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Abstract

In this bachelor thesis, the paper ”Classical synchronization indicates per-
sistent entanglement in isolated quantum systems” by Dirk Witthaut et al.
is looked into and discussed.

First, synchronization in a classic sense is explained. The Kuramoto
model is introduced, and a few properties of this model are defined. In
the next part of the theoretical background, the creation and annihilation
operators are defined. An example is given on how to derive these operators,
and how to write the Hamiltonian in the form of creation and annihilation
operators. It becomes clear that the Hamiltonian of a vector potential in
vacuum does not have any coupling terms. This is why no synchronization
will occur here.

Assuming the Hamiltonian has a different form with two-body interac-
tions and a coupling factor, then it will have some sort of interaction between
modes. Dirk Witthaut published in his paper a way to derive the Kuramoto
equation from this Hamiltonian. First, the time derivative of the expecta-
tion value of the ân operator is evaluated by using the Ehrenfest theorem.
This returns multiple three point functions. These can also be evaluated by
the Ehrenfest theorem, but that will only result in more coupled equations
and five point functions. To solve it, a first order mean field approximation
is used. According to Witthaut, this results in a series of coupled complex
differential equations which can be rewritten into the Kuramoto equations.
Witthaut then further elaborates this result in the remainder of his paper.

My calculations point towards a different conclusion. Witthaut made a
mistake when calculating the commutation relations that were used in the
Ehrenfest theorem. This resulted in a different system of coupled equations,
which I couldn’t elaborate into the Kuramoto model. This is the conclusion
of this bachelor thesis.
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1. Introduction

As quantum mechanics tells us, every particle is simultanetously a wave and a
particle. This is in itself a huge statement, and leads to interesting mechanics.
A parcticle can vibrate like a string, flow like a wave, or bounce like a ball.
All in all, there are a lot of different processes and every situation leads to
different results.

Luckily, there is one equation that predicts quantum movements in every
situation: the Schrödinger equation. All you need is a Hamiltonian and
an initial state of the system. But which Hamiltonian describes a system?
Almost every different problem requires a different Hamiltonian, thus formu-
lating the Hamiltonian is a decisive step.

In the paper ”Classical synchronization indicates persistent entanglement
in isolated quantum systems” by Dirk Witthaut et al., a certain Hamiltonian
is assumed. It is described how the Ehrenfest theorem can be used to derive
the Kuramoto model from this Hamiltonian. The paper you’re holding is
about this derivation.

Firstly, I will look into the theoretical background of classical synchron-
ization and the Kuramoto model. In the following sections, the creation and
annihilation operators and their role in the Hamiltonian is elaborated. In
this part, I will also make some plots of the expectation value. Finally, the
Ehrenfest theorem is applied and a conclusion is made.

This bachelor thesis is part of the double bachelor Applied Physics and
Applied Mathematics on Delft University of Technology.
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2. Theoretical background

In the following sections, the necessary theoretical background behind syn-
chronization will be reviewed, after which the problem with quantummech-
anic synchronization will be discussed. First, the Kuramoto model will be
introduced, and mean field coupling will be aplied to the model. The follow-
ing section starts with the Maxwell equations. From here, a quantization of
the magnetic vector potential will be derived. Then the Hamiltonian from
[1] will be introduced. This Hamiltonian is then used to visualise the system
using a matrix representation. Finally, I will investigate the derivation of the
Kuramoto equation.

2.1 Classical synchronization

In 1975, Yoshiki Kuramoto introduced the Koramoto model for N weakly
coupled oscillators. This model describes the way the phase of these oscillat-
ors interact with eachother by the following equation:

dθi
dt

= ωi +
N∑
j=1

Kij sin(θj − θi) (2.1)

where θi represents the phase of the ith oscillator, ωi is the natural frequency
of this oscillator, and Kij is the ”coupling factor”, or just ”coupling”. Kur-
amoto solved this model for a constant Kij = K

N
and N → ∞[4][5]. This

proof uses the transformation

R =
1

N

N∑
j=1

eiθj = reiφ (2.2)

where r and φ are real. Combining (2.1) and (2.2) gives

dθi
dt

= ωi +Kr sin(φ− θi) (2.3)

which is a simplification of the Kuramoto model, also known as ”mean field
coupling”. A more detailed elaboration of this proof is given in ‘Multi-mode
Quantum Synchronization’[2] by Lotte van Dongen.

One oscillator will be influenced by all other oscillators, and the magnitute
of this influence is dependent on K. When K is small, the oscillators will
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have almost no influence on each other; they will oscillate incoherently. When
K is sufficiently large, the oscillators will oscillate uniformly, which is called
”phase locking”. This is a recognisable property of the Kuramoto model.

The Kuramoto model depends on a few assumptions. It is applicable to
a system of weakly coupled oscillators that have a certain interaction which
depends sinusoidally on the phase difference of each pair of oscillators. In
the next section, a quantization of the vector potential is shown, and it is
evaluated if the Kuramoto model can be applied.

2.2 Quantization of the vector potential

The Maxwell equations are the known laws of EM-fields, (in Gaussian units)
given by:

∇ · ~E = 4πρ (2.4)

∇ · ~B = 0 (2.5)

∇× ~E = −1

c

∂ ~B

∂t
(2.6)

∇× ~B =
1

c
(4π ~J +

∂ ~E

∂t
) (2.7)

Given that we have a vacuum, the Maxwell equations become:

∇ · ~E = 0 (2.8)

∇ · ~B = 0 (2.9)

∇× ~E = −1

c

∂ ~B

∂t
(2.10)

∇× ~B =
1

c

∂ ~E

∂t
(2.11)

where c = 1√
µ0ε0

is the light speed. We can now define the magnetic vector

potential ~A, which is:
~B = ∇× ~A (2.12)
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Given (2.10) and (2.12), an expression for the electric field ~E in terms of ~A
can also be found:

∇× ~E = −1

c
∇× ∂ ~A

∂t
⇒ ~E = −1

c

∂ ~A

∂t
(2.13)

These vector potentials are not unique; if ~A gives some fields ~E and ~B, then
~A′ = ~A+∇f also gives ~E and ~B. f is called the ”gauge transformation”, and
is a twice differentiable function that depends on position and time[7]. For

simplification, we use the Coulomb Gauge, for which ∇· ~A = 0. Using (2.11),
(2.12), (2.13) and the property of the cross product a×(b×c) = (a·c)b−(a·b)c
gives:

∇× (∇× ~A) = − 1

c2
∂2 ~A

∂t2
(2.14)

∇2 ~A =
1

c2
∂2 ~A

∂t2
(2.15)

This differential equation has a solution of the form ~A(~r, t) =
∑
f(~k ·~r−ω~kt),

also know as a planar wave, with a linear disperion relation ω~k = c|~k|. If
there are periodic boundary conditions, such that

~A(~r, t) = ~A(~r + Lx̂, t) = ~A(~r + Lŷ, t) = ~A(~r + Lẑ, t) (2.16)

then equation (2.15) gives the following solution:

A(~r, t) =
1√
V

∑
~k

~A~k(t)e
i~k·~r (2.17)

with ~k = 2π
L

(nxx̂ + nyŷ + nz ẑ) and V = L3, where nx, ny, nz ∈ N. Each

coefficient ~A~k(t) is an amplitude for a wave at the stated wave vector[7].
This representation gives an orthonormal basis, because∫

ei
~k1·~r(ei

~k2·~r)∗d3~r = V δ~k1~k2 (2.18)

Of course, ~A(~r, t) is a real function, and (2.17) shows complex modes. This

problem can be solved by writing ~A as

~A(~r, t) =
1

2
√
V

∑
~k

( ~A~k(t)e
i~k·~r + ~A∗~k(t)e

−i~k·~r) (2.19)

where another factor of 1
2

is added to keep the orthonormal basis.
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2.3 Independence of the harmonic oscillators

Since (2.15) resulted in a planar wave, it is assumed that ~A~k(t) = ~a~ke
−iω~kt.

Using this fact, combining (2.12), (2.13) and (2.19) gives

~B =
1

2
√
V

∑
~k

i~k × ~A~k(t)e
i~k·~r − i~k × ~A~k(t)e

−i~k·~r (2.20)

~E =
1

2c
√
V

∑
~k

iω~k
~A~k(t)e

i~k·~r − iω~k ~A~k(t)e
−i~k·~r (2.21)

The Lagrangian density of the free EM field is L = 1
8π

( ~E2 − ~B2), and from
here we can work out the canonical momenta in the coordinate system ~q =
~A = (Ax, Ay, Az)[7]. From (2.12) it follows that ∂ ~B

∂Ȧi
= 0, and (2.13) gives

∂Ei
∂Ȧi

= −1
c

. This gives the canonical momenta

pi =
∂L
∂Ȧi

=
∂( 1

8π
( ~E2 −B2))

∂Ȧi
=
−1

4πc
Ei(=

1

4πc2
∂ ~A

∂t
) (2.22)

From the Lagrangian density, the Hamiltonian density can be derived:

H =
∑
i

piq̇i − L = ~p · ∂A
∂t
− 1

8π
( ~E2 − ~B2) (2.23)

Substituting (2.22) and (2.13) in this equation gives a familiar expression for
the Hamiltonian density of the free EM field:

H =
−1

4πc
~E · (−c ~E)− 1

8π
( ~E2 − ~B2) =

1

8π
( ~E2 + ~B2) (2.24)

To find the total energy (in other words: to evaulate the Hamiltonian), we

need to work out
∫
~E2d3~r and

∫
~B2d3r. Working out these integrals will give∫

~E2d3~r =
∑
~k

ω2
~k

c2
| ~A~k|

2 (2.25)

∫
~B2d3~r =

∑
~k

~k2| ~A~k|
2 (2.26)
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As we can see, the modes have independent influences on the Hamiltonian,
which means the different modes dont interfere with eachother. Each vector
potential of the vacuum can be seen as a linear combination of modes! Be-
cause ω~k = c|k|, we can also conclude that the electric energy is the same as
the magnetic energy. Now, we will define a new coordinate system, related
to mode ~k:

~q~k = ~A~k (2.27) ~p~k =
1

4πc2
∂ ~A~k
∂t

=
−iω~k
4πc2

~A~k (2.28)

where at equation (2.28) the assumption is used that ~A~k(t) = ~a~ke
−iω~kt. This

means (2.25) and (2.27) give an electric energy, and (2.26) and (2.28) give a
magnetic energy, both expressed in the coordinate system ~q~k and ~p~k. This
gives the Hamiltonian of a single mode

H =
∑
~k

(2πc2|~p~k|
2 +

ω2
~k

8πc2
|~q~k|

2) (2.29)

It becomes clear that the modes don’t interfere with eachother. This means
synchronization between the modes will not occur here. In the next section,
a Hamiltonian will be introduced where synchronization can be possible.

2.4 Hamiltonian operator

Assume there is a system with L modes. For each mode, the ladder operators
âj and â†j lower or raise the number of particles in mode j. Furthermore, the

number operator n̂ is defined as n̂ = â†â. The eigenstates of the number
operator are called the Fock eigenstates. They can be represented by |nj〉,
where nj is the number of particles in mode j. The following equations hold:

âj |nj〉 =
√
nj |nj − 1〉 [âj, â

†
k] = δjk

â†j |nj〉 =
√
nj + 1 |nj + 1〉 [n̂j, â

†
k] = â†jδjk

n̂ |nj〉 = nj |nj〉 [n̂j, âk] = −âjδjk
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where δjk is the Kronecker delta. Now assume the modes interact according
to the following Hamiltonian[1]:

Ĥ =
L∑
l=1

ωlâ
†
l âl+

U

2
â†2l â

2
l +
∑̂L

k=1

Kk,l

8
[i(â†kâl−â

†
l âk)(â

†
kâk−â

†
l âl)+h.c.] (2.30)

This Hamiltonian is introduced as ”the Hamiltonian (...) describing L spa-
tially localised modes j ∈ {1, ..., L} with on-site two-body interactions of en-
ergy scale U .” At first, this Hamiltonian may seem arbitrary, but the terms
can be explained one by one.

The first term ωlâ
†
l âl can be written as ωln̂l. This is by a constant equal to

the energy levels of a quantum harmonic oscillator, which is En = ~ω(n+ 1
2
).

This means the first term represents the energy needed to have nl particles
in mode l.

The second term U
2
â†2l â

2
l can be written out using the commutator [n̂l, â

†
l ] =

â†l :
U

2
â†la
†
l âlâl =

U

2
â†l n̂lâl =

U

2
(n̂lâ

†
l − â

†
l )âl =

U

2
(n̂2

l − n̂l) (2.31)

Now, 1
2
(n2−n) can be recognised as the amount of edges in a complete graph

with n vertices. A complete graph is a graph where each vertex is connected
to all of the other vertices with an undirected edge. This means the second
term in the Hamiltonian is respresenting the on-site two-body interaction; if
there are nl points in mode l, then there are 1

2
(n2

l − nl) different two-body
interactions, and all of those interactions have an energy U . In conclusion,
the total contribution of the two-body interaction in mode l is U

2
(n2

l − nl).
The third term of the Hamiltonian describes the interaction between dif-

ferent modes. This term is the origin of the synchronization, but it requires
some time to fully write it out. First, lets look at just one single term of the
sum:

Kk,l
8

[i(â†kâl − â
†
l âk)(â

†
kâk − â

†
l âl) + h.c.]. In this context, h.c. stands for

Hermitian conjugate. â†kâk can be written as n̂k, so this term is the same as
Kk,l
8

[i(â†kâl − â
†
l âk)(n̂k − n̂l) + h.c.]. The other term t̂k,l = (â†kâl − â

†
l âk) can

be seen as a sum of hopping operators, where â†kâl is the term that represents

1 particle that goes from mode l to mode k, and â†l âk represents a particle
that goes the other way.
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2.5 Matrix representation

We want to numerically simulate this system. This can be done by simulating
the Schrödinger equation with a matrix representation of the Hamiltonian.
Define a basis B = {|b1〉 , |b2〉 , ...} as a set of states which span the Hilbert
space. The state of the system will be an array φ =

∑∞
n=1 cn |bn〉, and the

Hamiltonian matrix will contain the elements Hn,m = 〈bn| Ĥ |bm〉.
To get a matrix representation of the Hamiltonian, it is easier to look at

each term of the Hamiltonian on its own. The first term of the Hamiltonian∑L
l=1 ωln̂l only adds a term to the diagonal of H, because

〈n1, n2, . . . , nL|ωln̂l |m1,m2, . . . ,mL〉 = ωlnlδnl,ml (2.32)

This results in a diagonal term of ωlnl. The same result can be found in the
second term

∑L
l=1

U
2
n̂l(n̂l − 1)), which gives a diagonal term of U

2
nl(nl − 1).

The third term of the sum becomes more clear when it is applied to a
quantum state |ψ〉. For simplification, the quantum state will be written as
|nk, nl〉 (n 6= k), just to have an idea what the effect is of the kth and lth term
of the Hamiltonian on the eigenstate with nk particles in mode k, nl particles
in mode l and 0 particles in the other modes. It is clear that the addition of
the third term will be zero when k = l. We will use (AB)† = B†A†, i† = −i
and the definition of âl and â†l :

Kk,l

8
[i(â†kâl − â

†
l âk)(n̂k − n̂l) + (i(â†kâl − â

†
l âk)(n̂k − n̂l))

†] |nk, nl〉

=
Kk,l

8
[i(â†kâl − â

†
l âk)(n̂k − n̂l)− i(n̂k − n̂l)(â

†
l âk − â

†
kâl)] |nk, nl〉

=
iKk,l

8
[â†kâln̂k − â

†
l âkn̂k − â

†
kâln̂l + â†l âkn̂l − n̂kâ

†
l âk + n̂lâ

†
l âk + n̂kâ

†
kâl − n̂lâ

†
kâl] |nk, nl〉

=
iKk,l

8

[√
nk + 1

√
nlnk −

√
nk + 1

√
nlnl

+ (nk + 1)
√
nk + 1

√
nl − (nl − 1)

√
nk + 1

√
nl
]
|nk + 1, nl − 1〉

+
iKk,l

8

[√
nl + 1

√
nknl −

√
nl + 1

√
nknk

+ (nl + 1)
√
nl + 1

√
nk − (nk − 1)

√
nl + 1

√
nk
]
|nk − 1, nl + 1〉

=
iKk,l

4

√
nk + 1

√
nl(nk − nl + 1) |nk + 1, nl − 1〉+

iKk,l

4

√
nl + 1

√
nk(nl − nk + 1) |nk − 1, nl + 1〉

The effect of the hopping operator can be seen here; the resulting term only
has eigenstates where 1 particle has moved from k to l or vice versa.
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Furthermore, the elements of the first two terms of the Hamiltonian all
depend on the amount of particles in 1 mode (nl). The third term however
is different. The elements of this sum depend on the amount of particles in
2 modes! This means there needs to be a tensor product to determine H.

This is a problem, because the matrix will be a lot bigger and thus the
numerical approximation will be slower. Assume there are modes 1, ..., L,
and in the numerical approximation the maximum number of particles in a
mode is M−1. When every term in the Hamiltonian depends on the amount
of particles in only 1 mode, H has the size of ML. If there are terms in the
Hamiltonian that depend on the amount of particles in multiple modes, then
a tensor product is used. This will result in a matrix with a size ML, which
is significantly bigger.

To understand the Hamiltonian a bit better, we will look at a system
with 2 modes (”1” and ”2”). Substituting L = 2 in (2.30) gives:

Ĥ = ω1â
†
1â1 + ω2â

†
2â2 +

U

2
â†21 â

2
1 +

U

2
â†22 â

2
2

+
K2,1

8
[i(â†2â1 − â

†
1â2)(â

†
2â2 − â

†
1â1) + i(â†2â2 − â

†
1â1)(â

†
2â1 − â

†
1â2)]

+
K1,2

8
[i(â†1â2 − â

†
2â1)(â

†
1â1 − â

†
2â2) + i(â†1â1 − â

†
2â2)(â

†
1â2 − â

†
2â1)]

= ω1â
†
1â1 + ω2â

†
2â2 +

U

2
â†21 â

2
1 +

U

2
â†22 â

2
2

+
i(K2,1 +K1,2)

8
[−â†1â2â

†
2â2 + â†2â1â

†
2â2 − â

†
2â2â

†
1â2 + â†2â2â

†
2â1

− â†2â1â
†
1â1 + â†1â2â

†
1â1 − â

†
1â1â

†
2â1 + â†1â1â

†
1â2]

Now, the effect of the Hamiltonian on a eigenstate |n1, n2〉 will be calculated.
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The definiton of âl and â†l is used here.

Ĥ |n1, n2〉 = [ω1n1 + ω2n2 + U(n2
1 − n1) + U(n2

2 − n2)] |n1, n2〉

+
i(K2,1 +K1,2)

8
{[−
√
n1 + 1

√
n2n2 − (n2 − 1)

√
n1 + 1

√
n2

+
√
n1 + 1

√
n2n1 + (n1 + 1)

√
n1 + 1

√
n2] |n1 + 1, n2 − 1〉

+ [−
√
n1

√
n2 + 1n1 − (n1 − 1)

√
n1

√
n2 + 1

+
√
n1

√
n2 + 1n2 + (n2 + 1)

√
n1

√
n2 + 1] |n1 − 1, n2 + 1〉}

= [ω1n1 + ω2n2 + U(n2
1 − n1) + U(n2

2 − n2)] |n1, n2〉

+
i(K2,1 +K1,2)

√
n1 + 1

√
n2(n1 − n2 + 1)

4
|n1 + 1, n2 − 1〉

+
i(K2,1 +K1,2)

√
n1

√
n2 + 1(n2 − n1 + 1)

4
|n1 − 1, n2 + 1〉

As noted before, the basis of the matrix representation of the Hamiltonian can
not beB1 = {|n1 = 0〉 , |n1 = 1〉 , |n1 = 2〉 , ..., |n2 = 0〉 , |n2 = 1〉 , |n2 = 2〉 , ...}1.
We will at least need a tensor product to sufficiently include the coupling
factor into the calculations.

Instead, a basis will be chosen as follows:

B2 = {|n1, n2〉 ;n1, n2 ∈ N0}
= {|0, 0〉 , |1, 0〉 , |2, 0〉 , ..., |0, 1〉 , |1, 1〉 , |2, 1〉 , ..., |0, 2〉 , |1, 2〉 , |2, 2〉 , ...}

This basis will be used to represent a numerical approximation of the prob-
lem, using the Schrödinger equation i~ ∂

∂t
|φ(t)〉 = Ĥ |φ(t)〉. A matrix repres-

entation of this equation will be used in i~ ∂
∂t
~φ = H~φ.

When making this Hamiltonian, it can be noted that 〈m1,m2| Ĥ |n1, n2〉
will only not be zero when m1 + m2 = n1 + n2. This greatly reduces the
size of the needed matrix. Suppose there is a system with 2 modes, and
the maximum amount of particles in 1 modes is set on M − 1. If all of the
possible systems are taken into calculation, then the basis of the Hamiltonian
will have the size of M2. However, if it is known that there are N particles

1Trying to write |Φ1〉 = 1√
2
|1, 1〉+ 1√

2
|2, 2〉 will result in |Φ2〉 = 1√

2
(|n1 = 1〉+|n1 = 2〉+

|n2 = 1〉+ |n2 = 2〉). In the equation for |Φ1〉, there will be no interaction between the two
modes, because n1 = n2 in every case. |Φ2〉 however will have a coupling term. There is a
difference between the two notations, so B1 is not a sufficient basis for this Hamiltonian.
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devided amongst these two modes, then the basis only has to be of size N+1
(B3 = {|0, N〉 , |1, N − 1〉 , ..., |N, 0〉}).

In conclusion; the system with this Hamiltonian has eigenstates where
N = n1 +n2 is constant, and these states dont interact with eachother. This
is a big conclusion, because it can help with checking the validity of numerical
approximations.

With basis B3 and a matrix representation H, the system can be sim-
ulated. Following the article of Witthaut, it is assumed that the phases of
〈â1〉 and 〈â2〉 synchronize according to the Kuramoto equation. This is also
shown in section 2.6. However, a problem occurs when the state of a system
is solely 1 eigenstate with n1 + n2 = N . 〈â1〉 = 〈φ| â1 |φ〉 = 0, because â1 |φ〉
will only consist of states with N − 1 particles. Orthogonality of the states
gives 〈â1〉 = 〈â2〉 = 0. This is of course not useful, because the values don’t
synchronize.

This means that it is impossible to simulate synchronization, without
taking multiple eigenstates of n1 +n2 into account. This is why a fourth and
final basis for the numerical approximation is made.

B4 = {|0, 0〉 , |0, 1〉 , |1, 0〉 , |0, 2〉 , |1, 1〉 , |2, 0〉 , |0, 3〉 , |1, 2〉 , ...} (2.33)

This basis will contain every possible combination |n1, n2〉. Furthermore, the

first (M+1)(M+2)
2

(recognised as the M +1th pyramid number) will contain all
modes with a maximum of M particles spread accros the modes.

2.5.1 Plotting with the Hamiltonian

I used python in combination with numpy and matplotlib to appriximate
how a two mode system would behave with this Hamiltonian. The full code
can be found in the appendix.

The inputs of the program are the variables of the system. That is: ω1,
ω2, U , K1,2 and K2,1. The variable ~ is also noted, but for simplicity this is
set to 1. Finally, the initial state of the system is also given as a variable. The
numerical approximation also needs some variables, which are the maximum
number of existing particles M , the time step dt and the total time of the
simulation tmax.

The next simulation is with a small amount of particles and a short time
scale, just to show the basics of this simulation (2.1). The plot consists of
three subplots. In all three subplots, the horizontal axis is the time axis.
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Figure 2.1: ω1 = ω2 = K1,2 = K2,1 = ~ = 1, dt = 0.0001, tmax = 10, M = 2

and the initial wave was φ = [1,2,3,4,5,6]√
98

. Because there are a maximum of
2 particles devided amongst the two modes, there are 6 possible states the
system could be in.
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Figure 2.2: ω1 = ω2 = K1,2 = K2,1 = ~ = 1, dt = 0.0001, tmax = 10, M = 20,
and the initial wave was a randomly generated state. The full initial wave
can be found in the appendix. It can be seen that the oscillating frequency
of â1 and â2 is a lot higher.

This starts at 0, and adds up to the total number of loops. Each dt, one loop
passes, so the total will be equal to tmax

dt
. The first plot shows the probability

of the system being in a specific state; the lowest is |0, 0〉, above it |0, 1〉,
|1, 0〉, |0, 2〉, etc. The lighter the color, the higher the probability. It can
be seen that |0, 0〉, |0, 1〉 and |1, 0〉 are completely stationary. This can be
derived from the Hamiltonian; these terms have no coupling term and will
be constant. The other three states (|0, 2〉, |1, 1〉 and |2, 0〉) oscillate.

The second subgraph shows the complex phase of the expectation value
of â1 (blue) and â2 (orange). These are the two variables that should syn-
chronize, according to Dirk Witthaut et al. This however is not noticable in
this graph.

The third subgraph shows the expectation value of n̂1 (blue) and n̂2 (or-
ange). It can be seen that n̂1 + n̂2 will always be constant. This confirms the
results from the previous chapter.

A more advanced example of this simulation can be seen in the next plot.
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Figure 2.3: ω1 = ω2 = K1,2 = K2,1 = ~ = 1, dt = 0.0001, tmax = 1, M = 20,
and the initial wave is the one used in figure (2.2). A difference between
this plot and (2.2) is the tmax; it is 10 times smaller. In this graph, the
amount of oscillations is almost the same as in (2.1). This shows that scaling
the maximum amount of particles by ten also increases the frequency of the
oscillation by roughly ten.
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2.6 Deriving the Kuramoto equation

In the following section, the derivation of the Kuramoto equation from the
Hamiltonian is presented. We follow the same steps as [1].

From the Schrödinger equation i~ ∂
∂t
|φ(t)〉 = Ĥ |φ(t)〉, we will derive

∂〈ân〉
∂t

. 〈ân〉 is the expectation value of ân, and is short for 〈φ(t)| ân |φ(t)〉.
In the following proof, the Hermitian conjugate of the Schrödinger equation
i~ ∂

∂t
〈φ(t)| = −〈φ(t)| Ĥ† = −〈φ(t)| Ĥ is also used (Ĥ† = Ĥ because Ĥ is a

hermitian operator). We get:

∂

∂t
〈ân〉 =1 〈

∂

∂t
φ| ân |φ〉+ 〈φ| ∂

∂t
ân |φ〉+ 〈φ| ân |

∂

∂t
φ〉

=2
−1

i~
〈φ| Ĥân |φ〉+ <

∂ân
∂t

> +
1

i~
〈φ| ânĤ |φ〉

=3
1

i~
〈[ân, Ĥ]〉

At step 1, the product rule is applied. At the second step, the Schrödinger
equation is applied twice. Step 3 makes the assumption that the operator
is constant (and the quantum state is time dependent). From now on, the
units will be chosen such that ~ = 1, thus simplifying this equation. This
equation is also known as the Ehrenfest theorem.

To calculate the commutator [ân, Ĥ], the following formulas follow from
the basic properties of ân[1]:

ânâ
†
j = â†jan + δn,j (2.34)

[ân, â
†
l âl] = δn,2lân (2.35)

[ân, â
†2
l â

2
l ] = 2δn,lâ

†
l â

2
l (2.36)

[ân, â
†
j âlâ

†
j âj] = δn,j(â

†
nâl + âlâ

†
n)ân (2.37)

[ân, â
†
j âlâ

†
l âl] = δn,j âl + δn,j â

†
l â

2
l + δn,lâ

†
j â

2
l (2.38)

At equation (2.37) in [1], it is assumed this equation is equal to 2δn,j â
†
nânâj.

This is wrong, but gives the same results after the mean field approxima-
tion. A bigger problem occurs at equation (2.38). According to the original
paper[1], this would be equal to

[ân, â
†
j âlâ

†
l âl] = (1− δn,j)â†l â

2
l + (1− δn,l)â†j â2l + δn,j âl (2.39)
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This is in no way close to my result. In the next two sections, I will try to get
the same results using my calculations for the commutation relations, and
afterwards I will show the calculations of Witthaut.

2.6.1 Ehrenfest theorem following my own calculations

Substituting equations (2.35), (2.36), (2.37) and (2.38) into the Ehrenfest
theorem gives the following:

∂

∂t
〈ân〉 =

1

i
〈[ân, Ĥ]〉

=
1

i
〈[ân,

L∑
l=1

ωlâ
†
l
âl +

U

2
â
†2
l
â
2
l +

L∑
k=1

Kk,l

8
(i(â

†
k
âl − â

†
l
âk)(â

†
k
âk − â

†
l
âl) + h.c.)]〉

=
1

i
(〈ωnân〉 + U 〈â†nâ

2
n〉)

+ 〈[ân,
L∑

l=1

L∑
k=1

Kk,l

8
(â

†
k
âlâ

†
k
âk − â

†
l
âkâ

†
k
âk − â

†
k
âlâ

†
l
âl + â

†
l
âkâ

†
l
âl − h.c.)]〉

=
1

i
(〈ωnân〉 + U 〈â†nâ

2
n〉)

+

L∑
l=1

L∑
k=t1

Kk,l

8
< (2δn,kâ

†
k
âlâk + δn,kδl,kâk)− (δn,lâk + δn,lâ

†
k
â
2
k + δn,kâ

†
l
â
2
k)

− (δn,kâl + δn,kâ
†
l
â
2
l + δn,lâ

†
k
â
2
l ) + (2δn,lâ

†
l
âkâl + δn,lδk,lâl)

− (δn,kâ
†
l
â
2
k + δn,kδk,lâk + δn,lâ

†
k
â
2
k)

+ (2δn,lâ
†
k
âkâl + δn,lâl) + (2δn,kâ

†
l
âlâk + δn,kâk)− (δn,lâ

†
k
â
2
l + δn,lδl,kâl + δn,kâ

†
l
â
2
l ) >

=
1

i
(〈ωnân〉 + U 〈â†nâ

2
n〉)

+
L∑

l=1

L∑
k=1

Kk,l

8
< δn,k(2â

†
k
âlâk + δl,kâk − â

†
l
â
2
k − âl − â

†
l
â
2
l − â

†
l
â
2
k − δk,lâk + 2â

†
l
âlâk + âk − â

†
l
â
2
l )

+ δn,l(−âk − â
†
k
â
2
k − â

†
k
â
2
l + 2â

†
l
âkâl + δk,lâl − â

†
k
â
2
k + 2â

†
k
âkâl + âl − â

†
k
â
2
l − δl,kâl) >

=
1

i
(〈ωnân〉 + U 〈â†nâ

2
n〉)

+
L∑

l=1

L∑
k=1

Kk,l

8
< δn,k(2â

†
k
âlâk − 2â

†
l
â
2
k − 2â

†
l
â
2
k + 2â

†
l
âlâk − âl + âk)

+ δn,l(2â
†
l
âkâl − 2â

†
k
â
2
l − 2â

†
l
â
2
k + 2â

†
k
âkâl − âk + âl) >

Assuming Kk,l = Kl,k for every l, k allows us to further elaborate these
equations.

∂

∂t
〈ân〉 =

1

i
(〈ωnân〉+ U 〈â†nâ2n〉)

+
L∑
k=1

Kk,n

4
(2â†nâkân − 2â†kâ

2
n − 2â†nâ

2
k + 2â†kâkân − âk + ân)

Use first order mean field approximation 〈â†j âkâl〉 = 〈â†j〉 〈âk〉 〈âl〉 = c∗jckcl,

where c∗j is the complex conjugate of cj. c
∗
ncn = 〈â†nân〉 = 〈nn〉 so it can be
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said that c∗ncn = |cn|2 is the amount of particles in mode n. A more detailed
explaination about this approximation is given in the next section.

∂cn
∂t

=
1

i
(ωncn + Uc∗nc

2
n) +

L∑
k=1

Kk,n

4
(2c∗nckcn − 2c∗kc

2
n − 2c∗nc

2
k + 2c∗kckcn − ck + cn)

=
1

i
(ωncn + U |cn|2cn) +

L∑
k=1

Kk,n

4
(2|cn|2ck + 2|ck|2cn − 2c∗kc

2
n − 2c∗nc

2
k − ck + cn)

Now, in [1] it is concluded that the modulus of cn is constant if all moduli
have the same starting value. This equation however gives:

∂|cn|2

∂t
= c∗n

∂cn
∂t

+ cn(
∂cn
∂t

)∗

=
L∑
k=1

Kk,n

4
(2|cn|2ckc∗n + 2|ck|2|cn|2 − 2c∗kcn|cn|2 − 2(c∗n)2c2k − ckc∗n + |cn|2

+ 2|cn|2c∗kcn + 2|ck|2|cn|2 − 2ckc
∗
n|cn|2 − 2c2n(c∗k)

2 − c∗kcn + |cn|2)

=
L∑
k=1

(|cn|2(4|ck|2 + 2)− 2(c∗n)2c2k − 2c2n(c∗k)
2 − ckc∗n − c∗kcn)

This is not necessary zero if the moduli have the same starting value. It can
be concluded that synchronization is not necessarily existing in this setting,
and the method that Witthaut uses is not valid in this situation.

2.6.2 Ehrenfest tehorem following the equations of Wit-
thaut

Witthaut uses the following equations in his paper:

[ân, â
†
j âj] = δn,j ân (2.40)

[ân, â
†2
j â

2
j ] = 2δn,j â

†
nâ

2
n (2.41)

[ân, â
†
j âlâ

†
j âj] = [ân, â

†
j âj â

†
j âl] = 2δn,j â

†
nânâl (2.42)

[ân, â
†
j âlâ

†
l âl] = [ân, â

†
l âlâ

†
j âl] = (1− δn,j)â†l â

2
l + (1− δn,l)â†j â2l + δn,j âl

(2.43)
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Substituting this into the Ehrenfest theorom gives the following:

∂

∂t
〈ân〉 =

1

i
(〈ωnân〉+ U 〈â†nâ2n〉)

+ 〈[ân,
L∑
l=1

L∑
k=1

Kk,l

8
(â†kâlâ

†
kâk − â

†
l âkâ

†
kâk − â

†
kâlâ

†
l âl + â†l âkâ

†
l âl − h.c.)]〉

=
1

i
(ωn 〈ân〉+ U 〈â†nâ2n〉)

+
L∑
j=1

Kn,j

2
(2 〈â†nânâj〉 − 〈â

†
j â

2
n〉 − 〈â

†
j â

2
j〉)

Here, it is assumed that Kn,j = Kj,n. The right hand side of this equation has

multiple three point functions of the form 〈â†j âkâl〉. The time derivative of
these expectation values can also be calculated with the Ehrenfest theorem,
but this will only result in more coupled equations with even more variables.
To avoid this problem, the three point functions will be approximated using
one point functions as 〈â†j〉 ≈ 〈â

†
j〉 〈âk〉 〈âl〉 = c∗jckcl. This is of course an

approximation, but the error vanishes as 1
N

[1][3]. The previous equation will
then yield:

i
dcn
dt

= ωncn + U |cn|2cn +
L∑
j

Kn,j

2i
(c∗jc

2
n + |cj|2cj − 2|cn|2cj) (2.44)

Decomposing cn = |cn|e−iφn results in two equations, where cn and φn are
real numbers. Again, |cn|2 can be seen as the total amount of particles in
mode n.

d

dt
|cn|2 = −

L∑
j=1

Kn,j(|cj|2 − |cn|2)|cj||cn| cos (φn − φj) (2.45)

d

dt
φn = ωn + U |cn|2 +

L∑
j=1

Kn,j

2

|cj|
|cn|

(3|cn|2 − |cj|2) sin (φj − φn) (2.46)

It becomes clear that the amplitutes |cn| remain constant if all amplitutes
have the same value. This means only the phases of these variables will be
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time dependant. Assuming |cj|2 = N
L

for all j, will result in the Kuramoto
equation.

dφn
dt

= ωn + U
N

L
+

L∑
j=1

Kn,j
N

L
sin (φj − φn) (2.47)

As I mentioned before, my calculations had an other result. There is an
error in the calculations for the commutation relations in [1], which results
in a whole different equation for cn.
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3. Conclusion

In this paper, there are two comments that I would like to discuss about
the paper of Dirk Witthaut. In this paper, he starts with a Hamiltonian
and derives the Kuramoto equation using the Ehrenfest theorem. In the
remainder of the paper, this result is further elaborated.
Firstly, the origin of this Hamiltonian is very vague. The paper does give a
source [6], but nowhere in this paper is the Hamiltonian given that Witthaut
uses. It can be totally possible that this Hamiltonian is in fact derived
from an equation in [6], but it would be useful and clearifying to add this
derivation.
Secondly and more importantly, there is a mistake in the calculations of the
commutation relations. This error results in an incorrect time derivative 〈ân〉
in the Ehrenfest theorem. When the correct time derivative is calculated,
it is concluded that the Kuramoto equation cannot be derived in the way
Witthaut derives it. Perhaps synchronization does occur by deriving it in a
different way, but that is a totally different problem.
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4. Appendix

4.1 Python code for approximating the sys-

tem

To simulate the system, a numerical approximation of the Schrödinger equa-
tion is used. The basis is B4, as given in the theoretical background. In the
following section, the code will be explained in steps.
import numpy as np
import matp lo t l ib . pyplot as p l t
from tqdm import tqdm

M = 5
omega1 = 1 .1
omega2 = 1
U = 1
K12 = 1
K21 = 1
hbar = 1

dt = 0.0001
tmax = 10

The python code starts with the necessary imports, and setting the vari-
ables. This code approximates a system with 2 modes, and a Hamiltonian
according to [1]. This gives the stated variables. M , dt and tmax are vari-
ables used in the numerical approximation; M is the maximum amount of
particles spread accross both states, dt is the time step used in the Euler
forward method, and tmax is the stoptime.
def no rma l i z e a l l ( v ) :

norm = np . l i n a l g . norm(v )
i f norm == 0 :

return v
return v / norm

wave = no rma l i z e a l l (np . random . rand ( int ( (M+2)∗(M+1)/2)) + 1 j ∗np . random . rand ( int ( (M+2)∗(M+1)/2))))

When there is a maximum of M particles in both states, then there are
(M+1)(M+2)

2
possible modes. The variable wave is the current state of the

system, and this is a representation of Ψ =
∑

i ai |i-th state of B4〉. The i-th
element of wave is ai. The wave is then normalized. It is arguable that the
initial vector is not at all random. It has a random real part, and a random
imaginary part (1j is the imaginary number i in python), but these parts
will not be negative, since np.random.rand is a function that generates an
array of random numbers between 0 and 1.
def de l t a ( nr1 , nr2 ) :

i f nr1 == nr2 :
return 1

else :
return 0

H = [ ]
ba s i s = [ ]
for Ntot in range (0 , M + 1 ) :
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for n1 in range (0 , Ntot + 1 ) :
n2 = Ntot − n1
ba s i s . append ( ’ | ’ + str ( n1 ) + ’ , ’ + str ( n2 ) + ’> ’ )
row = [ ]
for Mtot in range (0 , M + 1 ) :

for m1 in range (0 , Mtot + 1 ) :
m2 = Mtot − m1
value = de l t a (n1 ,m1)∗ de l t a (n2 ,m2)∗ ( omega1 ∗ n1+omega2∗n2+U∗( n1∗∗2−n1+n2∗∗2−n2 ) )
value += de l t a ( n1+1,m1)∗ de l t a (n2−1,m2)∗1 j ∗(K21+K12)∗np . sq r t ( n1+1)∗np . sq r t ( n2 )∗ (n1−n2+1)/4
value += de l t a (n1−1,m1)∗ de l t a ( n2+1,m2)∗1 j ∗(K21+K12)∗np . sq r t ( n1 )∗np . sq r t ( n2+1)∗(n2−n1+1)/4
row . append ( value )

H. append ( row )

H = np . array (H)

In this part, the matrix representation of the Hamiltonian is made. This
is done by looping over the rows and collumns, according to

Hij = 〈i-th state of B4| Ĥ |j-th state of B4〉 (4.1)

The function delta() is used as the Kronecker delta function. In the last
line, H is transformed into a numpy matrix object, which will be useful later.
A1 = [ ]
A2 = [ ]
N1 = [ ]
N2 = [ ]

for Ntot in range (0 , M + 1 ) :
for n1 in range (0 , Ntot + 1 ) :

n2 = Ntot − n1
rowA1 = [ ]
rowA2 = [ ]
rowN1 = [ ]
rowN2 = [ ]
for Mtot in range (0 , M + 1 ) :

for m1 in range (0 , Mtot + 1 ) :
m2 = Mtot − m1
valueA1 = de l t a ( n1 − 1 , m1) ∗ de l t a (n2 , m2) ∗ np . sq r t ( n1 )
rowA1 . append ( valueA1 )
valueA2 = de l t a (n1 , m1) ∗ de l t a ( n2 − 1 , m2) ∗ np . sq r t ( n2 )
rowA2 . append ( valueA2 )
valueN1 = de l t a (n1 , m1) ∗ de l t a (n2 , m2) ∗ n1
rowN1 . append ( valueN1 )
valueN2 = de l t a (n1 , m1) ∗ de l t a (n2 , m2) ∗ n2
rowN2 . append ( valueN2 )

A1 . append ( rowA1)
A2 . append ( rowA2)
N1 . append ( rowN1)
N2 . append ( rowN2)

A1 = np . array (A1)
A2 = np . array (A2)
N1 = np . array (N1)
N2 = np . array (N2)

to ta lmat r i x = [ ]
A1s = [ ]
A2s = [ ]
N1s = [ ]
N2s = [ ]

In a similar fashion, the matrix representations for â1, â2, n̂1 and n̂2 are
generated. These will be used to calculate the expected values for these
variables. The arrays at the end are used to store these expected values.
norma l i sa t i on = [ 0 ]
k = 1
i = 0
while i < len (wave ) :
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norma l i sa t i on . append (np . l i n a l g . norm(wave [ i : i+k ] ) )
i += k
k += 1

def normal ize (v ) :
i = 0
k = 1
while i < len ( v ) :

norm = np . l i n a l g . norm(v [ i : i+k ] )
i f norm != 0 . 0 :

v [ i : i+k ] = v [ i : i+k ]∗ norma l i sa t i on [ k−1]/norm
i += k
k += 1

return v

for i in tqdm( range ( int ( tmax/dt ) ) ) :
t o ta lmat r i x . append (np . square (np . abso lu te (wave ) ) )
dphi = np . dot (H, wave ) / (1 j ∗ hbar )
wave = normal ize (wave + dt ∗ dphi )
A1s . append (np . conjugate (wave ) . dot (A1 . dot (wave ) ) )
A2s . append (np . conjugate (wave ) . dot (A2 . dot (wave ) ) )
N1s . append (np . conjugate (wave ) . dot (N1 . dot (wave ) ) )
N2s . append (np . conjugate (wave ) . dot (N2 . dot (wave ) ) )

To explain these lines of code, I will have to explain a problem that
occured. Normally, the wave will be normalized. After 1 Euler forward step
of the Schrödinger equation (dφt = Hφt

i~ and φt+dt = φt + dt · dφ), the array
in the python code will not be normalised anymore. This is because of small
numerical errors in the code. This is no problem, because the vector can just
be normalised after every step. The normalisation is the problem here.
In the theoretical section of this thesis, the Hamiltonian is shown. It can
be seen that the absolute values in the Hamiltonian matrix scale linearily
and quadratic with n1 and n2. This means that dφt will be substantially
bigger when n1 and n2 are bigger. When φt+dt is normalised accross the
whole vector, the expected values of n1 and n2 are slowly shifted towards the
highest possible number of particles possible. This is shown clearly in figure
(4.1).
The all three plots, the time axis is from left to right, and the number under
the axis states the amount of loops that the system has looped through. This
means the x-axes go from 0 to tmax/dt The first plot shows the state during
the whole simulation. Dark blue is a probability of 0 that the system is in
that state, and the more yellow the color, the higher the chance. The second
plot shows the expected values of the imaginary angle of a1 and a2. The third
plot shows the expected values of n1 and n2, and this is the place where we
can see the numerical error. It can be seen that N = n1 + n2 increases over
time. However, in the theoretical background, we have concluded that this
Hamiltonian has eigenstates of N , that are completely independent. If the
system is in a state with a total of N particles, then there will keep being N
particles. In conclusion; the trivial normalisation is easy, but leads to wrong
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results.
A solution can be found by normalising each eigenstate seperately. This
means that the chance of finding N particles will be constant throughout
the simulation. This is done by creating an array (normalisation), where
normalisation[i] is the chance of being in the eigenstate with N = i −
1. After each Euler forward step, the wave will be normalised, using the
normaize function. This function loops over each eigenstate, consisting of
states |0, N〉 , |1, N − 2〉 , ..., |N, 0〉, and makes sure the probability of being
in that eigenstate is the same as that probability in the initial wave. Figure
(4.2) shows a simulation with the same variables as figure (4.1), but this time
using a correct normalisation function.

Figure 4.1: Using a trivial normalisation function leads to computational
errors. Here, N = 20 is the maximum amount of particles. dt = 0.0001,
tmax = 2, omega1 = omega2 = U = K12 = K21 = hbar = 1
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Figure 4.2: In this figure, a correct normalisation function is used after each
Euler forward step. This makes sure n1 + n2 will be constant, just as the
theory anticipated. The variables are the same as figure (4.1).

After each normalization, the expected values for a1, a2, n1 and n2 are
calculated using the generated matrices. These values are stored in numpy
arrays, and finally plotted.
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Figure 4.3: A good example of a bad normalisation in programming. In
the Bachelor thesis of Lotte van Dongen [2], a plot is made of |c1|2 and |c2|2.
According to the Hamiltonian, the sum of these two variables must always be
constant, because the Hamiltonian has eigenstates of N = n1 +n2. However,
these the sum of these two variables increases over time. This points toward
a mistake in the code that was used to plot this graph.

4.2 Commutation relations

[ân, â
†
j âlâ

†
l âl] = ânâ

†
j âlâ

†
l âl − â

†
j âlâ

†
l âlân (4.2)

= (â†j ân + δn, j)âlâ
†
l âl − â

†
j âlâ

†
l âlân (4.3)

= δn,j âlâ
†
l âl + â†j âlânâ

†
l âl − â

†
j âlâ

†
l âlân (4.4)

= δn,j(â
†
l âl + 1)âl + â†j âl(â

†
l ân + δn,l)âl − â†j âlâ

†
l âlân (4.5)

= δn,j âl + δn,j â
†
l â

2
l + δn,lâ

†
j â

2
l (4.6)
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[ân, â
†
l âj â

†
l âl] = ânâ

†
l âj â

†
l âl − â

†
l âj â

†
l âlân (4.7)

= (â†l ân + δn,l)âj â
†
l âl − â

†
l âj(ânâ

†
l − δn,l)âl (4.8)

= δn,l(â
†
l âj + âj â

†
l )âl (4.9)

= 2δn,lâ
†
l âj âl + δn,lδj,lâl (4.10)

[ân, â
†
l âlâ

†
j âl] = ânâ

†
l âlâ

†
j âl − â

†
l âlâ

†
j âlân (4.11)

= (â†l ân + δn,l)âlâ
†
j âl − â

†
l âl(ânâ

†
j − δn,j)âl (4.12)

= δn,lâlâ
†
j âl + δn,j â

†
l âlâl (4.13)

= δn,lâ
†
j â

2
l + δn,lδl,j âl + δn,j â

†
l â

2
l (4.14)

[ân, â
†
l âlâ

†
l âj] = ânâ

†
l âlâ

†
l âj − â

†
l âlâ

†
l âj ân (4.15)

= (â†l ân + δn,l)âlâ
†
l âj − â

†
l âl(ânâ

†
l − δn,l)âj (4.16)

= δn,j(âlâ
†
l + â†l âl)âj (4.17)

= 2δn,j â
†
l âlâj + δn,j âj (4.18)
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4.3 The initial wave in figure (2.3)

[ 3.45885202e-02+0.07515969j 2.98148705e-03+0.06726983j 7.10326233e-02+0.04392135j 1.57841298e-02+0.04642786j

1.51104093e-02+0.03964125j 3.56448009e-02+0.03385401j 3.93407266e-02+0.05482959j 2.61446035e-02+0.01294644j

5.31776910e-02+0.01321762j 5.31244319e-02+0.05954809j 3.11819716e-03+0.06433536j 1.58737439e-02+0.06877804j

5.25793456e-02+0.04547623j 7.97437039e-02+0.03565731j 3.40583725e-02+0.01506053j 3.68416818e-02+0.02313852j

2.72218478e-02+0.08005924j 8.07522631e-02+0.07715902j 4.61792872e-02+0.05793109j 4.60209773e-02+0.05321337j

1.89037140e-02+0.07443069j 5.12543182e-02+0.05598527j 8.52835544e-03+0.07369857j 1.74797035e-02+0.0134553j

1.55349887e-02+0.01946544j 5.56942476e-02+0.00105079j 2.72051472e-02+0.04377234j 2.41774296e-02+0.0157008j

4.96520967e-02+0.05114932j 3.26102503e-02+0.01503978j 7.54244043e-02+0.03692953j 2.49786092e-03+0.06337932j

2.07554772e-02+0.06447557j 4.98390220e-02+0.01376969j 2.48566306e-02+0.01282293j 4.45914207e-02+0.07858562j

8.87947248e-03+0.00134863j 7.86594200e-02+0.0088705j 1.43233756e-02+0.04638767j 6.13865568e-02+0.01558139j

6.82521763e-02+0.03953123j 5.10299558e-02+0.03876508j 5.95718472e-02+0.02702526j 7.48549100e-02+0.04358307j

2.31805431e-02+0.04721817j 6.67650083e-02+0.01840248j 6.00701442e-02+0.04944478j 9.46835303e-04+0.07469086j

6.84974995e-02+0.0285613j 2.19139471e-02+0.00167038j 4.42984627e-02+0.0450803j 7.93519939e-03+0.01911974j

6.55315799e-02+0.07685478j 8.02379879e-02+0.05523371j 4.02043677e-02+0.0754445j 2.42593241e-02+0.02741492j

4.37970384e-02+0.03905943j 7.81639461e-02+0.04071474j 5.53875373e-02+0.00732287j 3.64467498e-02+0.0367774j

5.10064074e-02+0.06941114j 7.83687728e-03+0.03996477j 4.09031479e-02+0.04318091j 2.85324958e-02+0.04566846j

5.96098410e-02+0.03919946j 6.08842548e-02+0.02685519j 7.10164383e-02+0.0270981j 2.64733285e-03+0.05421414j

7.78932806e-02+0.01934065j 3.35299821e-02+0.06670139j 7.05159651e-02+0.05685867j 2.18117340e-02+0.07599351j

7.39352447e-02+0.04205399j 3.20974921e-02+0.0044804j 2.28124251e-02+0.05936387j 3.26217248e-02+0.0557032j

1.18815375e-02+0.01341601j 6.65877775e-03+0.06534716j 6.98409578e-02+0.01143172j 5.91554862e-02+0.06200594j

6.96495538e-02+0.07428644j 7.77724059e-02+0.01397469j 7.10244122e-02+0.05245068j 4.33852144e-02+0.00194966j

3.73956115e-02+0.07770066j 1.02654625e-03+0.05201261j 7.13718003e-02+0.02278567j 2.88501213e-02+0.02299767j

3.71932192e-02+0.05533938j 1.24379372e-02+0.01950674j 6.35754446e-02+0.03590014j 6.50349474e-02+0.01416203j

7.68115036e-02+0.00058012j 3.06161257e-02+0.03745213j 4.22153878e-03+0.0549986j 2.74593285e-03+0.04098865j

1.04239381e-02+0.06081674j 4.11417083e-02+0.00909395j 3.64099907e-02+0.0189894j 7.64064174e-02+0.03606962j

7.85967698e-03+0.04979434j 1.71569554e-02+0.07976433j 6.21277298e-02+0.00375574j 7.24705387e-02+0.07970613j

5.20570182e-02+0.0614521j 5.59381433e-02+0.02108069j 2.11200599e-03+0.01714199j 4.15259378e-02+0.06047338j

5.11568430e-02+0.00212311j 1.77359468e-02+0.05567617j 1.36191878e-02+0.00113387j 7.26563803e-02+0.06782301j

1.50914272e-02+0.07597185j 3.67422227e-02+0.07346832j 6.02391566e-02+0.06463958j 7.24208565e-02+0.02628145j

4.76325365e-02+0.0767004j 2.49419031e-02+0.02894376j 3.67290433e-02+0.05537815j 1.86790838e-02+0.00926983j

2.59185561e-02+0.00865446j 5.90773004e-02+0.00394439j 3.07155700e-02+0.0428175j 3.74007432e-02+0.03386653j

6.73789698e-02+0.04697928j 5.60676868e-02+0.02508966j 2.49897508e-02+0.07723141j 1.17922622e-02+0.07371479j

2.61999169e-02+0.02390313j 3.53188747e-02+0.01753226j 5.38845809e-02+0.04308834j 4.35795585e-02+0.04238762j

2.85587017e-02+0.01408669j 7.16867092e-02+0.0464283j 1.95458616e-02+0.07275706j 3.68369095e-02+0.04827626j

1.10547775e-03+0.01670854j 7.79835802e-02+0.04163311j 2.57548518e-02+0.08005431j 6.88853231e-02+0.07286309j

6.73055597e-02+0.0282634j 6.51807453e-02+0.01155602j 3.27156618e-02+0.00730385j 5.52200622e-02+0.04814085j

2.64152069e-02+0.02730445j 3.59032324e-02+0.03703152j 1.15368864e-02+0.08050046j 9.64042463e-04+0.01309934j

5.49769609e-02+0.06279358j 3.91163834e-02+0.05982123j 5.08290086e-02+0.0368614j 3.90362191e-02+0.00885441j

4.50998752e-02+0.03577759j 7.22633139e-02+0.04779099j 5.29031595e-02+0.04278719j 7.71834491e-02+0.01023336j

2.73056113e-02+0.07769189j 6.06778066e-02+0.03366697j 6.77367216e-02+0.00507131j 6.18028229e-02+0.0152581j

4.01916583e-02+0.07080361j 2.89284714e-02+0.03937134j 6.90796024e-02+0.01412102j 1.78807116e-02+0.06658602j

2.74012679e-02+0.01689511j 3.02498019e-02+0.03454132j 5.66164712e-02+0.02512054j 2.97521647e-02+0.03545407j

5.69946221e-02+0.02230428j 1.28684360e-02+0.02656809j 7.89923928e-02+0.03513637j 1.87069213e-03+0.03582568j

6.08431610e-02+0.00973584j 7.37778971e-02+0.03917493j 1.04619681e-02+0.01340903j 4.43091428e-02+0.00752083j

6.82978747e-02+0.06566492j 7.49969496e-02+0.01966488j 2.59860663e-02+0.04006293j 1.51363816e-02+0.07749298j

2.99302950e-02+0.00391112j 5.40877120e-02+0.03921135j 3.86881901e-02+0.04919618j 5.63758877e-02+0.04103716j

2.05329749e-02+0.01210835j 1.26602191e-02+0.05582335j 1.62693839e-02+0.0285132j 7.90257199e-03+0.01457794j

4.05173972e-02+0.01175574j 3.63426932e-02+0.02311335j 6.81268508e-02+0.06283355j 2.87416712e-02+0.05764863j

5.59750900e-02+0.04455021j 1.70827855e-03+0.00052351j 1.95835671e-02+0.04793266j 7.73267622e-02+0.07954631j

5.36172046e-02+0.06977101j 1.46493994e-02+0.06060204j 2.38115163e-03+0.01889159j 1.01196657e-02+0.07567414j

1.17617950e-03+0.03204735j 3.61257970e-02+0.02993246j 2.32815469e-02+0.06608145j 1.34302630e-02+0.05938277j

3.60667910e-03+0.04462038j 3.81873259e-05+0.04133417j 2.74887586e-02+0.03219754j 1.14527602e-02+0.06340002j

7.23276318e-02+0.06603592j 7.93621301e-02+0.04373354j 1.74358499e-03+0.01159031j 6.03758453e-02+0.02350391j

1.72584535e-02+0.07853988j 3.76973458e-02+0.04326002j 5.37578029e-02+0.02438022j 3.60057029e-02+0.02637628j

4.97099395e-02+0.05970525j 7.51393327e-02+0.01934366j 7.30170141e-02+0.00766941j 2.27551328e-02+0.04161845j

5.87979766e-02+0.05941727j 5.50440496e-02+0.07931162j 4.14773010e-02+0.02918405j 3.09412709e-02+0.07304922j

4.28878162e-02+0.07521504j 6.74699767e-02+0.06084048j 1.64386037e-03+0.0564201j 1.60192658e-02+0.05605217j

3.52245943e-02+0.02895496j 3.83718908e-02+0.04663567j 1.92913182e-02+0.06109642j ]
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