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Abstract

The inversion process of data sets acquired with the electrical resistivity tomography can be
a computational expensive calculation, because it requires a lot of forward simulations. Since
computational resources are limited, the inversion for large field surveys can require immense
computing times. One approach for reducing the computing times of forward simulations is
the reduced basis method. It splits the problem into a parameter-dependent and parameter-
independent part, which allows a precomputation of the parameter-independent part to speed
up the calculation. Since the method of reduced basis has not been applied for the problem
of electrical resistivity tomography so far, the question arises if and how it is applicable for
this problem. Therefore, I performed forward simulations of the electrical potential distri-
bution using the finite elements method and simulations using the reduced basis method for
comparing the results. The methods give similar results, but unfortunately deviations above
1 × 10−4 occurred, while the error tolerance of the reduced basis method is set to 1 × 10−5.
Since the reduced basis method has been successfully applied on other applications, I assume
that the problem is in my reduced basis simulation and can be solved by more fine tuning. By
comparing the computing times of the simulations, a speed-up of 109.512 is achieved by using
the reduced basis method. Furthermore, the pay-off is reached after 8.803 simulations. Dur-
ing the project, I noticed that only considered the resistivities of the subsurface as a varying
parameter in the reduced basis is not sufficient. The source position needs to be a variable
parameter in simulations of the electrical resistivity tomography, as well. This is necessary to
tap the full potential of the reduced basis method in the application of the electrical resistivity
tomography. The reduced basis method gives significant speed-ups and therefore, it has the
potential to reduce the computing times of electrical resistivity tomography inversions.
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Chapter 1

Introduction

In geophysics, the limitations of the currently available computational resources have
been an issue since the beginning of computer-aided calculations. And the demand for
more computational resources probably will never be satisfied, because the processing of
measured data and the modelling or simulation of physical systems can always be extended
in the level of detail. Furthermore, there exist applications, that require the problem to
be solved multiple times with varying parameters like an uncertainty quantification or a
sensitivity analysis. Another intention to reduce the computational effort is make such
calculations possible on mobile computers. This offers the possibility to perform data
processing, which requires forward simulations, quickly in the field to evaluate the result.
This could help to optimize the measurements and their parameters for obtaining the
best possible result. Additionally, such faster computation enables real time processing
of measured data. All in all, the need to reduce the computing time of calculations is
omnipresent. One option for speeding up simulations is the reduced basis (RB) method.
The idea of the method is to separate the problem into a parameter-dependent and a
parameter-independent part. This allows the parameter-independent part to be precom-
puted and the computation of the problem with a different parameter can be performed faster.

In this thesis, the RB method will be applied to Electrical Resistivity Tomography (ERT)
data. ERT surveys are used for obtaining a model of the near subsurface based on its
resistivity. At first, synthetic data are generated and inverted. The purpose of this back-and-
forth-process is to investigate the induced uncertainties by the inversion process with the aid
of an uncertainty quantification. On the base of the inversion result a model is generated,
which is used for forward simulations using on the one hand the finite element (FE) method
and the RB method on the other hand. In the original plan of this project, the final
step was to perform with these two forward simulations an inversion and the uncertainty
quantification. Unfortunately, the limited time did not allow to perform either an inversion
nor an uncertainty quantification. With these large computations the required computational
effort of the two methods should have been compared. This should have given proper answers
on the question, how the RB method can be useful for ERT problems.

August 10, 2018



2 Introduction

The inversion of ERT data is a process, which requires multiple forward simulations.
It is the most crucial step in the processing of measured ERT data. The measurements
contain only apparent resistivities and the inversion is necessary for obtaining the actual resis-
tivities. In this process multiple forward simulations are performed. Commonly, the inversion
is done with FE inversion as, for example, implemented in the software package Boundless
Electrical Resistivity Tomography (BERT) [Rücker et al., 2006][Günther et al., 2006]. This
state of the art method is described in [Rücker et al., 2006] and [Günther et al., 2006]. The
forward simulations there are done using the FE method. Other approaches use the finite
difference (FD) method (see [Wei and Versteeg, 2008]). Wei also shows the need for an
improved computational efforts for the inversion of ERT data. There, they implement an
approach to speed up the computation by splitting each simulated dipole-dipole measure-
ment into two measurements using a single current electrode and combining the results
[Wei and Versteeg, 2008].
The RB method has previously been applied to thermal conduction problems and elasticity
problems (see [Hesthaven et al., 2016], [Prud’Homme et al., 2002] and [Boyaval et al., 2009]).
Additionally, Casenave (2015) applied the RB method on aeroacoustic problems (see
[Casenave et al., 2015]). Other applications are transport problems in biomedical research.
So, Rozza applied the RB method for simulations for the flow control of bypass configurations
(see [Rozza, 2005b] and [Rozza, 2005a]). Inverse problems also have been addressed using
the RB method. Lassila applied the RB method in cardiovascular mathematics by replacing
the finite element solution by a reduced-basis approximation [Lassila et al., 2013]. Manzoni
utilized the RB method to obtain an efficient numerical solution of statistical inverse
problems in blood flows [Manzoni et al., 2014]. Furthermore, the RB method has been
applied to electromagnetics. On the one hand Maxwell’s equations were modelled with the
aid of the RB method [Chen et al., 2009][Chen et al., 2010]. On the other hand it has been
implemented for the electric field integral equation for parameterized scattering problems
[Fares et al., 2011][Hesthaven et al., 2012]. The research done on the RB method itself
focuses mostly on the convergence (see [Binev et al., 2011] and [Buffa et al., 2012]) and
improvement of the error bounds (see [Veroy et al., 2003]).
Uncertainty quantification is a useful tools for analysing data. It has no limitation to a
certain application and can be applied to data form various fields of science. For example,
the method is used for investigating the simulations for predicting the outcome of medical
surgeries (see [Schiavazzi et al., 2016]). Another application for uncertainty quantification is
for example image reconstruction. So, Bardsley tried to reconstructed blurred images using
the Markov Chain Monte Carlo (MCMC) method (see [Bardsley, 2012]). Furthermore, it has
been used for data of orbits of extrasolar planets. The uncertainty quantification is used to
determine which simulation describes the measured radial velocities of extrasolar planetary
systems (see [Ford, 2005]). Therefore, Ford applies the MCMC uncertainty quantification.
MCMC is a commonly used method and is a Bayesian approach [Adams et al., 2014]. But
due to issues of efficiency, alternative method evolved like the Differential Evolution Adaptive
Metropolis (DREAM) method, which tries optimize the performance of the MCMC method
[Vrugt et al., 2009]. Since uncertainty quantifications require multiple forward simulations
and efficiency is an issue, the RB method can be helpful tool to speed up the computation
of uncertainty quantifications.
At the beginning of this thesis, I will focus on the theory behind the applications and the
methods themselves. At first geoelectric surveys and especially the ERT will be explained
in Section 2-1, followed by the inversion process. The next section describes the FE
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approximation, with its basis functions in Section 2-2. The RB method will be explained in
Section 2-3. Additionally, I will explain the theory of uncertainty quantification in Section
2-4. After that, the general workflow of the thesis will be illustrated in Section 3-1 and
the used model is described in Section 3-2. Additionally, the employed software and their
techniques will be discussed in Section 3-3. The results will be presented in Chapter 4.
Furthermore, I will discuss my results in Chapter 5.
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Chapter 2

Theory

At the beginning, I describe the essentials of the theory in the following. The theory behind
the electrical resistivity tomography (ERT) is described in Section 2-1. Furthermore, the
finite element (FE) method is explained in Section 2-2, followed by the reduced basis (RB)
method. Finally, the theory behind uncertainty quantification is given in Section 2-4.

2-1 Electrical Resisitivity Tomography

In this chapter, the principles of ERT will be explained. At first, the electrical properties of
the Earth are in the focus (Section 2-1-1), followed by the concept (Section 2-1-2) and the
common survey arrays of ERT (Section 2-1-3). In the last section the inversion of ERT data
is explained (Section 2-1-4).

2-1-1 Electrical properties of the Earth

The Earth and its rocks have electrical properties as any other material. Therefore, it is
also possible to investigate the subsurface by exploiting variations in its electrical properties.
Most geoelectrical applications search either for differences in the electrical resistivity ρ or
the electrical permittivity ε. Surveys investigating the permittivity use usually electromag-
netic methods, while direct current measurements are used to survey ρ. Anomalies in the
subsurface with high contrasts in these properties to its surroundings can be well surveyed.
Therefore, the most suitable investigation objects are orebodies and groundwater. The ore-
bodies usually reveal a high contrast due to its high conductive metals. For example, sulfide
ores of iron, copper and nickel. In the groundwater, solved ions show a significant conducting
property. So, the groundwater appears as an electrolyte [Lowrie, 2007]. Most surveys use
active sources, but there are also methods utilizing natural currents, also telluric currents.
Their occurrence has two origins. Electrical currents in the ionosphere, originated from solar
emissions, induce electromagnetically currents in the Earth’s crust and upper mantle. Fur-
thermore, electrochemical reactions in the subsurface can generate currents. Distinguishing
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6 Theory

Figure 2-1: Conductivities and resistivities of common rocks, soils and ores. From [Lowrie, 2007]

different rock types can be challenging, because the ranges of the surveyed property, e.g. re-
sistivity, can overlap for different rock types. An overview of resistivities ρ and conductivities
σ of common rocks, soils and ores is given in Figure 2-1. Furthermore, the resistivity of porous
sediments and sedimentary rocks can vary significantly due to the porosity and the filling of
pores. Because there are no unique resistivities for certain rocks, additional information from
other survey methods are helpful for identifying different rock units [Lowrie, 2007].

2-1-2 Geoelectric surveys and electrical resistivity tomography

For a better understanding about geoelectrical surveys, the principles of the physics behind
need to be clear. Most surveys investigate how resistive or conductive the subsurface is. So,
the resistance R can be determined by the current I and the voltage U with the aid of Ohm’s
law [Lowrie, 2007]

U = RI. (2-1)

But the resistance is an extensive property and therefore not material characteristic. The
intensive counterpart to the resistance is the resistivity ρ. Their relationship can be expressed
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2-1 Electrical Resisitivity Tomography 7

as [Lowrie, 2007]

R = ρ
l

A
, (2-2)

where l denotes the length of the material sample and A represents its cross-sectional area.
So, the resistivity is a material property and therefore more interesting for geophysical sur-
veys, because it allows compared to the resistance the identification of various rock units.
The conductivity σ is the reciprocal of the resistivity and is therefore expressed as σ = 1/ρ
[Lowrie, 2007].
Geoelectric surveys can either be active or passive. While in the case of active sources, an
artificial current is injected into the ground, surveys using natural sources measure potentials
of naturally occurring fields. These natural currents, also telluric currents, occur mostly due
to electrochemical reactions within the subsurface. But there is no option for controlling
the source, which can be strongly time dependent. Hence, interpretations are mostly only
qualitative and not quantitative. However, the use of natural currents is inexpensive and
fast. Active methods give usually better results, because the source is known and therefore
also a quantitative interpretation is possible. Additionally the source is controllable and can
be modified to optimize the survey for every specific case. Active sources of direct current
measurements usually consist of two current electrodes, which are plugged into the ground.
So, the Earth is part of the electric circuit. Commonly, a low-frequency alternating current
is used for the source to have a direct current for a few seconds. The use of only direct
current can cause accumulations of charges at the two potential electrodes, which leads to
false signals. The potential electrodes measure the potential at different locations to give the
gradient of the electric field [Lowrie, 2007].
A simple option of geoelectric surveys is performing single measurements at certain locations
of interest. But nowadays most surveys use the ERT method. Instead of only four electrodes,
an array of electrodes is employed for investigating an area of interest. Commonly even-
spaced electrode arrays are utilized, but arbitrary configurations are also possible. This array
can be a line for two-dimensional surveys or an areal array for three-dimensional surveys.
An abundance of measurements are then performed with various combinations of two current
and two potential electrodes. The selection of the four electrodes can be arbitrary, but it is
common to use certain configurations of the electrodes. The most common configurations are
explained in Section 2-1-3. For obtaining information from different depth levels, measure-
ments with different electrode offset are performed. During the measurements, the flowing
current is injected at the current electrodes, while the potential is measured at the potential
electrodes. In combination with the known geometry, the apparent resistivities ρa can be
calculated with the aid of Equation 2-3 [Lowrie, 2007]

ρa = 2π
∆ϕ

I

[(
1

rAC
− 1

rCB

)
−
(

1

rAD
− 1

rDB

)]−1

. (2-3)

∆ϕ denotes the measured potential difference, I the current and r the distance between the
two electrodes given in its index. The indices A, B, C and D refer to the four electrodes.
A and B are the current electrodes, while C and D denote the potential electrodes. Note,
the resistivity information from each measurement is gathered along the whole path of the
current through the subsurface and not at a single point. Therefore, the calculated resistivity
is only apparent. Hence, the measured apparent resistivity is the resistivity of a homogeneous
half-space. Note that for the special case of a homogeneous half-space, the apparent resistivity
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8 Theory

is the true resistivity. For any other case, the true resistivities can be obtained by performing
an inversion, which is described in Section 2-1-4 [Lowrie, 2007].

2-1-3 Common four-electrode configurations

The configuration of the electrodes, which describes the ordering of the four electrodes and
their respective distances, can be chosen arbitrarily. But there are some specific configu-
rations, which are commonly used. These are configurations are therefore well known and
established. Using these has the advantage of comparability between different measurements.
Furthermore, these configurations simplify the calculation of the apparent resistivity in Equa-
tion 2-3, because the distances r between the electrodes follow defined schemes.
The most common electrode configurations are namely the Dipole-Dipole, the Wenner and
the Schlumberger configuration. They are depicted in Figure 2-2. The Wenner configuration
sets rAC = rDB = a and rAD = rBC = 2a, where a is an arbitrary distance. Therefore the
equation for the apparent resistivity reduces to [Lowrie, 2007]

ρa = 2πa
∆ϕ

I
. (2-4)

While this equation becomes quite simple by the Wenner configuration, it is often inconve-
nient for ERT field work. For example, the extend to larger offsets need to be in certain
steps, because every distance needs to be the same a [Telford et al., 1990]. Furthermore,
large offsets require long cables, especially between the two current electrodes, because in the
Wenner configuration their distance is always larger than the distance between the poten-
tial electrodes. The Wenner configuration is compared to the other options more sensitive
to lateral variations. This can be optimized when the current electrode offset is chosen so
that the current flow is maximal in the depth where the most lateral variations are expected.
This makes the Wenner configuraton suitable for steeply dipping interfaces such as dykes
[Lowrie, 2007].

The Schlumberger configuration is similar to the Wenner configuration, but it has less re-
striction to the electrode spacing. Both electrode pairs are required to have a common mid
point, but their is no relation between the offset of the current electrodes and the potential
electrodes. The distances are rAC = rDB = L−a

2 and rAD = rCB = L+a
2 , where L is the dis-

tance between the current electrodes and a is the distance between the potential electrodes.
Usually, the current electrode distance is kept much larger than the potential electrode dis-
tance (L � a). The apparent resistivity using the Schlumberger configuration can then be
calculated by [Lowrie, 2007]

ρa =
π∆ϕ

4I

(
L2

a

)2

. (2-5)

This configuration is often used for vertical electric sounding. It is a method for investigating
resistivity variations in depth. Therefore, a common mid point is chosen and severals mea-
surements with different offset of the electrodes are performed [Lowrie, 2007].
In the Dipole-Dipole configuration, the current and the potential electrodes can be separated
independently. The distance between the electrodes in both pairs need to be the same. But
the distance between the two pairs can be arbitrarily. This enables an abundance of possi-
bilities, which raised the popularity of the configuration for ERT surveys. Here, the equation
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2-1 Electrical Resisitivity Tomography 9

Figure 2-2: The different four-electrode configurations. a) Wenner, b) Schlumberger and c)
Dipole-Dipole. Note that the potential difference is here denoted as ∆V . After
[Lowrie, 2007]

for the apparent resistivity reduces to [Lowrie, 2007]

ρa = π
∆ϕ

I

(
L(L2 − a2)

a2

)
. (2-6)

The Dipole-Dipole configuration is advantageous in the field for deep surveys. The electrodes
of each pair a comparatively close to each other. Therefore, there is no need for long ca-
bles. This enables also surveys with very large offset and therefore greater depth penetration
[Burger, 1992].
Note that due to the principle of reciprocity, in all configurations the current and potential
electrode pairs can be interchanged arbitrarily [Lowrie, 2007].

2-1-4 Inversion

The ERT measurements give potential differences from which the apparent resistivities can
be calculated easily by using Equation 2-3. For obtaining the true resistivities of a heteroge-
neous subsurface, an inversion of the data is required. The general concept of inversion is to
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10 Theory

generate synthetic data from a reference model and to compare it to the observed data. Based
on the differences, the reference model is then adapted. This process is repeated iteratively
until the reference model can explain the observed data within a predefined error tolerance.
The generation of the synthetic data is done by forward modelling. The inversion problem is
indeed unique but ill-posed [Günther et al., 2006]. This means in the case of ERT, that there
can be multiple resistivity distributions, which result in the same observed data.
A common inversion scheme is the Gauss-Newton scheme. In the following, the model param-
eters are denoted as m = (m1,m2, ...,mM )T with M model cells and represent the resistivities
in our model of the subsurface and the data vector d = (d1, d2, ..., dN )T with N data points
represents the observed apparent resistivities. The data contains errors from the measurement
devices and inhomogeneities in the subsurface, which can be used for weighting, if they are
available, which is usually not the case. With the aid of an L2-norm of the weighted residual
between the model response f(m) and the data, the data functional Φd have to be minimized.
The data functional Φd is defined by [Günther et al., 2006]

Φd(m) =

N∑
i=1

∣∣∣∣di − fi(m)

εi

∣∣∣∣2 =

∣∣∣∣∣∣∣∣diag( 1

εi

)
(d− f(m))

∣∣∣∣∣∣∣∣2
2

. (2-7)

The errors ε can either be measured or have to be estimated.
The minimization problem in Equation 2-7 is highly ill-posed. Therefore, regularization should
be applied by installing the model functional Φm, which is defined as [Günther et al., 2006]

Φm(m) = ||C(m−m0)||22. (2-8)

Note that m0 represents the reference model and C the constraint or smoothness matrix.
After to the insertion of Φm, the weighted sum with the weighting factor λ needs to be
minimized [Günther et al., 2006]

Φ = Φd + λΦm → min. (2-9)

The weighting factor λ is also known as the regularization parameter. Its choice is a trade-off
between data fit and model roughness. The higher the value of λ, the smoother is the model,
but also the weaker is the data fit. [Günther et al., 2006]
At this point two options are possible. Either the reference model m0 contains a priori
information and C is a diagonal weighting matrix, then the model is not altered significantly
from m0. Or m0 is taken as a constant, while C handles model characteristics. The latter
option means to apply smoothing. Because the problem is underdetermined, the latter option
is the method of choice and therefore used in this project [Günther et al., 2006].
In the case of regular meshes, the constraint matrix C can be taken as a discrete approximation
of a partial differential operator of first or second order. If an irregular mesh is used, it is not
that straightforward, because also neighbouring relations need to be considered. Therefore,
the constraint matrix entries for the tetrahedra i and j with the common face f are Cf,i = −A
and Cf,j = A with A as the face area. In total, the constraint matrix C ∈ RB×M is sparse
and contains 2M non-zero values. B is the number of faces.
The model vector m is updated in the manner of [Günther et al., 2006]

mk+1 = mk + τk∆mk. (2-10)
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2-2 Finite elements method 11

τ denotes the line search parameter, while k stands for the number of iteration. The line
search parameter has to be recalculated in every iteration to avoid overshooting. In the
Gauss-Newton scheme of minimizing Φ, Equation 2-10 transforms to [Günther et al., 2006]

(JTDTDJ + λCTC)∆mk = JTDTD(d− f(mk))− λCTC(mk −m0), (2-11)

with D being the diagonal matrix diag( 1
εi

). Furthermore, J ∈ RN×M denotes the Jacobian
or sensitivity matrix. It is given by [Günther et al., 2006]

Ji,j(m
k) =

∂fi(m
k)

∂mj
. (2-12)

There are several methods for obtaining the sensitivity matrix J
[McGillivray and Oldenburg, 1990]. But the BERT software, which I apply for the
inversion in this thesis, uses the formulation [Kemna, 2000]

∂ϕ

∂σ
= − 1

σI

∑
i

∑
j

Ai,jϕ
source
i ϕreceiverj , (2-13)

which is based on the reciprocity theorem. ϕ stands for the potential at the source and
receiver positions. A denotes the sparse element matrix. σ is the electrical conductivity or
the inverse of the resistivity. Special care needs to be taken to the elements adjacent to the
electrodes, because there would an infinite potential occur. These need to be substituted by
finite ones for restricting the sensitivity [Günther et al., 2006].
The described calculation needs to be done in every iteration. To reduce the computational
effort, the solution of Equation 2-11 can be solved approximately using conjugate gradient
techniques [Günther et al., 2006].
The forward operator f(m) from Equations 2-7 and 2-11 needs to be recalculated in every iter-
ation. This done by forward modelling. Several discretization methods can be implemented,
but the most common are FD and FE. Here in this thesis, FE will be applied and therefore
explained in the next Section 2-2.

2-2 Finite elements method

When solving Partial Differential Equations (PDEs) analytically, several problems are
encountered. First, it is very difficult to solve the problem for complex structures. So, it
is helpful to divide the domain in smaller subdomains or cells, instead of solving the corre-
sponding Partial Differential Equation (PDE) once for the whole domain. This, furthermore,
allows the investigation of local features. Additionally, a large matrix, which size depends on
the number of cells, needs to be inverted. This is only possible, if the matrix is symmetrical.
But often this is not the case. And even if it is invertible, this process requires an enormous
computational effort. These issues can be circumvent by solving such problems numerically
instead of analytically. But numerical methods are not capable of determining the exact
solution for the PDE, instead they give an approximation to the exact solution.
There exist different numerical techniques, e.g. the FD method, the finite volume (FV)
method and the FE method. Numerical methods are necessary for computer-based calcu-
lations of PDEs, because computers are not capable of calculating continuous problems.
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Figure 2-3: Mesh comparison. a) Structured cubic mesh with local refinement. b) Unstructured
tetrahedral mesh with local refinement. After [Rücker et al., 2006]

Hence, numerical discretizations are necessary. For this project, the FE method is applied,
because it is naturally capable of handling complex geometries [Rücker et al., 2006]. The FE
method can be applied in various ways. A common FE technique is the Galerkin method,
which I will describe exemplary in the following.
The first step in the FE discretization is the meshing. The design of the mesh, which is used
for the computation, is important. The number of nodes defines the spatial resolution and
has therefore an significant impact on the accuracy. Furthermore, the number of nodes has a
large contribution on the degrees of freedom, which determine the computational effort. For
every node an equation needs to be solved. So, the more nodes are used, the more equations
need to be solved. But an increased number of nodes also increases the accuracy. Hence,
there is a trade-off between the accuracy and the computational effort in the mesh design.
The simplest mesh has structured quadratic/cubic elements, but they are unable to resolve
complex geometries. With quadratic/cubic elements only right angles are realizable and
therefore curvatures are very difficult to represent in the model. Furthermore, it can
be helpful to refine the mesh at areas of interest to enhance the resolution in important
areas, e.g. areas with strong gradients [Rücker et al., 2006]. When using quadratic/cubic
meshes a local refinement is not efficient. It needs to be performed on whole rows and
columns instead on some chosen elements [Rücker et al., 2006]. Therefore, the number of
nodes increases significantly. Compared to quadratic/cubic elements, triangular/tetrahedral
elements are more adaptable to complex geometries. This adaptability can be increased
even more by the use of unstructured elements, because then arbitrarily angles can be used
for representing curvatures. Additionally, the advantage of triangular/tetrahedral elements
allows arbitrary local refinement. Due to the arbitrary angles, elements can have varying
sizes. Summarizing, the use of unstructured triangular/tetrahedral meshes is advantageous,
compared to quadratic/cubic meshes, and therefore they will be used in all meshes used in
this project. For illustration, the comparison of a cubic and a tetrahedral mesh is given in
Figure 2-3.

Additionally, the position of the grid points, the so-called nodes, need to be defined. The
simplest option would be to set a node at each angle of the elements. But it is also possible
to employ more nodes, e.g. at the center of the element edges or in the center of the element
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2-2 Finite elements method 13

itself. Various combinations are imaginable. If multiple variables are computed, e.g. velocity
and pressure for transport problems, it is possible to allocate certain nodes to a certain
variable. But note, that the choice of number of nodes and their position has an impact on
the stability of the outcome [Donea and Huerta, 2003].

The PDE that needs to be solved for the ERT problem is [Rücker et al., 2006]

∇ ·
(

1

ρ
∇u
)

= −∇ · j in Ω ⊂ R3, (2-14)

with the boundary condition [Rücker et al., 2006]

1

ρ

(
∂u

∂n
+ αu

)
= j · n on Γ. (2-15)

Note that Ω is the domain, while Γ represents the boundary. u is the variable that is solved
for, so in this case the electric potential and j is the source current density. The n is the
normal vector, which outwards directed on the corresponding boundary.
For solving the PDE in Equations 2-14 and 2-15 with the FE method, it needs to be trans-
formed into the integral or weak formulation. This is done by multiplying the PDE with
the test function v and by integration over the domain Ω [Donea and Huerta, 2003]. The
transformed PDE is given by [Rücker et al., 2006]∫

Ω

1

ρ
· ∇v∇u dΩ +

∫
Γ

1

ρ
αvu dΓ =

∫
Ω
vIδ(r− rs) dΩ +

∫
Γ
vj · n dΓ. (2-16)

In Equation 2-16, v represents the test function, I denotes the source current and δ is the
Dirac delta function with r being the current position and rs the source position.
The integrals are hindering, because solving them analytically is very inefficient. Thus, they
can be approximated with the aid of the Gauss quadrature integration. It approximates the
integrals with a weighted sum (see Equation 2-17) [Schwarz and Köckler, 2011]. The Gauss
quadrature integration works more efficient, when applied to a reference element using the
coordinates (ξ, κ, ζ). The reference element needs to have the same geometrical body as the
physical elements, i.e. for a tetrahedral element, the reference element is also a tetrahedron
[de Orio, 2001]. An illustration of a physical element and its corresponding reference element
is depicted in Figure 2-4. Now, the Gauss quadrature integration transforms integrals of the
FE formulation in the sense of [Bellman and Casti, 1971]∫ 1

−1
f(ξ) dξ ≈

nquad∑
i=1

wif(ξi). (2-17)

Note that nquad denotes the number of quadrature points and w the weighting factors. Equa-
tion 2-17 is valid for the 1D case, but can be extended easily to the 2D or 3D case. The
quadrature points are interpolated points within the reference element, which are required
for the Gauss quadrature integration. The number, position and weighting wi of the quadra-
ture points depends on the type of element.
Furthermore, the basis or shape functions need to be defined. They interpolate the solution

within the discrete nodes defined in the meshing process [de Orio, 2001]. Hence, with their
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Figure 2-4: Tetrahedral finite element. Left the physical element in the original coordinate
system. Right the reference element in the reference coordinate system. From
[de Orio, 2001]

aid a solution at every point within an element can be obtained. It is also advisable to define
them on the reference element instead of the physical element. The basis functions N are
typically chosen as low order polynomial functions, e.g. [de Orio, 2001]

Ni(ξ, κ, ζ) = ai + biξ + ciκ+ diζ. (2-18)

The next step is to transform the reference coordinates to the physical coordinates (x, y, z).
When this is done, the approximate solution uδ can then be expressed with the aid of the
basis functions [Donea and Huerta, 2003]

uδ(x) =
∑

A∈ν\νD

NA(x)uA +
∑
A∈νD

NA(x)uD(xA), (2-19)

A denotes the node number, while the index D denotes the values corresponding to a Dirichlet
boundary. The notation ν\νD represents the all nodes excluding boundary nodes and νD all
nodes on the boundary [Donea and Huerta, 2003]. When combining Equation 2-19 with the
PDE a system of equations is obtained for each element. The systems of equations of each
element can be assembled to a global system of equations for the whole domain. This resulting
system of equations is [Donea and Huerta, 2003]

Au = f, (2-20)

where A is called the stiffness matrix and f the load vector. The solution is contained in the
u vector. The system of equations then needs to be solved for u to obtain the solution.

2-3 Reduced basis method

For cases where a problem needs to be solved multiple times, solving the full problem every
time can be very time consuming. Therefore, a method, which is able to lower the dimension-
ality of the problem, while keeping its accuracy on an appropriate level, is needed. A suitable
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2-3 Reduced basis method 15

technique is the RB method. Such problems are, for example, uncertainty quantifications,
where the uncertainties of input parameters are characterized, propagated forward through
the model and assessed statistically. Another common application of the RB method is the
real time processing of experimental measured data.
In the following Section 2-3-1 the concept of the RB method is pointed out. The technique is
split into two stages: The offline and the online stage. In the offline stage the reduced basis
space is generated for the particular problem. It is an expensive computation, but has to
be performed only once. A detailed description of the offline stage is given in Section 2-3-2.
During the online stage, which is explained in Section 2-3-3 the problem is solved multiple
times using the previously generated reduced basis space. The calculation of a single solution
in the online stage is then usually faster than using FE. Due to the expensive offline stage,
the RB method is only reducing the computational effort, if many solutions are needed.

2-3-1 Principles of the reduced basis method

The main interest is to find the exact solution u(µ) ∈ V such that [Hesthaven et al., 2016]

a(u(µ), v;µ) = f(v, µ), ∀v ∈ V. (2-21)

Note that µ denotes the parameter that is varied, while v is the test function. a(u(µ), v;µ) and
f(v, µ) are the bilinear forms of the stiffness matrix A and the load vector f . But the exact
solution is often mathematically impossible to obtain or requires an extreme computational
effort. Thus, it is approximated by seeking the approximated solution [Hesthaven et al., 2016]

a(uδ(µ), vδ;µ) = f(vδ, µ), ∀vδ ∈ Vδ, (2-22)

Properties with the index δ are related to the approximation, in the project the FE approx-
imation. To simplify, it is assumed that the FE approximated solution uδ(µ) converges to
the exact solution u(µ) within a defined tolerance for any parameter µ ∈ P with P being the
parameter space. Therefore, the approximate solution can also be called the truth solution.
Another assumption is that a low number of adequately selected basis functions is able to
represent the truth solution well [Hesthaven et al., 2016]. Furthermore, it is assumed that the
reduced basis space is a subset of the truth solution space. This also implies that Nrb � Nδ,
with Nδ as the dimension of the truth space Vδ and Nrb as the dimension of the reduced basis
space Vrb.
The reduced basis problem is then stated as [Hesthaven et al., 2016]

a(urb(µ), vrb;µ) = f(vrb, µ), ∀vrb ∈ Vrb. (2-23)

Note, that all properties denoted with the index rb correspond to the RB method.
For a proper implementation of the RB method, the PDE needs to be separated in a
parameter-dependent and a parameter-independent part following the affine decomposi-
tion. Thus, the forms a(·, ·;µ), f(·;µ) and l(·;µ) need to be decomposed in the manner
of [Hesthaven et al., 2016]

a(w, v;µ) =

Qa∑
q=1

θqa(µ)aq(w, v), (2-24)
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f(v;µ) =

Qf∑
q=1

θqf (µ)fq(v), (2-25)

l(v;µ) =

Ql∑
q=1

θql (µ)lq(v). (2-26)

Note, that the l denotes the output functional. The forms aq, fq and lq are independent of the
parameter µ and the coefficients θa, θf and θl depend on µ, but are independent of w and v.
Because the forms aq(·, ·) do not depend on the parameter, a set of Qa Nrb×Nrb-dimensional
matrices Aq

rb can already be precomputed after the generation of the reduced basis space in
the offline stage. This allows usually a faster computation of Aµ

rb by [Hesthaven et al., 2016]

Aµ
rb =

Qa∑
q=1

θqa(µ)Aq
rb. (2-27)

The calculation of Aµ
rb in that manner is independent of Nδ. The linear forms f(·, µ) and

l(·, µ) are treated in a similar way.
If the affine decomposition is not applicable, the technique of empirical interpolation can help
to determine an approximate form, which is suitable for the affine decomposition. For more
information see [Hesthaven et al., 2016].
Furthermore, it is important to note that the RB method does not depend on a certain
discretization method. Hence, it can be applied for example to the FD, FV or the FE
method.
Now, that the general concept of the RB method is discussed, the question of accuracy arises.
Since the RB method approximates only the numerical approximation, the following triangle
inequality holds [Hesthaven et al., 2016]

||u(µ)− urb(µ)||V ≤ ||u(µ)− uδ(µ)||V + ||uδ(µ)− urb(µ)||V. (2-28)

Above, it is assumed that the truth solution uδ converges to the exact solution u with an
appropriate accuracy. Therefore, the accuracy of the RB method depends mainly on the
second term on the right hand side of Equation 2-28. Note, that the RB method gives not the
same efficiency increase for every problem. While some PDEs work well with the technique,
others are unsuitable and have no efficiency increase or, even worse, a loss of efficiency. The
method is most suitable for parameterized PDEs, which contain one or more parameters that
can be separated in a parameter-dependent and parameter-independent part. For further
investigation of the compatibility of a PDE with the RB method, there exists the Kol-
mogorov N -width. For more details on this, find more information on [Hesthaven et al., 2016].

In the following, the focus turns to the two stages of the RB method: At first the
offline stage (see Section 2-3-2), followed by the online stage (see Section 2-3-3).

2-3-2 Offline stage

In the offline stage the reduced basis space Vrb is generated, which is supposed to have a
dimension as small as possible, but large enough to approximate the FE solution within
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Figure 2-5: Schematic process of the Greedy algorithm, which generates the reduced basis space
Vrb. uδ represents the truth solution and urb the reduced basis solution. tol denotes
the user defined tolerance and Ph the discrete parameter space and the parameters
itself are denoted as µ. Furthermore, η represents the error between the RB and FE
solution. Additionally n is the iteration number. From [Hesthaven et al., 2016]

a certain tolerance. If it is chosen too small, the results have unacceptable uncertainties.
If it is chosen too large, the computation becomes inefficient. The reduced basis space is
generated by the Greedy algorithm or Greedy basis generation. Its scheme is depicted in
Figure 2-5. It is an iterative process, where in each iteration one basis function is added,
which increases the precision of the set of basis functions. In each iteration one truth solution
has to be computed to generate the corresponding basis function. An essential component
of the Greedy algorithm is the estimation of the error η(µ) to determine how the precision
of the solution has changed by replacing the FE approximation space Vδ by the reduced
basis space Vrb. The error is estimated, because determining the actual error is often linked
with a high computational effort. Hence, an estimation of the error is usually advantageous
[Hesthaven et al., 2016]. Since the RB method is also used in real-time applications, where
verifications are often neglected for saving computational resources, the estimation of the error
needs to be fast and reliable. The results of the approximation, using error estimations, have
often an appropriate accuracy, because the estimators use usually large training sets with a
fine sampling of parameters. Hence, the error is based on the discrete set of parameters Ph
instead of the continuous parameter space P [Hesthaven et al., 2016].
There are various ways to estimate the error. In the utilized software package DwarfElephant
(for more information see Section 3-3-3) the relative output bound is used. Therefore, it is
also used for the simulations in this project. The relative output bound ηs,rel is defined as
[Hesthaven et al., 2016]

ηs,rel(µ) =
||r̂δ(µ)||2V

αLB(µ) srb(µ)
. (2-29)

Note that αLB represents the lower coercivity bound and r̂δ denotes the Riesz represen-
tation of r(vδ;µ) = f(vδ;µ) − a(urb(µ), vδ;µ). Furthermore, srb stands for the output
[Hesthaven et al., 2016]. This error estimator is the rigorous upper bound of the output
of interest. For a mathematical derivation of the error estimator and for alternative options
beside the relative output bound, see [Hesthaven et al., 2016]. With the aid of the error
bound, the resulting error from every iteration of the greedy algorithm can be evaluated and
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the number of basis functions can be chosen properly.
In the course of the iterative basis selection, for the case that there is at the n-th iteration
step an n-dimensional reduced basis space Vrb, the estimated model order reduction error is
maximized by the next basis function urb(µn+1). Therefore, [Hesthaven et al., 2016]

µn+1 = arg max
µ∈P

η(µ). (2-30)

Then, uδ(µn+1) is calculated to extend the reduced basis space Vrb =
span{uδ(µ1), ..., uδ(µn+1)}. Hence, the neglected basis function with the largest im-
pact on the solution will be included in the reduced basis space Vrb. This procedure
is continued in a loop until the maximal estimated error falls below a predefined error
tolerance. Thus, the algorithm picks the next sample point, where the estimated error η(µ)
is maximal. Hence, the reduced basis tries to be optimal in the maximum norm over P
[Hesthaven et al., 2016]. Note that for the case of insufficient accuracy of an Nrb-dimensional
reduced basis space, it can be extended by n more modes, which has the same result as
generating it initially with Nrb + n basis functions.
The computational effort of the offline stage is dominated by the necessary step of solving the
truth problem Nrb times [Hesthaven et al., 2016]. But so far no actual solution is obtained.
This is done in the online stage, which is outlined in the following section.

2-3-3 Online stage

Now that the reduced basis space Vrb is defined, the procedure can move on to the online
stage of the RB method. In the case of an ideal setting, the computational effort would be
independent of the dimension of the truth solution space Nδ. It would only depend on the
number of basis functions Nrb (Nrb � Nδ) [Hesthaven et al., 2016].
Actually, for each calculation with a different parameter the reduced basis solution matrix
Aµ
rb would need to be recalculated. Because the parameter µ can be contained in the bilinear

form a(·, ·;µ), the recalculation would require the construction of the truth matrix Aµ
δ . This

would have the issue that Aµ
δ depends on Nδ. But the Nδ-dependent computation can be

circumvent by assuming that the PDE can be separated in a parameter-dependent and a
parameter-independent part according to the affine decomposition described in Section 2-3-1.
The computational effort of the online stage depends mainly on Nrb instead of Nδ. Since
Nrb � Nδ, this is usually more efficient than computing the truth solution for every parameter
value [Hesthaven et al., 2016]. From a more practical point of view, in the online stage one
can compute various solutions at a reduced cost, since the basis space generation is already
precomputed in the offline stage and this basis space just needs to be combined with the
parameter dependent part of the PDE [Hesthaven et al., 2016].
If only one solution is required, the RB method is much more inefficient than standard methods
like the FE method, because the basis space generation in the offline stage is very expensive.
But when the basis space is generated, the computation of a single solution is much faster.
Hence, the RB method becomes more and more efficient, the more solutions need to be
calculated [Hesthaven et al., 2016].
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2-4 Uncertainty Quantification

Uncertainties are a common issue in surveys and simulations. To obtain a better understand-
ing of the reliability of the data, an uncertainty quantification is a helpful tool. It character-
izes the input uncertainties and forward propagates them through the computational model.
Furthermore, statistical or interval assessments can be performed on the resulting responses
[Adams et al., 2014].
There exist several ways of performing an uncertainty quantification. One way is the Bayesian
calibration, where the uncertain parameters are characterized by probability density functions.
These probability density functions describe the permissible parameter values. It then incor-
porates data to estimate with the likelihood function how well the model and its parameters
describe the data [Adams et al., 2014]. The specific likelihood function used in software in
this thesis is based on Gaussian probability density functions [Adams et al., 2014].
A common method of the Bayesian calibration is the MCMC method. It estimates the ex-
pectation of a function with respect to a distribution. It bases on a Markov chain, where a
random walker explores the search space and successively visits solutions with stable frequen-
cies originating from the distribution. After a burn-in phase, the Markov chain allows the
walker to reach a stationary regime [Vrugt et al., 2009].
For the process of the walk through the search space, the MCMC algorithm performs trial
moves from the current position of the Markov chain xt−1 to a new state z. The candidate
location z is sampled from a proposal distribution, which depends on the current location.
The candidate location is then tested by the Metropolis acceptance probability, which ei-
ther accepts or rejects the candidate location. If it is accepted, it becomes the new current
location and the Markov chain moves on to z. Otherwise, the Markov chain stays at the
current location xt−1 and a new candidate location is tested. After multiple iterations, the
MCMC algorithm will reach a stationary regime, if existing for the particular problem, and
stop [Vrugt et al., 2009].
The classical MCMC algorithm has the issue, that it often requires a lot of iterations to
reach the stationary regime. Therefore, an alternative scheme evolved to reduce the required
computational effort: The DREAM scheme [Vrugt et al., 2009]. It estimates a distribution of
crossover probabilities that prefers large jumps over smaller ones in every chain. Hence, the
stationary regime is reached faster [Vrugt et al., 2009]. Furthermore, outlier chains can occur
that deteriorate the performance. In the DREAM algorithm, these outlier chains are removed
[Vrugt et al., 2009]. Additionally, the DREAM scheme uses a decreasing step size. Thus, at
the beginning of the algorithm large steps are performed to approach the stationary regime
and later the steps are smaller to reach the stationary regime properly without overshooting
it [Vrugt et al., 2009].
For this research project, the DREAM algorithm is used.
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Chapter 3

Methods

For giving more comprehensible insights in how the results given in Chapter 4 are obtained,
the general workflow (see Section 3-1) and a short description of the utilized software (see
Section 3-3) is presented in this chapter.

3-1 General workflow

For getting an idea of how the results in the Chapter 4 are obtained, the general workflow
will be presented here. The workflow is illustrated in Figure 3-1.

The first step is to a generate synthetic data sets on the base of a simple predefined
model. This model is designed in the software package BERT ([Rücker et al., 2006],
[Günther et al., 2006]), which is described in Section 3-3-1. For the calculation, a mesh is
required. Therefore, BERT utilizes the tool Tetgen [Si, 2003]. The next step is to perform a
forward simulation on the generated mesh to obtain the synthetic data set. This process is
also done using the software BERT. To do so, the electrode and measurement configuration
has to be defined. The forward simulation gives then for every single measurement the
resulting potential difference and calculates the corresponding apparent resistivity. Further-
more, noise is added. Since the synthetic data are used as a surrogate for measured data, the
noise is important to let the synthetic data appear more as measured data. The inversion
is also performed by the software package BERT. The idea of this back-and-forth process
is to induce uncertainty. The theory behind the inversion is described in the theory part in
Section 2-1-4.
On the base of the inversion result, a new model is built using Gmsh
[Geuzaine and Remacle, 2009]. These rebuilt models are then used in the next step
to perform forward simulations with the FE and RB method. Therefore, I use the
software package DwarfElephant, which bases on the simulation environment MOOSE
[Gaston et al., 2009]. Both are described in Section 3-3-3. The forward simulations of the
FE and RB method are supposed to give the same result within a defined tolerance.
For comparing these data sets with the data set of the BERT forward simulation, a Python
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Figure 3-1: Schematic illustration of the workflow of the research project.
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Figure 3-2: A two layer case used as the initial model. The upper layer is shown in red, while
the lower halfspace is colored in blue. The background is indicated in grey.

script is used to perform multiple simulations by calling DwarfElephant. Each simulation
is performed with a different source position. When all simulations are done, the potential
differences of each measurement is calculated and assembled the same way as in the BERT
data set. The actual comparison of the data sets is supposed to be done in an uncertainty
quantification. Unfortunately, this could not be done, due to a lack of time. Therefore, the
software package Dakota [Adams et al., 2014] is utilized, which calls the Python script to
simulate the ERT data set. The uncertainty quantification is supposed to be done twice.
Once using the FE forward simulation and once using the RB forward simulation. There
are two purposes for the uncertainty quantification: On the one hand, the uncertainties
induced by the inversion process are supposed to be investigated and on the other hand the
computational effort of the FE and the RB method are supposed to be compared in a large
computation.

3-2 Model

The initial model, which is used for the inversion, is presented in the following. For the purpose
of comparing the performance of FE and RB simulations and investigating the uncertainty
induced by the inversion, no special requirements to the model are given. Hence, any model
is suitable. Therefore, a very simple two layer case is used. To limit the computing times
in the uncertainty quantification, the model is in 2D. The domain has an extend of 200 m
in x-direction and a depth of 50 m in z-direction. The upper layer has a thickness of 1 m,
while the lower layer is the underlaying halfspace. Both layers themselves are completely
homogeneous. The interface between the two layers is horizontal. The geometry of the model
is depicted in Figure 3-2.
Furthermore, the resistivities of the layers need to be defined. A resistivity of 10 Ωm is
allocated to the upper layer and a resistivity of 100 Ωm is assigned to the lower halfspace.
According to Figure 2-1, these values are plausible for geoscientific purposes. The resistivity
value of 10 Ωm of the upper layer could possibly represent for example an alluvium or a
clay, while the resistivity value of 100 Ωm of the lower halfspace is suitable for example for a
limestone or a sandstone.
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3-3 Utilized software

In the progress of this research, several software packages are used. In order to make the
process more transparent for the reader, the various software packages will be described
briefly in the following. At first, the ERT related software BERT is introduced in Section
3-3-1, followed by the meshing software Gmsh in Section 3-3-2. The Section 3-3-3 focuses
on the simulation framework MOOSE with its RB application DwarfElephant. Finally, the
parametric analysis framework Dakota is introduced in Section 3-3-4.

3-3-1 Boundless electrical resistivity tomography

The Boundless Electrical Resistivity Tomography software
[Rücker et al., 2006][Günther et al., 2006], or abbreviated BERT, focuses mostly on the
inversion of direct current electrical measurements, but also allows forward modelling to
obtain synthetic data. The used method is ’boundless’ because the domain is extended
to set the boundaries far from the area of interest to reduce the impact of boundary
conditions. The software originated from the Direct Current Finite Element Method Library,
or short DCFEMLib [Rücker et al., 2006], which is based on C++. But over the time, it
has been partly replaced by the Python-based Generalized Inversion and Modelling Library
[Rücker et al., 2017], or short pyGIMLi.
The applied inversion scheme is generally based on the smoothness-constraint Gauss-Newton
inversion. More details on the inversion scheme can be found in Section 2-1-4. The forward
modelling, which is also part of the inversion process, is done using the FE discretization
method [Günther et al., 2006].
BERT employs unstructured tetrahedral meshes. This has the advantage over structured
cubic meshes that arbitrary geometries can be adapted sufficient and local mesh refinements
are more efficient. For the mesh generation, BERT employs the software TetGen [Si, 2003].
Compared to other software packages with a similar use, BERT utilizes a triple grid approach
instead of a dual grid approach. The parameter mesh is coarse and defines the resolution
of the inversion. The secondary field mesh is globally refined and prolonged for the forward
calculation. Finally, the primary potentials are computed on the very fine primary field
mesh. The triple grid approach, including the secondary field mesh, allows a fast calculation
[Günther et al., 2006].

3-3-2 Gmsh

The software Gmsh [Geuzaine and Remacle, 2009] is a 3D FE grid generator. The intention
of the Gmsh is to supply a fast, light and user-friendly meshing tool. It is designed to be
fast enough to generate useful meshes for FE calculations on standard personal computers
and being light in the sense of required computational resources. Furthermore, the software
is intended to be user-friendly by supplying a graphical user interface and having a robust
and portable code. It contains a built-in CAD engine and postprocessor. Additionally, Gmsh
features parametric input and advanced visualization capabilities. The software is completely
developed in C++ [Geuzaine and Remacle, 2009]. Gmsh is an open-source software and can
be obtained from http://www.gmsh.info.
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3-3-3 MOOSE Framework & DwarfElephant

The multiphysics object-oriented simulation environment, or short MOOSE Framework
[Gaston et al., 2009] was coupled with the Dakota Framework [Adams et al., 2014]. It is
developed by the Idaho National Laboratory with the intention to provide a framework for
scientist and engineers to develop new simulation applications with low effort. MOOSE is
based on finite element (FE) method using the continuous or discontinuous Galerkin for-
mulation or the Petrov-Galerkin formulation. Furthermore, unstructured meshes with any
dimensionality up to three is supported. The software is free to use and more information
can be found on https://mooseframework.org.
The software package DwarfElephant is an application based on the MOOSE Framework. It
offers simulations using the reduced basis (RB) method. The application was developed by
the CGRE Institute of RWTH Aachen University. It is free to use and available on Github
on https://github.com/cgre-aachen/DwarfElephant.

3-3-4 Dakota framework

The Dakota Framework [Adams et al., 2014], developed by the Sandia National Laboratories
in Albuquerque, NW, USA, is a software to perform advanced parametric analyses. It is no
simulation software itself, instead it is aiding simulation software with giving additional op-
tions to analyse and improve the simulation. Despite containing internal simulation software,
the Dakota Framework can be coupled with external simulation software. A scheme of the
coupling is depicted in Figure 3-3.
Then a variety of iterative analyses can be performed. The software offers parameter studies

and sensitivity analyses, which varies to input parameters to evaluate their impact on the
simulation results. Another capability of the Dakota Framework are Design of Experiments
techniques, which seek to extract trend data from a parameter space using a limited number of
sample points. Furthermore, uncertainty quantifications are also part of the software. They
forward propagate uncertainties in the input parameters trough the computational model
and perform statistical and interval assessments on the responses. Additionally, the Dakota

Figure 3-3: Basic scheme of the coupling of the Dakota Framework with the user’s simulation
software. From [Adams et al., 2014].
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Framework offers optimization solvers, which are intended to maximize or minimize the ob-
jective function calculated by the coupled simulation software to optimize the performance
and efficiency of the computation. Moreover, performing a calibration is also a possibility of
the software. It is used to maximize the agreement between simulated data and measured or
desired data. This is usually helpful for inverse problems. Because such iterative calculations
are often consuming a lot of computational resources, the Dakota Framework is designed to
exploit the capabilities of parallel computing [Adams et al., 2014].
Summarizing, the Dakota Framework is created to obtain improved or even optimal experi-
mental designs, to get a better understanding of the sensitivity and uncertainty of a specific
problem and to generally to improve the performance of the simulation [Adams et al., 2014].
The Dakota Framework is free to use and more information can be found on https:

//dakota.sandia.gov.
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Chapter 4

Results

In the following, the results including intermediate results will be presented. In the first
Section 4-1, I will describe the generation of the synthetic data and their corresponding
inversion results. Afterwards I will give the model, which is generated on the base of the
inversion result, followed by the forward simulation using the FE and RB methods in Section
4-2. The next section illustrates the results of the uncertainty quantification (see Section 4-3).

4-1 Inversion results

After generating the model, which is described in Section 3-2, it is forward modelled to ob-
tain synthetic field data with the aid of BERT ([Rücker et al., 2006],[Günther et al., 2006]).
Therefore, the position of the electrodes and their measurement configuration need to be
defined. 18 electrodes are employed at the surface from x-positions ranging from 0m to 17m
with an electrode spacing of 1 m. The number is electrodes is rather small, but sufficient as
the model contains only a feature at a depth of 1 m, no deep penetration is required. For
the measurements, the dipole-dipole configuration is chosen. The use of the Dipole-Dipole
configuration allows more measurements for the same amount of source electrode positions
than the Wenner and the Schlumberger configuration. For each source position, one forward
simulation is required, since a new source position generates a different electrical field. There-
fore, with the Dipole-Dipole configuration, more information can be obtained from a single
forward simulation.
The distance between the two electrodes of the source and potential electrode pairs is kept
constant of 1 m. Thus, the 18 electrodes allow 15 possible source positions without per-
forming reciprocity measurements. For all 15 source positions, all possible measurements are
performed. This results in a number of 120 measurements with offsets ranging from 2 m and
16 m.

After the forward simulation an error of 3 % is added to the measured potential differences.
This is import, because otherwise the synthetic data would give a perfect representation of
the model. But synthetic data are not supposed to be perfect, because they should be sur-
rogates for real data. Hence, the added error represents random noise in real measurements.
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Figure 4-1: Pseudosection of the forward modelled apparent resistivities. Note that the z-axis
only shows depth levels and no actual depth.

Figure 4-2: Pseudosection of the error in the forward simulation. Note that the z-axis only shows
depth levels and no actual depth.
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Figure 4-3: Resulting potential differences of the BERT forward simulation. Note that each
block represents all measurements with one source position, but varying offsets.
Each block starts with a peak.

The resulting pseudosection of the forward modelling is depicted in Figure 4-1. The data
are apparent resistivities. The actually modelled data is the potential, but with the poten-
tial differences of the potential electrodes the apparent resistivities can be calculated with
the aid of Equation 2-6. The apparent resistivity values range from 10.14 Ωm to 62.11 Ωm.
Furthermore, a gradient in the apparent resistivities can be observed. In the upper depth
levels the smaller values are located, while the larger values are positioned in the lower depth
levels. Additionally, the values within the depth levels vary. These variations are small in the
upper depth levels and become more significant with depth. This is related to the error of
the forward simulations shown in Figure 4-2. The error increases with the geometrical factor
and therefore the depth level and so the measurements have more variations and are less
reliable. The behaviour of the error depicts reality, because the current needs to penetrate
more material and therefore more errors might be induced. The error distribution does not
show more other features. For a later comparison of the forward simulation using BERT and
the forward simulation using DwarfElephant, I will use the measured potential differences.
Alternatively, also the apparent resistivity could have been used. But none of these modelled
properties gives more information as the other one. The resulting potential differences are
depicted in Figure 4-3. Note that each block represents all measurements with varying offsets
with one source position. Each block starts with the smallest possible offset and ends with the
largest. The block become smaller with increasing measurement number, since the number
of measurements per source position decreases to skip reciprocity measurements. The blocks
follow a certain structure. Each block is similar to the previous one, but with the last mea-
surement missing. Hence, measurements with same offsets give similar results. I will compare
this potential difference data set later with the ones of the FE and RB data sets calculated
with DwarfElephant. Please note that, in the following, I will distinguish the simulations of
DwarfElephant by their method, namely FE and RB, and I will call the simulation done in
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Figure 4-4: Resisitivity distribution as the result of the inversion for the two layer case. The
electrode positions are indicated by the blue dots at the surface.

Figure 4-5: Interpreted resistivity distribution. One interface is interpreted an at depth varying
from about 0.8 to about 1.2 m. Therefore, the interpretation suggests a two layer
case.

BERT only BERT simulation, despite that it is a FE simulation too.
In the next step, the synthetic data are inverted. This process is also performed with the

BERT software using the inversion scheme described in Section 2-1-4. This back-and-forth
calculation is necessary because one of the ideas of this project is to investigate the uncer-
tainty induced by the inversion. The inversion process ends after only two iterations, but
the results are sufficient. The process is stopped, because the data fit criteria is reached by
the error weighted χ2 fit drops below 1. Its value is 0.9725. The relative root mean square
between the data and the response is 10.264 %. Good values of the relative root mean square
would be between 1 − 2 % [Günther and Rücker, 2017]. Hence, the value here is not good
but acceptable. The result of the inversion is given in Figure 4-4. In the inversion result,
the upper area exhibits quite stable values. This area ranges from the surface to a depth
varying from about 0.8 m to 1.2 m. The resistivity values in this upper area range from
about 7.7 Ω to about 17.3 Ωm. After this depth, the resistivity increases stronger to a value
of about 87.8 Ωm at a depth of about 5 m. Due to this change, an interface between two
geological layers is interpreted. Hence, the interpreted interface varies from depths of about

August 10, 2018



4-2 Forward modelling results 31

0.8 m to 1.2 m. The interpretation is depicted in Figure 4-5. So, the result of the inversion
suggests two layers. This correlates with the initial model, which also has two layers with
the interface at 1 m. But the interpreted interface is not straight, instead is has variations
according to variations in the inversion result. The interpretation is used to build up a new
model, which is used for the forward simulations using FE and RB in the software packages
MOOSE [Gaston et al., 2009] and DwarfElephant.

4-2 Forward modelling results

For the forward modelling with the FE and RB method using the software packages
MOOSE [Gaston et al., 2009] and DwarfElephant, a model and a mesh are required. I
generated these on the base of the interpretation of the inversion result. The model with
the corresponding mesh is displayed in Figure 4-6 and a close-up on the area of inter-
est is depicted in Figure 4-7. For the model, I used the ’boundless’ concept of BERT
([Rücker et al., 2006],[Günther et al., 2006]). Hence, the domain is expanded so the bound-
aries are placed far away from the region of interest with the intention to reduce the impact of
the boundary conditions. Therefore, the model domain has a horizontal extent of 200 m and
a vertical extent of 50 m. But note that the model is non-dimensionalized to an horizontal
extent of 1 and a vertical extent of 0.25. This enhances the performance of the forward sim-
ulation, because the values for the calculation have similar magnitudes. The interface in the
area of interest originates from the interpretation of the inversion results. But the inversion
result gives no information about the depth of the interface at the boundaries. Therefore, I
placed the interface at the boundaries to the average depth of the other interface points. The
resistivity values of the two layers are obtained by averaging. The resulting resistivity of the
upper layer is defined as 11.898 Ωm in the model, while a resistivity of 56.933 Ωm is assigned
to the underlying halfspace.
For the mesh unstructured triangular elements are used. The element sizes vary intentionally
to increase the resolution in the area of interest and decrease the resolution in less interesting
regions. The mesh has 17266 elements and 8634 nodes in total.

Now, that the mesh is generated the forward simulations can be performed. First, I will
present the results of the FE simulations. Afterwards I will show the results of the RB simu-
lations.
The ERT problem is a steady state problem, because a direct current is used and therefore,
the electrical field is assumed to be constant over time. This can also be observed in the ERT
problem formulation in Equations 2-14 and 2-15, which do not contain any time derivatives.
The surface is considered as a Neumann boundary condition with a value zero. The air is
very resistive and therefore, it is assumed that there is no flow through the surface. To the
other boundaries Robin or Mixed boundary conditions are assigned. At these boundaries
the electrical field can propagate through the boundaries. This represents that in reality the
electrical field propagates into surrounding rocks. Therefore, the Robin boundaries have a
stronger Neumann character and their penalty value is set to a small value of 1. Due to
the ’boundless’ concept, it is assumed that the boundary elements are far away and that
their boundary conditions have no significant impact on the electrical field originated from
the source. The source and sink at the source electrode pair are set to 0.1 A and −0.1 A
respectively. Note that the source and sinks are always positioned to a depth of 0.1 m to
avoid an interchange of the source and sink themselves with the Neumann boundary condition
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Figure 4-6: Model and mesh based on the inversion result. Note that the domain is expanded
following the boundless concept. Furthermore, the element sizes of the mesh vary
to increase the resolution in the area of interest. The model and the mesh are
generated with the aid of Gmsh. Note that the mesh is dimensionless to improve the
performance of computations. The physical model would have a horizontal extent
of 200 m and a vertical extent of 50 m.

Figure 4-7: Close-up of the model and its mesh based on the inversion result. The close-up
shows the region of interest, which originates from the interpretation of the inversion,
displayed in Figure 4-5.
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Figure 4-8: Potential distribution of the FE forward simulation exemplary for the first source
position at 0 and 1 m. The upper layer has a resistivity of 11.898 Ωm, while the
lower layer has a resistivity of 56.933 Ωm.

at the surface. For one full ERT simulation along the whole profile, one forward simulation
for each source electrode position needs to be performed. Therefore, 15 forward simulations
are computed with the same electrode positions as in the BERT simulation. Exemplary, the
potential distribution of the first forward simulation with the source electrode positions at 0
and 1 m is depicted in Figure 4-8. Furthermore, a close-up of the area of interest is shown in
Figure 4-9. At first sight, the potential distribution behaves as expected. The potential has
in maximum and minimum at the source and sink positions, respectively and decreases in
magnitude with further distance from them. But despite that the source and sink inject and
eject the same current of 0.1 A and −0.1 A, the resulting magnitude of the positive maximum
and negative minimum are not identical. While the maximum has a value of +0.956699 V ,
the minimum has a value of −0.943885 V . Since they are both located in the same layer with
the same resistivity, I do not expect a difference in magnitude.
Furthermore, the potential differences between the potential electrodes of each measurement
are calculated and depicted in Figure 4-10. For purposes of comparing, all the three data sets
of the BERT, FE and RB simulations are compared in Figure 4-14. When comparing the
data sets of BERT and FE, one notices that both data sets follow the same pattern. For each
source electrode position, the potential difference decreases with offset. But the magnitude of
the data sets vary. While the BERT data set ranges from 4.169× 10−4 V to 5.662× 10−2 V ,
the FE data set using DwarfElephant ranges from 5.478 × 10−3 V to 8.676 × 10−2 V . Fur-
thermore, the gradient is steeper for the FE data set than in the one simulated in BERT.

Now, I will change my focus on the RB simulations. They require more preparation. As
described in Section 2-3-1, the PDE needs to be split up in an parameter-dependent and
parameter-independent part. The parameters I am varying are the resistivities ρ of the two
layers. I performed the affine decomposition on the weak formulation of the PDE given
in Equation 2-16. Note that the volume integrals need to decomposed separately from the

August 10, 2018



34 Results

Figure 4-9: A close-up on the area of interest of the potential distribution of FE forward simu-
lation exemplary for the first source position at 0 and 1 m. The upper layer has a
resistivity of 11.898 Ωm, while the lower layer has a resistivity of 56.933 Ωm.

Figure 4-10: Resulting potential differences of the FE forward simulation using DwarfElephant.
Note that each block represents all measurements with one source position, but
varying offsets. Each block starts with a peak.
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surface integrals, since the volume integrals are part of the stiffness matrix and the sur-
face integrals are part of the load vector. For both separations, one notices that the only
parameter-dependent property is the parameter itself, hence the resistivity ρ.
After the affine decomposition, the offline stage can be performed. Therefore, a training set
of parameters need to be defined. I defined the upper bound of the training set by adding
15 % to model resistivities, while I subtracted 15 % from the model resistivities for the lower
bounds. Furthermore, an error tolerance between the truth solution and the reduced basis
approximation needs to be defined. I set it to a value of 1 × 10−5. The calculation of the
offline stage gives a reduced basis space with 4 basis functions.
Please note that I encountered an error in my simulation in the last days of the project, which
remains unsolved until the submission. The error prevents the RB simulations from executing
only the online stage with a precomputed reduced basis space. Therefore, for each forward
simulation, the reduced basis space needs to computed again in the offline stage. Thus, the
described forward simulation of the ERT data set in the following is less efficient than the FE
forward simulation.
Since the RB simulation is an approximation to the FE simulation, I used the same simula-
tion specifications. Hence, the same mesh is used, the same boundary conditions are applied
with the same values and the source terms are identical. For comparing the results with
the FE simulations, the modelled potential distribution with the source and sink located
at 0 and 1 m is x-direction is shown in Figure 4-11. Additionally, a close-up on the area
of interest is depicted in Figure 4-12. The RB simulation gives similar results as the one
computed with the FE method. The electrical field has its maximum and minimum at the
source and sink, respectively, and the magnitude of the field decreases with the distance from
the source and sink. But by comparing the actual values, one notices differences beyond the
defined tolerance. The potential minimum has a value of −0.944155 V , while the maximum is
0.956866 V . For the minima, the error between the FE and the RB simulation is 2.7×10−4 V
and 1.67 × 10−4 V . Since the error tolerance is defined to be 1 × 10−5, there needs to be
systematic error in the simulations.
Furthermore, the potential difference data set of the RB forward simulation is depicted in
Figure 4-13. The RB data set is also compared in the plot in Figure 4-14 with the data sets
of the other simulations. The data set of the RB simulation is similar to the one using the FE
simulation. But note that the potential differences in the RB data set is for all measurements
slightly smaller than the ones of the FE data set.

Nevertheless, an important aspect of the RB method and my project is the computational
efficiency. Since I did not achieve a large computation for comparing the computing times of
the FE and RB method, I compare the run times of single forward simulations. Using the FE
method, one forward simulation takes 1.120091 s. The calculation time of the RB method
needs to be distinguished in the run times of the offline and the online stages, because the
offline stage usually needs to be calculated only once, while the online stage gives the run time
of a single simulation when reduced basis space precomputed in the offline stage. The online
stage takes 1.0228 × 10−2 s, while the offline stage requires 9.77001 s The gives a speed-up
of 109.512, which is calculated by dividing the time of the FE simulation by the time of the
online stage. Furthermore, the pay-off, which gives the number of simulations, when the use
of the RB method is faster than the simulations of the FE method. The pay-off has a value
of 8.803. This calculations assume that the offline stage only needs to be calculated once.
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Figure 4-11: Potential distribution of the RB forward simulation exemplary for the first source
position at 0 and 1 m. The upper layer has a resistivity of 11.898 Ωm, while the
lower layer has a resistivity of 56.933 Ωm.

Figure 4-12: A close-up on the area of interest of the potential distribution of RB forward
simulation exemplary for the first source position at 0 and 1 m. The upper layer
has a resistivity of 11.898 Ωm, while the lower layer has a resistivity of 56.933 Ωm.
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Figure 4-13: Resulting potential differences of the RB forward simulation using DwarfElephant.
Note that each block represents all measurements with one source position, but
varying offsets. Each block starts with a peak.

Figure 4-14: Comparison of the potential differences of the forward simulations using FE (yellow)
and RB (green) with the aid of DwarfElephant and the forward simulation of
BERT(blue).
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4-3 Uncertainty quantification results

Unfortunately, no uncertainty quantification has been calculated. One of the original purposes
of the uncertainty quantifications in this project was to investigate the uncertainties induced
by the inversion process. Due to the error, which prevents the RB simulation from executing
the offline stage only, the uncertainty quantification using RB would be meaningless. But
an uncertainty quantification using FE method could have been performed, but there was
no time left. With more time, I could have at least find answers regarding the question of
induced uncertainties.
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Chapter 5

Discussion

The major objective of the project is to investigate if and how the RB method can be used
for ERT simulations to increase their computational efficiency. Therefore, I compared the
simulations using the RB method with simulations using the FE method. These simulations
are supposed to be used in an inversion and an uncertainty quantification for examining the
required computational effort. Furthermore, the uncertainty quantification has the purpose
of surveying the induced uncertainties by the inversion process in BERT. Unfortunately, the
time of the project ran out and I was unable to perform neither the inversion nor the un-
certainty quantification. Furthermore, during the last days of the project, an error became
apparent in the RB problem. This error prevents the online stage from being executed only.
This makes my RB simulation less efficient than the FE simulation. In the following, I will
discuss the results and the problems occurred during the project.
The generation of the synthetic data set in BERT and the following inversion performed
both quite well, but since the initial model is rather simple, I did not expect major prob-
lems in the process. The data sets obtained from the BERT and the FE forward simulation
show the same trend. With increasing offset between the source and the potential electrodes,
the potential differences decrease. From a physical perspective, I expect such a behaviour.
Since the potentials themselves decrease with the distance, the differences become smaller to.
But the gradient of this trend differs for the two data sets. For smaller offset, the potential
differences in the BERT have a stronger gradient than in the FE data set, but for larger
offsets the gradient of the FE data set becomes stronger than the gradient of the BERT
data set. These differences may occur, because the mathematics behind the simulations vary.
For example, the BERT simulation uses an approach including the calculation of the total
potential and a secondary potential, while my FE simulation only calculates the total po-
tential. Furthermore, different models are used, which contribute to the different outcome.
While the BERT simulation uses the initial model, which I presented in Section 3-2, the FE
simulation uses the model, which is generated on the base of the inversion result. The initial
model has resistivities of 10 Ωm and 100 Ωm for the upper and lower layers, respectively,
while the resistivities obtained from the inversion process are 11.898 Ωm and 56.933 Ωm
for the upper and the lower layer, respectively. While the resistivity of the upper layer in
the new model is quite similar to the one of the initial model, the resistivity of the lower
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layer is remarkably smaller. Furthermore, there occur differences in the magnitudes of the
potential differences. They may occur due to different source and sink currents. The cur-
rents are not clearly defined in the published papers introducing the software package BERT
[Rücker et al., 2006][Günther et al., 2006]. Since there is no current, which is optimal for any
model, I would expect the currents chosen in BERT to have a value of 1 with a decimal power.
For example, values like ±0.01 A, ±0.1 A or ±1 A and no arbitrary value. For investigating
this, I tested different currents. The best tested value appears to be ±0.066 A. Since there
are other dissimilarities in the simulations like the model and the mathematical approaches, I
do not expect to recover exactly the same values. Trying to fit the data neglecting the impact
of other factors, I decided that a value of ±0.1 A appears to be more reasonable. Note that
the current of ±0.066 A does not fit the dissimilarities in the gradients. Another possible
origin of the deviations between the BERT and FE data sets is an incorrectly implementa-
tion of the non-dimensionalized model lengths into the PDE. If a source and sink current of
±1 V is selected and the resulting FE data are scaled down by the non-dimensionalization
factor of 200, the data are in a similar range as the ones obtained from BERT. This may
be coincidental, but can also be the reason for the mismatch. Further error evaluation needs
to be done here. An additional uncertainty quantification investigating the source and sink
currents may give more insights.
Beside the dissimilarities between the data sets of BERT and FE, also the FE and RB simu-
lations do not show the desired similarity. Despite an error tolerance of 1× 10−5 is defined in
the generation of the reduced basis space, the error between the FE and RB reaches values
above 1 × 10−4. I would expect the error to occur, because I have a systematic error in my
problem formulation in the simulation software DwarfElephant. Inserting the decomposed
PDE correctly into the simulation is no straightforward task and I expect that I did not
accomplish it appropriately.
At the end of the project, I discovered a conceptual inefficiency in my project. I only consid-
ered the resistivity as a varying parameter in the RB method. But ERT measurements require
multiple source positions. Hence, it would be very helpful to implement the source position
as a varying parameter too. With only the resistivity as a varying parameter, one reduced
basis space would need to be generated for each source position. For my measurement con-
figuration, the offline stage need to be calculated 15 times. This reduces the efficiency of the
RB method. Therefore, for a proper use of the RB method, the source position needs to be
a varying parameter too. So, in my approach the reduced basis space needs to be calculated
15 times, once for each source position. But that is only a workaround, I expect to be signif-
icantly less efficient than the one considering the source position as a varying parameter.
The uncertainty quantification has not been performed, due to the lack of time. It was
supposed to investigate the resistivity values. Since the resistivities of the lower layer differ
significantly in the two models, I also expect the obtained value from the inversion to be quite
uncertain. However, the resistivity values of the upper layer are quite similar, so I expect
the uncertainty quantification to evaluate it to be quite certain. Since the model of the two
simulations differ, I expect also some minor uncertainties originating from these differences.
The speed-up of using the RB method instead of the FE method is with a value of 109.512 a
remarkable improvement. Since the reduced basis space contains 4 basis functions, I expected
a significant value. Also the pay-off of 8.803 is quite low. This pay-off would even reduce the
computing time of a full ERT data set using the rather small measurement configuration used
in this project. For larger computations the use of the RB method can reduce the computing
time significantly.
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Conclusion

Summarizing, I see a place of the reduced basis method (RB) in the practical application of
the electrical resistivity tomography. The full simulation of RB measurements requires the
calculation of multiple forward simulations, one for each source position. For my approach
without varying the source positions, the offline stage needs to be calculated once for
each source position, which limits the efficiency increase by the use of RB. Now, I would
suggest to include the source position as a varying parameter in the RB method. Then,
the offline stage would only need to be computed once and the computational efficiency
would increase even more. This is especially advantageous, if the Wenner configuration is
used, instead of the Dipole-Dipole configuration in this project. The Wenner configuration
allows only a single measurement per source electrode position, while the Schlumberger and
the Dipole-Dipole configuration allow multiple measurements. For large calculations like
uncertainty quantifications or the inversion of field data, the expected reduction in computing
time would be significant. But note that the use of the RB method requires more effort in
the implementation. Hence, it always needs to be evaluated if the planned computation is
large enough that the use of RB pays off. Unfortunately, I did not achieved my aims for the
project to prove the full potential of the RB method for the ERT problem, by performing
either an inversion or an uncertainty quantification using RB simulations. But hopefully my
results will help in upcoming research to be more successful.
The next step of upcoming research would be to vary not just the resistivities, but also
the source position in the RB. This would increase the potential of the technique even
more. Additionally, the implementation of the RB method into the inversion process is an
important step, since the inversion is a necessary processing step for data of most ERT
field measurements. Furthermore, the RB method could be implemented in optimizing the
field measurements by enabling an inversion of measured data directly in the field. Then
the measurement configuration and parameters could be modified to improve the outcoming
results.
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[Rücker et al., 2017] Rücker, C., Günther, T., and Wagner, F. M. (2017). pygimli: An
open-source library for modelling and inversion in geophysics. Computers & Geosciences,
109:106–123.

[Schiavazzi et al., 2016] Schiavazzi, D., Arbia, G., Baker, C., Hlavacek, A. M., Hsia, T.-Y.,
Marsden, A., Vignon-Clementel, I., and of Congenital Hearts Alliance (MOCHA) Investiga-
tors, T. M. (2016). Uncertainty quantification in virtual surgery hemodynamics predictions
for single ventricle palliation. International journal for numerical methods in biomedical
engineering, 32(3):e02737.
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