However, the traces leak first-order data [36] and this dataset is only used as an unprotected by unmasking
the S-box output. We define this dataset as DPAv4, and describe the leakage model as

Y (k™) =S-box[PTy & k*] & M, (2.24)

where M is the known mask. This dataset is publicly available at http://www.dpacontest.org/v4/

2.6.3. Random Delay

This dataset includes 50 000 traces which each has 3500 features. The random delay countermeasure pre-
sented in [10] is implemented in software on an 8-bit Atmel AVR microcontroller. For this dataset we attack
the first key byte. We denote this dataset as RD and describe the leakage function as:

Y (k™) = S-box[PTy @ k*]. (2.25)

The dataset is publicly available at https://github. com/ikizhvatov/randomdelays-traces.

2.6.4. Portability
The traces of this dataset are obtained from a single device by using a near-field EM probe. The device from
which the measurements were obtained is an AVR Atmega328p on Arduino Uno, running an unprotected
AES-128 implementation. We refer to this dataset as Porta. In this dataset, there are 50 000 profiling and
attack traces and each trace consists of 500 features. The leakage model we consider for this dataset is shown
in Equation 2.26.

Y (k*) =S-box[PT & k*]. (2.26)

In chapter 6, we discuss more details about this dataset, and it is used for a portability setting.

2.7. Implementation Details

All of the experiments conducted in the following chapters have been performed on the High Performance
Computing (HPC) of Delft University of Technology. The machines used for our experiments are all equipped
with an Nvidia GTX 1080TI graphic card, which each has 11Gb of memory and 3584 compute cores. The
experiments are implemented in python and run with version 3.6.8. For the deep learning experiments, we
have utilized the PyTorch framework, specifically version 1.2.0, compiled with CUDA 10.0, using CuDNN
cudnn 10.0-7.3.0.29.
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Related Work

This chapter discusses the related work of this thesis. Here, we will discuss what has been researched in the
field of side-channel analysis, and the general direction of these works. Furthermore, we will show why our
work is different from the others, and why we think it is an important direction to consider for improving the
quality of security assessment of AES implementations.

First, we discuss works that have performed SCAs using machine learning. Subsequently, we discuss
literature that have used deep learning techniques for SCAs. As we use deep learning in our work, we discuss
some recent advances in deep learning. More specifically, we discuss initialization methods for deep neural
networks. After this, we identify where current research is lacking, and denote our research questions.

3.1. Machine Learning SCA

In [18] the authors provide an extensive overview of side-channel attacks conducted by the community. Ever
since the attention of the side-channel attack community has shifted from the classical approach to a ma-
chine learning approach, the community has experimented with a wide variety of machine learning tech-
niques with great success. The community has conducted comparisons between classical and machine learn-
ing, and other various techniques of machine learning. For example, Support Vector Machines (SVMs) have
been used to successfully perform an attack on both unprotected and protected implementations [19, 30].
Furthermore, Random Forest (RF) has also been shown to be successful for side-channel attacks [31, 39].
Overall, ML techniques perform well for side-channel attacks, however, in some settings the classical tech-
niques achieve similar performance.

In [13] the authors use a neural network to attack a masked implementation of AES. They use two neural
networks for their attack, one which predicts the mask, and one which predicts the key by using the known
mask. They show that the neural network approach requires fewer traces to recover the key than the machine
learning approach.

Picek et al. [41] discuss the curse of class imbalance and conflicting metrics of ML for side-channel analy-
sis. The class imbalance is present when using the leakage models HW or HD. For these leakage models, some
values are way more likely to occur than others. The curse is that ML techniques are affected by the imbal-
ance which causes ML metrics to not be helpful for side-channel analysis. Picek et al. experimentally show
that the classical metrics used for machine learning, e.g. accuracy, recall, and precision, can be deceptive
when used in a side-channel attack context. Therefore, they suggest focusing on side-channel attack metrics,
such as guessing entropy and success rate. This is line with observations in [7] which mentions that accuracy
is suited for typical machine learning problems, but not for side-channel analysis.

3.2. Deep Learning SCA

It is unclear which researchers were the first to publish about deep learning for side-channel analysis be-
cause many works do not mention the exact network architectures. However, Maghrebi et al. [33] are the
first researchers to conduct side-channel attacks using CNNs [33]. In their work, they compare classical ma-
chine learning techniques, such as random forest, SVM, with deep learning techniques, such as MLP, CNN,
and LSTM. Their experiments show that deep learning has the advantage over classical machine learning
techniques, and thus provides better results. They show this for two datasets: one which is an unprotected
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implementation, and one which contains a masking countermeasure. Furthermore, their results show that
in general CNNs perform well on both datasets.

In [42] the authors introduce a side-channel analysis dataset, also known as the ASCAD database, which
has been used in various works of other researchers. Next to the introduction of the dataset, they try to find
the best suiting CNN and MLP architecture by analyzing the influence of the hyperparameters. In their work,
Prouffetal. [42] show that an increase in the kernel size of a CNN results in better performance when attacking
misaligned traces. However, they do not provide a discussion about why increasing the kernel does improve
the attack performance. We believe this observation is interesting and required more attention. In chapter 5
we will further analyze the influence of the kernel size.

Both of these works show that CNN performs well in various settings, which is why more research has
been conducted on the performance of CNNs. Picek et al. compare the performance of CNNs with machine
learning techniques such as Random Forest, XGBoost, and Naive Bayes in [40]. The key aim of their work is
to analyze in which settings CNNs provide more performance over the other mentioned techniques. Their
experiments show that CNNs provide only improve performance in some settings. They observe that CNNs
mainly improve performance when no pre-processing of the traces is done, the level of noise is low, and when
the dimensionality of the data is high (i.e. there are many traces with many features). On the other hand, the
ML techniques can achieve almost similar performance as CNNs. A key observation is that the ML techniques
require significantly less computational power compared to CNNs. Thus, the researchers pose the questions
if CNNs are worth it.

Further research on CNNs showed that they can improve the already state-of-the-art solutions for some
specific datasets. The datasets have in common that the measurements are obtained from an implemen-
tation with a hiding countermeasure. In [7] the authors experimentally showed that CNNs are capable of
synchronizing misaligned traces and select the most important features of a trace such that classification
can be performed using the selected features. Next to these results, the authors note that this attack is per-
formed with traces where no pre-processing has been done. This is in contrast with a template attack where
an adversary would typically realign the traces and select the points-of-interest. The results thus highlight
the effectiveness of CNNs on misaligned traces. However, since the used CNN architecture is big and thus
complex, it is prone to overfit. Therefore, they introduce two data augmentation techniques for misaligned
traces which allows them to generate more training data. They experimentally show the data augmentation
techniques work well for misaligned traces.

These findings in [7] are also confirmed by Kim et al. [25], who show that their CNN architecture achieves
state-of-the-art performance on the RD dataset. Notably, their best network requires fewer attack traces to
recover the key for the RD dataset than the DPAv4 dataset, which is regarded as a simple dataset [25]. In their
work, the authors experiment with a variety of architectures and datasets. Their experimental results show
that no architecture performs well on all the datasets. Therefore, it is important to choose a suitable archi-
tecture for the problem at hand. Furthermore, they show that adding noise in the first layer of the network is
beneficial for the performance because it reduces overfitting. For small datasets, it is recommended to use a
higher level of noise, while for bigger datasets smaller levels of noise provide the best results. In our work, we
will use the architectures mentioned in this work as inspiration in chapter 3.

Summarizing these results, CNNs have two important properties that are valuable for side-channel anal-
ysis. First of all, they are capable of extracting the most important features without any additional help. Thus
pre-processing of the traces is not required to achieve good performance. We consider this a valuable advan-
tage over classical techniques. In [55] the authors mention that pre-processing is error-prone and improper
Pol selection results in degraded performance. Secondly, CNNs are spatial invariant, meaning that they can
recognize a feature regardless of its position in a feature vector. This property allows CNNs to achieve state-
of-the-art performance for datasets that are obtained from implementations with a hiding countermeasure.

The research we have discussed so far used methods that are well-known in the deep learning community.
Further research proposed to use more innovative ideas specifically tuned for side-channel attacks which aim
to exploit some of its characteristics.

In [17] the authors propose a new CNN architecture that uses additional domain knowledge that is avail-
able in side-channel attacks. The knowledge that is added to the neural network architecture is either the
plaintext or ciphertext, depending on the leakage model. The domain knowledge is added as an additional
feature vector for the classification block of a CNN architecture. In their work, they compare various architec-
tures proposed by different literature and their proposed architecture with and without domain knowledge.
They show the architecture which employs the domain knowledge improves performance significantly for
unprotected and protected datasets. However, this technique is not suitable if a fixed key is used for the
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profiling traces .

Zaid et al. [54] highlight the importance of configuring the hyperparameters and architecture; without
proper configuration, the models do not perform well. They mention that when we do not comprehend the
influence of a hyperparameter we can not achieve the greatest potential of an architecture. To address this
problem they introduce three methods used for the explainability and interpretability of each hyperparame-
ter, called weight visualization, gradient visualization, and heatmap. These techniques allow for an adversary
to determine the influence of each hyperparameter, which eases the configuration of the hyperparameters.
Furthermore, they introduce methodologies for protected and unprotected implementations by using the
three visualization methods. A recommendation of their methodology is, specifically meant for datasets with
a hiding countermeasure, the kernel size of a CNN should be set to half of the maximum delay of the random
delay. This is in contrast with works from the deep learning community from which it is advised to add more
layers instead of adding more neurons in a layer [12], also known as the saying ‘go deeper, not wider‘. Us-
ing their proposed methodologies, they developed architectures and experiment with all publicly available
datasets, with these they improve the state-of-the-art performance for all datasets. However, as their work
achieves state-of-the-art performance for all publicly available datasets, the choice of hyperparameters is
sometimes poorly motivated. For example, the authors do not provide a discussion on why different learning
rates are used and how these were found for some specific datasets.

The first deep learning layer specifically designed for side-channel attacks, the so-called spread layer, is
proposed by Pfeifer and Haddad [38]. With this layer, Pfeifer and Haddad show that fewer layers are required
to achieve good results. Additionally, fewer traces are required during the profiling phase, making the learning
process faster. These results are interesting for the side-channel analysis community as it means that there
is an incentive to develop layers specifically designed to exploit the side-channel characteristics of traces.
However, the authors provide minimal motivation on why this layer is able to achieve the reported results,
and how to configure the layer’s hyperparameters. In chapter 4 we will provide answers to these questions as
we will analyze the spread layer in-depth, and improve on some of its flaws.

3.2.1. Network Initialization

Kim et al. [25] have shown that deep CNN architectures perform well for SCAs. However, there are still some
problems regarding the training phase of a deep network. The biggest issue is that deep neural networks
suffer from vanishing or exploding gradients and are therefore hard to train. In this section, we discuss recent
advances in the initialization of deep neural networks that fight these problems.

Before much research was conducted on the initialization of parameters, the parameters were typically
drawn from a standard Gaussian distribution. Glorot and Bengio [14] changed this all and proposed a new
initialization method, also known as Xavier initialization. This method draws the parameters’ values from a
Gaussian distribution but takes into account the parameter’s amount of inputs and outputs. This method is
now the standard parameter initialization for many big deep learning libraries.

As researchers began exploring deep neural network architectures, various works experienced trouble
with the convergence of their architectures. For example, the well-known VGG architecture experienced
convergence problems and is therefore trained in four stages. In each stage, the network is extended with
additional layers and trained to ensure proper convergence [47].

He et al. [16] introduce a new initialization method for deep CNNs. In their paper they discuss that Xavier
initialization is designed for linear activations, meaning that this initialization method is not well-suited when
ReLU is used. Additionally, they argue that deeper networks have trouble with convergence. To solve these
problems they introduce He initialization, specifically designed for CNNs using ReLU, which improves the
convergence of deep neural networks over other initialization methods. Another initialization method is
proposed in [35], and is called LSUV initialization. This method is not specifically designed for architectures
using ReLU as activation function but is a more generic approach suitable for various types of architectures.
They verify their proposed method works by experimental validation. Both works have shown that proper
initialization of the network’s parameters is important for the convergence of deep neural networks.

1o explain this, imagine we attack the first round of AES, and thus have as leakage model z = S-box[p & k]. The value of z depends only
on the plaintext p if the key k is fixed. Thus when the key is fixed, the plaintext is sufficient to predict z accurately, causing a model to
not generalize well to the extent that it overfits massively.
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3.3. Portability

Up until recent the published literature only conducted experiments in an unrealistic setting for SCA, namely
the profiling and attack traces are gathered from the same device. Additionally, it was not unusual that the
same key is used for the profiling and attack traces. Because of this, the results of these studies might paint
an incorrect image of the effectiveness of some techniques, such as TA, ML, and DL. Therefore, the SCA com-
munity has started to work on a more realistic setting where different devices have been used to obtain the
profiling and attack traces.

In recent works it is shown that identical devices have different characteristics, causing the measurements
of these devices to have small differences that make realistic SCAs harder [11, 52]. Both works mention that
the current research overestimates the attack efficiency of SCAs. It is therefore important to conduct more
research in this portability setting.

In [11] the authors propose a method to improve the efficiency of attacks in a portability setting. Their
method deals with the difference in the measurements between identical devices by creating a profile using
measurements from several copy devices. By doing so they show they can achieve 99% accuracy on the test
traces, making the SCA successful.

Around the same time, Bhasin et al. [4] proposed an identical method to deal with the difference between
identical devices. In their method, they use traces obtained from multiple identical devices to create the train-
ing and validation set. They show that this method achieves better performance than using a single device
for training and validation in a portability setting. Furthermore, in their work, they observe that when more
traces are used for the profiling phase, the attack efficiency decreases, which could imply that the networks
are overspecializing.

3.4. Research Questions

Overall, we are interested in improving the performance of deep learning for side-channel attacks. In the
previous sections, we have discussed literature about side-channel analysis using deep learning, but also
deep learning itself. Although DL has great potential for SCA, a major problem is the tuning and configuring
of hyperparameters. Currently, most of the literature aims at tuning hyperparameters specifically for one
dataset. However, recently some interesting works discuss a more generic approach to improve performance.
First of all, the work by Pfeifer and Haddad introduces the spread layer designed for side-channel attacks. We
are interested in examining if it makes sense to develop a deep learning layer for side-channel attacks for
unprotected implementations.

Furthermore, as argued in [25], different architectures perform differently for various datasets. This high-
lights the importance of picking a suitable architecture and hyperparameters for the problem at hand. To
continue on this, as discussed in [42] the authors observe that increasing the kernel size results in increased
performance for misaligned traces. However, the kernel size’s influence is not the key contribution of their
work, and do not discuss the kernel size’s influence in depth. Next to the kernel size, [25] shows that deep
CNNs can achieve good performance for misaligned traces and decent performance for masked traces. Thus,
we see that all the efforts up to now only highlight the best performing architectures, and do not discuss the
influence of certain hyperparameters. In this work, we are interested in both the kernel and depth of CNNs
for settings in which a countermeasure is present, either random delay or masking. Next to this, we are inter-
ested to see if there is a connection between the kernel size and depth of a network. Additionally, by making
the distinction between countermeasures we hope to examine if it is possible to generalize the kernel size
and depth of an architecture for a specific countermeasure.

As for portability, we see there is still much work required to improve realistic SCAs. We consider a porta-
bility setting in which the probe has been moved of position while performing the measurements for the
profiling and attack traces. The position change of the probe might result in problems for an SCA. Although
this scenario might not seem to be a realistic setting, it is an interesting step towards more realistic settings.

Given these insights, we formulate the following research questions:

RQ 1. Is there a need for a sepcial designed layer for side-channel attacks on unprotected imple-
mentations?

RQ 2. Whatis the influence of the kernel size of CNNs in a side-channel attack where the random
delay countermeasure is present?

RQ 3. Whatis the influence of the stacked convolutional layers of a CNN in a side-channel attack
context where the random delay countermeasure is present?
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RQ 4. What is performance tradeoff between the kernel size and stacked convolutional layer-
sof CNN s in a side-channel attack context where the random delay countermeasure is
present?

RQ 5. What is the influence of the kernel size of CNNs in a side-channel attack where the mask-
ing countermeasures is present?

RQ 6. Whatis the influence of the stacked convolutional layers of a CNN in a side-channel attack
context where the masking countermeasures is present?

RQ 7. What is performance tradeoff between the kernel size and stacked convolutional layersof
CNN s in a side-channel attack context where the masking countermeasure is present?

RQ 8. Does the repositioning of the probe in-between measurements create a problem for a side-
channel attack? And if so, what can we do to fight this problem?

We present the answers to the research questions in the following chapters. More specifically, RQ 1. is
answered in chapter 4, RQ 2. till RQ 7. are answered in chapter 5, and RQ 8. is answered in chapter 6.
Additionally, we explicitly answer all the research questions in chapter 7.






The Need of a Custom Deep Learning Layer
for SCAs

In this chapter, we analyze if there is a need for a specially designed deep learning layer for unprotected AES
implementations. The idea for such a layer has been introduced by Pfeifer and Haddad in [38]. They intro-
duce anew deep learning layer called the spread layer. In their work, they compare two network architectures,
an architecture which utilizes the spread layer, and an architecture presented in [42]. They show that the ar-
chitecture which utilizes the spread layer requires fewer attack traces to recover the key. The most remarkable
result of their work is that fewer traces are required during the profiling phase in comparison to other network
architectures. Their results are promising since it could imply that it makes sense to develop a deep learning
layer that can exploit the information in a trace specific to a first-order SCA.

However, the authors provide limited argumentation on why an architecture with a spread layer is effi-
cient for unprotected implementations. Arguing why there is a performance difference between these net-
work architectures could lead to more meaningful insights that could improve a profiled SCA even more.
Another limiting factor of their work is that the authors only compare the performance of their presented
architecture with the architecture presented in [42] on the ASCAD dataset. These architectures are not quite
similar and make it hard to make a fair comparison on the performance.

To analyze if there is a need for a deep learning layer for SCAs on unprotected implementations we first
analyze the spread layer. Therefore we first provide a technical discussion of the spread layer in section 4.1.
It should be mentioned that we encountered an error in the explanation of the spread layer while reading the
original paper. We have communicated this with the authors, who resolved the error in an updated version
of the paper. After the technical discussion, section 4.2 discusses the architectures that have been utilized to
compare architectures that employ the spread layer and which do not. In section 4.3, the resulting guessing
entropy of the networks for various datasets is shown and discussed. The results presented in this chapter
differ significantly from the results presented by Pfeifer and Haddad.

Therefore, we analyze the influence of the spread factor, the spread layer’s only hyperparameter. Surpris-
ingly, we show that the spread factor’s influence is minimal, and to explain these result we provide an analysis
of the internal behavior of the spread layer in subsection 4.3.2. From this analysis, it is clear that the pre-
sented spread layer by Pfeifer and Haddad does not operate as intended. We propose two modifications of
the spread layer, denoted as Spread; > and Spread| ;. We conduct experiments with the two layers and discuss
their attack efficiency in comparison with the already known layers. These comparisons provide us with in-
sights into the question if there is a need for a specially designed deep learning layer for SCAs. In section 4.4
we conduct and discuss results of the spread layer and improved versions on protected implementations. In
the following section, section 4.5, we conduct experiments on protected implementations of AES and discuss
the results. Finally, we provide a conclusion of the presented results in section 4.6.

4.1. The Spread Layer

The spread layer’s objective is to efficiently distinguish between all possible Hamming weights [38]. To achieve
this, the spread layer transforms its input into a spatially encoded output. This causes a dimension increase
which can be tuned by the hyperparameter called the spread factor, which is denoted as s. To explain how
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Figure 4.1: Examples of the inner workings of the spread layer. The left figure depicts the structure and information flow, while the right
figure depicts an example with real values.

the spread layer works, we discuss the internals for a single neuron.

We refer to the input vector of the spread layer as x, and x; as the ith entry in this vector, which thus
represents the ith neuron. For each entry of the input vector, there are s output neurons. We refer to the jth
output neuron of an entry x; as o; j, note that 0 < j < s. Furthermore, each output neuron has a so-called
centroid n; ;j assigned, for which its value is calculated by the formula:

ni =0.5+]. 4.1)

The centroids are used to determine which output neurons are used. To calculate the output of a neuron
x; the spread layer linearly maps x; to x;. in the interval [0, s]. To achieve this, the spread layer keeps track of
the minimum and maximum values of x; seen over the entire dataset during the training phase. We refer the
minimum and maximum of x; as min; and max; respectively, during the training phase. The value of x; is

calculated by the function m:
/ . X; — min;
X; = m(x;, min;, max;) = ——————— * . (4.2)
max; —min;

Then, the value of 0;,; is calculated by the function f as shown in Equation 4.3.

1 ifni,j:0.5/\xg.sn,‘,j
0i,j= f(x;., ni )= 1 if njj=s-05A x:. > N, (4.3)
max (0,1~ abs(n; ;- x})) otherwise

The function f outputs values in the interval [0, 1]. For a value x; and the remapped value x;., if x;. is equal
to one of the corresponding centroids 7;,; then o;,; is the only neuron with a non-zero output. Otherwise,
there are at most two neurons with a non-zero output, which are the ones for which x| is the closets to the

corresponding n; ;. Furthermore, the output neurons o;, ; always sums up to one: Zé <j<s f(x},n; ;) =1. Using
the functions from m and f we calculate o; ;, for neuron x; with the function g:

g(x;, min;, max;, n; j) = f(m(x;, min;, max;), n;, j). (4.4)

In Figure 4.1 we depict an example of the inner workings of the spread layer plus a toy example with
real numbers. In these figures, the dashed circles represent internal values while the non-dashed circles
represent the values of the in-and-output neurons. Figure 4.1a shows an example when the spread factor is
equal to s. This figure shows the remapping of x; to x;, followed by the calculation of each output neuron,
0i0,0;1,...,0; s Figure 4.1b shows an example with numbers, here s = 6, x; = 60, min; = 50 and max; = 100.
By applying the function g three times, once for each output, we calculate the value of the neurons: 0; =
g(60,50,100,0.5) =0.9,0;,; =0.1 and 0;2 = 0.0.

4.2, Architectures

The results of the first-order attack in [38] are impressive, however in their work they merely make a compar-
ison between their presented architecture, Spreadpy, and the architecture MLPp,g, presented in [42]. The
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Figure 4.2: The architectures of MLPy,g, Spreadpy and MLPgT. The architectures Spreadpy and MLPgy use the spread factor s to
determine the amount of neurons in the second hidden layer.

hyperparameters of the latter architecture were specifically tuned to the dataset which Pfeifer and Haddad
have used to analyze their architecture. Therefore, it is to be expected that MLPy,. will perform well against
this dataset. The results in [38] show that Spreadp; significantly outperforms MLPy,g, which thus highlights
the remarkable results of the Spreadpy; architecture.

However, the two architectures are not similar, for example, Spreadp has three hidden layers, while
MLPy,s has six. Furthermore, the number of neurons of the models differ vastly, which also implies that
the capabilities of the models could differ vastly. The results presented by Pfeifer and Haddad could thus
be explained by the fact that Spreadpy is the superior model for the ASCADy dataset, and thus not because
Spreadpy; utilizes a spread layer. To analyze if the spread layer could improve the performance, a comparison
with a similar architecture should be made.

Here, we introduce this similar architecture, which will be referred to as MLPgrr. MLPgt has an equal
amount of layers and neurons in each layer as Spreadpy;. In Figure 4.2 we depict a visualization of the archi-
tectures MLPpy,s;, Spreadpy, and MLPgt. The key difference between Spreadpy and MLPgr is that Spreadpy
utilizes a spread layer while MLPgrr a dense layer. Furthermore, each mentioned architecture utilizes the
ReLU activation function in each layer, except for the last layer which uses the softmax activation function.

4.3. Attacks on Unprotected Implementations

Since the source code of the spread layer is not publicly available, we have implemented the layer in PyTorch !.
This section is outlined as follows. First, to verify if our implementation is correct we attempt to reproduce the
results as presented by Pfeifer and Haddad and conduct attacks on the dataset ASCADy. In the next section,
we analyze the spread factor’s influence. After this analysis, a discussion of the spread layer’s activations is
given. At last, we discuss the most remarkable results from all conducted experiments.

4.3.1. Reproducibility
The most remarkable result presented in [38] is that Spreadpy, while trained with 1000 traces of ASCADy,
can retrieve the key in around 1725 traces , while MLPgr achieves only a guessing entropy of 7.7 after 5000
traces. This section attempts to reproduce these results by using similar settings as presented in [38], which
are listed in Table 4.1. Next to reproducing these results, the three mentioned architectures have been trained
using the same set of traces, such that a comparison between these architectures can be made.

In Figure 4.3 we depict guessing entropy plots of the trained classifiers. The results shown in this figure

LFor more details about the used versions, we refer to section 2.7.
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Batchsize Learningrate Spreadfactor Epochs Trainingsize Leakage model

100 le—4 6 80 1000 HW

Table 4.1: Hyper parameters used to reproduce the results of the first order attack on the ASCAD database presented by [38]

100 4
—— Spreadpy

—— MLPpest
— MLPar
80

60 1

40 1

Guessing Entropy

201

0 20 40 60 80 100
Attack traces

Figure 4.3: A plot of the guessing entropy of the three architectures Spreadpg, MLP},,g;, and MLPgy trained with 1000 traces from
ASCADyj, and Hamming weight as leakage model.

are significantly different from the results presented in the work by Pfeifer and Haddad. Here, all the classi-
fiers perform well in terms of guessing entropy and retrieve the key in less than 100 traces. In the work by
Pfeifer and Haddad, Spreadp; requires 1 725 traces to retrieve the key, while MLPy, fails to retrieve the key.
Furthermore, this figure shows that MLPy, performs the best, then Spreadpy, and finally MLPgt. The dif-
ference between Spreadp;; and MLPgy is minimal, but the network Spreadpy requires twice as few traces to
recover the key.

The difference between the presented results in this work and by Pfeifer and Haddad are hard to explain.
Their results show that MLPy,.g can not retrieve the key when trained on 1 000 traces. However, in [42] a first-
order attack using MLPy, can retrieve the key in four traces. Therefore, it seems more than natural that the
results shown in this section are more compelling than the presented results by Pfeifer and Haddad, and the
authors seem to have made a mistake.

4.3.2. Varying Spread Factors

To analyze if Spreadp; has a benefit over the other MLPpes; and MLPgr, we have performed various experi-
ments with a wide variety of hyperparameters. In Table 4.2 we list the hyperparameters used for the exper-
iments, in short, we vary the learning rate, batch size, spread factor, leakage model, and the training size.
Furthermore, we will use the datasets ASCADy and DPAv4 for the experiments. We vary the spread factor
because it is the only hyperparameter of the spread layer and thus can have an influence on the performance
of a network.

Learning rate Batchsize Spread factor Train size Leakage model

{le-2,1e-3,1e—4} {100,200} {3,6,9,12} {1000,5000,20000,40000} {HW,ID}

Table 4.2: Hyperparameters configurations for all folds

When the networks are trained with more than 5000 traces, we observe no difference between the results.
In general, this holds as well when the architectures are trained with less than 5000 traces but for some ex-
ception. The experimental results for the DPAv4 trained with 1000 traces show the spread factors 12 performs
significantly worse than the other spread factors. In Figure 4.4 we depict the experimental results for ASCADy
and DPAv4, trained with the hyperparameters listed in Table 4.3. These results highlight that Spreadpy, in
general, performs similarly for various spread factors. This is remarkable since we expected that the spread
factor’s influence would have a noticeable effect on the classifier, and thus the guessing entropy.
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Figure 4.4: The results of using the Spreadpy trained on 1 000 traces with spread factors 3,6,9,and12. The left and right figures show the
guessing entropy using the datasets ASCAD; and DPAv4 respectively. Both of these results are obtained using the Hamming weight as
leakage model.

Batchsize Learningrate Spreadfactor Epochs Trainingsize Leakage model

100 le—4 {3,6,9,12} 80 1000 HwW

Table 4.3: Hyperparameters used for the results shown in Figure 4.4.

Since we observe no significant difference in guessing entropy between a high or low spread factor, we
analyze the spread layer’s activations, thus we analyze the spread layer’s output. To do so, we have trained
Spreadp; with traces from ASCADy and the hyperparameters listed in Table 4.3, but with a spread factor of
6. We gather the activations by supplying the entire attack set (10000 traces) to the network and storing the
spread layer’s activations. An analysis of the stored activations showed that around 58% is equal to zero. Thus,
for the entire attack dataset, the spread layer fails to spatially spread its input.

This result implies that the spread layer’s input values are mapped to the same centroid, and thus perform
the remapping of its input (in the interval [0, s]) incorrectly. Recall, that min; and max; for a neuron x; are
learned by selecting the minimum and maximum observed during the training phase. This causes problems
during learning because the distribution of x; shifts, and as a result, min; or max; reflects an incorrect image
of the true minimum and maximum of a spread layer’s neuron x;. The shift occurs because we perform
backpropagation during the training phase, causing the weights and biases of the layer prior to the spread
layer to be adjusted. As the network learns an incorrect minimum or maximum, the spread layer maps its
input always to the same output neuron. In other words, the spread layer does not account for the shift of
a neuron’s distribution caused by backward propagation and thereby loses its power to spatially encode the
data.

To confirm this theory, we train Spreadpy with the same hyperparameters as in the previous paragraph,
but for 100 epochs and every 20 epochs the network is stored, such that we can observe the evolution of
the neuron’s distributions over several epochs. We analyze this evolution by visualizing the min;, max;, and
the neurons’ distribution for each stored network. In Figure 4.5 we depict the evolution of a single neuron’s
distribution after one epoch, 20, 40, 60, 80, and 100 epochs. In these figures, the green lines represent min;
and max;, while the blue lines represent the distribution. From these figures, it is clear that after more epochs
(and thus more backward passes), min; and max; are far from equal to the true minimum and maximum.
Since this figure only depicts the results for a single neuron, we can not generalize this for all neurons. To
confirm the shift in distribution occurs at all neurons of the spread layer, the mean squared error (MSE)
between the true minimum and maximum, and min; and max; are calculated respectively. Table 4.4 lists the
MSE after each epoch. This table shows that as a model is trained more, the MSE grows, and thus min; and
max; drift away from the true minimum and maximum respectively.
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Figure 4.5: Intermediate values of a single neuron of the input of the spread after different epochs. The green lines represent the
minimum and maximum learned by the network. The blue boxes represent a histogram and reveal the distribution of the values. This
figure shows that the distribution of the values shift, while the learned minimum remains the same.

Epochs MSE minimum MSE maximum

1 977.03 1470.50
20 10577.30 12 423.04
40 12937.62 19314.32
60 15430.71 25413.44
80 19045.78 30516.95
100 20846.99 37361.19

Table 4.4: Mean squared errors between min; and the true minimum, and max; and the true maximum.

Spread Version 2

To overcome the issue that min; or max; drifts away from the true minimum or maximum, the manner in
which these values are learned should be modified. We do this by adding a batch normalization layer before
the spread layer. Recall, that a batch normalization layer first transforms its input to the standard normal
distribution (referred to as %;), and then transform it to x; = X; -y + 8, where y and  are learnable parameters.
Since x; is normally distributed we can determine min; and max; such that min; < x; < max; with a negligible
probability. For a standard normal distribution Z, we know that P(Z < —4) = 0.0, and thus P(Z > 4) = 4. The
following equation shows how to calculate the minimum and maximum.

min; = —4.0y + 5)
max; =4.0y + 8 '

By using these formulas we are certain that min; and max; are close approximations of the true minimum and
maximum. We have implemented these changes to the spread layer and will refer to this layer as Spread;.
(note that this layer also includes the batch normalization layer).

To analyze if Spread, suffers from the same weaknesses as the spread layer we perform the same experi-
ment with Spread;, as we performed on Spreadp; in the previous section. Spready, is similar to Spreadpy,
however, the spread layer is replaced by Spread;,. The experimental results show that around 40% of the out-
put neurons of the spread layer are not active (i.e. have a zero output). As expected, this is less than Spreadpy,
however, more than one-third of the neurons are not active and could thus be considered as useless. In the
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Figure 4.6: Guessing entropy plot of Spread,,, and Densepy trained with 1000 from ASCADy;. The left figure depicts the results with HW
as leakage model while the right image shows the results for intermediate value as leakage model.

following section, we further analyze why this behavior occurs, but first, we compare the guessing entropy of
Spread,,, with a similar architecture.

Since Spread,, utilizes a batch normalization layer while the previously introduced architectures do not,
comparing these is not fair. Therefore we introduce an additional architecture that contains a batch normal-
ization layer, which we denote as Densepgy. This architecture is similar to MLPgT, but instead of a dense layer,
a batch normalization layer is used at the second hidden layer. We will first show plots of the guessing entropy
and then analyze the spread layer’s activations.

In Figure 4.6 we depict the experimental results of Spread,,, and Densegy trained with 1000 traces of
ASCADy for the leakage models HW and intermediate value. Note that for both leakage functions Spread,,,
outperformed Spreadpy. We believe this is the result of the batch normalization layer in Spread,, since
Densepy also performs well. Figure 4.6a depicts the results for which HW is used as a leakage function. Here
we observe no significant difference in guessing entropy between the two architectures. This figure also shows
that different spread factors have little to no influence on the guessing entropy. In Figure 4.6b we depict
the results for intermediate value as leakage model. We observe that Densegy outperforms Spread,,, for all
experimented spread factors. This figure also highlights the difference in guessing entropy for the spread
factors. It highlights that a lower spread factor provides better performance when intermediate value is used
as leakage model. We believe a lower spread factor, when trained with a little amount of traces, provides
better performance because the spread layer has fewer output neurons. If the spread factor is higher there
are more neurons, and thus more parameters which require to be trained as well, which is hardened when
there is a limited amount of training traces. Other architectures that do not utilize a spread layer do not suffer
from this, because the spread layer only uses at most two of the possible output neurons. Thus, increasing
the spread factor yields in output neurons that are less trained than other neurons, especially when they are
situated at the borders. We confirm this theory by increasing the training size to 40000 traces, by doing so
we perform more backwards passes. In Figure 4.7 we depict the results of Spready,, and Densepy trained
with 40000 traces of ASCADy, and intermediate value as leakage model. From this figure, we observe that the
architectures perform similarly and thus the theory seems to be correct.

Aswe have analyzed the spread layer’s activations for Spreadpy;, we also analyze the activations of Spread;,
for Spread,;,. We perform the same experiment as for Spreadpy, the results show that around 39% of the neu-
rons are not active (i.e. equal to zero). This is an improvement over the 58% of the spread layer, however, this
is not what we expected or intended. Therefore, we have performed the same analysis as for Spreadpy, such
that we can confirm if min; and max; are set correctly for all inputs x;. This analysis showed that these values
were set correctly, thus another problem is present.

Further analysis showed that for a neuron x;, the output neurons 0; and o; 5 were barely used. This is
caused by how the spread layer determines which output neuron is used, and the input distribution. Recall
that spread determines which output neurons should be used by comparing the input value with the cen-
troids. Additionally, the centroids are calculated by a linear function. Since the input of the spread layer is
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Figure 4.7: Guessing entropy plot of Spread,;, and Densepy trained with 40 000 from ASCADy using intermediate value as leakage
model.

normally distributed the output neurons which are situated at the border are rarely used. Thus the spread
layers’ input is expected to be uniformly distributed while the input is normally distributed.

Spread Version 3

To fix the problem of the difference between the expected and actual distribution of the spread layers’ input,
we suggest to modify the spread layer such that it expects a normally distributed input. In this section, we
have implemented this solution and analyzed the sparsity of the layer’s output activations. Additionally, we
compared the performance of the layer with a similar architecture. Before we discuss these results we explain
how the newly proposed layer, called Spread, ;, is implemented.

The difference between Spread;. and Spread, ; is that centroids’ values are calculated differently (Equa-
tion 4.1 shows the formula to calculate the centroids for the spread layer). Since the spread factor is known,
and Spread its input is drawn from the distribution a - A47(0, 1) + §, it is possible to select centroids such that
each output neuron has the same probability to be used by the network. First, we calculate the centroids’
values when a and S are equal to zero, using the inverse of the cumulative probability density function 4.
To be precise,the unscaled value of a centroid 7/ is calculated such that P(A" < n}) = y;, where y; = % (i+1),
i €{0,...,s—1}, and s the spread factor. Then the value of the unscaled centroid is scaled such that we retrieve
the value of the centroid »n; as follows:

ni=a-n;+p. (4.6)

We denote the architecture which employs Spread; ; as Spread,;;. The only difference between Spread,;, and
Spread,; is that Spread » has been interchanged with Spread ;.

We have performed the same experiments as we have done for Spreadpy and Spread,;,, and observed
that all output neurons of Spread; ; are non-zero. Thus the changes to the spread layer work as intended.
Therefore, we compare the performance of Spread,,; with Densegy. Like the previous experiments, we have
experimented with the spread factor, training size, and leakage model. In Figure 4.8 we depict the guessing
entropy of Spready; and Densegy. We will discuss the results of Spread,,; with various spread factors and
subsequently compare the two architectures. First, we discuss the results when the networks were trained
with HW as leakage model, followed by the results of the networks trained with intermediate value as leakage
model.

If the networks are trained with 1 000 traces and HW as leakage model we observe that a low spread factor
yields in the best guessing entropy. When the spread factor is equal to 9 we observe that Spread,;; can not re-
trieve the key, while the other spread factors can recover the key. The difference in CGE is however significant
when the spread factor is equal to 3 we require around 200 times more traces than when the spread factor is
6 to successfully attack this dataset. We believe that a higher spread factor results in worse performance be-
cause of similar reasons what we observed in the previous section. A higher spread factor and limited amount
traces means there are more neurons that require backpropagation to adjust its weights. As the spread factor
increases, there is an increase in the spread layer’s output activations which are equal to zero. Combining
this with a limited amount of traces, and thus a limited amount of backward propagation, the parameters of
these neurons are less adjusted to fit over the training data. When Spready; is trained with 40 000 traces we
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Figure 4.8: The guessing entropy of Spready,3 and Densepy; trained with 1 000 and 40 000 traces of ASCADy using HW and intermediate
value as leakage model.

see no difference in guessing entropy between the spread factors. This is an indication that our theory, on
why higher spread factors result in decreased performance, is correct.

In Figure 4.8c and Figure 4.8d we depict the results when intermediate value is used as leakage model.
The results are similar to the results of HW. The major difference is that the networks trained with 1 000 traces
are significantly worse in performance than when hamming weight is used as leakage model. However, this
is the opposite when 40 000 training traces are used; then intermediate value outperforms HW.

The difference in the performance of Spready; and Densepy trained with 1000 traces for both leakage
models is significant. However, when the architectures are trained using 40000 traces we see little to no
difference. For Densepy there is no significant difference in performance when trained on less or more traces.
Therefore we see no reason to use Spread; ; in a deep learning architecture.

4.4. Attacks on Protected Implementations

So far we have experimented with datasets that were obtained from unprotected AES implementations, here
in this section we perform attacks on protected AES implementations and discuss the obtained results. Like in
the previous section we will use Spreadpy, MLPp,g;, and MLPgr for our experiments. Next to these architec-
tures, we use the proposed improvement of the spread layer, Spread; ;, utilized in Spread,;;, and Densegy for
a fair comparison. For our experiments, we will use the datasets ASCADy; and RD. Furthermore, the hyperpa-
rameters used are the same as presented in subsection 4.3.2. Since we attack protected AES implementations
we do not expect to retrieve the key. However, we are still interested in the performance of the architectures
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Figure 4.9: Plot of the guessing entropy of the architectures Spreadpy, MLPRT, MLPy,,ss, Spready3 and Densepy trained with 40 000
training traces from ASCADjs using HW and intermediate value as leakage model.
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Figure 4.10: Plots of the resulting guessing entropy of the architectures Spreadpy, MLPRT, MLP}og, Spreadys and Densepy trained
with 40 000 training traces from RD using HW and intermediate value as leakage model.

regarding the countermeasures. First we briefly discuss the experimental results for ASCAD),, and afterward,
continue with the results for RD.

In Figure 4.9 we depict the guessing entropy of the architectures trained with 40 000 traces for both leak-
age models. For all networks we observe that Spreadpy, MLPp,s;, and MLPgr do not recover the key, while
Spread;; and Densegy do. We believe these architectures are successful because they employ a batch nor-
malization layer. Furthermore, we observe that Densegy requires fewer traces than Spread,; for both leakage
models. Note that we do not show the results when the architectures are trained with fewer traces since none
of them are successful in retrieving the key. From these results, we believe that there is no need to employ
a spread layer, or the improved Spread; ;, in a network when the traces are obtained from a masked imple-
mentation of AES. Despite Spread, ; is able to recover the key, we believe its success is caused by the BN layer,
which explains why Densegy is successful.

In Figure 4.10 we depict the results for RD trained with 40 000 traces for both leakage models. This figure
shows that all architectures are not able to retrieve the key. Thus, similar to the masking countermeasure, we
see no reason to employ a spread layer, or the improved Spread; ; when the traces are obtained from an AES
implementation with a random delay countermeasure.
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4.5. Comparing Architectures

We have shown that the spread layer does not help to improve the attack efficiency for unprotected imple-
mentations. To evaluate if there is a need for a deep learning layer for unprotected implements, we compare
the previously shown networks trained with 1 000 and 40 000 traces. The networks trained with 40 000 traces
provide a baseline for how efficient an attack could be. Networks trained with 1 000 traces are used to make a
comparison between the networks trained with 40 000 traces.

More specifically, we train the networks MLPy,s, MLPRT, and Densepy with 1000 and 40 000 traces from
the datasets ASCADy and DPAv4. These networks are selected because they provided the best performance
in the previously conducted experiments. The networks are trained for 80 epochs and trained with both HW
and intermediate value as leakage model. Additionally, the learning rate is set to 10~4, and the batch size to
100.

In Figure 4.11 we depict the results of the conducted experiments. In these figures, the lines with a star
are trained with 1000 traces and the lines with hexagons are trained with 40 000 traces. First we discuss the
results for the ASCADy; dataset and then the results for the DPAv4 dataset. The results with HW as leakage
model show there is no significant difference in guessing entropy. As expected, all the networks trained with
40000 traces perform the best, and networks trained with 1000 traces are less efficient. However, notice
that Densepy trained with 1 000 traces performs roughly the same as the networks trained with 40 000 traces.
Similarly to the results from Hamming weights, Densepy trained with 1000 traces performs near similar to
the networks trained with 40000 traces. Thus, the results when using intermediate value as leakage model
show that the networks trained with 40 000 traces perform better.

The results from the attacks on DPAv4 are similar to the results from the attacks on ASCADy;. For networks
trained on the Hamming weight, we observe a minimal difference in attack efficiency and see that the net-
works trained with 40 000 traces perform the best. Networks trained on the intermediate value show a bigger
difference. The networks trained with the most traces retrieve the key in a single trace, while the networks
trained with 1000 traces require around 15 traces.

For all the conducted experiments in this section we observed there is a minor improvement in the attack
efficiency when increasing the training size. Therefore, developing a deep learning layer specifically for side-
channel attacks on unprotected implementations would only improve the attack efficiency by a small margin.
Because of this reason we believe there is no need to develop a deep learning layer for side-channel attacks
on unprotected implementations.

4.6. Conclusions

In this chapter, we have first described the spread layer, and subsequently provided an analysis of both SCA
performance and in-and-output activations. For the SCAs with Spreadpy, we have shown that a comparable
architecture can achieve similar results and thus the spread layer is not necessary. Furthermore, we noticed
that the spread layers’ hyperparameters, the spread factor, does not have a significant influence on the guess-
ing entropy.

Therefore we have analyzed the spread layers’ in-and-output activations, in which we showed that the
spread layer did not work as intended. The spread layer intends to spatially spread its input, which does
not occur in practice. We have shown that the spread layer’s output consists mostly of non-active neurons.
The cause of this problem is two-fold: 1) the minimum and maximum used to remap its input are learned
incorrectly and 2) the spread layer expects its input to be uniformly distributed while in reality it is normally
distributed.

The first issue is caused by how the spread layer learns the minimum and maximum. We have fixed this
issue with the layer Spread;» and is utilized in the architecture Spread,,,. The second issue is caused by a
difference of the expected input distribution. To fix both of the issues we have introduced the layer Spread; 5
and is utilized in the architecture Spready;;. To compare both architectures we introduced a new architecture
Densegy;.

For our comparisons, we have experimented mostly with settings for which around 1 000 traces were used
in the profiling phase, given that the spread layers’ most remarkable result was that a limited amount of traces
are required during the profiling phase. In our experiments, we have shown that the spread layer does not
improve SCAs for both unprotected and protected implementations by comparing Spreadp; with compa-
rable architectures. Even architectures that used our proposed fixes for the spread layer, i.e. Spread,, and
Spread,;, did not improve the attack in comparison with Densepy. Therefore we conclude that the spread
layer does not improve the performance for SCAs in both protected and unprotected settings.
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Figure 4.11: Guessing entropy of networks trained with 1 000 and 40 000 traces from ASCADy; and DPAv4 using HW and intermediate
value as leakage model.

Additionally, we selected the best performing networks to investigate the difference in attack efficiency
when using a small and big training size. We show that the difference between networks trained with many
traces performs almost similar to networks trained with fewer traces. The gap is so small such that there is
no incentive to develop a new layer. For all datasets we do no observe any need for specific layers, thus the
already known layers are sufficient for SCA.



Evaluation of the Kernel Size and Depth of
CNNs

Recent works have shown that convolutional neural networks perform well for side-channel attacks even for
protected implementations where countermeasures are present. For example, in [25], the authors use a CNN
architecture specifically designed for a different domain than SCA and show it achieves state-of-the-art per-
formance on various datasets. However, CNNs have many hyperparameters that are required to be properly
configured for efficient attacks, but there is limited knowledge about the influence of the hyperparameters
on the attack efficiency for SCAs.

Typically, the configuration of hyperparameters for SCAs using CNNs is influenced by recommendations
from the image recognition domain. However, side-channel measurements obtained from protected imple-
mentations have different characteristics than images. More specifically, images do not have a countermea-
sure and do not actively attempt to harden the classification task. Therefore it is important to evaluate if the
recommendations from the image recognition domain hold as well for the side-channel analysis domain. In
this chapter, we will evaluate the influence on the attack efficiency of two hyperparameters of CNNs, namely,
the kernel size and network’s depth.

This chapter is outlined as followed. First, we provide an in-depth analysis of why we experiment with the
kernel size and depth of a network. Before we show and discuss the results, we describe the CNN architec-
tures used for the experiments. Then, we discuss the experimental settings such as the configurations of the
hyperparameters. After this, we depict and discuss the experimental results. Note that we make a difference
between the hiding and masking countermeasure and discuss the results individually. Finally, we provide a
conclusion of the observed results.

5.1. Motivation

The universal approximation theorem states that a feed-forward network with a single hidden layer and a
finite amount of neurons can approximate any function under certain conditions [20]. However, the number
of neurons required to achieve this is exponential and thus is unfeasible to employ in practice. Additionally, it
is assumed that increasing a CNN'’s depth, increases the network’s ability to approximate the target function.
This idea is further supported by what has been shown in research, where deep CNNs achieve state-of-the-art
performance, such as VGG and Inception [24].

Furthermore, what is observed for the state-of-the-art CNNs is that the kernel size is kept small, and is
no larger than 11. It is argued that a small kernel can recognize fine-grained detail, while a large kernel size
recognizes coarse-grained detail. It is thought that a small kernel can recognize lines and edges that occur
more often. Additionally, it is thought that the deeper layers in a CNN, use the learned fine-grained details
to recognize bigger objects [24]. This is important for the domain of image recognition since typical images
exist of many details and objects.

However, images are not similar to measurements for side-channel attacks, especially if they are obtained
from protected implementations. The key difference is that measurements from protected implementations
have one or more countermeasures that harden the classification task at hand, which does not occur in im-
ages. For both countermeasure, masking and random delay, we intuitively explain what we expect to be the
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influence of the kernel size and depth of a CNN!.

For the random delay countermeasure, we argue that a large kernel size improves the attack efficiency.
Intuitively, recognizing small details for the random delay countermeasure might not be as important as
eliminating the random delay countermeasure. Therefore, employing a large kernel size could potentially
improve attack efficiency. To explain this imagine a set of traces X, where we represent a single trace as
X = {xo, x1,..., X,}. For simplicity, we assume that there is a single feature x, that leaks information. For the
random delay countermeasure, we assume the index of this feature is in some bounds i < a < j. By using a
large kernel we aim to have an anchor point (that is before index i) from which we can detect even the largest
value of a random delay. Thus if the kernel size is set to k = j — i, we could possibly eliminate the effect of the
countermeasure. Since the values of i and j are unknown in normal settings, the best kernel size has to be
found by experimental results. Additionally, deep CNNs with a small kernel have already been shown to be
efficient against a random delay countermeasure.

The masking countermeasure is different, but we believe a large kernel or deep network could perform
an efficient attack. To explain this, we assume there are two leakage points, one for the mask and the pro-
cessing of the mask, additionally, they are always located in the same position. If a network can learn a filter
that bridges this distance and can pinpoint the mask and processing of the mask, we can attack a masked
implementation. Like random delay, deeper networks with a small kernel size first recognize small patterns
and then the bigger patters. Thus, the first layers could recognize the mask and the processing of it, and then
combine the two findings to perform the classification task.

Because of the provided reasons we analyze the influence of the kernel size and the depth of CNNs. For
both discussed countermeasures, hiding and masking, we perform experiments and evaluate the results. Ad-
ditionally, we compare the performance trade-off between the depth and kernel size of a CNN.

5.2. Experimental Setup
To analyze the influence of the kernel size and depth of the network, we should first choose a CNN architec-
ture to conduct the experiments with. In [25], the authors use a VGG-like network that achieves state-of-the-
art performance on the RD dataset. In this chapter we will use a modification of this network, with the main
difference between the architecture presented in [25], is that we vary the number of convolutional layers in
the network. We employ less convolutional layers because of computational constraints: large kernel sizes
in combination with many convolutional layers significantly increases the training time and memory usage,
making it unfeasible to analyze. Next to this, we do not implement the addition of Gaussian noise to reduce
the probability of overfitting since we try to isolate the influence of kernel size and the number of layers in a
convolutional block.

To be more precise about the architecture we implement, we first provide definitions we use to describe
the implemented architecture:

Definition 5.2.1. A convolutional block (CB) of I layers consists of the sequence: I convolutional layers with
ReLU as activation function, and subsequently a max-pooling and batch normalization layer. The convolu-
tional layers use the same hyperparameters.

Definition 5.2.2. A feature selection block consists of three convolutional blocks of [ layers, followed by a
flatten layer. The convolutional blocks use the same hyperparameters except for the number of kernels, which
is doubled in each convolutional block.

Definition 5.2.3. A classification block consists of the sequential layers: dropout, MLP with ReLU as activa-
tion, dropout, MLP with softmax as activation. The MLP layers have the same amount of neurons, except for
the output neurons which depend on the leakage model.

The architecture for the experiments consists of a feature selection block with two parameters / and k, and
a classification block. We denote the architecture as VGG; ;. where [ is the number of convolutional layers in
a convolutional block, and k the kernel size of the convolutional layers. The hyperparameter configurations
for the feature selection and classification block are shown in Table 5.1a and Table 5.1b respectively. In these
tables, we only denote the number of kernels in the first convolutional block, and each subsequent block
doubles the number of kernels. Thus, in the first convolutional block, there are 32 kernels, the second 64, and
the last 128. Figure 5.1 depicts the architecture of VGG, 7 in which there are two convolutional layers in per
block and the kernel size is fixed to 4.

INote that, we consider a small kernel size as a value not higher than 11, larger values are considered as a large kernel (since this is
typically not observed in state-of-the-art CNN architectures).
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#Kernels Pool Padding Stride Dilation #Neurons Dropout Leakage model
32 2 same 1 1 256 p=0.5 ID/HW
(a) Feature selection block configuration (b) Classification block configuration

Table 5.1: Architecture configuration

7 conv, 32

7 conv, 32
Convolutional block 1
Max Pool

z

7 conv, 64

7 conv, 64
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Max Pool
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I

Convolutional block 3

Dropout
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Dropout

Figure 5.1: A sample architecture with kernel size 7, and 2 convolutional layers in a convolutional block. The first convolutional block
has 32 filters, the second 64, and the last 128.

There is however a problem with the networks in certain conditions: when the input space is large, the
output of the feature selection block consists of many neurons. As a result, the subsequent layer has a factor
of the number of neurons more parameters, which decreases the probability of the network converging. To
counter this we either apply L2-regularization or reduce the number of neurons by increasing the max pool
size. We will mention for which experiments L2-regularization is applied. For the increased pooling factor
we introduce a new architecture and denote it as VGGMax; ., where [ and k are the number of convolutional
layers in a block and the kernel size respectively. The configurations are similar to those denoted in Table 5.1,
but the pooling size is increased from two to four. The other hyperparameters used for training are shown in
Table 5.2.

Since we will be experimenting with neural networks with many layers the initialization is important for
convergence (a network is not able to learn anything if it does not converge). As discussed in chapter 3, for
networks with many convolutional layers using ReLU, Kaiming initialization produces better results than the
standard Xavier initialization. We have experimented with both types of initialization and noticed that net-
works initialized using Xavier's method showed convergence problems, while models initialized with Kaiming
initialization would always converge. Therefore, for the experiments run in this chapter, we will use Kaiming
initialization.

In order to evaluate the attack efficiency of a configuration, we learn five folds using the mentioned config-
urations. We have chosen to train five folds because of the consideration between computational constraints
and the number of models that will provide a sufficient view of the performance. For each of the trained
models, we calculate individually the PGE and average the results. Then, with the average we can, for ex-
ample ,determine if the attack is successful with the configurations or after the amount of traces required to
recover the key.

For some experiments we have performed in this chapter, there is a minimal difference in PGE. In these
cases either the dataset is to easy or the model just works really well for the dataset. In order to find the
difference in performance between the configurations, we will look at the test accuracy and perform a trick
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Batchsize LR Epochs Trainingsize Channelsize Initialization

100 le-4 75 40000 32 Kaiming

Table 5.2: Hyperparameter configurations for the CNN experiments
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Figure 5.2: PGE and validation loss of VGG, \. on the dataset RD

with the test traces. By adding noise to the test traces we make it harder for the models to perform the attack.
By doing so, we hope to notice a difference between different configurations. Next to this, in a more realistic
profiling attack (where the profiling device and target device are not the same devices) there would be some
difference between the profiling and attack traces, and adding noise to the attack traces would make it a more
realistic setting. The noise that is added to the attack traces is drawn from a Gaussian distribution N(0,1)
and multiplied by a factor f. Thus, we create various sets of attack traces, with each a different level of noise,
calculated by N(0,1) - f.

5.3. The Hiding Countermeasure

In this section, we will experiment with datasets in which the random delay countermeasure is present. The
datasets we will consider are RD, ASCAD}), and ASCAD}". With the experiments we perform in this section
we aim to answer the research questions RQ 2., RQ 3., and RQ 4..

5.3.1. Experimental Results Kernel Size

To answer RQ 2. we experiment with the architecture and hyperparameters discussed in the previous section.
For our experiments, we will use the architecture VGG; ; with two convolutional layers in a block and k €
{3,5,7,10,15,20,25,50,100}. We have chosen to use two convolutional layers in a convolutional block because
of computational constraints. If we use two layers we can still select large kernel sizes, for example 100, such
that the experiments take a reasonable time to finish.

Dataset RD

For the experiments performed in this section, we use measurements from the RD dataset. For the first ex-
periment we discuss, we have trained VGG, ; with the configurations discussed in the previous section (see
Table 5.1 and Table 5.2). The results of this experiment are depicted in Figure 5.2. This figure shows a plot of
the CGE and a plot of the validation loss during training for all kernel sizes. From Figure 5.2a the influence
of the kernel size is visible; an increase in the kernel size results in a lower CGE. For example, VGG, 3 requires
around 109 times more traces to recover the key than VGG, 19o. If we analyze the validation loss, depicted
in Figure 5.2b, we observe that all the experiments overfit massively, however, the architectures VGG 59 and
VGG;, 100 overfit the least. This is remarkable since naturally we would expect that the models would overfit
even more because of the additional parameters. The results depicted in Figure 5.2 are the first indication
that large kernel sizes are highly effective against the random delay countermeasure.
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Kernel size 3 5 7 10 15 20 25 50 100
Accuracy 1.36 3.33 15.23 3223 44.63 54.93 48.05 61.85 44.11

Table 5.4: Accuracy of VGG; i trained with A =0.05 on RD

Noise (a) Kernel size

3 5 7 10 15 20 25 50 100
0.0 73 28 18 12 12 10 9 8 7
0.25 123 47 38 18 14 11 12 8 7
0.5 546 311 172 112 90 54 65 21 22
0.75 - 1737 2048 1264 1105 653 897 130 139
1.0 - - - - - - - - 977

Table 5.6: Results for VGGMax; ;. with added noise on RD

To counter the problem of overfitting we conduct two more experiments to reduce the overfitting: 1)
apply L2-regularization and 2) train models with VGGMax; j.. For L2 regularization we use the following L.2-
penalties A € {0,0.05,0.005}, where an L2-penalty of zero is the original experiment. In Figure 5.3, we show
plots of the PGE for the experiments where L2 regularization is applied, and in Figure 5.3 we list the CGE for
all kernel sizes. For the experiments where A = 0.0 and A = 0.005, this table shows that an increase in the
kernel size results in a lower CGE. However, for the experiment where an L2-penalty of 0.05 was applied the
difference in CGE is minimal, for example, VGG,,1p and VGG, 5o have the same CGE, namely 5. By analyzing
the accuracy of the attack set of VGG, \ the difference between the kernel sizes are more evident, we list the
accuracies of this experiment in Table 5.4. The highest accuracy is achieved by VGG; 5o, which has around
60% correct. The lowest accuracy is achieved by VGG, 3, which has around 1% correct. Surprisingly, VGG, 100
has alower accuracy than VGG, 5,. We believe a kernel size of 100 is too high (with the used hyperparameters),
which causes the network to overfit.

Since accuracy is not the best metric for SCA and we still want to highlight the difference in the perfor-
mance of the various kernel sizes, therefore we add noise to the attack traces and evaluate the classifiers again
using the noisy traces. To do so we use the previously discussed method and create four new attack sets with
distinct noise levels. More specifically, the noise levels are a € {0.25,0.5,0.75,1.0}. We depict the PGE of all
the noise levels in Figure 5.4. Additionally, in Table 5.5 we list the CGE of each of the noise levels. The fig-
ure clearly shows that increasing levels of noise has less effect on the PGE if a network architecture employs
a larger kernel size. For extremely noisy data where @ = 1.0, we observe that only VGG; (o can retrieve the
key consistently. Furthermore, for all noise levels, we notice that the CGE is declining if the kernel size is
increased.

Next to applying L2-regularization to prevent overfitting, we perform experiments with VGGMax; ;. using
the same settings as previously discussed. For these experiments, we only show the CGE, which is listed in
Table 5.6. Again, we observe that an increase in the kernel size results in a decrease in CGE. However, the
results in the upper range of the tested kernel sizes are similar, therefore, we add noise to the attack traces
with a € {0.0,0.25,0.5,0.75,1.0}. The experiments with the noisy traces make the gap of CGE between two
adjacent kernel sizes bigger. Here we see that a model learned with a large kernel size is still able to recover
the key, and is thus more robust to noisy data.

Datasets ASCAD} and ASCAD”

The next datasets we consider are the two variants of the ASCAD database for which the authors have added
an artificial random delay. More specifically, we will consider the datasets ASCAD%) and ASCADB]O. For the
experiments, we will use the same configurations as for the RD dataset, however, here we will use HW as the
leakage model since this results in more efficient attacks. For the performed experiments we observe minimal
overfitting and thus we do not apply L2-regularization or use VGGMax, ..

In Table 5.7 and Table 5.8 the results are presented of datasets ASCAD%0 and ASCAD})00 respectively. In
these tables we present the CGE of the experiments, if a network was not able to recover the key we denote
this with a dash. First, we discuss the results of the conducted experiments of the dataset ASCAD%’ followed
by the results of the dataset ASCADg)O.
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Figure 5.3: PGE for two convolutional layers in a block of VGG, ;. with dataset RD

Kernel size

L2-penalty (1)

3 5 7 10 15 20 25 50 100
0 1636 1495 1797 2757 999 447 973 224 15
0.05 24 8 6 5 5 3 5 5 4
0.005 89 41 43 27 32 22 21 8 6

Table 5.3: CGE for VGG; ;. with different L2-penalties on RD
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Figure 5.4: PGE for adding various noise factors a € {0.25,0.5,0.75,1.0}, and A = 0.05 (VGG; ;. on RD)

Noise (@) Kernel size

3 5 7 10 15 20 25 50 100
0.25 45 17 13 10 8 10 7 9 6
0.5 688 159 133 110 53 47 45 26 37
0.75 4173 3921 2152 8883 779 702 740 310 329
1.0 - - - - - - - - 5609

Table 5.5: Results for VGG, i trained with A = 0.05 and added noise to attack set on RD
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Kernel size

Noise (a)

3 5 7 10 15 20 25 50 100
0.0 49 28 24 32 25 37 21 27 16
0.1 123 53 51 44 45 49 47 53 52
0.2 - 2568 433 187 197 261 257 351 467
0.3 - - - 1136 865 1205 1167 2069 -
0.4 - - - - 2666 4756 3544 9969 -

Table 5.7: Results for VGG, ;. using dataset ASCAD%O with added noise to attack traces.

Kernel size

Noise ()

3 5 7 10 15 20 25 50 100
0.0 31 38 35 31 29 37 27 22 15
0.1 80 137 100 66 67 91 72 73 95
0.2 - - - 408 843 1201 3274 903 2466
0.3 - - - 9960 - - - - -
0.4 - - - - - - - - -

Table 5.8: Results for VGG, ;. using dataset ASCADE)O with added noise to attack traces.

For the conducted experiments with ASCAD??, we observe that smallest kernel size performs the worst
and the largest performs the worst. However, the difference in CGE between the kernel sizes between the
largest and smallest is minimal. Therefore, we add noise to the attack traces where the noise levels are a €
{0.1,0.2,0.3,0.4}. The results in Table 5.7 show that as the noise increases, the networks with a larger kernel
size are able to recover the key, while the smaller ones do not. For example, when a = 0.2 the smallest kernel
that is able to recover the key is 5, while in the setting where a = 0.3 this is 10. In terms of efficiency, we
observe that for high noise settings a = 0.3 and a = 0.4, the most efficient networks of the networks which
can recover the key, are the ones with smallest kernel.

The results with dataset ASCADE)0 are somewhat similar as shown in Table 5.8. The best performing
network is the one with the biggest kernel, and the worst performing is the one with the second to smallest
kernel. Like the experiments for ASCADYY, we perform additional experiments with noise added to the attack
traces, where « € {0.1,0.2,0.3, 0.4} because the difference in CGE is minimal. Unlike the result for ASCAD??, in
the highest noise setting (@ = 0.4), no network is able to recover the key. We believe this difference is caused
because ASCADB)0 has a bigger artificial delay, making this dataset somewhat harder. With a lower noise level
a = 0.3, the only network to recover a key is the network with a kernel size of 10. With lower levels of noise we
observe that the most efficient networks are the ones with a kernel size of 10.

For the three discussed datasets we have experimentally shown the influence of kernel size by evaluating
the performance of the learned classifiers. In general, for the discussed classifiers, we have shown that CGE
decreases when the kernel size is increased. In some cases when the difference in CGE was minimal, we have
used noisy attack traces to enlarge the difference. Here, the results showed that a larger kernel can achieve
more efficient attacks. However, for the ASCAD database we noticed that at some point the performance
stagnates and there is no benefit from increasing the kernel size even further. Despite these findings, we still
observe that, in general, a larger kernel size achieves more efficient attacks.

5.3.2. Experimental Results Stacked Convolutional Layers

In this section, we will conduct experiments that allow us to evaluate the influence of the number of convolu-
tional layers in a convolutional block. The evaluation provides us with more insights such that we can answer
RQ 3.. From now on, if we refer to the number of layers, we refer to the number of convolutional layers in a
convolutional block. For the experiments we use VGG, 15 where [ € {1,2,3,4,5}. The kernel size is fixed to 15
because in the previous section we showed that larger kernel sizes result in more efficient attacks, however, a
kernel size much larger than 15 makes the experiments infeasible because of computational constraints. The
hyperparameters used for training the models are equal to the ones used in the discussion about the kernel
size and are listed in Table 5.1 and Table 5.2. The datasets we will consider are the three datasets where the
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hiding countermeasure is present, namely RD, ASCAD?Y, and ASCAD}".

Dataset RD

The experimental results of SCAs using the architecture VGG;s,; with measurements from the RD dataset are
depicted in Figure 5.5a. This figure clearly shows that an increase in the number of layers results in a decrease
of the CGE. The difference between using one layer and five layers is quite significant; when [/ = 5 around 16
traces are required to recover the key, while when ! = 1 we need around 802 traces.

In Figure 5.5b and Figure 5.5¢ we depict the results when using A = 0.05 and A = 0.005 respectively. Both
figures show that an increase in the number of layers has a positive effect on the guessing entropy. However,
the results in guessing entropy are almost similar and require at most 20 traces to recover the key. For A = 0.05
we observe that we require at least 3 traces and at most 8 traces to recover the key. For A = 0.005, the difference
between the minimum and maximum guessing entropy is slightly larger, where we need at least 3 traces and
at most 42 traces to recover the key. Here, the results indicate that an increase in the depth of the network
decreases the amount of traces required to recover the key. Moreover, we list the CGE in Table 5.9 for all A.

To highlight the difference between the resulting guessing entropy of the architectures, we add noise to
the attack traces. We conduct this experiment on the models trained with 1 = 0.05 since for these mod-
els the difference in guessing entropy is the least. The noise levels we perform experiments on are a €
{0.25,0.5,0.75,1.0}. In Figure 5.6 we depict guessing entropy plots for @ = 0.75 and « = 1.0, and in Table 5.10
we list the CGE for all noise levels. We only depict the results for & = 0.75 and @ = 1.0 in Figure 5.6, since these
results highlight the difference between the number of layers in an architecture.

In the most extreme case, when a = 1.0, we observe that the only model that can consistently recover the
key is when a single layer is used. Other values of a show similar behavior; increasing the depth of the network
is not beneficial for the guessing entropy. This is in contrast of the experiments when A = 0.0 and A = 0.005.
Further analysis is required to explain these discrepancies, which will be performed in the subsection 5.3.3.

Additionally, we conduct experiments with the architecture VGGMax, with a fixed kernel size of 15 and 4
as max-pooling value. The CGE for all values of [ shows no significant difference since the CGE is relatively
low. At most 13 traces and at least 5 traces are required to recover the key. Because the values of CGE are
so close together we perform experiments with the noisy attack traces. Like the previous experiments, we
experiment with various noise factors where «a € {0.25,0.5,0.75,1.0}. In Table 5.11 we list the CGE for VGG ;5
with and without noise factors. In Figure 5.7 we depict the PGE of the noise factors @ = 0.75 and a = 1.0
since these noise levels highlight the biggest difference between the number of layers in the network. From
the results in the figures and table, we observe that increasing the number of layers decreases the CGE until
I = 4. Increasing the number of layers even further shows a increase in CGE. We believe this occurs because
of vanishing gradients.

Datasets ASCAD}’ and ASCAD”

Here we depict and discuss the results for an attack on the ASCAD database for which an artificial delay has
been added to the traces. For these datasets, we will only experiment with VGG; 15, and we will first consider
the dataset ASCAD%). In Table 5.12 we list the resulting CGE for this experiment. Since the CGE is all close
to each other, we attack the noisy datasets with noise factor a € {0.1,0.2,0.3,0.4}. The plots of the CGE are
depicted in Figure 5.8. The results depicted in these figures show that only the architecture where [ = 1 is not
able to retrieve the key if @ > 0.1. Thus, for this dataset, deeper network achieves better results.

For ASCADIID00 we notice similar behavior when using the original traces (thus when a = 0), the CGE is
similar for all values of /. Performing the attack with noisy trace, we observe a bigger difference in CGE. In
Figure 5.9 we depict the plots of the PGE of the different noise factors «, and in Table 5.13 we list the CGE. We
observe the first difference between ASCAD‘?JO and ASCADg)O when a = 0.2, here we see that VGGy,5 requires
around 4 times more traces to recover the key than deeper architectures. When adding more noise, ¢ = 0.3,
we observe that VGG, 5 is not able to retrieve the key, while the deeper networks are able to recover the key.
The largest difference we observe is for the noise factor @ = 0.4. For this noise factor, we observe that only
VGG,,15 and VGGs 15 can recover the key, and VGGs 15 performs the best of these.

From these observations, we conclude that deeper networks are more robust than shallow ones. The
difference between the reported results in this section of ASCAD;’D0 and ASCAD})00 can be explained by the
bigger length of the artificial delay of the datasets. If the random delay is larger, increasing the depth of the
network increases the attack efficiency when using noisy traces.

In general, from the three datasets we have considered in this section, we have experimentally shown
that deeper networks provide better results in terms of guessing entropy. We have shown this by analyzing
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Figure 5.5: PGE of VGG ;5 where [ € {1,2,3,4,5} and trained with L2-penalty A € {0.0,0.05,0.005} on the dataset RD

L2-penalty (1) Conv layers in a block

1 2 3 4 5
0.0 802 999 568 284 16
0.05 5 5 3 5 8
0.005 42 32 19 11 3

Table 5.9: Results for VGG )5 trained with various L2-penalties on RD.
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. Conv layers in a block
Noise (@) Yy
1 2 3 4 5
0.25 15 9 7 10 22
0.5 89 76 91 69 539
0.75 904 1082 - 1839 -
1.0 8085 - - - -
Table 5.10: Results for VGG ;5 trained with L2-penal 0.05 and added noise to attack set on RD
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Figure 5.7: PGE of VGGMax 5, with /€ {1,2,3,4,5}, while using noisy attack traces a € {0.75,1.0} on the dataset RD.

Conv layers in a block

Noise (a)

1 2 3 4 5
0.0 13 12 5 12 8
0.25 24 19 7 11 7
0.5 187 82 25 29 28
0.75 1593 778 155 148 289
1.0 - 6006 5088 4230 7785

Table 5.11: Results for VGGMax; ;5 and added noise to attack set on RD.
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Figure 5.8: PGE of VGG ;5 for adding various noise factors a € {0.1,0.2,0.3,0.4}, for various number of convolutional layers in a block on

ASCADY?

Noise (@) Conv layers in a block

1 2 3 4 5
0.0 23 25 27 30 35
0.1 199 135 127 127 117
0.2 - 241 245 221 234
0.3 - 683 1197 762 674
0.4 - 2983 4581 2608 2941

Table 5.12: Results for VGG 15 with different noise levels for ASCAD%)
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Figure 5.9: PGE of VGG ;5 for adding various noise factors a € {0.1,0.2,0.3,0.4}, for various number of convolutional layers in a block on
ASCADI0
. Conv layers in a block
Noise (@) Y
1 2 3 4 5
0.0 23 29 22 23 29
0.1 184 205 150 168 196
0.2 - 856 283 238 208
0.3 - - 3386 2694 1361
0.4 - - - 9929 6231

Table 5.13: Results for VGG, 15 with different noise levels for ASCADE)0
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the results of VGG 15 using the datasets RD, ASCAD}), and ASCAD)Y°. In only one setting increasing the
number of layers did not result in better performance. For all other experiments, we have shown by using
either, traces with and without noise, that increasing the depth of a network makes the networks more robust
and decreases the CGE. For the results where the CGE is already low, we see that the deeper networks are
more robust to noise. Furthermore, we have noticed that as the length of the artificial delay increases (thus
datasets ASCADISDO and ASCAD})OO), deeper networks perform better on noisy traces.

5.3.3. Experimental Results Kernels and Convolutional Layers

So far we have analyzed the influence of the kernel size using a fixed number of convolutional layers in a
block, and the influence of the number of convolutional layers in a block by fixing the kernel size. In this
section, we will have neither the kernel size nor the number of convolutional layers fixed and will vary both.
By doing so, we aim to gain an understanding of the relation of kernel size and number of convolutional layers
in a block and provide us with enough information to answer RQ 4..

As we will vary the kernel size and number of convolutional layers in a block we will gain more under-
standing of the influence of hyperparameters. Therefore, these findings help us to provide a more detailed
answer for RQ 2. and RQ 3..

For the experiments performed in this section, we use the same settings as discussed in the previous sec-
tion (listed in Table 5.1) and start the experiments with VGG; ., the values for [ and k are listed in Table 5.14.
Again, we consider the three datasets where the traces are obtained from an AES implementation with a ran-
dom delay countermeasure, namely RD, ASCAD?Y, and ASCADIIJOO. In this section, we depict the results in a
heatmap. In these figures, the vertical axis represents the kernel size and the horizontal axis the number of
layers from the CNN. Furthermore, on the right side of these figures, a legend is show2n that highlights which
metric is used in the figure.

#Layers Kernel sizes #Layers Kernel sizes
1 100, 50, 25, 20, 15, 10,7, 5, 3 6 15,10,7,5,3
2 100, 50, 25, 20, 15, 10,7, 5, 3 7 10,7,5,3

3 50, 25, 20, 15,10,7,5,3 8 10,7,5,3

4 25,20, 15,10,7,5 9 10,7,5,3

5 20,15,10,7,5,3

Table 5.15: Additional architecture settings for RD
Table 5.14: Varying architecture settings

Dataset RD

In Figure 5.10a we depict the CGE of the experiments in a heatmap. From a kernel size perspective, the
best performing models are the ones that have the largest kernel size in each layer. From the number of
convolutional layers perspective, our observations are a bit different. For a kernel size of three and five, we
see no significant improvement in the CGE when adding more layers. However, with a kernel size bigger than
five we see that adding layers decreases the CGE and thus increases the attack efficiency.

When considering more than five layers we see that the highest kernel sizes are filled with blanks. This
means that in at least one of the five folds the model was not able to successfully recover the key. In these
cases, there was indeed one model that was not able to extract the key successfully. These models were not
able to recover the key because they were "stuck" learning, meaning that the validation loss does not change
over the epochs. We believe this problem occurs because the models experience the vanishing gradient prob-
lem, which occurs because the architecture consists of a combination of too many layers and too-large kernel
size. Thus by adding more layers we see that the larger kernel size can not extract the key. For example, for
I =6 and k = 15 this is the first kernel size that is not able to recover the key for this number of layers. If we
add an additional layer, thus I = 7, we see that the highest kernel size that can recover the key is k = 7. For
1 =9, we see that the highest kernel size that can recover the key is k = 5. Another outlier we see in this figure,
iswhen / =4 and k =5, here, a similar situation occurs as the just described problems, there was one model
which was not able to recover the key. It is however not clear why this happens specifically for these values.
For the last outlier we discuss, we look at the CGE and accuracy of VGGg 15 in Figure 5.10a and Figure 5.10a.
For this setting, the accuracy is highest of all networks, but the CGE shows that not all models were able to
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Figure 5.10: CGE and accuracy of the VGG trained with L2-penalties A € {0,0.05,0.005} on the dataset RD.

recover the key. Further analysis showed that one network did not converge and was therefore not able to
recover the key.

In the previous sections, we have experimented with different values for an L2-penalty. For a example
when A = 0.05, we observed that increasing the number of layers negatively impacts the CGE, while for
A = 0.005 we observed the opposite. Therefore we are interested in the influence of A, and thus perform
some experiments on the influence of L2-regularization in these settings. We apply the same L2-penalties as
the previous section and depict the CGE of an L2-penalty of 0.05 and 0.005 in Figure 5.10c and Figure 5.10e
respectively.
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When A =0.05 and / > 5 we see that no kernel size is able to retrieve the key. This indicates that increasing
the number of layers does not help in achieving a better classifier. This is consistent with what we have
observed in the discussion about the influence of the number of layers. Furthermore, we observe that the
CGE is similar when k > 10 and 1 < I < 4. When analyzing the accuracy over the entire attack set we notice
that the best performing classifiers are centered around / = 2 and k = 50. Increasing or decreasing the kernel
size or the number of layers results in decreasingly performing classifiers.

If we consider A = 0.005 we see that all models can retrieve the key. Additionally, we observe that an in-
crease in the kernel size results in a decrease in the CGE, and an increase in the number of layers depicts
similar behavior. However, when k = 3 we see no improvement when increasing the number of layers. Fur-
thermore, we observe that the best CGE is achieved by several combinations of high kernel sizes and many
layers. By analyzing the accuracy the difference between the models becomes more clear. The best models
achieve around 70% accuracy and are the ones where I =4 A k =25, and [ =5 A k = 20. Notice that these
kernel sizes are the highest kernel sizes we have tested in the respective number of layers. The models might
even perform better by increasing the kernel size although this might harden the learning process.

In the previous sections, we have used noisy traces when the guessing entropy is similar for the tested
hyperparameters. We have also done this for the settings discussed in this section. However, we do not
discuss them here, but show the results in Figure A.1 and Figure A.2 in Appendix A for interested readers.

Datasets ASCAD} and ASCAD”

Here we consider the two datasets of the ASCAD database, ASCAD?)0 , and ASCADg)O. In Figure 5.11 we depict
the experimental results, the CGE, and the accuracy of the architectures. Figure 5.11a depicts the CGE using
the attack traces without any noise. In this figure, we observe similar CGE for the architectures. However,
it seems that increasing the kernel size (for all values of [) results in better-performing models. The accu-
racy heatmap, depicted in Figure 5.11b, shows similar behavior, except that increasing the number of layers
increases the performance of the models as well. To observe a more significant difference in the CGE, we
resolve to experiments with the noisy attack traces.

The noise factor used for the experiments are a € {0.0,0.1,0.2,0.3,0.4,0.5}, however, here we only show
the results of the noise factor a € {0.0,0.2,0.3,0.4} since these are the most interesting. First, we will discuss
the influence of the kernel size. As the noise increases, we observe architectures with larger kernel sizes can
recover the key, while the lower ones can not. For example, for « = 0.2 A [ =1, a kernel size of 20 and larger
are the only networks that can recover the key. When analyzing the influence of the depth of the network, we
observe that deeper networks perform better. In Figure 5.11e this can be observed, when we look at the kernel
size five we see that only the networks that have four and five layers can recover the key. These observations
are in line with the previous sections and show that our conclusions were correct.

Figure 5.11e and Figure 5.11g, where a = 0.3 and a = 0.4 respectively, show that the best performing
architectures are centered around VGGs 5. Furthermore, we observe that as we increase the network depth,
from the networks that can recover the key, the ones where the kernel size is the lowest perform the best in
CGE and accuracy. For example, when a = 0.4 and [ = 2 we observe that 15 < k < 50 successfully recover
the key, and k = 15 has the lowest CGE. Similar behavior can be observed for different noise levels and the
number of layers. Note that, here we do not claim that lower kernel sizes perform better.

For ASCADg)0 we depict the experimental results in Figure 5.12 for the noise factors a € {0.0,0.2,0.3,0.4}.
The observations of the influence of the kernel size and depth of the network are similar to the observations
of ASCAD%). However, we still discuss these findings because we are interested in the difference between the
length of the random delay. The major difference we observe is the importance of the architecture’s depth.
When the length of the random delay increases, the deeper architectures perform better. This becomes clear
if we look at the results for ASCADSD0 and ASCADg)0 with a = 0.3 in Figure 5.11e and Figure 5.12e. Here, we
see that the shallow networks are able to recover the key for the dataset ASCAD%) but not for the dataset
ASCAD}Y".

In general for both datasets, we conclude that both the kernel size and depth of a CNN are important
for efficient attacks. A small kernel and shallow networks does not perform well. By increasing one of these
the attack efficiency increases as well. However, by using a large kernel size, around 20, we observe that all
number of layers perform efficient attacks. It is thus suggested to use at least a kernel size of 20 for SCAs
where a random delay countermeasure is present, additionally, at least two convolutional layers in a block
have to be used.



5.4. The Masking Countermeasure 55

CGE 100 6056 60.95 Accuracy (%)

5 Kso  59.56 50.63 6031 60
k25| 59.01 59.28 59.43 60.19 9
40
58
Ko| 5943 58.80 50.01 59.11 59.56

Kernel size
Kernel size

L3 L L2 3 L4 L5
Stacked layers Stacked layers per conv block

(a) CGEwith @ =0.0 (b) Accuracy with a = 0.0
467 CGE 19.53 Accuracy (%)
2500
22
K50 451 351 231 20.38 21.27
20
K25 568 257 222 232 2000 20.11 20.65 21.19
18
K20 352 261 228 211 170 20.16 20.94 21.10 21.47 16
2 E
» 1500 0
@ K15 - 197 181 199 174 @ 21.01 21.43 21.48 20.56 14
5 5
< = 2
K10 - 187 182 190 159 21.05
1000
10
K7 - 433 167 183 148
8
500
6
4

L L2 L3 L4 L5 L L2 3 L4 L5
Stacked layers Stacked layers per conv block

(c) CGEwith @ =0.2 (d) Accuracy with @ = 0.2

Figure 5.11: CGE of the VGG | trained on ASCAD%O attacking noisy traces with noise factors a € {0.0,0.2,0.3,0.4} (cont. on next page)

5.4. The Masking Countermeasure

In this section we analyze the influence of the kernel size and depth of the network for AES-implementations
with a masking countermeasure. We will use only one dataset for our experiments, namely ASCAD),. Fur-
thermore, we perform the same experiments as the previous sections, thus will use VGG; , to perform our
analysis. However, in this section, we will only give an overview of the guessing entropy and accuracy using
the heatmaps as shown in subsection 5.3.3.

5.4.1. Experimental Results

The experiments performed in this section are conducted with the architecture VGG . Like the experiments
for the random delay countermeasure, we vary the depth and kernel size of the architecture. To be precise,
the values for [ and k are listed in Table 5.14. The results are depicted in Figure 5.13, in which we depict
the guessing entropy after 10000 traces and the accuracy. We list the guessing entropy after 10 000 traces
because the learned models do not perform well. If they can retrieve the key, then they require around 9900
traces, and the difference in CGE is minimal. Figure 5.13a shows that deeper networks have more trouble
with recovering the key. Analyzing the kernel size, we observe that an increase of the kernel size results in a
better guessing entropy after the 10 000 traces, and some settings can recover the key consistently. However,
if we increase the kernel size too much, we see that it performs significantly worse than all other settings. For
example, we observe this in the settings where [ =3 A k = 25, and [ = 4 A k = 20. We think this occurs because
the kernel size is too high for the number of layers, and we again struggle with vanishing gradients.
Considering the accuracy, shown in Figure 5.13b, we observe somewhat different behavior. Similar to the
guessing entropy heatmap, we observe that adding more layers decreases the accuracy. However, for more
than two layers in a convolutional block we observe that the accuracy decreases, while in general the guessing
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Figure 5.11: CGE of the VGG trained on ASCAD%) attacking noisy traces with noise factors « € {0.0,0.2,0.3,0.4} (cont)

entropy improves. This could be explained by Picek et al. [41] which showed that accuracy is not best metric
in SCA.

The performance of the CNNs is far from the performance of Densegy (introduced in the previous chapter,
see Figure 4.9). The latter network is around nine times as efficient than the best-performing CNN. From
our results, it thus seems that CNNs are not suitable for attacking a masked implementation, while an MLP
network. Intuitively, we can explain these results by comparing a high-order attack with an MLP network.
In such an attack, two Pols are selected and multiply them to retrieve the intermediate value. In an MLP
network, similar behavior occurs. Since an MLP network is a fully connected network, each feature of a trace
is combined with all features, however, the network learns the weights it should assign to these features. Thus
if the network assigns proper weights to features, an MLP network could perform a higher-order attack.

5.5. Conclusions

In this chapter, we have discussed the influence of the kernel size and depth of an architecture for the two
main countermeasures: random delay and masking. Furthermore, we discussed the consideration between
the kernel size and the number of layers. First, we will discuss our experimental results for the hiding coun-
termeasure, and then the results for the masking countermeasure.

In general, we observe that increasing the kernel size is highly effective for SCA. The difference in CGE
can be significant, but we have also shown that similar CGE can be achieved by decreasing the proneness to
overfit. When the CGE was already low, we have shown by adding noise to the attack traces that the larger
kernel sizes result in better classifiers.

For the depth of the architecture we observed similar behavior; increasing the depth resulted in better
classifiers for SCAs. However, unlimitedly increasing the depth of a network does not increase attack effi-
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Figure 5.12: CGE of the VGG trained on ASCAD})OO attacking noisy traces with noise factors a € {0.0,0.2,0.3,0.4} (cont. on next page)

ciency. On the contrary, eventually, the classifiers fail to recover the key because they underfit severely. Simi-
larly, as for the kernel size, we have added noise to the attack traces if the CGE was similar for all architectures.
These results showed that an increase in the number of convolutional layers in a block results in better CGE.
However, there was one exception, which was on RD trained using an L2-penalty A = 0.05. With the analysis
of the kernel size versus depth of the network, it seems that this occurs because of L2-regularization. It seems
as if L2-regularization allows us to shift the center of best-performing architectures such that fewer layers are
required to achieve the best performing architectures. This becomes more clear when analyzing the accuracy
of these settings.

A comparison between the kernel size and depth of an architecture is hard to perform for both datasets
since the results were somewhat different. However, we have observed that the best results are achieved with
2<l=<4,and 15 < k < 50.

The results for measurements obtained from a masked implementation are different. All trained networks
were not efficient and mostly failed to retrieve the key. For this setting, adding more layers decreases the at-
tack efficiency and increasing the kernel size increases the attack efficiency. However, the gains of increasing
the kernel size are marginal. Additionally, we argue that MLP networks perform better than CNNs because
they are in some sense similar to a higher-order attack.
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Portability

In the SCA domain, most literature do not perform the attacks in a realistic setting. They are unrealistic
because the profiling and attack traces are obtained from the same device rather than two distinct devices.
Recent work has shown that the SCAs performed in such an unrealistic setting greatly overestimates the effi-
ciency of an attack [4]. Thus, this means SCAs in realistic settings are harder to perform.

In this chapter, we will examine a more realistic SCA setting, in which the collection of profiling and attack
traces is different as considered by most work. Specifically, the traces originate from the same device, but
the probe position has been changed in between the measurements of the profiling and attack traces. The
repositioning of the probe causes a difference between the profiling and attack traces. Although this is not
the most realistic setting, in which two distinct devices are used for the measurements, we believe this is an
interesting setting that could provide meaningful insights for more realistic settings.

The outline of this chapter is as follows. First, we discuss the dataset that we use for our experiments in
more detail, followed by a typical SCA using the traces from this dataset. Since the portability setting causes
the SCA to be ineffective, we analyze the difference between the profiling and attack traces in the following
section. Additionally, we propose a method that allows us to eliminate the difference between the traces. In
the next section, we show the proposed method enables the SCA to be successful. In the following sections,
we analyze the influence of the training size, and the number of epochs on the guessing entropy when using
the proposed method. Finally, we provide a conclusion of the observed results.

6.1. Dataset

The dataset used for the experiments is different from the datasets used in the previous chapters. The key
difference is that the probe has been repositioned in between the measurements of the profiling and attack
traces. The repositioning of the probe is in the order of millimeters and causes a difference in the profiling and
attack traces. Additionally, the datasets used in the previous chapters use the same key for profiling and at-
tacking. The dataset used in this chapter has randomized plaintexts and keys for the profiling measurements,
while a fixed key and randomized plaintexts have been used for the attack measurements. In subsection 2.6.4,
we provide more details about the origin and technical aspects of the measurements.

6.2. Portability Setting

To analyze if this portability setting influences the efficiency of an SCA, we perform an SCA on this dataset.
Moreover, for the attack, we consider the MLP network MLPy,. and train the network for 75 epochs with
40000 profiling traces, batch size of 256, a learning rate of 10~%, and intermediate value as leakage model. For
the attack phase, we have used 10 000 attack traces.

In Figure 6.1 we depict the guessing entropy, validation loss, and validation accuracy. From the guessing
entropy plot in Figure 6.1a, we observe the attack is not successful. The guessing entropy does not converge
to zero but is constant around 198, which could mean that increasing the attack set for the attack is not
beneficial.

If we only analyze the resulting guessing entropy, we could conclude that the network’s architecture is
suitable, and incorrect hyperparameters have been used. However, when analyzing the validation loss and
accuracy we see this hypothesis is not likely. From the validation loss and accuracy we observe no major
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Figure 6.1: Guessing entropy, validation accuracy, and validation loss when attacking a portability setting.

overfitting, which shows the validation loss and accuracy are close to the training loss and accuracy. This
thus means the network can accurately predict the profiling traces. However, when considering the attack
traces we observe the network is not able to recover the key, meaning the network’s predictions are incorrect.
We believe the difference between the network’s ability to predict the profiling and attack traces is caused by
the repositioning of the probe. In the following section, we will analyze the difference between the profiling
traces and attack traces.

6.2.1. Traces Analysis

As we believe the repositioning of the probe has a significant influence on the attack success, we analyze the
difference between the profiling and attack traces. By doing so we aim to observe characteristics that allow
us to develop a successful attack. To analyze the traces we determine the mean and variance of each feature
of the profiling and attack traces. In Figure 6.2 we depict the mean and variance of profiling and attack traces,
additionally, we plot the absolute difference between the mean and variance of the features. From the plot
of the means in Figure 6.2a, we observe that the profiling and attack traces have similar behavior but the
strength of the signal differs. The largest difference in the signal’s strength observed is around 40, which is
about one-sixth of the largest amplitude of the attack traces. In Figure 6.2b we observe similar differences,
the features’ variance of the profiling and attack traces are similar, but the variance differs. These differences
could explain why the attack performed in the previous section has not been successful.

The difference between the profiling and attack traces seem to be caused by the difference in mean.
Therefore we suggest to normalize the profiling and attack traces separately. By doing so we aim to min-
imize the difference between the profiling and attack traces. In Figure 6.3 we depict the difference of the
mean and variance between the datasets when using this method. For both the features’ mean and variance
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Figure 6.3: Difference of means and variances of the traces’ features when separately normalizing the datasets.

the difference has been reduced significantly. The difference in mean is almost equal to zero for all features,
for the variance there is no difference except for two features. Thus, by using this method the profiling and
attack traces become similar, which might make a deep learning SCA possible. In the following section, we
perform an SCA using this method.

6.3. Normalized Attack

For the attack we use identical hyperparameters as discussed in section 6.2, however, for this attack we use the
proposed normalization method to eliminate the difference of the profiling and attack traces. Thus, before
the profiling phase, we normalize 40 000 profiling traces and 10 000 attack traces separately. In Figure 6.4 we
depict the guessing entropy using the proposed method, from this figure we observe the attack is extremely
successful. Typically, we require at most two traces to recover the key, although when using a single trace we
are almost certain the correct intermediate value has been predicted, and thus the correct key. The accuracy
of the attack traces is around 99.8%, which explains the resulting guessing entropy.

The attack success shows the proposed method is efficient for settings where the probe has been moved
in between measurements of the profiling and attack phase. However, arguing a single trace is required for
the attack is not correct since 10 000 traces have been used to normalize the attack traces. To create a correct
analysis of the amount of traces required to recover the key we should normalize a subset of the attack traces
and calculate the guessing entropy with the normalized subset. In the following section, we will discuss how
to calculate the guessing entropy when using the proposed method. Since the method achieves efficient
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SCAs in this portability setting, we are interested in the attack efficiency when considering different leakage
models, amount of profiling traces, and epochs. To analyze the efficiency we first create a baseline, with
which we compare the efficiency of various hyperparameters configurations.

6.3.1. Guessing Entropy Calculation

To avoid confusion between the guessing entropy as discussed in chapter 2 and this section, we denote the
former as GE and the latter as NGE. The NGE for 7 attack traces is equal to the average of the GE of 100 subsets
of n arbitrary traces from the attack set (for each subset we thus select n arbitrary traces). Thus, to create an
accurate view of the GE, the NGE for a range of n attack traces has to be calculated. More specifically, we
denote the entire attack set as T, and n as the number of traces used to perform an attack. To calculate the
NGE for n traces we average the GE at trace n by performing the following algorithm 100 times.

First, randomly select n traces from the attack set T,;, we denote this subset as T)?. Then, normalize T
using the traces in this subset, which we will denote as Tg Finally, using the learned neural network we
generate predictions for 7 and use these to calculate the GE. For the remaining part of this chapter we refer
to the NGE as guessing entropy.

6.3.2. Baseline

To accurately observe the influence of the proposed normalization method when using the leakage models
HW and ID, the amount of profiling traces, and epochs, we first develop a baseline for both leakage models.
To create the baseline for both leakage models we require the optimal setting in which we obtain a "perfect"
network. We define a "perfect” network as a network that can predict all the traces correctly with large con-
fidence (i.e. the network assigns a high probability to the correct value). In the intermediate value model,
such a "perfect" network allows us to recover the key using only a single trace, thus it enables us to determine
the influence on the guessing entropy when using the proposed normalization method. For the HW model,
the amount of attack traces required to recover the key with a "perfect" network depends on the key under
attack. For an HW of 4 there are 70 possible keys, thus with a single trace it is not possible to recover the key,
while for an HW of 0 and 8 it is possible since the only possible key is zero. We ignore this problem because it
is inherent to the HW model and is also present in a real attack. Thus for intermediate value and HW model
we establish a baseline by using a "perfect" network. These baselines provide us with insights on the amount
of traces we minimally require to recover the key.

As shown in section 6.3 the network was able to predict almost all attack traces correctly. We have used
this network to create the baseline when using intermediate value as leakage model since this network is near
"perfect". When using HW as leakage model we have trained a network with identical settings as the "per-
fect" network when attacking the intermediate value. This network performs similar and predicts almost all
attack traces correctly when using a large attack set. Figure 6.5a and Figure 6.5c depict the resulting guessing
entropy of the "perfect” model for intermediate value and HW model respectively. For intermediate value
model, we observe that around 13 traces are required to constantly reach a guessing entropy of zero, while
for Hamming weight model we require 20 traces. In Figure 6.5b and Figure 6.5d we depict the accuracy for
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Figure 6.5: Guessing entropy and accuracy baseline for both leakage models

both leakage models. In these figures, we observe that increasing the amount of traces for the normalization
increases accuracy. For both leakage models, we observe close to 100% accuracy when using 200 traces for
the normalization.

6.3.3. Experimental Settings

We aim to analyze the proposed method’s influence when we do not have a "perfect" model. This allows
us to analyze the attack efficiency in less favorable conditions. Therefore, we use configurations in which
we reduce the amount of profiling traces, and reduce the number of epochs. These configurations allow
us to learn networks that are not able to achieve around 100% accuracy. The hyperparameters we use for
these experiments are listed in Table 6.1, each experiment is a combination of the values listed in this table.
Furthermore, to calculate the guessing entropy of an experiment we use the following amount of attack traces
{1,2,3,4,5,6,7,8,9,10,11,12,13, 14,1520, 25,50, 100, 200}.

Batchsize LR Training sizes Epochs Leakage models

256 le-4 {1000,2000,5000,10000,20000} {10,25,50,75} {HW,ID}

Table 6.1: Hyperparameters for imperfect model experiments
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Figure 6.6: GE and accuracy when using different training sizes and intermediate value as leakage model. (cont. on next page)

6.3.4. Experimental Results

First we discuss the results for intermediate value followed by the results for HW. In Figure 6.6 and Figure 6.7
we depict the guessing entropy and accuracy of the networks using intermediate value as leakage model
trained with the discussed hyperparameters. Note, we do not depict the results for networks (for both inter-
mediate value and HW) which are trained with 20 000 training traces since the results for this configuration
are similar to the baseline.

For the networks using intermediate value as leakage model and trained using 1000 traces, we depict the
results in Figure 6.6a, we observe an increase of epochs results in a decrease of guessing entropy and thus
positively affects the efficiency of the attack. Although there is a significant difference in accuracy between
the baseline and the network trained for 75 epochs, the difference in guessing entropy is small as well. For the
network trained with 75 epochs, around 60 traces are required to recover the key. We observe similar behavior
when the networks are trained with 2000 traces, however, the influence of epochs on the guessing entropy
is significantly decreased in comparison with the networks trained with 1000 traces. When we analyze the
accuracy, the influence of the number of epochs becomes visible; increasing the number of epochs increases
accuracy. When comparing this setting to the baseline, we observe the networks trained with 50 epochs or
more perform similar to the baseline. Increasing the training size further to 5000, as depicted in Figure 6.6€,
shows the influence of the number of epochs is minimal and only visible if the network is trained for 10
epochs. Finally, when training the networks with 10000 traces the resulting guessing entropy is similar for all
epochs. Networks trained with 10 epochs achieve to lowest accuracy but still achieve similar performance as
the baseline.

The results when using the HW model for the networks are depicted in Figure 6.7. The results are similar
to the intermediate value model, however, HW model is more efficient than intermediate value when trained
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Figure 6.6: GE and accuracy when using different training sizes and intermediate value as leakage model. (cont.)

with less profiling traces and epochs. This is visible in Figure 6.7a, where we show the networks trained with
25 or more epochs can recover the key. When using intermediate value we require at least 50 epochs to re-
cover the key. The results become similar to the baseline when the networks are trained with 5000 traces. Like
networks trained with intermediate value, we observe the accuracy is not close to the baseline, but the guess-
ing entropy is almost identical to the baseline. Since these networks are as efficient as possible, increasing
the training size even further does not improve the attack efficiency. The only difference that can be noticed
is an increase in accuracy, as depicted in Figure 6.7e and Figure 6.7g.

In general, from the depicted results for both intermediate value and HW we make two observations: 1)
training with more epochs increases the attack efficiency, and 2) increasing the training size the networks are
more efficient and achieve better guessing entropy. This is similar to the settings we have previously seen for
unprotected implementations.

6.4. Conclusions

From our results we observe the probe position has a significant influence on an DL SCA, such that the attack
is not possible. When analyzing the profiling and attack traces we observe differences between both the
features’ mean and variance. We observe that the key difference between the profiling and attack traces is
the signal’s strength which causes the difference in the traces. We believe this causes the typical DL SCA to be
ineffective.

To counter the difference in the signal’s strength we propose to normalize the profiling and attack traces
individually. By doing so, the features of both datasets have zero mean and unit variance. If the datasets’
traces have the same characteristics the attack should be successful. In this chapter we have shown that using
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Figure 6.7: GE and accuracy when using different training sizes and HW as leakage model. (cont. on next page)

this method a successful SCA can be performed in such a portability setting. However, this method causes an
incorrect image of the guessing entropy because the selected attack traces are required for the normalization.
Therefore we introduce a method to correctly calculate the guessing entropy when using this normalization
method.

Additionally, we have analyzed the efficiency of the normalization method in multiple settings. To do so
we have first analyzed the efficiency of the "perfect” network for the leakage models intermediate value and
hamming weight. For both settings we require at most 20 traces to recover the key. In the other settings, in
which we vary the training size and amount of epochs, we observe that attack is more efficient when trained
with more traces and for more epochs. This is in line with a typical SCA, which thus shows the proposed nor-
malization method allows us to bridge the gap between the non-portability and portability setting discussed
in this chapter.

When discussing more realistic scenarios, in which the profiling and attack traces are obtained from dif-
ferent devices, the proposed method could make SCAs more efficient. In such a setting, it is near impossible
to position the probe such that it is identically positioned for the copy and attack device. This difference will
cause differences in the measured strength of the signal. Therefore, using the proposed normalized method
would theoretically improve SCA efficiency in a portability setting, but future work is required to confirm this.
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Conclusions, Limitations and Future Work

The key goal of this thesis is to improve the efficiency of deep learning side-channel attacks. To do so, we have
identified problems in this research area and posed related research questions. To answer the posed ques-
tions, we have conducted experiments related to the questions which provided us with meaningful insights.
In the following sections, we provide a conclusion and summary of this work, answer each research question
individually, discuss the limitations of our work, and propose future work.

7.1. Conclusions

We have found that there is no need for a deep learning layer specifically designed for unprotected SCAs.
From the conducted experiments, in which we compared the efficiency of the spread layer and already es-
tablished layers (like MLP), we observed that the established layers are more efficient than the spread layer.
Furthermore, we identified errors in the specification of the spread layer and proposed solutions to correct
these errors. From the conducted experiments with the improved versions of the spread layer, we observed
that the established layers are more efficient than the improved versions. Additionally, improving the attack
efficiency of the established architectures even further is difficult since there is little room for improvement.
We found that training network architectures using 1 000 traces is sufficient to recover the key in a few traces.
Because of these findings, we conclude that there is no need for a deep learning layer specifically designed
for side-channel attacks.

For the random delay countermeasure, we asked how the kernel size and depth of a network architecture
influence the attack efficiency. From the conducted experiments in this work, we show that an increase in
either of the two results in more efficient attacks.

More specifically, the attack efficiency is improved significantly when using a large kernel size in com-
parison with a small one. However, for some datasets, there is a maximum kernel size which provides the
most efficient attack. Increasing the kernel size further decreases the attack efficiency. We believe that the
maximum kernel size was not found for some datasets because of computational constraints. Furthermore,
increasing the network’s depth exhibits similar behavior as observed for the conducted experiments with the
kernel size. Thus, adding convolutional layers improves the attack efficiency such that fewer attack traces are
required to recover the key. However, adding too many layers is not beneficial and results in failed attacks.
Additionally, we conducted experiments with noisy attack traces when there was no room for improvement
of the attack efficiency. These experiments showed that increasing the kernel size and depth of the network
architecture makes the networks more robust to noise. Finally, we compared the trade-off between the kernel
size and depth of the network. Here, we conclude that increasing the network’s depth is more beneficial than
increasing the kernel size since similar results can be achieved with a deeper network in less time. However,
when adding more convolutional layers decreases efficiency, increasing the kernel size improves the attack
efficiency.

The experiments conducted for the random delay countermeasure have as well been conducted for the
masking countermeasure. The experimental results with a masking countermeasure are significantly dif-
ferent from the results from a random delay countermeasure. This difference shows that CNNs are highly
suitable to counter the random delay countermeasure. The largest part of the attacks on the masking coun-
termeasure were unsuccessful. Adding additional layers to the network decreases the attack efficiency sig-
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nificantly. The best results were obtained when using a single stacked convolutional layer. Furthermore, the
influence of the kernel size is limited, but an increase in kernel size generally improves the attack efficiency.
More importantly, we argue that MLP networks are more suitable for an attack on the masking countermea-
sure. In a high-order attack, an attacker combines each Pol with each other, which is similar to the math-
ematical functions applied in an MLP network. The difference between an attack using a CNN or MLP is
significant, where the MLP outperformed CNN by several orders of magnitude.

Lastly, we have discussed a portability setting for which the traces are obtained from the same device,
but the probe has been repositioned in between the measurements of the profiling and attack traces. We
show that repositioning the probe has a significant influence on the attack, and makes a typical DL SCA
unsuccessful. The attack fails because of a difference between the profiling and attack traces. Therefore we
introduce a method that eliminates this difference. Using this method, we show an SCA is possible, and
effective as well. To analyze the influence of this method for SCAs, we first develop a baseline which we use
to make comparisons. Then we conduct experiments that highlight the influence of the training size and
amount of epochs. The experimental results show typical behavior for SCA, providing more training traces
and training for longer, both increase the attack efficiency. Thus we observe that our method allows us to
perform typical DL SCAs in a portability setting.

7.1.1. Research Questions
In the previous section, we have provided a summary and conclusion of the experimental results. In this sec-
tion, we answer each research question individually as posed in chapter 3.

RQ 1. Is there a need for a sepcial designed layer for side-channel attacks on unprotected
implementations?

A 1. No, there is no necessity for a specially designed deep learning layer for side-channel at-
tacks on unprotected implementations. We compared the attack efficiency of neural networks
that utilize a spread layer and that do not. The comparison revealed that networks without
the spread layer recover the key in fewer traces. Networks with the enhanced variants of the
spread layer did not outperform networks without a spread layer. Additionally, the comparable
architectures retrieve the key in several traces, hence improving the attack efficiency further is
difficult.

RQ 2. What is the influence of the kernel size of CNNs in a side-channel attack where the
random delay countermeasure is present?

A 2. The kernel size’s influence is two-fold. Increasing the kernel size increases the attack
efficiency by several orders of magnitude. However, for each data set, there is a maximum ker-
nel size, increasing the kernel size further decreases the attack efficiency. Additionally, a large
kernel is more robust to noisy traces than a small kernel.

RQ 3. What is the influence of the stacked convolutional layers of a CNN in a side-channel
attack context where the random delay countermeasure is present?

A 3. The influence of the amount of stacked convolutional layers is twofold. Adding addi-
tional convolutional layers increase attack efficiency. However, too many convolutional layers
cause the network to not converge, which causes the attack to fail.

RQ 4. What is performance tradeoff between the kernel size and stacked convolutional layer-
sof CNNs in a side-channel attack context where the random delay countermeasure is present?

A 4. From our results, we conclude that adding more stacked convolutional layers achieves
better attack efficiency. However, using a low kernel size like three hampers the efficiency.
When increasing the kernel size big improvements in attack efficiency can be obtained.

RQ 5. What is the influence of the kernel size of CNNs in a side-channel attack where the
masking countermeasures is present?

A 5. The kernel size’s influence on the guessing entropy is minimal. Nevertheless, large
kernels can make the difference between a successful and unsuccessful attack. However, a too
large kernel hampers the convergence of the network such that the attacks fail.
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RQ 6. What is the influence of the stacked convolutional layers of a CNN in a side-channel
attack context where the masking countermeasures is present?

A 6. A single stacked convolutional layer provides the best results in terms of attack effi-
ciency. Adding additional layers decreases the attack efficiency to the degree that the networks
fail to recover the key.

RQ 7. What is performance tradeoff between the kernel size and stacked convolutional layer-
sof CNNs in a side-channel attack context where the masking countermeasure is present?

A 7. Increasing the kernel size has the most noticeable positive influence on the attack ef-
ficiency while increasing the number of convolutional layers decreases the attack efficiency.
Moreover, networks that employ additional convolutional layers need a smaller kernel size than
networks with less convolutional layers. However, the kernel size has a significant influence on
networks that utilize additional layers, hence the kernel size must be carefully chosen.

RQ 8. Does the repositioning of the probe in-between measurements create a problem for a
side-channel attack? And if so, what can we do to fight this problem?

A 8. Yes, repositioning the probe in-between measurements generates a difference between
the profiling and attack traces such that a deep learning side-channel attack fails. Resolving
the difference of the profiling and attack traces can be achieved by normalizing each dataset
individually. Conducting an attack with the normalized makes the deep learning side-channel
attack successful.

7.2. Limitations
Although the work performed in this thesis has provided guidelines for future deep learning SCAs, there are
some limitations. In this section we discuss these limitations.

In the deep learning domain, there is no real understanding of how a deep learning network performs
classification. Hence, deep learning networks are considered as black-box algorithms. It is thus troublesome
to develop network architectures that are suitable for specific datasets, and the best performing networks
are usually discovered by conducting many experiments. Although in this work we distinguish datasets with
comparable characteristics, there is no guarantee that the recommendations of this work are suitable for sim-
ilar datasets. Our recommendations are intended to be a primary starting position that provides reasonable
efficient attacks. To discover the best performing networks, it is still required to conduct experiments with dif-
ferent hyperparameter configurations. Moreover, we can not explain the network’s predictions, hence there
is no guarantee that our recommendations provide a reasonable starting point for an SCA.

Additionally, our recommendations for CNNs might not be valid for all CNN architectures since we con-
ducted experiments using a fixed architecture skeleton. Conducting experiments that cover all imaginable
architectures of CNNs is computationally infeasible, and thus suggesting to utilize a large kernel size and
deep network for all CNNs’ types is not possible.

As discussed in chapter 6, most literature does not perform SCAs in a realistic setting and use the same
device for the profiling and attack phase. Related works state that SCAs in this setting greatly overestimate
the attack efficiency. In our work, we have used datasets that were obtained from the same device, which
thus suggests that we overestimate the attack efficiency of our attacks. Moreover, there is no guarantee that
our recommendations are valid in this portability setting. Additionally, in a real-world scenario, where the
adversary performs an attack on a real target device, there are usually some limitations. Real-world devices
typically employ a countermeasure which limits the number of possible measurements. As a result, fewer
measurements are accessible in the profiling phase, which toughens deep learning SCAs as well.

7.3. Future Work

In our work we have proposed recommendations that boost the efficiency of deep learning SCA, however,
more work can be done to improve the efficiency and explainability of deep learning SCAs further. In this
section, we discuss possible future work directions.

The deep learning community regularly introduces novel deep learning architectures that outperform
state-of-the-art architectures. New research should study if these architectures outperform state-of-the-art
results in the side-channel domain. Interesting architectures are those that perform well for a type of coun-
termeasures. For example, ResNet is a DL architecture that is not studied by the SCA community. In other



72 7. Conclusions, Limitations and Future Work

domains, research has shown that this architecture performs well and could thus potentially work for DL
SCAs.

From the experimental results shown in chapter 4, we observed that an MLP network, Densepgy, was able
to successfully recover the key of ASCAD), in a few traces. We showed in chapter 5, that only a few CNNs
were able to retrieve the key. These insights make us believe that MLP networks are more efficient than CNNs
when attacking a masked implementation of AES. Additionally, we argued that in essence, an MLP network is
capable of performing a higher-order attack. Future work could compare the efficiency of MLP networks and
CNNs in diverse settings. Besides this, new studies could research a more theoretical approach to verify if an
MLP network is similar to a high-order attack.

In chapter 5, we observed that applying L2-regularization is useful when networks overfit and networks
trained with an L2-penalty performed the most efficient attacks. Additionally, our results suggest that L2-
regularization influences the attack efficiency such that less deep CNNs are required. If future work confirms
arelation exists between the used L2-penalty and network’s depth, the training time could be reduced. As are-
sult, no high-end computers are necessary to perform an attack, which would increase the attack surface. To
analyze the influence of L2-regularization, similar experiments as discussed in chapter 5 can be performed.

The portability setting we have considered in this work is not the most realistic since only the probe has
been moved in between the measurements of the profiling and attack traces. In the most realistic setting,
the measurements are obtained from two different devices. Future work could investigate if the proposed
normalization method is successful in this setting. Comparing experimental results from experiments with
and without the normalization method provide insights to its success.

Furthermore, the proposed normalization method has only been used to attack an unprotected AES im-
plementation. Since the traces of protected and unprotected implementations have distinct characteristics,
the normalization method’s effect is different. For example, traces obtained from an AES that implements a
random delay countermeasure have higher variance, therefore a large amount of traces are required to es-
tablish a representative mean and variance. Further work should research if attacks with the normalization
method are successful, and if so, determine the number of traces required to conduct efficient attacks.
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CNN Results

Here we show the experimental results for the architecture VGG ;. with an L2-penalty A = 0.05 using the noisy
attack traces, and VGGMax; ;. using the noisy attack traces.

A.1. L2-regularization

In Figure A.1 and Figure A.2, we show the CGE and accuracy of VGG ;. From the CGE we see for each depth
of a network that, increasing the kernel size provides lower CGE, and thus we recover the key faster. When
adding more noise to the attack traces we observe that the shallow networks with a big kernel size perform
the best. This is also visible in the plots of the accuracy because the accuracy is highest with the larger kernel
sizes.

A.2. Max Pool

In Figure A.3 and Figure A.4, we depict the CGE and accuracy of the networks VGGMax; ;. with noisy attack
traces. Here we observe that as we increase the noisy the networks with a larger kernel size perform the
best. However, here we observe that the deeper networks also perform better. We believe these results occur
because we did not apply L2-regularization in this setting.
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