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REVIEW ARTICLE

Surgical process modelling strategies: which method to choose for
determining workflow?

Maryam Gholinejad, Arjo J. Loeve and Jenny Dankelman

Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of
Technology, Delft, the Netherlands

ABSTRACT
The vital role of surgeries in healthcare requires a constant attention to improvement. Surgical
process modelling is an innovative and rather recently introduced approach for tackling the
issues in today’s complex surgeries. This modelling field is very challenging and still under
development, therefore, it is not always clear which modelling strategy would best fit the needs
in which situations. The aim of this study was to provide a guide for matching the choice of
modelling strategies for determining surgical workflows. In this work, the concepts associated
with surgical process modelling are described, aiming to clarify them and to promote their use
in future studies. The relationship of these concepts and the possible combinations of the suit-
able approaches for modelling strategies are elaborated and the criteria for opting for the
proper modelling strategy are discussed.
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Introduction

Improvement of the surgical and interventional pro-
cedures for treatment of different diseases is a world-
wide constant goal of various researchers with
different expertise. As a result of the introduction of
advanced technologies and tools, treatment proce-
dures have become more and more complex, involv-
ing complex logistics, much technology, and large
teams. Furthermore, procedures are also highly
dependent on various factors, such as: the surgeon’s
skills and preferences and patient-specific properties,
including patient health condition and clinical history,
as well as type, location, number and size of the treat-
ment areas. These variations make each surgical pro-
cedure unique, which adds to the inherent complexity
of surgeries and consequently to their improvement.

Due to surgical uniqueness and complexities,
attempts for improvement of surgical procedures by
development of e.g., artificial intelligence (AI), new
devices, etc., and enhancement of surgical team skills
might be inefficient or remain unused in clinical prac-
tice as it is difficult to find the true bottlenecks and
parameters for improvement. As a part of these devel-
opments, in recent years employment of Artificial

Intelligence (AI) in the operating rooms has attracted
attention. AI is a challenging field that has the poten-
tial to improve surgical procedures, either via surgeon
feedback or by automating technical tasks in the oper-
ating room. In both cases, machine learning (ML) can
aid to make highly reliable decisions in real time, and
to perform tasks by surgeon properly. Data are the
foundation for ML; however, the complexity of surgi-
cal treatments makes interpretation and management
of the huge amount of data difficult. Dividing a surgi-
cal procedure into a sequence of identifiable and
meaningful tasks aids improvement of different
aspects of ML, including data acquisition, data stor-
age, data analysis, etc.

The concern of finding the structural coherence of
complex surgical procedures and obtaining profound
qualitative and quantitative understanding of the rela-
tions between different surgical procedures has resulted
in the start of methodical analyses of surgical procedures
in 2001 [1]. Since then, surgical process models have
increasingly been studied to grasp an understanding of
various procedures and to attempt improving their effi-
ciency, efficacy or quality. Different methods of AI can
greatly benefit modelling of surgical procedures. These
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methods, including ML, artificial neural networks, com-
puter vision and natural language processing, are used to
establish surgical workflows and to build surgical process
models, as was shown in [2,3]. Such methods can auto-
mate and increase accuracy of different steps of data
acquisition, analysis and modelling for a reliable process
modelling. They also provide input for human designers
to clearly visualize workflows, making easy-to-interpret
models and visualizing relations and patterns between
extensive sets of actions and decisions. So far, different
studies have aimed at the investigation of employing sur-
gical procedure models for various purposes, such as sur-
geon skills evaluation and training [4–8], analysing
clinical team workload [9,10] optimization of operating
room (OR) management [11–13], introduction of new
technologies [14–16], predicting next surgical task
[17,18], and predicting surgery duration [19,20].

Two previous review papers [21,22] cover the rele-
vant concepts of surgical process modelling. However,
due to the complexity of the field, the dependencies
between these concepts and the criteria for selection of
the most suitable modelling strategy are not clear. The
aim of this paper is to provide a guide on how to select
the best strategy for modelling surgical procedures.
Therefore, we will provide essential details of different
modelling concepts that should be considered when
attempting to conduct surgical process analyses.
Moreover, a new classification of the possible combi-
nations of the involved concepts in surgical process
modelling is provided to show how the selections
depend on each other. Finally, an application of the
modelling strategies in a clinical study demonstrates
how the presented concepts can be used in real studies.

Methods

A literature search was carried out in Scopus
[www.scopus.com]. Keywords and their synonyms
and alternative spellings were included in the search

by using Boolean operators and wildcard characters.
The search query used to search titles and abstracts
was: ( (surg� OR therap� OR "operating room") AND
("workflow analysis" OR "process model�" OR "work-
flow model�" OR "hierarchical decomposition�") ) OR
“surgical ontology”. As some terminologies are com-
mon between different fields or have different mean-
ings, the articles with terms ‘animal’ and ‘surge’ were
excluded. The search included articles written in
English and conference proceedings between January
2000 and 1st August 2018.

Inclusion criteria were defined to limit to studies
that focused on any attempt aiding to extract the
sequential pattern of surgical tasks in the operating
room. The inclusion criteria were used to select the
publications first based on their title and then on their
abstracts. Extra sources were added from the references
of the selected publications (backward snowballing).
Moreover, relevant publications from the same authors
were also considered as extra sources. As a result, a
total of 168 publications were selected. Because of the
limited number of references allowed by the journal,
only the most relevant references were selected per
presented concept as examples of groups of references
with similar focus/approach. Figure 1 shows the result
of the literature selection procedure.

Modelling strategies

A surgical procedure can be defined as a set of
sequential and parallel activities, executed by clinical
and technical team members with different expertise,
through preparing and using equipment and tools
with the ultimate goal of high-quality treatment of a
patient without complications. In 2001, MacKenzie
et al. [1] for the first time described a surgical proced-
ure as a sequence of steps: a workflow. Later, various
researchers worked on modelling surgical procedures,
resulting in the introduction of new modelling

Figure 1. Literature selection procedure and results.
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strategies, each with its own specifications, advantages
and limitations. These modelling strategies are charac-
terized each by their own granularity levels, data
acquisition methods, modelling approaches, model
representation, modularity design and generalization.
An ontology, proper terminology, and definitions for
surgical process models, facilitate the comprehension
of models that assist the analysis.

Ontologies, which are explicit and formal descrip-
tions of all the entities of the procedure, largely bene-
fit managing information involved in surgery. These
unique ontologies can be used to assign semantics to
data, establish easy-to-interpret models, share infor-
mation between possible developed software and dif-
ferent studies. Bridging the gap between the field of
ontology and surgical process models led to the intro-
duction of different surgical ontologies, e.g., [23,24].
Ontologies reduce the complexity of modelling and
increase model usability and efficiency. The urgency
and usefulness of sharable, easy-to-interpret and easy-
to-update surgical process models has recently
attracted particular attention from the expertise in the
field to reach a standard and comprehensive ontology
in surgical process models [25].

Due to the diversity of modelling strategies,
numerous combinations can be used for the proced-
ure analysis. Which combination should be used
depends directly on the purpose of the study to be
conducted. In the rest of the paper, we refer to differ-
ent modelling strategies (granularity levels, data
acquisition, model representation, etc.) as different
concepts. Each concept has different characteristics
(manual and computer-based in data acquisition or
top-down and bottom-up in modelling approach) and

we refer to these as aspects of a concept. Aspects can
contain different methods, such as observation in
manual data acquisition or workflow diagrams in
numeric model representation.

There are five concepts that need be considered
when choosing a workflow modelling approach.
These concepts are interconnected and selection of
one might affect the choices left for the others. In
Table 1, the involved concepts are defined, their dif-
ferent aspects are listed, and contributing factors for
selection of the proper aspects are proposed. These
concepts are further discussed in the following
sub-sections.

Granularity level

The description of a procedure can be done at differ-
ent levels of detail and abstraction: granularity levels.
The concept of granularity levels for description of a
surgical procedure was first used by MacKenzie et al.
[1]. They referred to it as a hierarchal decomposition
of a surgical procedure and defined the different lev-
els of granularity (from low to high) as ‘procedure’,
‘step’, ‘substep’, ‘task’, ‘subtask’ and ‘motion’. Note
that more details result in higher granularity levels or
lower levels of abstraction and vice versa. Lalys &
Jannin defined different granularity levels as
‘procedure’, ‘phase’, ‘step’, ‘activity’, ‘motion’ and
‘low-level information’ [22]. Other terminologies are
also used for different levels of granularity such as
surgical episode [26], surgical deed [27], gesture [28],
high-level task [2], low-level task [19], etc. Regardless
of the specific terminology used for the different

Table 1. Modelling strategies concepts, definitions and dependencies.

Concept
Definition

Criteria and dependenciesAspects

A. Granularity level

B. Data acquisition

C. Model representation

D. Modelling approach

E. Generalization

� Description of the procedure at different levels of detail/abstraction. � Purpose of study
� Data acquisition� Low to high

� Acquiring data of surgical procedure for modelling and analysis. � Purpose of study
� Granularity level
� Modelling approach
� Benefits and drawbacks
� Available equipment and recourses

� Manual/Computer-based

� Representation method of modelling surgical procedure � Purpose of study
� Data acquisition
� Benefits and drawbacks

� Descriptive/Numeric

� Direction of modelling (from low to high granularity levels or vice-versa) � Data acquisition
� Granularity levels
� Benefits and drawbacks

� Top-down/Bottom-Up

� Surgical procedure analysis and generalizing the model. � Purpose of study
� Similarity metrics
� Statistical analysis
� Data mining and data warehousing
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granularity levels, there are two factors that determine
which granularity levels should best be chosen:

Purpose of the study: The level of granularity
depends on the aim of study. For example, if evalu-
ation of the performance of an improved surgical
instrument for manipulating specific tissue in a surgi-
cal procedure is the aim, a high level of granularity is
needed. In case the aim of study is to analyse the
effect of the same instrument on the outcome of the
entire procedure, less granularity is needed. Lalys and
Jannin, in their review paper, defined a phase as ‘a
major type of event occurring in the surgery’.
However, a major event in a surgery depends on the
aim of the study and may be rather subject to prefer-
ence. If the study aim is to acquire the data at two
levels of granularity (e.g., pre-, and post-surgical
phases and activities within these phases), one can
define the granularity levels as phase and sub-phase,
respectively. Therefore, the number of granularity lev-
els is rather arbitrary and depends on how detailed
the granularity levels are defined.

Data acquisition: Not all data acquisition methods
provide the possibility to achieve all granularity levels.
For example if the data acquisition method is based
on interviews with a clinical team, only very low
granularity levels can be achieved.

The determination of the required granularity
levels is a primary step in modelling strategies. If
the granularity level is defined properly at the
start of modelling, the effort for the remaining
steps of modelling decreases tremendously, making
the data acquisition and modelling process
more efficient.

Data acquisition

Data acquisition of the surgical procedure model can
be done manually or computer-based. With manual
data acquisition, the data are acquired through obser-
vation, available documentation, interviews with
experts and literature study. Workflow observations
of surgical processes can be done either online, e.g.,
[1,7,15] or offline, e.g., [1,15,29]. In online observa-
tion, the observer is present in the OR to record the
data and any related information. Online observation
has several advantages, including better insight into
ergonomics in the OR and the interaction between
clinical team members. However, due to large
amounts of data and parallel activities in the OR,
comprehensive manual online data recording is some-
times impossible and the likelihood of human error
in recording the data is high. Offline observation

through video recordings of the OR aids to overcome
the online observation limitations, but at the cost of
losing interaction of the observer with the clinical
team. Observation supporting systems have been
developed in order to improve the accuracy and com-
pleteness of both offline and online observations, e.g.,
[30,31]. Observations in the OR cannot always pro-
vide the required low-level data. Furthermore, these
usually lack complete data of the treatment procedure
on the patient’s organ. In the case of, e.g., laparo-
scopic surgery, there is usually access to the laparo-
scopic video data, which is a rich source of data with
high granularity.

Patient and procedure data documented by the
clinical staff as part of their routine can be very valu-
able in surgical procedure modelling studies, in par-
ticular for the collection of preoperative and
postoperative data. Interviews with clinical experts,
e.g., [15,32] and literature studies particularly provide
information for qualitative analysis of the surgical
procedure. Figure 2 shows the different methods of
manual data acquisition and the corresponding bene-
fits and downsides.

Computer-based technologies were introduced to
automate data acquisition and eliminate human error.
Different types of sensors and image processing tech-
niques have been used for data acquisition and track-
ing of different entities in the OR, e.g., [30–38]. The
main purpose of using tracking systems is to detect
the presence, absence or movements of clinical staff
or/and instruments during the operation. The track-
ing can be done in the OR, e.g., [33,34] or by process-
ing of the videos, e.g., [35–37]. Recently, other
approaches have emerged, such as an approach based
on the combination of video processing and instru-
ments weight [38,39]. However, the computer-based
approaches are not free of pitfalls and limitations
either, due to the complexities of the field of surgical
process modelling. The first challenge here is that
flawless identification of a specific task in the surgical
procedure based on a signal can be a limiting factor,
i.e., the purpose of using an instrument might not be
clear based on the acquired signal. For example, a
sensor can detect the usage of an electrical surgical
knife; however, it does not identify whether it is used
to cut the lesion or to dissect the fat. Several research-
ers are focusing on this challenge and try to recognize
the related tasks from microscopic, endoscopic and
laparoscopic videos, e.g., [40–43].

The second corresponding challenge is the develop-
ment of reliable sensors and tracking systems. The
two major tracking systems, optical [44] and
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electromagnetic [45], each have their own drawbacks
and weaknesses. In optical tracking systems, tracking
markers must be attached to rigid targets and should
always be visible to the tracking system. Therefore, it
is difficult to track soft tissues and flexible instru-
ments. Furthermore, these tracking systems do not
function if the view is obstructed when the marker is

inside the body or when the surgeon’s hand or the
clinical team block the view [44,45]. Electromagnetic
tracking systems do not suffer from these problems,
but their performance deteriorates in the vicinity of
metal objects [45]. Apart from tracking systems, use-
ful information may be obtained from several other
types of sensors that can be used to monitor patients,

Figure 2. Different methods of manual data acquisition and the corresponding benefits (indicated with ‘þ’) and drawbacks (indi-
cated with ‘�’).
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e.g., [46] or record OR audio and video, e.g., [47].
The advantages and disadvantages of the discussed
manual and computer-based technologies are sum-
marized in Table 1.

Acquiring a comprehensive and solid data set is a
crucial step in surgical procedure modelling. An error in
the data affects the whole modelled procedure and the
underlying analysis. Thus, the selection of proper data
acquisition methods is a challenging and crucial step
when setting up a clinical workflow study. The choice of
data acquisition method highly depends on four aspects:

Purpose of the study: Depending on the purpose of
the study the questions of ‘Who What Which Where
When’ are answered to aid proper data acquisition. An
example is given to clarify the concept. If evaluation of
the performance of an enhanced sealing device for
resection of parenchyma is the aim, the performance
might be gauged by measuring 1) the total time spent
on performing the required resection, and 2) the
amount of bleeding to be suctioned by the surgeon. For
the time registration, the required data are determined
as follows: Who: Not important, What: Resection time
(cut, suction and coagulation), Which: Sealing device,
Where: Parenchyma, When: From when resection
starts until ends. For the bleeding amount the questions
are answered as follows: Who: Surgeon, What: Suction,
Which: Sealing device, Where: Parenchyma, When:
During the total duration of suction.

Granularity level: Data acquisition and granularity
levels are interconnected. Data acquisition is done
based on how detailed the granularity is defined and
to which level the data is required. For example, if a
level of granularity as high as recording the spatial
motion of a surgical instrument is required, manual
data acquisition is not an option.

Modelling approach: The choice of modelling
approach can affect the choice of data acquisition
methods, e.g., if a top-down approach is used, only
manual data acquisitions are likely to be suitable.

Benefits and drawback of the available methods:
See Figure 1 and Table 2.

Model representation

The way a description of a surgical process model is
represented largely determines how and how easily the
results can be interpreted and used for further work.
Model representations can be categorized as descriptive
or as numerical. In descriptive representations, the
behaviour of a system is described using plain text as a
list of encountered activities, e.g., [2,20,48], surgical
milestones, e.g., [49], etc. In numeric representation
the behaviour of a system is modelled using numbers,
mathematical relations or programming languages.
Any type of formal (e.g., Petri net, CSP), e.g., [50] and
semiformal (e.g., XML, UML,) e.g., [14,27,51] lan-
guages, business process languages (e.g., BPMN,
BPEL), e.g., [52], workflow diagrams e.g., [15,53] and
workflow modelling language (e.g., YAWL), e.g., [54]
is categorized as a numeric representation. The choice
of model representation depends on:

Purpose of the study: Purpose of study determines
how and to what extent qualitative or quantitative
analysis of the surgical procedure is required. As each
model representation provides different possibilities
for analysis, the proper model representation should
be selected in line with the purpose of the study.

Data acquisition method: Numeric representations
can be based on both manual and computer-based
data acquisition, whereas descriptive representations
are usually based on manual data acquisition.

Benefits and drawbacks of different model repre-
sentations: Descriptive representations are usually eas-
ier to comprehend and more easily accessible, but
they often need to be accompanied by numeric repre-
sentations for further analysis. The relations between
the entities in a workflow are not fully provided in
the descriptive representations. On the other hand,

Table 2. Benefits and drawbacks of manual and computer-based data acquisition technologies.
Benefits Drawbacks

Manual � Less initial effort for data acquisition (No need
to set-up computer-based acquisition systems).

� Easier data interpretation.
� Acquisition from different sources other than

OR (interview, literature study, etc.).
� Interactions with clinical team in the OR.

� Time consuming data acquisition.
� Not possible to acquire very low-level data

(e.g. at the motion level).
� Possibility of human error.

Computer-based � Possibility of acquiring very low-level data.
� Precise data acquisition.
� Automate data acquisition.

� Time consuming and complex data
interpretation.

� Possible error in data recording.
� Possible error in data interpretation.
� Time consuming setting up computer-based

acquisition systems.
� Usually physical object attached to the tools,

clinical team or patient.
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numeric representations provide the detailed relations
between entities and provide the means for simula-
tions and qualitative analyses, but at the cost of
reduced flexibility and great initial efforts.

Modelling approach

There are two main approaches for modelling
surgical procedures: top-down and bottom-up [21].
Top-down modelling (applied by, e.g., [15,53]) starts
from the highest abstraction level (with lowest granu-
larity) and works down to the lowest abstraction
level (with highest granularity). An overview of the
entire procedure will first be formulated and the
details of the procedure are modelled in increasingly
higher levels of granularity, following the desired
granularity levels. Bottom-up modelling (applied by,
e.g., [2,19,40,43,55,56]) starts from the lowest abstrac-
tion level (highest granularity) and then up. Low-level
data (e.g., from computer-based technologies) is used
to extract meaningful data at the desired granularity
level. Much like the selection criteria for the aspects
discussed above, the selection of a modelling
approach depends on:

Data acquisition method: Data acquisition meth-
ods differ for top-down and bottom-up approaches.
The top-down approach relies on manual data acqui-
sition, whereas the bottom-up approach can receive
data both from manual and computer-based technolo-
gies. A top-down approach is usually based primarily
on manual data acquisition, because computer-based
technologies often acquire data primarily at the high-
est granularity level. In the bottom-up approach,
transferring low abstraction level data to high abstrac-
tion level information requires conceptual informa-
tion about the procedure.

Granularity level: Selection of the modelling strat-
egy might be preferred to bottom-up approaches,
when modelling requires data at very high granularity
level (e.g., biomechanical properties of the tissue).
Such low-level information is usually obtained from
computer-based data acquisition [22].

Benefits and drawbacks: The top-down approach
brings understanding of the entire procedure at a high
level of abstraction, which reduces the likelihood of
inaccurate identification of the lower abstraction activ-
ities. However, as the low-level data are initially not
modelled, the high level tasks might be identified or
described inaccurately due to a lack of profound insight
into the procedure. The bottom-up approach has the
advantage of having a higher resolution in the data
gathered at the lowest abstraction and can therefore be

more precise. Yet, because in a bottom-up approach a
global overview of the procedure is not established at
first hand, identifying the high-level tasks from very
low-level information is usually complex and the results
might not accurately resemble reality. In top-down
approaches, the designer skills and possession of a good
overview of the procedure are of great importance to
properly break the procedure into meaningful compo-
nents [21]. However, in the bottom-up approach con-
ceptual information about the procedure is sufficient to
start the modelling based on the acquired data and
selected model representation principles.

Generalization

Each treatment is a unique procedure. In order to
develop a generic model that describes a surgical pro-
cedure with all its variations, acquiring data from suf-
ficient individual procedures with one or more
similar characteristics is necessary. The observation
results from individual procedures are combined into
a generic model. Depending on the aim of the study,
the level of generalization of the model may vary. The
heterogeneity of the data collected directly affects gen-
eralizability of the resulting model. If the purpose of
the study is the analysis of the procedure model of a
general treatment method composed of broad ranges
of techniques, the data set should contain sufficiently
many registrations of sufficiently many differently
executed techniques within the procedure to reliably
capture all its variations. Furthermore, the patient
condition heterogeneity influences the generality of
the procedure model; if all patient conditions are
similar, the model establishment is most probably
biased. Apart from heterogeneity of data, the way the
model is analysed also defines the level of generality.
Analysis of the model can be aimed at covering either
all the events or only the most probable events in the
same population of the treatment procedures.

After determining the sequence of activities and
modelling each individual procedure, either descrip-
tive or quantitative, through a top-down or a bottom-
up approach, the generalization of the procedures can
be done by merging the sets of individual models. For
merging sets of procedures, similarity metrics need to
be taken into account. Neumuth et. al. suggested
granularity similarity, content similarity, temporal
similarity, transitional similarity, and transition fre-
quency similarity as possible similarity metrics [57].
Statistical analysis can be employed for merging of
the individual models when the modelling language
supports the quantitative analysis. In statistical

MINIMALLY INVASIVE THERAPY & ALLIED TECHNOLOGIES 7



analysis the intermittent events can be filtered out or
be considered as an event with low probability and
the most frequent events forms the backbone of the
general process model [21,56]. Depending on how big
the dataset is, data mining and data warehousing
techniques may aid the establishment of the generic
surgical procedure model [58,59].

Figure 3 is a compact guide for designers of or
researchers on surgical process models and demon-
strates what aspects of the modelling strategies con-
cepts are compatible with each other and shows how
categories of these concepts are related to each other.
Depending on the purpose of study and the available
resources, the designer can select one of the possible
chains of modelling strategies proposed in Figure 3.

Modular design

In order to propose a structured model of a surgical
procedure and increase the usability and efficiency of
such a model, designing it in a modular way can offer
great benefits. In a modular design, a system is com-
posed of components (modules) with specific function-
alities. Each module can work independently and
interacts with the other modules in the system.
Although application of modular design in the develop-
ment and analysis of a surgical procedure requires great
initial design effort, it brings several advantages, such as:

� Data acquisition of the desired part of the model is
facilitated as each module can be treated separately.

In case of observation several observers can work in
parallel, while each observer is responsible for one or
a few modules for data acquisition. This decreases
the workload per person, which results in higher-
quality data acquisition.

� Analysis of the desired part of the model becomes
more efficient as each part of the surgical work-
flow can be modelled with minimal dependency
on the other parts. Thus, analysis can easier be
focused on individual modules without missing
relevant information.

� Modules can be used in the description of several
types of surgeries when they share the same goal
in parts of their procedures.

� When using the surgical process model as a basis
to improve the surgical procedure, several design-
ers can work in parallel, each responsible for the
improved design of one or a few modules.

� Updates and changes in the model (because of
future technology advancements, etc.) can be easily
implemented as the designer only needs to adapt
the specific modules or add new modules to the
surgical process model.

� Testing and error detection are easier because the
modules can be treated as black boxes or isolated
sub-systems.

Validation and verification

Any developed surgical workflow model should be
verified and validated. Although verification and

Figure 3. Chains of modelling strategies and their compatible aspects.
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validation are sometimes interchanged, these are in
fact two different concepts. Verification confirms that
the model is developed right, i.e. it confirms that the
developed model reflects the real procedure in clinical
practice. On the other hand, validation confirms that
the right model is developed i.e. it confirms that the
developed model suits the purpose of the study
and analysis.

The datasets for verification and validation may be
obtained from different sources, such as computer
simulations, phantoms, simulated OR procedures and
real OR data. The data from computer simulations,
phantoms and simulated OR procedures provide flexi-
bility at the cost of only delivering artificial data. Data
from real OR procedures are more difficult to obtain
and less flexible, but are the data closest to reality.

Qualitative and quantitative approaches can be
used for verification and validation. How and to what
extent qualitative and quantitative verification and
validation are to be carried out may depend on the
properties of the developed model. For example,
assume that a surgical workflow model is developed
which covers an entire treatment procedure and offers
the order of the steps in a surgery. Then, a qualitative
approach can be used to confirm that all datasets fit
the path options offered by the established workflow.
Next, a quantitative approach would be applied to
confirm that the sum of the individual durations of
all workflow elements encountered during a proced-
ure equals the total procedure time [15].

Example of modelling strategies applied
in practice

To show how to use the presented concepts in a real
situation, we discuss an envisioned clinical study on
evaluation of AI in the operating room. The laparo-
scopic procedure is to be performed in a novel hybrid
OR containing a robotic system that supports the task
of insertion of trocars. The OR is equipped with a
navigation platform consisting of a planning software
that assists the surgeon by suggesting suitable loca-
tions for trocar insertion. This platform uses machine
learning to compare the data of patient conditions
with data-sets from previous surgeries to be able to
suggest more accurate locations. We would like to
analyse the performance of this novel system, evaluate
its benefit over conventional manual trocar placement
and determine how we can efficiently improve the
system for clinical use. The locations of the incisions
for the trocars should be planned depending on the
target organ, where the tumour is located in the organ

and other limitations, such as patient physical condi-
tion and clinical history. It is important that clinicians
can be easily involved for validation of the workflow
and in the decision-making for further improvement
of the technology in the system or the workflow for
using the system. In order to analyse the effect of this
system on the procedure, several research questions
should be answered, and some of them quantitatively:

Q1 - How does the system affect the outcome of
laparoscopic surgery?

Q2 - Does the system benefit insertion of trocars?
If so, to what extent?

Q3 - Which activities in performing trocar inser-
tion are affected by this system? How large is
the effect?

Q4 - Are there any effects of this system on other
actions in the procedure? If so, in which actions and
to what extent?

Q5 - Can usage of system be improved to achieve
better outcome of the procedure? Which actions are
useful to be improved? How those actions are opti-
mised? And how much is the effect of the improve-
ment on the procedure?

These questions may individually require different
modelling strategies, as described next.

A) Granularity level: For each of the research ques-
tions stated above, the optimal granularity may vary:

A1 - As the effect of the system on the entire pro-
cedure is needed, the granularity level is defined very
low, at the level of the entire procedure.

A2 - Purpose of the study is evaluation of the out-
come of insertion of trocars when the system is in
use. Therefore, insertion of trocars can be treated as a
black box step composed of several activities sharing
the same goal, but with only its end result being of
importance. Therefore, an ‘inserting trocars’ step is
defined, and the granularity level is chosen at the
step level.

A3 - The robotic system and navigation platform
affect the physical activities and planning involved with
insertion of trocars. In order to determine the influ-
enced activities and the extent of influence, a more
detailed granularity level than in 1 and 2 is required. If
the effect of using robotic arms in performing the tasks
on the biomechanical properties of the tissue is
required, a very high granularity level is selected. If the
impact of using the system on the duration of planning
is needed, a lower granularity level is sufficient.

A4 - Depending on how abstract all actions are
defined in the procedure, different granularity levels
(very high until entire procedure) could be suitable.
However, in its broadest formulation, a very high
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granularity level is required, with maximum detail
and knowledge of all detailed actions and decisions in
this procedure.

A5 - The system can be improved either
through technical developments or by improving the
flow of the system usage during the procedure in clinical
practice. Different granularity levels can be determined
in analysing which actions can be improved, how and
how much. Furthermore, the analysis of the effects of
the improvement on the system can be done on all
activities in the procedure (as discussed in A4), or only
focuses on the set of activities for inserting trocars (like
in A2 and A3).

Based on the arguments above, the granularity lev-
els which we would choose in this study are shown in
Figure 4.

B) Data acquisition: Data acquisition is dictated
by the aim of the study, available resources and the
benefits and drawbacks of each method. In this study,
data acquisition can be selected as computer-based or
manual. However, as manual data acquisition is more
readily available and the required granularity level is
reachable by manual data acquisition as well, we opt
for manual data collection.

C) Model representation: For the quantitative ana-
lysis of the workflow, numeric modelling is required.
Workflow diagrams can be used for a numeric repre-
sentation. Workflow diagrams are flexible, the rela-
tions between the actions are provided and the model
is more understandable for involved experts with dif-
ferent backgrounds (e.g., medical doctors and engi-
neers). Modelling the relationships between different
entities of the procedure, which is provided in the
workflow diagrams, is a point of great use in such a
study. These relationships aid analysis of the system
improvement by performing simulations to enhance
the flow of usage of the system and its development.
When the relationships are modelled, supervised
machine learning can also be efficiently done by the
navigation system for data collection and
data analysis.

D) Modelling approach: As the required granular-
ity level is not very high and we are looking at a spe-
cific task (inserting the trocars), it is more natural to
first set the boundaries for the inserting trocars step
and from there work down in the levels of abstrac-
tion: top-down approach.

E) Generalization: Based on the defined granular-
ity levels, selected model representation principles and
modeling approach (A, C and D), and the data
acquired by the selected data acquisition methods (B),
each of the entitled procedures are analysed. In gener-
alization, the individual procedures can be analysed
and then combined into a generic model. However, in
the top-down approach as the procedure is mostly
formulated based on overview of the designer, that is
not mandatory to model individual procedures to
establish the generic model. Based on the similarity
metrics, the model representation principles and the
defined granularity levels, the generalization process is
specified. In this study as the aim is to anaylse the
effect of the system on the procedure, infrequent tasks
are useful to be considered in generalization process.

So far, the proper modeling strategies are selected.
The data acquired from the selected data acqusition
method and proper analysis are used to establish sur-
gical process models. In this show-case, we acquired
data from Oslo Unversity Hospital, Norway (OUH)
and Erasmus Medical Center (Erasmus MC), The
Netherlands, to establish the workflow of laparascopic
liver surgery, see Figure 5.

In this study, verification and validation both can
be done based on data and/or by interviewing experts.
However, verification and validation should be taken
care of differently:

Verification: The clinical team experience and the
data from different sources (e.g., real procedures,
phantom or simulations) will aid in verifying that the
model resembles the clinical performance. Depending
on the granularity levels and the entities definitions,
the data should be acquired and registered for each
and every entity of the procedure to be used for
quantitative and qualitative verification.

Validation: Validation confirms that the developed
model suits the purpose of the study and analysis.
Answering the questions 1 to 5 above requires being
able of quantitatively analysis of the modelled proced-
ure and the possible corresponding simulations. The
entire logic of the modelling can be tested and vali-
dated by data from different resources or generated
artificial data for different entities of the procedure.
In contrast to verification, in validation the data may
not be necessary for all entities when the same logics
are used for the model. Validation can be done by

Figure 4. Granularity levels used in the study, from lowest level to highest level, from left to right, respectively.
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experienced researchers in the field of surgical pro-
cess modelling.

Discussion

The aim of this review-based guide was to aid select-
ing the proper modelling strategies depending on the
purpose of analysis and the surgical procedures to be
studied. Different relevant concepts in surgical model-
ling strategies and the criteria for selecting the most
suitable modelling strategies for a study were
described. For each of the involved concepts, the ben-
efits and drawbacks, and dependencies of the aspects
in different concepts to each other were explained in
a step-wise manner (Table 2).

The current study was limited to process modelling
in the surgical field, whereas workflow modelling
approaches in other fields may very well offer

valuable additions. Furthermore, employing AI in sur-
gical process modelling was discussed, however how
to employ AI in the field of analysis of surgical proce-
dures should be investigated in more detail. However,
within the bounds and limitations of this study it was
shown that the selections of the proposed aspects in
modelling approach are independent of choices in
model representation (Figure 4). Top-down and bot-
tom-up approaches can both use descriptive and
numeric representations and vice-versa. On the other
hand, selection of a modelling approach and model
representation can depend on the data acquisition
(and vice-versa); e.g., computer-based data acquisition
normally works with bottom-up modelling [22] and
numeric representation, and top-down approaches
and descriptive representation can normally work
with the data from manual acquisition methods.
Different granularity levels can be acquired from

Figure 5. Workflow diagram of the laparoscopic surgery (a) at phase level and (b) at activity level for the “inserting trocars”. The
data was obtained from online and offline observations in OUH and Erasmus MC.
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different combinations of concepts. However, there
are limitations: e.g. using a manual approach is
mostly not very practical in combination with high
granularity levels.

The presented benefits and drawbacks of different
methods for data acquisition shown in Figure 2 and
Table 2 can be used during workflow study design for
proper selection of combinations of modelling
approaches and model representations. Overall, selec-
tion of the proper modelling strategy is primarily dic-
tated by the aim of the study and the available
resources. However, the concepts are interconnected
and the selection of one aspect affects the selection of
the others. Being aware of the benefits and drawbacks
of each aspect can aid selection of the most suitable
modelling strategy for satisfying the aim of the mod-
elling study.

Conclusion

Surgical process modelling is an innovative approach
to establish a firm base for analysis of various aspects
of surgical procedures and paves the way for further
optimization and improvement of the procedures.
Surgical process modelling allows for evaluating the
introduction of new technologies and tools prior to
the actual development and is beneficial in optimiza-
tion of the treatment planning and treatment per-
formance in the operating room. This potentially
saves considerable cost and effort compared to trial
and error development. Therefore, surgical process
modelling can potentially aid development of technol-
ogies and tools to satisfy the requirements of actual
usage experience in the clinical practice.

Concepts underlying surgical procedure modelling
were discussed and different modelling strategies
clarified. The advantages and disadvantages of these
strategies and their corresponding methods were dis-
cussed. The criteria of selecting and using the most
suitable modelling strategy were explained and clari-
fied through examples. The purpose of a study largely
determines the selection of the most suitable model-
ling strategy.

AI benefits surgical process modelling and also can
benefit from surgical process models. In this study we
provided an example of how the required analysis for
surgical process modelling could be done and dis-
cussed how evaluation of AI in the operating room
can be performed by employing surgical process mod-
elling concepts.

We discussed how the selection of modelling strat-
egies can be aided by applying the provided criteria.

Applying modularity may facilitate and improve the
efficiency of surgical process modelling studies and
subsequent updates and analyses. Combinations of
top-down and bottom-up approaches for establishing
a surgical process model allows taking advantage of
the strengths of both modelling approaches. Similarly,
different data acquisition methods could be combined
to overcome their individual limitations, achieving a
solid, accurate and efficient data base. Overall, the
current review illuminates the importance of surgical
process modelling for improving different aspects of
treatment procedures and provides an overview of
various modelling strategies that can be used to estab-
lish surgical process models.
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