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Summary 

 

Low-thrust electric propulsion is one of the most promising technologies in interplanetary 

missions, due to its large savings in propellant cost. It has already been tested in missions, 

like SMART-1 (ESA) and Deep Space 1 (NASA). 

 

Since the beginning of space exploration, methods using analytical representations to 

describe spacecraft’s trajectory have been used in order to serve as “fast mission” 

generators. In 1999, Petropoulos introduced an analytical representation capable of 

representing low-thrust trajectories: the exponential sinusoid [Petropoulos et al, 1999]. 

However, only one particular steering program was studied: trajectories with tangential and 

continuous thrust, modulated by the distance to the Sun. 

 

The aim of this master thesis is to analyse several analytical representations (shapes) and 

steering programs, in addition to the one considered in [Petropoulos et al, 1999] and 

compare their performance with the exponential sinusoid using continuous tangential 

thrust. The shapes that are considered in this project, already mentioned and pre-selected in 

the literature survey [Paulino, 2007], were: the Archimedean spiral, the logarithmic spiral, 

the Poinsot’s spiral (hyperbolic sine), the Poinsot’s spiral (hyperbolic cosine), the 

sinusoidal spiral and the exponential sinusoid. Also, three different thrust profiles were 

analysed: (1) “acceleration inversely square”, where the magnitude of the thrust 

acceleration monotonically decreases with the square of the distance to the Sun - 

2
0a a rµ=  and 0a  is the thrust acceleration normalised by the local gravitational 

acceleration (i.e. it is non-dimensional), which is considered constant; (2) “constant 

acceleration”, where the magnitude of the thrust acceleration is constant: 2
0 1a a rµ= ; (3) 

“tangential” thrust profile where continuous tangential thrust is considered (studied in 

[Petropoulos and Longuski, 2004] and [Izzo, 2006]). 

 

A technique related to the one developed by Dario Izzo [Izzo, 2006] to find feasible 

trajectories using low-thrust propulsion for a 2D problem was implemented. In this master 

thesis, given the shape, the initial and final points of the trajectory, the angle between them 

and the number of complete revolutions, the excess velocities, the TOF and the fuel mass 

consumption during the low-thrust transfer can be computed. 
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Multi-objective optimization using a Monte Carlo method was implemented for the 6 

shapes and the acceleration inversely square and the tangential cases of the thrust profile. 

The total excess velocity and the fuel mass consumption during the interplanetary low-

thrust phase were the two objective functions that were minimized. Pareto fronts were built 

for all 6 shapes, two thrust profiles and three different test missions: an Earth-to-Mars 

flight, an Earth-to-Jupiter flight and an Earth-to-Mercury flight. 

 

The sinusoidal spiral using continuous tangential thrust had the best Pareto front for all 

three missions. Compared with the exponential sinusoid using the tangential thrust profile, 

the computation time is smaller, the minimum total excess velocity value achieved is lower 

and the number of individuals that respect the maximum thrust acceleration constraint is 

higher. The other combinations of shapes and thrust profiles performed worse than the 

exponential sinusoid using the tangential thrust profile in at least one of these three criteria. 

Unfortunately, it was proven not be worthwhile to use the acceleration inversely square 

case of the thrust profile in a fast mission generator, since the computation time was 

significantly higher (approximately 46 times the computation time of the tangential case, 

for an Earth-Mars flight, using the sinusoidal spiral). 
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Introduction 

 

Centuries ago, the motion of planets was studied to find which shape would better 

characterize the trajectories of celestial bodies. The conical sections (elliptic, parabolic and 

hyperbolic orbits) were found to be the best analytical representations for this problem and 

they are known as Keplerian orbits. Nowadays, the same sort of mathematical studies are 

made in order to determine shapes that best represent the motion of spacecraft with certain 

steering profiles, using low-thrust propulsion. Analytical representations for low-thrust 

trajectories have been developed [Petropoulos et al., 1999], but only for one particular 

steering program: trajectories with tangential and continuous thrust, modulated by the 

distance to the Sun. Considering the wide range of possibilities, it will be important to 

analyze other steering programs and find other analytical representations for these 

trajectories. In this way, the main purpose of this master thesis is to analyse possible 

steering programs and mathematical functions that can represent low-thrust trajectories and 

compare their performance with the performance of the exponential sinusoid already found 

[Petropoulos et al., 1999]. Moreover, this trajectories’ study will not be focused on a 

particular mission, but on a general one, i.e., with arbitrary initial and final conditions. 

 

More recently a master student of T.U. Delft finished his master thesis project on the study 

of a new method to find a good initial guess for short (one third or half a revolution) low-

thrust trajectories between two celestial bodies [De Vogeleer, 2008]. This master thesis, 

like De Vogeleer’s thesis, will try to find an analytical representation for low-thrust 

trajectories that can surpass the exponential sinusoid in terms of computation time, velocity 

increments at departure and arrival and thrust acceleration values during the low-thrust 

interplanetary phase. 

 

Some principles of celestial mechanics and the conclusions made about the influence of 

perturbations on the spacecraft’s motion in the literature survey [Paulino, 2007] will be 

discussed in chapter 1. In chapter 2, the numerical integration method that will be used to 

compute the time of flight (TOF) for the low-thrust trajectories described by the analytical 

representations will be presented. Important data about and the theoretical principles of 

low-thrust propulsion are addressed in chapter 3. In chapter 4, interplanetary missions are 
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described, assuming that no thrust and no perturbing forces are acting on the spacecraft. 

The analysis already done for low-thrust trajectories using the exponential sinusoid with 

tangential thrust ([Petropoulos and Longuski, 2004] and [Izzo, 2006]) will be presented in 

chapter 5, while the study and some mission example results using other steering programs 

and other shapes will be discussed in chapter 6 and 7, respectively. In chapter 8, an 

introduction and a description of the optimisation procedure done for the chosen analytical 

representations will be given. The verification of the program developed in this master 

thesis will be given in chapter 9. The results from the optimisation procedure will be 

shown in chapter 10. Finally, the conclusions of the master thesis work and some 

recommendations are given in chapters 11 and 12, respectively. 
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1. Orbital Mechanics 
 

In this initial chapter, basic principles of astrodynamics will be described. These principles 

are important to understand the motion and the position of celestial bodies in space. Only 

by making use of reference frames (section 1.1) and coordinate systems (section 1.5), it is 

possible to know the exact location of a spacecraft. Through orbit elements (section 1.2), 

laws of motion (section 1.3) and knowing the influence of perturbations (section 1.4) on 

the spacecraft’s motion, it is possible to understand its trajectory in space. 

 

1.1. Reference Frames 
 

Before describing the motion of celestial bodies and spacecraft, reference frames have to 

be defined, since it is not possible to discuss trajectories in space without defining the 

reference with respect to which this motion is expressed. A special reference frame is the 

inertial reference frame that is defined from [Wakker, 2005I]: “An inertial reference frame 

is a reference frame with respect to which a particle remains at rest or in uniform 

rectilinear motion if no resultant force acts upon that particle”. In practice it is not possible 

to use this reference frame, so pseudo-inertial reference frames are applied instead 

[Wakker, 2005I]. For instance, in the motion of Solar System planets around the Sun, the 

origin of the reference frame should be chosen at the centre of the Solar System and not at 

the centre of the universe. Therefore, the motion of the Sun with respect to the true inertial 

reference frame, that is located at the centre of the universe, is neglected. Reference frames 

can be described for Earth orbit missions and interplanetary missions. Since this master 

thesis will only focus on the heliocentric phase of interplanetary missions, planetary 

centred reference frames will not be described here. 

 

The origin of a non-rotating reference frame in an interplanetary flight is the Sun. 

Typically, the XY-plane is the ecliptic plane. The Z-axis is chosen to be perpendicular to 

this plane. The angle between the ecliptic plane and the equatorial plane (Earth) is about 

23º27’ and it is called the obliquity of the ecliptic [Wakker, 2005I]. The (+) X-axis of this 

reference frame is pointed at the First Point of Aries or vernal equinox direction (ϒ ). The 
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(+) Y-axis is chosen so that the reference frame is right-handed. This reference frame is 

called the non-rotating heliocentric ecliptic reference frame. Due to precession (change in 

the Earth’s rotation axis), the ecliptic will change during time. Therefore, a reference epoch 

should be always specified. Usually epoch J2000 (January, 1st 2000, noon terrestrial time) 

is taken. 

 

This reference frame can also be described using other sets of coordinates besides the 

Cartesian ones, like the spherical coordinates. An arbitrary point P  in the heliocentric non-

rotating ecliptic frame can be described by a heliocentric radius r , a heliocentric longitude 

λ  and a heliocentric latitude ϕ , as illustrated in figure 1.1. The heliocentric longitude is 

described by the angular distance along the ecliptic from the direction ϒ  to the projection 

of the object’s position in the ecliptic. This angular distance is measured from 0º to 360º, 

eastward along the ecliptic. The heliocentric latitude is the angular distance along the circle 

of heliocentric longitude passing through the vehicle, from the ecliptic to the spacecraft. It 

is measured from -90º to 90º and it is taken positive when the spacecraft is north of the 

ecliptic and negative when the spacecraft is south of the ecliptic. 

 

 

Figure 1.1: The non-rotating heliocentric ecliptic reference frame using Cartesian and spherical 
coordinates 
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1.2. Orbital elements 

 

Planets, artificial satellites and other celestial bodies describe a path that revolves around 

other bodies, mainly under the influence of a centrifugal force (the gravity force). In other 

words, they orbit other celestial bodies. To describe this motion, the position and the 

velocity of a body which is orbiting must be known (three position components and three 

velocity components) at every instant, since they change constantly. However, an orbit can 

also be described by six independent parameters that are constant in a Keplerian orbit 

(section 1.3). They are called the classical orbital parameters: a , e, ω , τ , Ω  and i . 

These parameters are represented in figure 1.2. 

 

 

Figure 1.2: Representation of the orbital elements [Montenbruck et al., 2005] 

 

Parameter a  is the semi-major axis and parameter e is the eccentricity. They determine 

the size and the shape of an orbit, respectively. Parameter Ω  is the longitude of the 

ascending node in an ecliptic frame and it represents the angle between a reference 

direction (vernal equinox is normally used) and the point where the satellite crosses the 

equator from south to north (ascending node). It is measured eastward from 0º to 360º. 

Parameter ω  is the argument of perigee and it represents the angle between the direction 

of the ascending node and the direction of the perigee. This parameter determines the 

orientation of the conic section in the orbital plane. The integration constant τ  is the time 

of pericentre passage and it associates time with position in the orbit. Parameter i  is the 

inclination and it represents the angle measured from the reference plane to the orbital 
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plane. When looking from the ascending node to the origin of the reference frame, this 

angle should be measured counter-clockwise from the reference frame and its range is 

from 0º to 180º. Satellites that travel in a direction opposite to the rotation of the Earth 

along its axis, have inclination values between ( )90º ,180º  and they are said to move in a 

retrograde orbit. On the other hand, satellites travelling in the same direction as the Earth 

rotates about its axis have an inclination in the interval [ )0º ,90º  and they are said to move 

in a prograde orbit. Parameters Ω  and i  determine the orientation of the orbital plane 

relative to the reference plane. 

 

1.3. Two-body problem 

 

In a realistic situation, to describe the motion of a body i  with respect to a non-rotating 

reference frame, with body k  as origin, all gravitational forces between bodies i , k  and 

other bodies j  presented in the system must be taken into account. However, as a first 

approximation, the gravitational attraction between bodies i  and j  can be neglected with 

respect to the effect of the main gravitational attraction between bodies i  and k [Wakker, 

2005I]. In this way, a two-body problem can be considered and the following assumptions 

are made [Bate et al., 1971]: 

 

• Bodies are perfect spheres, which mean that the mass of celestial bodies is 

concentrated at their centres and, therefore the celestial bodies are represented by 

points in space; 

• There are no external or internal forces acting on a two-body system, other than 

gravitational forces. 

 

The equation of motion of body i  with respect to body k  is given by [Wakker, 2005I]: 

 

3

µ= −ɺɺr r
r

 (1.1) 
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Parameter µ  from equation (1.1) is the gravitational parameter that is given by: 

( )i kG m mµ = +  and r  is the position vector from body k  to body i . Parameter G  is the 

universal gravity constant, im  and km  are the masses of bodies i  and k , respectively. 

Before attempting to solve equation (1.1), two important conservation laws in the motion 

of body i  with respect to body k  must be described [Wakker, 2005I]: 

 

21
const

2 2
const

V
r a

r V H

µ µ ε − = − = =

 × = =

 (1.2) 

 

In equation (1.2), parameter ε  indicates the total energy per unit of mass of body i . The 

first term of the first equation indicates the kinetic energy per unit of mass of body i , while 

the second term of this equation is the potential energy per unit of mass of body i . The 

total energy remains constant during the motion of body i , i.e., there is an exchange of 

energy between kinetic and potential. In this way, a vehicle will slow down as it gains 

altitude and it will speed up as it decreases in altitude. Parameter H  is the angular 

momentum vector per unit of mass of the motion of body i  which is constant, implying 

that body i  moves in one fixed plane perpendicular to H . Using the first conservation law 

of the total energy, the velocity can be expressed in the so-called vis-viva equation as 

[Wakker, 2005I]: 

 

2 1
V

r a
µ  = − 
 

 (1.3) 

 

From equation (1.1), the position of a body i  with respect to a body k  is given by 

[Wakker, 2005I]: 

 

( )
2

1 cos

H
r

c

µ
ϕ ω

=
+ −

 (1.4) 
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This orbital equation describes the relation between r  and ϕ . Equation (1.4) is equal to 

the shape of a conic section. Substituting 2H µ  for p , ϕ ω−  for θ  and c  for e, r  is 

expressed by: 

 

1 cos

p
r

e θ
=

+
 (1.5) 

 

Equation (1.5) is given in polar coordinates and it defines the shape of the trajectory of 

body i  with body k  at a focal point. This equation only represents possible paths for a 

two-body problem. Parameter p  is called the semi-latus rectum and θ  is the true anomaly. 

The three types of conic sections are: ellipses (circles are ellipses with zero eccentricity), 

parabolas and hyperbolas, represented in figure 1.3. First-order, celestial bodies move in 

conical paths: planets, artificial and natural satellites move in elliptical (near-circular) 

orbits; parabolic and hyperbolic orbits are used by comets and spacecraft in interplanetary 

missions. These conical sections are known as Keplerian orbits. 

 

 

Figure 1.3: The three types of conic sections: the ellipse, the parabola and the hyperbola, based on 
[Montenbruck et al., 2005] 

 

In the following sections, the three different types of Keplerian orbits will be briefly 

described. 
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1.3.1. Elliptic orbits 
 

In the Solar System, the orbits of all planets and the orbits of Earth satellites are 

approximated by ellipses (see figure 1.3(a)). An ellipse is a closed and periodic curve 

therefore a body in an elliptic path travels the same trajectory over and over. This conic 

section is characterized by 1e<  and its major axis 2a  is expressed by: 

 

2

2
2

1 1 1a p

p p p
a r r

e e e
= + = + =

− + −
, so that ( )21p a e= −  (1.6) 

 

Parameters ar  and pr  are the apocentre and the pericentre radius, respectively. 

 

From equation (1.3), the velocity reaches its maximum value at the pericentre: 

 

( )
2 1 1

1
1 1 Pp c

e
V V e

a e a a e

µµ
  + = − = = +    − −  

 (1.7) 

 

The velocity reaches its minimum value at the apocentre: 

 

( )
2 1 1

1
1 1 aa c

e
V V e

a e a a e

µµ
  − = − = = −    + +  

 (1.8) 

 

Circular velocities at the pericentre and the apocentre are represented by 
PcV  and 

acV , 

respectively. 

 

The period of an elliptic orbit is given by [Wakker, 2005I]: 

 

3 2
2

a
T

n

ππ
µ

= =  (1.9) 

 

Parameter n  in equation (1.9) is called the mean angular motion. 
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1.3.2. Parabolic orbits 

 

Parabolic orbits are conic sections rarely found in celestial bodies’ trajectories (see figure 

1.3(b)). A body travelling in a parabolic orbit will have a one-way trip to infinity. A 

parabolic orbit is characterized by 1e= , which simplifies the equation of motion: 

( )1 cosr p θ= + . Using this result, the spacecraft’s pericentre (0ºθ = ) distance is: 

 

2p

p
r =  (1.10) 

 

Only a finite amount of kinetic energy is needed to overcome the effects of gravity and 

launch a spacecraft into infinity, since the strength of a gravity field decreases rapidly with 

distance from the main body. A spacecraft in a parking orbit around a planet can be 

“pulled” into a parabolic orbit by accelerating to a velocity that is 2  times the velocity in 

the local circular orbit. This means that, using equation (1.3) and the fact that the semi-

major axis a = ∞ , the velocity is given by [Wakker, 2005I]: 

 

escape

2
2 cV V

r

µ= =  (1.11) 

 

Parameter cV  in equation (1.11) is the instantaneous circular velocity of the spacecraft. The 

spacecraft will always describe a parabolic path with escapeV , independently of the 

velocity’s direction. Using this velocity value in the total energy equation, it yields 0ε = . 

From equation (1.11), it can be concluded that at infinity, r = ∞ , the velocity is minimal 

and equal to zero and at pericentre, the velocity is maximal and equal to 2 prµ . 

 

It must be said that highly eccentric elliptic orbits or low eccentric hyperbolic orbits are 

often approximated by parabolic orbits, since computations are faster when using parabolic 

equations [Wakker, 2005I]. 

 



Analytical Representations for Low-Thrust Trajectories  
 

 11 

1.3.3. Hyperbolic orbits 

 

A hyperbolic orbit is important to be studied when a spacecraft is required to move with a 

certain velocity after escaping the departure planet, i.e., these orbits are important in 

interplanetary missions. A hyperbola has two branches and they represent each other’s 

mirror-image with respect to a line perpendicular to the major axis. The right branch has no 

physical meaning for celestial mechanics, but the left branch, illustrated in figure 1.3(c), 

represents a hyperbolic motion in a gravity field. Since 1e> , from equation (1.5), it can be 

concluded that the true anomaly is limited by: cos 1eθ > − . The major axis of the 

hyperbola 2a  is the distance between the tops of its two branches and due to simplicity in 

computations, it is considered negative, while r  and p  are positive [Wakker, 2005I]. 

 

As usual, the distance to pericentre is: ( )1pr a e= − , where the velocity reaches its 

maximum value: 

 

( ) ( )2 22 1 1
1

1 1p cp

e
V V e

a e a a e

µµ
  + = − = = +    − − −  

 (1.12) 

 

The minimum velocity value occurs for r = ∞  and it is given by: 

 

2V
a

µ
∞ = −  (1.13) 

 

This means that for an infinite distance from body k , body i  still has a finite velocity with 

respect to body k . At every point in a hyperbolic orbit, the instantaneous velocity can be 

determined by the local escape velocity (equation (1.11)) and by the velocity at infinity 

(equation (1.13)) [Wakker, 2005I]: 

 

2 2 2
escapeV V V∞= +  (1.14) 

 

Consider a case where a spacecraft has only enough velocity to escape the gravitational 

field of the departing planet. This means that the velocity will tend towards zero as the 
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distance from the gravity field approximates infinity. However, the velocity given to the 

vehicle in equation (1.14) can be more than the escape velocity. This finite residual 

velocity at infinity, V∞  is called the hyperbolic excess velocity. Figure 1.4 illustrates the 

distance versus the velocity for a hyperbolic orbit around the Earth, using three values of 

the eccentricity ( 1.1e= , 1.5e=  and 3e= ). The local escape velocity curve is also shown 

in figure 1.4. The perigee altitude from the Earth’s surface used was 500km. Note that for 

significantly small velocity increments above the escape velocity at 500km, V∞  values are 

significantly large. Also, for higher distances the differences between the hyperbolic 

velocity and V∞  become smaller. 

 

 

Figure 1.4: Distance versus velocity for three hyperbolic trajectories [Melman, 2007] 

 

When hyperbolic orbits are discussed, the sphere of influence of the planet in question 

must be defined. The meaning of “escaping from the gravity field of a planet” is connected 

with the distance from the planet where the spacecraft is no longer under the influence of 

the gravity field of that planet – sphere of influence. So, when the spacecraft crosses the 

edge of this sphere of influence, it is assumed to have escaped from the gravitational body. 
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1.4. Perturbing Forces 
 

Assuming an interplanetary mission from one planet to another, simplifications to this 

problem can be made such that no perturbation forces are taken into account (section 1.3). 

In this case, only gravitational forces from the main bodies are present, which are 

considered to be radially symmetrical. Therefore, in this situation, the spacecraft moves 

always in Keplerian orbits. However, in reality, other external forces interfere with the 

spacecraft’s trajectory, slightly deviating the vehicle from the Keplerian orbit. In this way, 

perturbed Keplerian orbits must be mentioned. In the literature survey [Paulino, 2007], the 

following perturbing forces were studied: gravity field perturbations, third-body 

perturbations, solar radiation pressure, atmospheric drag, electromagnetic forces and 

relativistic effects. Theoretical information and mission examples were given in the 

literature survey in order to analyse typical values of the perturbing acceleration. After 

assessing their magnitudes, a comparison between these values and the magnitude values 

of the main acceleration from the Sun was made. 

 

From all perturbations mentioned in the literature survey [Paulino, 2007], radiation 

pressure had the highest effect in the spacecraft trajectory, with a maximal order of 

magnitude acceleration of 6 210 m s−  (at Mercury). This value can be neglected with 

respect to the main acceleration of the Sun (at Mercury, the order of magnitude of the main 

acceleration is 2 210 m s− ). In this way, due to this significantly small value and also as a 

matter of simplicity for the analysis of the low-thrust problem, perturbations will be 

neglected in this master thesis. 

 

Note that, although all the perturbation forces were neglected, there is one force that cannot 

be rejected: the low-thrust force that will define the spacecraft’s trajectory. Typical order 

of magnitude of low-thrust acceleration values is between 5 210 m s−  and 2 210 m s−  

(chapter 7). Therefore, this force cannot be considered a “perturbing” force. 
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1.5. Coordinate Systems 
 

As already mentioned in the previous sections 1.1 and 1.2, the position and velocity of 

body i  can be expressed in at least three different ways: 

 

1. Cartesian coordinates: , , , , ,x y z x y zɺ ɺ ɺ  

2. Spherical coordinates: , , , , ,r Vλ ϕ γ ψ  

3. Keplerian coordinates:, , , , ,a e i ω τΩ  

 

In this master thesis, coordinate transformations are only required between spherical and 

Cartesian coordinate systems. 

 

The coordinates of a point P  in Cartesian ( ), ,x y z  and in spherical ( ), ,r λ ϕ  coordinates 

are represented in figure 1.1. In order to obtain the Cartesian coordinates from the spherical 

ones, the following equations should be used [Wertz, 2001]: 

 

cos cos

cos sin

sin

x r

y r

z r

ϕ λ
ϕ λ
ϕ

=
=
=

 (1.15) 

 

The spacecraft position in spherical coordinates can also be obtained from Cartesian 

coordinates, using the following equations [Wertz, 2001]: 

 

2 2 2

arctan 2

arctan
xy

r x y z

y

x

z

r

λ

φ

= + +

 =  
 

 
=   

 

 (1.16) 

 

In equations (1.16), the distance xyr  is computed through 2 2
xyr x y= + . The function 

arctan 2 is a four-quadrant inverse tangent function. This function differs from the normal 
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inverse tangent function arctan, whose results are limited to solutions in the interval 

[ ]2; 2π π− , i.e., to the first and fourth quadrants. The function arctan 2 gives the angle in 

the correct quadrant immediately. 
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2. Numerical Integration Methods 
 

Assumptions and simplifications are often done to solve equations of motion analytically. 

In these cases, equations of motion are solved for specific situations. However, a general 

approach to a solution is more desirable. Therefore, numerical integration techniques are 

required. In this master thesis, numerical integration is needed in order to compute the time 

of flight (TOF) of the spacecraft for a certain mission. Also, numerical integration of the 

equations of motion was necessary to verify the results in this master thesis (chapter 9 and 

appendix F). 

 

In this chapter, a certain nomenclature will be used in the numerical integration methods. 

To represent the position and the velocity of the spacecraft, vector y  and vector f  are 

defined, respectively by [Montenbruck et al., 2005]: 

 

( ) ( ),
, ,

rr
y y f t y

a t r rr

  
= ⇔ = =        

ɺ
ɺ

ɺɺ
  (2.1) 

 

Parameter y  is a six-dimensional state-vector that combines the position and the velocity 

of the spacecraft and ( ),f t y  is also a six-dimensional vector and it combines the velocity 

and the acceleration (( ), ,a t r r r=ɺ ɺɺ ) of the vehicle, hence it is the time-derivative of y . As 

a matter of simplicity, vector signs will not be included in equations from chapter 2. All the 

variables presented in this chapter are vectors or matrix quantities. 

 

The most important numerical integration methods are the Runge-Kutta methods, the 

multistep methods and the extrapolation methods [Montenbruck et al., 2005]. Runge-Kutta 

methods are single-step methods that can be applied in a significant wide range of 

problems and they are easy to use compared with other numerical methods. Multistep 

methods provide a high accuracy in the results; however storage of previous data points is 

needed. Finally, extrapolation methods are known by their high accuracy in the results. 
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In the literature survey [Paulino, 2007], the Runge-Kutta methods were found to be the 

most suitable ones to be implemented in the master thesis. For this reason, in this chapter, 

multistep methods and extrapolation methods will not be discussed. In section 2.1, 

theoretical information about the Runge-Kutta methods will be given and in section 2.2 

and 2.3 the reasons behind this choice will be presented. 

 

2.1. Runge-Kutta Methods 
 

To calculate an approximation for a certain function ( )y t , given an initial value of y  at 

time 0t  ( ( )0 0y y t= ), the approximation function at some later time (0t t h= + ) is 

expressed by [Montenbruck et al., 2005]: 

 

( ) ( ) ( )0 0 0 0 0 0y t h y h y y t h y h t hφ η+ ≈ + ⇔ + ≈ + = +ɺ  (2.2) 

 

Parameter h  is the time step-size and φ  is the increment function that should be closely 

approximate to the tangent of ( )y t  between steps. Equation (2.2) is known as the Euler 

step and it is derived from a first-order Taylor expansion. 

 

 

Figure 2.1: Approximate solution of the differential equation ( ),y f t y=ɺ  [Montenbruck et al., 2005] 
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As illustrated in figure 2.1, since the increment function φ  deviates significantly from the 

secant, the Euler step is not considered a very accurate method. For this reason, a different 

increment function is used [Montenbruck et al., 2005]: 

 

1

s

i i
i

b kφ
=

=∑  (2.3) 

 

Parameter s is the number of function evaluations in a general explicit Runge-Kutta 

formula and parameters ik  are defined by [Montenbruck et al., 2005]: 

 

( )
1

0 0
1

, 2...
i

i i ij j
j

k f t c h y h a k i s
−

=

 
= + ⋅ + = 

 
∑  (2.4) 

 

Note that only the explicit Runge-Kutta methods are described here, since the implicit ones 

are complex, requiring the solution of a non-linear system of equations to find the state of a 

system at later time. The coefficients of equation (2.4) are determined so that they obey to 

the following relations [Montenbruck et al., 2005]: 

 

( )
1

1
1 1

1, 0, 1
s i

i i ij
i j

b c c a i
−

= =

= = = >∑ ∑  (2.5) 

 

For each stage ija , ib  and ic  coefficients can be found in a Butcher tableau, represented in 

figure 2.2. After this process, an approximate solution can be obtained through the same 

equation used in the Euler step, the second equation in (2.2). 

 

 

Figure 2.2: The Butcher tableau [Montenbruck et al., 2005] 
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As an example, the 4th-order Runge-Kutta method (RK4) is presented. The number of 

evaluations s used is four and the increment function is given by [Montenbruck et al., 

2005]: 

 

( )4 1 2 3 4

1
2 2

6RK k k k kφ = + + +  (2.6) 

 

Parameters ik  with 1...4i =  are given by: 

 

( )
( )
( )
( )

1 0 0

2 0 0 1

3 0 0 2

4 0 0 3

,

2, 2

2, 2

,

k f t y

k f t h y h k

k f t h y h k

k f t h y hk

=

= + +

= + +

= + +

 (2.7) 

 

In the case of RK4, the number of evaluations s  is the same as the order p  of the local 

truncation error, which is given by [Montenbruck et al., 2005]: 

 

( ) ( ) 1 5
4 0 0

p
RKe y t h t h const h const hη += + − + ≤ ⋅ = ⋅

 
(2.8) 

 

However, generally s is not the same as p . Results from Runge-Kutta methods with the 

same number of stages, i.e., the same set of function evaluations, but with different order 

of Taylor polynomial can be compared (order p  and 1p + ). This allows an easy 

estimation of the local truncation error. Given two independent approximation functions 

[Montenbruck et al., 2005]: 

 

( )

( )

0 0
1

0 0
1

ˆˆ

s

i i
i

s

i i
i

t h y h b k

t h y h b k

η

η

=

=

+ = +

+ = +

∑

∑
 (2.9) 

 

The truncation errors for these two approximations are given by [Montenbruck et al., 

2005]: 
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( ) ( )
( ) ( )

1
0 0

2
0 0ˆˆ ˆ

p

p

e y t h t h ch

e y t h t h ch

η

η

+

+

= + − + ≤

= + − + ≤
 (2.10) 

 

Assuming that the truncation error ê is smaller than e by the order of h , the local 

truncation error of the thp -order can be estimated from the difference between the two 

solutions [Montenbruck et al., 2005]: 

 

ˆe y η η η= − ≈ −  (2.11) 

 

Methods of neighbouring order that are based on the same set of function evaluations and 

that allow this easy estimation of the local truncation error are called embedded Runge-

Kutta methods. 

 

The step-size h  is an important issue in numerical integration methods. The step-size 

should not be too large, due to truncation errors, but it cannot be also too short, because 

round-off errors and computation effort increase in these conditions [Montenbruck et al., 

2005]. A technique can be applied to help choosing suitable values for the step-size. Given 

a step-size h , a local truncation error given by equation (2.11) is calculated and it might 

have a value higher than the tolerance ε . So, a smaller step-size has to be chosen. After 

some mathematic manipulations, the maximum allowed step-size to be used in the next 

step can be derived [Montenbruck et al., 2005]: 

 

( )
*

1 1

ˆ
p ph h h

e h

ε ε
η η

+ += ⋅ ≈ ⋅
−

 

(2.12) 

 

Parameter *h  can be used in the next step, if this step was successful. It should be noticed 

that the value of h  should not be changed more than a factor of two to five from one step 

to the next one [Montenbruck et al., 2005]. 

 

A variable step-size may be needed when the function behaves inconstantly and rapidly in 

some intervals of times. The easiest way to implement variable step-size with Runge-Kutta 
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methods is to stop the integration and start again with new starting values for another step-

size. This approach is feasible when the number of these intervals is low and the 

integration is done mostly with a constant integration step. 

 

Figure 2.3 illustrates the performance of three Runge-Kutta methods. The three methods 

are: DOPRI5 – 7th stage method of order 5 with an embedded method of order 4 developed 

by Dormand & Prince (1980); RKF7 – 7th order method for integration, while 8th order 

method for error estimation, developed by Fehlberg (1968); and DOPRI8 – 13 function 

evaluations for a 8th order approximation, developed by Dormand & Prince (1981). For 

higher orders, methods can achieve higher accuracies at the same time computation effort 

increases. The order of a Runge-Kutta method must be chosen, depending on the kind of 

accuracy required. 

 

 

Figure 2.3: The number of function calls in function of accuracy for Runge-Kutta methods: DOPRI5 
(5th order), RKF7 (7th order) and DOPRI8 (8th order) [Montenbruck et al., 2005] 

 

2.2. Analysis 
 

In this section, an analysis will be made about the importance of some factors for the 

choice of the numerical integration method that will be used in this thesis project. The 

factors that are responsible for the selection of the most suitable numerical integration 

method are: speed, accuracy, storage and complexity. However, all these factors and their 
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weight depend on the problem that needs to be solved. In this way, some questions [Bate et 

al, 1979] and answers will be provided: 

 

1. How many independent variables are required (large number of integrations 

steps)? 

In order to compute the TOF of the spacecraft during its interplanetary mission, certain 

dynamic parameters need to be computed using numerical integration (chapters 5 and 6): 

two at maximum. During the integration procedure, only one independent variable is 

necessary: the time t  or the polar angle θ . Since there is only one independent variable 

and the dynamic parameters that will be computed change slowly with time, there is no 

reason to require a large number of integration steps. 

 

2. Are the results of the problem susceptible to small errors? 

Low-thrust mathematical representations have a spiral shape that slowly moves from the 

departure planet to the target planet. Small errors can become a problem for this kind of 

trajectory, since the spacecraft will take a long time to accomplish its mission (long 

integration time). 

 

3. Is a constant step-size satisfactory? 

Although dynamic parameters of low-thrust trajectories change slowly with time, a 

variable step-size might be necessary in order to obtain accurate results. 

 

2.3. Discussion 
 

As already said in this chapter, low-thrust trajectories change slowly with time and 

therefore large integration steps can be used. The computation time is still a very important 

issue in this problem, since low-thrust missions have a long TOF and consequently the 

time to integrate the trajectories will also be long. In this way, the computation effort 

should be reduced as far as possible, making the extrapolation methods not a reasonable 

option. Multistep methods obtain the same accuracy using a lower number of function calls 

than the Runge-Kutta methods. However, at not significantly high accuracy values, the 

difference between the numbers of function calls used in these two types of methods is not 
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considerably large. In this way, there is no need, in this case, to store values from previous 

steps to reduce the number of function calls (multistep methods). Since in this master 

thesis, a variable step is preferable, the easiest and simplest way to implemented it is using 

the Runge-Kutta method. 

 

Therefore, a Runge-Kutta method with a variable step-size is suitable to integrate low-

thrust trajectories in this thesis project. To choose the order (p ) and the number of 

function evaluations (s) of the Runge-Kutta method, it should be analysed for a certain 

accuracy required if the method chosen is stable with the parameters s and p  selected. An 

embedded Runge-Kutta method allows an easier estimation of the errors and consequently 

allows an efficient step-size control. In this way, a reasonable option for the low-thrust 

problem will be, for instance, a Runge-Kutta method of order 5 with an embedded method 

of order 4. The application of this method in the master thesis will be better explained in 

chapter 6. 

 

Note that a large number of numerical methods could have been analysed in the literature 

survey [Paulino, 2007] and although their performance is better than the standard Runge-

Kutta method, there is no time available to study all of them and their improvements would 

not have been significant. 
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3. Spacecraft Propulsion 
 

In a general perspective, space propulsion systems are important in three situations [Wertz 

et al., 1999]: (1) the lift of the launch vehicle and its payload from the ground into a low-

Earth orbit; (2) the transfer of the payload from parking orbits into higher orbits that can 

encounter planets (the most important for this master thesis); (3) in-orbit corrections and 

attitude control. 

 

The aim of a propulsion system is to allow changes in magnitude and direction of the 

spacecraft position and velocity. In section 3.1, some basic notions of propulsion will be 

given. Finally, in this chapter, two propulsion system categories will be discussed: the 

chemical propulsion system (section 3.2) and the electric propulsion system (section 3.3). 

 

3.1. Principles of Propulsion 
 

Before describing the two main types of propulsion systems, it is important to describe the 

basic principles that are common to both chemical and electric propulsion. Spacecraft’s 

acceleration in space occurs from propellant’s discharge. The equation of motion of a 

rocket-propelled spacecraft, neglecting gravitational and drag is given by [ESA/SMART-1, 

2007I]: 

 

dV dM
M w

dt dt
=  (3.1) 

 

In equation (3.1), parameter M  is the instantaneous mass of the vehicle, dtdV  is the 

vehicle’s acceleration, dM dt  is the rate of mass change due to propellant expulsion and 

w  is the exhaust velocity of the stream. 

 

From equation (3.1), the thrust generated by the propulsion system is given by: 

 

T m w= ⋅  (3.2) 
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Using a single integration in equation (3.2), the impulse or change of momentum yields 

[ESA/SMART-1, 2007I]: 

 

0

at
I Tdt= ∫  (3.3) 

 

Variable at  in equation (3.3) is the action time, i.e., the time for which the thrust is applied. 

The specific impulse is the measure of how much impulse is produced over the propellant 

weight that the spacecraft spends. For constant mass flow and exhaust velocity, the specific 

impulse, expressed in seconds, is given by [Zandbergen, 2004]: 

 

0
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= =∫

∫
 (3.4) 

 

Parameter 0g  in equation (3.4) is the gravitational acceleration at sea level. 

 

Finally, the ideal velocity rate of a spacecraft can be computed through Tsiolkowski’s law, 

where gravity losses or perturbations are not taken into account and the exhaust velocity w  

is constant [Wertz et al, 1999]: 

 

0ln
e

M
V w

M

 
∆ = ⋅  

 
 (3.5) 

 

Parameter 0M  is the initial mass of the spacecraft and eM  is the spacecraft’s mass at the 

end of the thrusting period. 

 

3.2. Chemical Propulsion System 
 

In a chemical spacecraft propulsion system, the propellant gas is thermodynamically 

expanded through a nozzle to create thrust. In this way, this system stores its energy in the 

propellants, without making use of any other mechanism to obtain energy. Therefore, it is 



Analytical Representations for Low-Thrust Trajectories  
 

 27 

said that chemical propulsion is “energy limited”, since the propellant has a fixed amount 

of energy per mass, which limits the maximum exhaust velocity and the specific impulse 

[ESA/SMART-1, 2007I]. Chemical propulsion systems are known by their relatively large 

thrust-to-mass ratio and, therefore, by a significantly short thrusting time, with low specific 

impulse. Due to limited available reaction energy and thermal transfer restrictions, 

chemical propulsion exhaust velocities are limited to a few thousand meters per second. 

Chemical propulsion systems are important in high energy transfer orbits and in Hohmann 

transfer orbits, where impulsive shots are used to obtain large variations of velocity, 

enough to directly escape a planet. In interplanetary flights, chemical propulsion is 

required at the departure planet (the spacecraft escapes) and possibly at the target planet 

(the spacecraft is captured). The variation of velocity and thrust values can be computed 

using the equations described in section 3.1. 

 

Chemical burns are still required in low-thrust interplanetary missions at the departure and 

arrival planets. In order to compute the V∆  required, a value for the specific impulse will 

have to be assumed. Therefore, different types of chemical propellants will be discussed in 

section 3.3.1. 

 

3.2.1. Types of Chemical Propellants 
 

Chemical propellants use an association between fuel and oxidizer to create, in certain 

conditions, a chemical energy that will be needed to obtain exhaust velocity. The chemical 

propellants that are described in this section are: liquid, solid and hybrid. Cold gas is not 

mentioned since it does not have any utility in interplanetary transfers. 

 

Liquid propellants are known by storing fuel and oxidizer in the liquid state. An important 

type of liquid propellants is the monopropellants. These liquid propellants combine the 

oxidizer and the fuel in one molecule or in a mixture. Monopropellant systems are reliable 

in orbit maintenance and attitude control. However they do not have the performance to 

produce large V∆  with high efficiency, needed for interplanetary orbits. Their range of 

specific impulse in vacuum is 150-225 seconds [Wertz et al., 1999]. A more important 

group is the bipropellants. They use fuel and oxidizer in separate tanks, since they have a 
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violent reaction when mixed. Bipropellant engines provide the highest performance system 

of all chemical engines, but they are also the most complex ones with a large number of 

systems. Another disadvantage is that most of them use toxic and dangerous propellants. 

The range of vacuum specific impulse values for bipropellant engines is 300-430 seconds 

[Wertz et al, 1999]. 

 

Solid propellants are known by storing fuel and oxidizer in a condensed solid state. Solid 

propellant motors have the advantage of: using harmless propellants in contrast with many 

liquid ones; having a simple structure with a small number of components and systems 

(cooling and feed system are not needed), which makes them reliable; and having a long 

storage time [Cornelisse et al, 1979]. However, solid motors have a relatively low specific 

impulse compared with rockets using other types of chemical propellant. Due to their 

simplicity, attention to the nozzle construction design is required, since no cooling system 

is active. Also, it is more difficult to modulate and control the thrust vector with a solid 

motor. It is important to remember that once ignited, generally the solid propellant motors 

burn until the end, since there is no physical way to stop the burning within the motor 

volume. In this way, the restart of a solid motor is not possible [Cornelisse et al, 1979]. 

Their typical range of vacuum specific impulse is 280-300 seconds [Wertz et al, 1999]. 

 

Hybrid propellants consist of a solid fuel and a liquid (or gaseous) oxidizer. Hybrid rockets 

have the advantage of: storing the fuel like the solid motors; restarting unlike the solid 

motors that cannot stop the burning once ignited; providing a cleaner environment than the 

solid motors; being safe, since explosions are not possible during the mixture of fuel and 

oxidizer; and finally throttling, i.e., it is possible to throttle the engine by modulating the 

oxidizer flow rate. The typical values of the specific impulse range are 250-340 seconds 

[Wertz et al, 1999]. 

 

In chemical propulsion systems, the most important parameter for the selection of the 

propellant is the specific impulse [Zandbergen, 2004]. In this way, the best choice for the 

high-thrust propulsion system is the bi-propellant liquid system. In table 3.1, some 

examples of bi-propellant liquid engines are given. 
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Engine Developer Vacuum Thrust (N) ( )spI s  Propellants Engine mass (kg) 

R-4D Marquardt 490 309 /NTO MMH  3.76 

RS-45 Rocketdyne 4.5 300 /NTO MMH  0.73 

S400/1 DASA 400 303 /MON MMH  2.8 

MMBPS TRW 445 302 /NTO MMH  5.22 

ADLAE TRW 445 330 2 4/NTO N H  4.5 

RS-41 Rocketdyne 11100 312 /NTO MMH  68.95 

S3K DASA 3500 352 /MON MMH  14.5 

R-42 Marquardt 890 303 /MON MMH  4.54 

Table 3.1: Examples of bi-propellant liquid engines [Zandbergen, 2004] and [Cornelisse et al, 1979] 

 

3.3. Electric Spacecraft Propulsion 
 

Rocket engines using electric propulsion obtain thrust by making use of electric, magnetic 

and thermal energy to accelerate the propellant. Therefore, vehicles with electric 

propulsion systems do not use propellant as a power source. Instead, they use a separate 

source of energy. Until now, solar panels have been used for all electrically propelled 

spacecrafts to obtain energy. However, other alternatives have to be developed for 

missions far from the Sun. An example of an alternative is the use of nuclear electric 

power system. 

 

The magnitude of acceleration provided by an electric propulsion system is significantly 

smaller than the gravitational acceleration of the planets within the sphere of influence of 

the planet. For this reason, spacecraft with this kind of propulsion system cannot leave a 

planet’s surface. A chemical system (high thrust-to-mass ratio) has to be used to achieve a 

parking orbit about the planet and only from the parking orbit electric propulsion can be 

used in the vehicle. 
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It is important to notice that electric propulsion systems are not “energy limited”, which 

allows the exhaust velocity to be much larger than the one available for the chemical 

system. Electric propulsion is limited by the maximum power provided by the power plant 

to the propellant. In this way, electric propulsion systems are called “power limited” 

systems. Subsequently, thrust is limited for a given spacecraft mass. Thus, electric 

propulsion vehicles tend to be low thrust-to-mass ratio, i.e., they tend to have low 

accelerations [ESA/SMART-1, 2007I]. The advantage in electric propulsion systems is their 

large total amount of impulse. Therefore, though electric systems have low thrust-to-mass 

ratio, thrust operates for long periods, from hours to years. 

 

3.3.1. Basic Principles 
 

A propulsion system mass depends on the specific impulse (exhaust velocity), on the thrust 

level and on the total impulse. The total mass of a chemical propulsion system is given by 

the sum of the propellant(s) mass (pM ), the storage tanks (stM ), the engine ( engM ) and 

the control system ( controlM ). In an electric propulsion system two other masses have to be 

added: the mass of the power source (wM ) and the mass of the power controller (wcM ), 

which are exclusive for the electric propulsion system. All these masses together, except 

the propellant mass, are called the dry mass of the propulsion system, psM . So, the total 

mass of an electric propulsion system is [ESA/SMART-1, 2007I]: 

 

Total p st eng control w wc p psM M M M M M M M M= + + + + + = +  (3.6) 

 

This mass excess (compared to chemical engines) is compensated by reducing the 

propellant mass used by this propulsion system. This means that while the mass of the 

power source increases with the increase of specific impulse, the propellant mass 

decreases. 

 

In electric propulsion systems, power sources provide power to ionize propellant and 

accelerate particles, so that the power source energy is converted into kinetic energy 

[Zandbergen, 2004]: 
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21

2jP P m wε= = ⋅  (3.7) 

 

Parameter jP  is the power of exhaust jet, P  is the power that is obtained through solar 

panels or another kind of power plant and ε  is the power conversion efficiency. 

 

In electric propulsion there is no limit for the exhaust velocity other than the speed of light, 

however the power required may increase to a point where there is no economic feasibility 

in obtaining more acceleration. In this way, it is important to find the optimum exhaust 

velocity and, consequently the optimum specific impulse of the system, sspI  [Wertz et al, 

1999]. In case where the solar energy is used to obtain power, the dry mass of the 

propulsion system is dominated by the mass of the power source and can be approximated 

by [Zandbergen, 2004]: 

 

ps w wM M Pα≈ =  (3.8) 

 

Parameter 1 wα  is the specific power [ ]W kg . The specific impulse can also be given by 

[Zandbergen, 2004]: 

 

0
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 (3.9) 

 

Parameter ( )2w tε α η=  is called the specific mass of the energy source. From equation 

(3.9), the optimum exhaust velocity is derived: 

 

1
0ssp

op

dI
w

dw ε
= ⇔ =  (3.10) 

 

It should be mentioned that economically it is preferable to work slightly below the 

optimum value, because propellant is normally cheaper than using more power supply 

[Wertz et al., 1999]. 
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3.3.2. Methods 
 

There are three basic types of electric propulsion systems: electrothermal, electrostatic and 

electromagnetic. These methods are categorized by the way the propellant in the vehicle is 

accelerated. 

 

a) Electrothermal Propulsion 
 

This system is characterized by using heat to accelerate the propellant. There are three sub-

types: resistojets, arcjets and inductively or radiatively heated systems (there are no 

application examples of this technique yet) [ESA/SMART-1, 2007I]. 

 

Resistojets use an electric heater to heat gaseous propellant that afterwards is expanded in a 

conventional nozzle to generate thrust. Usually, this type of propulsion is used to improve 

the performance of high-thrust propulsion systems (chemical systems), where the electric 

heater is used to further accelerate the propellant. An application of this type of 

electrothermal propulsion is done with hydrazine. Exhaust velocities of 3500m s and 

specific impulses of 350 seconds are achieved [ESA/SMART-1, 2007I]. The specific 

impulse of resistojets is limited, since the molecular mass of the gases used is significantly 

high and the maximum surface temperature sustainable is limited. 

 

Arcjets use an electric arc to heat the propellant before it expands in the nozzle. This type 

of propulsion can achieve core arc temperatures of 10000 to 20000 K and exhaust 

velocities of 5000 to 6000m s ( spI  from 500 to 600 seconds) at efficiencies of 40% with 

catalytically decomposed hydrazine [ESA/SMART-1, 2007I]. Portions of the propellant 

mass flow at these high temperatures cannot be in contact with the engine component 

walls. 

 

b) Electromagnetic Propulsion 
 

This system uses orthogonal electric and magnetic fields to ionize propellant particles, 

accelerating them. There are some developed and underdeveloped techniques like pulsed 
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plasma thrusters and magnetoplasmadynamic thrusters (MPD thrusters) [ESA/SMART-1, 

2007I]. 

 

Pulsed plasma thrusters with solid propellant are used for low power propulsion systems. 

They have a self-induced magnetic field that after moving in an electric field, a Lorentz 

body force is created, accelerating the plasma. This kind of thrusters does not produce 

enough thrust to be a primary propulsion system in the near future. 

 

MPD thrusters work at high power levels (kilowatts to megawatts) and generate high thrust 

with reasonable specific impulse. Because they consume much power and they are still in 

development phase, MPD thrusters are not considered a primary propulsion system in the 

near future. 

 

c) Electrostatic Propulsion 
 

In this system, the ionised propellant is accelerated by an electric field. The main 

techniques are field effect electrostatic propulsion (FEEP), colloidal thrusters and gridded 

ion accelerators (ion engine) [ESA/SMART-1, 2007I]. 

 

FEEP applies a strong electric field (~2010 V m) to extract ions from an ionisable metal. 

Using an extraction voltage of 10kV , exhaust velocities of 100000m s (specific impulse 

of 10000 seconds) are achievable [ESA/SMART-1, 2007I]. FEEP thrusters using caesium 

as propellant have very low thrust levels and thrust per unit power: 1 Nµ  to 5mN  on earth 

and ~15 N Wµ , respectively. Nowadays, FEEP is not operational due to the low thrust-to-

power ratio and contamination due to caesium. They provide insufficient thrust to be 

considered using in a primary propulsion system. 

 

Colloidal thrusters achieve exhaust velocities of 10000m s ( spI  of 1000 seconds) on earth 

[ESA/SMART-1, 2007I]. Some problems, like the requirement of high acceleration 

voltages and high beam divergence, reflect the insufficient maturity of this kind of 

propulsion system. 
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Ion thrusters can achieve exhaust velocities of 30000m s ( spI  of 3000 seconds) and they 

are being used since the mid nineteen-nineties for station keeping of geostationary 

satellites [ESA/SMART-1, 2007I]. NASA’s Deep Space 1 (DS1) and MUSES-C already 

demonstrated this technology for interplanetary missions. 

 

3.3.3. Examples of Missions using Electric Propulsi on 
 

Electric propulsion systems have proven its worthiness in missions like DS1 launched in 

1998 by NASA, SMART-1 launched in 2003 by ESA and MUSES-C launched in 2003 by 

JAXA. Before these missions, electric propulsion systems were mainly used for attitude 

control and orbit correction of space vehicles. In table 3.2, values for parameters like 

specific impulse, power and thrust are presented for DS1, SMART-1 and for MUSES-C 

propulsion system. 

 

Characteristics SMART-1 MUSES-C Deep Space 1 

Propellant Xenon Xenon Xenon 

Thrust (N) 26.8 10−×  3 35.12 10 23.6 10− −× − ×  29.2 10−×  

Specific Impulse (s) 1640 2687-3011 1900-3200 

Propellant consumed (kg) 82 61.9 74 

Power source (W) 462-1190 310-1158 2300 

Table 3.2: Propulsion system characteristics of SMART-1 [ESA/SMART-1, 2007I], MUSES-C 
[Komuraki, 2003] and Deep Space 1 [NASA/JPL, 2002] [Rayman et al, 1999] 

 

DS1 [Rayman et al, 1999] tested twelve advanced, high-risk technologies in space and at 

the end of its mission, it encountered the comet Borrely, presenting images and data from 

this comet. This satellite was the first one to use an (electrostatic) ion propulsion system as 

the primary propulsion system. 

 

SMART-1 [ESA/SMART-1, 2007I] was used to test its electric propulsion system and other 

deep-space technologies, while observing the Moon. Hall Effect thrusters, which are both 

electrostatic and electromagnetic propulsion systems, were implemented in this spacecraft. 
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MUSES-C [Kuninaka et al, 2007] did a successful rendezvous with the asteroid Itokawa, 

using ion engines in its two year heliocentric flight. 

 

Most recently, BepiColombo [ESA/BepiColombo, 2008] will be launched in 2013 and it 

will take approximately six years to arrive at Mercury. BepiColombo will perform a lunar 

flyby to reach the interplanetary trajectory. A cruise trajectory by ion propulsion stage - the 

Solar Electric Propulsion Module (SEPM), up to 0.25 N thrust, with five gravity assists: 

Earth, Venus (2×) and Mercury (2×) - will be accomplished. This mission will be an ESA 

mission in cooperation with Japan. The mission will consist of two separate spacecraft that 

will orbit the planet. ESA is building one of the main spacecraft, the Mercury Planetary 

Orbiter (MPO), and the Japanese space agency ISAS/JAXA will contribute the other, the 

Mercury Magnetospheric Orbiter (MMO) [ESA/BepiColombo, 2008]. 
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4. Non-perturbed Transfer Orbits 
 

In this chapter, simple analytical concepts of spacecraft trajectories that leave the 

gravitational attraction of a body to be captured by the gravitational field of another body 

will be studied. This chapter is an introduction to a more complex study of interplanetary 

missions that will be described in chapter 5, where in addition to the gravitational force 

there is a thrust force from an electric propulsion system. However, in this chapter, only 

gravitational forces from the main bodies will be considered. 

 

Interplanetary missions are considered when a spacecraft escapes from a planet’s gravity 

attraction, like the Earth’s, and it moves in a hyperbolic trajectory with respect to the 

planet. The vehicle will enter in a heliocentric orbit and it will approximate the target 

planet also with a hyperbolic trajectory with respect to this planet. Different missions can 

be categorized, depending on the approach to the target planet [Cornelisse et al., 1979]: 

 

• Flyby mission – the spacecraft will pass the target planet at a relatively small 

distance; 

• Orbiter mission – the spacecraft will need a propulsion engine to decelerate and 

enter an orbit around the planet; 

• Lander mission – the final velocity of the spacecraft with respect to the planet’s 

surface will have to be reduced to a very small value. 

 

These interplanetary missions are divided in three phases of two-body Keplerian orbits, 

around different gravity fields in each phase. First, the spacecraft will be under the 

influence of the departure or initial planet’s gravity field (section 4.2), from where it is 

going to escape after the first impulsive shot. Second, after escaping, it will move in a 

heliocentric motion, i.e., under the influence of Sun’s gravity field (section 4.1). Finally, 

the spacecraft will perform a planetocentric orbit at destination, so it will be under the 

influence of the target planet’s gravity field (section 4.2). The transition between phases is 

done using the concept of sphere of influence, already explained in section 1.3. When the 

spacecraft is out of the sphere of influence of the departure or target planet, the Sun is the 
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main gravitational body, therefore the gravitational influence from other planets is not 

considered [Cornelisse et al., 1979]. 

 

The patched-conic approximation will be used to calculate analytically the heliocentric 

departure and arrival velocities in terms of direction and magnitude. The three phases will 

be discussed in detail in the following sections. 

 

4.1. Heliocentric Phase 
 

Figure 4.1 illustrates a general heliocentric transfer orbit. The initial and final orbits of the 

starting and arriving planets are assumed to be circular. This is a realistic assumption since 

most of the celestial bodies orbiting the Sun, with exception of Mercury and Pluto, have 

nearly circular orbits around it. This heliocentric transfer orbit takes the vehicle from the 

sphere of influence of the departure planet to the sphere of influence of the arriving planet. 

 

 

Figure 4.1: Heliocentric transfer orbit [Cornelisse et al., 1979] 

 

From figure 4.1, the initial and the final orbit radius can be computed through: 
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Parameters 
1t

θ  and 
2t

θ  are the true anomaly at the point where the transfer orbit intersects 

the initial and the final orbit, respectively (figure 4.1). The flight path angle γ  is the angle 

between the local horizon and the velocity vector. The parameters a  and e are the semi-

major axis and the eccentricity of the transfer orbit, respectively, and both can be 

determined through the equations (4.1), knowing 
1t

θ , 
2t

θ  and the departure and the target 

planets (1r  and 2r , respectively). 

 

The angles 1γ  and 2γ  are the flight path angles for the initial and final epochs, respectively 

(figure 4.1). These two angles are computed using equations 2H p µ= , (1.6) and the 

equation of the angular momentum with a certain flight path angle: cosH rV γ= , 

[Wakker, 2005II]: 
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The velocities 1V  and 2V  are the heliocentric departure and arrival velocities respectively 

that can be calculated through equation (1.3). The gravitational parameter µ  considered in 

equation (4.2) is that of the Sun. 

 

The travel time of the heliocentric transfer orbit can be determined through: 

 

2 1
TOF f ft t= −  (4.3) 

 

The variables 
2f

t  and 
1f

t  are the time since the pericentre passage of the transfer orbit at 

the departure point (with radius 1r ) and at the arrival point (with radius 2r ), respectively. 

These two times can be determined using the equation of Kepler [Montenbruck et al., 

2005]: 
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( )sinE e E M n t τ− = = −  (4.4) 

 

Parameter M  is called the mean anomaly and parameter E  is the eccentric anomaly, and 

this last parameter is related to the true anomaly using the equation [Wakker, 2005I]: 

 

1
tan tan

2 1 2

e E

e

θ +=
−

 (4.5) 

 

In this way, assuming 0τ = , 
2f

t  and 
1f

t  are calculated through: 

 

( )
1 1 1

3

sinf t t

a
t E e E

µ
= −  and ( )

2 2 2

3

sinf t t

a
t E e E

µ
= −  (4.6) 

 

Parameters 
1t

E  and 
2t

E  are given by equation (4.5). 

 

From figure 4.1, it is possible to calculate the hyperbolic excess velocities at the departure 

and arrival planets [Cornelisse et al., 1979]: 

 

1

2

2 2
1 1 1

2 2
2 2 2

2 cos

2 cos

d d

t t

V V V VV

V V V V V

γ

γ

∞

∞

= + −

= + −
 (4.7) 

 

Parameter dV  is the heliocentric departure planet’s velocity and tV  is the heliocentric target 

planet’s velocity. 

 

Hohmann transfer orbits are transfer trajectories where the propellant consumption is 

minimal. As already derived from Tsiolkowski’s law in chapter 3, the minimal propellant 

consumption requires that the value for the V∆  has to be minimal. These transfer orbits 

are defined by an elliptical orbit (figure 4.2) that touches the initial circular orbit at 

pericentre and touches the final circular orbit at apocentre. It is assumed that both circular 

orbits are coplanar. A coplanar problem assumption is a realistic assumption, because the 
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difference between inclinations of the Solar System planets is significantly small, with the 

exception of Mercury and Pluto (7º and 17.14º, respectively). Both impulse velocity 

vectors, 1V∆  and 2V∆ , are tangential to the initial and final orbit, respectively. It is 

important to mention that these impulsive shots change the velocity of the spacecraft 

instantaneously, leaving the position of the spacecraft at that instant unchanged. The 

circular velocities of the initial and final orbits, 1cV  and 2cV , are given by rµ  where r  

parameter is substituted by 1r  and 2r , respectively. 

 

 

Figure 4.2: Hohmann Transfer Orbit [Wertz, 2001] 

 

The Hohmann transfer orbit is considered when parameters 1γ  and 2γ  are zero. In this 

situation, the TOF can be computed through [Wakker, 2005II]: 

 

3

TOF
H

aπ
µ

=  (4.8) 

 

4.2. Planetocentric Phases 
 

Consider a spacecraft moving in a circular parking orbit around a certain planet. An 

impulsive shot, using chemical propulsion will be performed and the spacecraft will escape 

the gravity field of this planet and continue to move in a hyperbolic orbit. This impulsive 

shot is most efficient if it is implemented tangentially to the parking orbit and where the 
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orbital velocity is maximum [Cornelisse et al., 1979]. The velocity change is given by 

[Cornelisse et al., 1979]: 

 

1

1 1

2
1 1 1

2
hyperbolic circular

d d

c c

V V V V
r r

µ µ
∞∆ = − = + −  (4.9) 

 

In the same way, the impulsive shot needed to decrease the spacecraft’s hyperbolic 

velocity to the target circular velocity is given by [Cornelisse et al., 1979]: 

 

2

2 2

2
2 2 2

2
hyperbolic circular

t t

c c

V V V V
r r

µ µ
∞∆ = − = + −  (4.10) 

 

The excess hyperbolic velocities are computed using equations (4.7). Finally, the total 

impulsive shot TV∆  can be computed by adding 1V∆  and 2V∆ : 

 

1 2TV V V∆ = ∆ + ∆  (4.11) 

 

In table 4.1, values for the time of flight (TOF), the hyperbolic velocities 1V  and 2V  as well 

as the hyperbolic excess velocities 
1

V∞  and 
2

V∞  are presented for the Hohmann transfer 

orbit. The impulse velocities 1V∆  and 2V∆  are also represented and they were computed at 

1.1 radius distance from the planet (i.e., the vehicle starts and ends up in a circular parking 

orbit at an altitude of 0.1 planetr⋅ ). These values are listed for the Earth as the departure 

planet. 
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Target 
Body 

1V  

[ ]skm  

1
V∞ * 

[ ]skm  

tV  

[ ]skm  

2V  

[ ]skm  

2
V∞  

[ ]skm  

1V∆  

[ ]skm  

2V∆  

[ ]skm  

TV∆  

[ ]skm  

TOF 

[ ]years  

Mercury 22.25 -7.53 47.87 57.49 9.61 5.52 7.57 13.08 0.289 

Venus 27.29 -2.50 35.02 37.73 2.71 3.41 3.26 6.67 0.400 

Mars 32.73 2.95 24.13 21.48 -2.65 3.52 2.09 5.61 0.709 

Jupiter 38.58 8.79 13.06 7.41 -5.64 6.28 16.91 23.19 2.733 

Saturn 40.07 10.29 9.65 4.20 -5.44 7.28 10.34 17.62 6.051 

Uranus 41.07 11.28 6.80 2.14 -4.66 7.98 6.48 14.46 16.050 

Neptune 41.44 11.65 5.43 1.38 -4.05 8.26 6.93 15.18 30.635 

Pluto 41.60 11.81 4.74 1.05 -3.69 8.38 3.05 11.42 45.563 

Escape 
from the 

Solar 
System 

42.12 12.34 - 0 - 8.77 0 8.75 - 

Table 4.1: The TOF and the total impulse velocities at the departure planet and at the target planet 
with the Earth as departure planet (1.1 radius distance from the planet). * the velocity of the Earth is 

considered circular and equal to 29.79 km/s [Cornelisse et al., 1979] 

 

From table 4.1, the values of the TOF are large, so other transfer orbits may be considered. 

Nevertheless, the Hohmann transfer orbit offers the yardstick for the minimum total 

impulsive velocity required in a transfer trajectory. 
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5. Low-Thrust Trajectories 
 

In chapter 4, interplanetary missions were analysed using a coasting phase in the 

heliocentric phase characterized by a Keplerian orbit. In this chapter a more complicated 

trajectory will be studied, involving low-thrust propulsion during the heliocentric phase. 

High-thrust propulsion is still needed to escape the departure planet, because otherwise, the 

mission would take too long just to leave the sphere of influence of the planet. In this way, 

as already mentioned in chapter 4, the spacecraft will be launched into a circular parking 

orbit and it will escape from the departure planet using high-thrust propulsion. In table 5.1, 

four different types of transfer orbits are shown. 

 

 

Table 5.1: Four different types of transfer orbits [Wertz, 2001] 

 

In a mission from one celestial body to another, the spacecraft is unlikely to thrust the 

entire period of time. In interplanetary flights, coasting periods are usually switched with 

thrusting periods. However, only low-thrust trajectories using continuous thrust will be 

discussed in this chapter. 
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In the past, the conical sections were considered to be the most suitable analytical 

representation for the motion of spacecraft. More recently, a shape-based study was made 

in order to find the best analytical representation for low-thrust trajectories. The 

exponential sinusoid was introduced as a shape capable of representing these trajectories in 

[Petropoulos et al., 1999]. This shape was further studied by Izzo [Izzo, 2006] who used a 

different approach in order to obtain an exponential sinusoid that respects the initial and 

final positions and time of flight (TOF) specified by the user. In order to implement this 

kind of shape-based method, the mathematical function that describes the trajectory of the 

spacecraft – e.g. exponential sinusoid used by Petropoulos and Izzo - will have to be 

defined. From this mathematical expression, the equations for the thrust acceleration, the 

thrust angle, the radial and tangential velocities can be derived using the equations of 

motion of a spacecraft. For a certain exponential sinusoid and giving the TOF and initial 

and final positions of the thrust arc as input, the values for the total excess velocity and the 

fuel mass consumption during the heliocentric phase can be computed. 

 

In section 5.1, basic notions of low-thrust trajectories are addressed. In section 5.2 and 5.3, 

the geometric and the dynamic properties regarding a low-thrust problem using the 

exponential sinusoid shape will be given for a general case and for the tangential case, 

respectively. Also in this chapter, two approaches, one done by [Petropoulos and 

Longuski, 2004] and another done by [Izzo, 2006] to compute the position, the velocity 

and the acceleration of the spacecraft with time will be discussed in sections 5.4 and 5.5, 

respectively. 

 

5.1. Basic Equations of Motion for Low-Thrust Traje ctories 
 

Equation (1.1) describes the motion of a spacecraft under the influence of the gravity field 

of the main body. In low-thrust trajectories another force has to be taken into account 

[Wakker, 2005II]: 

 

3
r r a

r

µ= − +ɺɺ  (5.1) 
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Parameter a  is the thrust acceleration vector. The instantaneous rate of change of the 

specific total energy can be computed by multiplying equation (5.1) by the velocity of the 

spacecraft V  [Wakker, 2005II]: 

 

d
V a

dt

ε = ⋅  (5.2) 

 

The rate of change of the total orbital energy in equation (5.2) reaches a maximum value if 

the thrust vector is tangential to the trajectory – tangential steering. However, from 

equation (5.2), it should not be concluded that the tangential thrust profile is the optimum 

one since the minimal total propellant consumption is not necessarily associated with 

constant instantaneous maximal rate of change of the total orbital energy [Wakker, 2005II]. 

In fact, the computation of the optimal thrust profile is a difficult topic. The optimal thrust 

profile will depend on the planets that are being considered for the flight, the mass of the 

spacecraft, the thrust magnitude, among others. However, from all steering programs that 

can be considered, the radial thrusting case cannot be considered an attractive thrust 

profile. Compared with the tangential thrust profile, it yields longer flight times and higher 

propellant consumption in an interplanetary mission [Wakker, 2005II]. 

 

5.2. Exponential Sinusoid – Geometry and Dynamics 
 

In this section, the geometric and dynamic properties of the exponential sinusoid in terms 

of representation for low-thrust trajectories already made in [Petropoulos and Longuski, 

2004] will be presented. The radius equation of the exponential sinusoid is given by: 

 

( )1 2sin
0

q k kr k e θ θ φ+ +=  (5.3) 

 

Using this representation, a large variety of shapes can be drawn and some examples are 

represented in figure 5.1. 
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Figure 5.1: Shapes that can be represented by an exponential sinusoid [Petropoulos et al., 1999] 

 

The use of five constant parameters (0 1 2, , ,k k k q and φ ) allows a considerably flexibility in 

the geometry described by equation (5.3). Each parameter has a different impact on the 

shape of the exponential sinusoid. Parameter q  denotes the difference between a pure 

exponential sinusoid ( 0q = ) and a more flexible one ( 0q ≠ ). Parameter φ  is called the 

phase angle and it controls the orientation of the exponential sinusoid in the plane. The 

quantity 0k  is the scaling factor and it controls the absolute range of the pericentre and the 

apocentre. Parameter 1k  is called the dynamic range and it controls the ratio between the 

apocentre and the pericentre distance. Assuming 0q = , this ratio can be deduced through 

equation (5.3) and it is given by: 12k
a pr r e= . Finally, the quantity 2k  is the winding 

parameter and it is associated with the number of revolutions of the spiral: the smaller 2k , 

the more revolutions the spacecraft will perform from the pericentre to the apocentre and 

vice-versa. The number of revolutions (it can also be a fraction of a revolution) from the 

pericentre to the apocentre can be deduced from equation (5.3) and it is given by: 

 

( )2 21 2p aN k=  (5.4) 

 

Two examples of the effect of the winding parameter 2k  are represented in figure 5.2. Note 

that when 1k  is large, i.e., when the ratio between the apocentre and the pericentre is large, 

the parameter 2k  is usually small, because many revolutions are necessary to reach the 
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apocentre. On the other hand, when 2k  is large (few or none complete revolutions), 

parameter 1k  must be small, since the dynamic range is also small. 

 

 

Figure 5.2: Example of exponential sinusoid shapes from pericentre to apocentre using 
1

0.5k =  and (a) 

2
2 3k =  and (b) 

2
2 11k =  [Petropoulos and Longuski, 2004] 

 

Now, this shape will be applied to the equations of motion of a spacecraft that are 

expressed in the radial and tangential direction, respectively by [Petropoulos et al, 1999]: 

 

( )

2
2

2

sin

1
cos 2 cos

r r a
r

d
r a r r a

r dt

µθ α

θ α θ θ α

 − + =

 = ⇔ + =


ɺɺɺ

ɺ ɺ ɺɺɺ

 (5.5) 

 

The first and second time-derivatives of r , rɺ  and rɺɺ, are given by: 

 

( )
( ) ( )( )

1 2

22 2 2
1 2 1 2 1 2

r q k k c r

r q k k c q k k c k k s r

θ

θ θ θ

= +

= + + + −

ɺɺ

ɺɺ ɺ ɺɺɺ
 (5.6) 

 

Variables s and c  stand for ( )2sin k θ φ+  and ( )2cos k θ φ+ , respectively. In equation 

(5.5), the magnitude of the thrust acceleration a  was already introduced in section 5.1 in 

equation (5.1), while α  is the thrust angle. These two parameters are represented in figure 
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5.2b. The flight path angle γ  is also represented in figure 5.2(b) and it is defined using the 

first equation in (5.6), by: 

 

1 2tan
dr dt

q k k c
rd dt

γ
θ

= = +  (5.7) 

 

At this point five equations ((5.3), (5.5) and (5.6)) with seven unknowns ( ), , , , , ,r r r aθ θ αɺ ɺɺɺ ɺɺ  

are presented, with θ  or t  as independent variables. So, two more equations are needed to 

make the system determinable. Using the four equations in (5.5) and (5.6) already 

described, the equation for the rate of the polar angle θɺ  can be calculated through 

[Petropoulos et al., 1999]: 

 

2 0 0
3 2 2

1 2

cos tan sin 1

tan 1

a a

r k k s

α γ αµθ
γ

− + =   + + 
ɺ  (5.8) 

 

All the derivation steps used in this expression are done in appendix A. Note that equation 

(5.8) allows retrograde motion by taking the negative square root of the right-hand side to 

obtain 0θ <ɺ . However, for purposes of convenience in discussion, only the prograde 

motion will be examined here. Parameter 0a  is the thrust acceleration normalised by the 

local gravitational acceleration: 

 

2

0

r
a a

µ
=  (5.9) 

 

Assuming a constant value for 0a , the magnitude of the thrust acceleration a  will decrease 

monotonically with 21 r . This is a good approximation for significant parts of the 

trajectory when solar-powered propulsion systems are used [Petropoulos et al., 2004]. 

 

Knowing θɺ  through equation (5.8), the expressions for the radial velocity and the 

tangential velocity can be derived: 
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( )1 2

0 0
3 2 2

1 2

cos tan sin 1

tan 1

rV r q k k c r

a a
V r r

r k k sθ

θ

α γ αµθ
γ

= = +

− + = =   + + 

ɺɺ

ɺ
 (5.10) 

 

Note that it is only possible to calculate θɺ  if parameters α , 0a  and r  are known. The 

thrust angle α  can be computed by integrating the following equation for αɺ  [Petropoulos 

et al., 1999]: 

 

( )( ){
( )( )

( )} ( )( )( )

22 3 2 2
0 1 2

3 2
0 0 1 2 1 2

2 2 2 2 2
0 1 2 1 2 0 0 1 2

tan 2 cos tan 1

cos tan sin 1 2 tan

cos tan 1 sin tan cos tan 1

r a k k s

a a k k c k k s

a k k s k k s a a k k s

α γθ µ α γ

α γ α γ

α γ θ α γ α γ

= − + + −

− − + −

− + + + + +

ɺɺ

ɺ

 (5.11) 

 

Equation (5.11) is derived in appendix A. Note that the expressions for θɺ  and αɺ  are 

coupled, intractable, first-order differential equations. For this reason, numerical 

integration is necessary to find values for θ  and α , and consequently to determine the 

position and the velocity of the spacecraft. Finally, the TOF can be computed by 

integrating equation (5.8): 

 

1

2
0 0

3 2 2
1 2

cos tan sin 11
TOF

tan 1
f f

i i

a a
d d

r k k s

θ θ

θ θ

α γ αµθ θ
θ γ

−
 − + = =    + +  

∫ ∫ɺ
 (5.12)

 
 

In equation (5.12), parameter iθ  is the initial polar angle and parameter fθ  is the final 

polar angle for the thrust arc. 

 

5.3. Exponential Sinusoid using Tangential Thrust 
 

In order to avoid numerical integration that is required to find θ  and α  (as mentioned in 

the end of section 5.2), a special case of thrusting is assumed: the tangential thrust profile, 

allowing simplifications in equation (5.8). The thrust vector can be along or against the 

velocity vector ( nα γ π= + , with 0,1n = , respectively). In this special case, due to 
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simplifications in equation (5.8), the dynamic parameter 0a  can be analytically computed. 

Parameters 0a  and 2θɺ  are given by [Petropoulos and Longuski, 2004]: 

 

2
3 2 2

1 2

1

tan 1r k k s

µθ
γ

 =   + + 
ɺ  (5.13) 

( ) ( )
( )

2
2 1

0 22 2 2 2
1 2 1 2

1 tan 1 21

2cos tan 1 tan 1

n
k k s

a
k k s k k s

γ
γ γ γ

 − − = −
 + + + + 

 (5.14) 

 

Finally, the expression for the TOF can be simplified and it is given by: 

 

( )3 2 2
1 2TOF tan 1

f

i

r k k s d
θ

θ
γ µ θ= + +∫  (5.15) 

 

As for the equations in section 5.2, both equations (5.13) and (5.14) are derived in 

appendix A. From these equations, the rate of the polar angle θɺ , the normalised thrust 

acceleration 0a  and consequently the radial and tangential velocities are calculated as a 

function of the polar angle θ  only (the geometric parameters are constant, the flight path 

angle and r  depend only on the geometric parameters and on θ  (equations (5.7) and 

(5.3))). As equation (5.8), equation (5.13) allows a retrograde motion by taking the 

negative square root of the right hand-side, obtaining 0θ <ɺ . 

 

Note that 2θɺ  can become negative when the denominator 2 2
1 2tan 1 0k k sγ + + <  (equation 

(5.13)). Also, equation (5.13) for 2θɺ  and equation (5.14) for the normalised thrust 

acceleration 0a  can present singularities when the denominator 2 2
1 2tan 1k k sγ + +  becomes 

zero. Considering parameters 1k  and 2k  positive, this situation will happen when 2
1 2k k  

approaches unity from below, at the pericentre where 1s = −  (considering 2 2k θ φ π+ = −  

and 0q = ). From equation (5.13), it should be noticed that 2θɺ  can be less than zero for 

2
1 2 1k k >  in regions near the pericentre of the trajectory. In these situations, it is not possible 

to represent low-thrust trajectories using the exponential sinusoid with a tangential thrust 

profile [Petropoulos and Longuski, 2004], i.e. the physical problem cannot be satisfied 
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using this specific shape and this thrust profile combined. In this way, in order to avoid 

singularities around the pericentre and situations where 2θɺ  is negative, the following 

condition shall be respected [Petropoulos and Longuski, 2004]: 

 

2
1 21 0k k− >  (5.16) 

 

The condition described in equation (5.16) ensures that the denominator of equation (5.13) 

is always positive. For practical purposes, upper limits of 2 and 1 were chosen for the 

geometric parameters 1k  and 2k , respectively, since the thrust levels become unreasonably 

high when 2
1 21 k k−  approaches zero [Petropoulos and Longuski, 2004]. Note that the 

condition in equation (5.16) should always be respected: when 1k  is large (the apocentre is 

much greater than the pericentre – large dynamic range), 2k  must be small, i.e., many 

revolutions around the central body are required between the pericentre and the apocentre. 

In opposition, when 1k  is small (apocentre is not much greater than the pericentre), 2k  

must be large (not many revolutions are required). Considering 2 0.01k = , the spacecraft is 

allowed to spiral up to 50 revolutions around the Sun between the pericentre and the 

apocentre (equation (5.4)). This number of revolutions is untenably high to be considered 

in a real mission (due to TOF), therefore there is no reason to choose values of 2k  lower 

than 0.01. By changing parameter 2k , a velocity analysis through a comparison between 

the exponential sinusoid velocity and the local circular velocity can be made. For a many 

revolution case (small 2k ), the exponential sinusoid velocity is not much different from the 

local circular velocity, specially in the apocentre and in the pericentre. In this case, a 

launch from, or a rendezvous at, will be most efficient in these regions. On the other hand, 

the exponential sinusoid velocity is significantly non-circular for large values of 2k , a 

situation that favours gravity-assist. 

 

From the analysis done in this section, although condition (5.16) is required, the 

exponential sinusoid (tangential thrust profile) can be used as an analytical representation 

for low-thrust trajectories. Given the TOF and the initial and final conditions at the 

departure and target planets, respectively, there should be an exponential sinusoid, 
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characterized by the geometric parameters 0 1 2, , ,k k k q and φ  that respect these initial 

inputs. In the following two sections 5.4 and 5.5, two different studies in how to find 

feasible exponential sinusoids will be discussed. The first procedure that will be described 

(section 5.4) is the one used in [Petropoulos and Longuski, 2004], while the second is the 

one used in [Izzo, 2006] (section 5.5). 

 

5.4. Procedure done by Petropoulos 1 and Longuski 2 
 

Consider the situation where the spacecraft’s trajectory follows an exponential sinusoid 

shape with a tangential thrust. The reference plane in which the motion of the spacecraft 

occurs is called the low-thrust reference plane and it is normal to the spacecraft’s initial 

angular momentum vector. In a two-dimensional problem, this plane is the same as the 

orbital plane of the initial and final planets. However, in a three-dimensional problem, 

since the angular momentum direction at the initial planet is different from the one at the 

arrival planet (i.e., the target orbital plane does not lie exactly in the same plane as the 

initial planet) and exponential sinusoids are pure planar shapes, the trajectory of the 

spacecraft will only be able to intersect the projection of the target’s orbit onto the low-

thrust reference plane (figure 5.3). The motion of the spacecraft in the low-thrust reference 

plane that is assumed to follow the exponential sinusoid is called the in-plane motion and it 

will be discussed in section 5.4.1. In addition, the spacecraft will need an additional force 

acting along or against the spacecraft’s angular momentum outa  in order to meet the 

target’s orbit (section 5.4.2) (see figure 5.3). 

 

                                                
1Senior member of the Engineering Staff, Navigation and Mission Design section, Jet Propulsion Laboratory 
2 Professor, Purdue University, associate fellow AAIA 
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Figure 5.3: Representation of the low-thrust reference plane and the out-of-plane additional force 
out

a  

 

5.4.1. In-Plane Motion 
 

In this section, the two-dimensional motion of the spacecraft that follows the exponential 

sinusoid will be analysed. The equations for parameters 2θɺ , 0a  and the TOF were already 

presented in section 5.3 in equations (5.13), (5.14) and (5.15), respectively. The condition 

in equation (5.16) should be respected to avoid singularities around the pericentre and to 

avoid 2 0θ <ɺ . After a brief analysis of the geometric parameters 1k  and 2k  in the end of 

section 5.3, the interval of available values for 2k  can be determined. In cases where the 

outbound targets are considered, the minimum projected radius minr  is higher than the 

current radius Br  ( 0q = ), the range of 2k  values is limited to [Petropoulos and Longuski, 

2004]: 

 

( )
( )( )

2
12 min2

2 2

min

tan 2 ln

ln

s B

B

k r r
k

r r

γ −
≤  (5.17) 

 

In cases of inbound targets, where the maximum projected radius maxr  is less than the 

current radius, the condition for 2k  is [Petropoulos and Longuski, 2004]: 

 

( )
( )( )

2
12 max2

2 2

max

tan 2 ln

ln

s B

B

k r r
k

r r

γ +
≤  (5.18) 
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These two equations are derived in appendix A. It may happen that the right-hand side of 

equations (5.17) and (5.18) is negative and in these cases, the target cannot be reached 

using the exponential sinusoid. Note that the parameter 2k  continues to depend on the 

limits for 1k  and on condition (5.16). For specific initial and final conditions, there is only 

one 2k  value that corresponds to the TOF that was given as an input. An analytic process 

to find this specific value for 2k  is not available and the only way is to step through the 

range of 2k  values and at each step compute the intersection point with the target projected 

orbit. The TOF is calculated through equation (5.15). 

 

In [Petropoulos and Longuski, 2004], the intersection points were found using a numerical 

root-finding technique. A step-size and step-direction-controlled Newton method was 

applied, with the goal of putting to zero the following expression: 

 

( ) ( ) ( )1 1i t t TOF t TOFd r r= =θ = θ − θ  (5.19) 

 

The target’s orbit is assumed to be conic and it has to be projected onto the low-thrust 

reference plane. The parameter tr  is the projected radius for the target planet and r  and θ  

are the position of the spacecraft and the polar angle, respectively in the low-thrust 

reference plane. It should be noticed that the inverse radius is applied to simplify the 

equation for the derivative required by the Newton method. The advantage is having faster 

computations. 

 

Now knowing the geometric parameters of the exponential sinusoid that yield the 

necessary TOF, it is possible to compute the amount of propellant used during the low-

thrust flight and also the amount of propellant necessary for the initial and the final 

chemical impulsive shots at the departure and arrival planets, respectively. The 

computation of fuel consumptions will be explained later in chapter 8. 
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5.4.2. Out-of-Plane Motion 
 

As already mentioned before in chapter 4, celestial bodies in the Solar System orbit around 

the Sun with different inclinations with respect to the ecliptic plane. In this section, a 

method will be discussed to match the final position of the spacecraft with the target’s 

orbit. To reach the out-of-plane position of a target (see figure 5.3) with respect to an in-

plane encounter at the same instant, an additional force is necessary [Petropoulos and 

Longuski, 2000]: 

 

0, 2out outa a
r

µ=  (5.20) 

 

As for the thrust acceleration a , outa  also varies with 21 r , meaning that it decreases 

according to the amount of solar energy available at a certain distance from the Sun. The 

in-plane components of the angular momentum, xh  and yh  act according to [Petropoulos 

and Longuski, 2000]: 

 

sin

cos

x out

y out

dh ra

d
dh ra

d

θ
θ θ

θ
θ θ

≈

≈ −

ɺ

ɺ

 (5.21) 

 

The expressions (5.21) were derived under the assumption that the out-of-plane thrust 

acceleration is considerably smaller than the gravitational acceleration from the main body, 

which is the Sun. In equations (5.21), the X-direction is considered to be along the line 

0θ = . Because the angular momentum components remain significantly small, the total 

angular momentum is assumed to be equal to the out-of-plane component 2r θɺ , as if outa  

was equal to zero. This means that the position vector of the spacecraft and the angular 

momentum and also the velocity vector and the angular momentum are assumed to be 

perpendicular, respectively: 

 

0r h⋅ ≈  and 0V h⋅ ≈  (5.22) 
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Figure 5.4(a) illustrates the position of a spacecraft in an out-of-plane case. Using figure 

5.4(a) and the relations described in equation (5.22), the out-of-plane angle outφ  and the 

velocity zV  that is normal to the plane are respectively given by: 

 

2

cos sin
tan tanx x y y x yz

out out
z

r h r h h hr

r r h r

θ θ
φ φ

θ
+ +

≈ = − ⇔ ≈ −
⋅ ɺ

 (5.23) 

 

( ) ( ) ( )sin tan cos cos tan sinx x y y x y
z

z

V h V h h h
V

h r

θ γ θ θ γ θ− + − − +
≈ ≈  (5.24) 

 

The velocities in X- and Y-direction are derived from figure 5.4(b): 

 

( )
( )

sin cos sin tan cos

cos sin cos tan sin

x

y

V r r r

V r r r

θ θ θ θ γ θ θ

θ θ θ θ γ θ θ

= − + = − +

= + = +

ɺ ɺɺ

ɺ ɺɺ
 (5.25) 

 

 

Figure 5.4: (a) Position of the spacecraft in the out-of plane motion, (b) velocity vector in the XY-plane 

 

The out-of-plane angle outφ  and the velocity zV  at the end of an out-of-plane thrust motion 

from iθ  to fθ , are defined by [Petropoulos and Longuski, 2000]: 
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( )0,

2
tan sin cosout

out y f x f
f f

a
I I

r

µ
φ θ θ

θ
≈ −

ɺ
 (5.26) 

( ) ( )( )0, sin tan cos cos tan sinout
z x f f y f f

f

a
V I I

r

µ
θ γ θ θ γ θ≈ − + +  (5.27) 

 

The quantities xI  and yI  in equations (5.26) and (5.27) are defined as: 

 

0

0
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x

y

I d
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I d
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θ

θ

θ

θ

θ θ
θ

θ θ
θ

=

=

∫

∫

ɺ

ɺ

 (5.28) 

 

These integrals described in equations (5.28) can be determined numerically. Through 

equation (5.26) and knowing the out-of-plane angle outφ , 0,outa  can be computed at each 

integration step. Afterwards, the out-of-plane velocity zV  can be calculated through 

equation (5.27). 

 

It should be noticed that the effect of the out-of-plane motion on the TOF was neglected. 

The method described does not take into account the use of the most satisfactory thrust 

profile. Therefore, little consideration should be given to the out-of-plane thrust and 

associated propellant value. According to [Petropoulos and Longuski, 2000], this method 

allows fast computations and it is increasingly accurate for smaller out-of-plane 

excursions. Note that these analytical solutions only provide a starting point for full 

numerical optimisations. 

 

5.5. Procedure done by Izzo 3 
 

Although quite successful from a numerical point of view, Petropoulos and Logunski’s 

work lacks of a generic discussion on the possibility of using the exponential sinusoid to 

travel from a generic point 1P  to another point 2P , given a certain TOF as an input [Izzo, 

                                                
3 Research Fellow, Advanced Concepts Team, European Space Research and Technology centre, The 
Netherlands 
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2006]. Izzo uses the same equations for the parameters θɺ  and 0a  (equations (5.13) and 

(5.14)). However, instead of using a numerical root-finding technique to find intersection 

points, followed by a step-size- and step-direction-controlled to match the target’s orbit 

with the spacecraft’s trajectory (exponential sinusoid), a multi-revolution Lambert’s 

problem for exponential sinusoids using tangential thrusting is introduced. This new 

procedure will be discussed below. 

 

 

Figure 5.5: Representation of the transfer plane 

 

Given the initial and final radii 1r  and 2r , i.e., the distances of the departure and arrival 

planets from the Sun, respectively, and the transfer angle θ∆  (see figure 5.5), it is possible 

to find all the exponential sinusoids, defined by equation (5.3) that link the two positions 

for a given TOF, allowing multiple complete revolutions. In order to force the exponential 

sinusoid to pass by point 1P  and point 2P , the following geometric equations have to be 

satisfied: 

 

( ) ( )( )
( ) ( )( )

1 0 1 2

2 0 1 2

exp sin

exp sin

i i

f f

r r k k k

r r k k k

θ θ φ

θ θ φ

= = +

= = +
 (5.29) 

 

Parameter iθ  is the initial polar angle and the final polar angle is given by: 

2 Nf iθ θ θ π= + ∆ + , where N is the number of complete revolutions performed before the 
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spacecraft arrives at point 2P . Since the number of geometric parameters is always higher 

than two, these two equations are not enough to determine the position of the spacecraft. 

 

Note that the transfer plane where the spacecraft moves (figure 5.5) is defined by two 

vectors: 1r  and 2r  (from the Sun to the departure and arrival planets, respectively) and it 

differs from the low-thrust reference plane (section 5.4). 

 

As already mentioned in section 5.2, the geometric parameters considered in the 

exponential sinusoid are 0k , 1k , 2k , q  and φ . In order to simplify the mathematical 

expression of the exponential sinusoid, a zero value was assumed for q . So, instead of five 

unknown geometric parameters, there are four. The search space can be further reduced by 

assuming the parameter 2k  fixed and given as an input. Therefore, all exponential 

sinusoids will be studied for a fixed value of 2k  and three free parameters 0k , 1k  and φ . 

Finally, considering iθ  zero degrees, the geometric parameter 1k  can be computed through 

[Izzo,2006]: 

 

( ) ( ) ( )
( )

2
2

1 2 1 2 22 1
1 2

22

ln tan sin tan

1 cos

f

f

r r k k
k

kk

γ θ γ
θ

 +
 = +
 − 

 (5.30) 

 

The parameter 1γ  is the flight path angle at the starting point of the thrust arc. Equation 

(5.30) is derived in appendix A. The sign of 1k  is known from the following expression 

[Izzo,2006]: 

 

( ) ( ) ( ) ( )
( )

0.52
1 2 1 2 2 2 1

1 1 1 2
22

ln / tan / sin tan
sign sign

1 cos

f

f

r r k k
k k k

kk

γ θ γ
θ

− +  
 = −  −   

 (5.31) 

 

Since the assumption 0ºiθ =  was made, the phase angle φ  (using equation (5.7)) is given 

by: 
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1
1 1 2

1 2

tan
tan cos arccosk k

k k

γγ φ φ
 

= ⇔ =  
 

 (5.32) 

 

Finally, the geometric parameter 0k  will be calculated through one of the following 

geometric equations: 

 

( ) ( )
( )( ) ( )( )

1 0 1 0 1 1

2 0 1 2 0 1 1 2

exp sin exp sin

exp sin exp sinf f

r k k k r k

r k k k k r k k

φ φ

θ φ θ φ

= ⇔ =

= + ⇔ = +
 (5.33) 

 

Note that from equation (5.32), the angle φ  is always considered in the first two quadrants, 

since considering the other two quadrants, it will only return the same exponential 

sinusoid. The assumption regarding the initial polar angle iθ  was necessary in order to find 

analytical expressions for 1k  and φ  that were not correlated. 

 

In order to compute the exponential sinusoid, parameters 1γ  and 2k  are required. As 

already said before, the geometric parameter 2k  is fixed, but the initial flight path angle 1γ  

is considered a free parameter and the interval of values available can be calculated using 

the constraint equation (section 5.3) already discussed in [Petropoulos and Longuski, 

2004], when tangential thrust is assumed: 

 

2
1 2 1k k <  

 

This condition can be rewritten in terms of 1tanγ  [Izzo,2006]: 

 

( )1 1, 1,tan tan , tanm Mγ γ γ∈  (5.34) 

,

22 1
1

2

tan ln cot
2 2m M

fkk r

r

θ
γ

  
= − ± ∆  

  
, where 

( )2 2 1
4
2 2

2 1 cos
ln

fk r

k r

θ−  
∆ = −  

 
 (5.35) 

 

Note that if ∆  is negative, there is no shape that can represent the spacecraft’s trajectory 

for the initial and final conditions that are being selected and for the parameter 2k  that was 
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picked. The interval in equation (5.34) limits the search space for the free parameter 1γ . 

The derivation of equation (5.35) is done in appendix A. 

 

 

Figure 5.6: (a) the TOF versus the initial flight path angle 
1

γ  for the class ( )1 12
1,1.5, 2, NS π  and (b) 

feasible exponential sinusoids for the class ( )
1 12

1,1.5, 2, 0S π  [Izzo, 2006] 

 

Given the geometry of a problem, i.e., 1r , 2r , θ∆  and the number of complete revolutions 

N, for 2k∀ , there is a class of feasible exponential sinusoids passing through the points 1P  

and 2P , using the free parameter 1γ  represented by ( )
2 1 2, , , NkS r r θ∆ . As an example, 

figure 5.6(a) illustrates the TOF versus the initial flight path angle at the starting point of 

the thrust arc 1γ  for a family of exponential sinusoids characterized by ( )1 12 1,1.5, 2, NS π , 

where N 0,1,...5= . The TOF in figure 5.6(a) was computed by integrating numerically the 

expression (5.13), in section 5.3. Also, in figure 5.6(b), some of the feasible exponential 

sinusoids characterized by ( )1 12 1,1.5, 2,0S π  are illustrated. 

 

For a given TOF, a simple numerical method can be used to find a solution for this 

Lambert’s problem for low-thrust trajectories. This solution can be found for a particular 

class of exponential sinusoids 
2kS  by locating the intersection between the TOF curve and 

a horizontal line (figure 5.6 (a)). Using this method, the values for 1γ  can be found and 
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consequently the geometric parameters ( )0 1, ,k k φ  that yield the desired TOF can be 

obtained. Note that from figure 5.6(a), an asymptotic behaviour in the TOF curve can be 

observed, which leads to a conclusion: the low-thrust problem using a pseudo-Lambert 

method with the exponential sinusoid might not have a solution. Also, although the curve 

illustrated in figure 5.6(a) is monotonous, according to [Corradini, 2007], this situation not 

always happens. This means that two exponential sinusoids that have different 1γ  but the 

same 
2kS  yield the equal TOF (see figure 5.7). 

 

 

Figure 5.7: TOF as function of 
1

γ  for the exponential sinusoid ( )0.4 Earth Mars
, , 2 ,3S r r π , in an Earth-to-

Mars flight 

 

Izzo’s procedure [Izzo, 2006] is more generic and easier to use than the one done by 

Petropoulos and Longuski [Petropoulos and Longuski, 2004]. For this reason, a technique 

related to the one developed by Izzo will be applied for the other analytical representations 

for low-thrust trajectories proposed in this master thesis. 
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6. Candidate Shapes for Low-Thrust Trajectories 
 

As already mentioned in chapters 3 and 5, electric propulsion has proven to be a very 

interesting option for future interplanetary missions. In chapter 5, expressions for the thrust 

acceleration a , the thrust angle α , the radial and tangential velocities and the TOF were 

derived for the exponential sinusoid. Also, the influence of the geometric parameters of 

this shape (1k  and 2k ) on the trajectory of the spacecraft and the choice of geometric 

parameters in order to obtain feasible exponential sinusoids (equation (5.34)) was 

discussed. 

 

In this chapter, a similar study will be done for five other shapes that were considered 

feasible to represent low-thrust trajectories in the literature survey [Paulino, 2007]. The 

five shapes are: the Archimedean spiral, the logarithmic spiral, the Poinsot’s spiral 

(hyperbolic sine), Poinsot’s spiral (hyperbolic cosine) and the sinusoidal spiral. A similar 

study to the one done with the exponential sinusoid in [Izzo, 2006] will be made for each 

of the five shapes. Other shapes were addressed in the literature survey [Paulino, 2007]. 

However, since these shapes cannot spiral using multiple revolutions, they were discarded 

and they are not going to be mentioned in this master thesis. 

 

In section 6.1, a brief introduction about the shapes chosen in the literature survey 

[Paulino, 2007] will be given. In section 6.2, the reasoning used to compute the time of 

flight (TOF), the excess velocities and the thrust acceleration vector for different thrust 

profiles will be shown. An analysis regarding singularities and constraint conditions will 

be done in sections 6.3 and 6.4. This analysis is important in order to obtain feasible results 

and save computation time during the sensitivity analysis of the shapes’ performance in 

chapter 7 and during the optimisation procedure in chapter 8. Finally, a summary of the 

constraint conditions will be given in section 6.5. 

 

6.1. Radius Equations and Geometric Parameters 
 

In this section, geometric properties of the five shapes besides the exponential sinusoid 

chosen in the literature survey will be discussed: the Archimedean spiral, the logarithmic 
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spiral, the Poinsot’s spiral (hyperbolic sine), Poinsot’s spiral (hyperbolic cosine) and the 

sinusoidal spiral. 

 

a) Archimedean spiral 

 

The Archimedean spirals are defined by the equation [Lawrence, 1972]: 

 

m mr a θ=  (6.1) 

 

Parameter a  is a scaling factor and parameter m  defines the spiral shape. These two 

parameters are called geometric parameters. Special cases of Archimedean spirals are: the 

Archimedes’ spiral ( 1m= ), the Fermat’s spiral ( 2m= ), the hyperbolic spiral ( 1m= − ) 

and the lituus ( 2m= − ). These spirals are represented in figure 6.1. 

 

 

Figure 6.1: The Archimedes’s spiral (green), the Fermat’s spiral (blue), the hyperbolic spiral (orange) 

and the lituus (red) [Weisstein, 2007] 

 

Equation (6.1) only has two geometric parameters and these two parameters can easily be 

computed if the initial and final radii are known. In order to obtain more than one shape for 

certain initial and final conditions, equation (6.1) will be changed in order to have three 

geometric parameters instead of two. In this way, another constant can be added to 

equation (6.1) as a quantity that translates the spiral in the radial direction, but also changes 

the ratio between the apocentre and pericentre radii. In this way, one of the shape equations 

that will be analysed in order to describe a low-thrust trajectory in this master thesis is: 
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0 1
mr k kθ= +  (6.2) 

 

The shape represented by equation (6.2) is not the same as presented in [Lawrence, 1972]. 

The reader should take this into account during the remainder of the thesis, since from this 

point on equation (6.2) will be referred to the radius equation of the Archimedean spiral. 

 

b) Logarithmic spiral 

 

The logarithmic spiral is also known as the equiangular spiral. The equation that represents 

the logarithmic spiral shape is [Lawrence, 1972]: 

 

mr ae θ=  (6.3) 

 

Parameter m  is a winding quantity, associated with the number of revolutions that the 

shape can perform before reaching the target and a  is a scaling factor. Figure 6.2 

illustrates a logarithmic spiral. Initially, this shape was studied in [Petropoulos et al., 

1999] in order to evaluate if it could represent a feasible option for the representation of 

low-thrust trajectories. According to [Petropoulos et al., 1999], the TOF and the excess 

velocity performance given by the logarithmic spiral should be improved. For this reason, 

since the exponential sinusoid was also analysed and it showed better results [Petropoulos 

et al., 1999], the logarithmic spiral was discarded. 

 

 

Figure 6.2: Logarithmic spiral [Weisstein, 2007] 
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Because only two geometric parameters were considered in equation (6.3), in the literature 

survey [Paulino, 2007] this equation was modified by introducing a new constant. In this 

way, another parameter was added to equation (6.3): a constant 1k  that, like for the 

Archimedean spiral, translates the shape in the radial direction, but also changes the ratio 

between the pericentre and the apocentre. In this way, a new radius equation can be given 

as: 

 

0 1
mr k e kθ= +  (6.4) 

 

From this point on, equation (6.4) will be referred to the radius equation of the logarithmic 

spiral. 

 

c) Poinsot’s spirals 

 

There are two Poinsot’s spirals and their polar equations are defined as [Lawrence, 1972]: 

 

( )
( )

1

2

cosh

sinh

r m a

r m a

θ
θ

=

=
 (6.5) 

 

Parameter a  is a scaling factor and parameter m  defines the shape of the spiral. Figure 

6.3(a) shows the Poinsot’s spiral (hyperbolic sine), while figure 6.3(b) shows the Poinsot’s 

spiral (hyperbolic cosine). The Poinsot’s spiral described in equation (6.5) with the 

hyperbolic sine has a singularity in 0ºθ = . To avoid the singularity and using the fact that 

only positive values of θ  are considered, this expression can be changed to: 

 

( )( )2 sinhr m aθ ϕ+ =  (6.6) 

 

The variable ϕ  is a phase angle that is considered positive. Equation (6.6) and the first 

equation in (6.5) can also be changed by adding a new constant 1k  that translates the shape 

in the radial direction, but also changes the ratio between the pericentre and the apocentre 

radii. The equations that will be used in this master thesis are: 
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( )( )( ) 1

0 sinh
k

r k m θ ϕ
−

= +  (6.7) 

( )( ) 1

0 cosh
k

r k mθ −
=  (6.8) 

 

From this point on, equation (6.7) and (6.8) will be referred to as the radius equation of the 

Poinsot’s spiral (hyperbolic sine) and the Poinsot’s spiral (hyperbolic cosine), respectively. 

 

 

Figure 6.3: (a) The Poinsot’s spiral (hyperbolic sine) and the (b) Poinsot’s spiral (hyperbolic cosine) 
[Weisstein, 2007] 

 

d) Sinusoidal spiral 

 

The sinusoidal spiral shape is expressed by equation [Lawrence, 1972]: 

 

( )cosm mr a mθ=  (6.9) 

 

Parameter a  is a scaling factor and parameter m  defines the shape of the spiral. Equation 

(6.9) can represent many shapes: the Cayley’s sextet ( 1 3m= ), the cardioid ( 1 2m= ), the 

lemniscate of Bernoulli ( 2m= ), among others. Figure 6.4 shows these three shapes that 

are all closed curves. 

 



Analytical Representations for Low-Thrust Trajectories  
 

 70 

 

Figure 6.4: The Cayley’s sextet (n=1/3), the cardioid (n=1/2) and the lemniscate of Bernoulli (n=2) 
[Weisstein, 2007] 

 

Equation (6.9) can be slightly modified to increase its flexibility by adding a new constant 

1k : 

 

( )( )1

0 1cos
m

r k m kθ= +  (6.10) 

 

Parameter m  is a winding parameter that controls the number of revolutions, parameter 0k  

controls the ratio between the apocentre and the pericentre radii, while parameter 1k  

controls the shape. Figure 6.5 illustrates one of the shapes described by equation (6.10). 

The sinusoidal spiral is a closed curve that spirals outwards and after a certain number of 

revolutions, it spirals inwards until it reaches the same initial position. This shape could 

represent the trajectory of a spacecraft that encounters a certain planet and then returns to 

its departure planet. Although it is a closed shape, the sinusoidal spiral is a valid option to 

represent low-thrust trajectories in this thesis, since it can easily spiral many times, it is 

practically tangential to the initial and final orbits and it does not present significant shape 

variations during a revolution. Of course, only the outwards spiral part of the shape will be 

considered for outward planets and only the inward spiral part will be considered for 

missions to inner planets. 
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Figure 6.5: The sinusoidal spiral 

 

6.2. Implementation 
 

In this section, a description of the procedure that was used in this master thesis in the 

sensitivity analysis of the performance of the 5 candidate shapes to represent low-thrust 

trajectories (chapter 7) will be made. The aim of this sensitivity analysis (chapter 7) is to 

understand the influence of the geometric parameters of each shape in the outputs of the 

TOF, the excess velocities and the thrust acceleration. 

 

In this analysis, a two-dimensional problem was considered, i.e., the spacecraft, the 

departure and target planets orbit are in the same plane (coplanar). This assumption and the 

assumption that the planets move in circular orbits were made in order to simplify the 

problem (without jeopardizing conclusions about each shape’s performance) and 

consequently gain in computation time. Therefore, the ephemeris of the planets as in a 

three-dimensional case was not taken into account. 

 

Consider figure 5.5 in chapter 5 to illustrate 1r  and 2r  (the initial and the final positions of 

the spacecraft, respectively) in a two-dimensional case. In the analysis done in chapter 7, 

the two-dimensional vector 1r  will be considered fixed and the transfer angle θ∆  will be 

given as an input. Knowing the transfer angle, the two-dimensional vector 2r  can be 

computed. 
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The radius expressions for these shapes were already introduced in section 6.1 and they are 

summarized below: 

 

Archimedean spiral: ( )1

0 1

m
r k kθ= +  ( )0 1, ,K k k m=  

Logarithmic spiral: 0 1
mr k e kθ= +  ( )0 1, ,K k k m=  

Poinsot’s spiral (hyperbolic sine): ( )( )( ) 1

0 sinh
k

r k m θ ϕ
−

= +  ( )0 1, , ,K k k mϕ=  

Poinsot’s spiral (hyperbolic cosine): ( )( ) 1

0 cosh
k

r k mθ −
=  ( )0 1, ,K k k m=  

Sinusoidal spiral: ( )( )1

0 1cos
m

r k m kθ= +  ( )0 1, ,K k k m=  

 

Vector K  represents the geometric parameters for each shape; the radius r  is the distance 

of the spacecraft with respect to the Sun and θ  is the polar angle, measured with respect to 

an arbitrary reference line. As already said in section 6.1, ϕ  is a parameter that was added 

in the Poinsot’s spiral (hyperbolic sine) radius equation (equation (6.7)) in order to prevent 

the term inside the ( )sinh  from becoming zero, otherwise r  becomes ∞ . From all five 

radius equations, vector K  contains four parameters for the Poinsot’s spiral (hyperbolic 

sine), while for the other four shapes only three parameters are required to compute r . 

 

The objective of this master thesis was not only to attempt to find other analytical 

representations, besides the exponential sinusoid using continuous tangential thrust that 

could have a better performance in low-thrust trajectories. This master thesis purpose is 

also to analyse different thrust profiles and verify if the tangential one assumed in 

[Petropoulos and Longuski, 2004] and in [Izzo, 2006] is the one that should be considered 

as a first guess for a low-thrust mission generator. Due to a time constraint, only three 

cases of thrust profiles were analysed for the five shapes presented in section 6.1 and the 

exponential sinusoid: (1) “acceleration inversely square”, a thrust profile where the 

magnitude of the thrust acceleration monotonically decreases with the square of the 

distance to the Sun - 2
0a a rµ= , where 0a  is the thrust acceleration normalised by the 

local gravitational acceleration (it is non-dimensional and constant); (2) “constant 

acceleration”, a thrust profile where the magnitude of the thrust acceleration is constant: 
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2
0 1a a rµ=  ( 1r  is the heliocentric radius at the starting point of the thrust arc); (3) 

“tangential” thrust profile that was already studied in [Petropoulos and Longuski, 2004] 

and in [Izzo, 2006] and addressed in chapter 5. Note that in the first two cases of the thrust 

profile presented, an assumption is made for the thrust acceleration, but the thrust 

direction, i.e., the thrust angle is free; while in the tangential case an assumption is made 

for the thrust angle (which is equal to the flight path angle) and the thrust acceleration is 

given as an output. 

 

The method necessary to compute the TOF, the position and the velocity with time of the 

spacecraft is similar for the first and second cases of the thrust profile. For these two cases, 

given the normalised magnitude of the thrust acceleration 0a  as an input, the following 

variables need to be determined: 

 

• θɺ : the first derivative of θ  computed in the transfer plane. This variable depends 

on: 0, ,  and K aθ α ; 

• θ : the polar angle that is computed by integrating θɺ  from iθ  to fθ ; 

• rɺ : the radial velocity that can be obtained by differentiating the equation for r . 

This equation depends on: 0, ,  and K aθ α ; 

• α : the thrust angle was already represented in figure 5.2(b) and it is obtained by 

integrating the equation for αɺ : 0, ,  and K aθ α . 

 

As already concluded in section 5.2, the expressions for the derivatives θɺ  and αɺ  are 

coupled, intractable, first-order differential equations. For this reason, numerical 

integration is necessary to find the values for θ  and α , and consequently to determine the 

position and velocity of the spacecraft. All equations for the dynamic parameters of all 

shapes and for the three thrust profiles mentioned above are given in appendix B. 

 

When considering the tangential thrust profile, the 2θɺ  equations for all five shapes no 

longer depend on the magnitude of the normalised thrust acceleration 0a . Therefore, 

parameter 0a  does not have to be given as an input; it can be computed through an 
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analytical expression (see equations in appendix B). For this thrust profile case, the 

following variables need to be determined: 

 

• θɺ : the first derivative of θ  computed in the transfer plane. This variable depends 

on:  and K θ ; 

• θ : the polar angle that is computed by integrating θɺ  from iθ  to fθ , just like for the 

first case of thrust profile presented above; 

• rɺ : the radial velocity computed in the transfer plane, that can be obtained by 

differentiating the equation for r . This equation depends on:  and K θ ; 

• a : the thrust acceleration and it depends on:  and K θ . 

 

For the tangential case, numerical integration is necessary to find values for θ  and 

consequently to determine the position, the velocity and the TOF of the spacecraft. Note 

that computation time in the tangential case is significantly smaller than the time necessary 

to compute a trajectory using the acceleration inversely square and the constant 

acceleration cases of the thrust profile. This is because the thrust angle α  needs to be 

calculated through numerical integration for these two cases. The advantage of the 

methods developed by Izzo [Izzo, 2006] and Petropoulos and Longuski [Petropoulos and 

Longuski, 2004], using the tangential profile, is that all the dynamic parameters, except the 

TOF, can be computed through analytical expressions. However, although numerical 

integration is required to compute the thrust angle α  in the acceleration inversely square 

and the constant acceleration cases of the thrust profile, the computation time is still 

significantly small compared with the computation time required to integrate the entire 

trajectory (at least fifteen times more, depending on the type of mission, i.e., for longer 

missions, the differences in computation time increases). For this reason, it is still 

meaningful to analyse the acceleration inversely square and the constant acceleration cases 

of the thrust profile for all shapes. 

 

The integrator that was chosen in all three cases of the thrust profile was the Runge-Kutta 

4(5), as already mentioned in chapter 2. Since the programming code done in this master 

thesis was implemented in MATLAB, a Runge-Kutta 4(5) integrator function that is part of 

the MATLAB software was used. During the integration procedure, for increasing values 
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of t  (time), θ  and α  vectors for the acceleration inversely square and the constant 

acceleration cases of the thrust profile and only θ  vector for the tangential thrust profile 

were built. The TOF was known by stopping the integration procedure at fθ θ=  and 

verifying at which instant of time that happens. 

 

After the integration procedure, the position and the velocity of the spacecraft can be 

computed and, consequently, the excess velocities, which are given by the following 

equations: 

 

,1 shape,initial dV V V∞ = −  (6.11) 

,2 shape,final tV V V∞ = −  (6.12) 

 

The variable dV  is the velocity vector of the departure planet at the departure instant and 

the variable tV  is the target planet velocity vector at the arrival instant. The variables 

shape,initialV  and shape,finalV  are the shape velocity vectors at iθ  and fθ , respectively. The 

velocity of the shape is computed using the following equation: 

 

shape rV V Vθ= +  (6.13) 

 

The radial and tangential velocities can be computed in Cartesian coordinates for a two-

dimensional case: 

 

( )
( )
( )

cos

sin

0

r

r

r

V x r

V y r

V z

λ
λ

=


=
 =

ɺ

ɺ  (6.14) 

1 2

1 2

r r r
V r

r r rθ θ
⋅

×= ×ɺ  (6.15) 

 



Analytical Representations for Low-Thrust Trajectories  
 

 76 

The velocity vectors shape,initialV  and shape,finalV  can be computed in Cartesian coordinates, 

since λ  (heliocentric longitude) is known for the initial and final positions. In figure 6.6, 

the radial and tangential velocities are represented at the target planet. 

 

 

Figure 6.6: Representation of the celestial longitude, the radial and tangential velocities at the target 
planet 

 

At this moment, in order to do the sensitivity analysis, the class of variables that are 

required as an input for a low-thrust problem, for the acceleration inversely square and the 

constant acceleration cases of the thrust profile is: 

 

1 2 0 0, , , , , ,i fS r r K aθ θ α =    

 

While the class of variables required for the tangential thrust case is: 

 

1 2, , , ,i fS r r Kθ θ =    

 

Knowing these classes of variables, numerical integration can be used to compute the TOF 

for the acceleration inversely square, the constant acceleration and the tangential cases of 

the thrust profile, followed by an evaluation of the excess velocities and of the thrust 

acceleration. If the mathematical expression for 2θɺ  presents singularities or restrictions, 

the shape parameters K  (free variables) will be characterized by an interval of values that 

satisfies the constraint equation for 2θɺ . This reasoning was implemented in [Izzo, 2006] 

and it was applied for the shapes presented in this master thesis in section 6.3. 
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6.3. Constraint Equation – Tangential Thrust 
 

In this section, a brief discussion about constraint equations that can be derived from the 

expression for 2θɺ  that each shape may have will be done for the tangential thrust profile. 

For the other two thrust profiles, this discussion will be made in section 6.4. 

 

6.3.1. Archimedean Spiral 
 

The radius equation for the Archimedean spiral (equation (6.2)) and the equation for the 

dynamic parameter 2θɺ  (equation (B.4), appendix B) are given by: 

 

( )1

0 1

m
r k kθ= +  

( ) ( )
2 20 0

3 2 3 2

cos tan sin 1 1

1 tan 1 1 tan 1

a a

r m r m

α γ αµ µθ θ
γ γ

− += ⇒ =
+ + + +

ɺ ɺ  for the tangential case 

 

The geometric variable m  was chosen to be an input parameter – free geometric 

parameter. The other two geometric parameters 0k  and 1k  are computed through the radius 

equations at the departure and target planets: 

 

( )
( ) ( ) ( )

1

1 0 1 1 1 0

1

2 0 1 0 2 1

m m
i i

m m m
f f i

r k k k r k

r k k k r r

θ θ

θ θ θ

= + ⇔ = −

= + ⇔ = − −
 (6.16) 

 

For the tangential case, the Archimedean spiral does not present a constraint equation when 

considering 2 1r r>  (the orbit of the departure planet is inner with respect to the orbit of the 

target planet). However, there is a situation that should be detected during the analysis of 

the shapes’ performance (chapter 7) or the optimisation procedure (chapter 8), since they 

can lead to wrong results or errors. In a mission where 2 1r r> , the values for m  have to be 

always positive ( 0m> ). For increasing values of m , 0k  also increases. Analytical 

expressions for certain dynamic parameters have the parameter 3
0k  and after a certain 

values of m , this parameter is considered infinite by MATLAB and other mathematical 
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software. This happens because values for 0k  can be of order 2110  and when used in these 

analytical expressions, the MATLAB tolerances for the maximum allowed value are met. 

 

Consider now a mission using the tangential thrust profile where 2 1r r< , for instance from 

Earth to Mercury. In this case, 2θɺ  (equation B.4 in appendix B) can become negative, due 

to the fact that for flights to inner planets m  has to be always negative. 

 

To avoid negative values for 2θɺ , the following condition should be respected: 

 

( ) 2 21 tan 1 1 tan 1m mγ γ+ > − ⇔ > − −  (6.17) 

 

In order to obtain a feasible Archimedean spiral, the geometric parameter m  should be: 

 

2 2 2
min max

1 1 1
1 1 1

tan tan tan
i

m m m
θ

γ γ γ
> − − ⇔ > − − ⇔ > − −  (6.18) 

 

The flight path angle γ  can be computed through the equation (B.2) in appendix B: 

 

( ) ( ) 1

0 0 1tan 1m k k kγ θ −= +  

 

Since 0k  is always positive for any value of m  (see equation (6.16)), the maximum value 

for 2tan γ  occurs when iθ θ= . The condition presented in equation (6.18) should be 

always verified after selecting m . If the geometric parameter m  does not respect the 

condition (6.18), then it is discarded before the numerical integration procedure begins. 

The case presented for 2 1r r>  where the MATLAB tolerances are met for the variable 0k  

does not occur for 2 1r r< . Therefore, when the orbit of the target planet is inner with 

respect to the orbit of the departure planet, computation problems ( 2 0θ <ɺ ) occur only if 

the condition (6.18) is not respected. 
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6.3.2. Logarithmic Spiral 
 

The radius equation for the logarithmic spiral (equation (6.4)) and the equation for 2θɺ  

(equation (B.13), appendix B) are given by: 

 

0 1
mr k e kθ= +  

2 20 0
3 2 3 2

cos tan sin 1 1

2 tan tan 1 2 tan tan 1

a a

r m r m

α γ αµ µθ θ
γ γ γ γ

− += ⇒ =
− + − +

ɺ ɺ  for the tangential case 

 

The geometric variable m  was chosen to be an input parameter – free geometric 

parameter. Note that this parameter cannot be zero, otherwise the spacecraft will perform a 

circular orbit around the Sun, instead of spiralling towards the target planet. As before, the 

other two geometric parameters 0k  and 1k  are computed through the radius equations at 

the departure and target planets: 

 

( ) ( )
1 0 1 1 1 0

2 0 1 0 2 1

i i

f f i

m m

m m m

r k e k k r k e

r k e k k r r e e

θ θ

θ θ θ

= + ⇔ = −

= + ⇔ = − −
 (6.19) 

 

The equation for 2θɺ  will never become negative for negative values of m  and for 2 1r r> , 

since tanγ  is always positive and consequently 22 tan tan 1mγ γ− +  is also always 

positive. The equation for tanγ  is given by equation B.11 in appendix B: 

 

0

0 1

tan
m

m

k mer

r k e k

θ

θγ
θ

= =
+

ɺ

ɺ
 

 

For increasing positive values of the geometric parameter m , 2θɺ  will decrease and at 

certain point, it will become less than zero. For 2 1r r< , the inverse situation occurs: the 

variable 2θɺ  is always positive for positive values of m , while for negative values of m , 

2θɺ  can become negative. In cases where 2θɺ  can become negative, the following condition 

should be respected: 
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22 tan 1 tanmγ γ+ >  (6.20) 

 

The condition (6.20) is always respected for 1m < . For 1m > , the total excess velocity 

and the thrust acceleration values become unrealistically high (chapter 7). For this reason, 

only values 1m <  with 0m≠  will be given as an input for the computation of the 

logarithmic spiral. 

 

6.3.3. Poinsot’s Spiral (hyperbolic sine) 
 

The radius equation for the Poinsot’s spiral (hyperbolic sine) (equation (6.7)) and the 

equation for 2θɺ  (equation (B.21), appendix B) are given by: 

 

( )( )( ) 1

0 sinh
k

r k m θ ϕ
−

= +  

( ) ( )
( )( )

( )( )

0 02
23 2 2

1

2
23 2 2

1

cos tan sin 1

tan sinh 1

1
 for the tangential case

tan sinh 1

a a

r k m m

r k m m

α γ αµθ
γ θ ϕ

µθ
γ θ ϕ

−

−

− +
= ⇔

− + +

⇒ =
− + +

ɺ

ɺ

 

 

The geometric variable m  was chosen as a free parameter. For any case of the thrust 

profile or any departure-target bodies’ combination, m  should always be considered 

positive in order to respect the two following equations: 

 

( )( )( ) ( )( )( )
( )( )( )
( ) ( )( ) ( )( )( )

1 1

1

1 0 0 1

2 0

1 2 1

sinh sinh

sinh

log / log sinh sinh

k k

i i

k

f

f i

r k m k r m

r k m

k r r m m

θ ϕ θ ϕ

θ ϕ

θ ϕ θ ϕ

− −

−

= + ⇔ = +

= + ⇔

⇔ = − + +

 (6.21) 

 

A maximum value for m  has to be defined in order to avoid exceeding MATLAB 

tolerances for the highest value permitted by the software. When passing this limit, the 
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spacecraft is unable to move in a spiral trajectory from the departure to the target planet, 

because 1k  becomes zero. Instead, it performs a circular orbit around the Sun. 

 

Instead of considering four different geometric variables, only three will be taken into 

account, since θ  and ϕ  always appear in the form θ ϕ+  in all mathematical expressions. 

Note that iθ ϕ+  has to be different from zero, otherwise r = ∞ . 

 

Like the Archimedean spiral, the Poinsot’s spiral (hyperbolic sine expression) does not 

have a constraint equation in 2θɺ , when considering the tangential thrust profile and 2 1r r>  

(the orbit of the departure planet is inner with respect to the orbit of the target planet), since 

the geometric parameter 1k  is always negative (second equation in (6.21)). 

 

However, when considering 2 1r r< , the geometric parameter 1k  will always be positive and 

for this reason, 2θɺ  can become negative for certain combinations of m  and iθ . In this 

case, the following condition will have to be respected: 

 

( )( ) ( )( )
2

2 2 2 2 1
1 2

tan sinh 1 0 1 tan
sinh

k m
k m m

m
γ θ ϕ γ

θ ϕ
−− + + > ⇔ + >

+
 (6.22) 

 

The right-hand side of the condition (6.22) has its highest value when θ ϕ+  is minimum, 

i.e., for iθ θ= , while the left-hand side has its lowest value when 2tan γ  is minimum and 

this happens for fθ θ= . The minimum value that the left-hand side of equation (6.22) can 

have is: 2 2
11 k m+ , since the equation for the flight path angle is given by (equation B.19 in 

appendix B): 

 

( )( )1tan coth
r

mk m
r

γ θ ϕ
θ

= = − +
ɺ

ɺ
 

 

In this way, the condition (6.22) cannot be tested before the integration procedure begins 

like it was done for the Archimedean spiral. Shapes with 2 0θ <ɺ  problems will have to be 

identified and discarded during the integration procedure. 
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6.3.4. Poinsot’s Spiral (hyperbolic cosine) 
 

The radius equation for the Poinsot’s spiral (hyperbolic cosine) (equation (6.8)) and the 

equation for 2θɺ  (equation (B.29), appendix B) are given by: 

 

( )( ) 1

0 cosh
k

r k mθ −
=  

( ) ( )
( )

( )

0 02
3 2 2 2

1

2
3 2 2 2

1

cos tan sin 1
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1
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a a

r k m m
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γ θ
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γ θ
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−

− +
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+ +

⇒ =
+ +

ɺ

ɺ

 

 

The geometric variable m  was chosen to be an input parameter. Like for the Poinsot’s 

spiral (hyperbolic sine), the spacecraft is unable to move in a spiral trajectory from the 

departure to the target planet for higher values of the geometric parameter m . For any case 

of the thrust profile or any departure-target bodies’ combination, m  should always be 

considered positive in order to respect the two following equations: 

 

( )( ) ( )( )
( )( ) ( ) ( ) ( )( )

1 1

1

1 0 0 1

2 0 1 2 1

cosh cosh

cosh log / log cosh cosh

k k

i i

k

f f i

r k m k r m

r k m k r r m m

θ θ

θ θ θ

− −

−

= ⇔ =

= ⇔ = −
 (6.23) 

 

Unlike the Archimedean spiral and the Poinsot’s spiral (hyperbolic sine), this shape has a 

constraint equation in 2θɺ  when 2 1r r> , when considering the tangential thrust profile. The 

geometric parameter 1k  is negative, so in order to respect 2 0θ >ɺ : 

 

( )2 2 2
11 tan coshk m mγ θ−+ >  (6.24) 

 

The left-hand side and the right-hand side of condition (6.24) have their lowest and highest 

values, respectively when iθ θ= . The equation for the flight path angle is given by 

(equation (B.27), in appendix B): 
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( )1tan tanh
r

mk m
r

γ θ
θ

= = −
ɺ

ɺ
 

 

In this way, like for the Archimedean spiral, the condition (6.24) can be tested before the 

integration procedure begins and shapes with 2 0θ <ɺ  will be picked up and discarded. 

 

Note that when 2 1r r< , the geometric parameter 1k  will always be positive and 2θɺ  will 

never be negative. 

 

6.3.5. Sinusoidal Spiral 
 

The radius equation for the sinusoidal spiral (equation (6.10)) and the equation for 2θɺ  

(equation (B.37), in appendix B) are given by: 

 

( )( )1

0 1cos
m

r k m kθ= +  

( ) ( )

( ) ( )

2 0 0
3 2

0

2
3 2

0
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a a
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r m k C m m
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The parameter C  is given by: 

 

( )( ) 1

0 1cosC k m kθ −
= +  

 

The geometric variable m  was chosen to be an input parameter. This variable can vary 

from ( )1,1− . Note that m  cannot have a zero value, otherwise equation (6.10) cannot be 

used. The other two geometric parameters 0k  and 1k  are computed through the radius 

equations at the departure and target planets: 
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( )( ) ( )

( )( ) ( ) ( ) ( )( )
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1 0 1 1 1 0
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cos cos cos

m m
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r k m k k r r m m

θ θ
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 (6.25) 

 

Unlike the other shapes, the behaviour of the sinusoidal spiral in terms of 2θɺ  being 

negative is unpredictable. In order to have 2 0θ >ɺ , the following condition should be 

respected: 

 

( ) ( )2
0tan 1 cos 1 0m k C m mγ θ+ + ⋅ + >  (6.26) 

 

The expression ( )2tan 1 1mγ + +  is always positive, however the sign of ( )0 cosk C m mθ⋅  

can vary. The sign of the ( )cos  depends on the input parameters iθ  and θ∆  that are 

picked. Also, C  can be negative, depending on the sign of ( )cos  and the geometric 

parameters 0k  and 1k . If ( )0 cosk C m mθ⋅  is negative, then the condition (6.26) should be 

written as: 

 

( ) ( )2
0tan 1 1 cosmm k C m mγ θ+ + > ⋅  (6.27) 

 

The allowable region for the geometric parameters cannot be defined through a constraint 

equation that can be applied for any combination of parameters of this shape. For this 

reason, the only alternative is to stop the integration procedure once 2θɺ  becomes zero. 

 

6.4. Constraint Equations and Computation Problems – 
Acceleration Inversely Square and Constant Accelera tion 
Cases of the Thrust Profile 

 

Until this moment, when dealing with constraint equations, only the situation using the 

tangential thrust profile was mentioned. For the acceleration inversely square and the 

constant acceleration cases of the thrust profile, the reasoning to find constraint equations 

is not as straightforward as for the tangential case. For each shape that was discussed 

before, the difference between the equations for 2θɺ  for different thrust profiles lies in the 
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numerator: 0 0tan cos sin 1a aγ α α− +  (for the acceleration inversely square case), 

( )( )2 2 2
0 1 0 11 tan cos sinr a r a r rµ γ α µ α µ− +  (for the constant acceleration case) and 1 

(for the tangential case). In the case of the Archimedean spiral, for example, the 

denominator for 2θɺ  is always positive. Therefore in order to have 2 0θ >ɺ , 

0 0tan cos sin 1a aγ α α− +  for the acceleration inversely square case of the thrust profile 

and ( )2 2 2
0 1 0 1tan cos sina r a r rµ γ α µ α µ− +  for the constant thrust one have to be 

always positive. The constraint equations that were already defined for the tangential case 

will be also used for the acceleration inversely square and the constant acceleration cases 

of the thrust profile, together with the constraint equations: 0 0tan cos sin 1 0a aγ α α− + >  

and 2 2 2
0 1 0 1tan cos sin 0a r a r rµ γ α µ α µ− + > , respectively. 

 

Besides the computation problems presented in section 6.3, another computation problem 

may occur when considering the acceleration inversely square and the constant 

acceleration cases of the thrust profile. During the integration procedure to obtain the TOF, 

the integrator can throw an error. This error states that the program is unable to meet 

integration tolerances at a certain instant of time (that is smaller than the time required for 

the spacecraft to meet the target planet) without reducing the step-size below the smallest 

value allowed. In order words, a singularity was found. This problem happens because at a 

certain point in the trajectory, the denominator of αɺ  will be zero and the integration 

procedure cannot be completed. According to [Petropoulos et al, 1999], when past this 

point, there is no thrust direction which can maintain the selected shape and continuity of 

velocity, using the current thrust profile. This means that the spacecraft cannot follow the 

prescribed shape. There is no way to predict this situation. However, the integration should 

be stopped once the denominator of αɺ  becomes zero. A numerical example of this 

problem is given in appendix C. 
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6.5. Summary 
 

In table 6.1, the constraint conditions for the five shapes addressed in this chapter will be 

summarized for the tangential case of the thrust profile. 

 

Shapes Condition for feasibility (tangential case) 
Archimedean spiral 21 tan 1

i

m
θ

γ> − −  ( 2 1r r< ) 

None ( 2 1r r> ) 

Logarithmic spiral 1m <  

Poinsot’s spiral (hyperbolic sine) 

( )( )
2

2 1
2

1 tan
sinh

k m

m
γ

θ ϕ
+ >

+
 ( 2 1r r< ) 

None ( 2 1r r> ) 

Poinsot’s spiral (hyperbolic cosine) ( )2 2 2
11 tan cosh

i
ik m m

θ θ
γ θ−

=
+ >  ( 2 1r r> ) 

None ( 2 1r r< ) 

Sinusoidal spiral ( ) ( )2
0tan 1 1 cosmm k C m mγ θ+ + > ⋅  

Table 6.1: Conditions required for the Archimedean spiral, the logarithmic spiral, the Poinsot’s spiral 
(hyperbolic sine), the Poinsot’s spiral (hyperbolic cosine) and the sinusoidal spiral to obtain feasible 

trajectories for a low-thrust problem 

 

For the remainder two cases of the thrust profile, the equations presented in table 6.1 will 

still have to be taken into account. Since the numerator for the acceleration inversely 

square and for the constant acceleration cases of the thrust profile can be negative, 

0 0tan cos sin 1 0a aγ α α− + >  and 2 2 2
0 1 0 1tan cos sin 0a r a r rµ γ α µ α µ− + >  will have 

to be respected. 
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7.  Sensitivity Study of the Shapes’ Performance 
 

In this chapter, an analysis of the Archimedean spiral (section 7.1), the logarithmic spiral 

(section 7.2), the Poinsot’s spirals (hyperbolic sine and cosine) (section 7.3 and 7.4, 

respectively), the sinusoidal spiral (section 7.5) and the exponential sinusoid (section 7.6)4 

will be done in terms of time of flight (TOF), excess velocities and thrust acceleration. In 

this master thesis, results for 3 mission examples – an Earth-Mars flight, an Earth-Jupiter 

flight and an Earth-Mercury flight – will be shown and the shapes’ performance will be 

compared between different missions and between different cases of the thrust profile. 

Note that, as mentioned in chapter 6, a two-dimensional problem and a circular motion for 

the planets’ orbit was assumed. In this way, the real ephemeris was not applied to this 

problem to obtain the position and the velocity of the planets with time. Instead, a constant 

distance between the Sun and the planets was used (Mercury 0.3871r =  AU, Earth 0.9997r =  

AU, Mars 1.5238r =  AU and Jupiter 5.2032r =  AU). 

 

Only the results and conclusions for the Earth-Mars mission using the acceleration 

inversely square and the tangential cases of the thrust profile will be given in this chapter. 

The results for the constant acceleration case for an Earth-Mars flight will be presented in 

appendix D. Results for the other two missions using the exponential sinusoid and the 

acceleration inversely square and tangential cases will be presented in the appendix E (for 

the other 5 shapes the results and remarks are similar). The reason why the constant 

acceleration case analysis was excluded from this chapter is because the results from this 

sensitivity analysis were not promising (appendix D and section 7.7). 

                                                
4 The mathematical expressions for the 5 shapes introduced in this master thesis is different from the ones 
given in literature (chapter 6) 
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7.1. Archimedean Spiral 
 

In this section 7.1, results for the TOF, the excess velocities and the thrust acceleration will 

be shown and discussed for the Archimedean spiral and for an Earth-Mars mission. The 

thrust profiles used in this analysis are: “acceleration inversely square”, where the 

magnitude of the thrust acceleration monotonically decreases with the square of the 

distance to the Sun - 2
0a a rµ=  (a) and the tangential case (b). 

 

a) Acceleration Inversely Square Case of the Thrust Profile 

 

Figures 7.1 and 7.2 show the TOF and the total excess velocity when varying parameter iθ  

and the transfer angle θ∆ , when the number of revolutions N is 0. Note that the polar 

angle at the target planet is given by: 2 Nf iθ θ θ π= + ∆ + . The values used in figures 7.1 

and 7.2 for the geometric parameter m  was 0.05, for the initial value of α  ( 0α ) were (-

60º, -50º, -40º, -30º, -20º), for the initial polar angle iθ  were (0º, 120º, 240º, 360º) and the 

transfer angle θ∆  were (90º, 150º, 210º, 270º, 340º). 

 

The initial polar angle iθ  is considered an input variable, since by starting in different 

segments of the shape, different results for the total excess velocity, the thrust acceleration 

and the TOF might be obtained. Note that this angle iθ  is the polar angle for the shape and 

it is different from the initial polar angle of the spacecraft in its interplanetary trajectory in 

the non-rotating heliocentric ecliptic reference frame. The normalised thrust acceleration 

0a  value used in figures 7.1 and 7.2 was 0.1. 
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Figure 7.1: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, 

-50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.1, acceleration 

inversely square case of the thrust profile (Archimedean spiral), Earth-Mars flight 

 

 

Figure 7.2: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, 

-50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.1, acceleration 

inversely square case of the thrust profile (Archimedean spiral), Earth-Mars flight 
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Some remarks can be drawn from figures 7.1 and 7.2. As expected, the TOF increases 

when increasing the transfer angle, while the total excess velocity ( ,departure ,arrivalV V∞ ∞+ ) 

decreases. By changing the initial polar angle iθ , the differences between values for the 

TOF and for the total excess velocity are significantly small. The order of magnitude of the 

highest difference in TOF between different iθ  for the same transfer angle and 0α  is 410−  

seconds, while the order of magnitude of the highest difference in total excess velocity is 

810− m s. By changing the initial value of 0α , the order of magnitude of the differences in 

TOF is 310−  years, which is less than a day. The TOF increases when increasing values of 

0α . On the other hand, the total excess velocity decreases when increasing 0α  (see figure 

7.2). 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and for the initial values of α  and θ . 

The values for the normalised thrust acceleration 0a  used in figures 7.3 and 7.4 were 0.03 

and 0.02 for N=1 and N=2, respectively. Note that the values assumed for 0a  for N=1 and 

N=2 are the minimum values that can be used in both cases for this shape without facing 

integration problems for the interval of input parameters considered (explained in section 

6.4). These values were chosen because, for higher values of 0a , the total excess velocity 

values will also be higher. Note that for N=2, the minimum value allowed is smaller than 

for N=1. 
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Figure 7.3: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, 

-50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, acceleration inversely square 

case of the thrust profile (Archimedean spiral), Earth-Mars flight, N=1 (
0

a =0.03) and N=2 (
0

a =0.02) 

 

 

Figure 7.4: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, 

-50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, acceleration inversely square 

case of the thrust profile (Archimedean spiral), Earth-Mars flight, N=1 (
0

a =0.03) and N=2 (
0

a =0.02) 

 

From figures 7.3 and 7.4, as expected, when N increases, the TOF increases and the total 

excess velocity decreases. As for the N=0 case, the order of magnitude of the differences in 

TOF and total excess velocity between different iθ  values and for the same transfer angle 

and 0α  can be neglected for the cases N=1 and N=2. In this way, due to the significantly 
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small influence that the parameter iθ  has on the TOF, on the total excess velocity and also, 

although not shown in the previous figures, on the acceleration, this parameter will not be 

considered a variable in the optimisation procedure for an Earth-Mars flight in chapter 8. 

 

The TOF range for this Earth-Mars flight is from 0.3577 years to 4.0801 years. The total 

excess velocity has a minimum value of 1.2767km s and a maximum value of 

14.3812km s. The maximum differences in TOF between 2 consecutive values of the 

transfer angle θ∆  are about 0.27 years. For a certain number of revolutions, these 

differences increase when increasing the transfer angle. The differences in terms of total 

excess velocity between 2 consecutive transfer angles is always highest between 90ºθ∆ =  

and 150ºθ∆ = . The maximum value for these differences is 5.3535km s for N=0 and the 

minimum value is about 80m s for N=2. 

 

Tables 7.1 and 7.2 show the TOF and the excess velocity values, for an Earth-Mars flight. 

Parameter iθ  was assumed 0º, parameter 0α  was assumed -20º, the transfer angle θ∆  was 

assumed 90º and N was taken 1 for the first table and 2 for the second one. In table 7.1, the 

normalised thrust acceleration 0a  assumed was 0.04 and in table 7.2, it was 0.03. 

 

N=1 0.02=m  0.64=m  1.26=m  1.88=m  2.5=m  

( ),∞ totalV km s  2.9742 3.0516 3.1977 3.4182 3.7228 

( ),1∞V km s  1.6263 1.8492 2.1155 2.4351 2.8216 

( ),2∞V km s  1.3480 1.2024 1.0822 0.9830 0.9012 

TOF (years) 1.7219 1.7470 1.7725 1.7985 1.8260 

Table 7.1: The excess velocities and the TOF values for N=1, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.04, m 

values of (0.02;0.64;1.26;1.88;2.5), acceleration inversely square case of the thrust profile 
(Archimedean spiral), Earth-Mars flight 
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N=2 0.02=m  0.64=m  1.26=m  1.88=m  2.5=m  

( ),∞ totalV km s  1.6955 1.7439 1.8308 1.9591 2.1336 

( ),1∞V km s  0.9089 1.0332 1.1820 1.3607 1.5761 

( ),2∞V km s  0.7865 0.7106 0.6488 0.5984 0.5575 

TOF (years) 3.1018 3.1451 3.1884 3.2316 3.2745 

Table 7.2: The excess velocities and the TOF values for N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.03, m 

values of (0.02;0.64;1.26;1.88;2.5), acceleration inversely square case of the thrust profile 
(Archimedean spiral), Earth-Mars flight 

 

From tables 7.1 and 7.2, the order of magnitude of the total excess velocity values is 

010 /km s. For increasing values of m , the total excess velocity and the TOF increase. The 

values for the total excess velocity are higher when N=1 than when N=2, i.e., although the 

TOF is higher, there is an advantage in terms of fuel consumption (total excess velocity is 

lower) when using N=2. Note that the excess velocity ,1∞V  increases faster than the excess 

velocity ,2∞V  decreases and the value of ,2∞V  when 2.5=m  is about 3 times smaller than 

the value of ,1∞V  for both cases of N. 

 

In figures 7.5 to 7.9, the polar plot, the thrust acceleration a , the thrust angle α , the polar 

angle rate θɺ  and the flight path angle as function of time are illustrated for N=1 and N=2 

cases that were presented in tables 7.1 and 7.2. 
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Figure 7.5: Polar plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =0º, θ∆ =90º, 
0

α =-20º, m values of 

(0.02;0.64;1.26;1.88;2.5), acceleration inversely square case (Archimedean spiral), Earth-Mars flight 

 

 

Figure 7.6: a plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =0º, θ∆ =90º, 
0

α =-20º, m values of 

(0.02;0.64;1.26;1.88;2.5), acceleration inversely square case (Archimedean spiral), Earth-Mars flight 
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Figure 7.7: α  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =0º, θ∆ =90º, 
0

α =-20º, m values of 

(0.02;0.64;1.26;1.88;2.5), acceleration inversely square case (Archimedean spiral), Earth-Mars flight 

 

 

Figure 7.8: θɺ  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =0º, θ∆ =90º, 
0

α =-20º, m values of 

(0.02;0.64;1.26;1.88;2.5), acceleration inversely square case (Archimedean spiral), Earth-Mars flight 
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Figure 7.9: γ  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =0º, θ∆ =90º, 
0

α =-20º, m values of 

(0.02;0.64;1.26;1.88;2.5), acceleration inversely square case (Archimedean spiral), Earth-Mars flight 

 

From figure 7.6, the magnitude of the thrust acceleration is higher for N=1 than for N=2 

because the assumed normalised thrust acceleration 0a  is also higher for N=1 than for 

N=2. Since these are the minimum values of 0a  for N=1 and N=2, the magnitude of the 

instantaneous thrust required for a longer flight is smaller. Note also that the thrust 

acceleration trend is similar to the ɺθ  trend, since for the acceleration inversely square case 

a varies with 21 r  and θɺ  varies with ( )21 r f θ⋅  ( 21 r  term in θɺ  has higher influence than 

( )f θ ). The values of the thrust angle α  are higher for N=1 than for N=2. During the 

interplanetary flight for both cases in figure 7.7, the spacecraft is thrusting inwards in the 

radial direction, while in the tangential direction it thrusts in the positive direction (α  is 

negative, higher than 90º−  - see figure 5.2b). This means that the vehicle is thrusting in 

the same direction of the gravitational acceleration. This situation will be further analysed 

in section 7.7. The magnitude values of the flight path angle γ  are smaller for N=2 than 

for N=1. 

 

b) Tangential Case of the Thrust Profile 

 

Figures 7.10 and 7.11 show the TOF and the total excess velocity when varying the 

parameter iθ  and the transfer angle θ∆  (N=0). The values used in figures 7.10 and 7.11 

for m  were (0.02; 0.64; 1.26; 1.88; 2.5), for the initial polar angle iθ  were (0º, 120º, 240º, 

360º) and for the transfer angle θ∆  were (90º, 150º, 210º, 270º, 340º). 
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Figure 7.10: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, m values of 

(0.02;0.64;1.26;1.88;2.5), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust profile 
(Archimedean spiral), Earth-Mars flight 

 

 

Figure 7.11: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, m values of 

(0.02;0.64;1.26;1.88;2.5), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust profile 
(Archimedean spiral), Earth-Mars flight 

 

Some remarks can be drawn from figures 7.10 and 7.11. By changing the initial polar angle 

iθ , the differences between values for the TOF and for the total excess velocity are 

negligibly small, just like for the acceleration inversely square case of the thrust profile. 
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The order of magnitude of the highest difference in TOF between different iθ  for the same 

transfer angle and m  is 110−  seconds, while the order of magnitude of the highest 

difference in total excess velocity is 1110 /m s− . The differences for the total excess velocity 

between different values of m  increase when increasing this geometric parameter. For 

higher values of m , the total excess velocity and the TOF increase. 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and for the initial value of θ  ( )iθ  as 

the ones used for N=0. 

 

 

Figure 7.12: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, m values of 

(0.02;0.64;1.26;1.88;2.5), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile 
(Archimedean spiral), Earth-Mars flight, for N=1 and N=2 
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Figure 7.13: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, m values of 

(0.02;0.64;1.26;1.88;2.5), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile 
(Archimedean spiral), Earth-Mars flight, for N=1 and N=2 

 

Similar remarks to the ones given for N=0 can be drawn for figures 7.12 and 7.13, when in 

this case for N=1 and N=2, the highest difference in the TOF between different iθ  and for 

the same transfer angle and m  is about 0.2 seconds, while the order of magnitude of the 

highest difference in the total excess velocity is 1210 m s− . As already verified for the 

acceleration inversely square case of the thrust profile, due to the significantly small 

influence that the parameter iθ  has on the TOF, total excess velocity variation and thrust 

acceleration (although it is not shown in previous figures), this parameter will not be 

considered a variable in the optimisation procedure for an Earth-Mars flight in chapter 8. 

 

The TOF range for this Earth-Mars flight is from 0.3615 years to 4.3365 years. The total 

excess velocity has a minimum value of 1.2285km s and a maximum value of 

16.9655km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.29 years. For a certain number of revolutions, these 

differences increase when increasing the transfer angle. The differences in terms of total 

excess velocity between two consecutive transfer angles is always highest between 

90ºθ∆ =  and 150ºθ∆ = . The maximum value for these differences is 6.2897km s for 

N=0 and in the minimum value is 84.82m s for 2 revolutions. 
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Tables 7.3 and 7.4 show the values of the TOF and the excess velocity for an Earth-Mars 

flight. Parameter iθ  assumed was 0º, the transfer angle θ∆  assumed was 90º and the 

number of revolutions was taken 1 for the first table and 2 for the second one. 

 

N=1 0.02=m  0.64=m  1.26=m  1.88=m  2.5=m  

( ),∞ totalV km s  2.8912 2.9649 3.1074 3.3250 3.6279 

( ),1∞V km s  1.6034 1.8313 2.1038 2.4313 2.8277 

( ),2∞V km s  1.2879 1.1336 1.0037 0.8937 0.8001 

TOF (years) 1.7472 1.7726 1.7980 1.8233 1.8484 

Table 7.3: The excess velocities and the TOF values for N=1, 
i

θ =0º, θ∆ =90º, m values of 

(0.02;0.64;1.26;1.88;2.5), tangential thrust profile (Archimedean spiral), Earth-Mars flight 

 

N=2 0.02=m  0.64=m  1.26=m  1.88=m  2.5=m  

( ),∞ totalV km s  1.6074 1.6489 1.7287 1.8499 2.0179 

( ),1∞V km s  0.8914 1.0187 1.1708 1.3533 1.5733 

( ),2∞V km s  0.7160 0.6302 0.5579 0.4967 0.4446 

TOF (years) 3.1418 3.1856 3.2294 3.2729 3.3159 

Table 7.4: The excess velocities and the TOF values for N=2, 
i

θ =0º, θ∆ =90º, m values of 

(0.02;0.64;1.26;1.88;2.5), tangential thrust profile (Archimedean spiral), Earth-Mars flight 

 

From tables 7.3 and 7.4, the order of magnitude of the total excess velocity values is 

010 /km s. For increasing values of m , the total excess velocity and the TOF increase. The 

values for the total excess velocity are higher when N=1 than when N=2, and the values for 

,2∞V  are at least 3 times smaller than the values for ,1∞V , like for the acceleration inversely 

square case. Compared with this case of the thrust profile (tables 7.1 and 7.2), the TOF is 

higher and the total excess velocity is smaller for the tangential case. 
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In figures 7.14 to 7.17, the polar plot, the thrust acceleration a , the thrust angle α  and the 

polar angle rate θɺ  as function of time are illustrated for N=1 and N=2 cases that were 

presented in tables 7.3 and 7.4. 

 

 

Figure 7.14: Polar plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, m values of (0.02;0.64;1.26;1.88;2.5), 

tangential thrust profile (Archimedean spiral), Earth-Mars flight 

 

 

Figure 7.15: a plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, m values of (0.02;0.64;1.26;1.88;2.5), tangential 

thrust profile (Archimedean spiral), Earth-Mars fli ght 
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Figure 7.16: α plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, m values of (0.02;0.64;1.26;1.88;2.5), tangential 

thrust profile (Archimedean spiral), Earth-Mars fli ght 

 

 

Figure 7.17: θɺ  plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, m values of (0.02;0.64;1.26;1.88;2.5), tangential 

thrust profile (Archimedean spiral), Earth-Mars fli ght 

 

The magnitude of the thrust acceleration is higher for N=1 than for N=2 which means that 

the magnitude of the instantaneous thrust required for a longer flight is smaller (figure 

7.15). The values of the thrust angle α  are higher in magnitude for N=1 than for N=2. 

Note that, compared with the acceleration inversely square case (figure 7.7), the thrust 

angle in figure 7.16 presents a more stable behaviour and the values are always positive for 

the entire mission. The plot of the flight path angle γ  in function of time is not shown, 

since in the tangential case =α γ . The differences in magnitude of the polar angle rate ɺθ  

between N=1 and N=2 are significantly small (figure 7.17). 
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7.2. Logarithmic spiral 
 

In this section 7.2, results for the TOF, the excess velocities and the thrust acceleration will 

be shown and discussed for the logarithmic spiral and for an Earth-Mars mission. The 

thrust profiles used in this analysis are the same used for the Archimedean spiral. 

 

a) Acceleration Inversely Square Case of the Thrust Profile 

 

Figures 7.18 and 7.19 show the TOF and the total excess velocity when varying parameter 

iθ  and the transfer angle θ∆ , when the number of revolutions N is 0. The value for the 

geometric parameter m  used in figure 7.18 and 7.19 was 0.05, the values for the initial 

value of α  were (-60º, -50º, -40º, -30º, -20º), for the initial polar angle iθ  were (0º, 120º, 

240º, 360º) and for the transfer angle θ∆  were (90º, 150º, 210º, 270º, 340º). The 

normalised thrust acceleration 0a  value used in figures 7.18 and 7.19 was 0.11. 

 

 

Figure 7.18: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.11, 

acceleration inversely square case of the thrust profile (logarithmic spiral), Earth-Mars flight 
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Figure 7.19: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.11, 

acceleration inversely square case of the thrust profile (logarithmic spiral), Earth-Mars flight 

 

By changing the initial polar angle iθ  (same transfer angle and 0α ), the differences 

between values for the TOF and for the total excess velocity are significantly small. For 

increasing values of 0α , the total excess velocity decreases, while the TOF increases. The 

total excess velocity differences between different values of 0α  increase when increasing 

the transfer angle ∆θ . 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and the initial values of α  and θ . The 

normalised thrust acceleration 0a  values used in figures 7.20 and 7.21 were 0.03 and 0.02 

for N=1 and N=2, respectively. Like for the Archimedean spiral, the values assumed for 0a  

are the minimum values that can be used in both cases for this shape without facing 

integration problems for the interval of input parameters considered. The minimum values 

for 0a  were chosen because the total excess velocity increases when increasing the values 

of 0a . 
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Figure 7.20: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, acceleration inversely 

square case of the thrust profile (logarithmic spiral), Earth-Mars flight, N=1 (
0

a =0.03), N=2 (
0

a =0.02) 

 

 

Figure 7.21: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, acceleration inversely 

square case of the thrust profile (logarithmic spiral), Earth-Mars flight, N=1 (
0

a =0.03), N=2 (
0

a =0.02) 

 

Similar remarks to the ones given for N=0 can be drawn for figures 7.20 and 7.21. As for 

the Archimedean spiral, due to the very small influence that the parameter iθ  has on the 

TOF, total excess velocity variation and thrust acceleration (although not shown in 

previous figures), this parameter will not be considered a variable in the optimisation 

procedure for an Earth-Mars flight in chapter 8. 
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The TOF range for this Earth-Mars flight is from 0.3758 years to 3.9702 years. The total 

excess velocity has a minimum value of 1.2397km s and a maximum value of 

14.6815km s. As expected, the minimum value for the TOF and the maximum value for 

the total excess velocity occur for the smallest transfer angle – 90º (N=0); while the 

maximum value for the TOF and the minimum value for the total excess velocity occur for 

the highest transfer angle presented – 340º (N=2). 

 

The maximum differences in TOF between two consecutive values of the transfer angle 

θ∆  are about 0.25 years. The differences in terms of total excess velocity between two 

consecutive transfer angles is always highest between 90ºθ∆ =  and 150ºθ∆ = . The 

maximum value for these differences is 5.5853km s for zero value of N and the minimum 

value is about 77.25m s for 2 revolutions. 

 

Tables 7.5 and 7.6 show the values for the TOF and the excess velocities for an Earth-Mars 

flight. Parameter iθ  was assumed 0º, parameter 0α  was assumed -20º, the transfer angle 

θ∆  was assumed 90º and the number of revolutions taken was one for the first table and 

two for the second one. In tables 7.5 and 7.6, the normalised thrust acceleration 0a  

considered was 0.05. 

 

N=1 0.05=m  0.15=m  0.25=m  0.35=m  0.45=m  

( ),∞ totalV km s  3.0424 2.9825 3.2022 3.6382 4.2179 

( ),1∞V km s  1.6543 1.1005 0.7265 0.4975 0.3723 

( ),2∞V km s  1.3881 1.8820 2.4757 3.1407 3.8457 

TOF (years) 1.7136 1.6421 1.5782 1.5235 1.4784 

Table 7.5: The excess velocities and the TOF values for N=1, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.05, m 

values of (0.05; 0.15; 0.25; 0.35; 0.45), acceleration inversely square case of the thrust profile 
(logarithmic spiral), Earth-Mars flight 
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N=2 0.05=m  0.15=m  0.25=m  0.35=m  0.45=m  

( ),∞ totalV km s  1.8191 1.9659 2.5192 3.2448 4.0104 

( ),1∞V km s  0.8131 0.4281 0.2955 0.2643 0.2570 

( ),2∞V km s  1.0060 1.5378 2.2238 2.9805 3.7534 

TOF (years) 3.0225 2.8173 2.6613 2.5531 2.4800 

Table 7.6: The excess velocities and the TOF values for N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.05, m 

values of (0.05; 0.15; 0.25; 0.35; 0.45), acceleration inversely square case of the thrust profile 
(logarithmic spiral), Earth-Mars flight 

 

From tables 7.5 and 7.6, for increasing values of m , the total excess velocity increases for 

N=2, while the TOF decreases. For N=1, the total excess velocity decreases between 

0.05=m  and 0.15=m , while for higher values of m , it increases. Note that, the excess 

velocity ,1∞V  decreases slower than the excess velocity ,2∞V  increases, except for N=1 

between 0.05=m  and 0.15=m . The value of ,2∞V  when 0.45m=  is more than 10 times 

higher than the value of ,1∞V  for N=1 and more than 14 times higher for N=2. This 

situation is attractive for a mission where swing-bys are used instead of orbit insertion 

(section 7.7). 

 

In figures 7.22 to 7.26, the polar plot, the thrust acceleration a , the thrust angle α , the 

polar angle rate θɺ  and the flight path angle as function of time are illustrated for N=1 and 

N=2 cases that were presented in tables 7.5 and 7.6. 
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Figure 7.22: Polar plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.05, m values of (0.05; 0.15; 

0.25; 0.35; 0.45), acceleration inversely square case of the thrust profile (logarithmic spiral), Earth-
Mars flight 

 

 

Figure 7.23: a plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.05, m values of (0.05; 0.15; 0.25; 

0.35; 0.45), acceleration inversely square case of the thrust profile (logarithmic spiral), Earth-Mars  
flight 
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Figure 7.24: α  plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.05, m values of (0.05; 0.15; 0.25; 

0.35; 0.45), acceleration inversely square case of the thrust profile (logarithmic spiral), Earth-Mars  
flight 

 

 

Figure 7.25: θɺ  plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.05, m values of (0.05; 0.15; 0.25; 

0.35; 0.45), acceleration inversely square case of the thrust profile (logarithmic spiral), Earth-Mars  
flight 
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Figure 7.26: γ  plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.05, m values of (0.05; 0.15; 0.25; 

0.35; 0.45), acceleration inversely square case of the thrust profile (logarithmic spiral), Earth-Mars  
flight 

 

Note that, although the assumed normalised thrust acceleration 0a  is the same for N=1 and 

for N=2, differences in the instantaneous thrust acceleration values between the two cases 

can be seen in figure 7.23. During the interplanetary flight for both cases in figure 7.24, the 

spacecraft is thrusting inwards in the radial direction, while in the tangential direction it 

thrusts in the positive direction (α  is negative, higher than 90º− ), like for the 

Archimedean spiral. 

 

b) Tangential Case of the Thrust Profile 

 

Figures 7.27 and 7.28 show the TOF and the total excess velocity when changing 

parameter iθ  and the transfer angle θ∆ , when the number of revolutions N is 0. Values of 

(0.05; 0.15; 0.25; 0.35; 0.45), (0º, 120º, 240º, 360º) and (90º, 150º, 210º, 270º, 340º) were 

used in these figures for the geometric parameter m , for the initial polar angle iθ  and for 

the transfer angle θ∆ , respectively. 
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Figure 7.27: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure,  m values of 

(0.05; 0.15; 0.25; 0.35; 0.45), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust profile 
(logarithmic spiral), Earth-Mars flight 

 

 

Figure 7.28: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, m values of (0.05; 

0.15; 0.25; 0.35; 0.45), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust profile 
(logarithmic spiral), Earth-Mars flight 

 

Some remarks can be drawn from figures 7.27 and 7.28. By changing the initial polar angle 

iθ , the differences between values for the TOF and for the total excess velocity are again 

very small, like for the acceleration inversely square case. For increasing values of m , the 
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TOF decreases while the total excess velocity increases for transfer angles higher than 210º 

(inclusive) and it decreases for transfer angles smaller than 210º. 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and for the initial value of θ  ( )iθ  as 

the ones used for N=0. 

 

 

Figure 7.29: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, m values of (0.05; 

0.15; 0.25; 0.35; 0.45), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile (logarithmic 
spiral), Earth-Mars flight for N=1 and N=2 

 

 

Figure 7.30: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, m values of (0.05; 

0.15; 0.25; 0.35; 0.45), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile (logarithmic 
spiral), Earth-Mars flight for N=1 and N=2 
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Similar remarks to the ones given for N=0 can be drawn for figures 7.29 and 7.30. For 

higher values of N, the differences in total excess velocity and in TOF, between the 

minimum and the maximum values of m , increase. 

 

The TOF range from Earth-Mars is from 0.3482 years to 4.0022 years. The total excess 

velocity has a minimum value of 1.2004km s and a maximum value of 14.4610km s. The 

maximum differences in TOF between two consecutive values of the transfer angle θ∆  are 

about 0.27 years. The differences in terms of total excess velocity between two consecutive 

transfer angles is always highest between 90ºθ∆ =  and 150ºθ∆ = . The maximum value 

for these differences is 5.6372km s for N=0 and the minimum value is of 1.9360m s for 

2 revolutions. 

 

Tables 7.7 and 7.8 show the values for the TOF and the excess velocity for an Earth-Mars 

flight. Parameter iθ  was consider 0º, the transfer angle θ∆  was consider 90º and the 

number of revolutions was taken 1 for the first table and 2 for the second one. 

 

N=1 0.05=m  0.15=m  0.25=m  0.35=m  0.45=m  

( ), /totalV km s∞  2.8972 2.8423 3.0621 3.5041 4.1119 

( ),1 /V km s∞  1.6212 1.0440 0.6422 0.3793 0.2165 

( ),2 /V km s∞  1.2761 1.7983 2.4199 3.1248 3.8955 

TOF (years) 1.7492 1.6758 1.6093 1.5517 1.5033 

Table 7.7: Excess velocities and TOF values for N=1, 
i

θ =0º, θ∆ =90º, m values of (0.05; 0.15; 0.25; 

0.35; 0.45), tangential thrust profile (logarithmic spiral), Earth-Mars flight 
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N=2 0.05=m  0.15=m  0.25=m  0.35=m  0.45=m  

( ), /totalV km s∞  1.5781 1.7360 2.2633 2.9881 3.8035 

( ),1 /V km s∞  0.7597 0.3201 0.1182 0.0397 0.0125 

( ),2 /V km s∞  0.8184 1.4159 2.1451 2.9485 3.7970 

TOF (years) 3.0934 2.8823 2.7209 2.6079 2.5304 

Table 7.8: Excess velocities and TOF values for N=2, 
i

θ =0º, θ∆ =90º, m values of (0.05; 0.15; 0.25; 

0.35; 0.45), tangential thrust profile (logarithmic spiral), Earth-Mars flight 

 

For increasing values of m , the total excess velocity increases for N=2, while the TOF 

decreases. For N=1, the total excess velocity decreases between 0.05=m  and 0.15=m , 

while it increases for higher values of m . Normally for longer missions (higher TOF), the 

total excess velocity decreases. This does not happen between 0.05=m  and 0.15=m  for 

N=1. As for the previous situations, the values for the total excess velocity are higher when 

N=1 than when N=2. Note that, like for the acceleration inversely square case, the excess 

velocity ,2∞V  increases faster than the excess velocity ,1∞V  decreases, except for N=1 

between 0.05=m  and 0.15=m . The value of ,2∞V  when 0.45m=  is more than 17 times 

higher than the value of ,1∞V  for N=1 and more than 300 times higher for N=2. Compared 

with the acceleration inversely square case, the TOF and the total excess velocity values 

from tables 7.7 and 7.8 are higher and smaller, respectively for the tangential case. For 

values of m  higher than 0.45, the total excess velocity increases. For 1m=  and N=2, the 

total excess velocity is 8.8950km s and for 1.5m= , the total excess velocity is 

14.7330km s. These values are too high to be considered in a mission from Earth-Mars, 

when doing orbit insertion, but they still can be used for flybys. Note that for higher values 

of m, the order of magnitude of ,1∞V  is 210 km s−  or less and ,2∞V  is approximately ,TV∞ . 

Unfortunately, for values of m higher than 1, the thrust acceleration starts to increase 

significantly to orders of magnitude of 2 210 m s− . These values of thrust acceleration 

correspond to the upper limit that can be used in a low-thrust mission. In this way and 

since feasible shapes can always be computed if 1m <  (see section 6.3.2), values of m  
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higher than 1 in the optimisation procedure for an Earth-Mars flight (chapter 8) will not be 

considered. 

 

In figures 7.31 to 7.34, the polar plot, the thrust acceleration a , the thrust angle α  and the 

polar angle rate θɺ  as function of time are illustrated for the cases N=1 and N=2 that were 

presented in tables 7.7 and 7.8. 

 

 

Figure 7.31: Polar plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, m values of (0.05; 0.15; 0.25; 0.35; 0.45), 

tangential thrust profile (logarithmic spiral), Ear th-Mars flight 

 

 

Figure 7.32: a plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, m values of (0.05; 0.15; 0.25; 0.35; 0.45), 

tangential thrust profile (logarithmic spiral), Ear th-Mars flight 
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Figure 7.33: α  plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, m values of (0.05; 0.15; 0.25; 0.35; 0.45), 

tangential thrust profile (logarithmic spiral), Ear th-Mars flight 

 

 

Figure 7.34: θɺ  plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, m values of (0.05; 0.15; 0.25; 0.35; 0.45), 

tangential thrust profile (logarithmic spiral), Ear th-Mars flight 

 

From figure 7.32, the magnitude of the thrust acceleration is higher for N=1 than for N=2 

for most of the interplanetary flights which means that the magnitude of the instantaneous 

thrust required for a longer flight is smaller. Except for 0.05=m , the thrust acceleration 

will increase during time until it reaches its maximum value almost in the end of the flight. 

Note that the differences between the maximum values of a  for N=1 and N=2 are 

negligibly small. Although there are no significant differences between the maximum 

values for the thrust angle α  for N=1 and for N=2, during most of the interplanetary flight, 

the values for this angle are smaller for N=2 than for N=1. 
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7.3. Poinsot’s spiral (hyperbolic sine) 
 

Results for the TOF, the excess velocities and the thrust acceleration will be shown and 

discussed for the Poinsot’s spiral (hyperbolic sine) and for an Earth-Mars mission in this 

section. The thrust profiles used in this analysis are the same as the ones used for the 

shapes previously presented. 

 

a) Acceleration Inversely Square Case of the Thrust Profile 

 

The TOF and the total excess velocity when changing parameter +iθ φ  and the transfer 

angle θ∆  (N=0) are shown in figures 7.35 and 7.36. The value used for m  in figures 7.35 

and 7.36 was 0.6, the values used for the initial polar angle combined with the phase angle 

+iθ φ  were (120º, 200º, 280º, 360º) and the values for 0α  and θ∆  were the same as for 

the previous shapes. Note that +iθ φ  cannot be zero, otherwise = ∞r . The value for the 

normalised thrust acceleration 0a  value used in figures 7.35 and 7.36 was 0.11. 

 

 

Figure 7.35: TOF for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values 

of (-60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.6, 
0

a =0.11, 

acceleration inversely square case (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 
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Figure 7.36: 
,T

V∞  for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values 

of (-60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.6, 
0

a =0.11, 

acceleration inversely square case (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 

 

From figures 7.35 and 7.36, by increasing the combination of angles +iθ φ , the TOF and 

the total excess velocity decrease. The highest difference in TOF and in total excess 

velocity between different +iθ φ  occurs between 120º+ =iθ φ  and 200º+ =iθ φ . For 

higher values of +iθ φ , the variations in TOF and in total excess velocity are very small. 

The highest difference in TOF between different +iθ φ  for the same transfer angle and 0α  

is about 0.014 years, while the highest difference in total excess velocity is about 

0.2941km s. For increasing values of the initial thrust angle 0α , the total excess velocity 

decreases, while the TOF increases. 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for m , for ∆θ  

and for the initial values of α  and +θ φ . The normalised thrust acceleration 0a  values 

used in figures 7.37 and 7.38 were 0.03 and 0.02 for N=1 and N=2, respectively. Similar 

remarks as the ones given for N=0 can be drawn for figures 7.37 and 7.38. 
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Figure 7.37: TOF for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values 

of (-60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.6, acceleration inversely 

square case (Poinsot’s spiral (hyperbolic sine), Earth-Mars flight, N=1 (
0

a =0.03) and N=2 (
0

a =0.02) 

 

 

Figure 7.38: 
,T

V∞  for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values 

of (-60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.6, acceleration inversely 

square case (Poinsot’s spiral (hyperbolic sine), Earth-Mars flight, N=1 (
0

a =0.03) and N=2 (
0

a =0.02) 

 

The TOF range for an Earth-Mars flight is from 0.3531 years to 4.0842 years. The total 

excess velocity has a minimum value of 1.2754km s and a maximum value of 

14.5992km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.27 years and for a certain number of revolutions, these 

differences increase when increasing the transfer angle. The differences in terms of total 

excess velocity between two consecutive transfer angles is always highest between 

90ºθ∆ =  and 150ºθ∆ = , as for the previous situations. The maximum value for these 
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differences is 5.3522km s for N=0 and the minimum value is about 79m s for 2 

revolutions. 

 

Tables 7.9 and 7.10 show the values for the TOF and the excess velocities for an Earth-

Mars flight. Parameter +iθ φ  was consider 120º, parameter 0α  was consider -20º, the 

transfer angle θ∆  was consider 90º and the number of revolutions taken was 1 for the first 

table and 2 for the second one. In table 7.9, the normalised thrust acceleration 0a  was 0.05, 

while in table 7.10, this parameter was 0.04. 

 

N=1 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ),∞ totalV km s  4.6793 4.4645 4.0855 3.7452 3.4989 

( ),1∞V km s  3.8225 3.4865 2.9270 2.4680 2.1601 

( ),2∞V km s  0.8568 0.9780 1.1584 1.2772 1.3388 

TOF (years) 1.8760 1.8354 1.7868 1.7536 1.7347 

Table 7.9: The excess velocities and the TOF values for N=1, 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 

0.11; 0.21; 0.31; 0.41), 
0

α =-20º, 
0

a =0.05, acceleration inversely square case (Poinsot’s spiral 

(hyperbolic sine)), Earth-Mars flight 

 

N=2 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ),∞ totalV km s  3.4777 3.0791 2.5845 2.2606 2.0680 

( ),1∞V km s  2.9203 2.4177 1.8182 1.4476 1.2351 

( ),2∞V km s  0.5574 0.6613 0.7663 0.8130 0.8329 

TOF (years) 3.4155 3.3009 3.1894 3.1353 3.1103 

Table 7.10: The excess velocities and the TOF values for N=2, 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 

0.11; 0.21; 0.31; 0.41), 
0

α =-20º, 
0

a =0.04, acceleration inversely square case (Poinsot’s spiral 

(hyperbolic sine)), Earth-Mars flight 
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For increasing values of m , the total excess velocity and the TOF decrease. Note that the 

excess velocity ,1∞V  decreases faster than the excess velocity ,2∞V  increases, as for the 

Archimedean spiral. 

 

In figures 7.39 to 7.43, the polar plot, the thrust acceleration a , the thrust angle α , the 

polar angle rate θɺ  and the flight path angle as function of time are illustrated for N=1 and 

N=2 cases that were presented in tables 7.9 and 7.10. 

 

 

Figure 7.39: Polar plot for N=1 (
0

a =0.05) and N=2 (
0

a =0.04), 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 

0.11; 0.21; 0.31; 0.41), 
0

α =-20º, acceleration inversely square case (Poinsot’s spiral (hyperbolic sine)), 

Earth-Mars flight 
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Figure 7.40: a plot for N=1 (
0

a =0.05) and N=2 (
0

a =0.04), 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 

0.11; 0.21; 0.31; 0.41), 
0

α =-20º, acceleration inversely square case (Poinsot’s spiral (hyperbolic sine)), 

Earth-Mars flight 

 

 

Figure 7.41: α  plot for N=1 (
0

a =0.05) and N=2 (
0

a =0.04), 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 

0.11; 0.21; 0.31; 0.41), 
0

α =-20º, acceleration inversely square case (Poinsot’s spiral (hyperbolic sine)), 

Earth-Mars flight 
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Figure 7.42: θɺ  plot for N=1 (
0

a =0.05) and N=2 (
0

a =0.04), 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 

0.11; 0.21; 0.31; 0.41), 
0

α =-20º, acceleration inversely square case (Poinsot’s spiral (hyperbolic sine)), 

Earth-Mars flight 

 

Figure 7.43: γ  plot for N=1 (
0

a =0.05) and N=2 (
0

a =0.04), 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 

0.11; 0.21; 0.31; 0.41), 
0

α =-20º, acceleration inversely square case (Poinsot’s spiral (hyperbolic sine)), 

Earth-Mars flight 

 

From figure 7.40, the magnitude of the thrust acceleration is higher for N=1 than for N=2 

because the assumed normalised thrust acceleration 0a  is also higher for N=1 than for 

N=2. Note that the thrust acceleration trend is similar to the ɺθ  trend, as already seen for 

the previous shapes and explained for the Archimedean spiral. The values of the thrust 

angle α  are higher for N=1 than for N=2. For most of the interplanetary flight, for both 

cases in figure 7.41, the spacecraft is thrusting inwards in the radial direction, while in the 

tangential direction it thrusts in the positive direction (α  is negative, higher than 90º− ), 
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like for the previous shapes. This situation will be further analysed in section 7.7. The 

magnitude values of the flight path angle γ  are smaller for N=2 than for N=1. 

 

b) Tangential Case of the Thrust Profile 

 

Figures 7.44 and 7.45 show the TOF and the total excess velocity when varying parameter 

+iθ φ  and the transfer angle θ∆  (N=0). The values used in these figures for m , for the 

initial angle +iθ φ  and the transfer angle θ∆  were the same as the ones used for the 

acceleration inversely square case. 

 

 

Figure 7.44: TOF for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), θ∆  values of (90º, 150º, 210º, 270º, 340º), (N=0), tangential thrust profile 
(Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 
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Figure 7.45: 
,T

V∞  for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), θ∆  values of (90º, 150º, 210º, 270º, 340º), (N=0), tangential thrust profile 
(Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 

 

From figures 7.44 and 7.45, by increasing the initial angle +iθ φ , the TOF and the total 

excess velocity decrease as for the acceleration inversely square case. The differences in 

TOF and in total excess velocity between different values of m  decrease when increasing 

+iθ φ . The highest difference in TOF between different +iθ φ  for the same transfer angle 

and m  is 0.0567 years, while the highest difference in total excess velocity is 1.1630km s, 

which are higher compared with the acceleration inversely square case. The differences in 

TOF and in total excess velocity between different values of m  increase when increasing 

the transfer angle ∆θ . 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and for ( )+iθ φ  as the ones used for 

N=0. 
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Figure 7.46: TOF for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile 
(Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight, N=1 and N=2 

 

 

Figure 7.47: 
,T

V∞  for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile 
(Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight N=1 and N=2 

 

Similar remarks to the ones given for N=0 can be drawn for figures 7.46 and 7.47, when in 

this case for N=1, the highest difference in TOF between different +iθ φ  and for the same 

transfer angle is about 0.1229 years, while the highest difference in total excess velocity is 

1.1776km s. For N=2, the highest difference in the TOF between different +iθ φ  and for 

the same transfer angle and m  is about 0.1763 years, while the highest difference in the 

total excess velocity is 1.1487km s. Compared with the acceleration inversely square case, 

these differences are much higher. So, in the tangential case, the results for the TOF and 
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the total excess velocity are more sensitive to the iθ φ+  variation. Note that the differences 

between the total excess velocity and the TOF values for different values of m  increase 

between N=1 and N=2. 

 

The TOF range for an Earth-Mars flight is from 0.3615 years to 4.5782 years. The total 

excess velocity has a minimum value of 1.2349km s and a maximum value of 

14.9404km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.31 years and for a certain number of revolutions, these 

differences increase when increasing the transfer angle. The differences in terms of total 

excess velocity between two consecutive transfer angles is always highest between 

90ºθ∆ =  and 150ºθ∆ = , like for the previous shapes. The maximum value for these 

differences is 5.4909km s for N=0 and the minimum value is 81.22m s for N=2. 

 

Tables 7.11 and 7.12 show the values for the TOF and the excess velocity for an Earth-

Mars flight. Parameter +iθ φ  was assumed 120º, the transfer angle θ∆  was assumed 90º 

and the number of revolutions was taken 1 for the first table and 2 for the second one. 

 

N=1 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ), /totalV km s∞  4.5194 4.3276 3.9723 3.6403 3.3924 

( ),1 /V km s∞  3.8617 3.5236 2.9584 2.4908 2.1731 

( ),2 /V km s∞  0.6577 0.8040 1.0139 1.1495 1.2194 

TOF (years) 1.8957 1.8658 1.8204 1.7882 1.7697 

Table 7.11: Excess velocities and TOF values for N=1, 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 0.11; 

0.21; 0.31; 0.41), tangential thrust profile (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 
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N=2 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ), /totalV km s∞  3.2626 2.9186 2.4547 2.1354 1.9391 

( ),1 /V km s∞  2.9545 2.4497 1.8440 1.4651 1.2437 

( ),2 /V km s∞  0.3080 0.4689 0.6106 0.6704 0.6953 

TOF (years) 3.4695 3.3579 3.2465 3.1920 3.1668 

Table 7.12: Excess velocities and TOF values for N=2, 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 0.11; 

0.21; 0.31; 0.41), tangential thrust profile (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 

 

For increasing values of m , the total excess velocity and the TOF decrease. Note that, like 

for the acceleration inversely square case, the excess velocity ,1∞V  decreases faster than the 

excess velocity ,2∞V  increases. Compared with this previous case of the thrust profile, the 

values for the TOF and the total excess velocity given in tables 7.11 and 7.12 are higher 

and smaller, respectively, as for the previous shapes. 

 

In figures 7.48 to 7.51, the polar plot, the thrust acceleration a , the thrust angle α  and the 

polar angle rate θɺ  as function of time are illustrated for N=1 and N=2 cases that were 

presented in tables 7.11 and 7.12. 
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Figure 7.48: Polar plot for N=1 and N=2, 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 0.11; 0.21; 0.31; 

0.41), tangential thrust profile (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 

 

 

Figure 7.49: a plot for N=1 and N=2, 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 0.11; 0.21; 0.31; 0.41), 

tangential thrust profile (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 
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Figure 7.50: α plot for N=1 and N=2, 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 0.11; 0.21; 0.31; 0.41), 

tangential thrust profile (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 

 

 

Figure 7.51: θɺ  plot for N=1 and N=2, 
i

θ φ+ =120º, θ∆ =90º, m values of (0.01; 0.11; 0.21; 0.31; 0.41), 

tangential thrust profile (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 

 

The magnitude of the thrust acceleration is higher for N=1 than for N=2 which means that 

the magnitude of the instantaneous thrust required for a longer flight is smaller. Also, the 

values for the thrust angle α  are smaller for N=2 than for N=1. 

 

7.4. Poinsot’s spiral (hyperbolic cosine) 
 

In this section 7.4, results for the TOF, the excess velocities and the thrust acceleration will 

be shown and discussed for the Poinsot’s spiral (hyperbolic cosine) and for an Earth-Mars 
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mission. The thrust profiles used in this analysis are the same as the ones used for the 

shapes previously presented. 

 

a) Acceleration Inversely Square Case of the Thrust Profile 

 

Figures 7.52 and 7.53 show the TOF and the total excess velocity when varying parameter 

iθ  and the transfer angle θ∆ , when the number of revolutions N is 0. The value used in 

figures 7.52 and 7.53 for m  was 0.05, for 0a  was 0.09, the values for 0α  were (-60º, -50º, 

-40º, -30º, -20º), for the initial polar angle iθ  were (30º, 140º, 250º, 340º) and for the 

transfer angle θ∆  were (90º, 150º, 210º, 270º, 340º). 

 

 

Figure 7.52: TOF for 
i

θ  values of (30º, 140º, 250º, 340º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º,150º,210º,270º,340º) (N=0), m=0.05, 
0

a =0.09, acceleration 

inversely square case (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 
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Figure 7.53: 
,T

V∞  for 
i

θ  values of (30º, 140º, 250º, 340º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º,150º,210º,270º,340º) (N=0), m=0.05, 
0

a =0.09, acceleration 

inversely square case (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 

 

Some remarks can be drawn from figures 7.52 and 7.53. As expected, the TOF increases 

when increasing the transfer angle, while the total excess velocity decreases. By increasing 

the initial polar angle iθ , the TOF increases while the total excess velocities decreases. The 

highest variation in TOF and in total excess velocity when changing iθ  is between 

30º=iθ  and 140º=iθ , as for the Poinsot’s spiral (hyperbolic sine). This variation 

becomes smaller for higher values of the transfer angle ∆θ . The highest difference in TOF 

between different iθ  for the same transfer angle and 0α  is 0.0747 years, while the highest 

difference in total excess velocity is 2.3111km s. For increasing values of 0α , the total 

excess velocity decreases and the TOF increases. 

 

Figures 7.54 and 7.55 show the TOF and the total excess velocity for 1 and 2 revolutions, 

using the same values for m , for ∆θ , for 0α  and iθ  as for the situation where N=0. The 

normalised thrust acceleration 0a  values used in these figures were 0.04 and 0.03 for N=1 

and N=2, respectively. 
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Figure 7.54: TOF for 
i

θ  values of (30º, 140º, 250º, 340º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, acceleration inversely 

square case (Poinsot’s spiral (hyperbolic cosine), Earth-Mars flight, N=1 (
0

a =0.04) and N=2 (
0

a =0.03) 

 

 

Figure 7.55: 
,T

V∞  for 
i

θ  values of (30º, 140º, 250º, 340º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, acceleration inversely 

square case (Poinsot’s spiral (hyperbolic cosine), Earth-Mars flight, N=1 (
0

a =0.04) and N=2 (
0

a =0.03) 

 

Similar remarks as the ones given for N=0 can be drawn for figures 7.54 and 7.55. In 

figure 7.55, when increasing iθ , for highest value of 0α  the total excess velocity trend is 

not monotonous. For N=1, the highest difference in TOF between different iθ  and for the 

same transfer angle and 0α  is about 0.1238 years, while the highest difference in the total 

excess velocity is 0.1662km s. For N=2, the highest difference in TOF between different 

iθ  and for the same transfer angle and 0α  is about 0.1609 years, while the highest 
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difference in total excess velocity is 0.1026km s. In this way, for increasing values of N, 

the TOF becomes more sensitive to iθ  changes, while the total excess velocity becomes 

less sensitive to these changes. 

 

The TOF range for this Earth-Mars flight is from 0.2986 years to 3.8762 years. The total 

excess velocity has a minimum value of 1.1663km s and a maximum value of 

16.6570km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.25 years. For a certain number of revolutions, these 

differences increase when increasing the transfer angle. The differences in terms of total 

excess velocity between two consecutive transfer angles is always highest between 

90ºθ∆ =  and 150ºθ∆ = . The maximum value for these differences is 6.8886km s for 

N=0 and the minimum value is about 70m s for 2 revolutions. 

 

Tables 7.13 and 7.14 show the values for the TOF and the excess velocity for an Earth-

Mars flight. Parameter iθ  was chosen 30º, parameter 0α  was chosen -20º, the transfer 

angle θ∆  was chosen 90º and the number of revolutions was taken 1 for the first table and 

2 for the second one. In table 7.13, the normalised thrust acceleration 0a  considered was 

0.04, while in table 7.14, this parameter was 0.03. 

 

N=1 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ),∞ totalV km s  2.8684 2.6493 2.4036 2.2976 2.2838 

( ),1∞V km s  0.4329 0.4653 0.5354 0.6228 0.7157 

( ),2∞V km s  2.4355 2.1841 1.8682 1.6748 1.5681 

TOF (years) 1.5654 1.5830 1.6124 1.6379 1.6566 

Table 7.13: The excess velocities and the TOF values for N=1, 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), 
0

a =0.04, acceleration inversely square case (Poinsot’s spiral (hyperbolic 

cosine), Earth-Mars flight 
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N=2 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ),∞ totalV km s  1.6262 1.3633 1.2393 1.2290 1.2540 

( ),1∞V km s  0.2212 0.2479 0.2964 0.3505 0.4052 

( ),2∞V km s  1.4050 1.1154 0.9430 0.8785 0.8488 

TOF (years) 2.8141 2.8866 2.9606 3.0042 3.0302 

Table 7.14: The excess velocities and the TOF values for N=2, 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), 
0

a =0.03, acceleration inversely square case (Poinsot’s spiral (hyperbolic 

cosine), Earth-Mars flight 

 

From tables 7.13 and 7.14, the order of magnitude of the total excess velocity values is 

010 /km s. For increasing values of m , the total excess velocity decreases, while the TOF 

increases for N=1. For N=2, the total excess velocity decreases until 0.31=m  and it 

increases between 0.31=m  and 0.41=m , while the TOF increases like for N=1. Note that 

the excess velocity ,2∞V  decreases faster than the excess velocity ,1∞V  increases, except for 

N=2 between 0.31=m  and 0.41=m . 

 

In figures 7.56 to 7.60, the polar plot, the thrust acceleration a , the thrust angle α , the 

polar angle rate θɺ  and the flight path angle as function of time are illustrated for N=1 and 

N=2 cases that were presented in tables 7.13 and 7.14. 
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Figure 7.56: Polar plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), acceleration inversely square case (Poinsot’s spiral (hyperbolic cosine), 
Earth-Mars flight 

 

 

Figure 7.57: a plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of (0.01; 

0.11; 0.21; 0.31; 0.41), acceleration inversely square case (Poinsot’s spiral (hyperbolic cosine), Earth-
Mars flight 
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Figure 7.58: α  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), acceleration inversely square case (Poinsot’s spiral (hyperbolic cosine), 
Earth-Mars flight 

 

 

Figure 7.59: θɺ  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), acceleration inversely square case (Poinsot’s spiral (hyperbolic cosine), 
Earth-Mars flight 
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Figure 7.60: γ  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), acceleration inversely square case (Poinsot’s spiral (hyperbolic cosine), 
Earth-Mars flight 

 

From figure 7.57, the magnitude of the thrust acceleration is higher for N=1 than for N=2 

because the assumed normalised thrust acceleration 0a  is also higher for N=1 than for 

N=2. Note that the thrust acceleration trend is similar to the ɺθ  trend. The values for the 

thrust angle α  are higher for N=1 than for N=2. For most of the interplanetary flight for 

both cases in figure 7.58, as for the other shapes, the spacecraft is thrusting inwards in the 

radial direction, while in the tangential direction it thrusts in the positive direction. The 

magnitude values of the flight path angle γ  are smaller for N=2 than for N=1. 

 

b) Tangential Case of the Thrust Profile 

 

Figures 7.61 and 7.62 show the TOF and the total excess velocity for (30º, 140º, 250º, 

360º) values of parameter iθ  and (90º, 150º, 210º, 270º, 340º) values of the transfer angle 

θ∆ (N=0). The values used in these figures for the geometric parameter m  were (0.01; 

0.11; 0.21; 0.31; 0.41). 
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Figure 7.61: TOF for 
i

θ  values of (30º, 140º, 250º, 360º) from left to right in the figure, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust profile 
(Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 

 

 

Figure 7.62: 
,T

V∞  for 
i

θ  values of (30º, 140º, 250º, 360º) from left to right in the figure, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust profile 
(Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 

 

From figures 7.61 and 7.62, by increasing the angle iθ , the TOF increases and the 

differences in total excess velocity between different values of m  decrease. The highest 

difference in TOF between different iθ  for the same transfer angle and m  is 0.0836 years, 

while the highest difference in total excess velocity is 1.2939km s. For higher values of 
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m , the TOF increases, while the total excess velocity decreases for 30ºiθ =  and 140ºiθ = , 

and it increases for 250ºiθ =  and 360ºiθ = . 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and for the initial value of iθ  as the 

ones used for N=0. 

 

 

Figure 7.63: TOF for 
i

θ  values of (30º, 140º, 250º, 360º) from left to right in the figure, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile 
(Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight, N=1 and N=2 

 

 

Figure 7.64: 
,T

V∞  for 
i

θ  values of (30º, 140º, 250º, 360º) from left to right in the figure, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile 
(Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight, N=1 and N=2 
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For N=1, the highest difference in TOF between different iθ  for the same transfer angle 

and m  is about 0.1371 years, while the highest difference in total excess velocity is 

0.7976km s. For N=2, the highest difference in TOF between different iθ  for the same 

transfer angle is about 0.1696 years, while the highest difference in total excess velocity is 

0.5334km s. Therefore, when increasing N the TOF becomes more sensitive to iθ  

changes, while the total excess velocity becomes less sensitive to iθ  changes. 

 

The TOF range for this Earth-Mars flight is from 0.3082 years to 4.1081 years. The total 

excess velocity has a minimum value of 0.7682km s and a maximum value of 

15.3776km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.27 years and for a certain number of revolutions, these 

differences increase when increasing the transfer angle. The difference in terms of total 

excess velocity between two consecutive transfer angles is highest between 90ºθ∆ =  and 

150ºθ∆ =  for N=0. The maximum value for these differences is 6.7795km s for N=0 and 

the minimum value is 60.03m s for N=2. 

 

Tables 7.15 and 7.16 show the values for the TOF and the excess velocity in an Earth-Mars 

flight. Parameter iθ  was chosen 30º, the transfer angle θ∆  was chosen 90º and N was 

taken 1 for the first table and 2 for the second one. 

 

N=1 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ), /totalV km s∞  2.6984 2.4687 2.2125 2.0987 2.0794 

( ),1 /V km s∞  0.2619 0.2956 0.3681 0.4574 0.5520 

( ),2 /V km s∞  2.4365 2.1731 1.8444 1.6413 1.5274 

TOF (years) 1.5854 1.6042 1.6350 1.6615 1.6810 

Table 7.15: Excess velocities and TOF values for N=1, 
i

θ =30º, θ∆ =90º, m values of (0.01; 0.11; 0.21; 

0.31; 0.41), tangential thrust profile (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 
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N=2 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ), /totalV km s∞  1.4696 1.1940 1.0600 1.0454 1.0689 

( ),1 /V km s∞  0.0851 0.1150 0.1676 0.2248 0.2819 

( ),2 /V km s∞  1.3844 1.0791 0.8924 0.8206 0.7871 

TOF (years) 2.8476 2.9222 2.9981 3.0426 3.0692 

Table 7.16: Excess velocities and TOF values for N=2, 
i

θ =30º, θ∆ =90º, m values of (0.01; 0.11; 0.21; 

0.31; 0.41), tangential thrust profile (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 

 

For increasing values of m  the TOF increases and the total excess velocity decreases for 

N=1. For N=2, the total excess velocity decreases until 0.31m=  and increases for m  

between 0.31 and 0.41, as for the acceleration inversely square case. The values for the 

total excess velocity are higher when N=1 than when N=2. Note that the excess velocity 

,2∞V  decreases faster than the excess velocity ,1∞V  increases, except for N=2, for m  

between 0.31 and 0.41. As for the other shapes, the total excess velocity and the TOF are 

smaller and higher, respectively, compared with the acceleration inversely square case of 

the thrust profile. 

 

In figures 7.65 to 7.68, the polar plot, the thrust acceleration a , the thrust angle α  and the 

polar angle rate θɺ  as function of time are illustrated for N=1 and N=2 cases that were 

presented in tables 7.15 and 7.16. 
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Figure 7.65: Polar plot for N=1 and N=2, 
i

θ =30º, θ∆ =90º, m values of (0.01; 0.11; 0.21; 0.31; 0.41), 

tangential thrust profile (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 

 

 

Figure 7.66: a plot for N=1 and N=2, 
i

θ =30º, θ∆ =90º, m values of (0.01; 0.11; 0.21; 0.31; 0.41), 

tangential thrust profile (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 
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Figure 7.67: α  plot for N=1 and N=2, 
i

θ =30º, θ∆ =90º, m values of (0.01; 0.11; 0.21; 0.31; 0.41), 

tangential thrust profile (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 

 

 

Figure 7.68: θɺ  plot for N=1 and N=2, 
i

θ =30º, θ∆ =90º, m values of (0.01; 0.11; 0.21; 0.31; 0.41), 

tangential thrust profile (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 

 

The magnitude of the thrust acceleration is higher for N=1 than for N=2 which means that 

the magnitude of the instantaneous thrust required for a longer flight is smaller. Also, the 

values for the thrust angle α  are smaller in magnitude for N=2 than for N=1. 
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7.5. Sinusoidal spiral 
 

Results for the TOF, the excess velocities and the thrust acceleration will be shown and 

discussed for the sinusoidal spiral and for an Earth-Mars mission in this section. The thrust 

profiles used in this analysis are similar to the ones used for the shapes previously 

presented. 

 

a) Acceleration Inversely Square Case of the Thrust Profile 

 

Figures 7.69 and 7.70 show the TOF and the total excess velocity when varying parameter 

iθ  and the transfer angle θ∆ , when the number of revolutions N is 0. In these figures, the 

value used for m  was 0.05, for 0a  was 0.09, the values for 0α  were (-60º, -50º, -40º, -30º, 

-20º), for the initial polar angle iθ  were (120º, 200º, 280º, 360º) and for the transfer angle 

θ∆  were (90º, 150º, 210º, 270º, 340º). 

 

 

Figure 7.69: TOF for 
i

θ  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.09, 

acceleration inversely square case of the thrust profile (sinusoidal spiral), Earth-Mars flight 
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Figure 7.70: 
,T

V∞  for 
i

θ  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.09, 

acceleration inversely square case of the thrust profile (sinusoidal spiral), Earth-Mars flight 

 

From figures 7.69 and 7.70, the TOF increases while the total excess velocities decreases, 

when increasing iθ . The differences in TOF and in total excess velocity between different 

values of iθ , decrease for higher values of the initial polar angle. The highest difference in 

TOF between different iθ  for the same transfer angle and 0α  is 0.0369 years, while the 

highest difference in total excess velocity is 0.3027km s, which are higher than the ones 

for the Poinsot’s spiral (hyperbolic sine). For higher values of 0α , the total excess velocity 

decreases, while the TOF increases. 

 

Figures for 1 and 2 revolutions, using the same values for the geometric parameter m , for 

the transfer angle ∆θ  and for the initial values of α  and θ  can be shown. The normalised 

thrust acceleration 0a  values used in figures 7.71 and 7.72 were 0.04 and 0.03 for N=1 and 

N=2, respectively. 
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Figure 7.71: TOF for 
i

θ  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, acceleration inversely 

square case of the thrust profile (sinusoidal spiral), Earth-Mars flight, N=1 (
0

a =0.04), N=2 (
0

a =0.03) 

 

 

Figure 7.72: 
,T

V∞  for 
i

θ  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, acceleration inversely 

square case of the thrust profile (sinusoidal spiral), Earth-Mars flight, N=1 (
0

a =0.04), N=2 (
0

a =0.03) 

 

In figures 7.71 and 7.72, for N=1, the highest difference in TOF between different iθ  for 

the same transfer angle and 0α  is about 0.0707 years, while the highest difference in total 

excess velocity is 57.7082m s. For N=2, the highest difference in TOF between different 

iθ  for the same transfer angle and 0α  is about 0.0995 years, while the highest difference in 

total excess velocity is 48.7113m s. Therefore, for higher values of N, iθ  increases and 

decreases its influence in the TOF and in the total excess velocity, respectively. 
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The TOF range for this Earth-Mars flight is from 0.3316 years to 3.8613 years. The total 

excess velocity has a minimum value of 1.1820km s and a maximum value of 

14.6387km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.25 years and for a certain number of revolutions, these 

differences increase when increasing the transfer angle. The differences in terms of total 

excess velocity between two consecutive transfer angles is always highest between 

90ºθ∆ =  and 150ºθ∆ = , as for the other shapes. The maximum value for these 

differences is 5.6043km s for N=0 and the minimum value is about 70.73m s for N=2. 

 

Tables 7.17 and 7.18 show the values for the TOF and the excess velocity for an Earth-

Mars flight. Parameters iθ , 0α , θ∆  were assumed 120º, -20º and 90º, respectively. The 

number of revolutions was taken 1 for the first table and 2 for the second one. In table 

7.17, the normalised thrust acceleration 0a  was 0.04, while in table 7.18, this parameter 

was 0.03. Note that the values assumed for 0a  for N=1 and N=2 are the minimum values 

that can be used in both cases for this shape without facing integration problems for the 

interval of input parameters considered. 

 

N=1 0.01=m  0.055m =  0.1m =  0.145m =  0.19m =  

( ),∞ totalV km s  2.8108 2.7616 2.6656 2.5239 2.3377 

( ),1∞V km s  0.6601 0.6781 0.7160 0.7791 0.8772 

( ),2∞V km s  2.1507 2.0835 1.9496 1.7448 1.4605 

TOF (years) 1.6039 1.6093 1.6204 1.6384 1.6653 

Table 7.17: The excess velocities and the TOF values for N=1, 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.055; 0.1; 0.145; 0.19), 
0

a =0.04, acceleration inversely square case (sinusoidal spiral), Earth-

Mars flight 
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N=2 0.01=m  0.055m =  0.1m =  0.145m =  0.19m =  

( ),∞ totalV km s  1.5861 1.5105 1.3054 1.0891 0.8450 

( ),1∞V km s  0.2891 0.3028 0.3386 0.4135 0.5727 

( ),2∞V km s  1.2970 1.2083 1.0068 0.6757 0.2723 

TOF (years) 2.8608 2.8815 2.9325 3.0302 3.2189 

Table 7.18: The excess velocities and the TOF values for N=2, 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.055; 0.1; 0.145; 0.19), 
0

a =0.03, acceleration inversely square case (sinusoidal spiral), Earth-

Mars flight 

 

From tables 7.17 and 7.18, the order of magnitude of the total excess velocity values is 

010 km s and 110 km s− . For increasing values of m , the total excess velocity decreases, 

while the TOF increases. The values for the total excess velocity are higher for N=1 than 

for N=2. Note that the excess velocity ,2∞V  decreases faster than the excess velocity ,1∞V  

increases, for both cases N=1 and N=2. For all values of m , except for 0.19m = , ,2∞V  is 

higher than ,1∞V , a situation that is attractive for the use of swing-bys. 

 

In figures 7.73 to 7.77, the polar plot, the thrust acceleration a , the thrust angle α , the 

polar angle rate θɺ  and the flight path angle as function of time are illustrated for N=1 and 

N=2 cases that were presented in tables 7.17 and 7.18. 
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Figure 7.73: Polar plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.055; 0.1; 0.145; 0.19), acceleration inversely square case (sinusoidal spiral), Earth-Mars flight 

 

 

Figure 7.74: a plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.055; 0.1; 0.145; 0.19), acceleration inversely square case (sinusoidal spiral), Earth-Mars flight 
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Figure 7.75: α  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.055; 0.1; 0.145; 0.19), acceleration inversely square case (sinusoidal spiral), Earth-Mars flight 

 

 

Figure 7.76: θɺ  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.055; 0.1; 0.145; 0.19), acceleration inversely square case (sinusoidal spiral), Earth-Mars flight 

 



Analytical Representations for Low-Thrust Trajectories  
 

 152 

 

Figure 7.77: γ  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.03), 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.055; 0.1; 0.145; 0.19), acceleration inversely square case (sinusoidal spiral), Earth-Mars flight 

 

The magnitude of the thrust acceleration is higher for N=1 than for N=2 because the 

assumed normalised thrust acceleration 0a  is also higher for N=1 than for N=2. Note that 

the thrust acceleration trend is similar to the ɺθ  trend, since the acceleration inversely 

square case of the thrust profile is being considered. The values of the thrust angle α  are 

higher for N=1 than for N=2. For most of the interplanetary flight for both cases in figure 

7.75, the spacecraft is thrusting inwards in the radial direction, while in the tangential 

direction it thrusts in the positive direction (α  is negative, higher than 90º− ), like for the 

other shapes. 

 

b) Tangential Case of the Thrust Profile 

 

In figures 7.78 and 7.79, the TOF and the total excess velocity are illustrated for different 

values of parameter iθ  and of the transfer angle θ∆  (N=0). The values used in these 

figures for m  were (0.01; 0.055; 0.1; 0.145; 0.19), for iθ  and for θ∆  were the same as the 

ones used for the acceleration inversely square case. 
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Figure 7.78: TOF for 
i

θ  values of (120, 200º, 280º, 360º) from left to right in the figure, m values of 

(0.01; 0.055; 0.1; 0.145; 0.19), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust profile 
(sinusoidal spiral), Earth-Mars flight 

 

 

Figure 7.79: 
,T

V∞  for 
i

θ  values of (120, 200º, 280º, 360º) from left to right in the figure, m values of 

(0.01; 0.055; 0.1; 0.145; 0.19), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust profile 
(sinusoidal spiral), Earth-Mars flight 

 

Some remarks can be drawn from figures 7.78 and 7.79. By increasing the initial polar 

angle iθ , the TOF increases, as for the acceleration inversely square case. The highest 

difference in TOF and in total excess velocity between different values of iθ  occurs 

between 120ºiθ =  and 200ºiθ = . The highest difference in TOF between different iθ  for 
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the same transfer angle and m  is 0.07458 years, while the highest difference in total excess 

velocity is 0.2598km s. For higher values of m , the total excess velocity decreases, while 

the TOF increases. 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and for the initial value of iθ  as the 

ones used for N=0. 

 

 

Figure 7.80: TOF for 
i

θ  values of (120, 200º, 280º, 360º) from left to right in the figure, m values of 

(0.01; 0.055; 0.1; 0.145; 0.19), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile 
(sinusoidal spiral), Earth-Mars flight for N=1 and N=2 

 

 

Figure 7.81: 
,T

V∞  for 
i

θ  values of (120, 200º, 280º, 360º) from left to right in the figure, m values of 

(0.01; 0.055; 0.1; 0.145; 0.19), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile 
(sinusoidal spiral), Earth-Mars flight for N=1 and N=2 
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Similar remarks to the ones given for N=0 can be drawn for figures 7.80 and 7.81. The 

differences between the minimum and the maximum values of 0α  in total excess velocity 

and in TOF increase with the number of revolutions and also with the transfer angle θ∆ . 

Note that the TOF and the total excess velocity, for N=1 and N=2, become more sensitive 

to iθ  change than for N=0 and for the acceleration inversely square case. For N=1, the 

highest difference in TOF between different iθ  for the same transfer angle and m  is about 

0.3946 years, while the highest difference in total excess velocity is 1.3503km s. For N=2, 

the highest difference in TOF between different iθ  for the same transfer angle and m  is 

about 9.7278 years, while the highest difference in total excess velocity is 9.6402km s. 

 

The TOF range for this Earth-Mars flight is from 0.3366 years to 14.9125 years. The total 

excess velocity has a minimum value of 0.4223km s and a maximum value of 

14.1791km s. The maximum differences in TOF between two values of the transfer angle 

θ∆  are about 7.1279 years, which much higher than for the other shapes. The difference in 

terms of total excess velocity between two consecutive transfer angles is highest between 

90ºθ∆ =  and 150ºθ∆ =  for N=0. The maximum value for these differences is 

5.7521km s for zero value of N and the minimum value is 4.3180m s for 2 revolutions. 

 

Tables 7.19 and 7.20 show the values for the TOF and the excess velocity for an Earth-

Mars flight. Parameter iθ  was assumed 120º, the transfer angle θ∆  was assumed 90º and 

the number of revolutions was taken 1 for the first table and 2 for the second one. 

 

N=1 0.01=m  0.055m =  0.1m =  0.145m =  0.19m =  

( ), /totalV km s∞  2.7085 2.6572 2.5579 2.4126 2.2241 

( ),1 /V km s∞  0.5746 0.5935 0.6332 0.6989 0.8002 

( ),2 /V km s∞  2.1339 2.0638 1.9247 1.7137 1.4239 

TOF (years) 1.6259 1.6315 1.6432 1.6620 1.6899 

Table 7.19: Excess velocities and TOF values for N=1, 
i

θ =120º, θ∆ =90º, m values of (0.01; 0.055; 0.1; 

0.145; 0.19), tangential thrust profile (sinusoidal spiral) Earth-Mars flight 
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N=2 0.01=m  0.055m =  0.1m =  0.145m =  0.19m =  

( ), /totalV km s∞  1.4787 1.4015 1.2303 0.9596 0.6214 

( ),1 /V km s∞  0.2098 0.2256 0.2660 0.3476 0.5146 

( ),2 /V km s∞  1.2690 1.1759 0.9643 0.6120 0.1068 

TOF (years) 2.8957 2.9170 2.9693 3.0690 3.2602 

Table 7.20: Excess velocities and TOF values for N=2, 
i

θ =120º, θ∆ =90º, m values of (0.01; 0.055; 0.1; 

0.145; 0.19), tangential thrust profile (sinusoidal spiral) Earth-Mars flight 

 

From tables 7.19 and 7.20, the order of magnitude of the total excess velocity values is 

010 km s and 110 km s− . For increasing values of m , the total excess velocity decreases, 

while the TOF increases. The values for the total excess velocity are higher when N=1 than 

when N=2. Note that the excess velocity ,2∞V  decreases faster than the excess velocity ,1∞V  

increases. As for the other shapes, compared with the acceleration inversely square case, 

the TOF and the total excess velocity are higher and smaller for the tangential case, 

respectively. 

 

In figures 7.82 to 7.85, the polar plot, the thrust acceleration a , the thrust angle α  and the 

polar angle rate θɺ  as function of time are illustrated for N=1 and N=2 cases that were 

presented in tables 7.19 and 7.20. 
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Figure 7.82: Polar plot for N=1 and N=2, 
i

θ =120º, θ∆ =90º, m values of (0.01; 0.055; 0.1; 0.145; 0.19), 

tangential thrust profile (sinusoidal spiral) Earth-Mars flight 

 

 

Figure 7.83: a plot for N=1 and N=2, 
i

θ =120º, θ∆ =90º, m values of (0.01; 0.055; 0.1; 0.145; 0.19), 

tangential thrust profile (sinusoidal spiral) Earth-Mars flight 
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Figure 7.84: α  plot for N=1 and N=2, 
i

θ =120º, θ∆ =90º, m values of (0.01; 0.055; 0.1; 0.145; 0.19), 

tangential thrust profile (sinusoidal spiral) Earth-Mars flight 

 

 

Figure 7.85: θɺ  plot for N=1 and N=2, 
i

θ =120º, θ∆ =90º, m values of (0.01; 0.055; 0.1; 0.145; 0.19), 

tangential thrust profile (sinusoidal spiral) Earth-Mars flight 

 

From figure 7.83, the magnitude of the thrust acceleration is higher for N=1 than for N=2 

which means that the magnitude of the instantaneous thrust required for a longer flight is 

smaller. Also, the values for the thrust angle α  are smaller for N=2 than for N=1. 

 

7.6. Exponential Sinusoid 
 

In this section 7.6, results for the TOF, the excess velocities and the thrust acceleration will 

be shown and discussed for the exponential sinusoid and for an Earth-Mars mission. The 
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thrust profiles used in this analysis are the same as the ones used for the shapes previously 

presented. 

 

a) Acceleration Inversely Square Case of the Thrust Profile 

 

Figures 7.86 and 7.87 show the TOF and the total excess velocity when changing 

parameter 2k  and the transfer angle θ∆ , when N=0. Note that the initial polar angle iθ  is 

zero degrees. The values used in these figures for the geometric parameter 2k  were (0.1; 

0.15; 0.2; 0.25), for the initial value of α  were (20º, 30º, 40º, 50º, 60º), for the initial flight 

path angle 1γ  was 0º and for the transfer angle θ∆  were (90º, 150º, 210º, 270º, 340º). The 

normalised thrust acceleration 0a  value used in figures 7.86 and 7.87 was 0.07. 

 

Note that values used for the geometric parameter 2k  were not chosen according to 

equation (5.4) presented in chapter 5: ( )2 2N 1/ 2p a k= . Instead, the interval of values for 2k  

was selected because it could be used for N 0,1,2=  and for different values of transfer 

angles θ∆  without causing integration errors (chapter 6), while using the acceleration 

inversely square case. Through equation (5.4), the minimum value for the geometric 

parameter 2k  can be computed for a trajectory that has its minimum radius (pericentre) at 

the initial point of the thrust arc and its maximum radius (apocentre) when the spacecraft 

reach the final point of thrust arc. In this master thesis, this equation was not used as a 

constraint, i.e., smaller values of 2k  than the ones given by equation (5.4) can still be 

picked. In this way, feasible solutions with these values of 2k  are still taken into account. 

In order to better compare the results between the acceleration inversely square case and 

the tangential case, the same values of 2k  (0.1; 0.15; 0.2; 0.25) were used for this last case 

of the thrust profile (section 7.6b). 

 

Note also that the values chosen for the initial thrust angle 0α  were positive, unlike the 

values chosen for the other five shapes. For the other shapes, integration errors occur if the 

positive values are used, however for the exponential sinusoid if the negative values of 0α  
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are assumed, the total excess velocity values will be higher compared with the situation 

where positive ones are picked. 

 

 

Figure 7.86: TOF for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), 
i

θ =0º, 
1

γ =0º, 
0

a =0.07, acceleration 

inversely square case of the thrust profile (exponential sinusoid), Earth-Mars flight 

 

 

Figure 7.87: 
,T

V∞  for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), 
i

θ =0º, 
1

γ =0º, 
0

a =0.07, acceleration 

inversely square case of the thrust profile (exponential sinusoid), Earth-Mars flight 
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Some remarks can be drawn from figures 7.86 and 7.87. By increasing the geometric 

parameter 2k , the TOF increases, while the total excess velocity decreases. The differences 

in TOF and in total excess velocity between different values of 2k  increase for higher 

values of the transfer angle θ∆ . The highest difference in TOF between different values of 

2k  for the same transfer angle and 0α  is 0.0187 years, while the highest difference in total 

excess velocity is 0.6295km s. For increasing values of 0α , the TOF increases while the 

total excess velocity decreases for transfer angles smaller than 210º (inclusive) and it 

decreases for transfer angles higher than 210º. 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter 2k , for ∆θ , 1α  and 1γ . The normalised thrust acceleration 0a  values 

used in figures 7.88 and 7.89 were 0.04 and 0.05 for N=1 and N=2, respectively. Unlike 

for the other shapes, the normalised thrust acceleration is higher for N=2 than for N=1. 

This is due to integration errors that occur for the geometric parameter 2k  and for the 

initial flight path angle 1γ  chosen. 

 

 

Figure 7.88: TOF for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º), 
1

γ =0º, 
i

θ =0º, acceleration inversely square 

case of the thrust profile (exponential sinusoid), Earth-Mars flight, N=1 (
0

a =0.04) and N=2 (
0

a =0.05) 
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Figure 7.89: 
,T

V∞  for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º), 
1

γ =0º, 
i

θ =0º, acceleration inversely square 

case of the thrust profile (exponential sinusoid), Earth-Mars flight, N=1 (
0

a =0.04) and N=2 (
0

a =0.05) 

 

Similar remarks as the ones given for N=0 can be drawn for figures 7.88 and 7.89. Note 

that, unlike for N=0 and N=1, for N=2 and between 2 0.2k =  and 2 0.25k = , the total 

excess velocity increases. For N=1, the highest difference in TOF between different 2k  and 

for the same transfer angle and 0α  is about 0.2311 years, while the highest difference in 

total excess velocity is 1.2725km s. These differences are considerably high compared 

with the ones for the sinusoidal spiral, for the same thrust profile. For N=2, the highest 

difference in TOF between different 2k  and for the same transfer angle and 0α  is about 

2.6208 years, while the highest difference in total excess velocity is about 1.3km s. 

 

The TOF range for this Earth-Mars flight is from 0.2701 years to 6.4256 years. The total 

excess velocity has a minimum value of 0.3715km s and a maximum value of 

20.2533km s. As expected, the minimum value for the TOF and the maximum value for 

the total excess velocity occur for the smallest transfer angle – 90º (N=0). The maximum 

value for the TOF occurs for the highest transfer angle presented – 340º (N=2), while the 

minimum value for the total excess velocity occurs for the transfer angle 210º (N=2), 

unlike for the other shapes. 
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The maximum difference in TOF between two consecutive values of the transfer angle θ∆  

is about 1.41 years. The maximum value for these differences is 10.9661km s for N=0 and 

the minimum value is about 76.26m s for 2 revolutions. 

 

Tables 7.21 and 7.22 show the values for the TOF and the excess velocity for an Earth-

Mars flight. Parameter 2k  was chosen 0.01, 0α  was chosen 20º, θ∆  was chosen 90º and N 

was taken 1 for the first table and 2 for the second one. In these tables, the normalised 

thrust acceleration 0a  was 0.04. Note that the values assumed for 0a  for N=1 and N=2 are 

the minimum values that can be used in both cases for this shape without facing integration 

problems for the interval of the geometric parameter 1γ  and for the other input parameters 

considered. 

 

N=1 1 0º=γ  1 0.75º=γ  1 1.5º=γ  1 2.25º=γ  1 3º=γ  

( ),∞ totalV km s  2.5808 2.6746 2.7666 2.8564 2.9449 

( ),1∞V km s  41.5 10−×  0.3920 0.7834 1.1742 1.5644 

( ),2∞V km s  2.5806 2.2826 1.9832 1.6822 1.3805 

TOF (years) 1.5476 1.5874 1.6293 1.6731 1.7192 

Table 7.21: The excess velocities and the TOF values for N=1, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of 

(0º; 0.75º; 1.5º; 2.25º; 3º), 
0

a =0.04, 
i

θ =0º, acceleration inversely square case (exponential sinusoid), 

Earth-Mars flight 

 

N=2 1 0º=γ  1 0.75º=γ  1 1.5º=γ  1 2.25º=γ  1 3º=γ  

( ),∞ totalV km s  1.6411 1.6292 1.7236 1.8480 2.0391 

( ),1∞V km s  0.1418 0.4212 0.7985 1.1831 1.5695 

( ),2∞V km s  1.4994 1.2080 0.9252 0.6649 0.4696 

TOF (years) 2.7789 2.9085 3.0464 3.1933 3.3498 

Table 7.22: The excess velocities and the TOF values for N=2, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of 

(0º; 0.75º; 1.5º; 2.25º; 3º), 
0

a =0.04, 
i

θ =0º, acceleration inversely square case (exponential sinusoid), 

Earth-Mars flight 
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For increasing values of m , the total excess velocity and the TOF increase. The values for 

the total excess velocity are higher for N=1 than for N=2. Note that the excess velocity ,1∞V  

increases faster than the excess velocity ,2∞V  decreases, for both cases N=1 and N=2. 

 

In figures 7.90 to 7.94, the polar plot, the thrust acceleration a , the thrust angle α , the 

polar angle rate θɺ  and the flight path angle as function of time are illustrated for N=1 and 

N=2 cases that were presented in tables 7.21 and 7.22. 

 

 

Figure 7.90: Polar plot for N=1 and N=2, 
0

a =0.04, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 0.75º; 

1.5º; 2.25º; 3º), 
i

θ =0º, acceleration inversely square case (exponential sinusoid), Earth-Mars flight 
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Figure 7.91: a plot for N=1 and N=2, 
0

a =0.04, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 0.75º; 1.5º; 

2.25º; 3º), 
i

θ =0º, acceleration inversely square case (exponential sinusoid), Earth-Mars flight 

 

 

Figure 7.92: α  plot for N=1 and N=2, 
0

a =0.04, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 0.75º; 1.5º; 

2.25º; 3º), 
i

θ =0º, acceleration inversely square case (exponential sinusoid), Earth-Mars flight 
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Figure 7.93: θɺ  plot for N=1 and N=2, 
0

a =0.04, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 0.75º; 1.5º; 

2.25º; 3º), 
i

θ =0º, acceleration inversely square case (exponential sinusoid), Earth-Mars flight 

 

 

Figure 7.94: γ  plot for N=1 and N=2, 
0

a =0.04, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 0.75º; 1.5º; 

2.25º; 3º), 
i

θ =0º, acceleration inversely square case (exponential sinusoid), Earth-Mars flight 

 

From figure 7.91, although the assumed normalised thrust acceleration 0a  is the same for 

N=1 and for N=2, differences in values of the instantaneous thrust acceleration between 

the two cases of N. Note that the thrust acceleration trend is similar to the ɺθ  trend. The 

values of the thrust angle α  are higher for N=1 than for N=2. For most of the 

interplanetary flight for the case N=1 in figure 7.92, the spacecraft is thrusting inwards in 

the radial direction, while in the tangential direction it thrusts in the positive direction (α  

is negative, higher than 90º− ), as for the other shapes. 
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b) Tangential Case of the Thrust Profile 

 

Figures 7.95 and 7.96 show the TOF and the total excess velocity when changing 

parameter 2k  and the transfer angle θ∆  (N=0). The values used in these figures for the 

geometric parameter 2k  were (0.1; 0.15; 0.2; 0.25), for the initial flight path angle 1γ  were 

(0º; 0.75º; 1.5º; 2.25º; 3º) and for the transfer angle θ∆  were (90º, 150º, 210º, 270º, 340º). 

 

 

Figure 7.95: TOF for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
1

γ  values of (0º; 

0.75º; 1.5º; 2.25º; 3º), 
i

θ =0º, θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust profile 

(exponential sinusoid), Earth-Mars flight 
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Figure 7.96: 
,T

V∞  for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
1

γ  values of (0º; 

0.75º; 1.5º; 2.25º; 3º), 
i

θ =0º, θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust profile 

(exponential sinusoid), Earth-Mars flight 

 

From figures 7.95 and 7.96, by increasing the geometric parameter 2k , the TOF increases, 

while the total excess velocity decreases, as for the acceleration inversely square case. For 

increasing values of 1γ , the TOF increases, while the total excess velocity decreases. The 

highest difference in TOF between different 2k  for the same transfer angle and m  is 

0.02547 years, while the highest difference in total excess velocity is 0.5343km s. The 

differences in TOF and in total excess velocity between different values of 1γ  increase and 

decrease, respectively for higher values of the transfer angle θ∆ . 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter 2k , for the transfer angle ∆θ  and for the initial flight path angle 1γ  as 

the ones used for N=0. 
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Figure 7.97: TOF for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
1

γ  values of (0º; 

0.75º; 1.5º; 2.25º; 3º), 
i

θ =0º, θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile 

(exponential sinusoid), Earth-Mars flight, N=1 and N=2 

 

 

Figure 7.98: 
,T

V∞  for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
1

γ  values of (0º; 

0.75º; 1.5º; 2.25º; 3º), 
i

θ =0º, θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust profile 

(exponential sinusoid), Earth-Mars flight, N=1 and N=2 

 

Similar remarks to the ones given for N=0 can be drawn for figures 7.97 and 7.98. For 

N=1, the total excess velocity decreases with the increasing of 2k  for transfer angles 

smaller or equal to 150º. For higher values of ∆θ , the total excess velocity increases for 

values of 2k  higher than 0.15 (for the highest values of 1γ ). For N=1, the highest 

difference in TOF between different 2k  for the same transfer angle and 0α  is about 0.3825 

years, while the highest difference in total excess velocity is 1.1566km s. For N=2, the 

highest difference in TOF between different 2k  for the same transfer angle and 0α  is about 
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5.5085 years, while the highest difference in total excess velocity is 3.1882km s. So, for 

higher values of N, the TOF and the total excess velocity become more sensitive to 2k  

variation. 

 

The TOF range for this Earth-Mars flight is from 0.2759 years to 10.6231 years. The total 

excess velocity has a minimum value of 0.2732km s and a maximum value of 

20.2235km s. As expected, the minimum value for the TOF and the maximum value for 

the total excess velocity occur for the smallest transfer angle – 90º (N=0); while the 

minimum value for the total excess velocity occurs for the transfer angle 210º (N=2), 

unlike for the other shapes. 

 

The maximum difference in TOF between two consecutive values of the transfer angle θ∆  

is about 3.1011 years. For a certain number of revolutions, these differences increase when 

increasing the transfer angle. The difference in terms of total excess velocity between two 

consecutive transfer angles is highest between 90ºθ∆ =  and 150ºθ∆ =  for N=0. The 

maximum value for these differences is 10.4851km s for N=0 and the order of magnitude 

of the minimum value is 1110− m s for 2 revolutions. 

 

Tables 7.23 and 7.24 show the values for the TOF and the excess velocity for an Earth-

Mars flight. Parameter 2k  was assumed 0.01, the transfer angle θ∆  was assumed 90º and 

the number of revolutions was taken 1 for the first table and 2 for the second one. 

 

N=1 1 0º=γ  1 0.75º=γ  1 1.5º=γ  1 2.25º=γ  1 3º=γ  

( ), /totalV km s∞  2.7967 2.6945 2.7448 2.8113 2.8818 

( ),1 /V km s∞  0.2057 0.4206 0.7882 1.1721 1.5597 

( ),2 /V km s∞  2.5909 2.2739 1.9566 1.6393 1.3221 

TOF (years) 1.5652 1.6072 1.6506 1.6955 1.7420 

Table 7.23: Excess velocities and TOF values for N=1, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 

2.25º; 3º), 
i

θ =0º, tangential thrust profile (exponential sinusoid), Earth-Mars flight 
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N=2 1 0º=γ  1 0.75º=γ  1 1.5º=γ  1 2.25º=γ  1 3º=γ  

( ), /totalV km s∞  1.4997 1.5122 1.5841 1.6577 1.7348 

( ),1 /V km s∞  0.0631 0.3918 0.7800 1.1695 1.5590 

( ),2 /V km s∞  1.4366 1.1204 0.8041 0.4882 0.1758 

TOF (years) 2.8267 2.9597 3.1006 3.2498 3.4081 

Table 7.24: Excess velocities and TOF values for N=2, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 

2.25º; 3º), 
i

θ =0º, tangential thrust profile (exponential sinusoid), Earth-Mars flight 

 

For increasing values of 1γ , the TOF and the total excess velocity increase for N=2. For 

N=1, the total excess velocity decreases between 1 0º=γ  and 1 0.75º=γ , while it increases 

for values of 1γ  between 0.75º and 3º. The opposite situation occurred for the acceleration 

inversely square case. 

 

In figures 7.99 to 7.102, the polar plot, the thrust acceleration a , the thrust angle α  and θɺ  

as function of time are shown for N=1 and N=2 cases presented in tables 7.23 and 7.24. 

 

 

Figure 7.99: Polar plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 3º), 

i
θ =0º, tangential thrust profile (exponential sinusoid), Earth-Mars flight 
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Figure 7.100: a plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 3º), 
i

θ =0º, 

tangential thrust profile (exponential sinusoid), Earth-Mars flight 

 

 

Figure 7.101: α  plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 3º), 
i

θ =0º, 

tangential thrust profile (exponential sinusoid), Earth-Mars flight 
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Figure 7.102: θɺ  plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 3º), 
i

θ =0º, 

tangential thrust profile (exponential sinusoid), Earth-Mars flight 

 

The values for the thrust angle α  are smaller for N=2 than for N=1. The magnitude of the 

thrust acceleration is higher for N=1 than for N=2 which means that the magnitude of the 

instantaneous thrust required for a longer flight is smaller. 
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7.7. Conclusions 
 

Some conclusions can be drawn from the analyse done in the previous sections. 

 

The variation of the parameter iθ  does not have any influence on the performance of the 

spacecraft in terms of TOF, thrust acceleration and excess velocities for the Archimedean 

spiral and for the logarithmic spiral, for both thrust profiles analysed in this chapter and for 

the constant acceleration case of the thrust profile presented in appendix D. In this way, for 

these two shapes, iθ  is not part of the class of variables S  (chapter 6) that are required as 

an input for a low-thrust problem. 

 

As already mentioned in this chapter, due to integration problems (chapter 6), feasible 

shapes can only be found for certain combination of parameters. For the lowest value of 

the normalised thrust acceleration in the acceleration inversely square case of the thrust 

profile (to obtain a feasible shape), the available interval of values for the geometric 

parameter is always narrower than the interval for the tangential case. However, in order to 

have a better comparison between different thrust profiles, the same values for the input 

variables (transfer angle, geometric parameters and initial polar angle) were used. 

Therefore, a narrower interval of values for the geometric parameters was used for the 

tangential case compared with the available interval that could have been chosen for this 

thrust profile. 

 

Note that for the logarithmic spiral and for the Poinsot’s spiral (hyperbolic cosine), for the 

examples given in this chapter, the excess velocity at the target planet ( ,2V∞ ) is 

significantly higher than the excess velocity at the departure planet ( ,1V∞ ). This situation is 

attractive for a mission where swing-bys are used. In this case, there is no need to slow 

down the spacecraft, therefore high values of the excess velocity ,2V∞  are preferable if the 

purpose is to use gravity assist at that planet and not orbit insertion. 
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Table 7.25 shows the range for the thrust acceleration and the minimum values for the total 

excess velocity for the cases presented in this chapter and for the acceleration inversely 

square and tangential cases of the thrust profile. 

 

Shapes Minimum 
,T

V∞  

(acceleration 
inversely square 

case) (km s) 

Range for a 
(acceleration inversely 

square case) 

( 2m s ) 

Minimum 
,T

V∞  

(tangential case) 

( km s) 

Range for a 
(tangential case) 

( 2m s ) 

Archimedean 
spiral 

1.2767 ~0.8 – 2.4 410−×  1.2285 ~0.2 – 3.2 410−×  

Logarithmic 
spiral 

1.2397 ~1.2 – 3 410−×  1.2004 ~1 – 20 510−×  

Poinsot’s spiral 
(hyperbolic sine) 

1.2754 ~1 – 3 410−×  1.2349 ~0.2 – 5.5 410−×  

Poinsot’s spiral 
(hyperbolic cosine) 

1.1663 ~0.8 – 2.4 410−×  0.7682 ~0.8 – 14 510−×  

Sinusoidal spiral 1.1820 ~0.8 – 2.4 410−×  0.4223 ~ 610−  - 1.4 410−×  
Exponential 

sinusoid 
0.3715 ~1 – 2.4 410−×  0.2732 ~ 610−  - 1.6 410−×  

Table 7.25: Minimum values for the total excess velocity and the range of values for the thrust 
acceleration, for the acceleration inversely square and tangential cases of the thrust profile 

 

In the tangential thrust case, for the examples given, the sinusoidal spiral and the 

exponential sinusoid have the lower values of thrust acceleration, while the Poinsot’s spiral 

(hyperbolic sine) and the Archimedean spiral have the highest. In terms of total excess 

velocity, the sinusoidal spiral and the exponential sinusoid show the lowest values, while 

the Poinsot’s spiral (hyperbolic sine) has the highest. Note that this does not mean that this 

last shape performs worse that the other shapes. This only means that for the input 

parameters chosen, this shape showed the worst results. During this sensitivity analysis, it 

was not possible to understand completely the influence of the input parameters 

( , ,i Kθ θ∆ ) on the shapes’ performance (TOF, excess velocities and thrust acceleration). 

For instance, the excess velocity variation trend with the geometric parameter might not be 

monotonous (the logarithmic spiral (table 7.7) and the exponential sinusoid (table 7.23)) 

for a certain value of the transfer angle θ∆ , but it can be for other values of θ∆ . 

 

In the acceleration inversely square thrust profile case, for the examples given (table 7.25), 

the exponential sinusoid has the lowest value of the total excess velocity, while the 

Archimedean spiral has the highest one. The shapes’ performance in terms of TOF, thrust 

acceleration and excess velocities depends on the minimum allowed value for the 
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parameter 0a  for certain combination of input parameters. For higher values of the transfer 

angle θ∆  and complete number of revolutions N, the minimum value for 0a  that can be 

selected without having integration errors (chapter 6) generally decreases. However, this 

value not only depends on θ∆  and N, but also on the geometric parameter and on the 

initial values for θ  and α  that are being picked. Often during this sensitivity analysis, 

when changing the available interval of values for one input parameter, the interval of 

available values for the other input parameters is affected. In this way, it is not possible to 

limit the search space in order to avoid integration problems, since the available interval of 

values for each input variable constantly varies. In chapter 8 and 9, an optimisation 

procedure will be done in order to compare the shapes’ performance. Due to the fact that 

there will be no reduction on the search space of the input variables, computation time of 

this optimisation procedure will be significantly larger compared with the tangential case, 

since there are two more input variables and there will be integration problems that will 

slow down the program. 

 

Comparing the performance between the acceleration inversely square case of the thrust 

profile and the tangential case, the instantaneous thrust acceleration values are generally 

higher for the first case than for the tangential one. Also, the total excess velocity values 

are generally smaller for the tangential case than for the acceleration inversely square case 

of the thrust profile. Note that although in these examples the acceleration inversely square 

case performed worse than the tangential case, it does not mean that this thrust profile 

should be discarded. An optimisation procedure is still required for both cases in order to 

compare them and to find which one yields the best results. 

 

Table 7.26 shows the minimum values for the total excess velocity and for the normalised 

thrust acceleration for the example cases presented in this chapter and in appendix D, for 

the acceleration inversely square and constant acceleration cases of the thrust profile. 
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Shapes Minimum 
,T

V∞  

(acceleration inversely 

square case) (km s) 

Minimum 
0

a  

(acceleration 
inversely square 

case) 

Minimum 
,T

V∞  

(constant acceleration 
case) 

( km s) 

Minimum 
0

a  

(constant 
acceleration 

case) 

Archimedean 
spiral 

1.2767 0.02 1.4630 0.02 

Logarithmic 
spiral 

1.2397 0.02 1.4021 0.02 

Poinsot’s spiral 
(hyperbolic sine) 

1.2754 0.02 2.5842 0.04 

Poinsot’s spiral 
(hyperbolic 

cosine) 

1.1663 0.03 1.3095 0.02 

Sinusoidal spiral 1.1820 0.03 1.3107 0.02 
Exponential 

sinusoid 
0.3715 0.04 0.3772 0.03 

Table 7.26: Minimum values for the total excess velocity and for the normalised thrust acceleration, 
for the acceleration inversely square and constant acceleration cases of the thrust profile 

 

Regarding the constant acceleration case of the thrust profile, the minimum total excess 

velocity values are always higher than for the acceleration inversely square case of the 

thrust profile. Note that the values for the input variables in both cases were the same in 

this chapter and in appendix D, except for the normalised thrust acceleration ones. For all 

shapes, except for the Poinsot’s spiral (hyperbolic sine), the minimum values for the 

normalised thrust acceleration used without causing integration errors are higher or equal 

for the acceleration inversely square case of the thrust profile than for the constant thrust 

one. Generally, for increasing values of the transfer angle ∆θ  and of the complete number 

of revolutions N, the difference of values for the minimum normalised thrust acceleration 

between these two cases of the thrust profile decreases. For the Archimedean spiral and for 

the logarithmic spiral, the values used for 0a  are the same for both cases of the thrust 

profile, for N=2. Note that the thrust acceleration required for the constant acceleration 

case is significantly higher since the differences in 0a  between this case and the 

acceleration inversely square one are not significantly high and 2
0 1 consta a rµ= =  (for 

the constant acceleration case), while for the acceleration inversely square case, the thrust 

acceleration decreases with 21 r . Also, the total excess velocity is, generally, higher than 

for the acceleration inversely square case. For these reasons, the analysis for the constant 

acceleration case of the thrust profile will not carry on and an optimisation procedure will 

not be done in chapter 8. 
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Figure 7.103: Representation of the dynamic parameters: thrust acceleration (a ), the velocity of the 
spacecraft (V ), the thrust angle (αααα ) and the flight path angle (γγγγ ) 

 

One important remark was present in all sections of this chapter and in appendix D for the 

acceleration inversely square and constant acceleration cases of the thrust profile: the 

negative values of the thrust angle α . Figure 7.103 illustrates the situation that will be 

discussed in this paragraph. In all shapes, the thrust angle α  is negative and it can reach 

values of -70º; this means that the spacecraft is almost thrusting inwards in the radial 

direction, in the same direction as the gravitational acceleration, while in the tangential 

direction it thrusts in the positive direction. These results are valid since they were 

benchmarked by a test program. The only explanation for these negative values of the 

thrust angle is that in order to satisfy the initial and final conditions imposed by the low-

thrust problem (Earth-Mars flight), the spacecraft will have to thrust inwards in the radial 

direction. Note that all the initial values for the thrust angle, 0α  were negative, except for 

the exponential sinusoid. Negative values were chosen, because otherwise the trajectory 

would not be computed, due to integration problems. Note that for the tangential case, the 

magnitude of the thrust angle is not higher than 17º for all shapes. On the other hand, 

values for the thrust angle will have to reach at least -70º, in order for the spacecraft to 

thrust according to 2
0a a rµ=  or 2

0 1 const= =a a rµ . 
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8. Optimisation 
 

Optimisation refers to a study of a problem, where “the best” out of many solutions is 

sought. In an interplanetary mission where a spacecraft trajectory is being designed, “the 

best” means the trajectory that can perform “better” than any other possible trajectory. 

Performing “better” means that the trajectory chosen maximizes or minimizes a certain 

objective function. Often, for a trajectory design problem, the fuel mass consumption and 

the time of flight (TOF) functions are the ones that need to be minimized. Note that the 

optimized trajectory is chosen among possible trajectories, i.e., among trajectories that 

respect constraints that the user imposes for the problem. For instance, constraints can be 

given for the maximum TOF, the maximum total excess velocity or interval of time for the 

launch date. 

 

In sections 8.1 and 8.2, an overview of some optimisation methods and a brief description 

about multi-objective optimisation will be presented, respectively. An explanation about 

the optimisation procedure implemented in this master thesis will be given in section 8.3. 

 

8.1. Optimisation Methods 
 

Optimisation methods are divided in two categories [Noomen, 2007]: the analytical 

methods that have a direct solving and the numerical methods that need an iteration 

procedure to be solved. Among the numerical methods, there are three main types 

[Melman, 2007]: 

 

• Calculus-based 

• Enumerative 

• Random search 

 

These three methods will be discussed in detail in the following sections. 
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8.1.1. Calculus-Based Methods 
 

Calculus- or gradient-based techniques are optimisation methods that use the derivatives of 

the objective function. Calculus-based methods are divided in two main classes: the direct 

methods and the indirect methods [Melman, 2007]. The indirect methods find the 

maximum or the minimum of a certain objective function by setting its gradient equal to 

zero, while the direct methods find the optimal solution by moving in the direction of the 

largest gradient [Melman, 2007]. Unfortunately, these methods are only efficient if the 

objective function is unimodal, i.e., it has only one local maximum or minimum. To better 

explain this situation, figure 8.1 illustrates a function that is multimodal, i.e., that has 

multiple minima and maxima. For instance, if the search for the global minimum starts 

near one of the local minima, the procedure will not find overall the optimal one. This 

means that frequently the use of calculus-based methods in this kind of functions results in 

the determination of a local optimum. Note that the fact that derivatives are required 

represents a drawback in these methods. In many problems, the expressions for the 

derivatives are quite complex and also present singularities. 

 

 

Figure 8.1: A multimodal function: ( ) ( ) ( ) ( ) ( )2 22 2 2 2
2 1 3 5 1, 3 1 10 5 1 3x y x y x yf x y x e x x y e e− − + − − − + −= − − − − −  

[Melman, 2007] 

 

The problem presented in this master thesis is a complex and multimodal problem, with 

several undefined derivatives. For this reason, the calculus-based method was not chosen 

in this master thesis. 
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8.1.2. Enumerative Methods 
 

Enumerative methods are quite straightforward methods. Within a search space, these 

methods find the optimal solution by looking at all objective function values, one at the 

time. They are mostly rejected due to their lack of efficiency, i.e., the search space, for 

most problems, is too large to search for all objective function values one at the time. A 

more advanced form for the enumerative techniques is Dynamic Programming (DP). The 

DP technique divides a complex problem into many sub-problems that are more likely to 

be solved [Melman, 2007]. Knowing the sub-solutions of the simpler problems, the 

solution of the original problem can be found by combining these sub-solutions. DP has 

the disadvantage of becoming very slow when the problem in question increases in size 

and complexity. 

 

The Simulated Annealing (SA) can be also considered part of the enumerative methods 

[Noomen, 2007]. This technique imitates the annealing of metal, where the objective 

function corresponds to the energy state of the metal that has to be minimized [Melman, 

2007]. This method makes use of a search procedure that uses random choice as a tool to 

guide a highly exploitative search through a coding parameter space. This kind of search 

does not necessarily mean directionless, unlike for the random methods (see section 8.1.3). 

 

According to [Noomen, 2007], the Genetic Algorithm (GA) method (or Evolution 

Programming (EP)) can be inserted in the category of the enumerative methods. GA is a 

relatively new area of research that applies the ‘survival-of-the fitness’ principle. It tries to 

find the optimal solution through a certain population of solutions that have the 

opportunity to evolve and create new solutions (individuals). The fittest individuals have 

higher probability to be chosen to produce offspring, and after a certain number of 

generations, only fitter individuals are most likely to survive and become close to the 

optimal solution. Figure 8.2 illustrates how GA works. 
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Figure 8.2: Scheme illustrating the steps to take in a GA method 

 

An initial population is created randomly. This means that a good starting point is not 

necessary. Afterwards, the objective function is evaluated for each individual in the 

population, yielding the fitness of each individual. Next, the test is made to check if the 

global solution was found. If the optimal was found, the program will stop; otherwise, 

some genetic operators (crossover, mutation, immigration, among others) are applied to the 

population creating offspring. The offspring will take the place of their parents and form a 

new population. In this way, the cycle will be repeated over and over until the optimum is 

found. 

 

GA has already proven to be useful in large and complex problems [Melman, 2007]. 

Although very efficient, GA is not going to be used in this master thesis. The problem does 

not have many independent variables and, mainly due to programming time, it will have to 

be rejected. 

 

8.1.3. Random Methods 
 

In random methods, individuals are randomly picked out of a certain search space, their 

objective function is computed and the best one is saved. They are not expected to perform 

better that the standard enumerative methods. The Monte Carlo technique (random 

method) has the advantage of being a straightforward method (quite simple to implement). 

Since the problem in this master thesis does not involve many input variables (at maximum 

five), there is no need to use a more complex method, like the GA method. The time 

required to implement a Monte Carlo algorithm is significantly less than the one required 

for the GA, the SA or the DP. 
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8.2. Multi-Objective Optimisation 
 

Often when designing an interplanetary mission, more than one objective is required to be 

optimized. The mass of the spacecraft is normally the primary measure of performance, 

i.e., the objective is usually to maximize the mass of the spacecraft (minimize fuel mass 

consumption). However, the minimization of the TOF, for instance, can also be considered 

an important optimisation objective. Depending on the mission purpose, other objectives 

might be chosen. The combination of these objectives yields a multi-objective optimisation 

problem. 

 

In multi-objective optimisation, a common method used is to combine the multiple 

objectives into a scalar objective F . This is obtained by weighting the influence of each 

sub-objective jf  and summing them [Melman, 2007]: 

 

( ) ( )
1

k

j j
j

F a f aω
=

=∑  (8.1) 

 

The parameter jω  in equation (8.1) is a weighting factor. This is a quite simple method, 

but it introduces new parameters: weighting factors. In order to use this method, the user 

should be familiar with the proper value that should be attributed to the weighting factors. 

Note that a single-objective optimisation will generally have a single optimal solution. This 

means that using this method, it is not possible to see and analyse trades between different 

objectives. An optimal solution will depend on the relationship between the sub-objectives 

(weighting factors). The determination of the weighting factors itself can be considered an 

optimisation procedure. Due to the lack of experience in choosing values for the weighting 

factors, this method was not used in this master thesis. Instead, a Pareto optimisation was 

implemented. 

 

Pareto optimisation uses the principle of optimizing multiple objectives. The Pareto-

optimum is a group of optimal individuals and they are optimal in the sense that no 

improvements can be obtained in one objective without degradation in the others [Melman, 

2007]: 
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( ) ( ) ( ) ( )1 ; 1i i i if a f b i k f a f b i k≤ ∀ ≤ ≤ < ∃ ≤ ≤  (8.2) 

 

In the case of minimization, individual b  is dominated by individual a  if the conditions in 

(8.2) are satisfied. This means that individual b  performs worse or equal to individual a . 

In the case where individual a  is not dominated by any other individual in the population, 

this individual is called Pareto-optimal and it belongs to the Pareto front. The Pareto front 

corresponds to a family of individuals that are Pareto-optimal. In figure 8.3, the individuals 

selected for the Pareto front are represented with a red colour, while the rest of the 

individuals of the population that were not selected are with black colour. Note that 

although individual a performs better in terms of the objective 2f  with respect to 

individual b, it performs worse in terms of the objective 1f  with respect to individual b. 

 

 

Figure 8.3: Example of a Pareto front (individuals in red) 

 

In this master thesis, after using a Monte Carlo optimisation method, a Pareto front will be 

built using two objectives: the fuel mass consumption (during the low-thrust flight) and the 

total excess velocity (chemical burn). Both objectives should be minimized. 
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8.3. Optimisation Procedure 
 

The first step before using optimisation is to choose the cases that are the most interesting 

to be analysed. For instance, there is no time to analyse all shapes for all combinations 

possible of departure and target planets and thrust profiles. Instead, 3 representative 

missions are selected – Earth-to-Mars, Earth-to-Jupiter and Earth-to-Mercury, for the 2 

thrust profiles presented before and for the 6 shapes named in chapter 6. Therefore, 36 

cases will be analysed. 

 

8.3.1. Description of the Optimisation Problem 
 

In this master thesis, a Monte Carlo optimisation method (section 8.1.3) was used to obtain 

Pareto fronts (section 8.2) for the 6 shapes described in chapter 6, for 3 missions: Earth-to-

Mars, Earth-to-Jupiter and Earth-to-Mercury and for 2 thrust profiles: “acceleration 

inversely square”, where the magnitude of the thrust acceleration monotonically decreases 

with the square distance to the Sun and the tangential one. The number of individuals of 

the population used in the program was 75 000 for the tangential and for the acceleration 

inversely square cases of the thrust profile. 75 000 was the number chosen for both thrust 

profiles after some tests with different numbers for the population (see appendix G). 

 

In order to implement a Monte Carlo method, random values were picked for each input 

variables. For the acceleration inversely square case, these values are: 

 

*
0 0input , , 2 , ,iK N aθ θ π α = ∆ +   

 

For the tangential thrust profile case, the input variables are: 

 

*input , , 2iK Nθ θ π = ∆ +   

 

Note that *K  represents all the geometric variables that have to be given as input in order 

to compute the radius r . For all shapes, except for the exponential sinusoid, *K  
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corresponds to only one variable. In the case of the exponential sinusoid shape, there are 2 

geometric variables that have to be given as an input and iθ  is no longer an input variable 

(see section 5.5). Also, for the Archimedean spiral and for the logarithmic spiral, iθ  is no 

longer an input variable, therefore the number of variables is two for the tangential case 

and four for the acceleration inversely square case of the thrust profile. Note that θ∆  is the 

angle between 1r  and 2r , without taking into account the number of revolutions 

( Nif πθθθ 2+∆+= ). Notice that the terms 2 Nθ π∆ +  are considered only one parameter 

in the optimization procedure. This optimisation procedure will be done for at maximum 3 

complete revolutions in the Earth-Mars case, 4 revolutions in the Earth-Jupiter case and 2 

revolutions in the Earth-Mercury case. 

 

Due to lack of time, a two-dimensional problem optimisation was used, instead of a three-

dimensional one. So, the real three-dimensional ephemeris of the planets was not taken 

into account. Note that vectors 1r  and 2r  are not part of the input parameters, only 

2 Nθ π∆ +  is, since 1r  and 2r  are considered to be constants for a particular mission from 

one planet to another, as for the sensitivity analysis in chapter 7. In the optimisation 

procedure, the TOF for each individual was computed by integrating θɺ , as explained in 

section 6.2. This means that the technique used to find the free geometric parameter (the 

intersection between the TOF curve and a horizontal line in the plot TOF versus free 

geometric parameter (figure 5.6a)) by knowing the TOF required through the position of 

the departure and target planets for the departure and arrival dates was not applied in this 

master thesis (see section 5.5). 

 

The values of the geometric parameters and the thrust acceleration during time, as well as 

the excess velocities and the TOF, are stored, in order to obtain the Pareto front in the end. 

The theory behind a Pareto front conception was given in section 8.2. The two objectives 

chosen were the total excess velocity and the total fuel mass that was consumed during the 

low-thrust phase. Note that instead of optimizing the total excess velocity, the total 

impulsive shot TV∆  could have been one of the objective functions. This variable TV∆  can 

be computed through equation (4.11) in chapter 4. The fuel mass consumption for the 

electric part and the chemical part could have been computed and added, using a single 
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objective optimisation instead of a multiple objective optimisation. However, this was not 

done. This decision will be explained in following section. 

 

8.3.2. Computation of the Total Fuel Mass Consumpti on 5 
 

Assuming a value for the initial mass of the spacecraft 0M , the mass of the vehicle *
0M  

after the first impulsive shot can be computed through the initial impulsive shot 1V∆  

expression calculated through equation (4.9). Knowing 1V∆ , the spacecraft’s mass after the 

first impulsive shot can be computed through Tsiolkowski’s law (equation (3.5)): 

 

* 1
0 0

0

exp
csp

V
M M

I g

 −∆=   
 

 

 

The variable 
cspI  is the specific impulse for the chemical burn. In order to compute the 

total fuel mass consumption during the two burns, Tsiolkowski’s law is again used: 

 

2
,low-thrust

0

exp
c

e e
sp

V
M M

I g

 −∆=   
 

 

 

The variable ,low-thrusteM  is the initial mass of the spacecraft before the second impulsive 

shot (or after the low-thrust transfer) and it can be computed by knowing the fuel mass 

consumption during the low-thrust transfer. The variable eM  is the spacecraft’s mass at the 

end of its mission. The final impulsive shot 2V∆  can be calculated through equation (4.10). 

The total chemical mass can be computed by adding the fuel mass consumption during the 

first and the second burns (equation (4.11)). In the end, the fuel consumption from the 

chemical burns could have been added to the fuel mass consumption from the low-thrust 

phase. In this way, a single optimisation could have been used. However, note that in this 

case three assumptions would have to be made for 
cspI , for the altitudes of the parking 

orbits at departure and target planets 
1c

h  and 
2ch , respectively (from equations (4.9) and 

                                                
5 This was not implemented in the master thesis 
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(4.10)). These variables influence the computation of the fuel mass consumption for the 

chemical burns. A study would be necessary to find the most suitable values. Since the 

objective is not to design a mission, but to study the performance of the shapes already 

mentioned, a multiple-objective optimisation procedure was chosen instead of a single one, 

separating the electric part from the chemical one. Also, the total excess velocity was used 

instead of the impulsive shots in order to avoid assumptions for 
cspI , 

1c
h  and 

2ch . 

 

As an example, consider a spacecraft using a low-thrust engine and moving with 

continuous thrust from Earth-Mars. An individual in the Pareto front of the sinusoidal 

spiral that has excess velocity values of ,1 0.2809V km s∞ =  and ,2 0.1959V km s∞ =  was 

picked. Assuming values for the heights of the circular orbits of the spacecraft around the 

departure and target planets: 
1

185ch =  km and 
2

300ch =  km, respectively, the impulse 

velocities 1V∆  and 2V∆  can be computed through equations (4.9) and (4.10), respectively: 

 

1

2

3.2334

1.4152

V km s

V km s

∆ =
∆ =

 

 

Considering 0 1200 kgM = , through equation (3.5), the mass of spacecraft after the first 

burn *
0M  would have to be: 

 

( )( ) ( )( )*
0 0 1 0exp 1200 exp 3233.4 350 9.81 467.95 kg

cspM M V I g= −∆ = ⋅ − × =  

 

Note that the value taken for the specific impulse during both chemical burns at the 

departure and target planets was 350 seconds. For this individual, 91.48 kg were spent 

during the low-thrust transfer (see further equation (8.5)). The mass of the spacecraft in the 

end of this mission can be computed using again equation (3.5): 

 

( )( ) ( )( ),low-thrust 2 0exp 376.47 exp 1415.2 350 9.81 =249.30 kg
ce e spM M V I g= −∆ = ⋅ − ×  
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In this mission, 859.22 kg was spent in total during the two chemical burns, which is more 

than 9 times the value spent during the low-thrust transfer. If all the fuel is spent in this 

mission, the dry mass is about 20.78% of the initial mass that was initially assumed. It is 

more important to choose individuals with lower values of the total excess velocity than 

with lower values of fuel mass consumption during the low-thrust transfer. However, 

normally these individuals require also a higher TOF, which is the drawback of the electric 

propulsion technology. 

 

8.3.3. Fuel Mass Consumption (Low-Thrust Phase) 
 

In order to obtain the fuel mass consumption during the interplanetary phase (low-thrust 

engine), some assumptions have to be made and some variables have to be given. The 

values used for the Deep Space 1 (DS1) mission will be taken as a reference for the Earth-

Mars flight: 

 

Characteristics Deep Space-1 

Propellant Xenon 

Thrust (N) 29.2 10−×  

Specific Impulse (s) 1900 3200−  

Initial mass (kg) 486.3 

Table 8.1: Deep Space 1 characteristics [Rayman, 1999] [NASA/JPL, 2002] 

 

The thrust generated by the propulsion system is given by equation (3.2): 

 

T M a m w= ⋅ = ⋅  (8.3) 

 

The variable M  is the instantaneous mass of the vehicle, a  is the vehicle’s acceleration, 

m  is the rate of mass change due to propellant expulsion that is negative and w  is the 

exhaust velocity of the stream. As a matter of simplicity, the specific impulse will be 

considered constant and equal to 2550s, which is the average value of the interval 

presented in table 8.1. In this way, using equation (3.4), equation (8.3) can be rewritten: 
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( )
( ) ( ) ( )

0 0sp sp

a t M ta tdM
dt dM dt

M t I g I g
= − ⇔ = −∫ ∫  (8.4) 

 

Since the thrust acceleration and the instantaneous mass do not vary rapidly during time, 

the total fuel mass consumed until the instant 1it +  will be: 

 

( ) ( ) ( ) ( ) ( )1 1
0

i i
fuel i fuel i i i

sp

a t M t
M t M t t t

I g+ += + −  (8.5) 

 

Note that the second term on the right hand side of equation (8.5) has to be always 

positive, independently if the spacecraft is thrusting in opposite direction to its velocity. 

The instantaneous mass for each instant of time is given by: 

 

( ) ( )*
1 0 1+ += −i fuel iM t M M t  (8.6) 

 

In this way, in order to compute the fuel mass consumption during the interplanetary flight, 

the mass of the spacecraft before the low-thrust engine starts will have to be assumed. The 

mass *
0M  considered in the Earth-Mars case was 486.3kg  (the same as for DS1), in the 

Earth-Jupiter case it was 2223kg  (the same as the Galileo spacecraft) and in the Earth-

Mercury case it was 1093kg  (the same as the Messenger spacecraft). Note that the 

missions done by these spacecraft (DS1, the Galileo and the Messenger) are very different 

from the type of mission that is being tested. Galileo and Messenger did not use low-thrust 

propulsion as primary source, only high-thrust propulsion. DS1 used low-thrust propulsion, 

but the thrust was not continuous and this spacecraft did not meet Mars, it encountered two 

comets and one asteroid (at ~1.3 AU, while Mars is at ~1.5 AU). Since no low-thrust 

missions were planned for Mercury, Mars or nor Jupiter using continuous thrust, these 

values for *
0M  were chosen and they should only be considered as initial guesses. 

BepiColombo, as already mentioned in chapter 3, will be launched in 2013 to Mercury 

with a launch mass of 2300 kg (MPO mass is 520 kg and MMO mass is 250 kg) 

[ESA/BepiColombo, 2008]. The data of BepiColombo were not used in this master thesis 
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since it was considered to be preferable to use a higher initial mass for these simulations. 

Note that the fuel mass spent during the first burn was not taken into account in these 

values. 

 

The values for the specific impulse for Earth-to-Jupiter and for Earth-to-Mercury missions 

were considered the same as the one used for the Earth-to-Mars flight. 

 

8.3.4. Thrust Acceleration Constraint 
 

Note that the total fuel mass spent during the flight is not sufficient to evaluate the 

performance of an individual during the transfer orbit. The energy source of most low-

thrust engines comes from the Sun. So, for far away distances, the available energy and 

consequently the thrust acceleration that the spacecraft is allowed to achieve, decreases. 

For this reason, it is important that the maximum ratio between the thrust acceleration that 

is given as an output from a certain shape and the available thrust acceleration of each 

individual in the Pareto front is less or equal to one: 

 

1shape

available

a

a
≤ , for t∀  (8.7) 

 

Again, the DS1 mission was taken as reference for the Earth-Mars flight. For this mission, 

the nominal thrust (NT ) is considered 2102.9 −×  N (table 8.1). Knowing the initial mass for 

the DS1 ( 3.4860 =M  kg), the trend of the thrust acceleration can be given by: 

 

22
0 032.0 rraaavailable µµ ≈=  

 

This is the available thrust acceleration, availablea . The available thrust acceleration is 

important in order to test if the values of acceleration computed using the 6 analytical 

representations can be achieved in a real mission. In this master thesis, the thrust 

acceleration values given by the 6 shapes will be tested with three different trends of the 

available thrust acceleration: (1) 2032.0 raavailable µ=  (the same as DS1), (2) 
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2048.0 raavailable µ=  (1.5 times availablea  in DS1) and (3) 2064.0 raavailable µ=  (twice 

availablea  in DS1). Tests were performed for different values of availablea . After these tests, the 

values of available thrust acceleration (2) and (3) were chosen to show the trend of the 

number of individuals in the Pareto front that respect the availablea  constraint. 

 

For the other missions, Earth-Jupiter and Earth-Mercury, the values for the available thrust 

acceleration will not be the same as for the Earth-to-Mars flight. During the sensitivity 

study in chapter 7 and in appendix E, for the acceleration inversely square case of the 

thrust profile using the exponential sinusoid, the minimum values for the magnitude of the 

thrust acceleration were given by 204.0 raM µ= , 207.0 raJ µ=  and 

206.0 raMer µ−= , for an Earth-to-Mars mission, for an Earth-to-Jupiter mission and an 

Earth-to-Mercury mission, respectively. Since Ja  is approximately twice Ma  for the same 

values of heliocentric distance, the three different trends of the available thrust acceleration 

considered for an Earth-Jupiter flight will be also twice the ones assumed for an Earth-

Mars mission. These three trends will be: (1) 2064.0 raavailable µ=  (twice availablea  in DS1), 

(2) 2096.0 raavailable µ=  (3 times availablea  in DS1) and (3) 2128.0 raavailable µ=  (4 times 

availablea  in DS1). For an Earth-Mercury flight, since Mera  is 1.5 times Ma , the three 

different trends of the available thrust acceleration considered for this mission will be also 

1.5 times the ones assumed for an Earth-Mars mission. The available thrust acceleration 

will be given by: (1) 2048.0 raavailable µ=  (1.5 times availablea  in DS1), (2) 

2072.0 raavailable µ=  (2.25 times availablea  in DS1) and (3) 2096.0 raavailable µ=  (3 times 

availablea  in DS1). Note that for an Earth-Mercury flight, the available thrust is increasing by 

2r  when the spacecraft is moving from Earth towards Mercury. This means that the 

vehicle will be able to achieve higher levels of thrust acceleration for distances nearer the 

Sun. However, in reality, the maximum thrust that the spacecraft can obtain depends on the 

maximum power that the solar arrays can provide. This means that for missions to inner 

planets, at certain point, the maximum thrust that the power system can provide will be 

achieved. From this point on, the thrust acceleration can no longer increase with 2r . 

Instead, it will depend only on the instantaneous mass drop. In this master thesis, this 
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situation was not considered. In this way, the available thrust acceleration for an Earth-

Mercury flight will have the same trend as for the other two missions to outer planets. 
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9. Verification 
 

This master thesis deals with many mathematical expressions (appendix B), so mistakes 

can be made easily when writing the equations in MATLAB code. A MATLAB program 

was developed in this thesis in order to compute the thrust acceleration, the thrust angle, 

the TOF, the excess velocities and the fuel consumption during the heliocentric phase, 

giving the geometric parameters as input for a certain mission with a certain profile. This 

MATLAB program can be called low2D. In order to verify the results achieved in low2D 

for each shape (TOF, excess velocities, thrust acceleration and thrust angle), another 

program in MATLAB was developed: Test2D. This program uses the values of the thrust 

acceleration, thrust angle, the TOF and the initial position and velocity of the spacecraft in 

the heliocentric phase as inputs. Through a Runge-Kutta 4(5) integrator, it computes the 

trajectory of the spacecraft in the transfer plane. In the end, if low2D is correct, the values 

for the final position and velocity should match the ones given by Test2D (appendix F). 

For the examples given in appendix F, the differences in position at the final point of the 

thrust arc between low2D and Test2D are less than 60 km. Considering that the position of 

the targets are always given in astronomical units (150610×  km), these differences are 

negligibly small. In terms of velocity at the end point of the thrust arc, maximum 

difference values of ~29cm s are achieved. The order of magnitude of the hyperbolic 

velocities at the target planet is 210 km s, therefore these differences are negligibly small 

also. 

 

The verification will only be complete if the results given by low2D are compared with 

other results given by independent software. Unfortunately, the only performance results 

available in literature are for the exponential sinusoid (tangential thrust) and they can be 

found in [Izzo, 2006], in Galomusit [Melman, 2007], in STA [Paulino, 2008] and in the 

Swing-By Calculator (SBC) [JAQAR, 2007], among other software. 

 

Galomusit is a software tool that was built by students from the Faculty of Aerospace 

Engineering in Delft and it handles interplanetary trajectories using high-thrust and, more 

recently, low-thrust trajectories using the exponential sinusoid [Corradini, 2008]. 
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STA stands for Space Trajectory Analysis and, like Galomusit, it can compute 

interplanetary trajectories, using multiple flybys and high- and low-thrust propulsion. STA 

software is developed by ESA in cooperation with several European universities. 

 

As the name suggests, the “Swing-By calculator”, is a software to compute interplanetary 

missions using multiple flybys. The version 8 of the SBC gives the opportunity to use 

optimisation in low-thrust trajectories described by the exponential sinusoids. This 

software was used to verify STA. 

 

Since STA was developed by me during my internship in ESTEC, it cannot be used for 

verification in this master thesis. Unfortunately, SBC cannot also be used for the 

verification. The output results given by this software, which are the excess velocities and 

the total fuel mass consumption (chemical plus electrical) are for a 3D case, while in this 

master thesis, a 2D problem was considered. On the other hand, a 2D problem for low-

thrust trajectories using the exponential sinusoids was implemented in Galomusit by 

Stefano Corradini. The results were verified for 3 individuals in an Earth-Mars flight. The 

test scenario is shown in table 9.1. 

 

 
Earth

r  (km) 
Mars

r (km) 
2

k  
1

γ (rad) θ∆ (rad) 

Individual 1 151366683.169 206953872.627 0.7013 -0.03858 1.9532 (N=0) 

Individual 2 150950940.668 207035807.816 0.3192 0.02342 1.7915 (N=1) 

Individual 3 147943444.631 222257727.478 0.1524 0.01048 0.0419 (N=3) 

Table 9.1: Test scenario (Earth-Mars mission) for verification of the excess velocities, TOF and 
fuel mass consumption computed in low2D 

 

Given the heliocentric distance at the departure planet, at the arrival planet, the geometric 

parameter 2k , the initial flight path angle 1γ , the transfer angle θ∆  and the number of 

revolutions N; the geometric parameters 0k , 1k  and φ , the excess velocities at departure 

and arrival, the TOF and the fuel mass consumption during the low-thrust phase were 

computed using low2D and Galomusit. Table 9.2 shows the values achieved for the test 

scenario in table 9.1, using Galomusit and low2D. The initial mass used was 1000 kg and 

the specific impulse during the low-thrust phase was 3000 seconds. 
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Individual 1 Individual 2 Individual 3  

Galomusit Low2D Galomusit Low2D Galomusit Low2D 

,dep
V∞ ( )km s  4.2057 4.2057 0.7339 0.7339 0.3218 0.3218 

,arr
V∞ ( )km s  7.6969 7.6969 0.2569 0.2569 0.0818 0.0818 

TOF (days) 123.4091 126.2335 624.0333 624.3738 1552.3217 1552.6437 

fuel
M  (kg) 27.5688 27.1462 132.3082 124.1012 183.4770 167.8474 

Table 9.2: Results from Galomusit and low2D for the 3 individuals, Earth-Mars flight 

 

In terms of excess velocities, values from low2D match the ones given by Galomusit. 

However, the values for the TOF and the fuel mass consumption are significantly different. 

In table 9.3, the errors between the excess velocity, the TOF and the fuel mass 

consumption values computed with Galomusit and the ones given in low2D (considering 

the values obtained with Galomusit the nominal ones) are given. 

 

Error (%) Individual 1 Individual 2 Individual 3 

,dep
V∞  0 0 0 

,arr
V∞  0 0 0 

TOF 2.29 0.06 0.02 

fuel
M  1.53 6.20 8.52 

Table 9.3: Errors between the results given by Galomusit and low2D 

 

Note that the error for the TOF decreases for higher values of number of complete 

revolutions N. In order to compute the TOF, an integrator is required: in Galomusit, a 

composite Cavalieri-Simpson formula was used, while in low2D the integrator used was a 

Runge-Kutta 4(5). A second verification was made using the integrator routines that Dario 

Izzo [Izzo, 2006] used to compute the TOF for the exponential sinusoid problem. Given 

the geometric parameters of the exponential sinusoid from Galomusit as an input, the TOF 

is calculated using a recursive adaptive Lobatto quadrature. The values for individual 1, 

individual 2 and individual 3 presented in the test scenario in table 9.1 are given in table 

9.4. 
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 TOF Galomusit (days) TOF Low2D (days) TOF Izzo (days) Error (%) 

Individual 1 123.4091 126.2335 126.2338 42 10−×  

Individual 2 624.0333 624.3738 624.3739 52 10−×  

Individual 3 1552.3217 1552.6437 1552.6427 56 10−×  

Table 9.4: TOF given by Galomusit, low2D and Izzo’s integrator routines and the errors between the 
results given by Izzo and low2D 

 

Considering the values obtained with Izzo’s integrator the nominal ones, the errors 

between the TOF values calculated with Izzo’s integrator and the Runge-Kutta 4(5) are 

shown in table 9.4 for individual 1, 2 and 3. Due to the significantly small error values 

between Izzo’s integrator and low2D integrator, the Runge-Kutta 4(5) used in this master 

thesis can be considered well implemented in low2D. A test with a different integrator in 

Galomusit is recommended. 

 

In terms of fuel mass consumption, the errors between Galomusit and low2D increase for 

higher values of complete number of revolutions. The number of iteration steps to compute 

this parameter was fixed and equal to 200 for Galomusit, while for low2D it depends on 

the number of steps and the tolerance used by the Runge-Kutta 4(5) integrator. In low2D, 

the number of steps was 633, 521 and 653 for individuals 1, 2 and 3, respectively. Note 

also that the integrator RK4 (5) uses a variable step-size. So, even if the number of steps 

was the same between the two programs, the results for the fuel mass consumption will 

still be different, since it depends on the instant of time that the thrust acceleration is being 

calculated. Although the comparison between STA and low2D is not fair, since both 

software were developed by me, the results for the TOF and fuel mass consumption during 

the low-thrust transfer are shown in table 9.5. Note that STA was verified using JAQAR 

(see appendix F). 
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Individual 1 Individual 2 Individual 3  
STA ‘Main’ Error 

(%) 
STA ‘Main’ Error 

(%) 
STA ‘Main’ Error 

(%) 

TOF 
(days) 

126.2335 126.2335 0 624.3738 624.3738 0 1552.6437 1552.6437 0 

fuel
M  

(kg) 

27.1278 27.1462 0.0678 124.0658 124.1012 0.0285 167.8411 167.8474 0.0038 

Table 9.5: Results from STA and low2D for the 3 individuals, for Earth to Mars 

 

Although STA and the low2D are programmed in different languages, C++ and MATLAB, 

respectively, the integrators implemented are Runge-Kutta 4(5). Therefore, the error for the 

TOF between the two software is zero. Regarding fuel mass consumption, STA uses a fix 

step size of 500 and the errors between STA and low2D are smaller than 0.07%, which is 

much smaller than the values of error achieved between Galomusit and low2D. This is 

probably due to a smaller value of integration steps used in Galomusit compared with the 

number used in STA and in low2D. 

 

Considering the differences between these three software and that errors below 10% were 

achieved, the fuel mass consumption computation will be considered well implemented in 

low2D. 



Analytical Representations for Low-Thrust Trajectories  
 

 200 



Analytical Representations for Low-Thrust Trajectories  
 

 201 

10. Results 
 

During 2008, a master student Bram De Vogeleer developed a shape-based method: 

expansions of power series, which are expressions with linear combinations of many terms 

(coefficients) that allow an optimisation procedure [De Vogeleer, 2008]. His pseudo-

spectral method is useable and it provides good results in many problems. He compared his 

results with the ones given by the exponential sinusoid and he concluded that this shape 

requires velocity increments at departure and arrival planets, also sometimes requires high 

acceleration levels that his shape-based analysis did not show. 

 

In this chapter, like in Bram De Vogeleer’s thesis, a comparison between the analytical 

representations mentioned in the previous chapters and the exponential sinusoid will be 

made. The Pareto fronts will be illustrated and analysed for the 6 shapes mentioned before: 

the Archimedean spiral, the logarithmic spiral, the Poinsot’s spiral (sine hyperbolic), the 

Poinsot’s spiral (cosine hyperbolic), the sinusoidal spiral and the exponential sinusoid. 

Only the Earth-to-Mars flight and the Earth-to-Mercury flight will be analysed in this 

section. Two cases of the thrust profile were studied: the acceleration inversely square and 

the tangential cases of the thrust profile described in chapter 6. However, for the 

acceleration inversely square case, due to lack of time, only the sinusoidal spiral and the 

exponential sinusoid were analysed, since they had the best performances in terms of the 

Pareto front in the tangential case (see sections 10.1 and 10.2). The results for the Earth-to-

Jupiter mission using the tangential thrust profile are given in appendix H. The 

computation time required for the Earth-Jupiter mission using the acceleration inversely 

square case was extremely high and unfortunately it was not possible to obtain results. 

Therefore, the results for this mission will not be given in this master thesis. 

 

10.1. Earth - Mars Flight: Tangential Thrust 
 

Figure 10.1 illustrates the Pareto fronts using the tangential thrust profile in an Earth-Mars 

flight for all 6 shapes. As already mentioned in chapter 8, the population that is being used 

is 75000 individuals for each shape. 
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Figure 10.1: Pareto fronts for the Archimedean spiral, logarithmic spiral, Poinsot’s spiral (hyperbolic 
sine), Poinsot’s spiral (hyperbolic cosine), sinusoidal spiral and exponential sinusoid, tangential thrust 

profile, Earth-Mars flight 

 

In figure 10.1, there are significantly high differences in scale in terms of total excess 

velocity between the 6 shapes illustrated. For the Archimedean spiral and the Poinsot’s 

spiral (hyperbolic sine), only individuals with low values of total excess velocity and high 

values of fuel mass consumption were selected for the Pareto front. These two shapes show 

worse results compared with the other 4 shapes, because the number of individuals in the 

Pareto front is significantly low and individuals with lower values of total excess velocity 

and fuel mass consumption can be obtained using the other shapes. 

 

Figure 10.2 summarizes the Pareto fronts for all 6 shapes. In the plot in the right-hand side, 

the same Pareto fronts are represented but only with individuals with values of total excess 

velocity lower than skm3  and values of fuel mass consumption between 80 and 100 kg. 
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Figure 10.2: Pareto fronts for the Archimedean spiral, logarithmic spiral, Poinsot’s spiral (hyperbolic 
sine), Poinsot’s spiral (hyperbolic cosine), sinusoidal spiral and exponential sinusoid, tangential thrust 
profile, Earth-Mars flight. On the right, only indi viduals with values of total excess velocity lower than 

3 km/s and values of fuel mass consumption between 80 and 100 kg are present 

 

Table 10.1 shows the minimum values for the fuel mass consumption and the total excess 

velocity for the individuals represented in the Pareto fronts for all 6 shapes. 

 

 Archimedean 
spiral 

Logarithmic 
spiral 

Poinsot’s 
spiral 

(hyperbolic 
sine) 

Poinsot’s 
spiral 

(hyperbolic 
cosine) 

Sinusoidal 
spiral 

Exponential 
sinusoid 

Minimum 

fuel
M  (kg) 

98.98 4.4 98.98 13.9 0.09 13.5 

Minimum 

,T
V∞ ( )km s  

1.2075 1.1817 1.2053 0.7444 0.1854 0.2645 

Table 10.1: Minimum values for the fuel mass consumption during the low-thrust phase and for the 
total excess velocity for the individuals in the Pareto fronts for all 6 shapes, tangential case, Earth-

Mars flight 

 

The minimum value of fuel consumption is achieved with the sinusoid spiral (for 

fθ = 109.1º) and it is 0.09 kg, i.e., negligibly small (close to the high-thrust Lambert 

problem). Note that the total excess velocity values for lower values of fuel mass 

consumption are significantly high. It is more important to choose individuals with lower 

values of total excess velocity than with lower values of fuel mass consumption during the 

heliocentric phase (chapter 8). This is because the fuel spent during the chemical burns 

(even for small values of excess velocity) is much higher than fuel spent during the low-

thrust phase. Individuals with high values of total excess velocity cannot be taken into 
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account in a real mission. However, in order to understand the limits of each shape, they 

were not excluded from the Pareto front. 

 

In table 10.1, the minimum value of the total excess velocity is achieved with the sinusoid 

spiral and it is 0.1854km s. Individuals with TOF values higher than approximately 4.2 

years were not selected for the Pareto fronts, since there was a limit for the maximum 

number of complete revolutions: 3 (chapter 8). 

 

From figure 10.2, the Pareto fronts for the exponential sinusoid and the sinusoidal spiral 

provide lower values of fuel mass consumption for the same total excess velocity when 

comparing with the other shapes. The logarithmic spiral has the highest number of 

individuals in the Pareto front of all 6 shapes. The range of fuel mass consumption values 

for the sinusoidal spiral is the widest one. This shape and the exponential sinusoid have 

similar performances for fuel mass consumptions higher than ~30 kg. However, in general, 

the sinusoidal spiral has the best Pareto front of all 6 shapes. 

 

10.1.1. Analysis of the Pareto Fronts 
 

In this section, an analysis of the Pareto fronts shown in figure 10.1 will be given. In 

particular, the results achieved for the sinusoidal spiral and the exponential sinusoid will be 

discussed in the following paragraphs. 

 

From figure 10.1, generally for higher TOF values (higher values of transfer angle θ∆  and 

higher values of number of complete revolutions N), the total excess velocity decreases 

while the total fuel consumption increases. However, there are some individuals in the 

Pareto front of the sinusoidal spiral for which this situation does not happen and they seem 

to be misplaced (see figure 10.3). 
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Figure 10.3: Pareto front for the sinusoidal spiral, Earth-Mars flight 

 

For this shape, there are 3 individuals in the Pareto front that have TOF values between 1.8 

and 2.7 years and fuel mass consumption values lower than 0.5 kg (see figure 10.3, 

individuals with green colour). The geometric parameter m  is approximately 1 in all 3 

cases. Figure 10.4 illustrates the trajectory of one of these shapes. 

 

 

Figure 10.4: Polar plot for the sinusoidal spiral, Earth-to-Mars flight ( -0.9996m = , 175.8ºθ∆ =  with 

N=1 and 194.7ºiθ = ) 
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From figure 10.4, the spacecraft no longer performs a spiral type of trajectory, but almost a 

circular one. The spacecraft will depart from the Earth (red dot) and it encounters the target 

planets’ orbital trajectory (green dot) twice: one with N=0 and the other after completing 

already one revolution. Note this trajectory is similar to a high-thrust trajectory and it will 

not be used in a real mission, since other individuals with lower values of excess velocity 

can be used instead (with similar values of TOF). 

 

The Pareto front obtained for the exponential sinusoid will have to be discussed in detail. 

Note that this Pareto front (figure 10.1) has 2 different trends: after and before ~30 kg. The 

bent seen in figure 10.1 at ~30 kg was studied in order to understand why there are two 

different curves in the Pareto front. To help in understanding, figure 10.5 shows the 

corresponding geometric parameter 2k  as function of the fuel mass consumption. 

 

 

Figure 10.5: 
2

k  of the Pareto front individuals versus the fuel mass consumption during the low-thrust 

phase, exponential sinusoid, Earth-to-Mars flight 

 

Note that for values of fuel mass consumption lower than ~30 kg, the parameter 2k  

increases, while for higher values, it decreases. According to [Petropoulos and Longuski, 

2004], for higher values of the transfer angle θ∆  and higher number of complete 

revolutions N, the values for 2k  should decrease. As already discussed before, for the 
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exponential sinusoid, the fuel mass consumption is directly proportional to the TOF and 

consequently to the transfer angle and number of complete revolutions. In this way, the 

plot of 2k  should always decrease when increasing the values of the fuel mass 

consumption, which does not happen for values lower than ~30 kg. Note that at ~30 kg, 2k  

reaches approximately the maximum value allowed by the optimisation program: 1. As 

already explained before in chapter 5, the maximum value for 2k  taken was 1, because 

according to Petropoulos and Longuski ([Petropoulos and Longuski, 2004]), the thrust 

levels can become unreasonably high when ( )2
1 21 k k−  approaches zero. This statement was 

proven to be correct, since if no constraints are given to this geometric parameter, the 

Pareto front will be the same as the one with the constraint 2,max 1k = . In this way, the 

difference between trends in the Pareto front of the exponential sinusoid is most likely due 

to the fact that the performance of this shape depends on the values chosen for the 

geometric parameters and their capability to describe the physical problem. An example 

can be given with the sinusoidal spiral in order to better understand the situation. In figure 

10.6, two Pareto fronts of the sinusoidal spiral are represented: in blue is the one where the 

interval of values of m is (-1; 1); in red is the one where the interval of values of m is [-0.7; 

0.7]. This means that in this last Pareto front, the interval for the optimisation variable m 

was restricted. 

 

 

Figure 10.6: Pareto front of the sinusoidal spiral, using m=[-0.7;0.7] (blue) and m=(-1;1) (red) 
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In this case, a restriction in the geometric parameter m caused the bend, since values of 

( )1;7.0−∈m  that were being picked by the optimizer for fuel mass consumption values 

lower than ~50 kg in the Pareto front with a red colour can not be picked for the Pareto 

front in blue colour. 

 

In the exponential sinusoid case, when increasing 2k  from higher fuel mass consumption 

to lower fuel mass consumption values (figure 10.1), after a certain value (~30 kg), the 

influence of this geometric parameter on the dynamics of the problem is different. 

Therefore, the bend occurs because the optimizer chooses smaller values of 2k  (see figure 

10.5). 

 

10.1.2. Thrust Acceleration Constraint 
 

As already mentioned in section 8.3.4, the fuel mass spent during the flight is not sufficient 

to evaluate the performance of an individual during the transfer orbit. It is important that 

the maximum ratio between the thrust acceleration that is given as an output from a certain 

shape and the available thrust acceleration of each individual in the Pareto front is less or 

equal to 1. 

 

Computation times were tracked for all 6 shapes and they are shown in table 10.2. Also, 

the percentage of the individuals in the Pareto front and in the population that respects the 

maximum ratio between the thrust acceleration that is given as an output from a certain 

shape and the available thrust acceleration (1≤ ) is presented for 3 different cases. The 3 

cases are for the following available thrust acceleration trends: (1) 2032.0 raavailable µ=  

(the same as DS1), (2) 2048.0 raavailable µ=  (1.5 times availablea  in DS1) and (3) 

2064.0 raavailable µ=  (twice availablea  in DS1) (see chapter 8). 
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Shapes 
Computation time 

(hours) 
PfN

 
PfG  (%) PopG  (%) 

Archimedean spiral 0.5 6 100/100/100 17.5/26.8/32.9 

Logarithmic spiral 0.45 486 3.3/15/23.9 4.8/9.3/14.2 

Poinsot’s spiral (hyperbolic sine) 0.42 11 100/100/100 46.6/61.4/69.9 

Poinsot’s spiral (hyperbolic cosine) 0.47 54 53.7/68.5/77.8 62.1/73.6/79.5 

Sinusoidal spiral 1.23 104 49/100/100 16.1/32.7/47.3 

Exponential sinusoid 1.9 80 7.8/54.5/59.7 0.8/4.9/10 

Table 10.2: Computation time, number of individuals in the Pareto front (
Pf

N ) and the percentage of 

individuals in the Pareto front 
Pf

G and in the population 
Pop

G that respect the maximum value for the 

ratio between the required thrust acceleration of the spacecraft and the available one for the 6 shapes 
and for the 3 cases of ( ), ,DS1

1;1.5;2
available

a a=
0 0

, Earth-Mars flight (tangential case) 

 

From table 10.2, the optimisation procedure when using the exponential sinusoid took 

more computation time than the other shapes. Also, the percentage of individuals in the 

population that do not respect the maximum value for the ratio between the required thrust 

acceleration of the spacecraft and the available one is the highest for the exponential 

sinusoid for all 3 cases. On the other hand, the logarithmic spiral has the lowest percentage 

of individuals in the Pareto front that respects the constraints for the thrust acceleration. 

Note that although 100% of the individuals in the Pareto front respect the thrust 

acceleration constraint for the Archimedean spiral and the Poinsot’s spiral (hyperbolic 

sine), the fuel mass consumption for both shapes is higher when compared with the fuel 

mass consumption of the other 4 shapes. 

 

Figures 10.8 and 10.9 illustrate the Pareto fronts for the sinusoidal spiral and for the 

exponential sinusoid when considering only the individuals in the population that respect 

the condition in (8.7). Only these two shapes are represented, since they have the best 

Pareto fronts (figure 10.2). Using the condition in (8.7) as a constraint, for the two shapes 
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named before a certain number of individuals in the population is discarded before the 

Pareto front is built. Figures 10.7 and 10.8 show the Pareto fronts for the sinusoidal spiral 

and exponential sinusoid, respectively when the available thrust acceleration 

( ) 2064.0;048.0;032.0 raavailable µ=  is given as a constraint. 

 

 

Figure 10.7: Pareto fronts for the sinusoidal spiral, for the entire population (on the right) and only for 
individuals in the population that respect the condition (8.7) (the 3 cases of available thrust 

acceleration), tangential thrust profile, Earth-Mars flight 

 

 

Figure 10.8: Pareto fronts for the exponential sinusoid, for the entire population (on bottom right) and 
only for individuals in the population that respect the condition (8.7) (the 3 cases of available thrust 

acceleration), tangential thrust profile, Earth-Mars flight 
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From figures 10.8 and 10.9, for both sinusoidal spiral and exponential sinusoid, there is a 

gap in the Pareto fronts, where there are no individuals for 20.032availablea rµ= . For the 

sinusoidal spiral, Pareto fronts for the cases where ( ) 2064.0;048.0 raavailable µ=  are the 

same as the Pareto front for the case without a constraint. It can be concluded that there is a 

higher percentage of individuals that respect the thrust acceleration constraint using the 

sinusoidal spiral than using the exponential sinusoid. 

 

10.2. Earth - Mercury Flight: Tangential Thrust 
 

Figure 10.9 gives the Pareto fronts using the tangential thrust profile for the Earth-Mercury 

flight for all 6 shapes. As already said before, the population that is being used for each 

shape contains 75000 individuals. 

 

 

Figure 10.9: Pareto fronts for the Archimedean spiral, logarithmic spiral, Poinsot’s spiral (hyperbolic 
sine), Poinsot’s spiral (hyperbolic cosine), sinusoidal spiral and exponential sinusoid, tangential thrust 

profile, Earth-Mercury flight 
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In figure 10.9, the logarithmic spiral shows the worst results compared with the other 5 

shapes, since there is only one individual in the Pareto front and it has the highest value of 

fuel mass consumption of all individuals in all Pareto fronts. A similar situation to the one 

for the Archimedean spiral and the Poinsot’s spiral (hyperbolic sine) in an Earth-Mars 

flight occurs for this shape when the target planet is inner with respect to the departure 

planet. 

 

Figure 10.10 shows the Pareto fronts for all 6 shapes. In the plot in the right-hand side, the 

same Pareto fronts are represented but only with individuals with values of total excess 

velocity lower than skm10  and values of fuel mass consumption between 500 and 570 

kg. 

 

 

Figure 10.10: Pareto fronts for the Archimedean spiral, logarithmic spiral, Poinsot’s spiral (hyperbolic 
sine), Poinsot’s spiral (hyperbolic cosine), sinusoidal spiral and exponential sinusoid, tangential thrust 

profile, Earth-Mercury flight 

 

Table 10.3 shows the minimum values for the fuel mass consumption and the total excess 

velocity for the individuals represented in the Pareto fronts for all 6 shapes. 
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 Archimedean 
spiral 

Logarithmic 
spiral 

Poinsot’s 
spiral 

(hyperbolic 
sine) 

Poinsot’s 
spiral 

(hyperbolic 
cosine) 

Sinusoidal 
spiral 

Exponential 
sinusoid 

Minimum 

fuel
M  (kg) 

5.2 568.6 331.8 325.8 0.28 178.3 

Minimum 

,T
V∞ ( )km s  

5.7375 7.4889 5.8513 4.7214 1.2609 1.3082 

Table 10.3: Minimum values for the fuel mass consumption during the low-thrust phase and for the 
total excess velocity for the individuals in the Pareto fronts for all 6 shapes, tangential case, Earth-

Mercury flight 

 

The minimum values of fuel mass consumption are achieved with the sinusoid spiral (for 

fθ = 161.9º) and it is 0.28 kg, respectively (close to the high-thrust Lambert problem). 

Note that, in this case, the values achieved for the total excess velocity are significantly 

high and they are not used in a real mission. The minimum value of the total excess 

velocity is achieved with the sinusoid spiral and it is 1.2609km s. Note that the total 

excess velocity values for this mission are higher than the values for the Earth-Mars flight. 

This was possibly due to the restriction made in the maximum value of N (complete 

number of revolutions) that was 2. Again, the sinusoidal spiral has the best Pareto front of 

all 6 shapes. Individuals with TOF higher than 1.2 years were not selected for the Pareto 

fronts, due to the limitation on N. 

 

The range of fuel mass consumption values is the widest one for the sinusoidal spiral. This 

shape and the exponential sinusoid have similar performances for fuel mass consumptions 

higher than ~320 kg. Note that the Pareto front of the exponential sinusoid has 2 different 

trends: after and before ~320 kg. The situation for the Earth-Mars case that was already 

studied in section 10.1.1 and this one are similar (see explanation in this section). 

 

10.2.1. Thrust Acceleration Constraint 
 

Computation times were tracked for all 6 shapes and they are shown in table 10.4. Also, 

the percentage of the individuals in the Pareto front and in the population that respects the 

maximum ratio between the thrust acceleration that is given as an output from a certain 

shape and the available thrust acceleration (1≤ ) is presented for 3 different cases. The 3 
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cases are for the following available thrust acceleration: (1) 2048.0 raavailable µ=  (1.5 

times availablea  in DS1), (2) 2072.0 raavailable µ=  (2.25 times availablea  in DS1) and (3) 

2096.0 raavailable µ=  (3 times availablea  in DS1) (see chapter 8). 

 

Shapes 
Computation time 

(hours) 
PfN  PfG  (%) PopG  (%) 

Archimedean spiral 0.61 1430 9.7/35.1/47.7 2.2/13/23.3 

Logarithmic spiral 0.46 1 0/100/100 0.03/0.46/0.5 

Poinsot’s spiral (hyperbolic sine) 0.64 224 23.2/54/78.6 13.5/35.3/49.5 

Poinsot’s spiral (hyperbolic cosine) 0.45 52 23.1/40.4/55.8 20.5/46.1/58.7 

Sinusoidal spiral 1.28 105 19/46.7/97.1 3.62/11.9/23.5 

Exponential sinusoid 1.37 111 0/7.2/26.1 0.05/0.9/3 

Table 10.4: Computation time, number of individuals in the Pareto front (
Pf

N ) and the percentage of 

individuals in the Pareto front 
Pf

G and in the population 
Pop

G that respect the maximum value for the 

ratio between the required thrust acceleration of the spacecraft and the available one for the 6 shapes 
and for the 3 cases of ( )0, 0,DS1

1.5;2.25;3
available

a a= , Earth-Mercury flight (tangential case) 

 

From table 10.4, the optimisation procedure when using the exponential sinusoid took 

more computation time than the other shapes. Also, the percentage of individuals in the 

population and in the Pareto front that do not respect the maximum value for the ratio 

between the required thrust acceleration of the spacecraft and the available one is highest 

for the exponential sinusoid in all 3 cases (excluding the logarithmic spiral). Note that 

although 100% of the individuals in the Pareto front for the logarithmic spiral respect the 

constraint in the thrust acceleration, the fuel mass consumption for this shape is higher 

when compared with the other 5 shapes. Like for the Earth-Mars mission, the Poinsot’s 

spiral (hyperbolic cosine) had the highest number of individuals in the population that 

respect the acceleration constraint cases. Note that, compared with the previous mission, 
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the percentage of individuals that respect the constraint is lower in the population and in 

the Pareto fronts. 

 

Figures 10.11 and 10.12 illustrate the Pareto fronts for the sinusoidal spiral and for the 

exponential sinusoid when considering only the individuals in the population that respect 

the condition in (8.7). As for the Earth-Mars flight, these 2 shapes have the best 

performance in terms of the Pareto front (figure 10.11). Using the condition in (8.7) as a 

constraint, for the 2 shapes named before a certain number of individuals in the population 

is discarded before the Pareto front is built. Figures 10.11 and 10.12 illustrate the Pareto 

fronts for the sinusoidal spiral and exponential sinusoid, respectively when the available 

thrust acceleration ( ) 2096.0;072.0;048.0 raavailable µ=  is given as a constraint. 

 

 

Figure 10.11: Pareto fronts for the sinusoidal spiral, for the entire population (on the right) and only 
for individuals in the population that respect the condition (8.7) (the 3 cases of the available thrust 

acceleration), tangential thrust profile, Earth-Mercury flight 
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Figure 10.12: Pareto fronts for the exponential sinusoid, for the entire population (on the right) and 
only for individuals in the population that respect the condition (8.7) (the 3 cases of the available thrust 

acceleration), tangential thrust profile, Earth-Mercury flight 

 

From figure 10.12, for the exponential sinusoid, only individuals with a fuel mass 

consumption higher than 400.5 kg for the case with the highest value of availablea  were 

selected for the Pareto front. For increasing values of availablea , the number of individuals in 

the Pareto front increases and lower values of fuel mass consumption are allowed. For the 

sinusoidal spiral (figure 10.11), there is a gap in the Pareto front for the cases 

( ) 20.072;0.096availablea rµ= , where no individuals are presented, as it happened for the 

Earth-Mars mission. Again, the sinusoidal spiral shows a higher percentage of individuals 

in the Pareto front that respect the thrust acceleration constraints compared with the 

exponential sinusoid. 
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10.3. Earth-Mars Flight: Acceleration Inversely Squ are Case 
 

Figure 10.13 gives the Pareto fronts using the acceleration inversely square case in an 

Earth-Mars flight only for the sinusoidal spiral and the exponential sinusoid. As already 

mentioned in chapter 8, the population that is being used is 75000 for each shape. 

 

 

Figure 10.13: Pareto fronts for the sinusoidal spiral and the exponential sinusoid, acceleration 
inversely square case, Earth-Mars flight 

 

In order to provide a clear representation in figure 10.13 of the Pareto fronts, an upper limit 

for the total excess velocity was given: 60km s. Otherwise, since individuals with values 

of the order of 310 km s were selected for the Pareto front (untenably high), the range of 

values for the total excess velocity represented would be large and it would have been 

more complicated to analyse the Pareto front. Obviously 60km s is still an unreasonably 

high value. Individuals with TOF values higher than ~4 and ~3.5 years were not selected 

for the Pareto fronts, for the sinusoidal spiral and the exponential sinusoid, respectively. 

Note that for both shapes, the maximum number of revolutions is 3 (see chapter 8), which 

restricts the maximum value for the TOF of the individuals selected for the Pareto fronts. 

 

From figure 10.13, generally for higher TOF values (higher values of transfer angle θ∆  

and of number of complete revolutions N), the total excess velocity decreases while the 

total fuel consumption increases. Unlike for the tangential case, there are no individuals in 

the Pareto front that seem to be misplaced in terms of TOF for the sinusoidal spiral (section 

10.1.1). Also, the presence of two curves in the Pareto front of the exponential sinusoid 

cannot be clearly seen in figure 10.13, since the number of individuals in the Pareto front is 
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significantly smaller for the acceleration inversely square case of the thrust profile than for 

the tangential case. 

 

Figure 10.14 shows the Pareto fronts of both shapes. In the plot in the right-hand side, the 

same Pareto fronts are represented but only with individuals with values of total excess 

velocity lower than skm2  and values of fuel mass consumption between 80 and 130 kg. 

 

 

Figure 10.14: Pareto fronts for the sinusoidal spiral and the exponential sinusoid – acceleration 
inversely square case of the thrust profile, Earth-Mars flight 

 

In figure 10.14, individuals with values lower than 1.1 kg and 4.1 kg are not present in the 

Pareto fronts for the sinusoidal spiral and for the exponential sinusoid, respectively. The 

minimum values of the total excess velocity in the Pareto fronts are skm2145.0  and 

0.2835km s for the sinusoidal spiral and for the exponential sinusoid, respectively. The 

Pareto front for the sinusoidal spiral provides lower values of fuel mass consumption for 

the same total excess velocity when compared with the exponential sinusoid, for fuel mass 

consumption values lower than ~40 kg. Both shapes have similar performances for fuel 

mass consumption values higher than ~ 40 kg.The range of fuel mass consumption for the 

sinusoidal spiral is the widest one. 
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10.3.1. Thrust Acceleration Constraint 
 

Computation times were tracked for both shapes and they are shown in table 10.5. Also, 

the percentage of the individuals in the Pareto front and in the population that respects the 

maximum ratio between the thrust acceleration that is given as an output from a certain 

shape and the available thrust acceleration (1≤ ) is presented for 3 different cases. The 3 

cases are for the following nominal thrust values: (1) 2032.0 raavailable µ=  (the same as 

DS1), (2) 2048.0 raavailable µ=  (1.5 times availablea  in DS1) and (3) 2064.0 raavailable µ=  

(twice availablea  in DS1) (see chapter 8). 

 

Shapes 
Computation time 

(hours) 
PfN
 

PfG  (%) PopG  (%) 

Sinusoidal spiral 57.6 26 77.8/94.4/100 1.3/4.3/8.6 

Exponential sinusoid 94 31 80.6/100/100 0.1/0.7/2 

Table 10.5: Computation time, number of individuals in the Pareto front (
Pf

N ) and the percentage of 

individuals in the Pareto front 
Pf

G and in the population 
Pop

G that respect the maximum value for the 

ratio between the required thrust acceleration of the spacecraft and the available one, for the 
sinusoidal spiral and the exponential sinusoid, 3 cases of ( ), ,DS1

1;1.5;2
available

a a=
0 0

, Earth-Mars flight 

(acceleration inversely square case) 

 

From table 10.5, the optimisation procedure when using the exponential sinusoid used 

more computation time than the sinusoidal spiral. Compared with the tangential case, the 

computation time is significantly higher. This is due to integrations errors (section 6.4) that 

occur for individuals using the acceleration inversely square case. Also, in table 10.5, the 

number of individuals in the population that respect the thrust acceleration constraint is 

lower for this case of the thrust profile compared with the tangential one. This percentage 

of individuals in the population is higher for the sinusoidal spiral. However, the 

exponential sinusoid presents a significantly higher number of individuals in the Pareto 

front that respect the thrust acceleration constraint, unlike for the tangential case where this 

shape was the one that had lower percentage of individuals in the Pareto front that respect 

this constraint. 
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Figures 10.15 and 10.16 illustrate the Pareto fronts for the sinusoidal spiral and for the 

exponential sinusoid when considering only individuals in the population that respect the 

condition in (8.7). Figures 10.15 and 10.16 show the Pareto fronts for the sinusoidal spiral 

and exponential sinusoid, respectively when the available thrust acceleration 

( ) 2064.0;048.0;032.0 raavailable µ=  is given as a constraint. 

 

 

Figure 10.15: Pareto fronts for the sinusoidal spiral, for the entire population (on the bottom right) 
and only for individuals in the population that respect the condition (8.7) (the 3 cases of the available 

thrust acceleration), acceleration inversely square case, Earth-Mars flight 

 

 

Figure 10.16: Pareto fronts for the exponential sinusoid, for the entire population (on the right) and 
only for individuals in the population that respect the condition (8.7) (the 3 cases of the available thrust 

acceleration), acceleration inversely square case, Earth-Mars flight 
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From figures 10.15 and 10.16, for both sinusoidal spiral and exponential sinusoid, there are 

no significant differences between the Pareto fronts for all 3 cases. From the first to the 

second cases of availablea , for both shapes, there is a lack of individuals between 80 kg and 

100 kg. 

 

10.4. Earth - Mercury Flight: Acceleration Inversel y Square 
Case 

 

Figure 10.17 illustrates the Pareto fronts using the acceleration inversely square case in the 

Earth-to-Mercury flight for the sinusoidal spiral and for the exponential sinusoid. As 

already said before, the population that is being used is 75000 individuals for each shape. 

 

 

Figure 10.17: Pareto fronts for the sinusoidal spiral and the exponential sinusoid, acceleration 
inversely square case, Earth-Mercury flight 

 

Note that the total excess velocity values for lower values of fuel mass consumption are 

significantly high. Individuals with these values of total excess velocity cannot be taken 

into account in a real mission. Again an upper limit for the total excess velocity was used: 

60km s for the same reasons already mentioned in section 10.3. 

 

Figure 10.18 illustrates the Pareto fronts for the sinusoidal spiral and for the exponential 

sinusoid. In the plot in the right-hand side, the same Pareto fronts are represented but only 

with individuals with values of total excess velocity lower than skm4  and values of fuel 

mass consumption between 550 and 800 kg. 
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Figure 10.18: Pareto fronts for the sinusoidal spiral and for the exponential sinusoid, acceleration 
inversely square case, Earth-Mercury flight 

 

Individuals with values lower than 24.4 kg and 118.3 kg are not present for the Pareto 

fronts for the sinusoidal spiral and for the exponential sinusoid, respectively. The minimum 

values of the total excess velocity in the Pareto fronts are skm4967.0  and 0.2551km s 

for the sinusoidal spiral and the exponential sinusoid, respectively. Unlike for the other 3 

missions shown in this chapter, the minimum value of the total excess velocity is lower for 

the exponential sinusoid and not for the sinusoidal spiral. Individuals with TOF values 

higher than ~0.94 years were not selected for the Pareto fronts for a maximum number of 

complete revolutions of 2. 

 

From figure 10.18, the Pareto fronts for the sinusoidal spiral provide lower values of fuel 

mass consumption (for values lower than ~500 kg) for the same total excess velocity when 

comparing with the exponential sinusoid. The range of fuel mass consumption values for 

the sinusoidal spiral is the widest one. This shape and the exponential sinusoid have similar 

performances for fuel mass consumptions higher than ~ 500 kg. 

 

10.4.1. Thrust Acceleration Constraint 
 

Computation times are given for both shapes in table 10.6. Also, the percentage of the 

individuals in the Pareto front and in the population that respects the maximum ratio 

between the thrust acceleration that is given as an output from a certain shape and the 

available thrust acceleration (1≤ ) is presented for 3 different cases of available thrust 
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acceleration: (1) 2048.0 raavailable µ=  (1.5 times availablea  in DS1), (2) 

2072.0 raavailable µ=  (2.25 times availablea  in DS1) and (3) 2096.0 raavailable µ=  (3 times 

availablea  in DS1) (see chapter 8). 

 

Shapes 
Computation time 

(hours) 
PfN
 

PfG  (%) PopG  (%) 

Sinusoidal spiral 40.5 46 47.8/84.8/100 0.5/2/5.3 

Exponential sinusoid 85.5 41 0/23.8/97.6 0.02/0.5/2.5 

Table 10.6: Computation time, number of individuals in the Pareto front (
Pf

N ) and the percentage of 

individuals in the Pareto front 
Pf

G and in the population 
Pop

G that respect the maximum value for the 

ratio between the required thrust acceleration of the spacecraft and the available one, for the 
sinusoidal spiral and the exponential sinusoid, 3 cases of ( )0, 0,DS1

1.5;2.25;3
available

a a= , Earth-Mercury 

flight (acceleration inversely square case) 

 

From table 10.6, the optimisation procedure using the exponential sinusoid required more 

computation time than the sinusoidal spiral. Also, the percentage of individuals in the 

population and in the Pareto front that do not respect the maximum value for the ratio 

between the required thrust acceleration of the spacecraft and the available one is highest 

for the exponential sinusoid in all 3 cases. Compared with the Mars mission, there are 

more individuals in the Pareto front for the Earth-Mercury flight. 

 

Figures 10.19 and 10.20 illustrate the Pareto fronts for the sinusoidal spiral and for the 

exponential sinusoid when considering only the individuals in the population that respect 

the condition in (8.7). Figures 10.19 and 10.20 illustrate the Pareto fronts for the sinusoidal 

spiral and exponential sinusoid, respectively when the available thrust acceleration 

( ) 2096.0;072.0;048.0 raavailable µ=  is given as a constraint. 
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Figure 10.19: Pareto fronts for the sinusoidal spiral, for the entire population (on the right) and only 
for individuals in the population that respect the condition (8.7) (the 3 cases of the available thrust 

acceleration), acceleration inversely square case, Earth-Mercury flight 

 

 

Figure 10.20: Pareto fronts for the exponential sinusoid, for the entire population (on the right) and 
only for individuals in the population that respect the condition (8.7) (the 3 cases of the available thrust 

acceleration), acceleration inversely square case, Earth-Mercury flight 
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From figure 10.19, for the sinusoidal spiral, there is a gap in the Pareto front for the case 

20.048availablea rµ= , where individuals with fuel mass consumption values between ~260 

kg and ~560 kg are not present. From figure 10.20, the Pareto front for the exponential 

sinusoid only has individuals with fuel mass consumption values higher than 550 kg for the 

constraint 2048.0 raavailable µ= . For the other cases and for both shapes, there no 

significant differences between the Pareto front without applying the constraint and with 

the constraint ( ) 2096.0;072.0 raavailable µ= . Note that in some cases, the individuals 

chosen had TOF higher than 1 year (maximum TOF in the Pareto front in figure 10.17 was 

~0.94 years). 
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10.5. Conclusions 
 

Some important remarks can be made in this section about the optimisation results 

presented in this chapter. 

 

For all example missions and for both thrust profiles presented, the sinusoidal spiral 

achieved the best results in terms of Pareto front. The exponential sinusoid was generally 

the second best in all analyse, but always the shape that required the highest computation 

time. The Archimidean spiral and the Poinsot’s spiral (hyperbolic sine) had the worst 

performance in the Earth-to-Mars mission (tangential case), since the number of 

individuals in the Pareto front was significantly small and their fuel mass consumption 

values were higher compared with the values for the other shapes. The same situation 

occurred for the logarithmic spiral in the Earth-Mercury mission. In this way, after a more 

detailed study, conclusions can be drawn: the geometric properties of these shapes cannot 

satisfy the physical problem when the target planet is inner (logarithmic spiral) and outer 

(Archimedean spiral and the Poinsot’s spiral (hyperbolic sine)) with respect to the 

departure planet. For this reason, these 3 shapes should not be used as analytical 

representations for low-thrust trajectories. 

 

In terms of the thrust acceleration constraint, the sinusoidal spiral shows always a higher 

percentage of individuals in the Pareto front that respect this constraint than the 

exponential sinusoid, except for the Earth-Mars mission using the acceleration inversely 

square case. For higher values of transfer angle and number of complete revolutions N, 

generally there is a higher difference between the maximum values of thrust acceleration 

used and the maximum thrust available. 

 

When comparing the results between the acceleration inversely square case and the 

tangential case, the computation time required for the first case is significantly higher than 

for the later one (at least 30 times higher for the sinusoidal spiral and 49 times for the 

exponential sinusoid). Also, the number of individuals in the Pareto front is at least twice 

higher for the tangential case. Figure 10.21 illustrates the Pareto fronts for the sinusoidal 

spiral and the exponential sinusoid for an Earth-Mars mission. 
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Figure 10.21: Pareto fronts for the sinusoidal spiral and the exponential sinusoid, acceleration 
inversely square case, tangential thrust, Earth-Mars flight 

 

From figure 10.21, the sinusoidal spiral performs always better (for values of fuel mass 

consumption lower than 100 kg), using the tangential profile than the acceleration 

inversely square case. The exponential sinusoid performs better with the tangential profile 

for fuel mass consumption values higher than ~35 kg and lower than 100 kg. The 

minimum values of total excess velocity (Earth-Mars mission) for the sinusoidal spiral 

were skm1854.0  and skm2145.0  for the tangential and accelerations inversely square 

cases of the thrust profile, respectively. In terms of fuel mass consumption during the low-

thrust phase, the sinusoid spiral, for the acceleration inversely square case uses 153.25 kg, 

while for the tangential case 96.43 kg are spent. This means that the fuel mass 

consumption spent during the heliocentric phase and the total excess velocity required 

were higher for the acceleration inversely square case compared with the tangential case. 

In terms of thrust acceleration constraint, the number of individuals in the Pareto front that 

respect the constraint is always higher for the acceleration inversely square case than for 

the tangential case. On the other hand, the number of individuals in the population that 

respect the thrust acceleration constraint is generally higher for the tangential case than for 

the acceleration inversely square case. 

 

Figure 10.22 shows the Pareto fronts for the sinusoidal spiral and the exponential sinusoid 

for an Earth-Mercury mission. For this mission, the minimum values of total excess 

velocity for the sinusoidal spiral were skm2609.1  and skm4967.0  for the tangential and 
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accelerations inversely square cases, respectively. In terms of fuel mass consumption 

during the low-thrust phase, the sinusoid spiral, for the acceleration inversely square case 

uses 648.18 kg, while for the tangential case 536.04 kg are spent. This means that although 

the fuel mass consumption spent during the low-thrust phase was higher for the 

acceleration inversely square, the total excess velocity required is smaller compared with 

the tangential case. 

 

 

Figure 10.22: Pareto fronts for the sinusoidal spiral and the exponential sinusoid for the acceleration 
inversely square case of the thrust profile and the tangential thrust for an Earth-Mercury flight 

 

Due to the significantly high computation time and the worse performances for most of the 

individuals in the Pareto fronts, the acceleration inversely square case of the thrust profile 

should not be considered for a mission generator for low-thrust trajectories. 

 

From the excess velocity values achieved in the Pareto fronts in this chapter, the 

application of this shape-based technique is only meaningful if a multi-revolution case is 

considered (see figure 10.23). For smaller values of N (lower TOF), for the examples 

shown in this chapter, the total excess velocity values are, many times, too high to be 

considered in a mission and/or to have the advantage of using the low-thrust propulsion 

technology instead of the chemical one in a mission. 
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Figure 10.23: Pareto fronts for the Archimedean spiral, logarithmic spiral, Poinsot’s spiral (hyperbolic 
sine), Poinsot’s spiral (hyperbolic cosine), sinusoidal spiral and exponential sinusoid, tangential thrust, 

Earth-to-Mars flight, for different values of N 
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11. Final conclusions 
 

The aim of this master thesis was to come up with alternative mathematical functions and 

thrust profiles to represent low-thrust interplanetary trajectories, different from the one 

presented in [Petropoulos et al., 1999] (exponential sinusoid using continuous tangential 

thrusting). Six shapes (including the exponential sinusoid), combined with three thrust 

profiles (the tangential profile included) were studied. 

 

The constant acceleration case of the thrust profile, where the thrust acceleration is 

constant and equal to 2
0 1a a rµ= , was discarded after the sensitivity analysis (chapter 7) 

and consequently it was not used in the optimisation (chapter 9).The results shown for this 

thrust profile case were not as satisfactory as for the other thrust profiles, in terms of total 

excess velocity and thrust acceleration. Therefore and also due to lack of time, the study of 

this thrust profile was not extended. An optimisation procedure was done for 6 shapes, 

with 2 different thrust profiles and for 3 different missions: Earth-Mars, Earth-Jupiter and 

Earth-Mercury (chapter 9). 

 

Concerning the results from the sensitivity analysis, by using the acceleration inversely 

square and constant acceleration cases, integration errors can easily occur. Many times, for 

certain geometric parameters and normalised thrust acceleration values, feasible 

trajectories cannot be computed. When the integration is completed without errors, the 

shapes combined with these thrust profiles force the spacecraft to use negative (but higher 

than -90º) values of the thrust angle α . This means that the spacecraft most of its time is 

thrusting inwards in the radial direction, while its radial velocity is positive (like the engine 

is trying to slow down the spacecraft). Also, from the analysis done in chapter 7, the search 

space for the input variables required cannot be restricted in order to prevent integration 

errors. This led to significantly higher values of computation time in the optimisation 

procedure (chapter 10) using the acceleration inversely square case than with the tangential 

thrust profile. Any definite conclusions could not be made after the sensitivity analysis in 

chapter 7. Optimisation was necessary to analyse the performances of each shape and to 

compare them. 
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In chapter 10, Pareto fronts were built for the acceleration inversely square and the 

tangential cases and for 2 missions. Generally, the sinusoidal spiral had the best 

performance in terms of the Pareto front in all cases. Compared with the exponential 

sinusoid, the computation time was smaller. 

 

The Pareto front trend of the exponential sinusoid was studied in chapter 10. Two types of 

curvatures were verified in the Pareto front for the tangential thrust profile for the 2 

mission examples. For values of fuel mass consumption lower than a certain value fuelM , 

the parameter 2k  increases, while for higher values, it decreases. According to Petropoulos 

and Longuski [Petropoulos and Longuski, 2004], for higher values of the transfer angle 

θ∆  and higher number of complete revolutions N (higher values of fuel mass 

consumption), the values for 2k  should decrease. In this way, the plot of 2k  should always 

decrease when increasing the values of the fuel mass consumption, which does not happen 

for values lower than fuelM . At fuelM , 2k  approximately reaches the maximum value 

allowed by the optimisation program: 1. When increasing 2k  from higher fuel mass 

consumption to lower fuel mass consumption values, after fuelM , the influence of this 

geometric parameter on the dynamics of the problem is different. Therefore, the bend 

occurs because the optimizer chooses smaller values of 2k . 

 

From the optimisation results obtained for the tangential case, the Archimedean spiral, the 

logarithmic spiral and the Poinsot’s spiral (hyperbolic sine) were not considered suitable 

for the representation of low-thrust trajectories. Only the sinusoidal spiral and the 

exponential sinusoid were used in the optimisation procedure, using the acceleration 

inversely square case. Compared with the tangential case, the computation time is more 

than 30 times higher and the number of individuals in the Pareto front is more than twice 

less. The minimum values for the total excess velocity are higher for the acceleration 

inversely square case than for the tangential case in the Earth-Mars flight, while for the 

Earth-Mercury mission, the opposite occurs. For both missions, the fuel mass consumption 

values are much higher for the acceleration inversely square case than for the tangential 

one. The acceleration inversely square case is expected to have a better Pareto front than 

the tangential case, since it uses 2 more variables than the other one (there is more 



Analytical Representations for Low-Thrust Trajectories  
 

 233 

flexibility). This does not happen, because the problem also becomes more complex. 

Again, the geometry combined with the demands on the thrust profile cause integration 

errors that narrow the search space of each input parameter (section 6.4) and it limits the 

number and the performance of the individuals in the Pareto front. Also, there is a 

restriction in the thrust acceleration trend. For these reasons, the tangential case should be 

the thrust profile chosen to be used in a mission generator. 

 

Note that although the sinusoidal spiral had a better overall performance than the 

exponential sinusoid, it is worse than this last shape (chapter 6) in terms of constraint 

equations and singularities. It was not possible in chapter 6 to find a constraint equation to 

ensure that 2θɺ  is always positive. Individuals that do not respect 2 0θ >ɺ  were discarded 

during the integration procedure, unlike the exponential sinusoid where only individuals 

that respect 2 0θ >ɺ  a priori are picked. In spite of this, the computation time of the 

sinusoidal spiral was shorter than for the exponential sinusoid. Note that, as already 

explained before, a three-dimensional problem was not implemented in the optimisation 

procedure and consequently, the geometric parameter for a required TOF for a specific 

mission was not computed using the plot TOF as function of the free geometric parameter 

(in case of the sinusoidal spiral is m - see section 5.5). In the case of the sinusoidal spiral 

(unlike the exponential sinusoid), the interval of values for m  would have been always 

( )1,1−  and 0m≠ . However, there is no guarantee that there will be always a sinusoidal 

spiral for the TOF required. 

 

In terms of the thrust acceleration constraint, the sinusoidal spiral showed always a higher 

percentage of individuals that respect this constraint than the exponential sinusoid, for the 

tangential case. 

 

Finally, from chapter 10, the application of this shape-based technique is only meaningful 

if a multi-revolution case is considered. For a zero value of N, the total excess velocity 

values are many times too high to be considered in a mission and/or to have the advantage 

of using the low-thrust propulsion technology instead of the chemical one (constraints in 

the maximum thrust acceleration available are violated). 
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From this master thesis 6 shapes and 3 different thrust profiles were studied. Only the 

sinusoidal spiral performs better than the exponential sinusoid using continuous tangential 

thrust in terms of computation time, total excess velocity and thrust acceleration constraint. 
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12. Recommendations 
 

Although much analysis has been done in this master thesis, there are some areas that still 

need to be investigated. 

 

Even if the sinusoidal spiral was considered the shape that had the best performance after 

the optimisation procedure, a more detailed mathematical and physical analysis should be 

done, in order to find a constraint equation as Petropoulos did for the exponential sinusoid 

[Petropoulos and Longuski, 2004]. 

 

During the optimisation procedure, the fuel mass consumption during the high-thrust phase 

should be computed. Another combination of objective functions should be tested, like the 

total impulse shots V∆  (chemical) versus the fuel mass consumption during the 

interplanetary low-thrust phase. 

 

Also, the optimisation procedure was done without giving the TOF as an input for the 

optimizer (three-dimensional case). The exponential sinusoid is already implemented in 

Galomusit [Corradini, 2008] together with a multi-objective optimizer (with the objective 

functions: total hyperbolic excess velocity versus fuel mass consumption during the 

interplanetary phase). The sinusoidal spiral can be also implemented in Galomusit and 

results between these two shapes can be compared using the JPL’s Ephemeris model, 

instead of a two-dimensional one. 

 

The results obtained from the exponential sinusoid and the sinusoidal spiral should serve as 

an input for a real mission generator, where perturbations are taken into account. The 

concept of using analytical representations for low-thrust trajectories should be analysed. If 

the variation in final position and velocity of the spacecraft using the full numerical 

integration of the transfer orbit with respect to the results given by the analytical 

representation technique is significantly small, then this shape technique using the 

sinusoidal spiral or the exponential sinusoid will be worthwhile taking into account for an 

initial guess to compute low-thrust trajectories. On the other hand, if the differences 

between the numerical integration results and the analytical representation results are not 



Analytical Representations for Low-Thrust Trajectories  
 

 236 

acceptable, other methods different from the one developed by Dario Izzo [Izzo, 2006] 

should be taken into account. The method developed by [Biesbroek, 2006] that uses pre-

described thruster models or the one done by De Vogeleer [De Vogeleer, 2008] already 

mentioned in this thesis are two examples of such techniques. In the following paragraphs, 

a comparison between the software implemented by De Vogeleer [De Vogeleer, 2008] and 

Izzo’s technique will be done in order to understand their advantages and disadvantages. 

 

As mentioned before, the purpose of the thesis developed by De Vogeleer was to find a 

method that serves as an initial guess to compute short low-thrust trajectories between two 

celestial bodies. The method works very well as long as the number of revolutions N is 

smaller than 2, while Izzo’s method has no limitation on this parameter. Both methods are 

independent of the initial or final orbit parameters. De Vogeleer’s method calculates 

feasible trajectories for fixed initial and final positions and velocities, while in Izzo’s 

technique [Izzo, 2006] there is only a match in initial and final positions. As mentioned in 

the beginning of this chapter, De Vogeleer uses expansions of power series to represent the 

low-thrust trajectory of the spacecraft, i.e., expressions with linear combinations of many 

terms (coefficients). These coefficients act as degrees of freedom and are therefore some of 

the optimization variables. The amount of coefficients depends on the range of the mission, 

i.e., for an Earth-Mars flight the software will need fewer coefficients than for an Earth-

Jupiter flight. Izzo’s technique, on the other hand, uses only 3 optimization variables 

( )2, ,departuret TOF k  for a direct flight (exponential sinusoid) independently of the initial and 

final orbit parameters. Also, a sensitivity analysis is required in order to choose the correct 

values for the order of the expansions and the density of the time grid to achieve consistent 

integrations. This kind of sensitivity analysis is not needed with Izzo’s technique. 

 

Advantages and disadvantages can be found in both methods with respect to each other. De 

Vogeleer’s method is more desirable for orbit insertion missions, because a match in 

position and velocity is achievable. Izzo’s technique is a much more straightforward 

method, but it requires significantly high initial and final excess velocities in order to 

perform orbit insertions. Note that the sinusoidal spiral and the exponential sinusoid have 

similar performances in terms of excess velocity for high values of number of revolutions. 

Therefore, De Vogeleer’s method is still more suitable for orbit insertion missions than 

Izzo’s technique using the sinusoidal spiral. On the other hand, the excess velocities 
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achieved by Izzo’s method make it more attractive for thrust arcs where flybys are taken 

into account. In this situation De Volgeleer’s method cannot perform efficiently, since the 

final velocity is already fixed. A combination of Izzo’s technique and the Vogeleer’s 

method will be advantageous for a mission generator of low-thrust trajectories. 
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Appendix A: Derivation of Equations 
 

1. Derivation of the equation: 2 0 0
3 2 2

1 2

cos tan sin 1

tan 1

a a

r k k s

α γ αµθ
γ

− + =   + + 
ɺ  

 

First the derivatives in equations (5.6) are substituted in the first equation of motion 

represented in (5.5): 

 

( ) ( )( )22 2 2 2
1 2 1 2 1 2 2

sinr q k k c q k k c k k s r a
r

µθ θ θ θ α+ + + − − + =ɺɺ ɺ ɺ ɺ  (A.1) 

 

The second equation of motion in (5.5) is used to eliminate θɺɺ  from equation (A.1) and 

( )1 2q k k c+  is substitute by tanγ  (equation (5.7)): 

 

( ) ( )

( ) ( )

( )

( ) ( )

2 2 2 2 2
1 2 2

2 2 2 2 2 2
1 2 2

2 2 2 2
1 2 2

3 2
2 2 2
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r k k s a a
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r r
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µ µ

− + − − + = ⇔

− + − − + = ⇔

− + − − = − − ⇔

+ + = − +

ɺ ɺ ɺ ɺɺ

ɺ ɺ ɺ ɺ

ɺ

ɺ

 (A.2) 

 

In the following step, the thrust acceleration a  is replaced by the parameter 0a  according 

to equation (5.9). Passing all the terms in left hand-side to the right hand-side except 2θɺ , 

equation (5.8) is obtained. 

 

Note that for the tangential thrusting case: nα γ π= + , with 0,1n =  and consequently 

cos tan sina aα γ α= . 
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2. Derivation of the equation: 

( )( )
( )( )

( ) ( )( )

22 3 2 2
0 1 2

3 2
0 0 1 2 1 2

2 2 2 2 2
0 1 2 1 2 0 0 1 2

tan / 2 cos tan 1

cos tan sin 1 2 tan

cos tan 1 / sin tan cos tan 1

r a k k s

a a k k c k k s

a k k s k k s a a k k s

α γθ µ α γ

α γ α γ

α γ θ α γ α γ

= − + + −

− − + −

  − + + + + +  

ɺɺ

ɺ

 

 

Equation (5.8) can be written as: 

 

( ) ( )2 2 2
1 2 0 03

tan 1 cos tan sin 1k k s a a
r

µθ γ α γ α+ + = − +ɺ  

 

Taking the derivative of equation (5.8) in both right and left sides: 

 

( ) ( )

( ) ( ) ( )

( )

( )

2 2 2
1 2 0 03

2 2 3 2 3
1 2 1 2 1 2 0 04

20
1 23

3 3
2 2 2

1 2 1

tan 1 cos tan sin 1

2 tan 1 2 tan 3 cos tan sin 1

sin tan cos cos

2 tan 1 2

d d
k k s a a

dt dt r

r
k k s k k s k k c a a

r
a

k k s
r

r r
k k s k

µθ γ α γ α

µθθ γ θ γ α γ α

µ α α γ θ α α α

θ θ γ θ
µ µ

  + + = − + ⇔    

+ + + − + = − − + +

+ − − − ⇔

+ + + −

ɺ

ɺ
ɺɺɺ ɺ

ɺɺ ɺ

ɺ ɺɺ ɺ ( )
( ) ) ( )

2 3
2 1 2

2
0 0 0 1 2 0

tan

3tan cos tan sin 1 cos sin tan cos

k s k k c

a a a k k s a

γ

γ α γ α α α α γ α


+ +



+ − + + = − +ɺ

(A.3) 

 

Substituting the second equation of (5.5) in (A.3) in order to eliminate θɺɺ : 
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( ) ( ) ( )
( ) ) ( )

( ) ( )

2 3
2 2 2 2 2 3

1 2 1 2 1 2

2
0 0 0 1 2 0

3 3
2 2 2 2 2 3

0 1 2 1 2 1 2

2 cos 2 tan tan 1 2 tan

3tan cos tan sin 1 cos sin tan cos

2 cos 4 tan tan 1 2 tan

3tan

r r
a r k k s k k s k k c

a a a k k s a

r r
a k k s k k s k k c

θ α θ γ γ θ γ
µ µ

γ α γ α α α α γ α

θ α γθ γ θ γ
µ µ

γ


− + + + − + +



+ − + + = − + ⇔

 
− + + + − + + 

 

+

ɺ ɺ ɺ

ɺ

ɺ ɺ ɺ

( ) ( )

( ) ( )

) ( )

3
2 2 2 2

1 2 0 1 2 0

3 3
2 2 2 2 2 3

0 1 2 1 2 1 2

2
0 1 2 0

tan 1 cos sin tan cos

2 cos tan tan 1 2 tan

cos sin tan cos

r
k k s a k k s a

r r
a k k s k k s k k c

a k k s a

θ γ α α α γ α
µ

θ α γθ γ θ γ
µ µ

α α α γ α


+ + + = − + ⇔



 
− + + + + − + − 
 

− = +

ɺ ɺ

ɺ ɺ ɺ

ɺ

 (A.4) 

 

Finally, multiplying both right and left parts of equation (A.4) by ( )2 2
1 2tan 1k k sγ + + , the 

equation (5.11) is obtained. 

 

3. Derivation of the equation: 

( ) ( )
( )

2
2 1

0 22 2 2 2
1 2 1 2

1 tan 1 21

2cos tan 1 tan 1

n
k k s

a
k k s k k s

γ
γ γ γ

 − − = −
 + + + + 

 

 

Equations of motion (5.5) are added, yielding: 

 

( )

( ) ( )

( ) ( )( )
( )

( ) ( )

2
2

2 2 2 2 2 2
1 2 2

2 2 2 2 2 2
1 2 1 2

2

2 2 2 2

2 cos sin

tan tan 2 tan cos sin

tan 1 2 tan 2 tan tan 1

cos sin

tan 1 2 tan 2 tan tan

r r r r a
r

r k k s a
r

r k k s k k s

a
r

r k

µθ θ θ α α

µθ γ θ γ θ θ θ γ θ α α

θ γ θ γ γ γ θ

µ α α

θ γ θ γ γ θ γ

− + + + = + ⇔

+ − − + + + = + ⇔

+ + + − − − − +

+ = + ⇔

+ + + − +

ɺ ɺ ɺɺɺɺ ɺ

ɺɺ ɺ ɺ ɺ ɺ ɺɺ

ɺɺ ɺ ɺ

ɺɺ ɺ ɺ ( )( ) ( )2
1 2 2

1 cos sink s a
r

µ α α+ + = +

 (A.5) 

 

Substituting equation (5.13) in this last step and dividing it by cosγ , the expression for the 

thrust acceleration magnitude is given by: 
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( )22 tan
cos

r
a θ θ γ

γ
= +ɺɺ ɺ  (A.6) 

 

Now, an expression for θɺɺ  must be computed differentiating equation (5.13) with respect to 

time: 

 

( )( )
( ) ( )

2 2 2
1 2 3

2 2 3 2 3
1 2 1 2 1 2 4

tan 1

3
2 tan 1 2 tan

d d
k k s

dt dt r

r
k k s k k s k k c

r

µθ γ

µθθ γ θ γ

 + + = ⇔ 
 

+ + + − + = −

ɺ

ɺ
ɺɺɺ ɺ

 (A.7) 

 

Isolating θɺɺ  term, the equation (A.7) yields: 

 

( )
( )
3 2 2 3

1 2 1 2

2 2
1 2

3tan 2 tan

2 tan 1

r k k s k k c

k k s

γµ θ γ
θ

γ
− − − +

=
+ +

ɺ
ɺɺ  (A.8) 

 

Substituting this last equation (A.8) in equation (A.6), the thrust acceleration is given by: 

 

( ) ( ) ( )

( ) ( )

( )

2 2
1 2 2

3 2 2 2 2 3 2 2
1 2 1 2 1 2

2 2
1 2 2

23 2 2 2 2
1 2 1 2

2
2

2 2 2
1 2

2tan 2 tan
3

cos 2 tan 1 tan 1 tan 1

2tan 3/ 2 2

cos tan 1 2 tan 1

tan 1

2cos tan 1

k k s kr
a

r k k s k k s r k k s

k k s kr
a

r k k s k k s

k
a

r k k s

µ γ µ γ
γ γ γ γ

µ γ
γ γ γ

µ γ
γ γ

  −
  = − + +

 + + + + + +   

 −− + = + ⇔
 + + + + 

= −
+ +

( )
( )

1
22 2

1 2

1 2

tan 1

k s

k k sγ

 − 
 + + 

 (A.9) 

 

To obtain the normalised thrust acceleration 0a , the left side of equation (A.9), a  should 

be substituted by equation (5.9) to finally obtain equation (5.14). Note that only the 

situation where the thrust vector is along the velocity vector was considered in equation 

(A.9). 



Analytical Representations for Low-Thrust Trajectories  
 

 6 

 

4. Derivation of the conditions: 

( )
( )( )

2
12 min2

2 2

min

tan 2 ln

ln

s B

B

k r r
k

r r

γ −
≤  and 

( )
( )( )

2
12 max2

2 2

max

tan 2 ln

ln

s B

B

k r r
k

r r

γ +
≤  

 

Note that the quantity 12sk  is given by: 

 

2
12 1 2sk k k s=  (A.10) 

 

Using the trigonometry identity: 2 2sin cos 1θ θ+ =  and equation (5.7), equation (A.10) can 

be rewritten as: 

 

2 2 2 2
2 4 2 2 2 2 1 2
1 2 2 12 2 2

1

tan
tan 0s

k k s
k k k k k

k

γγ +− − = ⇔ =  (A.11) 

 

The geometric parameter 1k  can be rewritten through the variables 1
min 0

kr k e−=  and 

1
0

k s
Br k e= , that are given by equation (5.3): 

 

min
1 1 ln

B

r
k k s

r

  
= − +   

  
 (A.12) 

 

To obtain the condition given in (5.17), equation (A.12) is substituted in the denominator 

of equation (A.11). A similar reasoning is applied to obtain the condition (5.18), using 

1
max 0

kr k e= , instead of minr . 

 

5. Derivation of the equation: 
( ) ( ) ( )

( )

2
2

1 2 1 2 22 1
1 2

22

ln / tan / sin tan

1 cos

f

f

r r k k
k

kk

γ θ γ
θ

 +
 = +
 − 

 

 

Using the two equations of motion in (5.29) and considering 0ºiθ = , the following relation 

can be derived: 
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( ) ( ) ( )( )1 1
1 2 1 2

2 1 2 2

sin
exp ln sin sin

sin f

r k
r r k k

r k k

φ φ θ φ
θ φ

 
= ⇔ = − +  + 

 (A.13) 

 

Using the addition theorem: ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2sin sin cos cos sinβ β β β β β+ = + , equation 

(A.13) can be rewritten as: 

 

( ) ( ) ( )( )( )
( ) ( ) ( )

( ) ( )
( )

1 2 1 2 2

1 2 1 2 1 2 1 2

1 2 2 1 2

1

2

ln sin sin cos sin cos

ln sin sin tan sin cos

ln sin tan
sin

1 cos

f f

f f

f

f

r r k k k

r r k k k k k

r r k k
k

k

φ θ φ φ θ

φ θ γ φ θ

θ γ
φ

θ

= − + ⇔

= − − ⇔

+
=

−

 (A.14) 

 

The left side of equation (A.14) can be rewritten as: 

 

( )22 2 2 2 21
1 1 1 1 1 2 1 1 2

1

sin 1 cos 1 tan tan
k

k k k k k k k
k

φ φ γ γ= − = − = −  (A.15) 

 

Substituting equation (A.15) in equation (A.14) and squaring both, right and left sides of 

the last equation in (A.14), the geometric parameter 1k  can be computed: 

 

( )( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

2
2

1 2 2 1 22 2 2
1 1 1 2

2

2

1 2 2 1 22 2 2
1 1 2

2

2
2

1 2 1 2 22 1
1 2

22

ln sin tan
sign tan

1 cos

ln sin tan
tan

1 cos

ln / tan / sin tan

1 cos

f

f

f

f

f

f

r r k k
k k k

k

r r k k
k k

k

r r k k
k

kk

θ γ
γ

θ

θ γ
γ

θ

γ θ γ
θ

 +
 − = ⇔
 − 

 +
 − = ⇔
 − 

 +
 = +
 − 

 (A.16) 

 

Note that the sign of the geometric parameter 1k  is the same as the right side of the last 

equation in (A.14). 
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6. Derivation of the condition: ( )1 1, 1,tan tan , tanm Mγ γ γ∈ , 

with 
,

22 1
1

2

tan ln cot
2 2m M

fkk r

r

θ
γ

  
= − ± ∆  

  
 and 

( )2 2 1
4
2 2

2 1 cos
ln

fk r

k r

θ−  
∆ = −  

 
 

 

The constraint condition given in (5.34) can be rewritten as: 

 

( ) ( ) ( )
( )

( ) ( )( ) ( )( )

2
2

1 2 1 2 22 4 41
1 2 22

22

2 2
2 2 2
2 1 2 2 1 2 2 1 2

ln / tan / sin tan
1 1

1 cos

ln / tan sin tan 1 cos 0

f

f

f f

r r k k
k k k

kk

k r r k k k k

γ θ γ
θ

γ θ γ θ

  +  < ⇔ + < ⇔
  −  

+ + − − <

 (A.17) 

 

After some algebraic manipulation, the last condition introduced in (A.17) can be written 

as: 

 

( )( ) ( )

( )( )

2 2 3 1
2 2 1 2 2 1

2

2
4 2 1
2 2

2

2 1 cos tan 2 ln sin tan

ln 1 cos 0

f f

f

r
k k k k

r

r
k k

r

θ γ θ γ

θ

 
− + + 

 

 
+ − − < 

 

 (A.18) 

 

Solving this quadratic equation in 1tanγ  through the formula: 

 

*

1tan
2

b

a
γ − ± ∆=  and * 2 4c ac∆ = − , where: 

 

( )( )
( )

( )( )

2
2 2

3 1
2 2

2

2
4 2 1
2 2

2

2 1 cos

2 ln sin

ln 1 cos

f

f

f

a k k

r
b k k

r

r
c k k

r

θ

θ

θ

= −

 
=  

 

 
= − − 

 

 

 

In this way, *∆  can be derived: 
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( )( )

( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( )

* 6 2 21
2 2

2

2
2 4 2 1
2 2 2 2

2

2
* 6 2 21 1

2 2 2 24
2 2 2

2
* 6 2 1

2 2 24
2 2

4 ln 1 cos

8 1 cos ln 1 cos

2
4 1 cos ln 1 cos 2ln 1 cos

2
4 1 cos 1 cos ln

f

f f

f f f

f f

r
k k

r

r
k k k k

r

r r
k k k k

r r k

r
k k k

k r

θ

θ θ

θ θ θ

θ θ

 
∆ = − − 

 

  
− − − ⇔   

  

    
∆ = − + − + − ⇔     

    

 
∆ = − − − 

 

 
  
 

(A.19) 

 

Note that ( )( ) 2 1
24

2 2

2
1 cos lnf

r
k

k r
θ

 
∆ = − −  

 
 in equation (A.19). Finally, 1tanγ  can be 

computed through: 

 

( ) ( )
( )

( ) ( )( )
( )

( ) ( ) ( )( )
( ) ( )

( ) ( )( )

1 2 22
,

2

1 2 22
,

2

2 2
1 2 2 22

,

2 2

2
, 1 2 2

ln sin
tan

2 1 cos

ln 1 cos
tan

2 sin

ln 1 cos 2 sin 2
tan

2 2sin 2 cos 2

tan ln cot 2
2

f

m M

f

f

m M

f

f f

m M

f f

m M f

r r kk

k

r r kk

k

r r k kk

k k

k
r r k

θ
γ

θ

θ
γ

θ

θ θ
γ

θ θ

γ θ

 
 = − ∆ ⇔
 − 

 +
 = − ∆ ⇔
 
 

 + −
 = − ∆ ⇔
 
 

= − ∆

∓

∓

∓

∓

 (A.20) 
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Appendix B: Equations of the Shapes 
 

In this appendix, the equations for the dynamic parameters for each one of the 6 shapes: 

Archimedean spiral, the logarithmic spiral, the Poinsot’s spiral (hyperbolic sine and cosine 

expressions), the sinusoidal spiral and the exponential sinusoid will be presented. The 

equations for the dynamic parameters are given for the 3 cases of the thrust profile. 

 

1. Archimedean spiral 

 

The radius equation for the Archimedean spiral is given by equation (6.2): 

 

( )1

0 1

m
r k kθ= +  

 

The radial velocity and acceleration and the flight path angle for the Archimedean spiral 

are given by: 

 

( ) ( ) 1

0 0 11r m k r k kθ θ −= +ɺɺ  (B.1) 

( ) ( ) 1

0 0 1tan 1
r

m k k k
r

γ θ
θ

−= = +
ɺ

ɺ
 (B.2) 

( ) ( ) ( )( )1 12
0 0 1 0 0 11r m k k k r r rk k kθ θ θ θ θ− −= + + − +ɺɺ ɺ ɺɺɺ ɺ  (B.3) 

 

For acceleration inversely square case of the thrust profile, 2θɺ  and αɺ  are given by: 

 

( ) ( )
( )

0 02
3 2

cos tan sin 1

1 tan 1

a a

r m

α γ αµθ
γ

− +
=

+ +
ɺ  (B.4) 

 

( ){ ( ) ( )

( ) ( )( ) ( ) ( )( )

2 3 2 3 2
03

0 0 0 04 3

2 1 tan 1 2 tan tan cos

3
sin cos tan 1 / cos sin tan

m m m m a
r

r
a a a a

r r

µα θθ γ θ γ γθ α

µ µα α γ α α γ

  = − + + + + − +   

  + − − +    

ɺɺɺ ɺ ɺɺ

ɺ
 (B.5) 
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For constant acceleration case of the thrust profile, 2θɺ  and αɺ  are given by: 

 

( ) ( )
( )( )

0 0 2
2

2

cos tan sin

1 tan 1

a a
r

r m

µα γ α
θ

γ

− +
=

+ +
ɺ  (B.6) 

 

( ) ( ){ ( )
( ) ( ) ( )

2 2 3 2 3

2
0 0 03

2 1 tan 1 2 tan 1

cos tan 1 2 / cos sin tan

r r m r m m

r
a m a a

r

α θθ θ γ θ γ

µα θ γ α α γ

 = − − + + + + + − 

− + − +   


ɺɺɺ ɺ ɺɺ ɺ

ɺ
ɺ

 (B.7) 

 

For the tangential thrust profile, 2θɺ  is given by equation (B.4). Note that in the tangential 

case, ( ) ( )0 0cos tan sina aα γ α= . Parameter 0a  is given by: 

 

( )3 2

0

2 tan

cos

r
a

θ θ γ
µ γ
+

=
ɺɺ ɺ

 (B.8) 

 

Parameter θɺɺ  is given by: 

 

( )
( )( )

3 2 3
4

2

3
2 tan

2 1 tan 1

r
m m

r
m

µ θ γ
θ

θ γ

− + +
=

+ +

ɺ
ɺ

ɺɺ
ɺ

 (B.9) 

 

2. Logarithmic spiral 

 

The radius equation for the logarithmic spiral is given by equation (6.4): 

 

0 1
mr k e kθ= +  

 

The radial velocity and acceleration and the flight path angle for the logarithmic spiral are 

given by: 

 

0
mr m k e θθ= ɺɺ  (B.10) 
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0

0 1

tan
m

m

k mer

r k e k

θ

θγ
θ

= =
+

ɺ

ɺ
 (B.11) 

( )2
0

mr k me mθ θ θ= +ɺɺ ɺɺɺ  (B.12) 

 

For acceleration inversely square case of the thrust profile, 2θɺ  and αɺ  are given by: 

 

2 0 0
3 2

cos tan sin 1

2 tan tan 1

a a

r m

α γ αµθ
γ γ

− +=
− +

ɺ  (B.13) 

 

( ) ( )(
( ) ( ))
( )( )

2 3 2 3 2

4 3 2
0 0 0

3
0 0

2 2 tan tan 1 5 tan 4 tan tan

3 cos tan sin 1 cos tan tan /

sin tan cos

m m m

r r a a r a m

r a a

α θθ γ γ θ γ γ γ

µ α γ α µ θ α γ γ

µ α γ α

= − + + − − +

− + − −

− +

ɺɺɺ ɺɺ

ɺɺ  (B.14) 

 

For constant acceleration case of the thrust profile, θɺ  and αɺ  are given by: 

 

2
2 0 0

2

cos tan sin1

2 tan tan 1

a a r

r m

α γ α µθ
γ γ

− +=
− +

ɺ  (B.15) 

 

( )( ) ( )(
( )) ( )( )

2 2 3 2 3 2

3 2
0 0 0

2 2 tan tan 1 5 tan 4 tan tan

2 cos tan tan sin tan cos

r r m r m m

r r a m a a

α θθ θ γ γ θ γ γ γ

µ αθ γ γ α γ α

= + − + + − − +

− − − +

ɺɺɺ ɺ ɺɺ ɺ

ɺɺ

 (B.16) 

 

For the tangential thrust profile, 2θɺ  is given by equation (B.13). Note that in the tangential 

case, ( ) ( )0 0cos tan sina aα γ α= . Parameter 0a  is given by: 

 

( )3 2

0

2 tan

cos

r
a

θ θ γ
µ γ
+

=
ɺɺ ɺ

 

 

Parameter θɺɺ  is given by: 
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( )
( )

3 2 2 3 2

2

3 tan 2 5 tan 4 tan tan

2 2 tan tan 1

r m m

m

µ γ θ γ γ γ
θ

γ γ
− − − −

=
− +

ɺ
ɺɺ  (B.17) 

 

3. Poinsot’s spiral (hyperbolic sine) 
 

The radius equation for the Poinsot’s spiral (hyperbolic sine) is given by equation (6.7): 

 

( )( ) 1

0 sinh
k

r k m θ ϕ
−

 = +   

 

The radial velocity and acceleration and the flight path angle for the Poinsot’s spiral 

(hyperbolic sine) are given by: 

 

( )( )1 cothr k m m rθ θ ϕ= − +ɺɺ  (B.18) 

( )( )1tan coth
r

mk m
r

γ θ ϕ
θ

= = − +
ɺ

ɺ
 (B.19) 

( )( ) ( )( ) ( )( ) 22
1 coth coth sinhr k m r m r m rm mθ θ ϕ θ θ ϕ θ θ ϕ

−  = − + + + − +   
ɺɺ ɺ ɺɺɺ ɺ  (B.20) 

 

Parameter ϕ  was added in equation (6.7) in order to warn the user that the term inside the 

( )sinh  should not be zero, otherwise r  becomes ∞ . 

 

For acceleration inversely square case of the thrust profile, θɺ  and αɺ  are given by: 

 

( ) ( )
( )( )

0 02
23 2 2

1

cos tan sin 1

tan sinh 1

a a

r k m m

α γ αµθ
γ θ ϕ −

− +
=

− + +
ɺ  (B.21) 

 

( )( )( )( ){
( )( ) ( )( )( ) ( )
( ) ( )( )
( ) ( )( )( ) } ( ) ( )( )

22 2
1

23 3 2
1 1

4
0 0

23 2 3
1 0 0 0

2 tan sinh 1

2 coth sinh

3 cos tan sin 1

cos sinh cos sin tan

k m m

m m m k k

r r a a

r k m a m r a a

α θθ γ θ ϕ

θ θ ϕ θ ϕ

µ α γ α

µ α θ θ ϕ µ α α γ

−

−

−

= − + + +

+ + + − +

+ − + −

 − + − + 

ɺɺɺɺ

ɺ

ɺ

ɺ

(B.22) 
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For constant acceleration case of the thrust profile, θɺ  and αɺ  are given by: 

 

( ) ( )
( )( )( )( )

2
0 02

22 2
1

cos tan sin

tan sinh 1

a a r

r k m m

α γ α µ
θ

γ θ ϕ
−

− +
=

− + +
ɺ  (B.23) 

 

( ) ( )( )( )( ){
( )( ) ( )( )( ) ( )

( ) ( )( )( ) } ( ) ( )( )

22 2 2
1

23 3 2
1 1

22 3
0 1 0 0

2 tan sinh 1

2 coth sinh

cos sinh 2 / cos sin tan

r r k m m

rm m m k k

a k m m r r a a

α θθ θ γ θ ϕ

θ θ ϕ θ ϕ

α θ θ ϕ µ α α γ

−

−

−

= + − + + +

+ + + − −

− + + − −

ɺɺɺ ɺɺ ɺ

ɺ

ɺ ɺ

 (B.24) 

 

For the tangential thrust profile, 2θɺ  is given by equation (B.21). Note that in the tangential 

case, ( ) ( )0 0cos tan sina aα γ α= . Parameter 0a  is given by: 

 

( )3 2

0

2 tan

cos

r
a

θ θ γ
µ γ
+

=
ɺɺ ɺ

 

 

Parameter θɺɺ  is given by: 

 

( )( )( ) ( )( )( )
( )( )( )( )

24 3 3 2
1 1

22 2
1

3 2 sinh cosh

2 tan sinh 1

r r m m m k k

k m m

µ θ θ ϕ θ ϕ
θ

θ γ θ ϕ

−

−

− + + + −
=

− + +

ɺɺ
ɺɺ

ɺ
 (B.25) 
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4. Poinsot’s spiral (hyperbolic cosine) 
 

The radius equation for the Poinsot’s spiral (hyperbolic cosine) is given by equation (6.8): 

 

( )( ) 1

0 cosh
k

r k mθ −
=  

 

The radial velocity and acceleration and the flight path angle for the Poinsot’s spiral 

(hyperbolic cosine) are given by: 

 

( )1 tanhr k m m rθ θ= − ɺɺ  (B.26) 

( )1tan tanh
r

mk m
r

γ θ
θ

= = −
ɺ

ɺ
 (B.27) 

( ) ( ) ( )2 2
1 tanh tanh coshr k m m r r m rm mθ θ θ θ θ θ− = − + + 
ɺɺ ɺ ɺɺɺ ɺ  (B.28) 

 

For acceleration inversely square case of the thrust profile, θɺ  and αɺ  are given by: 

 

( ) ( )
( )

0 02
3 2 2 2

1

cos tan sin 1

tan cosh 1

a a

r k m m

α γ αµθ
γ θ−

− +
=

+ +
ɺ  (B.29) 

 

( )( ){
( )( ) ( )( )
( ) ( )( )

( )( ) ( )} ( ) ( )( )( )

2 2 2
1

23 3 2
1 1

4
0 0

23 2 3
1 0 0 0

2 tan cosh 1

2 cosh tanh

3 sin cos tan 1

cosh cos cos sin tan

k m m

m m m k k

r r a a

r k m m a r a a

α θθ γ θ

θ θ θ

µ α α γ

µ θ θ α µ α α γ

−

−

−

= − + + −

− − +

− − −

− +

ɺɺɺɺ

ɺ

ɺ

ɺ

 (B.30) 

 

For constant acceleration case of the thrust profile, θɺ  and αɺ  are given by: 

 

( ) ( )
( )

2
0 02

2 2 2
1

cos tan sin1

tan cosh 1

a a r

r k m m

α γ α µ
θ

γ θ−

− +
=

+ +
ɺ  (B.31) 
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( ) ( ) ( )( ){
( )( ) ( )( )

( )( ) ( ) ( ) ( ) ( )( )

2 2 2 2 2 2
1 1

23 3 2
1 1

22
1 0 0 1 03

2 tanh cosh 1

2 cosh tanh

2
cosh cos cos tanh sin

r r k m m k m m

m r m m k k

r
k m m a a k m m a

r

α θθ θ θ θ

θ θ θ

µθ θ α α θ α

−

−

−

= − + + + −

− − −

− − −


ɺɺɺ ɺɺ ɺ

ɺ

ɺ
ɺ

 (B.32) 

 

For the tangential thrust profile, 2θɺ  is given by equation (B.29). Note that in the tangential 

case, ( ) ( )0 0cos tan sina aα γ α= . Parameter 0a  is given by: 

 

( )3 2

0

2 tan

cos

r
a

θ θ γ
µ γ
+

=
ɺɺ ɺ

 

 

Parameter θɺɺ  is given by: 

 

( )( ) ( )( )
( )( )( )

24 3 3 2
1 1

22 2
1

3 2 cosh tanh

2 tan cosh 1

r r m m m k k

k m m

µ θ θ θ
θ

θ γ θ

−

−

− − −
=

+ +

ɺɺ
ɺɺ

ɺ
 (B.33) 

 

5. Sinusoidal spiral 
 

The radius equation for the sinusoidal spiral is given by equation (6.10): 

 

( )( )1/

0 1cos
m

r k m kθ= +  

 

The radial velocity and acceleration and the flight path angle for the sinusoidal spiral are 

given by: 

 

( ) ( )( ) 1

0 0 1sin cosr rk m k m kθ θ θ −
= − +ɺɺ  (B.34) 

( ) ( )( ) 1

0 0 1tan sin cos
r

k m k m k
r

γ θ θ
θ

−
= = − +
ɺ

ɺ
 (B.35) 

( ) ( ) ( ) ( )2
0 sin cos sin sinr k C m r Cm m r C m r C m rθ θ θ θ θ θ θ θ = − + + + 
ɺ ɺ ɺ ɺɺ ɺɺɺ ɺ  (B.36) 
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where ( )( ) 1

0 1cosC k m kθ −
= +  and ( ) 2

0 sinC k m m Cθ θ=ɺ ɺ  

 

For acceleration inversely square case of the thrust profile, θɺ  and αɺ  are given by: 

 

( ) ( )
2 0 0

3 2
0

cos tan sin 1

tan 1 cos 1

a a

r m k C m m

α γ αµθ
γ θ

− +=
+ + ⋅ +

ɺ  (B.37) 

 

( ) ( )( )
( )( ) ( )( )(

( ) ) ( )
( ) ( )( ) ( )( )

2
0

2 2 2 2 2
0 0

2 4
0 0 0

3 3
0 0 0 0

2 tan 1 cos 1

2 sin 1 sin 2 1

cos tan 3 sin cos tan 1

cos sin cos / cos sin tan

m k Cm m

CCk m m k C m m m

k Cm m m r r a a

r a k C m Cm m r a a

α θθ γ θ

θ θ θ θ

θ γ θ µ α α γ

µ α θ θ θ µ α α γ

= − + − − +

− + + + +

+ − + − − −

− + +

ɺɺɺɺ

ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ

 (B.38) 

 

For constant acceleration case of the thrust profile, θɺ  and αɺ  are given by: 

 

( ) ( )( )
2

2 0 0
2

0

cos tan sin

tan 1 cos 1

a a r

r m k C m m

α γ α µθ
γ θ

− +=
+ + ⋅ +

ɺ  (B.39) 

 

( ) ( ) ( )( ){
( )( ) ( )( )(

( ) ) ( ) ( )( )
( )

2 2
0

2 2 2 2 2
0 0

2
0 0 0

0 03

2 1 tan cos 1

2 sin 1 sin 2 1

cos tan cos sin cos

2
cos sin tan

r r m k Cm m

r k CC m m k C m m m

k Cm m m a k C m Cm m

r
a a

r

α θθ θ γ θ

θ θ θ θ

θ θ γ α θ θ θ

µ α α γ

= − + + + + +

− + + + +

+ + − + −

− +


ɺɺɺ ɺɺ ɺ

ɺ ɺ ɺ

ɺ ɺ ɺ ɺ

ɺ

 (B.40) 

 

For the tangential thrust profile, 2θɺ  is given by equation (B.37). Note that in the tangential 

case, ( ) ( )0 0cos tan sina aα γ α= . Parameter 0a  is given by: 

 

( )3 2

0

2 tan

cos

r
a

θ θ γ
µ γ
+

=
ɺɺ ɺ

 

 

Parameter θɺɺ  is given by: 
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( ) ( ) ( )( )(
( ) ( )( )) ( ) ( )( ){ }

2
04

2
0 0

3
2 tan 1 cos sin

cos sin / 2 tan 1 cos 1

m

m m

r
k m m C m C m

r

k m C m Cm m m k C m m

µθ θ γ θ θ θ

θ θ θ θ γ θ

−= − − + + +


+ − + + ⋅ +

ɺ
ɺɺ ɺ ɺ ɺ

ɺ ɺ ɺ

 (B.41) 

 

6. Exponential sinusoid 
 

The radius equation for the exponential sinusoid is given by equation (5.3): 

 

( )1 2sin
0

q k kr k e θ θ φ+ +=  

 

The radial velocity and acceleration and the flight path angle for the exponential sinusoid 

are given by equations (5.6) and (5.7), respectively: 

 

( )1 2r q k k c rθ= +ɺɺ  

( ) ( )( )22 2 2
1 2 1 2 1 2r q k k c q k k c k k s rθ θ θ= + + + −ɺɺ ɺ ɺɺɺ  

1 2tan
r

q k k c
r

γ
θ

= = +
ɺ

ɺ
 

 

For acceleration inversely square case of the thrust profile, θɺ  and αɺ  are given by 

equations (5.8) and (5.11), respectively: 

 

2 0 0
3 2 2

1 2

cos tan sin 1

tan 1

a a

r k k s

α γ αµθ
γ

− +=
+ +

ɺ  

 

( )( ){
( )( )

( )} ( )( )( )

22 3 2 2
0 1 2

3 2
0 0 1 2 1 2

2 2 2 2 2
0 1 2 1 2 0 0 1 2

tan / 2 cos tan 1

cos tan sin 1 2 tan

cos tan 1 sin tan cos tan 1

r a k k s

a a k k c k k s

a k k s k k s a a k k s

α γθ µ α γ

α γ α γ

α γ θ α γ α γ

= − + + −

− − + −

− + + + + +

ɺɺ

ɺ

 

 

For constant acceleration case of the thrust profile, θɺ  and αɺ  are given by: 
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( )
2

2 0 0
2 2

1 2

cos tan sin

tan 1

a a r

r k k s

α γ α µθ
γ

− +=
+ +

ɺ  (B.42) 

 

( )( ) ( ){
( )( )

2 2 2 3 2 3
1 2 1 2 1 2

2
0 1 2 0 03

tan 1 2 2 tan

2
cos sin tan cos

k k s r r r k k s k k c

r
a k k s a a

r

α γ θθ θ θ γ

µα θ α γ α

= + + + + − + +

+ − +


ɺɺɺ ɺ ɺɺ

ɺ
ɺ

 (B.43) 

 

For the tangential thrust profile, 2θɺ  is given by equation (5.13). Note that in the tangential 

case, ( ) ( )0 0cos tan sina aα γ α= . The equation for the parameter 0a  was already derived 

in appendix A. 
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Appendix C: Integration Error 
 

The objective in this appendix is to study and show the behaviour of the thrust angle rate 

(αɺ ) during the integration procedure to obtain the thrust angle (α ), using the integration 

method Runge-Kutta 4(5). 

 

The Archimedean spiral combined with the acceleration inversely square case will be used 

in this demonstration. The equations for the dynamic parameters 2θɺ  and αɺ  are given in 

appendix B. 

 

A mission example is presented: a flight from Earth to Mars, using one revolution (N 1= ). 

The phase angle between one arbitrary point at Earth’s orbit ( 1P ) and one arbitrary point at 

Mars’ orbit ( 2P ) is 7.1427 409.247ºrad ≈ . The initial values for 0θ  and 0α  are assumed 

to be zero and the value for 0a  is assumed to be 0.04. 

 

When 2.2m= , there is an integration error, stating that the program was unable to meet 

integration tolerances without reducing the step size below the smallest value allowed 

( 82.980232 10 s−× ) at instant of time 71.416985 10 s 0.449323 years× ≈ . Figure 24 

illustrates αɺ  values before and at the moment that the failure in the integration occurs. 

 



Analytical Representations for Low-Thrust Trajectories  
 

 21 

 

Figure 24: αɺ  as function of time from 71.416985 10 0.449323s× ≈  years 

 

In order to understand why the failure occurs, αɺ  is computed at the two last instants of 

time before the error message, named 1it −  and it , where it  is the last instant of time 

computed. 

 

( )1 1.04364155689890 /it rad sα − = −ɺ  

( ) 4.9993525934841 /it rad sα =ɺ  

 

The expression for αɺ  is complex, so in order to find where the problem is, the equation 

was divided in two parts: the numerator (nα ) (upper part of the fraction) and the 

denominator (dα ) (the lower part of the fraction): 

 

( )
( ) 22

22
1

10567084704910703.2

10272664704919360.2
−

−
−

×=

×=

i

i

tn

tn

α

α  

 

( )
( ) 23

22
1

10677929416219883.4

10499623671843265.2
−

−
−

×=

×−=

i

i

td

td

α

α  
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Clearly, the denominator of equation αɺ  is responsible for the large variations in αɺ  results 

for small time step sizes. dα  is given by: 

 

( ) ( ) ( ) ( ) ( )( )1

0 0 0 1 0 0 03 3

1
cos sin cos tan sinm m md a k k k a a a

r m rα
µ µα θ α α γ α

− = + + = + 
 

 

 

Parameters µ  and 0a  are constants and equal to 20 3 21.32712440018 10 /m s×  and 0.04, 

respectively. 

 

For 2.2m= , 10
0 7.315587756966051 10k = ×  and 11

1 1.471041108704898 10k = × . Since the 

difference between 1it −  and it  is very small, it is understandable that θ  and r  yielded the 

same values for both instants of time: 

 

11

2.42739686030349

1.780522308862669 10

rad

r m

θ =
= ×

 

 

Since θ  is constant from 1it −  to it , tanγ  is also constant between time instants. In this 

way, the only variable that changes between the two instants of time is α : 

 

( )
( )

1 1.63493601954405

1.63493571591232

i

i

t rad

t rad

α
α

− =

=
 

 

The difference between the α  values is significantly small, but it is sufficient to cause the 

integration error. Neglecting the term 3rµ : 

 

( ) ( )
8

1
0 0 9

: 1.006845193199726 10
cos tan sin

: 2.10184238286572 10
i

i

t
a a

t
α γ α

−
−

−

 − ×+ = 
×

 

 

By changing α  value by 510 rad−  will make ( ) ( )0 0cos tan sina aα γ α+  vary between 

negative and positive values. At a certain instant of time, ( ) ( )0 0cos tan sin 0a aα γ α+ ≈ . 
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According to [Petropoulos et al, 1999], when past the point in the trajectory where the 

denominator of αɺ  is zero, there is no thrust direction which can maintain the selected 

shape and continuity of velocity, using the current thrust profile. In this way, the fact the 

integration procedure cannot be completed is due to geometric properties of the shape 

selected that cannot satisfy the physic problem. 

 

If this situation happens during the optimization procedure, the individual is discarded. 

Unfortunately, this integration error cannot be predicted before the integration starts. 
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Appendix D: Analysis of the Shapes for the Constant  
Acceleration Case of the Thrust Profile 
 

In this appendix, results and some remarks will be given for all 6 shapes using the constant 

acceleration case of the thrust profile, for an Earth-to-Mars mission. The conclusions about 

these results are presented in section 7.7. 

 

1. Archimedean spiral 
 

In this section, results for the TOF, for the excess velocities and for the thrust acceleration 

will be shown and discussed for the Archimedean spiral. The thrust profile used in this 

analysis is the second thrust profile mentioned in chapter 6, where the magnitude of the 

thrust acceleration is constant and equal to 2
0 1a a rµ= , where 1r  is the heliocentric 

distance of the starting point of the thrust arc. 

 

Figures 2 and 3 show the TOF and the total excess velocity when changing parameter iθ  

and the transfer angle θ∆  (N=0). Note that the polar angle at the target planet is given by: 

2 Nf iθ θ θ π= + ∆ + . The value used in figures 2 and 3 for the geometric parameter m  was 

0.05, the values used for the initial value of α  were (-60º, -50º, -40º, -30º, -20º), for the 

initial polar angle iθ  were (0º, 120º, 240º, 360º) and for the transfer angle θ∆  were (90º, 

150º, 210º, 270º, 340º). The normalized thrust acceleration 0a  value used in figures 2 and 3 

was 0.07. 
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Figure 25: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, 

-50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.07, constant 

acceleration case of the thrust profile (Archimedean spiral), Earth-Mars flight 

 

 

Figure 26: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, -

50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.07, constant 

acceleration case of the thrust profile (Archimedean spiral), Earth-Mars flight 

 

Some remarks can be drawn from figures 2 and 3. As expected, the TOF increases when 

increasing the transfer angle, while the total excess velocity decreases. By changing the 

initial polar angle iθ , the differences between values for the TOF and for the total excess 
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velocity are significantly small. The order of magnitude of the highest difference in the 

time of flight between different iθ  for the same phase angle and 0α  is 510−  seconds, while 

for the highest difference in the total excess velocity is 810− m s. The TOF increases when 

increasing values of 0α , while the total excess velocity decreases (figure 3). 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and for the initial values of α  and θ . 

The values for the normalized thrust acceleration 0a  used in figures 4 and 5 were 0.03 and 

0.02, respectively for N=1 and N=2. 

 

 

Figure 27: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, 

-50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, constant acceleration case of 

the thrust profile (Archimedean spiral), Earth-Mars flight, N=1 (
0

a =0.03) and N=2 (
0

a =0.02) 
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Figure 28: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, -

50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, constant acceleration case of the 

thrust profile (Archimedean spiral), Earth-Mars fli ght, N=1 (
0

a =0.03) and N=2 (
0

a =0.02) 

 

Similar remarks to the ones given for N=0 can be drawn for figures 4 and 5. Note that 

when increasing the number of complete revolutions N (figures 3 and 5), the differences in 

total excess velocity between different values of 0α  increase. As for the N=0 case, the 

differences in the TOF and total excess velocity between different iθ  and for the same 

transfer angle and 0α  can be neglected for N=1 and N=2. In this way, due to the 

significantly small influence that the parameter iθ  has in the TOF, in the total excess 

velocity and also, although not shown in the previous figures, in the thrust acceleration, 

this parameter would not be considered a variable in the optimization procedure. 

 

The TOF range for this Earth-Mars flight is from 0.3622 years to 4.0527 years. The total 

excess velocity has a minimum value of 1.4630km s and a maximum value of 

14.2794km s. As expected, the minimum value for the TOF and the maximum value for 

the total excess velocity occur for the smallest transfer angle – 90º (N=0); while the 

maximum value for the TOF and minimum value for the total excess velocity occur for the 

highest transfer angle presented – 340º (N=2). 

 

The maximum differences in TOF between two consecutive values of the transfer angle 

θ∆  are about 0.27 years. For a certain number of revolutions, these differences increase 

when increasing the transfer angle. The differences in terms of total excess velocity 
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between two consecutive transfer angles is always highest between 90ºθ∆ =  and 

150ºθ∆ = . The maximum value for these differences is 5.1203km s for N=0 and the 

minimum value is about 71m s for 2 revolutions. 

 

Tables 1 and 2 show the values of the TOF and the excess velocity for an Earth-Mars 

flight. Parameter iθ  was assumed 0º, parameter 0α  was assumed -20º, the transfer angle 

θ∆  was assumed 90º and the number of revolutions was taken 1 for the first table and 2 

for the second one. In table 1 the normalized thrust acceleration 0a  was 0.04, while in table 

2, this parameter was 0.02. Note that these values for 0a  for N=1 and N=2 are the 

minimum values that can be used in both cases for this shape without facing integration 

problems for the interval of the input parameters considered. 

 

N=1 0.02=m  0.64=m  1.26=m  1.88=m  2.5=m  

( ),∞ totalV km s  3.3071 3.4080 3.5776 3.8203 4.1444 

( ),1∞V km s  1.6362 1.8581 2.1225 2.4394 2.8216 

( ),2∞V km s  1.6709 1.5500 1.4551 1.3809 1.3228 

TOF (years) 1.7003 1.7241 1.7480 1.7722 1.7970 

Table 7: The excess velocities and the TOF values for N=1, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, for
0

a =0.04, m 

values of (0.02; 0.64; 1.26; 1.88; 2.5), constant acceleration case (Archimedean spiral), Earth to Mars 
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N=2 0.02=m  0.64=m  1.26=m  1.88=m  2.5=m  

( ),∞ totalV km s  1.7942 1.8533 1.9501 2.0872 2.2691 

( ),1∞V km s  0.9054 1.0304 1.1796 1.3582 1.5730 

( ),2∞V km s  0.8888 0.8229 0.7705 0.7290 0.6961 

TOF (years) 3.1004 3.1425 3.1847 3.2270 3.2701 

Table 8: The excess velocities and the TOF values for N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.03, m values 

of (0.02; 0.64; 1.26; 1.88; 2.5), constant acceleration case (Archimedean spiral), Earth to Mars 

 

From tables 1 and 2, the order of magnitude of the total excess velocity values is 

010 /km s. For increasing values of m , the total excess velocity and the TOF increase. The 

values for the total excess velocity are higher when N=1 than when N=2. Note that the 

excess velocity ,1∞V  increases faster than the excess velocity ,2∞V  decreases and the value 

of ,2∞V  when 2.5=m  is more than twice smaller than the value of ,1∞V  in both cases of N. 

 

In figures 6 to 9, the polar plot, the thrust angle α , the polar angle rate θɺ  and the flight 

path angle as function of time are illustrated for N=1 and N=2 (tables 1 and 2). 

 

 

Figure 29: Polar plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.02), 
i

θ =0º, θ∆ =90º, 
0

α =-20º, m values of 

(0.02; 0.64; 1.26; 1.88; 2.5), constant acceleration case (Archimedean spiral), Earth-Mars flight 
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Figure 30: α  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.02), 
i

θ =0º, θ∆ =90º, 
0

α =-20º, m values of (0.02; 

0.64; 1.26; 1.88; 2.5), constant acceleration case (Archimedean spiral), Earth-Mars flight 

 

 

Figure 31: θɺ  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.02), 
i

θ =0º, θ∆ =90º, 
0

α =-20º, m values of (0.02; 

0.64; 1.26; 1.88; 2.5), constant acceleration case (Archimedean spiral), Earth-Mars flight 
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Figure 32: γ  plot for N=1 (
0

a =0.04) and N=2 (
0

a =0.02), 
i

θ =0º, θ∆ =90º, 
0

α =-20º, m values of (0.02; 

0.64; 1.26; 1.88; 2.5), constant acceleration case (Archimedean spiral), Earth-Mars flight 

 

The values of the thrust angle α  are higher for N=2 than for N=1. During the 

interplanetary flight for both cases in figure 7, the spacecraft is thrusting inwards in the 

radial direction, while in the tangential direction it thrusts in the positive direction (α  is 

negative, higher than 90º− ). This means that the vehicle is thrusting in favour of the 

gravitational acceleration. This situation is explained in section 7.7. The magnitude values 

of the flight path angle γ  are smaller for N=2 than for N=1. 

 

2. Logarithmic spiral 
 

In this section, results for the TOF, the excess velocities and the thrust acceleration will be 

shown and discussed for the Logarithmic spiral. Figures 10 and 11 show the TOF and the 

total excess velocity when changing parameter iθ  and the transfer angle θ∆ , when the 

number of revolutions N is 0. The value used in figures 10 and 11 for the geometric 

parameter m  was 0.05; the values used for the initial value of α , for the initial polar angle 

iθ  and for the transfer angle θ∆  were the same as for the Archimedean spiral. The 

normalized thrust acceleration 0a  value used in figures 10 and 11 was 0.08. 
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Figure 33: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, 

-50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05,
0

a =0.08, constant 

acceleration case of the thrust profile (logarithmic spiral), Earth-Mars flight 

 

 

Figure 34: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, -

50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.08, constant 

acceleration case of the thrust profile (logarithmic spiral), Earth-Mars flight 

 

From figures 10 and 11, by changing the initial polar angle iθ , the differences between 

values for the TOF and for the total excess velocity are significantly small. For increasing 

values of 0α , the total excess velocity decreases, while the TOF increases. The total excess 
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velocity differences between different values of 0α  increase when increasing the transfer 

angle ∆θ . 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and for the initial values of α  and θ . 

The normalized thrust acceleration 0a  values used in figures 12 and 13 were 0.03 and 0.02 

for N=1 and N=2, respectively. 

 

 

Figure 35: TOF for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, 

-50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, constant acceleration case of 

the thrust profile (logarithmic spiral), Earth-Mars  flight, N=1 (
0

a =0.03) and N=2 (
0

a =0.02) 

 

 

Figure 36: 
,T

V∞  for 
i

θ  values of (0º, 120º, 240º, 360º) from left to right in the figure, 
0

α  values of (-60º, -

50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, constant acceleration case of the 

thrust profile (logarithmic spiral), Earth-Mars fli ght, N=1 (
0

a =0.03) and N=2 (
0

a =0.02) 
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Similar remarks to the ones given for N=0 can be drawn for figures 12 and 13. As for N=0, 

the differences in the TOF and in total excess velocity between different iθ  for the same 

transfer angle and 0α  can be neglected. In this way, like for the Archimedean spiral, due to 

the significantly small influence that the parameter iθ  has in the TOF, in the total excess 

velocity and also, although not shown in the previous figures, in the thrust acceleration, 

this parameter would not be considered a variable in the optimization procedure. 

 

The TOF range for this Earth-Mars flight is from 0.3798 years to 3.9452 years. The total 

excess velocity has a minimum value of 1.4021km s and a maximum value of 

14.5984km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.25 years. The differences in terms of total excess velocity 

between two consecutive transfer angles is always the highest one between 90ºθ∆ =  and 

150ºθ∆ = . The maximum value for these differences is 5.5853km s for zero value of N 

and the minimum value is about 72.86m s for 2 revolutions. 

 

Tables 3 and 4 show the values for the TOF and the excess velocities for an Earth-Mars 

flight. Parameter iθ  considered was 0º, parameter 0α  considered was -20º, the transfer 

angle θ∆  considered was 90º and the number of revolutions taken was 1 for the first table 

and 2 for the second one. In tables 3 and 4, the normalized thrust acceleration 0a  was 0.03.  

 

N=1 0.05=m  0.15=m  0.25=m  0.35=m  0.45=m  

( ),∞ totalV km s  3.1337 3.0405 3.2302 3.6326 4.1674 

( ),1∞V km s  1.6349 1.0696 0.6815 0.4354 0.2931 

( ),2∞V km s  1.4987 1.9708 2.5487 3.1972 3.8743 

TOF (years) 1.7166 1.6464 1.5841 1.5312 1.4883 

Table 9: The excess velocities and the TOF values for N=1, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.03, m values 

of (0.05; 0.15; 0.25; 0.35; 0.45), constant acceleration case (logarithmic spiral), Earth-Mars flight 
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N=2 0.05=m  0.15=m  0.25=m  0.35=m  0.45=m  

( ),∞ totalV km s  1.9389 2.0149 2.5141 3.2109 3.9482 

( ),1∞V km s  0.7810 0.3670 0.2056 0.1646 0.1558 

( ),2∞V km s  1.1580 1.6479 2.3085 3.0463 3.7923 

TOF (years) 3.0260 2.8259 2.6739 2.5687 2.4984 

Table 10: The excess velocities and the TOF values for N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.03, m 

values of (0.05; 0.15; 0.25; 0.35; 0.45), constant acceleration case (logarithmic spiral), Earth-Mars 
flight 

 

For increasing values of m , the total excess velocity increases (except for N=1, between 

0.05=m  and 0.15=m ), while the TOF decreases. The values for the total excess velocity 

are higher when N=1 than when N=2. Note that, the excess velocity ,1∞V  decreases slower 

than the excess velocity ,2∞V  increases (except for N=1, between 0.05=m  and 0.15=m ). 

The value of ,2∞V  when 0.45m=  is more than 13 times higher than the value of ,1∞V  for 

N=1 and more than 24 times higher for N=2. 

 

In figures 14 to 17, the polar plot, the thrust angle α , the polar angle rate θɺ  and the flight 

path angle as function of time are illustrated for N=1 and N=2 cases (tables 3 and 4). 
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Figure 37: Polar plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.03, m values of (0.05; 0.15; 

0.25; 0.35; 0.45), constant acceleration case of the thrust profile (logarithmic spiral), Earth-Mars f light 

 

 

Figure 38: α  plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.03, m values of (0.05; 0.15; 0.25; 

0.35; 0.45), constant acceleration case of the thrust profile (logarithmic spiral), Earth-Mars flight 
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Figure 39: θɺ  plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.03, m values of (0.05; 0.15; 0.25; 

0.35; 0.45), constant acceleration case of the thrust profile (logarithmic spiral), Earth-Mars flight 

 

 

Figure 40: γ  plot for N=1 and N=2, 
i

θ =0º, θ∆ =90º, 
0

α =-20º, 
0

a =0.03, m values of (0.05; 0.15; 0.25; 

0.35; 0.45), constant acceleration case of the thrust profile (logarithmic spiral), Earth-Mars flight 

 

The values of the thrust angle α  are higher for N=1 than for N=2. During the 

interplanetary flight for both cases in figure 15, the spacecraft is thrusting inwards in the 

radial direction, while in the tangential direction it thrusts in the positive direction (α  is 

negative, higher than 90º− ), like for the Archimedean spiral. This situation was analysed 

in section 7.7. The magnitude values of the flight path angle γ  are smaller for N=2 than 

for N=1. 
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3. Poinsot’s spiral (hyperbolic sine) 
 

In this section, results for the TOF, the excess velocities and the thrust acceleration will be 

shown and discussed for the Poinsot’s spiral (hyperbolic sine). Figures 18 and 19 show the 

TOF and the total excess velocity when changing parameter +iθ φ  and the transfer angle 

θ∆ , when the number of revolutions N is 0. The value used in figures 18 and 19 for the 

geometric parameter m  was 0.6, the values used for the initial value of α  were (-60º, -50º, 

-40º, -30º, -20º), for the angle +iθ φ  were (120º, 200º, 280º, 360º) and for the transfer 

angle θ∆  were (90º, 150º, 210º, 270º, 340º). Note that +iθ φ  cannot be zero, otherwise 

= ∞r . The normalized thrust acceleration 0a  value used in figures 18 and 19 was 0.1. 

 

 

Figure 41: TOF for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of 

(-60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.6, 
0

a =0.1, constant 

acceleration case of the thrust profile (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 
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Figure 42: 
,T

V∞  for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of 

(-60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.6, 
0

a =0.1, constant 

acceleration case of the thrust profile (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight 

 

Some remarks can be drawn from figures 18 and 19. By increasing the combination of 

angles +iθ φ , the TOF and the total excess velocity decrease. The highest difference in 

TOF and in total excess velocity between different +iθ φ  occurs between 120º+ =iθ φ  

and 200º+ =iθ φ . For higher values of +iθ φ , the variations in TOF and in total excess 

velocity are significantly small. The highest difference in the TOF between different +iθ φ  

for the same phase angle and 0α  is about 0.0456 years, while the highest difference in the 

total excess velocity is about 1.2399km s. For increasing values of the initial thrust angle 

0α , the total excess velocity decreases, while the TOF increases. 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and for the initial values of α  and 

+iθ φ . The normalized thrust acceleration 0a  values used in figures 20 and 21 were 0.05 

and 0.04 for N=1 and N=2, respectively. 
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Figure 43: TOF for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of 

(-60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.6, constant acceleration case 

(Poinsot’s spiral (hyperbolic sine), Earth-Mars flight, N=1 (
0

a =0.05) and N=2 (
0

a =0.04) 

 

 

Figure 44: 
,T

V∞  for 
i

θ φ+  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of 

(-60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.6, constant acceleration case 

(Poinsot’s spiral (hyperbolic sine), Earth-Mars flight, N=1 (
0

a =0.05) and N=2 (
0

a =0.04) 

 

Similar remarks to ones given for N=0 can be drawn for figures 20 and 21. Note that the 

variation in total excess velocity between 120º+ =iθ φ  and 200º+ =iθ φ  is considerably 

higher for N=1 and N=2 than for N=0. For N=1, the highest difference in TOF between 

different +iθ φ  and for the same transfer angle and 0α  is 0.1067 years, while the highest 

difference in the total excess velocity is 1.2456km s. For N=2, the highest difference in 
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TOF between different +iθ φ  and for the same transfer angle and 0α  is 0.1655 years, 

while the highest difference in the total excess velocity is 1.1920km s. 

 

The TOF range for this Earth-Mars flight is from 0.3582 years to 4.0485 years. The total 

excess velocity has a minimum value of 2.5842km s and a maximum value of 

15.0523km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.3 years and for a certain number of revolutions, these 

differences increase when increasing the transfer angle. The differences in terms of total 

excess velocity between two consecutive transfer angles is always the highest one between 

90ºθ∆ =  and 150ºθ∆ = . The maximum value for these differences is 4.8602km s for 

N=0 and the minimum value is about 59m s for 2 revolutions. 

 

Tables 5 and 6 show the values for the TOF and the excess velocities for an Earth-Mars 

flight. Parameter +iθ φ  was considered 120º, parameter 0α  was considered -20º, the 

transfer angle θ∆  was considered 90º and the number of revolutions was taken 1 for the 

first table and 2 for the second one. In table 5 the normalized thrust acceleration 0a  was 

0.05, while in table 6, this parameter was 0.04. Note that these values for 0a , for N=1 and 

N=2 are the minimum values that can be used in both cases for this shape without facing 

integration problems for the interval of input parameters considered. 

 

N=1 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ),∞ totalV km s  5.3020 5.0473 4.6156 4.2441 3.9823 

( ),1∞V km s  3.8225 3.4865 2.9270 2.4680 2.1601 

( ),2∞V km s  1.4795 1.5608 1.6885 1.7760 1.8222 

TOF (years) 1.8297 1.8000 1.7559 1.7249 1.7071 

Table 11: The excess velocities and the TOF values for N=1, 
i

θ φ+ =120º, θ∆ =90º, 
0

α =-20º, 
0

a =0.05, 

m values of (0.01; 0.11; 0.21; 0.31; 0.41), constant acceleration case (Poinsot’s spiral (hyperbolic sine), 
Earth-Mars flight 
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N=2 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ),∞ totalV km s  4.0485 3.6050 3.0692 2.7283 2.5287 

( ),1∞V km s  2.9203 2.4177 1.8182 1.4476 1.2351 

( ),2∞V km s  1.1282 1.1873 1.2510 1.2807 1.2937 

TOF (years) 3.3588 3.2524 3.1469 3.0953 3.0714 

Table 12: The excess velocities and the TOF values for N=2, 
i

θ φ+ =120º, θ∆ =90º, 
0

α =-20º, 
0

a =0.04, 

m values of (0.01; 0.11; 0.21; 0.31; 0.41), constant acceleration case (Poinsot’s spiral (hyperbolic sine), 
Earth-Mars flight 

 

For increasing values of m , the total excess velocity and the TOF decrease. The values for 

the total excess velocity are higher when N=1 than when N=2. Note that the excess 

velocity ,1∞V  decreases faster than the excess velocity ,2∞V  increases. 

 

In figures 22 to 25, the polar plot, the thrust angle α  , the polar angle rate θɺ  and the flight 

path angle as function of time are illustrated for N=1 and N=2 cases that were presented in 

tables 5 and 6. 

 

 

Figure 45: Polar plot for N=1 (
0

a =0.05) and N=2 (
0

a =0.04), 
i

θ φ+ =120º, θ∆ =90º, 
0

α =-20º, 
0

a =0.04, 

m values of (0.01; 0.11; 0.21; 0.31; 0.41), constant acceleration case (Poinsot’s spiral (hyperbolic sine)), 
Earth-Mars flight 
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Figure 46: α  plot for N=1 (
0

a =0.05) and N=2 (
0

a =0.04), 
i

θ φ+ =120º, θ∆ =90º, 
0

α =-20º, 
0

a =0.04, m 

values of (0.01; 0.11; 0.21; 0.31; 0.41), constant acceleration case (Poinsot’s spiral (hyperbolic sine)), 
Earth-Mars flight 

 

 

Figure 47: θɺ  plot for N=1 (
0

a =0.05) and N=2 (
0

a =0.04), 
i

θ φ+ =120º, θ∆ =90º, 
0

α =-20º, 
0

a =0.04, m 

values of (0.01; 0.11; 0.21; 0.31; 0.41), constant acceleration case (Poinsot’s spiral (hyperbolic sine)), 
Earth-Mars flight 
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Figure 48: γ  plot for N=1 (
0

a =0.05) and N=2 (
0

a =0.04), 
i

θ φ+ =120º, θ∆ =90º, 
0

α =-20º, 
0

a =0.04, m 

values of (0.01; 0.11; 0.21; 0.31; 0.41), constant acceleration case (Poinsot’s spiral (hyperbolic sine)), 
Earth-Mars flight 

 

The values of the thrust angle α  are higher for N=1 than for N=2. For most of the 

interplanetary flight for both cases in figure 23, the spacecraft is thrusting inwards in the 

radial direction, while in the tangential direction it thrusts in the positive direction (α  is 

negative, higher than 90º− ), like for the other 2 shapes. The magnitude values of the flight 

path angle γ  are smaller for N=2 than for N=1. 

 

4. Poinsot’s spiral (hyperbolic cosine) 
 

In this section, results for the TOF, the excess velocities and the thrust acceleration will be 

shown and discussed for the Poinsot’s spiral (hyperbolic cosine). Figures 26 and 27 show 

the TOF and the total excess velocity when changing parameter iθ  and the transfer angle 

θ∆  (N=0). The value used in figures 26 and 27 for m  was 0.05; the values used for 0α  

were (-60º, -50º, -40º, -30º, -20º), for iθ  were (30º, 140º, 250º, 360º) and for θ∆  were 

(90º, 150º, 210º, 270º, 340º). The normalized thrust acceleration 0a  value used in figures 

26 and 27 was 0.07. 
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Figure 49: TOF for 
i

θ  values of (30º, 140º, 250º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.07, constant 

acceleration case (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 

 

 

Figure 50: 
,T

V∞  for 
i

θ  values of (30º, 140º, 250º, 360º) from left to right in the figure, 
0

α  values of (-60º, 

-50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.07, constant 

acceleration case (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight 

 

Some remarks can be drawn from figures 26 and 27. By increasing the initial polar angle 

iθ , the TOF increases while the total excess velocity decreases. The highest variation in 

TOF and in total excess velocity when changing iθ  is between 30º=iθ  and 140º=iθ . 
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This variation becomes smaller for higher values of the transfer angle ∆θ . The highest 

difference in TOF between different iθ  for the same phase angle and 0α  is 0.0649 years, 

while the highest difference in total excess velocity is 2.2820km s. For increasing values 

of 0α , the total excess velocity decreases and the TOF increases. 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and for the initial values of α  and θ . 

The normalized thrust acceleration 0a  values used in figures 28 and 29 were 0.03 and 0.02 

for N=1 and N=2, respectively. 

 

 

Figure 51: TOF for 
i

θ  values of (30º, 140º, 250º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º),  m=0.05, constant acceleration case 

(Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight, N=1 (
0

a =0.03) and N=2 (
0

a =0.02) 
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Figure 52: 
,T

V∞  for 
i

θ  values of (30º, 140º, 250º, 360º) from left to right in the figure, 
0

α  values of (-60º, 

-50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05,  constant acceleration case 

(Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight, N=1 (
0

a =0.03) and N=2 (
0

a =0.02) 

 

Note that for N=1 and N=2, the differences in the total excess velocity between different 

values of 0α  are higher than for N=0. Also, in figure 32, when increasing iθ , the total 

excess velocity trend is not monotone, unlike for N=0. For N=1, the highest difference in 

TOF between different iθ  and for the same transfer angle and 0α  is 0.1083 years, while 

the highest difference in the total excess velocity is 0.1100km s. For N=2, the highest 

difference in TOF between different iθ  and for the same transfer angle and 0α  is 0.1307 

years, while the highest difference in total excess velocity is 71.4032m s. 

 

The TOF range for this Earth-Mars flight is from 0.2987 years to 3.8112 years. The total 

excess velocity has a minimum value of 1.3095km s and a maximum value of 

16.6611km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.25 years and for a certain number of revolutions, these 

differences increase when increasing the transfer angle. The differences in terms of total 

excess velocity between two consecutive transfer angles is always highest between 

90ºθ∆ =  and 150ºθ∆ = . The maximum value for these differences is 6.8028km s for 

N=0 and the minimum value is about 66.0646m s for two revolutions. 
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Tables 7 and 8 show the values for the TOF and the excess velocity for an Earth-Mars 

flight. Parameter iθ  was assumed 30º, parameter 0α  was assumed -20º, the transfer angle 

θ∆  was assumed 90º and the number of revolutions was taken 1 for the first table and 2 

for the second one. In table 7, the normalized thrust acceleration 0a  was 0.03, while in 

table 8, this parameter was 0.02. Note that these values for 0a  for N=1 and N=2 are the 

minimum values that can be used in both cases for this shape without facing integration 

problems for the interval of input parameters considered. 

 

N=1 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ),∞ totalV km s  2.9391 2.7213 2.4838 2.3879 2.3819 

( ),1∞V km s  0.3869 0.4197 0.4907 0.5787 0.6723 

( ),2∞V km s  2.5522 2.3016 1.9932 1.8092 1.7096 

TOF (years) 1.5615 1.5788 1.6074 1.6322 1.6504 

Table 13: The excess velocities and the TOF values for N=1, 
i

θ =30º, θ∆ =90º, 
0

α =-20º,  m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), 
0

a =0.03, constant acceleration case of the thrust profile (Poinsot’s spiral 

(hyperbolic cosine)), Earth-Mars flight 

 

N=2 0.01=m  0.11=m  0.21=m  0.31=m  0.41=m  

( ),∞ totalV km s  1.6461 1.3943 1.2833 1.2801 1.3091 

( ),1∞V km s  0.1727 0.2003 0.2503 0.3056 0.3614 

( ),2∞V km s  1.4734 1.1940 1.0331 0.9745 0.9478 

TOF (years) 2.8152 2.8865 2.9593 3.0021 3.0276 

Table 14: The excess velocities and the TOF values for N=2, 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), 
0

a =0.02, constant acceleration case of the thrust profile (Poinsot’s spiral 

(hyperbolic cosine)), Earth-Mars flight 

 

From tables 7 and 8, the order of magnitude of the total excess velocity values are 

010 /km s. For increasing values of m , the total excess velocity decreases, while the TOF 

increases for N=1. For N=2, the total excess velocity decreases until 0.31=m  and 
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increases between 0.31=m  and 0.41=m , while the TOF increases like for N=1. The 

values for the total excess velocity are higher when N=1 than when N=2. Note that the 

excess velocity ,2∞V  decreases faster than the excess velocity ,1∞V  increases, except for 

N=2 between 0.31=m  and 0.41=m . 

 

In figures 30 to 33, the polar plot, the thrust angle α , the polar angle rate θɺ  and the flight 

path angle in function of time are illustrated for N=1 and N=2 cases that were presented in 

tables 7 and 8. 

 

 

Figure 53: Polar plot for N=1 (
0

a =0.03) and N=2 (
0

a =0.02), 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of 

(0.01; 0.11; 0.21; 0.31; 0.41), constant acceleration case (Poinsot’s spiral (hyperbolic cosine)), Earth to 
Mars 
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Figure 54: α  plot for N=1 (
0

a =0.03) and N=2 (
0

a =0.02), 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of (0.01; 

0.11; 0.21; 0.31; 0.41), constant acceleration case (Poinsot’s spiral (hyperbolic cosine)), Earth to Mars 

 

 

Figure 55: θɺ  plot for N=1 (
0

a =0.03) and N=2 (
0

a =0.02), 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of (0.01; 

0.11; 0.21; 0.31; 0.41), constant acceleration case (Poinsot’s spiral (hyperbolic cosine)), Earth to Mars 
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Figure 56: γ  plot for N=1 (
0

a =0.03) and N=2 (
0

a =0.02), 
i

θ =30º, θ∆ =90º, 
0

α =-20º, m values of (0.01; 

0.11; 0.21; 0.31; 0.41), constant acceleration case (Poinsot’s spiral (hyperbolic cosine)), Earth to Mars 

 

Similar remarks to the ones given for the previous shapes can be given. 

 

5. Sinusoidal spiral 
 

In this section, results for the TOF, the excess velocities and the thrust acceleration will be 

shown and discussed for the sinusoidal spiral. Figures 34 and 35 show the TOF and the 

total excess velocity when changing parameter iθ  and the transfer angle θ∆ , when the 

number of revolutions N is 0. The value used in figures 34 and 35 for the geometric 

parameter m  was 0.05, the values used for the initial value of α  were (-60º, -50º, -40º, -

30º, -20º), for iθ  were (120º, 200º, 280º, 360º) and for θ∆  were (90º, 150º, 210º, 270º, 

340º). The normalized thrust acceleration 0a  value used in figures 34 and 35 was 0.07. 
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Figure 57: TOF for 
i

θ  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.07, constant 

acceleration case (sinusoidal spiral), Earth-Mars flight 

 

 

Figure 58: 
,T

V∞  for 
i

θ  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), m=0.05, 
0

a =0.07, constant 

acceleration case (sinusoidal spiral), Earth-Mars flight 

 

Some remarks can be drawn from figures 34 and 35. As expected, the TOF increases when 

increasing the transfer angle, while the total excess velocity decreases. By increasing the 

initial polar angle iθ , the TOF increases while the total excess velocity decreases. The 
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differences in TOF and in total excess velocity between different values of iθ , decreases 

for higher values of the initial polar angle. The highest difference in TOF between different 

iθ  for the same phase angle and 0α  is 0.0332 years, while the highest difference in the 

total excess velocity is 0.3371km s. For higher values of 0α , the total excess velocity 

decreases, while the TOF increases. 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter m , for the transfer angle ∆θ  and for the initial values of α  and θ . 

The normalized thrust acceleration 0a  value used in figures 36 and 37 was 0.02. 

 

 

Figure 59: TOF for 
i

θ  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º), m=0.05, constant acceleration case 

(sinusoidal spiral), Earth-Mars flight, N=1 (
0

a =0.02) and N=2 (
0

a =0.02) 
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Figure 60: 
,T

V∞  for 
i

θ  values of (120º, 200º, 280º, 360º) from left to right in the figure, 
0

α  values of (-

60º, -50º, -40º, -30º, -20º), θ∆  values of (90º, 150º, 210º, 270º, 340º),  m=0.05, constant acceleration case 

(sinusoidal spiral), Earth-Mars flight, N=1 (
0

a =0.02) and N=2 (
0

a =0.02) 

 

From figures 36 and 37, the differences in the total excess velocity between different 

values of 0α  increase with the number of revolutions. For N=1, the highest difference in 

TOF between different iθ  for the same transfer angle and 0α  is about 0.0631 years, while 

the highest difference in total excess velocity is 87.6342m s. For N=2, the highest 

difference in TOF between different iθ  for the same transfer angle is about 0.0823 years, 

while the highest difference in total excess velocity is 33.1082m s. 

 

The TOF range for this Earth-Mars flight is from 0.3311 years to 3.8103 years. The total 

excess velocity has a minimum value of 1.3107km s and a maximum value of 

14.7125km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.25 years. For a certain number of revolutions, these 

differences increase when increasing the transfer angle. The differences in terms of total 

excess velocity between two consecutive transfer angles is always the highest one between 

90ºθ∆ =  and 150ºθ∆ = . The maximum value for these differences is 6.8642km s for 

N=0 and the minimum value is about 71m s for N=2. 

 

Tables 9 and 10 show the values for the TOF and the excess velocity for an Earth-Mars 

flight. Parameter iθ  was consider 30º, parameter 0α  was consider -20º, the transfer angle 



Analytical Representations for Low-Thrust Trajectories  
 

 55 

θ∆  was consider 90º and the number of revolutions was taken 1 for the first table and 2 

for the second one. In tables 9 and 10, the normalized thrust acceleration 0a  was 0.02. 

 

N=1 0.01=m  0.055m=  0.1m=  0.145m=  0.19m=  

( ),∞ totalV km s  2.7498 2.7044 2.6154 2.4829 2.3067 

( ),1∞V km s  0.6095 0.6281 0.6673 0.7322 0.8322 

( ),2∞V km s  2.1402 2.0762 1.9482 1.7507 1.4742 

TOF (years) 1.6192 1.6243 1.6349 1.6522 1.6786 

Table 15: The excess velocities and the TOF values for N=1, 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values for 

(0.01; 0.055; 0.1; 0.145; 0.19), 
0

a =0.02, constant acceleration case (sinusoidal spiral), Earth-Mars flight 

 

N=2 0.01=m  0.055m=  0.1m=  0.145m=  0.19m=  

( ),∞ totalV km s  1.6247 1.5533 1.3982 1.1705 1.0130 

( ),1∞V km s  0.2550 0.2697 0.3076 0.3857 0.5489 

( ),2∞V km s  1.3697 1.2836 1.0906 0.7848 0.4641 

TOF (years) 2.8613 2.8816 2.9317 3.0275 3.2122 

Table 16: The excess velocities and the TOF values for N=2, 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values for 

(0.01; 0.055; 0.1; 0.145; 0.19), 
0

a =0.02, constant acceleration case (sinusoidal spiral), Earth-Mars flight 

 

From tables 9 and 10, the order of magnitude of the total excess velocity values is 

010 km s. For increasing values of m , the total excess velocity decreases, while the TOF 

increases. The values for the total excess velocity are higher when N=1 than when N=2. 

Note that the excess velocity ,2∞V  decreases faster than the excess velocity ,1∞V  increases, 

for both cases N=1 and N=2. 

 

In figures 38 to 41, the polar plot, the thrust angle α , the polar angle rate θɺ  and the flight 

path angle as function of time are illustrated for N=1 and N=2 (tables 9 and 10). 
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Figure 61: Polar plot for N=1 and N=2, 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values for (0.01; 0.055; 0.1; 

0.145; 0.19), 
0

a =0.02, constant acceleration (sinusoidal spiral), Earth-Mars flight 

 

 

Figure 62: α  plot for N=1 and N=2, 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values for (0.01; 0.055; 0.1; 0.145; 

0.19), 
0

a =0.02, constant acceleration (sinusoidal spiral), Earth-Mars flight 
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Figure 63: θɺ  plot for N=1 and N=2, 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values for (0.01; 0.055; 0.1; 0.145; 

0.19), 
0

a =0.02, constant acceleration (sinusoidal spiral), Earth-Mars flight 

 

 

Figure 64: γ  plot for N=1 and N=2, 
i

θ =120º, θ∆ =90º, 
0

α =-20º, m values for (0.01; 0.055; 0.1; 0.145; 

0.19), 
0

a =0.02, constant acceleration (sinusoidal spiral), Earth-Mars flight 

 

Similar conclusions to the ones given for the previous shapes can be drawn. 

 

6. Exponential Sinusoid 
 

In this section, results for the TOF, the excess velocities and the thrust acceleration will be 

shown and discussed for the exponential sinusoid. Figures 42 and 43 show the TOF and the 

total excess velocity when changing parameter 2k  and the transfer angle θ∆  (N=0). The 

values used in these figures for the geometric parameter 2k , were (0.1; 0.15; 0.2; 0.25), for 
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0α  were (20º, 30º, 40º, 50º, 60º), for the initial flight path angle 1γ  was 0º and for θ∆  

were (90º, 150º, 210º, 270º, 340º). The value for 0a  used in figures 42 and 43 was 0.05. 

 

 

Figure 65: TOF for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), 
1

γ =0º, 
0

a =0.05, constant 

acceleration case (exponential sinusoid), Earth-Mars flight 

 

 

Figure 66: 
,T

V∞  for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), 
1

γ =0º, 
0

a =0.05, constant 

acceleration case (exponential sinusoid), Earth-Mars flight 
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Fom figures 42 and 43, by increasing the geometric parameter 2k , the TOF increases, 

while the total excess velocity decreases. The differences in TOF and in total excess 

velocity between different values of 2k  increase for higher values of the transfer angle 

θ∆ . The highest difference in TOF between different iθ  for the same phase angle and 0α  

is 0.0178 years, while the highest difference in total excess velocity is 0.6308km s. For 

increasing values of 0α , the TOF increases while the total excess velocity decreases. 

 

Similar figures can be shown for one and two revolutions, using the same values for the 

geometric parameter 2k , for the transfer angle ∆θ  and for the initial values of α  and 1γ . 

The normalized thrust acceleration 0a  values used in figures 44 and 45 was 0.03. 

 

 

Figure 67: TOF for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º), 
1

γ =0º, constant acceleration case  

(exponential sinusoid), Earth-Mars flight, N=1 (
0

a =0.03) and N=2 (
0

a =0.03) 
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Figure 68: 
,T

V∞  for 
2

k  values of (0.1; 0.15; 0.2; 0.25) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º), 
1

γ =0º, constant acceleration case 

(exponential sinusoid), Earth-Mars flight, N=1 (
0

a =0.03) and N=2 (
0

a =0.03) 

 

Similar remarks to the ones given for N=0 can be drawn for figures 44 and 45. The 

differences in the total excess velocity between different values of 0α  are higher for N=1 

and N=2 than N=0. Note that, unlike for N=0 and N=1, for N=2 and between 2 0.2k =  and 

2 0.25k = , the total excess velocity increases. For N=1, the highest difference in TOF 

between different 2k  and for the same transfer angle and 0α  is about 0.2302 years, while 

the highest difference in total excess velocity is 1.0955km s. For N=2, the highest 

difference in TOF between different 2k  and for the same transfer angle is about 2.6039 

years, while the highest difference in the total excess velocity is 1.3980km s. 

 

The TOF range for this Earth-Mars flight is from 0.2702 years to 6.4163 years. The total 

excess velocity has a minimum value of 0.3772km s and a maximum value of 

20.5265km s. As expected, the minimum value for the TOF and the maximum value for 

the total excess velocity occur for the smallest transfer angle – 90º (N=0). The minimum 

value for the total excess velocity occur for the transfer angle – 210º (N=2). 

 

The maximum differences in TOF between two consecutive values of the transfer angle 

θ∆  are about 1.4080 years. The maximum value for these differences is 11.0787km s for 

N=0 and the minimum value is about 58.3969m s for 2 revolutions. 
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Tables 11 and 12 show the values for the TOF and the excess velocity for an Earth-Mars 

flight. Parameter 2k  assumed was 0.01, parameter 0α  assumed was 20º, the transfer angle 

θ∆  assumed was 90º and the number of revolutions taken was one for the first table and 

two for the second one. In tables 11 and 12, the normalized thrust acceleration 0a  was 

0.03. 

 

N=1 1 0º=γ  1 0.75º=γ  1 1.5º=γ  1 2.25º=γ  1 3º=γ  

( ),∞ totalV km s  2.7437 2.7940 2.8941 2.9954 3.1006 

( ),1∞V km s  0.0515 0.3900 0.7803 1.1710 1.5614 

( ),2∞V km s  2.6923 2.4040 2.1138 1.8244 1.5393 

TOF (years) 1.5438 1.5829 1.6239 1.6670 1.7126 

Table 17: The excess velocities and the TOF values for N=1, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of 

(0º; 0.75º; 1.5º; 2.25º; 3º), 
0

a =0.03, constant acceleration case (exponential sinusoid), Earth-Mars flight 

 

N=2 1 0º=γ  1 0.75º=γ  1 1.5º=γ  1 2.25º=γ  1 3º=γ  

( ),∞ totalV km s  1.7485 1.7978 1.9373 2.1181 2.3695 

( ),1∞V km s  0.0904 0.4051 0.7896 1.1771 1.5650 

( ),2∞V km s  1.6581 1.3927 1.1477 0.9411 0.8044 

TOF (years) 2.7739 2.9001 3.0341 3.1764 3.3277 

Table 18: The excess velocities and the TOF values for N=2, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of 

(0º; 0.75º; 1.5º; 2.25º; 3º), 
0

a =0.03, constant acceleration case (exponential sinusoid), Earth-Mars flight 

 

For increasing values of m , the total excess velocity and the TOF increase. The values for 

the total excess velocity are higher when N=1 than when N=2. Note that the excess 

velocity ,2∞V  decreases faster than the excess velocity ,1∞V  increases, for both cases N=1 

and N=2. 
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In figures 46 to 49, the polar plot, the thrust angle α , the polar angle rate θɺ  and the flight 

path angle as function of time are illustrated for N=1 and N=2 cases that were presented in 

tables 11 and 12. 

 

 

Figure 69: Polar plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 

3º), 
0

a =0.03, constant acceleration case (exponential sinusoid), Earth-Mars flight 

 

 

Figure 70: α  plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 3º), 

0
a =0.03, constant acceleration case (exponential sinusoid), Earth-Mars flight 
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Figure 71: θɺ  plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 3º), 

0
a =0.03, constant acceleration case (exponential sinusoid), Earth-Mars flight 

 

 

Figure 72: γ  plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 3º), 

0
a =0.03, constant acceleration case (exponential sinusoid), Earth-Mars flight 

 

The values of the thrust angle α  are higher for N=1 than for N=2. For most of the 

interplanetary flight for both cases in figure 47, the spacecraft is thrusting inwards in the 

radial direction, while in the tangential direction it thrusts in the positive direction (α  is 

negative, higher than 90º− ). This means that the vehicle is thrusting in favour of the 

gravitational acceleration. This situation will be further analysed in section 7.7. The 

magnitude values of the flight path angle γ  are smaller for N=2 than for N=1. 



Analytical Representations for Low-Thrust Trajectories  
 

 64 



Analytical Representations for Low-Thrust Trajectories  
 

 65 

Appendix E: Analysis of the Exponential Sinusoid fo r an 
Earth-Jupiter Flight and for an Earth-Mercury Fligh t 
 

In this appendix, a similar analysis to the one done in appendix D will be done one for the 

exponential sinusoid, for an Earth-to-Jupiter flight and an Earth-to-Mercury flight, using 

the acceleration inversely square and the tangential cases of the thrust profile. Results for 

the constant acceleration case of the thrust profile will not be shown (see chapter 7). Like 

in appendix D, the conclusions about these results are given in section 7.7. 

 

1. Earth-Jupiter Flight, using the Acceleration Inversely Square Case of the 
Thrust Profile 

 

Figures 50 and 51 show the TOF and the total excess velocity when changing parameter 2k  

and the transfer angle θ∆ , when the number of revolutions N is 1. The values used in 

figures 50 and 51 for the geometric parameter 2k  were (0.05; 0.08; 0.11; 0.14), for the 

initial value of α  were (20º, 30º, 40º, 50º, 60º), for the initial flight path angle 1γ  was 0º 

and for the transfer angle θ∆  were (90º, 150º, 210º, 270º, 340º). The normalized thrust 

acceleration 0a  value used in figures 50 and 51 was 0.13. 

 

 

Figure 73: TOF for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
0

α  values of 

(20º, 30º, 40º, 50º, 60º), θ∆  were (90º, 150º, 210º, 270º, 340º) (N=1), 
1

γ =0º, 
0

a =0.13, acceleration 

inversely square case (exponential sinusoid), Earth-Jupiter flight 
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Figure 74: 
,T

V∞  for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  were (90º, 150º, 210º, 270º, 340º) (N=1), 
1

γ =0º, 
0

a =0.13, acceleration inversely 

square case (exponential sinusoid), Earth-Jupiter flight 

 

Some remarks can be drawn from figures 50 and 51. As expected, the TOF increases when 

increasing the transfer angle, while the total excess velocity decreases. By increasing the 

geometric parameter 2k , the TOF increases, while the total excess velocity decreases. The 

highest difference in TOF between different 2k  for the same phase angle and 0α  is 0.5154 

years, while the highest difference in total excess velocity is 0.8344km s. For increasing 

values of 0α , the TOF and the total excess velocity increases. 

 

Similar figures can be shown for 2 and 3 revolutions, using the same values for the 

geometric parameter 2k , for ∆θ  and the initial values of α  and 1γ . The normalized thrust 

acceleration 0a  values used in figures 52 and 53 were 0.09 and 0.07 for N=2 and N=3, 

respectively. 
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Figure 75: TOF for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
0

α  values of 

(20º, 30º, 40º, 50º, 60º), θ∆  were (90º, 150º, 210º, 270º, 340º), 
1

γ =0º, acceleration inversely square case 

(exponential sinusoid), Earth-Jupiter flight, for N=2 (
0

a =0.09) and N=3 (
0

a =0.07) 

 

 

Figure 76: 
,T

V∞  for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  were (90º, 150º, 210º, 270º, 340º), 
1

γ =0º, acceleration inversely square case 

(exponential sinusoid), Earth-Jupiter flight, for N=2 (
0

a =0.09) and N=3 (
0

a =0.07) 

 

Similar remarks to the ones given for N=1 can be drawn for figures 52 and 53. The 

differences in total excess velocity between different values of 0α  are higher for N=1 and 

N=2 than N=0. Note that, unlike for N=1 and N=2, for N=3 and between 2 0.11k =  and 

2 0.14k = , the total excess velocity increases for a transfer angle of 340º. For N=2, the 

highest difference in TOF between different 2k  and for the same transfer angle is about 

2.4626 years, while the highest difference in total excess velocity is 1.3337km s. For N=3, 
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the highest difference in TOF between different 2k  and for the same transfer angle is about 

9.9958 years, while the highest difference in total excess velocity is 1.5506km s. 

 

The TOF range for this Earth-Jupiter flight is from 3.8876 years to 22.7594 years. The total 

excess velocity has a minimum value of 0.4552km s and a maximum value of 

5.9872km s. As expected, the minimum value for the TOF and the maximum value for 

the total excess velocity occur for the smallest transfer angle – 90º (N=1); while the 

minimum value for the total excess velocity occur for the transfer angle 210º (N=3). 

 

The maximum differences in TOF between two consecutive values of the transfer angle 

θ∆  are about 1.52 years. The maximum value for these differences is 0.7543km s for 

N=1 and the minimum value is about 59.6903m s for 3 revolutions. 

 

Tables 13 and 14 show the values for the TOF and the excess velocity for an Earth-Jupiter 

flight. Parameter 2k  was considered 0.01, parameter 0α  was considered 20º, θ∆  was 

considered 90º and N was taken 1 for the first table and 2 for the second one. In tables 13 

and 14, the normalized thrust acceleration values 0a  were 0.09 and 0.07, respectively. Note 

that these values for 0a , for N=2 and N=3 are the minimum values that can be used in both 

cases for this shape without facing integration problems for the interval of the parameters 

considered. 

 

N=2 1 0º=γ  1 0.75º=γ  1 1.5º=γ  1 2.25º=γ  1 3º=γ  

( ),∞ totalV km s  3.1884 3.2792 3.4954 3.7244 3.9546 

( ),1∞V km s  0.2166 0.4501 0.8125 1.1912 1.5744 

( ),2∞V km s  2.9718 2.8291 2.6830 2.5332 2.3802 

TOF (years) 6.8536 7.0891 7.3441 7.6177 7.9099 

Table 19: The excess velocities and the TOF values for N=2, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of 

(0º; 0.75º; 1.5º; 2.25º; 3º), 
0

a =0.09, acceleration inversely square case (exponential sinusoid), Earth-

Jupiter flight 
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N=3 1 0º=γ  1 0.75º=γ  1 1.5º=γ  1 2.25º=γ  1 3º=γ  

( ),∞ totalV km s  2.3289 2.3968 2.5988 2.8186 3.0426 

( ),1∞V km s  0.2412 0.4603 0.8168 1.1931 1.5751 

( ),2∞V km s  2.0877 1.9364 1.7821 1.6255 1.4651 

TOF (years) 9.8651 10.3911 10.9668 11.5939 12.2757 

Table 20: The excess velocities and the TOF values for N=3, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of 

(0º; 0.75º; 1.5º; 2.25º; 3º), 
0

a =0.07, acceleration inversely square case (exponential sinusoid), Earth-

Jupiter flight 

 

For increasing values of m , the total excess velocity and the TOF increase. The values for 

the total excess velocity are higher when N=2 than when N=3. Note that the excess 

velocity ,2∞V  decreases faster than the excess velocity ,1∞V  increases, for both cases N=2 

and N=3. 

 

In figures 54 to 58, the polar plot, the thrust acceleration a , the thrust angle α , the polar 

angle rate θɺ  and the flight path angle as function of time are illustrated for N=2 and N=3 

cases that were presented in tables 13 and 14. 

 

 

Figure 77: Polar plot for N=2 (
0

a =0.09) and N=3 (
0

a =0.07), 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of 

(0º; 0.75º; 1.5º; 2.25º; 3º), acceleration inversely square case (exponential sinusoid), Earth-Jupiter flight 
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Figure 78: a plot for N=2 (
0

a =0.09) and N=3 (
0

a =0.07), 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 

0.75º; 1.5º; 2.25º; 3º), acceleration inversely square case (exponential sinusoid), Earth-Jupiter flight 

 

 

Figure 79: α  plot for N=2 (
0

a =0.09) and N=3 (
0

a =0.07), 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 

0.75º; 1.5º; 2.25º; 3º), acceleration inversely square case (exponential sinusoid), Earth-Jupiter flight 
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Figure 80: θɺ  plot for N=2 (
0

a =0.09) and N=3 (
0

a =0.07), 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 

0.75º; 1.5º; 2.25º; 3º), acceleration inversely square case (exponential sinusoid), Earth-Jupiter flight 

 

 

Figure 81: γ  plot for N=2 (
0

a =0.09) and N=3 (
0

a =0.07), 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (0º; 

0.75º; 1.5º; 2.25º; 3º), acceleration inversely square case (exponential sinusoid), Earth-Jupiter flight 

 

The magnitude of the thrust acceleration is the smaller for N=2 than for N=3 because the 

assumed normalized thrust acceleration 0a  is also smaller for N=2 than for N=3. Note that 

the thrust acceleration trend is similar to the ɺθ  trend. The values of the thrust angle α  are 

higher for N=1 than for N=2. For most of the interplanetary flight for both cases in figure 

56, the spacecraft is thrusting inwards in the radial direction, while in the tangential 

direction it thrusts in the positive direction (α  is negative, higher than 90º− ), as already 

mentioned for the Earth-Mars flight. This situation will be further analysed in section 7.7. 

The magnitude values of the flight path angle γ  are smaller for N=3 than for N=2. 
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2. Earth-Jupiter Flight, using the Tangential Thrust Profile 
 

Figures 59 and 60 show the TOF and the total excess velocity when changing parameter 2k  

and the transfer angle θ∆  (N=1). The values used in these figures for the geometric 

parameter 2k  were (0.05; 0.08; 0.11; 0.14), for the initial flight path angle 1γ  were (0º; 

0.75º; 1.5º; 2.25º; 3º) and the transfer angle θ∆  were (90º, 150º, 210º, 270º, 340º). 

 

 

Figure 82: TOF for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
1

γ  values of (0º; 

0.75º; 1.5º; 2.25º; 3º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=1), tangential thrust (exponential 
sinusoid), Earth-Jupiter flight 

 



Analytical Representations for Low-Thrust Trajectories  
 

 73 

 

Figure 83: 
,T

V∞  for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, for 
1

γ  values of 

(0º; 0.75º; 1.5º; 2.25º; 3º) and for θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=1) when the tangential 
thrust profile is being applied (exponential sinusoid), Earth-Jupiter flight 

 

From figures 59 and 60, by increasing the geometric parameter 2k , the TOF increases, 

while the total excess velocity decreases, while increasing the values of 1γ , the TOF and 

the total excess velocity increases. The highest difference in TOF between different 2k  for 

the same phase angle and 1γ  is 0.7101 years, while the highest difference in total excess 

velocity is 0.7550km s. The differences in TOF and in total excess velocity between 

different values of 1γ  increase for higher values of the transfer angle θ∆ . 

 

Similar figures can be shown for 2 and 3 revolutions, using the same values for the 

geometric parameter 2k , for the transfer angle ∆θ  and for the initial flight path angle 1γ  as 

the ones used for N=1. 
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Figure 84: TOF for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
1

γ  values of (0º; 

0.75º; 1.5º; 2.25º; 3º), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust, (exponential 
sinusoid), Earth-Jupiter flight, N=2 and N=3 

 

 

Figure 85: 
,T

V∞  for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
1

γ  values of (0º; 

0.75º; 1.5º; 2.25º; 3º), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust (exponential sinusoid), 
Earth-Jupiter flight, N=2 and N=3 

 

Similar remarks to ones given for N=1 can be drawn for figures 61 and 62. The differences 

in TOF for different values of 1γ  are higher for N=2 and N=3 than N=1. For N=2, the total 

excess velocity decreases when increasing 2k . However, for N=3, for transfer angles θ∆  

higher than 150º, the total excess velocity increases between 2 0.11k =  and 2 0.14k =  for 

higher values of 1γ . For N=2, the highest difference in TOF between different 2k  for the 

same transfer angle and 1γ  is about 3.6608 years, while the highest difference in total 

excess velocity is 1.2603km s. For N=3, the highest difference in TOF between different 
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2k  for the same transfer angle and 1γ  is about 17.4482 years, while the highest difference 

in total excess velocity is 1.4635km s. 

 

The TOF range for this Earth-Jupiter flight is from 3.9567 years to 35.0279 years. The total 

excess velocity has a minimum value of 0.3492km s and a maximum value of 

6.2544km s. As expected, the minimum value for the TOF and the maximum value for 

the total excess velocity occur for the smallest transfer angle – 90º (N=1). Note that the 

minimum value for the total excess velocity occur for the transfer angle 210º (N=3). 

 

The maximum differences in TOF between two consecutive values of the transfer angle 

θ∆  are about six years. For a certain number of revolutions, these differences increase 

when increasing the transfer angle. The difference in terms of total excess velocity between 

two consecutive transfer angles is highest between 90ºθ∆ =  and 150ºθ∆ =  for N=1. The 

maximum value for these differences is 0.8419km s for N=1 and the minimum value is 

35.2968m s for 3 revolutions. 

 

Tables 15 and 16 show the values for the TOF and the excess velocity for an Earth-Jupiter 

flight. Parameter iθ  is zero and parameter 2k  was considered 0.01, the transfer angle θ∆  

was considered 90º and the number of revolutions was taken 2 for the first table and 3 for 

the second one. 

 

N=2 1 0º=γ  1 0.75º=γ  1 1.5º=γ  1 2.25º=γ  1 3º=γ  

( ), /totalV km s∞  3.2450 3.2815 3.4731 3.6862 3.9043 

( ),1 /V km s∞  0.2494 0.4495 0.8058 1.1845 1.5691 

( ),2 /V km s∞  2.9956 2.8319 2.6673 2.5018 2.3353 

TOF (years) 6.9792 7.2470 7.5296 7.8281 8.1436 

Table 21: Excess velocities and TOF values for N=2, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 

2.25º; 3º), tangential thrust (exponential sinusoid), Earth-Jupiter flight 
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N=3 1 0º=γ  1 0.75º=γ  1 1.5º=γ  1 2.25º=γ  1 3º=γ  

( ), /totalV km s∞  2.2056 2.3223 2.5360 2.7547 2.9739 

( ),1 /V km s∞  0.1190 0.4031 0.7850 1.1725 1.5612 

( ),2 /V km s∞  2.0867 1.9192 1.7510 1.5822 1.4127 

TOF (years) 10.0493 10.6167 11.2291 11.8906 12.6058 

Table 22: Excess velocities and TOF values for N=3, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 

2.25º; 3º), tangential thrust (exponential sinusoid), Earth-Jupiter flight 

 

For increasing values of 1γ , the TOF and the total excess velocity increase. The values for 

the total excess velocity are higher when N=2 than when N=3. Note that the excess 

velocity ,1∞V  has the same trend as the total excess velocity, while the excess velocity ,2V∞  

decreases. 

 

In figures 63 to 66, the polar plot, the thrust acceleration a, the thrust angle α  and the 

polar angle rate θɺ  as function of time are illustrated for N=2 and N=3 cases that were 

presented in tables 15 and 16. 

 

 

Figure 86: Polar plot for N=2 and N=3, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 3º), 

tangential thrust (exponential sinusoid), Earth-Jupiter flight 
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Figure 87: a plot for N=2 and N=3, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 3º), tangential 

thrust (exponential sinusoid), Earth-Jupiter flight 

 

 

Figure 88: α  plot for N=2 and N=3, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 3º), 

tangential thrust (exponential sinusoid), Earth-Jupiter flight 
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Figure 89: θɺ  plot for N=2 and N=3, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (0º; 0.75º; 1.5º; 2.25º; 3º), 

tangential thrust (exponential sinusoid), Earth-Jupiter flight 

 

The values for the thrust angle α  are smaller for N=3 than for N=2. The plot of the flight 

path angle γ  in function of time is not shown, since in the tangential case =α γ . Finally, 

the thrust acceleration a  values are smaller for N=3 than for N=2. 

 

3. Earth-Mercury Flight, using the Acceleration Inversely Square Case of the 
Thrust Profile 

 

Figures 67 and 68 show the TOF and the total excess velocity when changing parameter 2k  

and the transfer angle θ∆  (N=0). The values used in figures 67 and 68 for the geometric 

parameter 2k  were (0.05; 0.08; 0.11; 0.14), for 0α  were (20º, 30º, 40º, 50º, 60º), for 1γ  was 

0º and for θ∆  were (90º, 150º, 210º, 270º, 340º). The normalized thrust acceleration 0a  

value used in figures 67 and 68 was -0.25. 
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Figure 90: TOF for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
0

α  values of 

(20º, 30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), 
1

γ =0º, 
0

a =-0.25, acceleration 

inversely square case (exponential sinusoid), Earth-Mercury flight 

 

 

Figure 91: 
,T

V∞  for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), 
1

γ =0º, 
0

a =-0.25, acceleration 

inversely square case (exponential sinusoid), Earth-Mercury flight 

 

From figures 67 and 68, as expected, the TOF increases when increasing the transfer angle, 

while the total excess velocity decreases. By increasing the geometric parameter 2k , the 

TOF and the total excess velocity decrease. The differences in TOF and in total excess 
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velocity between different values of 2k  increase for higher values of the transfer angle 

θ∆ . The highest difference in TOF between different iθ  for the same phase angle and 0α  

is 0.0063 years, while the highest difference in total excess velocity is 0.6653km s. For 

increasing values of 0α , the TOF decreases while the total excess velocity increases for 

transfer angles higher than 210º and it decreases for transfer angles lower than 210º. 

 

Similar figures can be shown for 1 and 2 revolutions, using the same values for the 

geometric parameter 2k , for the transfer angle ∆θ  and for the initial values of α  and 1γ . 

The normalized thrust acceleration 0a  values used in figures 69 and 70 were -0.09 and -

0.06 for N=1 and N=2, respectively. 

 

 

Figure 92: TOF for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
0

α  values of 

(20º, 30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º), 
1

γ =0º, acceleration inversely square 

case (exponential sinusoid), Earth-Mercury flight, N=1 (
0

a =-0.09) and N=2 (
0

a =-0.06) 
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Figure 93: 
,T

V∞  for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
0

α  values of (20º, 

30º, 40º, 50º, 60º), θ∆  values of (90º, 150º, 210º, 270º, 340º), for 
1

γ =0º, acceleration inversely square 

case (exponential sinusoid), Earth-Mercury flight, N=1 (
0

a =-0.09) and N=2 (
0

a =-0.06) 

 

Similar remarks to the ones given for N=0 can be drawn for figures 69 and 70. The 

differences in total excess velocity between different values of 0α  are higher for N=1 and 

N=2 than N=0. For N=1, the highest difference in TOF between different 2k  and for the 

same transfer angle and 0α  is about 0.0509 years, while the highest difference in total 

excess velocity is 1.5947km s. For N=2, the highest difference in TOF between different 

2k  and for the same transfer angle is about 0.1954 years, while the highest difference in 

total excess velocity is 2.5275km s. 

 

The TOF range for this Earth-Mercury flight is from 0.2358 years to 2.0252 years. The 

total excess velocity has a minimum value of 2.2831km s and a maximum value of 

46.7494km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.15 years. The maximum value for these differences is 

16.5936km s for N=0 and the minimum value is about 0.3236km s for 2 revolutions. 

 

Tables 17 and 18 show the values for the TOF and the excess velocity for an Earth-

Mercury flight. Parameter 2k  was assumed 0.01, parameter 0α  was assumed 20º, the 

transfer angle θ∆  was assumed 90º and N was taken 1 for the first table and 2 for the 

second one. In tables 17 and 18, the normalized thrust acceleration 0a  values were -0.09 
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and -0.06, respectively. Note that these values for 0a , for N=1 and N=2 are the minimum 

values that can be used in both cases for this shape without facing integration problems for 

the interval of the input parameters considered. 

 

N=1 1 3ºγ = −  1 2.25ºγ = −  1 1.5ºγ = −  1 0.75ºγ = −  1 0º=γ  

( ),∞ totalV km s  10.4821 10.6811 10.8898 11.1134 11.3622 

( ),1∞V km s  1.5877 1.1895 0.7921 0.3956 -53.97 10×  

( ),2∞V km s  8.8944 9.4916 10.0976 10.7178 11.3621 

TOF (years) 0.7947 0.8173 0.8405 0.8644 0.8890 

Table 23: The excess velocities and the TOF values for N=1, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (-

3º; -2.25º; -1.5º; 0.75º; 0º), 
0

a =-0.09, acceleration inversely square case (exponential sinusoid), Earth-

Mercury flight 

 

N=2 1 3ºγ = −  1 2.25ºγ = −  1 1.5ºγ = −  1 0.75ºγ = −  1 0º=γ  

( ),∞ totalV km s  5.6018 5.7841 5.9779 6.1913 6.5220 

( ),1∞V km s  1.5993 1.2074 0.8186 0.4395 0.1620 

( ),2∞V km s  4.0025 4.5767 5.1593 5.7518 6.3598 

TOF (years) 1.2949 1.3575 1.4233 1.4926 1.5657 

Table 24: The excess velocities and the TOF values for N=2, 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (-

3º; -2.25º; -1.5º; 0.75º; 0º), 
0

a =-0.06, acceleration inversely square case (exponential sinusoid), Earth-

Mercury flight 

 

From tables 17 and 18, the order of magnitude of the excess velocity values is 010 km s 

and 110 km s. For increasing values of m , the total excess velocity and the TOF increase. 

The values for the total excess velocity are higher when N=1 than when N=2. Note that the 

excess velocity ,2∞V  increases faster than the excess velocity ,1∞V  decreases, for both cases 

N=1 and N=2. 
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In figures 71 to 75 the polar plot, the thrust acceleration a , the thrust angle α , the polar 

angle rate θɺ  and the flight path angle as function of time are illustrated for N=1 and N=2 

cases that were presented in tables 17 and 18. 

 

 

Figure 94: Polar plot for N=1 (
0

a =-0.09) and N=2 (
0

a =-0.06), 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of 

(-3º;-2.25º;-1.5º;0.75º;0º), acceleration inversely square case (exponential sinusoid), Earth to Mercury 

 

 

Figure 95: a plot for N=1 (
0

a =-0.09) and N=2 (
0

a =-0.06), 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (-3º;-

2.25º;-1.5º;0.75º;0º), acceleration inversely square case (exponential sinusoid), Earth to Mercury 
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Figure 96: α  plot for N=1 (
0

a =-0.09) and N=2 (
0

a =-0.06), 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (-

3º;-2.25º;-1.5º;0.75º;0º), acceleration inversely square case (exponential sinusoid), Earth to Mercury 

 

 

Figure 97: θɺ  plot for N=1 (
0

a =-0.09) and N=2 (
0

a =-0.06), 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (-

3º;-2.25º;-1.5º;0.75º;0º), acceleration inversely square case (exponential sinusoid), Earth to Mercury 
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Figure 98: γ  plot for N=1 (
0

a =-0.09) and N=2 (
0

a =-0.06), 
2

k =0.01, θ∆ =90º, 
0

α =20º, 
1

γ  values of (-

3º;-2.25º;-1.5º;0.75º;0º), acceleration inversely square case (exponential sinusoid), Earth to Mercury 

 

The magnitude of the thrust acceleration is higher for N=1 and for N=2 because the 

assumed normalized thrust acceleration 0a  is also higher for N=1 than for N=2. For most 

of the interplanetary flight for both cases in figure 74, the spacecraft is thrusting inwards in 

the radial direction, while in the tangential direction it thrusts in the positive direction (α  

is negative, higher than 90º− ), like for the other two missions. This situation will be 

further analysed in section 7.7. The magnitude values of the flight path angle γ  are smaller 

for N=2 than for N=1. 

 

4. Earth-Mercury Flight, using the Tangential Thrust Profile 
 

Figures 76 and 77 show the TOF and the total excess velocity when changing parameter 2k  

and the transfer angle θ∆  (N=0). The values used in these figures for 2k  were (0.05; 0.08; 

0.11; 0.14), for 1γ  were (-3º; -2.25º; -1.5º; -0.75º; 0º) and for θ∆  were (90º, 150º, 210º, 

270º, 340º). 
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Figure 99: TOF for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
1

γ  values of (-3º; 

-2.25º; -1.5º; -0.75º; 0º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust (exponential 
sinusoid), Earth-Mercury flight 

 

 

Figure 100: 
,T

V∞  for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
1

γ  values of (-

3º; -2.25º; -1.5º; -0.75º; 0º), θ∆  values of (90º, 150º, 210º, 270º, 340º) (N=0), tangential thrust 
(exponential sinusoid), Earth-Mercury flight 

 

From figures 76 and 77, as expected, the TOF increases when increasing the transfer angle, 

while the total excess velocity decreases. By increasing 2k , the TOF and the total excess 

velocity decrease. For increasing values of 1γ , the TOF and the total excess velocity 
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increase. The highest difference in the time of flight between different 2k  for the same 

phase angle and 1γ  is 0.0056 years, while the highest difference in the total excess velocity 

is 0.6826km s. The differences in TOF between different values of 1γ  increase for higher 

values of the transfer angle θ∆ . 

 

Similar figures can be shown for one and two revolutions, using the same values for the 

geometric parameter 2k , for the transfer angle ∆θ  and for the initial flight path angle 1γ  as 

the ones used for N=0. 

 

 

Figure 101: TOF for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
1

γ  values of (-

3º; -2.25º; -1.5º; -0.75º; 0º), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust (exponential 
sinusoid), Earth-Mercury flight, N=1 and N=2 
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Figure 102: 
,T

V∞  for 
2

k  values of (0.05; 0.08; 0.11; 0.14) from left to right in the figure, 
1

γ  values of (-

3º; -2.25º; -1.5º; -0.75º; 0º), θ∆  values of (90º, 150º, 210º, 270º, 340º), tangential thrust (exponential 
sinusoid), Earth-Mercury flight, N=1 and N=2 

 

Similar remarks to ones given for N=0 can be drawn for figures 78 and 79. The differences 

in TOF for different values of 1γ  are higher for N=1 and N=2 than N=0. For N=1, the 

highest difference in TOF between different 2k  for the same transfer angle and 1γ  is about 

0.0489 years, while the highest difference in total excess velocity is 1.6434km s. For N=2, 

the highest difference in TOF between different 2k  for the same transfer angle and 1γ  is 

about 0.1897 years, while the highest difference in total excess velocity is 2.7032km s. 

 

The TOF range for this Earth-Mercury flight is from 0.2343 years to 1.9719 years. The 

total excess velocity has a minimum value of 1.3834km s and a maximum value of 

45.9447km s. The maximum differences in TOF between two consecutive values of the 

transfer angle θ∆  are about 0.13 years. For a certain number of revolutions, these 

differences increase when increasing the transfer angle. The difference in terms of total 

excess velocity between two consecutive transfer angles is the highest one between 

90ºθ∆ =  and 150ºθ∆ =  for N=0. The maximum value for these differences is 

14.4967km s for N=0 and the minimum value is 0.2335km s for N=2. 

 

Tables 19 and 20 show the values for the TOF and the excess velocity for an Earth-

Mercury flight. Parameter iθ  is zero and parameter 2k  assumed was 0.01, the transfer 
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angle θ∆  assumed was 90º and the number of revolutions taken was 1 for the first table 

and 2 for the second one. 

 

N=1 1 3ºγ = −  1 2.25ºγ = −  1 1.5ºγ = −  1 0.75ºγ = −  1 0º=γ  

( ), /totalV km s∞  10.4787 10.7028 10.9418 11.2330 11.7050 

( ),1 /V km s∞  1.5738 1.2029 0.8516 0.5571 0.4481 

( ),2 /V km s∞  8.9049 9.4999 10.0902 10.6759 11.2569 

TOF (years) 0.7721 0.7935 0.8156 0.8384 0.8621 

Table 25: Excess velocities and TOF values for N=1, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (-3º; -2.25º; -1.5º; -

0.75º; 0º), tangential thrust (exponential sinusoid), Earth-Mercury flight 

 

N=2 1 3ºγ = −  1 2.25ºγ = −  1 1.5ºγ = −  1 0.75ºγ = −  1 0º=γ  

( ), /totalV km s∞  5.4540 5.6858 5.9173 6.1549 6.5023 

( ),1 /V km s∞  1.5590 1.1700 0.7835 0.4054 0.1407 

( ),2 /V km s∞  3.8949 4.5157 5.1338 5.7491 6.3616 

TOF (years) 1.2661 1.3264 1.3900 1.4574 1.5287 

Table 26: Excess velocities and TOF values for N=2, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (-3º; -2.25º; -1.5º; -

0.75º; 0º), tangential thrust profile (exponential sinusoid), Earth-Mercury flight 

 

From tables 19 and 20, the order of magnitude of the total excess velocity values is 

010 km s and 110 km s. For increasing values of 1γ , the TOF and the total excess velocity 

increase. The values for the total excess velocity are higher when N=1 than when N=2. 

Note that the excess velocity ,2V∞  has the same trend as the total excess velocity, while the 

excess velocity ,1V∞  decreases. 

 

In figures 80 to 83, the polar plot, the thrust acceleration a , the thrust angle α  and the 

polar angle rate θɺ  as function of time are illustrated for N=1 and N=2 cases that were 

presented in tables 19 and 20. 



Analytical Representations for Low-Thrust Trajectories  
 

 90 

 

 

Figure 103: Polar plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (-3º; -2.25º; -1.5º; -0.75º; 0º), 

tangential thrust profile (exponential sinusoid), Earth-Mercury flight 

 

 

Figure 104: a plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (-3º; -2.25º; -1.5º; -0.75º; 0º), 

tangential thrust profile (exponential sinusoid), Earth-Mercury flight 
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Figure 105: α  plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (-3º; -2.25º; -1.5º; -0.75º; 0º), 

tangential thrust profile (exponential sinusoid), Earth-Mercury flight 

 

 

Figure 106: θɺ  plot for N=1 and N=2, 
2

k =0.01, θ∆ =90º, 
1

γ  values of (-3º; -2.25º; -1.5º; -0.75º; 0º), 

tangential thrust profile (exponential sinusoid), Earth-Mercury flight 

 

The values for the thrust angle α  are smaller in magnitude for N=2 than for N=1. The plot 

of the flight path angle γ  in function of time is not shown, since in the tangential case 

=α γ . Finally, the magnitude of the thrust acceleration a  is higher for N=1 than for N=2. 
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Appendix F: Verification 
 

As already mentioned in chapter 9, this master thesis deals with many mathematical 

expressions (appendix B). In this way, mistakes can be made when writing the equations in 

MATLAB code. The MATLAB program that was developed by giving the geometric 

parameters as an input in order to compute the thrust acceleration, the thrust angle, the 

TOF, the excess velocities and the fuel mass consumption for a certain mission is called 

Low2D. Since the results achieved for each shape need to be verified, a test program was 

developed: Test2D. This program uses the values of the thrust acceleration, thrust angle, 

the TOF and the initial position and velocity as inputs. Through a Runge-Kutta 4(5) 

integrator, it computes the trajectory of the spacecraft in the transfer plane. In the end, if 

the MATLAB code is correct, the values for the final position and velocity given by 

Test2D should match the ones used in Low2D. 

 

Test2D was verified using the following inputs: the period of the Earth for the TOF, the 

circular velocity of the Earth and its distance to the Sun. In this test, the thrust acceleration 

and angle were considered zero. If Test2D is correct, the final position and velocity should 

be the same as the initial position and velocity, respectively. The trajectory was computed 

and the final position and velocity at the instance TOF=t  differ from the initial position 

and velocity by ~ 610 km−  and ~ 1010 km s− , respectively. Since these differences are 

significantly small, the results given by Test2D can be considered verified. 

 

Tables 21 to 23 present the differences in terms of position and velocity at the target planet 

between the values given by Low2D and Test2D. These tables were built for the 

acceleration inversely square case. In these tables, ‘shape 1’ is the Archimedean spiral, 

‘shape 2’ is the logarithmic spiral, ‘shape 3’ is the Poinsot’s spiral (hyperbolic sine), ‘shape 

4’ is the Poinsot’s spiral (hyperbolic cosine), ‘shape 5’ is the sinusoidal spiral and ‘shape 

6’ is the exponential sinusoid. 
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 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 

2∆r  (km) 0.5495 0.5471 1.7395 1.4766 1.066 1.4788 

2∆V  (mm s) 0.8985 0.9016 2.3288 1.1593 1.2178 1.1858 

Table 27: Variation between the values given in Low2D and Test2D for the position and velocity at the 
target planet, Earth-Mars flight, θ∆ =90º, N=1, acceleration inversely square case 

 

 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 

2∆r  (km) 3.5433 36.8599 49.2149 6.1633 6.5041 0.8981 

2∆V  (mm s) 0.6754 3.0193 3.5887 0.1 0.5996 0.4012 

Table 28: Variation between the values given in Low2D and Test2D for the position and velocity at the 
target planet, Earth-Jupiter flight, θ∆ =90º, N=1, acceleration inversely square case 

 

 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 

2∆r  (km) 0.8386 6.3592 2.5299 6.0732 5.7877 6.4705 

2∆V  (mm s) 3.3911 21.7885 5.1442 20.6900 21.5630 21.333 

Table 29: Variation between the values given in Low2D and Test2D for the position and velocity at the 
target planet, Earth-Mercury flight, θ∆ =90º, N=1, acceleration inversely square case 

 

A similar test can be done for the constant acceleration case of the thrust profile case. The 

results are presented in tables 24 to 26. 

 

 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 

2∆r  (km) 0.2830 0.2635 2.4502 0.0585 0.4280 0.1912 

2∆V  (mm s) 0.1537 0.1342 0.8413 0.6048 0.8326 0.6327 

Table 30: Variation between the values given in Low2D and Test2D for the position and velocity at the 
target planet, Earth-Mars flight, θ∆ =90º, N=1, constant acceleration case 
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 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 

2∆r  (km) 19.3649 48.7194 60.9231 27.4681 29.1238 39.6779 

2∆V  (mm s) 2.0560 1.082 0.8752 0.0227 0.326 0.6815 

Table 31: Variation between the values given in Low2D and Test2D for the position and velocity at the 
target planet, Earth to Jupiter, θ∆ =90º, N=1, constant acceleration case 

 

 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 

2∆r  (km) 1.8913 19.2616 1.088 25.5034 12.8667 56.1440 

2∆V  (mm s) 25.1917 108.82 2.316 127.4 64.67 297.9 

Table 32: Variation between the values given in Low2D and Test2D for the position and velocity at the 
target planet, Earth to Mercury, θ∆ =90º, N=1, constant acceleration case 

 

A similar test can be done for the tangential case of the thrust profile case. The results are 

presented in tables 27 to 29. 

 

 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 

2∆r  (km) 0.3942 0.8078 118.0380 17.6294 14.8096 19.5991 

2∆V  (mm s) 0.2459 0.5656 238.9 13.71 14.5 13.07 

Table 33: Variation between the values given in Low2D and Test2D for the position and velocity at the 
target planet, Earth-Mars flight, θ∆ =90º, N=1, tangential case 

 

 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 

2∆r  (km) 4.1238 0.9518 125.6456 31.1107 33.8446 29.7854 

2∆V  (mm s) 0.6405 42 99.8 10.97 10.02 10.7 

Table 34: Variation between the values given in Low2D and Test2D for the position and velocity at the 
target planet, Earth-Jupiter flight, θ∆ =90º, N=1, tangential case 
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 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 

2∆r  (km) 456.3820 121.6437 49.8625 41.9713 45.5778 41.8992 

2∆V  (mm s) 3193.5 243.7 288.9 89.34 112.7 82.14 

Table 35: Variation between the values given in Low2D and Test2D for the position and velocity at the 
target planet, Earth-Mercury flight, θ∆ =90º, N=1, tangential case 

 

The variation values in terms of velocity of the spacecraft at the target are the highest one 

for the Earth-Mercury mission in all 3 cases of the thrust profile. In this case, a higher 

tolerance can be used. The variation values in terms of position are highest for the Earth-

Jupiter mission except for the tangential case and for the exponential sinusoid. Generally, 

the errors increase for higher integration time. Since the order of magnitude of the 

travelling distance of the spacecraft is 1110 m and the order of magnitude of the velocity at 

the target is 410 m s, Low2D can be considered benchmarked in this test. 

 

As already mentioned in chapter 9, Low2D was also verified with the MATLAB routines 

given by Dario Izzo [Izzo, 2006] for the exponential sinusoid using the tangential thrust. 

 

Also, the computation of low-thrust trajectories using STA was verified with the software 

JAQAR. In table 30 the scenario for testing the STA module to compute low-thrust 

trajectories is shown. Note that this test scenario was performed with version 8 of the SBC 

[JAQAR, 2007]. 

 
Departure date (departure planet) 18/08/2009 (Earth) 

Arrival date (arrival planet) 02/11/2010 (Mars) 

Geometric parameter 
2

k  0.7071 

Number of revolutions N 0 

Table 36: Test scenario for STA 
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Departure 
planet 

STA 

V∞ (km/s) 
JAQAR 

V∞ (km/s)  

Error 

V∞  (%) 
   

Earth 1.8528 1.8678 0.8031    
Arrival 
planet 

STA 

V∞ (km/s) 
JAQAR 

V∞ (km/s)  

Error 

V∞  (%) 
STA: Mfuel (low-

thrust+
Mars

V∆ ) (kg) 

JAQAR: Mfuel (low-

thrust+
Mars

V∆ ) (kg) 

Error: 
Mfuel 
(%) 

Mars 1.7504 1.7522 0.1028 342.5350 342.3587 0.0515 

Table 37: Values for the excess velocities and the fuel mass consumption using STA and JAQAR, for 
the test scenario in table 30 

 

Since the ephemeris used in both software is different and that the values for the errors in 

table 31 are smaller than 1%, the computation of low-thrust trajectories in STA was 

considered well implemented. 
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Appendix G: Test of the Number of Individuals 
 

In this appendix, a test will be made to verify if the number of individuals used for the 

population in the Monte Carlo optimization provide accurate results for the Pareto fronts. 

This test will only be made for one shape - the exponential sinusoid and for the tangential 

and the acceleration inversely square cases of the thrust profile. 4 Pareto fronts were built 

for: 25 000, 50 000, 75 000 and 100 000 individuals for the population, for the tangential 

case. Figure 107 shows these 4 Pareto fronts. 

 

 

Figure 107: Pareto fronts for the number of individuals of the population: 25 000, 50 000, 75 000 and 

100 000, tangential case 

 

From figure 84, the differences between the Pareto fronts for different sizes of the 

population are significantly small. The number of individuals in the Pareto front is: 50 for 

25 000 individuals, 75 for 50 000 individuals and 80 for 75 000 and 100 000 individuals. 

This means that, since the Pareto fronts are quite similar and there is no difference in terms 

of the number of individuals in the Pareto front for 75 000 and 100 000 individuals in the 

population, 75 000 will be the number of individuals chosen for the population. 

 

For the acceleration inversely square case, 4 Pareto fronts were built for: 25 000, 50 000, 

75 000 and 100 000 individuals for the population, as well. 
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Figure 108: Pareto fronts for the number of individuals of the population: 25 000, 50 000, 75 000 and 

100 000, acceleration inversely square case 

 

From figure 85, the differences between the Pareto fronts for 75 000 and 100 000 

individuals of the population are significantly small. Note that just a few green individuals 

can be seen in figure 85, because most of the individuals in the Pareto front for 75 000 

individuals are also present in the Pareto front with 100 000 (black individuals). The 

number of individuals in the Pareto front is: 30 for 25 000 individuals, 29 for 50 000 

individuals, 31 for 75 000 and 33 for 100 000 individuals. Note that these numbers are 

much lower than the ones given for the tangential case. This is due to the integration errors 

that occur for the acceleration inversely square case and consequently many individuals 

have to be discarded during the optimization procedure. Since the difference for the 

number of individuals between the 4 Pareto fronts is small and there is no much difference 

between the Pareto front for 75 000 and 100 000 individuals, the number of the population 

will be 75 000. 
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Appendix F: Optimization for an Earth-Jupiter Fligh t 
 

In this appendix, the optimization results for the Earth-Jupiter flight using tangential thrust 

will be shown. Figure 109 illustrates the Pareto fronts using the tangential thrust profile in 

an Earth-Jupiter flight for all6 shapes. As already said in chapter 8, the population that is 

being used is 75000 individuals for each shape. 

 

 

Figure 109: Pareto fronts for the Archimedean spiral, logarithmic spiral, Poinsot’s spiral (hyperbolic 
sine), Poinsot’s spiral (hyperbolic cosine), sinusoidal spiral and exponential sinusoid, tangential thrust, 

Earth-Jupiter flight 

 

In figure 86, the Archimedean spiral and the Poinsot’s spiral (hyperbolic sine) show worse 

results compared with the other 4 shapes: the fuel consumption values are higher and the 

number of individuals in the Pareto front is significantly low, as for the Earth-Mars flight. 

 

Figure 110 summarizes the Pareto fronts for all 6 shapes. In the plot in the right-hand side, 

the same Pareto fronts are represented but only with individuals with values of total excess 
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velocity lower than skm5  and values of fuel mass consumption between 1000 and 1100 

kg. 

 

 

Figure 110: Pareto fronts for the Archimedean spiral, logarithmic spiral, Poinsot’s spiral (hyperbolic 
sine), Poinsot’s spiral (hyperbolic cosine), sinusoidal spiral and exponential sinusoid, tangential thrust, 

Earth-Jupiter flight 

 

Individuals with values lower than 407.25 kg, 474.51 kg and 465.18 kg are not present for 

the Pareto fronts for the logarithmic spiral, for the Poinsot’s spiral (hyperbolic cosine) and 

for the exponential sinusoid, respectively. The minimum value of fuel consumption is 

achieved with the sinusoidal spiral and it is 0.9439 kg (close to the targeting Lambert 

problem). The minimum values of the total excess velocity in the Pareto fronts are 

2.0525km s, 1.2693km s and 0.3270km s for the logarithmic spiral, for the Poinsot’s 

spiral (hyperbolic cosine) and for the exponential sinusoid, respectively. The minimum 

value for the total excess velocity of all shapes is achieved with the sinusoidal spiral and it 

is 0.2711km s. Individuals with TOF values higher than 20 years were not selected for the 

Pareto fronts, since the maximum number of complete revolutions was 3. The TOF range 

of most individuals in Pareto front for the 4 shapes mentioned above (logarithmic spiral, 

Poinsot’s spiral (hyperbolic cosine), sinusoidal spiral and exponential sinusoid) is between 

0 and 8 years. 
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Note that the total excess velocity values for lower values of fuel mass consumption are 

significantly high. Individuals with these values of total excess velocity cannot be taken 

into account in a real mission. However, in order to understand the limits of each shape, 

they were not excluded from the Pareto front. 

 

From figure 87, the Pareto fronts for the exponential sinusoid and the sinusoidal spiral 

provide lower values of fuel mass consumption for the same total excess velocity when 

comparing with the Poinsot’s spiral (hyperbolic cosine) or the logarithmic spiral. The 

logarithmic spiral has the highest number of individuals in the Pareto front of all 6 shapes. 

 

The range of fuel mass and total excess velocity values for the sinusoidal spiral is the 

widest one. This shape and the exponential sinusoid have similar performances for fuel 

mass consumptions higher than ~ 700 kg. 

 

Note that the Pareto front of the exponential sinusoid has 2 different trends: after and 

before ~ 700 kg. The bent seen in figure 86 at ~ 700 kg was already studied in section 

10.1.1, in order to understand why there are two different curvatures in the Pareto front. 

The situation for the Earth-Mars case and this one are similar. 

 

• Thrust Acceleration Constraint 
 

Computation times were tracked for all 6 shapes and they are shown in table 32. Also, the 

percentage of the individuals in the Pareto front and in the population that respects the 

maximum ratio between the thrust acceleration that is given as an output from a certain 

shape and the available thrust acceleration (1≤ ) is presented for the three different cases. 

The three cases are for the following available thrust acceleration trends: (1) 

2064.0 raavailable µ=  (twice availablea  in DS1), (2) 2096.0 raavailable µ=  (3 times availablea  in 

DS1) and (3) 2128.0 raavailable µ=  (4 times availablea  in DS1) (see chapter 8). 
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Shapes 
Computation 

time (hours) 
PfN  PfG  (%) PopG  (%) 

Archimedean spiral 1.41 2 100/100/100 2.7/5.8/8.2 

Logarithmic spiral 0.69 6158 0.1/1.2/4.2 2.3/6.3/10.8 

Poinsot’s spiral (hyperbolic sine) 0.73 9 100/100/100 27.6/43.6/54.5 

Poinsot’s spiral (hyperbolic cosine) 0.72 49 34.7/53.1/63.3 47.4/63.8/72.5 

Sinusoidal spiral 2.71 95 25.3/41/64.2 7.7/20/30.7 

Exponential sinusoid 3.06 99 4/9.1/17.2 0.4/1.8/3.9 

Table 38: Computation time, number of individuals in the Pareto front (
Pf

N ) and the percentage of 

individuals in the Pareto front 
Pf

G and in the population 
Pop

G that respect the maximum value for the 

ratio between the required thrust acceleration of the spacecraft and the available one for the 6 shapes 
and for the 3 cases of [ ]0, 0,Deep space 1

2/3/4
available

a a=  in an Earth-Jupiter flight (tangential case) 

 

The optimization procedure when using the exponential sinusoid used more computation 

time than the other shapes. Also, the percentage of individuals in the population that do not 

respect the maximum value for the ratio between the required thrust acceleration of the 

spacecraft and the available one is highest for the exponential sinusoid in all three cases. 

However, the logarithmic spiral has the lower percentage of individuals in the Pareto front 

that respects the constraints for the thrust acceleration available. Note that although 100% 

of the individuals in the Pareto front for the Archimedean spiral and the Poinsot’s spiral 

(hyperbolic sine), the fuel consumption for both shapes are higher when compared with the 

other 4 shapes. 

 

Figures 88 and 89 illustrate the Pareto fronts for the sinusoidal spiral and for the 

exponential sinusoid when only considering the individuals in the population that respect 

the condition in (8.7) in chapter 8. As for the Earth-Mars flight, these two shapes have the 
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best performance in terms of the Pareto front. Using the condition in (8.7) as a constraint, 

for the two shapes named before, a certain number of individuals in the population are 

discarded, respectively and a new Pareto front is built. Figures 88 and 89 show the Pareto 

fronts for the sinusoidal spiral and exponential sinusoid, respectively when the available 

thrust acceleration ( ) 2128.0;096.0;064.0 raavailable µ=  is given as a constraint. 

 

 

Figure 111: Pareto fronts for the sinusoidal spiral, for the entire population (on the right) and only for 
individuals in the population that respect the condition (8.7) (the three cases), tangential thrust, Earth-

Jupiter flight 
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Figure 112: Pareto fronts for the exponential sinusoid, for the entire population (on the right) and only 
for individuals in the population that respect the condition (8.7) (the three cases), tangential thrust, 

Earth-Jupiter flight 

 

From figures 88 and 89, for the exponential sinusoid, the individuals in the Pareto front 

have a mass fuel consumption values higher than 962 kg for the case with the highest value 

of 0,availablea . For increasing values of 0,availablea , the number of individuals in the Pareto 

front increases and lower values of fuel mass consumption are allowed. For the sinusoidal 

spiral, there is a gap in the Pareto front, where there are no individuals. 
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