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Summary

Low-thrust electric propulsion is one of the mostmising technologies in interplanetary
missions, due to its large savings in propellast.cih has already been tested in missions,
like SMART-1 (ESA) and Deep Space 1 (NASA).

Since the beginning of space exploration, methaglsguanalytical representations to
describe spacecraft's trajectory have been usedrder to serve as “fast mission”
generators. In 1999, Petropoulos introduced anytoal representation capable of
representing low-thrust trajectories: the exporarginusoid[Petropoulos et al, 1999]

However, only one particular steering program wasdied: trajectories with tangential and

continuous thrust, modulated by the distance tSine

The aim of this master thesis is to analyse sewaralytical representations (shapes) and
steering programs, in addition to the one consitlene[Petropoulos et al, 1999hand
compare their performance with the exponential sl using continuous tangential
thrust. The shapes that are considered in thiggiaplready mentioned and pre-selected in
the literature survefPaulino, 2007] were: the Archimedean spiral, the logarithmiaalpi
the Poinsot's spiral (hyperbolic sine), the Poitssatpiral (hyperbolic cosine), the
sinusoidal spiral and the exponential sinusoid.oAliree different thrust profiles were
analysed: (1) “acceleration inversely square”, whdhe magnitude of the thrust

acceleration monotonically decreases with the sguafr the distance to the Sun -
a=g,u/r* and a, is the thrust acceleration normalised by the logedvitational
acceleration (i.e. it is non-dimensional), which densidered constant; (2) “constant
acceleration”, where the magnitude of the thruseksration is constant = aO/J/ 75 (3)

“tangential” thrust profile where continuous tanti@inthrust is considered (studied in
[Petropoulos and Longuski, 2004hd[lzzo, 2006).

A technique related to the one developed by Daziw [Izzo, 2006]to find feasible

trajectories using low-thrust propulsion for a 2lgem was implemented. In this master
thesis, given the shape, the initial and final poof the trajectory, the angle between them
and the number of complete revolutions, the exeeksities, the TOF and the fuel mass

consumption during the low-thrust transfer can c@puted.
iX
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Multi-objective optimization using a Monte Carlo thed was implemented for the 6
shapes and the acceleration inversely square anthtigential cases of the thrust profile.
The total excess velocity and the fuel mass conSommluring the interplanetary low-

thrust phase were the two objective functions Were minimized. Pareto fronts were built
for all 6 shapes, two thrust profiles and thrededént test missions: an Earth-to-Mars
flight, an Earth-to-Jupiter flight and an EarthNtercury flight.

The sinusoidal spiral using continuous tangentialigt had the best Pareto front for all
three missions. Compared with the exponential siaugsing the tangential thrust profile,

the computation time is smaller, the minimum tetatess velocity value achieved is lower
and the number of individuals that respect the maria thrust acceleration constraint is
higher. The other combinations of shapes and thpusiiles performed worse than the

exponential sinusoid using the tangential thrusfilerin at least one of these three criteria.
Unfortunately, it was proven not be worthwhile teeuthe acceleration inversely square
case of the thrust profile in a fast mission getwgrasince the computation time was
significantly higher (approximately 46 times thengmutation time of the tangential case,
for an Earth-Mars flight, using the sinusoidal apir
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a, Thrust acceleration normalised by
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g, Gravitational acceleration at sea level,

9.81my/ &
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6.673x 10° km'/( kg(s)
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i Inclination [°]
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Introduction

Centuries ago, the motion of planets was studiedirtd which shape would better
characterize the trajectories of celestial bodié® conical sections (elliptic, parabolic and
hyperbolic orbits) were found to be the best aimedytrepresentations for this problem and
they are known as Keplerian orbits. Nowadays, Hmessort of mathematical studies are
made in order to determine shapes that best raprdsemotion of spacecraft with certain
steering profiles, using low-thrust propulsion. Mtigal representations for low-thrust
trajectories have been developf@etropoulos et al., 1999]but only for one particular
steering program: trajectories with tangential amshtinuous thrust, modulated by the
distance to the Sun. Considering the wide rangposkibilities, it will be important to
analyze other steering programs and find otheryéinal representations for these
trajectories. In this way, the main purpose of timaster thesis is to analyse possible
steering programs and mathematical functions thatrepresent low-thrust trajectories and
compare their performance with the performancéefexponential sinusoid already found
[Petropoulos et al., 1999]Moreover, this trajectories’ study will not becfsed on a

particular mission, but on a general one, i.e.hwibitrary initial and final conditions.

More recently a master student of T.U. Delft fidhhis master thesis project on the study
of a new method to find a good initial guess faorstione third or half a revolution) low-
thrust trajectories between two celestial bod@2s Vogeleer, 2008] This master thesis,
like De Vogeleer's thesis, will try to find an apétal representation for low-thrust
trajectories that can surpass the exponential giduis terms of computation time, velocity
increments at departure and arrival and thrustlatéon values during the low-thrust

interplanetary phase.

Some principles of celestial mechanics and the lositns made about the influence of
perturbations on the spacecraft's motion in therditure surveyPaulino, 2007] will be

discussed in chapter 1. In chapter 2, the numeintagration method that will be used to
compute the time of flight (TOF) for the low-thrusajectories described by the analytical
representations will be presented. Important datutand the theoretical principles of

low-thrust propulsion are addressed in chapten&hlapter 4, interplanetary missions are
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described, assuming that no thrust and no pertgrfmirces are acting on the spacecraft.
The analysis already done for low-thrust trajee®rusing the exponential sinusoid with
tangential thrust[Petropoulos and Longuski, 2004hd[lzzo, 2006])will be presented in

chapter 5, while the study and some mission exanasiglts using other steering programs
and other shapes will be discussed in chapter 6 7angspectively. In chapter 8, an
introduction and a description of the optimisatwncedure done for the chosen analytical
representations will be given. The verificationtbé program developed in this master
thesis will be given in chapter 9. The results fréme optimisation procedure will be

shown in chapter 10. Finally, the conclusions oé¢ timaster thesis work and some

recommendations are given in chapters 11 and $gecgively.
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1. Orbital Mechanics

In this initial chapter, basic principles of astyodmics will be described. These principles
are important to understand the motion and thetipasof celestial bodies in space. Only
by making use of reference frames (section 1.1)camldinate systems (section 1.5), it is
possible to know the exact location of a spacecfidftough orbit elements (section 1.2),
laws of motion (section 1.3) and knowing the influe of perturbations (section 1.4) on

the spacecraft’s motion, it is possible to undewstiés trajectory in space.

1.1. Reference Frames

Before describing the motion of celestial bodied apacecraft, reference frames have to
be defined, since it is not possible to discusgdtaries in space without defining the
reference with respect to which this motion is esged. A special reference frame is the
inertial reference frame that is defined frfWdakker, 2005I1] “An inertial reference frame

is a reference frame with respect to which a partremains at rest or in uniform
rectilinear motion if no resultant force acts ugbat particle”. In practice it is not possible
to use this reference frame, so pseudo-inertiadreeice frames are applied instead
[Wakker, 2005I] For instance, in the motion of Solar System pis@eound the Sun, the
origin of the reference frame should be chosehatentre of the Solar System and not at
the centre of the universe. Therefore, the motioth@ Sun with respect to the true inertial
reference frame, that is located at the centréefiniverse, is neglected. Reference frames
can be described for Earth orbit missions and jaeetary missions. Since this master
thesis will only focus on the heliocentric phase inferplanetary missions, planetary

centred reference frames will not be described.here

The origin of a non-rotating reference frame in iaterplanetary flight is the Sun.
Typically, the XY-plane is the ecliptic plane. THeaxis is chosen to be perpendicular to
this plane. The angle between the ecliptic plarek the equatorial plane (Earth) is about
23°27" and it is called the obliquity of the ecigfWakker, 20051] The (+) X-axis of this

reference frame is pointed at the First Point dé&ior vernal equinox directior{). The
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(+) Y-axis is chosen so that the reference framegist-handed. This reference frame is

called the non-rotating heliocentric ecliptic refiece frame. Due to precession (change in
the Earth’s rotation axis), the ecliptic will chanduring time. Therefore, a reference epoch
should be always specified. Usually epoch J2000udky, £' 2000, noon terrestrial time)

is taken.

This reference frame can also be described usihgraets of coordinates besides the
Cartesian ones, like the spherical coordinatesaitrary pointP in the heliocentric non-
rotating ecliptic frame can be described by a lvelndric radiusr , a heliocentric longitude

A and a heliocentric latitudé, as illustrated in figure 1.1. The heliocentriad@tude is

described by the angular distance along the eclfptim the directionY" to the projection

of the object’s position in the ecliptic. This ateyudistance is measured from 0° to 360°,
eastward along the ecliptic. The heliocentric @k is the angular distance along the circle
of heliocentric longitude passing through the vihifrom the ecliptic to the spacecraft. It

is measured from -90° to 90° and it is taken pasitvhen the spacecraft is north of the

ecliptic and negative when the spacecraft is sofithe ecliptic.

Sun T Y

Y
Ecliptic plane

Figure 1.1: The non-rotating heliocentric eclipticreference frame using Cartesian and spherical
coordinates
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1.2. Orbital elements

Planets, artificial satellites and other celedbadlies describe a path that revolves around
other bodies, mainly under the influence of a ¢krgal force (the gravity force). In other
words, they orbit other celestial bodies. To ddwerihis motion, the position and the
velocity of a body which is orbiting must be knothree position components and three
velocity components) at every instant, since thegnge constantly. However, an orbit can
also be described by six independent parametetsatieaconstant in a Keplerian orbit
(section 1.3). They are called the classical orlperametersia, e, w, 7, Q andi.

These parameters are represented in figure 1.2.

Equatorial Plane

Apogee a ae @ x Perigee

Orbit plane

Figure 1.2: Representation of the orbital elementfMontenbruck et al., 2005]

Parametera is the semi-major axis and parameteis the eccentricity. They determine
the size and the shape of an orbit, respectivelyarReterQ is the longitude of the
ascending node in an ecliptic frame and it reprisséime angle between a reference
direction (vernal equinox is normally used) and gwent where the satellite crosses the
equator from south to north (ascending node). heasured eastward from 0° to 360°.
Parameterw is the argument of perigee and it represents tiggeebetween the direction
of the ascending node and the direction of thegperi This parameter determines the
orientation of the conic section in the orbitaln®a The integration constant is the time

of pericentre passage and it associates time vaisitipn in the orbit. Parameteris the

inclination and it represents the angle measurerh fthe reference plane to the orbital
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plane. When looking from the ascending node todhgin of the reference frame, this
angle should be measured counter-clockwise fromréifierence frame and its range is

from 0° to 180°. Satellites that travel in a dil@ttopposite to the rotation of the Earth
along its axis, have inclination values betwé9°,1803 and they are said to move in a
retrograde orbit. On the other hand, satellitegeltang in the same direction as the Earth
rotates about its axis have an inclination in titerval [00,90() and they are said to move

in a prograde orbit. Parametefs and i determine the orientation of the orbital plane

relative to the reference plane.

1.3. Two-body problem

In a realistic situation, to describe the motionadbodyi with respect to a non-rotating
reference frame, with bodl as origin, all gravitational forces between bodiek and
other bodiesj presented in the system must be taken into accélowever, as a first
approximation, the gravitational attraction betwéediesi and j can be neglected with
respect to the effect of the main gravitationalaation between bodies and k [Wakker,
2005I]. In this way, a two-body problem can be considered the following assumptions
are madgBate et al., 1971]

» Bodies are perfect spheres, which mean that the ofaelestial bodies is
concentrated at their centres and, therefore tlestia bodies are represented by
points in space;

* There are no external or internal forces actingaomo-body system, other than

gravitational forces.

The equation of motion of bodywith respect to bodk is given by{Wakker, 20051

7= —r—’L;r_ (1.1)
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Parameter 4 from equation (1.1) is the gravitational parametkat is given Dby:
/,J:G(m + rrg) andr is the position vector from body to bodyi. ParametelG is the

universal gravity constantyy and m, are the masses of bodiésand k, respectively.

Before attempting to solve equation (1.1), two im@ot conservation laws in the motion
of bodyi with respect to bodk must be describgdlVakker, 2005I]

EVZ_E
2 r
FxV = H =const

=& =const

RS

(1.2)

In equation (1.2), parameter indicates the total energy per unit of mass ofybbdThe
first term of the first equation indicates the kin@nergy per unit of mass of bodywhile
the second term of this equation is the potentigrgy per unit of mass of body The
total energy remains constant during the motiomady i, i.e., there is an exchange of
energy between kinetic and potential. In this wawehicle will slow down as it gains
altitude and it will speed up as it decreases titude. ParameteiH is the angular
momentum vector per unit of mass of the motion @dybi which is constant, implying
that bodyi moves in one fixed plane perpendicularHa Using the first conservation law
of the total energy, the velocity can be expressethe so-called vis-viva equation as
[Wakker, 2005lj

V= ,J(E_}j (1.3)

From equation (1.1), the position of a bodywith respect to a bodk is given by
[Wakker, 2005I]

__ HYu
r_1+ccos(¢—a)) (L4
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This orbital equation describes the relation betweeand ¢ . Equation (1.4) is equal to

the shape of a conic section. Substitutiﬂ@//,{ for p, ¢—w for @ andc for e, r is

expressed by:

r=— P (1.5)
1+ecosd

Equation (1.5) is given in polar coordinates andefines the shape of the trajectory of
body i with body k at a focal point. This equation only representssfie paths for a
two-body problem. Parameter is called the semi-latus rectum aéds the true anomaly.
The three types of conic sections are: ellipsasléd are ellipses with zero eccentricity),
parabolas and hyperbolas, represented in figureFir&-order, celestial bodies move in
conical paths: planets, artificial and natural kisge move in elliptical (near-circular)
orbits; parabolic and hyperbolic orbits are useadtmets and spacecraft in interplanetary

missions. These conical sections are known as Kaplerbits.

- P

(a) Ellipse (b) Parabola (c) Hyperbola

Figure 1.3: The three types of conic sections: the ellipse, thmarabola and the hyperbola, based on
[Montenbruck et al., 2005]

In the following sections, the three different tgpef Keplerian orbits will be briefly
described.
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1.3.1. Elliptic orbits

In the Solar System, the orbits of all planets dhd orbits of Earth satellites are
approximated by ellipses (see figure 1.3(a)). Alipgt is a closed and periodic curve
therefore a body in an elliptic path travels themedrajectory over and over. This conic

section is characterized <1 and its major axi®a is expressed by:

_ _ b p _ 2p _
2a=r +r_= + = , sothatp=a(1- ¢ 1.6
P 1-e 1+e 1-8é P ( ) (1.6)

Parameters, andr, are the apocentre and the pericentre radius, ceeply.

From equation (1.3), the velocity reaches its mamvalue at the pericentre:

= 2 —1 = E lLe =
o) s

a\l+ e

ol

Circular velocities at the pericentre and the aptieeare represented by, andV_,

respectively.

The period of an elliptic orbit is given fwakker, 2005I]

3
TZZ”J%ZZTH (1.9

Parameten in equation (1.9) is called the mean angular nmotio
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1.3.2. Parabolic orbits

Parabolic orbits are conic sections rarely foundetestial bodies’ trajectories (see figure
1.3(b)). A body travelling in a parabolic orbit Wihave a one-way trip to infinity. A

parabolic orbit is characterized bg=1, which simplifies the equation of motion:

r= p/(1+ 0039) . Using this result, the spacecraft’'s pericenffe-(°) distance is:

(1.10)

ﬁ
1
N o

Only a finite amount of kinetic energy is neededot@rcome the effects of gravity and
launch a spacecraft into infinity, since the sttbrgf a gravity field decreases rapidly with

distance from the main body. A spacecraft in a iparlorbit around a planet can be
“pulled” into a parabolic orbit by acceleratingdorelocity that isv2 times the velocity in

the local circular orbit. This means that, usingiagpn (1.3) and the fact that the semi-

major axisa = o, the velocity is given bj\Wakker, 2005I]

e

Vo= | 22 =42V, (1.11)
r

Parametel, in equation (1.11) is the instantaneous circuidogity of the spacecraft. The

spacecraft will always describe a parabolic paththw, independently of the

scape’
velocity’s direction. Using this velocity value the total energy equation, it yields=0.

From equation (1.11), it can be concluded thanfuity, r =, the velocity is minimal

and equal to zero and at pericentre, the velositpyaximal and equal th/J/rp :

It must be said that highly eccentric elliptic dsbor low eccentric hyperbolic orbits are
often approximated by parabolic orbits, since compons are faster when using parabolic
equationgWakker, 2005I]

10
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1.3.3. Hyperbolic orbits

A hyperbolic orbit is important to be studied wheespacecraft is required to move with a
certain velocity after escaping the departure plane., these orbits are important in
interplanetary missions. A hyperbola has two braschnd they represent each other’s
mirror-image with respect to a line perpendicutatite major axis. The right branch has no
physical meaning for celestial mechanics, but #feranch, illustrated in figure 1.3(c),
represents a hyperbolic motion in a gravity fi@tcee>1, from equation (1.5), it can be
concluded that the true anomaly is limited byosfd>-Ye. The major axis of the
hyperbola2a is the distance between the tops of its two bras@nd due to simplicity in

computations, it is considered negative, whiland p are positivgWakker, 2005I]

As usual, the distance to pericentre 'r§:=a(1—e), where the velocity reaches its

maximum value:

A ,u[a(i—ij =£(ilj =V (e+1) (1.12)

The minimum velocity value occurs for=c and it is given by:

vz=-H (1.13)
a

This means that for an infinite distance from badybodyi still has a finite velocity with

respect to bodk. At every point in a hyperbolic orbit, the instanéous velocity can be
determined by the local escape velocity (equatibfl)) and by the velocity at infinity
(equation (1.13))Wakker, 2005I]

VZ=V2  4\2 (1.14)

escape ‘o

Consider a case where a spacecraft has only enaighbity to escape the gravitational

field of the departing planet. This means that hicity will tend towards zero as the

11
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distance from the gravity field approximates irtimiHowever, the velocity given to the

vehicle in equation (1.14) can be more than theamscvelocity. This finite residual
velocity at infinity, V., is called the hyperbolic excess velocity. Figuré illustrates the
distance versus the velocity for a hyperbolic odsiund the Earth, using three values of
the eccentricity €=1.1, e=1.5 and e=3). The local escape velocity curve is also shown
in figure 1.4. The perigee altitude from the Eastburface used was0km. Note that for
significantly small velocity increments above tlse&pe velocity abOGkm, V, values are

significantly large. Also, for higher distances tdéferences between the hyperbolic

velocity andV, become smaller.

Distance r (km)

Welocity V (kmis)

Figure 1.4: Distance versus velocity for three hypbolic trajectories [Melman, 2007]

When hyperbolic orbits are discussed, the sphenafifence of the planet in question
must be defined. The meaning of “escaping fromgttaity field of a planet” is connected
with the distance from the planet where the spadei no longer under the influence of
the gravity field of that planet — sphere of infige. So, when the spacecraft crosses the
edge of this sphere of influence, it is assumdthie escaped from the gravitational body.

12
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1.4. Perturbing Forces

Assuming an interplanetary mission from one plawetinother, simplifications to this
problem can be made such that no perturbation $aoe taken into account (section 1.3).
In this case, only gravitational forces from theimaodies are present, which are
considered to be radially symmetrical. Thereforethis situation, the spacecraft moves
always in Keplerian orbits. However, in realityhet external forces interfere with the
spacecraft’'s trajectory, slightly deviating the i from the Keplerian orbit. In this way,
perturbed Keplerian orbits must be mentioned. élitierature survejPaulino, 2007] the
following perturbing forces were studied: gravityeldl perturbations, third-body
perturbations, solar radiation pressure, atmosphdrag, electromagnetic forces and
relativistic effects. Theoretical information andission examples were given in the
literature survey in order to analyse typical valw# the perturbing acceleration. After
assessing their magnitudes, a comparison betwese talues and the magnitude values

of the main acceleration from the Sun was made.

From all perturbations mentioned in the literatwervey [Paulino, 2007] radiation

pressure had the highest effect in the spaceamfctory, with a maximal order of
magnitude acceleration af0°m/s (at Mercury). This value can be neglected with
respect to the main acceleration of the Sun (atigr the order of magnitude of the main
acceleration g0 m/sz). In this way, due to this significantly small waland also as a

matter of simplicity for the analysis of the lowdtist problem, perturbations will be

neglected in this master thesis.

Note that, although all the perturbation forcesemegglected, there is one force that cannot

be rejected: the low-thrust force that will defithee spacecraft’s trajectory. Typical order
of magnitude of low-thrust acceleration values &ween10°nm/s and 102ny &

(chapter 7). Therefore, this force cannot be careid a “perturbing” force.

13
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1.5. Coordinate Systems

As already mentioned in the previous sections hd k2, the position and velocity of

bodyi can be expressed in at least three different ways:

1. Cartesian coordinates, y, z, X 'y z
2. Spherical coordinates; 1,9V ,y @

3. Keplerian coordinates; €, 1,Q,w,7

In this master thesis, coordinate transformatiaesamly required between spherical and

Cartesian coordinate systems.

The coordinates of a poir® in Cartesian(x, y, ) and in spherica(r,A,¢) coordinates

are represented in figure 1.1. In order to obtaen@artesian coordinates from the spherical
ones, the following equations should be us&drtz, 2001]j

X=TrCcosg cosl
y=rcosg sim (1.15)
z=rsing

The spacecraft position in spherical coordinates also be obtained from Cartesian
coordinates, using the following equatigid¢ertz, 2001j

|':1/)(2+y2+22

A =arctan {XJ (1.16)
X

z
@=arctan —
’{ ey J

In equations (1.16), the distaneg is computed throughxy:\/x2+y2. The function

arctan z is a four-quadrant inverse tangent function. Targtion differs from the normal

14
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inverse tangent functiorarctar, whose results are limited to solutions in thesinal

[—71/2;71/2], i.e., to the first and fourth quadrants. The tiorcarctan Z gives the angle in

the correct quadrant immediately.

15
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2. Numerical Integration Methods

Assumptions and simplifications are often donedives equations of motion analytically.
In these cases, equations of motion are solveddecific situations. However, a general
approach to a solution is more desirable. Therefonenerical integration techniques are
required. In this master thesis, numerical intagnais needed in order to compute the time
of flight (TOF) of the spacecraft for a certain sig. Also, numerical integration of the
equations of motion was necessary to verify thaltesn this master thesis (chapter 9 and

appendix F).

In this chapter, a certain nomenclature will bedusethe numerical integration methods.
To represent the position and the velocity of thacecraft, vectoly and vector f are

defined, respectively bjMontenbruck et al., 2005]

=

y :@ = y=1(ty) =[a(t;r;)J (2.1)

Parametery is a six-dimensional state-vector that combinespbsition and the velocity

of the spacecraft ancﬁ(t, y) is also a six-dimensional vector and it combires\telocity

and the acceleratiorﬁ((t,?,r*) =1) of the vehicle, hence it is the time-derivatifejo. As

a matter of simplicity, vector signs will not becinded in equations from chapter 2. All the

variables presented in this chapter are vectonsatrix quantities.

The most important numerical integration methods #re Runge-Kutta methods, the
multistep methods and the extrapolation methjdimntenbruck et al., 2005]Runge-Kutta
methods are single-step methods that can be appiieal significant wide range of
problems and they are easy to use compared witlr athmerical methods. Multistep
methods provide a high accuracy in the results;awawstorage of previous data points is

needed. Finally, extrapolation methods are knowthbyr high accuracy in the results.

17
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In the literature survejPaulino, 2007] the Runge-Kutta methods were found to be the
most suitable ones to be implemented in the malséssis. For this reason, in this chapter,
multistep methods and extrapolation methods wilt be discussed. In section 2.1,
theoretical information about the Runge-Kutta mdthavill be given and in section 2.2
and 2.3 the reasons behind this choice will begories!.

2.1. Runge-Kutta Methods

To calculate an approximation for a certain functig(t), given an initial value ofy at
time t, (yO:y(to)), the approximation function at some later time=¢,+h) is

expressed bjMontenbruck et al., 2005]

y(tb+h) = y+hy = Y1+ h= y+ w=n( s+ h 2.2)

Parameter is the time step-size ang is the increment function that should be closely
approximate to the tangent gf(t) between steps. Equation (2.2) is known as therEule

step and it is derived from a first-order Taylopawrsion.

10 + it

& F g M=+ e 1,0
" hi

l.:'l 1

Figure 2.1: Approximate solution of the differentid equation y = f (t, y) [Montenbruck et al., 2005]

18
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As illustrated in figure 2.1, since the incremeamtdtion ¢ deviates significantly from the

secant, the Euler step is not considered a vemyrattemethod. For this reason, a different
increment function is usgtontenbruck et al., 2005]

rp=ghk 2.3)

Parameters is the number of function evaluations in a genengblicit Runge-Kutta

formula and parametets are defined byMontenbruck et al., 2005]

K:f(to+qmyo+h‘§”j (2.3 2.4

Note that only the explicit Runge-Kutta methods described here, since the implicit ones
are complex, requiring the solution of a non-linggstem of equations to find the state of a
system at later time. The coefficients of equat®d) are determined so that they obey to

the following relationgMontenbruck et al., 2005]

S i-1

dYh=1 ¢=0, ¢=>3 (i>] (2.5)

i=1 j=1
For each stage; , b andc coefficients can be found in a Butcher tableapregented in

figure 2.2. After this process, an approximate sotucan be obtained through the same
equation used in the Euler step, the second equiati(2.2).

Figure 2.2: The Butcher tableau Montenbruck et al., 2005]
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As an example, the™order Runge-Kutta method (RK4) is presented. Thmber of
evaluationss used is four and the increment function is givgn[Montenbruck et al.,
2005]:

1
Hka :E(k1+2k2+2k3+ k4) (2.6)

Parameters; with i =1...4 are given by:

k= T (%, o)

k,= f(t,+h/2,y,+ hk/2) @7
k= f(t,+H2,y,+ hk/2)

k, = f(t+h yo+ hk)

In the case of RK4, the number of evaluatianss the same as the order of the local

truncation error, which is given fiontenbruck et al., 2005]
€xs =|Y(b+ W -7(t+ H|< consDA* = congt® (2.8)

However, generallys is not the same ap. Results from Runge-Kutta methods with the
same number of stages, i.e., the same set of @metialuations, but with different order
of Taylor polynomial can be compared (ordgr and p+1). This allows an easy
estimation of the local truncation error. Given timdlependent approximation functions
[Montenbruck et al., 2005]

’7(to+h): Yot hzslbk
= (2.9)

ﬁ(t0+h):y0+h2b||<
=

The truncation errors for these two approximatians given by[Montenbruck et al.,
2005]:

20
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e=|y(t+n-n(4+ < cf” (2.10)
é=|y(t+h-7(t+ h< Th™

Assuming that the truncation err@ is smaller thane by the order ofh, the local
truncation error of thep™-order can be estimated from the difference betwbentwo

solutions[Montenbruck et al., 2005]
e=|y-n|=|7-n| (2.11)

Methods of neighbouring order that are based orséime set of function evaluations and
that allow this easy estimation of the local truiara error are called embedded Runge-

Kutta methods.

The step-sizeh is an important issue in numerical integration hods. The step-size
should not be too large, due to truncation errbug,it cannot be also too short, because
round-off errors and computation effort increasehi@se conditionfMontenbruck et al.,
2005]. A technique can be applied to help choosing blétaalues for the step-size. Given

a step-sizeh, a local truncation error given by equation (2.kl¥alculated and it might
have a value higher than the tolerarceSo, a smaller step-size has to be chosen. After
some mathematic manipulations, the maximum allogteg-size to be used in the next

step can be derivgontenbruck et al., 2005]

h = [h=pd—°[h (2.12)

Parametemh’ can be used in the next step, if this step wasesstul. It should be noticed
that the value oh should not be changed more than a factor of twitvéofrom one step

to the next ongMontenbruck et al., 2005].

A variable step-size may be needed when the fumdt@haves inconstantly and rapidly in

some intervals of times. The easiest way to implgmaariable step-size with Runge-Kutta
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methods is to stop the integration and start agdtim new starting values for another step-
size. This approach is feasible when the numbethete intervals is low and the

integration is done mostly with a constant inteigrastep.

Figure 2.3 illustrates the performance of three geuutta methods. The three methods
are: DOPRI5 —* stage method of order 5 with an embedded methoddefr 4 developed
by Dormand & Prince (1980); RKF7 ‘"®rder method for integration, whilé"&rder
method for error estimation, developed by Fehln@@68); and DOPRI8 — 13 function
evaluations for a8 order approximation, developed by Dormand & Priit@81). For
higher orders, methods can achieve higher accgratithe same time computation effort
increases. The order of a Runge-Kutta method meisthosen, depending on the kind of

accuracy required.

40007
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Figure 2.3: The number of function calls in functio of accuracy for Runge-Kutta methods: DOPRI5
(5" order), RKF7 (7" order) and DOPRI8 (8" order) [Montenbruck et al., 2005]

2.2. Analysis

In this section, an analysis will be made about ithportance of some factors for the
choice of the numerical integration method thatl Wwé used in this thesis project. The
factors that are responsible for the selectionhef tnost suitable numerical integration

method are: speed, accuracy, storage and compléiatyever, all these factors and their
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weight depend on the problem that needs to be doluehis way, some questiof3ate et

al, 1979]and answers will be provided:

1. How many independent variables are required (largenumber of integrations
steps)?
In order to compute the TOF of the spacecraft duita interplanetary mission, certain
dynamic parameters need to be computed using ncahémiegration (chapters 5 and 6):
two at maximum. During the integration procedurelyoone independent variable is
necessary: the time or the polar angléd. Since there is only one independent variable
and the dynamic parameters that will be computehgé slowly with time, there is no

reason to require a large number of integratiopsste

2. Are the results of the problem susceptible to smaé#rrors?
Low-thrust mathematical representations have akphiape that slowly moves from the
departure planet to the target planet. Small ercars become a problem for this kind of
trajectory, since the spacecraft will take a lomget to accomplish its mission (long

integration time).

3. Is a constant step-size satisfactory?
Although dynamic parameters of low-thrust trajeie®rchange slowly with time, a

variable step-size might be necessary in ordebtaio accurate results.

2.3. Discussion

As already said in this chapter, low-thrust trapeiets change slowly with time and
therefore large integration steps can be usedcdh®gputation time is still a very important
issue in this problem, since low-thrust missionseha long TOF and consequently the
time to integrate the trajectories will also bedorn this way, the computation effort
should be reduced as far as possible, making tirapmtation methods not a reasonable
option. Multistep methods obtain the same accuuasoyg a lower number of function calls
than the Runge-Kutta methods. However, at not Sggmtly high accuracy values, the

difference between the numbers of function caledus these two types of methods is not

23



Analytical Representations for Low-Thrust Traje@sr

considerably large. In this way, there is no néedhis case, to store values from previous
steps to reduce the number of function calls (st@fi methods). Since in this master
thesis, a variable step is preferable, the eaamssimplest way to implemented it is using
the Runge-Kutta method.

Therefore, a Runge-Kutta method with a variablg@-siee is suitable to integrate low-

thrust trajectories in this thesis project. To cd®dhe order |p) and the number of

function evaluations ) of the Runge-Kutta method, it should be analys®da certain

accuracy required if the method chosen is stabtle the parameters and p selected. An

embedded Runge-Kutta method allows an easier astimaf the errors and consequently
allows an efficient step-size control. In this wayreasonable option for the low-thrust
problem will be, for instance, a Runge-Kutta metlodadrder 5 with an embedded method
of order 4. The application of this method in thaster thesis will be better explained in

chapter 6.

Note that a large number of numerical methods cbalkk been analysed in the literature
survey[Paulino, 2007]and although their performance is better thanstaadard Runge-
Kutta method, there is no time available to studlpfathem and their improvements would

not have been significant.
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3. Spacecraft Propulsion

In a general perspective, space propulsion sysseegnportant in three situatiof\&/ertz

et al., 1999] (1) the lift of the launch vehicle and its paydomom the ground into a low-
Earth orbit; (2) the transfer of the payload froarking orbits into higher orbits that can
encounter planets (the most important for this evastesis); (3) in-orbit corrections and

attitude control.

The aim of a propulsion system is to allow changesiagnitude and direction of the
spacecraft position and velocity. In section 3dme basic notions of propulsion will be
given. Finally, in this chapter, two propulsion t&ym categories will be discussed: the

chemical propulsion system (section 3.2) and thetet propulsion system (section 3.3).

3.1. Principles of Propulsion

Before describing the two main types of propulssgatems, it is important to describe the
basic principles that are common to both chemica electric propulsion. Spacecraft’'s
acceleration in space occurs from propellant’s ldisge. The equation of motion of a
rocket-propelled spacecraft, neglecting gravitatleand drag is given bBfESA/SMART-1,
20071]:

dv _ dm

av_aM ., 3.1
dt  dt 31

In equation (3.1), parametévl is the instantaneous mass of the vehid¥/dt is the
vehicle’s accelerationdM/dt is the rate of mass change due to propellant sigruiand

w is the exhaust velocity of the stream.
From equation (3.1), the thrust generated by tbpyision system is given by:

T = mOw (3.2)
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Using a single integration in equation (3.2), thepillse or change of momentum yields
[ESA/SMART-1, 20071]

| = J.:‘Tdt (3.3)

Variablet, in equation (3.3) is the action time, i.e., thedifor which the thrust is applied.

The specific impulse is the measure of how muchuis®is produced over the propellant
weight that the spacecraft spends. For constant ffas and exhaust velocity, the specific

impulse, expressed in seconds, is givefdandbergen, 2004]

t,
“Tdt
_ LT _w (3.4)

ISP t, -
gojo mdt Y%

Parameter, in equation (3.4) is the gravitational accelerat sea level.

Finally, the ideal velocity rate of a spacecraft t@ computed through Tsiolkowski's law,
where gravity losses or perturbations are not tak&naccount and the exhaust velooity

is constanfWertz et al, 1999]

e

AV = wlh (%j (3.5)
M

ParameterM, is the initial mass of the spacecraft aild is the spacecraft's mass at the

end of the thrusting period.

3.2. Chemical Propulsion System

In a chemical spacecraft propulsion system, thepegdtant gas is thermodynamically
expanded through a nozzle to create thrust. Invihig this system stores its energy in the

propellants, without making use of any other me@rarto obtain energy. Therefore, it is
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said that chemical propulsion is “energy limitedince the propellant has a fixed amount
of energy per mass, which limits the maximum exh&efocity and the specific impulse
[ESA/SMART-1, 2007l]Chemical propulsion systems are known by thdatirely large
thrust-to-mass ratio and, therefore, by a signifilgashort thrusting time, with low specific
impulse. Due to limited available reaction energyd athermal transfer restrictions,
chemical propulsion exhaust velocities are limitech few thousand meters per second.
Chemical propulsion systems are important in higérgy transfer orbits and in Hohmann
transfer orbits, where impulsive shots are usedltain large variations of velocity,
enough to directly escape a planet. In interplagetights, chemical propulsion is
required at the departure planet (the spacecraéipes) and possibly at the target planet
(the spacecraft is captured). The variation of eigoand thrust values can be computed

using the equations described in section 3.1.

Chemical burns are still required in low-thrusemtianetary missions at the departure and
arrival planets. In order to compute th¥ required, a value for the specific impulse will
have to be assumed. Therefore, different typesiemical propellants will be discussed in

section 3.3.1.

3.2.1. Types of Chemical Propellants

Chemical propellants use an association betweehnafug oxidizer to create, in certain
conditions, a chemical energy that will be neeaedHttain exhaust velocity. The chemical
propellants that are described in this section lagaid, solid and hybrid. Cold gas is not

mentioned since it does not have any utility iriptanetary transfers.

Liquid propellants are known by storing fuel anddizer in the liquid state. An important
type of liquid propellants is the monopropellarifiese liquid propellants combine the
oxidizer and the fuel in one molecule or in a migtuMonopropellant systems are reliable
in orbit maintenance and attitude control. Howetyery do not have the performance to
produce largeAV with high efficiency, needed for interplanetanpits. Their range of
specific impulse in vacuum is 150-225 secof\d&rtz et al., 1999] A more important

group is the bipropellants. They use fuel and @edin separate tanks, since they have a
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violent reaction when mixed. Bipropellant enginesvide the highest performance system
of all chemical engines, but they are also the msostplex ones with a large number of
systems. Another disadvantage is that most of theentoxic and dangerous propellants.
The range of vacuum specific impulse values fordppllant engines is 300-430 seconds
[Wertz et al, 1999]

Solid propellants are known by storing fuel andd@er in a condensed solid state. Solid
propellant motors have the advantage of: using lemsrpropellants in contrast with many
liquid ones; having a simple structure with a snmalmber of components and systems
(cooling and feed system are not needed), whiches#iikem reliable; and having a long
storage timgCornelisse et al, 1979]However, solid motors have a relatively low sfieci
impulse compared with rockets using other typestwmical propellant. Due to their
simplicity, attention to the nozzle constructiorsigm is required, since no cooling system
is active. Also, it is more difficult to modulatad control the thrust vector with a solid
motor. It is important to remember that once ighitgenerally the solid propellant motors
burn until the end, since there is no physical waytop the burning within the motor
volume. In this way, the restart of a solid mo®mbt possibl¢Cornelisse et al, 1979]

Their typical range of vacuum specific impulse 82800 seconddVertz et al, 1999]

Hybrid propellants consist of a solid fuel andaquid (or gaseous) oxidizer. Hybrid rockets
have the advantage of: storing the fuel like thikdsmotors; restarting unlike the solid
motors that cannot stop the burning once igniteayiding a cleaner environment than the
solid motors; being safe, since explosions arepossible during the mixture of fuel and
oxidizer; and finally throttling, i.e., it is posse to throttle the engine by modulating the
oxidizer flow rate. The typical values of the spiecimpulse range are 250-340 seconds
[Wertz et al, 1999]

In chemical propulsion systems, the most importgantameter for the selection of the
propellant is the specific impul¢gandbergen, 2004]In this way, the best choice for the
high-thrust propulsion system is the bi-propelldiguid system. In table 3.1, some
examples of bi-propellant liquid engines are given.
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Engine | Developerl Vacuum Thrust (N)I, (S) Propellants| Engine mass (kg)
R-4D Marquardt 490 309 NTO/ MMH 3.76
RS-45 Rocketdyne 4.5 300 NTO/ MMH 0.73
S400/1 DASA 400 303 MON/ MMH 2.8
MMBPS TRW 445 302 NTO/ MMH 5.22
ADLAE TRW 445 330 NTO/ N, H, 45
RS-41 Rocketdyne 11100 312 NTO/ MMH 68.95
S3K DASA 3500 352 MON/ MMH 14.5
R-42 Marquardt 890 303 MON/ MMH 4.54

Table 3.1: Examples of bi-propellant liquid engine§Zandbergen, 2004] and [Cornelisse et al, 1979]

3.3.

Electric Spacecraft Propulsion

Rocket engines using electric propulsion obtaimghby making use of electric, magnetic
and thermal energy to accelerate the propellantréfbre, vehicles with electric
propulsion systems do not use propellant as a pemerce. Instead, they use a separate
source of energy. Until now, solar panels have besed for all electrically propelled
spacecrafts to obtain energy. However, other atares have to be developed for
missions far from the Sun. An example of an alteveais the use of nuclear electric

power system.

The magnitude of acceleration provided by an dle@ropulsion system is significantly
smaller than the gravitational acceleration of pfenets within the sphere of influence of
the planet. For this reason, spacecraft with timsl lof propulsion system cannot leave a
planet’s surface. A chemical system (high thrustatiss ratio) has to be used to achieve a
parking orbit about the planet and only from thekpay orbit electric propulsion can be
used in the vehicle.
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It is important to notice that electric propulsisystems are not “energy limited”, which
allows the exhaust velocity to be much larger tlla one available for the chemical
system. Electric propulsion is limited by the maxim power provided by the power plant
to the propellant. In this way, electric propulsieypstems are called “power limited”
systems. Subsequently, thrust is limited for a miwpacecraft mass. Thus, electric
propulsion vehicles tend to be low thrust-to-maator i.e., they tend to have low
accelerationfESA/SMART-1, 2007I]The advantage in electric propulsion systemkas t
large total amount of impulse. Therefore, thougickic systems have low thrust-to-mass

ratio, thrust operates for long periods, from hdargears.

3.3.1. Basic Principles

A propulsion system mass depends on the specifialse (exhaust velocity), on the thrust
level and on the total impulse. The total mass ofi@mical propulsion system is given by

the sum of the propellant(s) masil (), the storage tanksMy,), the engine M.,,) and

eng

the control systemN| ). In an electric propulsion system two other magsve to be

control

added: the mass of the power sourbg, | and the mass of the power controlléd (),

which are exclusive for the electric propulsionteys. All these masses together, except

the propellant mass, are called the dry mass optbpulsion systemM .. So, the total

mass of an electric propulsion systefESA/SMART-1, 20071]

M (3.6)

Total control

=M, +M M M oM M =M M

F
This mass excess (compared to chemical enginegonspensated by reducing the
propellant mass used by this propulsion systems Tieans that while the mass of the
power source increases with the increase of spedifipulse, the propellant mass

decreases.
In electric propulsion systems, power sources pl@ybower to ionize propellant and

accelerate particles, so that the power sourceggnisr converted into kinetic energy
[Zandbergen, 2004]
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P =£P:%mDv\? (3.7)

ParameterP, is the power of exhaust jeE is the power that is obtained through solar

panels or another kind of power plant ands the power conversion efficiency.

In electric propulsion there is no limit for thehexust velocity other than the speed of light,
however the power required may increase to a paiere there is no economic feasibility
in obtaining more acceleration. In this way, itingportant to find the optimum exhaust

velocity and, consequently the optimum specific ulsp of the systeml_ [Wertz et al,

ssp
1999]. In case where the solar energy is used to olgaimwer, the dry mass of the
propulsion system is dominated by the mass of tveep source and can be approximated
by [Zandbergen, 2004]

M =M, =apP (3.8)

ps

Parameted/a,, is the specific poweM/ kg]. The specific impulse can also be given by

[Zandbergen, 2004]

__Wig,
ISSp_l"‘fEWZ (39)

Parametere =aw/(2/7t) is called the specific mass of the energy sourcem equation

(3.9), the optimum exhaust velocity is derived:
—2=0e w, =,[|- (3.10)

It should be mentioned that economically it is prable to work slightly below the
optimum value, because propellant is normally ckeapan using more power supply
[Wertz et al., 1999]
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3.3.2. Methods

There are three basic types of electric propulsimtems: electrothermal, electrostatic and
electromagnetic. These methods are categorizelebway the propellant in the vehicle is

accelerated.

a) Electrothermal Propulsion

This system is characterized by using heat to acatel the propellant. There are three sub-
types: resistojets, arcjets and inductively or atidely heated systems (there are no
application examples of this technique J&pA/SMART-1, 2007l]

Resistojets use an electric heater to heat gaggopsllant that afterwards is expanded in a
conventional nozzle to generate thrust. Usuallig, type of propulsion is used to improve
the performance of high-thrust propulsion systeaieifical systems), where the electric
heater is used to further accelerate the propellAnt application of this type of
electrothermal propulsion is done with hydrazingh&ist velocities 0f3500my's and
specific impulses of 350 seconds are achiefle8A/SMART-1, 2007l] The specific
impulse of resistojets is limited, since the molacunass of the gases used is significantly

high and the maximum surface temperature sustanalimited.

Arcjets use an electric arc to heat the propeltefore it expands in the nozzle. This type
of propulsion can achieve core arc temperaturesd@ffO0 to 20000 K and exhaust
velocities of5000 to 6000ny s (I, from 500 to 600 seconds) at efficiencies4®P6 with

catalytically decomposed hydrazifESA/SMART-1, 2007l]Portions of the propellant
mass flow at these high temperatures cannot beomtact with the engine component

walls.

b) Electromagnetic Propulsion

This system uses orthogonal electric and magnétldsf to ionize propellant particles,

accelerating them. There are some developed anerdenvtloped techniques like pulsed
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plasma thrusters and magnetoplasmadynamic thru@#®® thrustersJESA/SMART-1,
20071].

Pulsed plasma thrusters with solid propellant @edufor low power propulsion systems.
They have a self-induced magnetic field that aft@ving in an electric field, a Lorentz
body force is created, accelerating the plasmas Khd of thrusters does not produce

enough thrust to be a primary propulsion systethemear future.

MPD thrusters work at high power levels (kilowdtisnegawatts) and generate high thrust
with reasonable specific impulse. Because theywoesmuch power and they are still in
development phase, MPD thrusters are not considegtmary propulsion system in the

near future.

c) Electrostatic Propulsion

In this system, the ionised propellant is accedstaby an electric field. The main
techniques are field effect electrostatic propugiBEEP), colloidal thrusters and gridded
ion accelerators (ion enginlgSA/SMART-1, 2007I]

FEEP applies a strong electric fieldlG*°V/m) to extract ions from an ionisable metal.
Using an extraction voltage dfokV, exhaust velocities of 100069 s (specific impulse

of 10000 seconds) are achievalsSA/SMART-1, 2007I]FEEP thrusters using caesium

as propellant have very low thrust levels and thpes unit powerluN to 5mN on earth

and 454N /W, respectively. Nowadays, FEEP is not operational b the low thrust-to-

power ratio and contamination due to caesium. Tpeyvide insufficient thrust to be

considered using in a primary propulsion system.

Colloidal thrusters achieve exhaust velocities @0y s (I, of 1000 seconds) on earth

[ESA/SMART-1, 2007I] Some problems, like the requirement of high aedion
voltages and high beam divergence, reflect thefficgant maturity of this kind of

propulsion system.
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lon thrusters can achieve exhaust velocities 008@§ s (1., of 3000 seconds) and they
are being used since the mid nineteen-ninetiessfation keeping of geostationary
satellites|[ESA/SMART-1, 2007I]NASA’s Deep Space 1 (DS1) and MUSES-C already

demonstrated this technology for interplanetarysioiss.

3.3.3. Examples of Missions using Electric Propulsi on

Electric propulsion systems have proven its woghfin missions like DS1 launched in
1998 by NASA, SMART-1 launched in 2003 by ESA and$ES-C launched in 2003 by
JAXA. Before these missions, electric propulsiosteyns were mainly used for attitude
control and orbit correction of space vehicles.tdble 3.2, values for parameters like
specific impulse, power and thrust are presented®1, SMART-1 and for MUSES-C

propulsion system.

Characteristics SMART-1 MUSES-C Deep Space 1
Propellant Xenon Xenon Xenon
Thrust (N) 6.8x 107 5.12x 10° - 23.6¢ 10° 9.2x 107

Specific Impulse (s) 1640 2687-3011 1900-3200
Propellant consumed (kg) 82 61.9 74
Power source (W) 462-1190 310-1158 2300

Table 3.2: Propulsion system characteristics of SMRT-1 [ESA/SMART-1, 20071], MUSES-C
[Komuraki, 2003] and Deep Space INASA/JPL, 2002] [Rayman et al, 1999]

DS1[Rayman et al, 1999 ested twelve advanced, high-risk technologiespace and at
the end of its mission, it encountered the cometdy, presenting images and data from
this comet. This satellite was the first one to asd€electrostatic) ion propulsion system as

the primary propulsion system.
SMART-1[ESA/SMART-1, 2007 Nvas used to test its electric propulsion systechather

deep-space technologies, while observing the Mblatl. Effect thrusters, which are both

electrostatic and electromagnetic propulsion systemre implemented in this spacecratft.
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MUSES-C[Kuninaka et al, 2007did a successful rendezvous with the asteroidalt@k

using ion engines in its two year heliocentrichlig

Most recently, BepiColombfESA/BepiColombo, 2008ill be launched in 2013 and it
will take approximately six years to arrive at Memg. BepiColombo will perform a lunar
flyby to reach the interplanetary trajectory. Aiseutrajectory by ion propulsion stage - the
Solar Electric Propulsion Module (SEPM), up to O8hrust, with five gravity assists:
Earth, Venus (2x) and Mercury (2x) - will be accdistped. This mission will be an ESA
mission in cooperation with Japan. The mission wolhsist of two separate spacecraft that
will orbit the planet. ESA is building one of theam spacecraft, the Mercury Planetary
Orbiter (MPO), and the Japanese space agency I8X8/Will contribute the other, the
Mercury Magnetospheric Orbiter (MMQ@ESA/BepiColombo, 2008]
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4. Non-perturbed Transfer Orbits

In this chapter, simple analytical concepts of speaft trajectories that leave the
gravitational attraction of a body to be capturgdte gravitational field of another body
will be studied. This chapter is an introductionatanore complex study of interplanetary
missions that will be described in chapter 5, wharaddition to the gravitational force
there is a thrust force from an electric propulssystem. However, in this chapter, only

gravitational forces from the main bodies will mnsidered.

Interplanetary missions are considered when a spaiteescapes from a planet’'s gravity
attraction, like the Earth’s, and it moves in a énjgolic trajectory with respect to the
planet. The vehicle will enter in a heliocentridoibrand it will approximate the target
planet also with a hyperbolic trajectory with resp® this planet. Different missions can

be categorized, depending on the approach to thettplanefCornelisse et al., 1979]

» Flyby mission — the spacecraft will pass the tangleinet at a relatively small
distance;

» Orbiter mission — the spacecraft will need a prsjoum engine to decelerate and
enter an orbit around the planet;

» Lander mission — the final velocity of the spacécwéth respect to the planet’s

surface will have to be reduced to a very smalleal

These interplanetary missions are divided in thpkases of two-body Keplerian orbits,
around different gravity fields in each phase. trithe spacecraft will be under the
influence of the departure or initial planet’s gtgvield (section 4.2), from where it is
going to escape after the first impulsive shot.oBe¢ after escaping, it will move in a
heliocentric motion, i.e., under the influence ain$S gravity field (section 4.1). Finally,
the spacecraft will perform a planetocentric odtditdestination, so it will be under the
influence of the target planet’s gravity field (8en 4.2). The transition between phases is
done using the concept of sphere of influenceadlreexplained in section 1.3. When the

spacecraft is out of the sphere of influence ofdéparture or target planet, the Sun is the
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main gravitational body, therefore the gravitatiomdluence from other planets is not

consideredCornelisse et al., 1979]

The patched-conic approximation will be used toculate analytically the heliocentric
departure and arrival velocities in terms of di@ttand magnitude. The three phases will

be discussed in detail in the following sections.

4.1. Heliocentric Phase

Figure 4.1 illustrates a general heliocentric tfanserbit. The initial and final orbits of the

starting and arriving planets are assumed to loeilair. This is a realistic assumption since
most of the celestial bodies orbiting the Sun, veidteption of Mercury and Pluto, have
nearly circular orbits around it. This heliocenttiansfer orbit takes the vehicle from the

sphere of influence of the departure planet testiteere of influence of the arriving planet.

Departure Planet's orbit

Figure 4.1: Heliocentric transfer orbit [Cornelisse et al., 1979]

From figure 4.1, the initial and the final orbidias can be computed through:
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_ a(l—ez)

1+ecosf,

_ a(l—ez)

=— / (4.1)
1+ecosf,

1 2

Parameters) and g, are the true anomaly at the point where the teartit intersects

the initial and the final orbit, respectively (figu4.1). The flight path anglg is the angle

between the local horizon and the velocity vecltre parameters and e are the semi-
major axis and the eccentricity of the transferitprbespectively, and both can be

determined through the equations (4.1), knowéhg 6, and the departure and the target

planets ¢, andr,, respectively).

The anglesy, and y, are the flight path angles for the initial andafiepochs, respectively

(figure 4.1). These two angles are computed usingaions H? = p/x, (1.6) and the
equation of the angular momentum with a certaightli path angle:H =rV cosy,

[Wakker, 2005I]

a(l— ez)

a(l—ez)

N 9

cosy, = andcosy, =

The velocitiesV, andV, are the heliocentric departure and arrival veiesitespectively
that can be calculated through equation (1.3).graeitational parametes considered in

equation (4.2) is that of the Sun.

The travel time of the heliocentric transfer odan be determined through:

TOF=t, -t, (4.3)

The variablest, andt, are the time since the pericentre passage ofransfer orbit at

the departure point (with radius) and at the arrival point (with radius), respectively.

These two times can be determined using the equaticKepler[Montenbruck et al.,
2005]:
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E-esinE= M= r( t-7) (4.4)

ParameteM is called the mean anomaly and paramé&eis the eccentric anomaly, and

this last parameter is related to the true anomsilyg the equatiofWakker, 2005Ij

tang - [ire tanE (4.5)
2 1-e 2

In this way, assuming =0, t, andt, are calculated through:

t, =\/§(E[1 - esin Erl) andt, :\/%(E[Z —esin Erz) (4.6)

ParametersEE, and E_ are given by equation (4.5).

From figure 4.1, it is possible to calculate the@drpolic excess velocities at the departure

and arrival planetfCornelisse et al., 1979]

V., =W+ V7 -2\, cosy, w

V,, = VZ+V?-2\,V cosy,

Parametel, is the heliocentric departure planet’s velocitg & is the heliocentric target

planet’s velocity.

Hohmann transfer orbits are transfer trajectoridsere the propellant consumption is
minimal. As already derived from Tsiolkowski’s law chapter 3, the minimal propellant
consumption requires that the value for ihé has to be minimal. These transfer orbits
are defined by an elliptical orbit (figure 4.2) thmuches the initial circular orbit at
pericentre and touches the final circular orbigadcentre. It is assumed that both circular

orbits are coplanar. A coplanar problem assumpgsaam realistic assumption, because the
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difference between inclinations of the Solar Syspamets is significantly small, with the

exception of Mercury and Pluto (7° and 17.14°, eespely). Both impulse velocity
vectors, AV, and AV,, are tangential to the initial and final orbitspectively. It is

important to mention that these impulsive shotsngeathe velocity of the spacecraft

instantaneously, leaving the position of the spadeat that instant unchanged. The
circular velocities of the initial and final orbjts, andV.,, are given by./u/r wherer

parameter is substituted Iy andr,, respectively.

,/I-)ireciion of Motion

Initial Orbit

Hohmann Transfer Ellipse
Final Orbit

Figure 4.2: Hohmann Transfer Orbit [Wertz, 2001]

The Hohmann transfer orbit is considered when patara )y, and y, are zero. In this

situation, the TOF can be computed throptakker, 2005l1]

a3

TOF =71,|= (4.8)
U

4.2. Planetocentric Phases

Consider a spacecraft moving in a circular parkambit around a certain planet. An
impulsive shot, using chemical propulsion will kerformed and the spacecraft will escape
the gravity field of this planet and continue tovaan a hyperbolic orbit. This impulsive

shot is most efficient if it is implemented tangaty to the parking orbit and where the
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orbital velocity is maximuniCornelisse et al., 1979]The velocity change is given by
[Cornelisse et al., 1979]

AV, =V, -V, = [PHagp o B (4.9)
yperbolic circular rCl 1 rCl

In the same way, the impulsive shot needed to deerdhe spacecraft’'s hyperbolic

velocity to the target circular velocity is given fCornelisse et al., 1979]

AV, :V2h -V, = /%+ \43 - ’ﬁ (4.10)
yperbolic circular r 2 r
C2 C2

The excess hyperbolic velocities are computed usipgations (4.7). Finally, the total

impulsive shotAV, can be computed by addidy/, and AV, :
AV, = AV, +AV, (4.11)

In table 4.1, values for the time of flight (TOR)e hyperbolic velocitie¥, andV, as well
as the hyperbolic excess velocitiég andV, are presented for the Hohmann transfer
orbit. The impulse velocitieAV, and AV, are also represented and they were computed at

1.1 radius distance from the planet (i.e., the slehstarts and ends up in a circular parking

orbit at an altitude of0.1(#,,,.,). These values are listed for the Earth as thertdepa

planet.
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Target| Vo | Vo* | V. V, |V, | av, | AV, | AV, | TOF
Body | Tknys] | [knys] | [knys] | [knys] | [knys] | [knys] | [knys] | [knys] |[veard

Mercury | 22.25| -7.53| 47.87] 5749 961 5.52 757 @30 0.289
Venus | 27.29| -250| 3502 37.73 271 3.41 3.26 6.67 .4000
Mars | 32.73| 295| 2413 2148 265  35P 2.09 561 709.
Jupiter | 38.58| 879 13.08 7.41 564 628 1691 @3|1 2733
Saturn | 40.07| 10.29| 965 420 544 728 1084  17/66.051
Uranus | 41.07| 11.28|  6.80 214  -46p  7.98 6.48  14|486.050

Neptune| 41.44| 11.65  5.43 13§ 406  8.26 693  15/180.635
Pluo | 41.60 | 11.81| 474 1.05| -369  8.38 305 11425568
Escape

fromthe | 4515 | 1234 : 0 ; 8.77 0 8.75 -
Solar

System

Table 4.1: The TOF and the total impulse velocitieat the departure planet and at the target planet
with the Earth as departure planet (1.1 radius disaince from the planet). * the velocity of the Earthis
considered circular and equal to 29.7&m/s[Cornelisse et al., 1979]

From table 4.1, the values of the TOF are largeytser transfer orbits may be considered.

Nevertheless, the Hohmann transfer orbit offers yhaedstick for the minimum total

impulsive velocity required in a transfer trajegtor
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5. Low-Thrust Trajectories

In chapter 4, interplanetary missions were analyssthg a coasting phase in the
heliocentric phase characterized by a Kepleriaiit.oltp this chapter a more complicated
trajectory will be studied, involving low-thrust ggulsion during the heliocentric phase.
High-thrust propulsion is still needed to escapedbparture planet, because otherwise, the
mission would take too long just to leave the splarinfluence of the planet. In this way,
as already mentioned in chapter 4, the spaceciifbevlaunched into a circular parking
orbit and it will escape from the departure plamghg high-thrust propulsion. In table 5.1,

four different types of transfer orbits are shown.

Orbit Typical AV i
3 AT Typical
Transfer Type Type Acceleration transfer time
High Energy |Eliptical of Higher than lower than the Hohmann's
| hyperbolic 10g Hohmann's transfer period
Hohmann -
minimum Holmann < , .
eneray transfer lto5g Equations 4.9 4.10 Equation 4.8
high thrust
Low Thryst |Hohmann 0.02to005g Same as 6 to 8 times the
. transfer = ) .
Chemical segments Hohmann Hohmann's period
. Difference between
Electric " o
propulsion Spiral transfer 0.0001 to \-'elol cities at the final 120 to 240 times the
0.001g orbit and at the Hohmann's period
- initial orbit

Table 5.1: Four different types of transfer orbits[Wertz, 2001]

In a mission from one celestial body to anothee spacecraft is unlikely to thrust the
entire period of time. In interplanetary flight®asting periods are usually switched with
thrusting periods. However, only low-thrust trajgeés using continuous thrust will be

discussed in this chapter.
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In the past, the conical sections were considepedd the most suitable analytical
representation for the motion of spacecraft. M@eently, a shape-based study was made
in order to find the best analytical representatimm low-thrust trajectories. The
exponential sinusoid was introduced as a shapetmpérepresenting these trajectories in
[Petropoulos et al., 1999[This shape was further studied by I1flzzo, 2006]who used a
different approach in order to obtain an exponérsilausoid that respects the initial and
final positions and time of flight (TOF) specifieg the user. In order to implement this
kind of shape-based method, the mathematical fomctiat describes the trajectory of the
spacecraft — e.g. exponential sinusoid used byopetiios and Izzo - will have to be
defined. From this mathematical expression, theagoms for the thrust acceleration, the
thrust angle, the radial and tangential velocitas be derived using the equations of
motion of a spacecraft. For a certain exponentralsoid and giving the TOF and initial
and final positions of the thrust arc as input,\th&ies for the total excess velocity and the

fuel mass consumption during the heliocentric pltasebe computed.

In section 5.1, basic notions of low-thrust trapees are addressed. In section 5.2 and 5.3,
the geometric and the dynamic properties regardintpw-thrust problem using the
exponential sinusoid shape will be given for a gahease and for the tangential case,
respectively. Also in this chapter, two approachese done by[Petropoulos and
Longuski, 2004Jand another done Hyzzo, 2006]to compute the position, the velocity
and the acceleration of the spacecraft with timk lvé discussed in sections 5.4 and 5.5,

respectively.

5.1. Basic Equations of Motion for Low-Thrust Traje  ctories

Equation (1.1) describes the motion of a spacearader the influence of the gravity field
of the main body. In low-thrust trajectories anotli@ce has to be taken into account
[Wakker, 2005I1]

r—/”;r— +a (5.1)

f=-
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Parametera is the thrust acceleration vector. The instantaseate of change of the

specific total energy can be computed by multigdyeguation (5.1) by the velocity of the
spacecrafi/ [Wakker, 2005I1]

d4¢ _gm (5.2)
dt

The rate of change of the total orbital energyqnation (5.2) reaches a maximum value if
the thrust vector is tangential to the trajectorytangential steering. However, from
equation (5.2), it should not be concluded thattdmgential thrust profile is the optimum
one since the minimal total propellant consumptismot necessarily associated with
constant instantaneous maximal rate of changeeatfotfal orbital energfwakker, 2005I1]

In fact, the computation of the optimal thrust jieofs a difficult topic. The optimal thrust
profile will depend on the planets that are beingsidered for the flight, the mass of the
spacecraft, the thrust magnitude, among others.edew from all steering programs that
can be considered, the radial thrusting case cabaotonsidered an attractive thrust
profile. Compared with the tangential thrust pmefiit yields longer flight times and higher

propellant consumption in an interplanetary misgidiakker, 2005I1]

5.2. Exponential Sinusoid — Geometry and Dynamics

In this section, the geometric and dynamic propsertf the exponential sinusoid in terms
of representation for low-thrust trajectories atlganade in[Petropoulos and Longuski,

2004] will be presented. The radius equation of the egptal sinusoid is given by:
r= koeq€+klsin( kG+9) (53)

Using this representation, a large variety of skagen be drawn and some examples are

represented in figure 5.1.
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Figure 5.1: Shapes that can be represented by anponential sinusoid[Petropoulos et al., 1999]

The use of five constant parameteks, &, k,, g and ¢) allows a considerably flexibility in

the geometry described by equation (5.3). Eachnpeter has a different impact on the

shape of the exponential sinusoid. Parametedenotes the difference between a pure
exponential sinusoidg(=0) and a more flexible oneg® 0). Parametery is called the
phase angle and it controls the orientation ofdkponential sinusoid in the plane. The

quantity k, is the scaling factor and it controls the absotatege of the pericentre and the
apocentre. Parametdq is called the dynamic range and it controls th rlaetween the
apocentre and the pericentre distance. Assumia@, this ratio can be deduced through
equation (5.3) and it is given by'a/rp =e?: . Finally, the quantityk, is the winding
parameter and it is associated with the numbeewslutions of the spiral: the smallés,

the more revolutions the spacecraft will performonirthe pericentre to the apocentre and
vice-versa. The number of revolutions (it can disoa fraction of a revolution) from the

pericentre to the apocentre can be deduced fromtiequ(5.3) and it is given by:
N,.. =1/(2k,) (5.4)

Two examples of the effect of the winding paramddeare represented in figure 5.2. Note
that whenk; is large, i.e., when the ratio between the apoeend the pericentre is large,

the parametek, is usually small, because many revolutions areessary to reach the
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apocentre. On the other hand, whin is large (few or none complete revolutions),

parameterk, must be small, since the dynamic range is alsdlsma

! rﬁ\ /f
/J J/

(a)
Figure 5.2: Example of exponential sinusoid shapdsom pericentre to apocentre usingk, = 0.5 and (a)

k, =2/3 and (b) k, = 2/11 [Petropoulos and Longuski, 2004]

Now, this shape will be applied to the equationsnudtion of a spacecraft that are

expressed in the radial and tangential directiespectively byPetropoulos et al, 1999]

¥ —rg*+ ﬁzasma

re (5.5)
1d/., U

(r 9) acosq - X@+r@=a co®r
r dt
The first and second time-derivativesraff and i, are given by:
=0(a+kko)r
(5.6)

r=(6(a+kk0)+6*(ar kk§ -6 k§ b

Variables s and ¢ stand forsin(k,0+¢) and cos(k,6+¢), respectively. In equation

(5.5), the magnitude of the thrust acceleratdonvas already introduced in section 5.1 in

equation (5.1), whilex is the thrust angle. These two parameters aresepted in figure
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5.2b. The flight path anglg is also represented in figure 5.2(b) and it isragf using the
first equation in (5.6), by:

_ dr/dt

g 9THe (5.7)

any

At this point five equations ((5.3), (5.5) and (5.®&ith seven unknown(sr,r‘,r“,é’,éa ,a)
are presented, wit or t as independent variables. So, two more equati@aeeded to
make the system determinable. Using the four egmstin (5.5) and (5.6) already

described, the equation for the rate of the polaglead can be calculated through
[Petropoulos et al., 1999]

» [ M )a,cosa tary—a, simr+ |
92_(r_3jao e % (5.8)
y+kk,s+1

All the derivation steps used in this expressiandone in appendix A. Note that equation

(5.8) allows retrograde motion by taking the negasquare root of the right-hand side to
obtain #<0. However, for purposes of convenience in discussimly the prograde

motion will be examined here. Parametgris the thrust acceleration normalised by the

local gravitational acceleration:
a,=a— (5.9

Assuming a constant value feg, the magnitude of the thrust accelerateonvill decrease

monotonically with 1/r?. This is a good approximation for significant gaxf the

trajectory when solar-powered propulsion systerasuaedPetropoulos et al., 2004]

Knowing & through equation (5.8), the expressions for theiatavelocity and the

tangential velocity can be derived:
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V, =1 =6(q+kkr

V,=ré=r (ﬁs)aocosaztary—ag simr +
r tan® y+kk,s+1

(5.10)

Note that it is only possible to calculag if parametersa, a, and r are known. The

thrust anglea can be computed by integrating the following etprafor ¢ [Petropoulos
et al., 1999]

d:{(tanyé?zrg/y— 2, cosp/)( tahy +k kZs+ )f—
~(a,cosa tary-a, sim + )l(kikzc— 2tayrlg|§§ (5.11)
—aolqkﬁscosa(taﬁy+ kK s )}6’/(( g simr tap+ 3@ cms)( tap+ kk 8 ))

Equation (5.11) is derived in appendix A. Note thi@ expressions fod and ¢ are

coupled, intractable, first-order differential etjoas. For this reason, numerical
integration is necessary to find values #drand a, and consequently to determine the
position and the velocity of the spacecraft. Finalthe TOF can be computed by

integrating equation (5.8):

1

- i 2
TOFzr’fldezr" (ﬁsjaocos"zta”’ & ST 3 e (5.12)
g8 6 a{\r tan® y+kkys+1

In equation (5.12), parameté} is the initial polar angle and parame#r is the final

polar angle for the thrust arc.

5.3. Exponential Sinusoid using Tangential Thrust

In order to avoid numerical integration that isuiegd to find & and a (as mentioned in
the end of section 5.2), a special case of thrgssrassumed: the tangential thrust profile,
allowing simplifications in equation (5.8). The dist vector can be along or against the

velocity vector @ =y+nm, with n=0,1, respectively). In this special case, due to
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simplifications in equation (5.8), the dynamic pagder a, can be analytically computed.

Parameters, and 8” are given bjPetropoulos and Longuski, 2004]

o= (rﬂsj tan? y+1k1k225+ 1 (.13)
_ (-1)" tany 1 _ K(1 Xy (5.14)
2cosy | taiy+kkis+ 1 (tar? y+kkZs+ ])2
Finally, the expression for the TOF can be simgtifand it is given by:
TOF:j: Jri(tart y+kpkis+ 3 /u o (5.15)

As for the equations in section 5.2, both equati@®43) and (5.14) are derived in
appendix A. From these equations, the rate of tlarpangle, the normalised thrust

accelerationa, and consequently the radial and tangential veésciire calculated as a

function of the polar angl@ only (the geometric parameters are constant, lidjet fpath
angle andr depend only on the geometric parameters anddofequations (5.7) and
(5.3))). As equation (5.8), equation (5.13) allowsretrograde motion by taking the

negative square root of the right hand-side, obitgi@ <0.

Note thaté” can become negative when the denominaof y+k kZs+ 1< C (equation

(5.13)). Also, equation (5.13) fod* and equation (5.14) for the normalised thrust

accelerationa, can present singularities when the denomingaf y+ k kZs+ 1 becomes
zero. Considering parameteks and k, positive, this situation will happen wheqk’
approaches unity from below, at the pericentre wtesr -1 (consideringk,8+@=—71/2
and g=0). From equation (5.13), it should be noticed tBatcan be less than zero for

k k? >1 in regions near the pericentre of the trajectbrythese situations, it is not possible

to represent low-thrust trajectories using the evgmbial sinusoid with a tangential thrust

profile [Petropoulos and Longuski, 2004i.e. the physical problem cannot be satisfied
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using this specific shape and this thrust profdenbined. In this way, in order to avoid

singularities around the pericentre and situatiomere §° is negative, the following

condition shall be respect@@etropoulos and Longuski, 2004]

1-kk2>0 (5.16)

The condition described in equation (5.16) enstirasthe denominator of equation (5.13)
is always positive. For practical purposes, uppeits of 2 and 1 were chosen for the
geometric parametellg andk,, respectively, since the thrust levels becomeasueably
high when 1-k k? approaches zerfPetropoulos and Longuski, 2004Note that the
condition in equation (5.16) should always be resg whenk, is large (the apocentre is
much greater than the pericentre — large dynamigen k, must be small, i.e., many
revolutions around the central body are requirdd/éen the pericentre and the apocentre.
In opposition, whenk; is small (apocentre is not much greater than gvcentre), k,
must be large (not many revolutions are requir€dnsideringk, = 0.01, the spacecraft is

allowed to spiral up tab0 revolutions around the Sun between the pericesuick the
apocentre (equation (5.4)). This number of revohsgiis untenably high to be considered

in a real mission (due to TOF), therefore theradsreason to choose values kgf lower
than 0.01. By changing parametey, a velocity analysis through a comparison between

the exponential sinusoid velocity and the locatuar velocity can be made. For a many
revolution case (smak, ), the exponential sinusoid velocity is not mucfiedent from the

local circular velocity, specially in the apocenttad in the pericentre. In this case, a
launch from, or a rendezvous at, will be most éfit in these regions. On the other hand,

the exponential sinusoid velocity is significantipn-circular for large values of,, a

situation that favours gravity-assist.

From the analysis done in this section, althouginda@mn (5.16) is required, the
exponential sinusoid (tangential thrust profilejp @ used as an analytical representation
for low-thrust trajectories. Given the TOF and tingial and final conditions at the

departure and target planets, respectively, théa@uld be an exponential sinusoid,

53



Analytical Representations for Low-Thrust Traje@sr

characterized by the geometric parametkys,k,,q and ¢ that respect these initial

inputs. In the following two sections 5.4 and 5wwp different studies in how to find

feasible exponential sinusoids will be discussdt first procedure that will be described
(section 5.4) is the one used[Retropoulos and Longuski, 2004hile the second is the

one used iflzzo, 2006](section 5.5).

5.4. Procedure done by Petropoulos ' and Longuski ?

Consider the situation where the spacecraft’'s ¢tajg follows an exponential sinusoid

shape with a tangential thrust. The reference pianghich the motion of the spacecraft
occurs is called the low-thrust reference plane iamsl normal to the spacecraft’s initial

angular momentum vector. In a two-dimensional pFohlthis plane is the same as the
orbital plane of the initial and final planets. Hewer, in a three-dimensional problem,
since the angular momentum direction at the inilahet is different from the one at the
arrival planet (i.e., the target orbital plane does lie exactly in the same plane as the
initial planet) and exponential sinusoids are pplanar shapes, the trajectory of the
spacecraft will only be able to intersect the prigm of the target’s orbit onto the low-

thrust reference plane (figure 5.3). The motiothef spacecraft in the low-thrust reference
plane that is assumed to follow the exponentialsind is called the in-plane motion and it
will be discussed in section 5.4.1. In additiore #pacecraft will need an additional force

acting along or against the spacecraft's angulamemum a,, in order to meet the

target’s orbit (section 5.4.2) (see figure 5.3).

Senior member of the Engineering Staff, Navigatiad Mission Design section, Jet Propulsion Laboyato
2 professor, Purdue University, associate fellow AAI
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Vs Target planet

Low-thrust reference plane

Figure 5.3: Representation of the low-thrust referace plane and the out-of-plane additional forcea, ,

5.4.1. In-Plane Motion

In this section, the two-dimensional motion of #pacecraft that follows the exponential
sinusoid will be analysed. The equations for patans&?, a, and the TOF were already

presented in section 5.3 in equations (5.13), §5abdl (5.15), respectively. The condition

in equation (5.16) should be respected to avoiduarities around the pericentre and to

avoid 6% <0. After a brief analysis of the geometric parangterand k, in the end of
section 5.3, the interval of available values kgrcan be determined. In cases where the
outbound targets are considered, the minimum pwgecadiusr,,, is higher than the

current radiusr, (q=0), the range ok, values is limited tgPetropoulos and Longuski,

2004];

k22 < tan2 y_ 2<125 In( rr’r21in/rB) (517)
(ln(rmin/rB)

In cases of inbound targets, where the maximumepteg radiusr,,,, is less than the

current radius, the condition fde, is [Petropoulos and Longuski, 2004]

k2 < tan2 y+ 2<125 In( rB/rmax)
(In(rB/rmax))2

(5.18)
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These two equations are derived in appendix A.dy tmappen that the right-hand side of
equations (5.17) and (5.18) is negative and inghesses, the target cannot be reached

using the exponential sinusoid. Note that the patamk, continues to depend on the
limits for k, and on condition (5.16). For specific initial afital conditions, there is only
one k, value that corresponds to the TOF that was gigearainput. An analytic process
to find this specific value fok, is not available and the only way is to step tigiothe

range ofk, values and at each step compute the interseabion with the target projected

orbit. The TOF is calculated through equation (5.15

In [Petropoulos and Longuski, 2004he intersection points were found using a nucagri
root-finding technique. A step-size and step-dimectontrolled Newton method was

applied, with the goal of putting to zero the feliag expression:

d (6) :]/rt (gt:TOF ) _j/r (gt:TOF) (5.19)

The target’s orbit is assumed to be conic and & teabe projected onto the low-thrust

reference plane. The parametgis the projected radius for the target planet arehd

are the position of the spacecraft and the polajlearrespectively in the low-thrust
reference plane. It should be noticed that the rsevgadius is applied to simplify the
equation for the derivative required by the Newtogethod. The advantage is having faster

computations.

Now knowing the geometric parameters of the exptakersinusoid that yield the
necessary TOF, it is possible to compute the amotipropellant used during the low-
thrust flight and also the amount of propellant essary for the initial and the final
chemical impulsive shots at the departure and alrriplanets, respectively. The

computation of fuel consumptions will be explairtatkr in chapter 8.
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5.4.2. Out-of-Plane Motion

As already mentioned before in chapter 4, celebtdies in the Solar System orbit around
the Sun with different inclinations with respect tte ecliptic plane. In this section, a
method will be discussed to match the final posital the spacecraft with the target's
orbit. To reach the out-of-plane position of a &r(see figure 5.3) with respect to an in-
plane encounter at the same instant, an additifmmeé is necessarjPetropoulos and
Longuski, 200Q]

Bout = ao,outrﬂz (5.20)

As for the thrust acceleration, a,, also varies withl/r?, meaning that it decreases

according to the amount of solar energy available eertain distance from the Sun. The
in-plane components of the angular momentlamand h, act according t¢Petropoulos

and Longuski, 2000]

d_rL_~~ ra,,sin@
dé é

5.21
d_hyz _ra,, cosd (:21)
dé 6

The expressions (5.21) were derived under the gssmmthat the out-of-plane thrust
acceleration is considerably smaller than the ¢m#ional acceleration from the main body,
which is the Sun. In equations (5.21), the X-dimtts considered to be along the line
6 =0. Because the angular momentum components rengumifisantly small, the total
angular momentum is assumed to be equal to thefepiene component?d, as if a
was equal to zero. This means that the positiomovesf the spacecraft and the angular

momentum and also the velocity vector and the amgmlomentum are assumed to be
perpendicular, respectively:

Fh=0andVih=0 (5.22)
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Figure 5.4(a) illustrates the position of a spaaftan an out-of-plane case. Using figure

5.4(a) and the relations described in equation2{5.the out-of-plane angley, and the

velocity V, that is normal to the plane are respectively givgn

r, _ rhe+rh cosgh, + singh,

tang === = la = 5.23
qoout r r mz rm)ut rze ( )
~(V,h +V,h) h (sin6-tany co®)-h ( cof+ tap sh)
V, = = (5.24)
h, r
The velocities in X- and Y-direction are derivedrfr figure 5.4(b):
V, =-rgsing+r cod =(- sirf+ tay cad)ré (5.25)
V, =rfcosf+i sind=( cof+ tap sifi)rd '
Y| _
z| o
6 \; . ’
R > 7

e '
th - [ ?‘
r Y | \
[ ] | -

& ry ” '/ X
X /

=

—

(a) ®)

Figure 5.4: (a) Position of the spacecraft in theut-of plane motion, (b) velocity vector in the XY-gane

The out-of-plane angle,, and the velocity/, at the end of an out-of-plane thrust motion

from @ to 6, , are defined byPetropoulos and Longuski, 20Q00]
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tang,, :M(I y Sing; =1, cosﬁf) (5.26)
rf Hf
szw(lx(sinef—tany coﬁf)+ly( co8, + tam sﬁ;)) (5.27)

Fe

The quantitied, andl, in equations (5.26) and (5.27) are defined as:

_ 6 sin@

| =["3"%g

9; res& (5.28)
=" 2de

& ré

These integrals described in equations (5.28) aarddiermined numerically. Through

equation (5.26) and knowing the out-of-plane ang|le, a,,, can be computed at each

integration step. Afterwards, the out-of-plane eélp V, can be calculated through

equation (5.27).

It should be noticed that the effect of the ouptafne motion on the TOF was neglected.
The method described does not take into accountskeof the most satisfactory thrust
profile. Therefore, little consideration should beven to the out-of-plane thrust and
associated propellant value. AccordingRetropoulos and Longuski, 20Q0§his method
allows fast computations and it is increasingly wmate for smaller out-of-plane
excursions. Note that these analytical solutionty gmovide a starting point for full

numerical optimisations.

5.5. Procedure done by Izzo 3
Although quite successful from a numerical pointvadw, Petropoulos and Logunski's
work lacks of a generic discussion on the possgjbidf using the exponential sinusoid to

travel from a generic poinB, to another point,, given a certain TOF as an infi#zo,

% Research Fellow, Advanced Concepts Team, EurdPpace Research and Technology centre, The
Netherlands
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2006). 1zzo uses the same equations for the paraméteaad a, (equations (5.13) and

(5.14)). However, instead of using a numerical Hfteding technique to find intersection
points, followed by a step-size- and step-directiontrolled to match the target’'s orbit
with the spacecraft's trajectory (exponential soidy a multi-revolution Lambert’s
problem for exponential sinusoids using tangentimlisting is introduced. This new

procedure will be discussed below.

Target planet

Transfer plane

Figure 5.5: Representation of the transfer plane

Given the initial and final radir, andr,, i.e., the distances of the departure and arrival

planets from the Sun, respectively, and the trarssigle A@ (see figure 5.5), it is possible
to find all the exponential sinusoids, defined logwation (5.3) that link the two positions
for a given TOF, allowing multiple complete revabuts. In order to force the exponential

sinusoid to pass by poirfe and pointP,, the following geometric equations have to be

satisfied:

n=r(8)=k, exp(kl sin(k 4 + go))

r,=r (Hf ) :koexp(k1 sir(kzef +(p)) (5.29)

Parameter & is the initial polar angle and the final polar Bngs given by:

6, =9 +A8+2nN, where N is the number of complete revolutiondqrered before the
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spacecraft arrives at poim®,. Since the number of geometric parameters is avinsgher

than two, these two equations are not enough grmé@te the position of the spacecratft.

Note that the transfer plane where the spacecraftem (figure 5.5) is defined by two

vectors:T, andT, (from the Sun to the departure and arrival planetspectively) and it

differs from the low-thrust reference plane (setto4).

As already mentioned in section 5.2, the geomeparameters considered in the
exponential sinusoid ar&,, k, k,, g and ¢. In order to simplify the mathematical
expression of the exponential sinusoid, a zeroevalas assumed fay. So, instead of five
unknown geometric parameters, there are four. €aech space can be further reduced by
assuming the parametdt, fixed and given as an input. Therefore, all expoiad
sinusoids will be studied for a fixed value kf and three free parameteks, k, and ¢.
Finally, consideringd zero degrees, the geometric paramé&tecan be computed through

[1zz0,2006}

. In(r,/r,) +(tany,/k ;) sin(k £, ) +tan22y1 (5.30)
1—cos(k29f) ks

The parametey, is the flight path angle at the starting pointtloeé thrust arc. Equation

(5.30) is derived in appendix A. The sign kgf is known from the following expression

[1zzo,2006}

I / k H k ) -0.5
sign(ic) = Sig'{lkll n(r, rZ)IEt:;ZL 6:))sn”( 7 )(If_tazzylj } (5.31)

Since the assumptiofl = 0° was made, the phase angig(using equation (5.7)) is given

by:
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tany, =kk, cowp - @= arccc{%J (5.32)

Finally, the geometric parametdq, will be calculated through one of the following

geometric equations:

r, =k, exp(k, sing) < k,=r,/ exqfk, sip)

. . (5.33)
r, :koexp(k1 sw(kzé?f +¢)) = Kk, = r/ exé K, snﬁ (- +¢))
Note that from equation (5.32), the anglas always considered in the first two quadrants,
since considering the other two quadrants, it willly return the same exponential

sinusoid. The assumption regarding the initial palegled was necessary in order to find

analytical expressions fd¢ and ¢ that were not correlated.

In order to compute the exponential sinusoid, patams ); and k, are required. As
already said before, the geometric paramgjses fixed, but the initial flight path anglg

is considered a free parameter and the intervabhfes available can be calculated using
the constraint equation (section 5.3) already dised in[Petropoulos and Longuski,

2004], when tangential thrust is assumed:

kg <1

This condition can be rewritten in termstahy; [1zzo,2006}

tany, O( tary,,, ,tary,,, ) (5.34)
k.6 2(1- cok, @
tanylm :ﬁ - 1In i COI:—2 f i\/z ,WhereA=w—|n2 i (535)
M2 r, 2 k; p

Note that if A is negative, there is no shape that can repreékergpacecraft’'s trajectory

for the initial and final conditions that are beisgjected and for the parametgrthat was
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picked. The interval in equation (5.34) limits tbearch space for the free parameter

The derivation of equation (5.35) is done in appe/Ad

h 180

decreasing values of N

0 | | | | | . | |
-50 -40 -30 -20 -10 0 10 20 30 40
gamma‘l{degrees)

(@ (b)

Figure 5.6: (a) the TOF versus the initial flight @th angle y, for the class S, (1,1.5,7/ 2,N) and (b)
feasible exponential sinusoids for the clas§,, (1,2.5,77/ 2,9 [1zz0, 2006]

Given the geometry of a problem, i.e., r,, A8 and the number of complete revolutions
N, for Uk, , there is a class of feasible exponential sinsspassing through the poins
and B,, using the free parametgy represented b)ﬁKz(g, r,A8,N). As an example,
figure 5.6(a) illustrates the TOF versus the ihitight path angle at the starting point of
the thrust argy, for a family of exponential sinusoids charactetiby S),, (L1577 2,N,

whereN =0,1,...E. The TOF in figure 5.6(a) was computed by integgahumerically the
expression (5.13), in section 5.3. Also, in fig@é(b), some of the feasible exponential

sinusoids characterized I8,,(1,1.577/ 2,Q are illustrated.

For a given TOF, a simple numerical method can seduo find a solution for this
Lambert’'s problem for low-thrust trajectories. Tlsislution can be found for a particular

class of exponential sinusoid by locating the intersection between the TOF came

a horizontal line (figure 5.6 (a)). Using this medh the values for, can be found and
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consequently the geometric parametékg,kl,qa) that yield the desired TOF can be

obtained. Note that from figure 5.6(a), an asymetbehaviour in the TOF curve can be
observed, which leads to a conclusion: the lowghproblem using a pseudo-Lambert
method with the exponential sinusoid might not hawlution. Also, although the curve
illustrated in figure 5.6(a) is monotonous, accogdio[Corradini, 2007], this situation not

always happens. This means that two exponentiaksids that have different but the

sameS§,_ yield the equal TOF (see figure 5.7).

22

20 -

1 1 1 1 1
-20 -10 0 10 20 30 40 50 60
gammal({degrees)

Figure 5.7: TOF as function of y;, for the exponential sinusoidS, , ( 7/2,3), in an Earth-to-

Mars flight

rEarth’ rMars’

Izzo’s procedurdlzzo, 2006]is more generic and easier to use than the one dgn
Petropoulos and LongusKretropoulos and Longuski, 20Q4fFor this reason, a technique
related to the one developed by 1zzo will be apbf@ the other analytical representations

for low-thrust trajectories proposed in this masiesis.
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6. Candidate Shapes for Low-Thrust Trajectories

As already mentioned in chapters 3 and 5, elegtrapulsion has proven to be a very
interesting option for future interplanetary missoln chapter 5, expressions for the thrust
accelerationa, the thrust angler, the radial and tangential velocities and the Wadffe

derived for the exponential sinusoid. Also, thduahce of the geometric parameters of

this shape K, and k,) on the trajectory of the spacecraft and the @@t geometric

parameters in order to obtain feasible exponergialisoids (equation (5.34)) was

discussed.

In this chapter, a similar study will be done foref other shapes that were considered
feasible to represent low-thrust trajectories ia literature surveyPaulino, 2007] The
five shapes are: the Archimedean spiral, the Itgaic spiral, the Poinsot's spiral
(hyperbolic sine), Poinsot’s spiral (hyperbolic io@3 and the sinusoidal spiral. A similar
study to the one done with the exponential sinugoitizzo, 2006]will be made for each
of the five shapes. Other shapes were addressén iliterature survejPaulino, 2007]
However, since these shapes cannot spiral usintipteutevolutions, they were discarded

and they are not going to be mentioned in this enakesis.

In section 6.1, a brief introduction about the sfmmhosen in the literature survey
[Paulino, 2007]will be given. In section 6.2, the reasoning used@ompute the time of

flight (TOF), the excess velocities and the thrasteleration vector for different thrust
profiles will be shown. An analysis regarding silagities and constraint conditions will

be done in sections 6.3 and 6.4. This analysimjmitant in order to obtain feasible results
and save computation time during the sensitivitglgsis of the shapes’ performance in
chapter 7 and during the optimisation procedurehapter 8. Finally, a summary of the

constraint conditions will be given in section 6.5.

6.1. Radius Equations and Geometric Parameters

In this section, geometric properties of the fiveyses besides the exponential sinusoid

chosen in the literature survey will be discussbd: Archimedean spiral, the logarithmic
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spiral, the Poinsot’s spiral (hyperbolic sine), iait’'s spiral (hyperbolic cosine) and the

sinusoidal spiral.

a) Archimedean spiral
The Archimedean spirals are defined by the equéltiawrence, 1972]
r"=a"g (6.1)
Parametera is a scaling factor and parameter defines the spiral shape. These two
parameters are called geometric parameters. Sprxgak of Archimedean spirals are: the

Archimedes’ spiral (n=1), the Fermat's spiralng=2), the hyperbolic spiralri=-1)

and the lituus ih=-2). These spirals are represented in figure 6.1.

Figure 6.1: The Archimedes'’s spiral (green), the Fenat’s spiral (blue), the hyperbolic spiral (orange
and the lituus (red) [Weisstein, 2007]

Equation (6.1) only has two geometric parametedsthase two parameters can easily be
computed if the initial and final radii are known.order to obtain more than one shape for
certain initial and final conditions, equation (6\ill be changed in order to have three
geometric parameters instead of two. In this waytleer constant can be added to
equation (6.1) as a quantity that translates tiraldgp the radial direction, but also changes
the ratio between the apocentre and pericentré fadhis way, one of the shape equations

that will be analysed in order to describe a lovsh trajectory in this master thesis is:
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™ =k,8+k, (6.2)

The shape represented by equation (6.2) is nataine as presented[irawrence, 1972]
The reader should take this into account duringémeainder of the thesis, since from this

point on equation (6.2) will be referred to theimsdequation of the Archimedean spiral.

b) Logarithmic spiral

The logarithmic spiral is also known as the equidaigspiral. The equation that represents

the logarithmic spiral shapelisawrence, 1972]

r =ae™ (6.3)

Parameterm is a winding quantity, associated with the numbgrevolutions that the
shape can perform before reaching the target anté a scaling factor. Figure 6.2
illustrates a logarithmic spiral. Initially, thishape was studied ifPetropoulos et al.,
1999] in order to evaluate if it could represent a felesoption for the representation of
low-thrust trajectories. According f@etropoulos et al., 1999]the TOF and the excess
velocity performance given by the logarithmic spghould be improved. For this reason,
since the exponential sinusoid was also analysddtamowed better resulfRetropoulos

et al., 1999] the logarithmic spiral was discarded.

Figure 6.2: Logarithmic spiral [Weisstein, 2007]
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Because only two geometric parameters were corgidarequation (6.3), in the literature
survey[Paulino, 2007]this equation was modified by introducing a newstant. In this

way, another parameter was added to equation (&.3)onstantk, that, like for the

Archimedean spiral, translates the shape in thelrddection, but also changes the ratio
between the pericentre and the apocentre. In this & new radius equation can be given

as:
=k + (6.4)

From this point on, equation (6.4) will be refertedhe radius equation of the logarithmic

spiral.
c) Poinsot’s spirals
There are two Poinsot’s spirals and their polaratigns are defined gkawrence, 1972]

r,cosh(md) = a (6.5)
r,sinh(md) = a '

Parametera is a scaling factor and parametar defines the shape of the spiral. Figure
6.3(a) shows the Poinsot’s spiral (hyperbolic simd)ile figure 6.3(b) shows the Poinsot’s
spiral (hyperbolic cosine). The Poinsot’s spiralsadéed in equation (6.5) with the

hyperbolic sine has a singularity éh=0°. To avoid the singularity and using the fact that

only positive values o are considered, this expression can be changed to:
r,sinh(m(6+¢))=a (6.6)

The variableg is a phase angle that is considered positive. tifqu#6.6) and the first
equation in (6.5) can also be changed by addingnagonstank; that translates the shape

in the radial direction, but also changes the ra&tween the pericentre and the apocentre

radii. The equations that will be used in this reasftesis are:
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_kl

r =k, (sinh(m(8+4))) (6.7)

r =k, (cosh(m&’))_kl (6.8)

From this point on, equation (6.7) and (6.8) wél teferred to as the radius equation of the

Poinsot’s spiral (hyperbolic sine) and the Poirsepiral (hyperbolic cosine), respectively.

|

( | | /
\‘x..__ __I-\_‘j_“{f/___,/

(a) (b)

Figure 6.3: (a) The Poinsot’s spiral (hyperbolic sie) and the (b)Poinsot’s spiral (hyperbolic cosine)
[Weisstein, 2007]

d) Sinusoidal spiral
The sinusoidal spiral shape is expressed by equiatavrence, 1972]
r™ =a™cos(my) (6.9)

Parametera is a scaling factor and parametardefines the shape of the spiral. Equation
(6.9) can represent many shapes: the Cayley’'sts@xte1/3), the cardioid (h=1/2), the

lemniscate of Bernoullifn=2), among others. Figure 6.4 shows these three shhpé

are all closed curves.
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n=1/2
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Figure 6.4: The Cayley’s sextet (n=1/3), the cardi@ (n=1/2) and the lemniscate of Bernoulli (n=2)
[Weisstein, 2007]

Equation (6.9) can be slightly modified to increésdlexibility by adding a new constant

k,:
r = (ko cos(mg) + k)" (6.10)

Parametem is a winding parameter that controls the numbeewblutions, parametéy,
controls the ratio between the apocentre and thieegugre radii, while parametek,

controls the shape. Figure 6.5 illustrates onehefshapes described by equation (6.10).
The sinusoidal spiral is a closed curve that spicaitwards and after a certain number of
revolutions, it spirals inwards until it reache® tsame initial position. This shape could

represent the trajectory of a spacecraft that emeosi a certain planet and then returns to
its departure planet. Although it is a closed shape sinusoidal spiral is a valid option to

represent low-thrust trajectories in this thesisce it can easily spiral many times, it is

practically tangential to the initial and final @gand it does not present significant shape
variations during a revolution. Of course, only théwards spiral part of the shape will be

considered for outward planets and only the inwgpdal part will be considered for

missions to inner planets.
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Figure 6.5: The sinusoidal spiral

6.2. Implementation

In this section, a description of the procedurd thas used in this master thesis in the
sensitivity analysis of the performance of the Bdidate shapes to represent low-thrust
trajectories (chapter 7) will be made. The aimho$ sensitivity analysis (chapter 7) is to
understand the influence of the geometric parameiEeach shape in the outputs of the

TOF, the excess velocities and the thrust acceédarat

In this analysis, a two-dimensional problem was sutered, i.e., the spacecraft, the
departure and target planets orbit are in the gaaree (coplanar). This assumption and the
assumption that the planets move in circular orbiése made in order to simplify the
problem (without jeopardizing conclusions about heashape’s performance) and
consequently gain in computation time. Therefohe, ¢phemeris of the planets as in a

three-dimensional case was not taken into account.

Consider figure 5.5 in chapter 5 to illustrateandr, (the initial and the final positions of
the spacecraft, respectively) in a two-dimensiaazade. In the analysis done in chapter 7,

the two-dimensional vectar will be considered fixed and the transfer anglé will be
given as an input. Knowing the transfer angle, the-dimensional vectorr, can be

computed.
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The radius expressions for these shapes were gleadduced in section 6.1 and they are

summarized below:

Archimedean spiralr = (k,8+k, )" K =(Ky, ki, m)
Logarithmic spiral:r =k, ™ + k K =(ky, k, m)
Poinsot’s spiral (hyperbolic sine):=k, (sinh(m(6?+¢)))_k1 K =(ky, k, mg)
Poinsot’s spiral (hyperbolic cosina)=k, (cosr(mé?))_kl K =(ky, k, m)
Sinusoidal spiralr = (k, cos(md) + kl)]/m K =(ky, k, m)

Vector K represents the geometric parameters for each shapediher is the distance
of the spacecraft with respect to the Sun &nid the polar angle, measured with respect to

an arbitrary reference line. As already said in secti@ng is a parameter that was added
in the Poinsot’s spiral (hyperbolic sine) radius equationdgqgn (6.7)) in order to prevent

the term inside thesinh( ) from becoming zero, otherwise becomeswo. From all five

radius equations, vectdK contains four parameters for the Poinsot’s spiral €nyplic

sine), while for the other four shapes only three parars@re required to compute

The objective of this master thesis was not only to attetmpfind other analytical
representations, besides the exponential sinusoid usiriqwoms tangential thrust that
could have a better performance in low-thrust trajectofibss master thesis purpose is
also to analyse different thrust profiles and verify ié ttangential one assumed in
[Petropoulos and Longuski, 2004hd in[lzzo, 2006]is the one that should be considered
as a first guess for a low-thrust mission generator. Du time constraint, only three
cases of thrust profiles were analysed for the fivapehl presented in section 6.1 and the
exponential sinusoid: (1) “acceleration inversely sqliam thrust profile where the

magnitude of the thrust acceleration monotonically deeseagith the square of the
distance to the Suna=a, u/r?, where a, is the thrust acceleration normalised by the

local gravitational acceleration (it is non-dimensionald atonstant); (2) “constant

acceleration”, a thrust profile where the magnitude efttirust acceleration is constant:

72



Analytical Representations for Low-Thrust Traje@sr

a:aoy/rf (r, is the heliocentric radius at the starting point of the thrus), &3)

“tangential” thrust profile that was already studiedRetropoulos and Longuski, 2004]
and in[lzzo, 2006]and addressed in chapter 5. Note that in the first agescof the thrust
profile presented, an assumption is made for the thrustlemation, but the thrust
direction, i.e., the thrust angle is free; while in the &ntigl case an assumption is made
for the thrust angle (which is equal to the flight path angte) the thrust acceleration is

given as an output.

The method necessary to compute the TOF, the positbthanvelocity with time of the

spacecraft is similar for the first and second caseseatfhtfust profile. For these two cases,

given the normalised magnitude of the thrust acceleradjoas an input, the following

variables need to be determined:

« @: the first derivative ofd computed in the transfer plane. This variable depends

on: K,8,a anda,;
+ @:the polar angle that is computed by integraghgom 4 to 6, ;

* I the radial velocity that can be obtained by differemgthe equation for .

This equation depends oK, 8,a anda,;

* ¢ the thrust angle was already represented in figurdpat(d it is obtained by

integrating the equation far : K,8,a anda,.

As already concluded in section 5.2, the expressionghi® derivativesd and ¢ are
coupled, intractable, first-order differential equationSor this reason, numerical
integration is necessary to find the valuesfoand a , and consequently to determine the
position and velocity of the spacecraft. All equations for dgpamic parameters of all

shapes and for the three thrust profiles mentioned al@vgiven in appendix B.

When considering the tangential thrust profile, #fe equations for all five shapes no

longer depend on the magnitude of the normalised threstlexation a,. Therefore,

parametera, does not have to be given as an input; it can be cwmpihrough an
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analytical expression (see equations in appendix B). Hertkimust profile case, the

following variables need to be determined:

« @: the first derivative ofg computed in the transfer plane. This variable depends
on: K andé;

+ @:the polar angle that is computed by integraghffom 8 to &, , just like for the
first case of thrust profile presented above;

* r: the radial velocity computed in the transfer planef ten be obtained by

differentiating the equation far. This equation depends oK: andé;

a: the thrust acceleration and it depends Krandé .

For the tangential case, numerical integration is necedsafind values for@ and
consequently to determine the position, the velocity aadT®®@F of the spacecraft. Note
that computation time in the tangential case is significantBllemthan the time necessary
to compute a trajectory using the acceleration inversely reqaad the constant
acceleration cases of the thrust profile. This is bec#usehrust anglexr needs to be
calculated through numerical integration for these tvases. The advantage of the
methods developed by IzZtzzo, 2006]and Petropoulos and LongugRetropoulos and
Longuski, 2004]using the tangential profile, is that all the dynamic ipexars, except the
TOF, can be computed through analytical expressiomsveMer, although numerical
integration is required to compute the thrust anglen the acceleration inversely square
and the constant acceleration cases of the thrusileprdie computation time is still
significantly small compared with the computation time requiedntegrate the entire
trajectory (at least fifteen times more, depending ontgpe of mission, i.e., for longer
missions, the differences in computation time increases). tikis reason, it is still
meaningful to analyse the acceleration inversely squatéh@nconstant acceleration cases

of the thrust profile for all shapes.

The integrator that was chosen in all three cases dhthset profile was the Runge-Kutta
4(5), as already mentioned in chapter 2. Since thergmuging code done in this master
thesis was implemented in MATLAB, a Runge-Kutta 4¢®¢grator function that is part of

the MATLAB software was used. During the integrationgadure, for increasing values
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of t (time), & and a vectors for the acceleration inversely square andctrestant
acceleration cases of the thrust profile and aflyector for the tangential thrust profile

were built. The TOF was known by stopping the integrafiwocedure at? =6, and

verifying at which instant of time that happens.

After the integration procedure, the position and the wglaaf the spacecraft can be

computed and, consequently, the excess velocities, wdniehgiven by the following

equations:
V.o1 = Vaape nia™ Vo (6.11)
\700,2 = _shape,final_ \_/t (612)

The variableV, is the velocity vector of the departure planet at the rdieainstant and
the variableV, is the target planet velocity vector at the arrival instdihie variables
V,

shape,initia

and \Zhapeyﬁna‘ are the shape velocity vectors @t and &, respectively. The

velocity of the shape is computed using the following eqoat

V,

shape ™ Vr

+ (6.13)

)

The radial and tangential velocities can be computedanteSian coordinates for a two-

dimensional case:

V, (x) = rcosA

V, (y) = isinA (6.14)

V,(2)=0

v, =g 2Te i I (6.15)
rhs r
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The velocity vectorsV.

shape,initia

and \Zhapeyﬂna‘ can be computed in Cartesian coordinates,

since A (heliocentric longitude) is known for the initial and fir@dsitions. In figure 6.6,

the radial and tangential velocities are representdtbaarget planet.

Figure 6.6: Representation of the celestial longitie, the radial and tangential velocities at the taget
planet

At this moment, in order to do the sensitivity analysis, ¢less of variables that are
required as an input for a low-thrust problem, for theebaration inversely square and the

constant acceleration cases of the thrust profile is:
S:[g, 8.6, ,K,ao,ao}
While the class of variables required for the tangettiraist case is:
S=[1,1.6.6, K]

Knowing these classes of variables, numerical integratiorbe used to compute the TOF
for the acceleration inversely square, the constarle@tion and the tangential cases of
the thrust profile, followed by an evaluation of the esceslocities and of the thrust
acceleration. If the mathematical expression rpresents singularities or restrictions,
the shape parametels (free variables) will be characterized by an intervalaltigs that
satisfies the constraint equation f6f. This reasoning was implemented[inzo, 2006]

and it was applied for the shapes presented in thisemh®sis in section 6.3.
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6.3. Constraint Equation — Tangential Thrust

In this section, a brief discussion about constrainagguos that can be derived from the

expression ford® that each shape may have will be done for the tangehtizt profile.

For the other two thrust profiles, this discussion wilhiede in section 6.4.

6.3.1. Archimedean Spiral

The radius equation for the Archimedean spiral (eqoat$o2)) and the equation for the

dynamic paramete® (equation (B.4), appendix B) are given by:

r=(kg+k)"

92:ﬁaocosa tary—-a, simr + 1292:&3 1

for the tangential case
rs (m+1)tarf y+1 r®(m+ 3 tady+ . J

The geometric variablem was chosen to be an input parameter — free geometric

parameter. The other two geometric parameitgrand k, are computed through the radius

equations at the departure and target planets:

n= (kogi + kl)]/m < k1: rlm - k(ﬂ

6.16
b =(8, k)" - ko= (17— 7)/(6,-6) (6.10)

For the tangential case, the Archimedean spiral doeses¢it a constraint equation when

consideringr, >r, (the orbit of the departure planet is inner with resp@the orbit of the

target planet). However, there is a situation that shoelddtected during the analysis of
the shapes’ performance (chapter 7) or the optimisgtiooedure (chapter 8), since they

can lead to wrong results or errors. In a mission whgere,, the values fom have to be
always positive n>0). For increasing values ofm, k, also increases. Analytical

expressions for certain dynamic parameters have themgger k. and after a certain

values ofm, this parameter is considered infinite by MATLAB arntthey mathematical
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software. This happens because valuesfotan be of ordet(** and when used in these

analytical expressions, the MATLAB tolerances for the imaxn allowed value are met.

Consider now a mission using the tangential thrust profileavhe<r,, for instance from

Earth to Mercury. In this casé’ (equation B.4 in appendix B) can become negative, due

to the fact that for flights to inner planets has to be always negative.
To avoid negative values f&, the following condition should be respected:
(m+1)tarf y>-1= m>-{ tady- (6.17)

In order to obtain a feasible Archimedean spifad, geometric parameten should be:

m>

-1 (6.18)

T2 - 2
tan ymi" tan y‘max

The flight path anglg/ can be computed through the equation (B.2) in agpeB:

tany = (¥m) k (ko+ k)™

Sincek, is always positive for any value of (see equation (6.16)), the maximum value

for tar’ y occurs whend=6. The condition presented in equation (6.18) shdgd

always verified after selectingn. If the geometric parametan does not respect the
condition (6.18), then it is discarded before themerical integration procedure begins.

The case presented foy>r, where the MATLAB tolerances are met for the vaeak,
does not occur forr, <r,. Therefore, when the orbit of the target planetniser with

respect to the orbit of the departure planet, cdatjun problems €* <0) occur only if

the condition (6.18) is not respected.
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6.3.2. Logarithmic Spiral

The radius equation for the logarithmic spiral (@ipn (6.4)) and the equation fa&#
(equation (B.13), appendix B) are given by:

r=k,e™+k
2 :ﬂgaocosa tary-a, siar+ 1:> &2 :ﬂ3 1 for the tangential case
r*  2tafy-mtary+ 1 r® 2tahy-m tap+

The geometric variablem was chosen to be an input parameter — free geilmmetr
parameter. Note that this parameter cannot be a#érerwise the spacecraft will perform a
circular orbit around the Sun, instead of spirgllitowards the target planet. As before, the

other two geometric parameteks and k, are computed through the radius equations at

the departure and target planets:

n=ke™ +k o k== ke 1o
r,=ke™ +k o (r—rl)/( v — @ ) (6.19)

The equation for®? will never become negative for negative valuesrofand for r,>r,

since tany is always positive and consequentBtar’ y—m tary+ : is also always

positive. The equation farany is given by equation B.11 in appendix B:

tany:L :kﬂféw
ré k.em™+k

For increasing positive values of the geometricapaterm, &° will decrease and at

certain point, it will become less than zero. Fokr,, the inverse situation occurs: the

variable &° is always positive for positive values of, while for negative values af,

6? can become negative. In cases whétecan become negative, the following condition

should be respected:

79



Analytical Representations for Low-Thrust Traje@sr

2tarf y+ 1>|m tan/ (6.20)

The condition (6.20) is always respected [iof<1. For |m>1, the total excess velocity
and the thrust acceleration values become unriealigthigh (chapter 7). For this reason,
only values|rr1 <1 with m#0 will be given as an input for the computation bet

logarithmic spiral.

6.3.3. Poinsot’s Spiral (hyperbolic sine)

The radius equation for the Poinsot’s spiral (hippéc sine) (equation (6.7)) and the
equation forg* (equation (B.21), appendix B) are given by:

=k, (sinh(m(6+¢) )

U4 acoda) tary-a, sifa)+ 1
r* tar? y -kt sin m(6+¢)) " + 1
= 6 =£3 1 -

I tar® y-kn' sin{ m@+¢)) " + 1

for the tangential ca:

The geometric variablan was chosen as a free parameter. For any caseedhthst

profile or any departure-target bodies’ combination should always be considered

positive in order to respect the two following etijoias:

f, =ko(sin(m(q +¢))) ™ < k= 1/(sin{m(g +¢)))"
r, =k0(sinh(m(6?f +¢))) - (6.21)
o k = —Iog(r2/rl)/log(sinf(m(é?f +¢))/ sinfm(§ +¢)))

A maximum value form has to be defined in order to avoid exceeding MABL
tolerances for the highest value permitted by thigwsare. When passing this limit, the
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spacecraft is unable to move in a spiral trajectooyn the departure to the target planet,

becausek;, becomes zero. Instead, it performs a circulart @ound the Sun.

Instead of considering four different geometriciahles, only three will be taken into

account, since&g and ¢ always appear in the forfi+¢ in all mathematical expressions.

Note thatd + ¢ has to be different from zero, otherwise o .

Like the Archimedean spiral, the Poinsot’'s spitayperbolic sine expression) does not
have a constraint equation &, when considering the tangential thrust profilel an>r,

(the orbit of the departure planet is inner witbpect to the orbit of the target planet), since

the geometric parametédy is always negative (second equation in (6.21)).

However, when considering <r,, the geometric paramet&y will always be positive and

for this reason,@® can become negative for certain combinationsrofand g . In this

case, the following condition will have to be resieel:

: nt

tan” y—kn? sini?( m@+¢))+ > 0- * tahy> K 6.22
yh (me+9)) 4 sint? (m(6+¢)) (6.22)
The right-hand side of the condition (6.22) hashighest value whe®+ ¢ is minimum,
i.e., for =6, while the left-hand side has its lowest value whan’ ) is minimum and
this happens fod =6, . The minimum value that the left-hand side of ¢igumea(6.22) can

have is:1+k’n7, since the equation for the flight path angleiieg by (equation B.19 in

appendix B):
r
tany = = —mk coth( m(6+¢))

In this way, the condition (6.22) cannot be tedtetbre the integration procedure begins

like it was done for the Archimedean spiral. Shapiéth 8% <0 problems will have to be

identified and discarded during the integrationcedure.
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6.3.4. Poinsot’s Spiral (hyperbolic cosine)

The radius equation for the Poinsot’s spiral (hippéc cosine) (equation (6.8)) and the

equation ford® (equation (B.29), appendix B) are given by:

r =k, (cosh(mg))™
P :ﬂaocos(a) tary - g, sifa)+ 1
r® tan’ y+km? cosh?(mg)+ 1

. 1
=K
r® tan’ y+k,m? cosh?( mg) +

1for the tangential ca:

The geometric variablen was chosen to be an input parameter. Like forRbmsot's

spiral (hyperbolic sine), the spacecraft is unablenove in a spiral trajectory from the
departure to the target planet for higher valuethefgeometric parameten. For any case
of the thrust profile or any departure-target bedieombination,m should always be

considered positive in order to respect the twimfahg equations:

=k (cos(m))™ = k= 5/ costnd)) "
r, =ko(cosh(mt9f ))‘kl = k=-lodr, /rl)/ Iog( cos@mﬁff )/ Cog(h‘rgi))

(6.23)

Unlike the Archimedean spiral and the Poinsot’'sapihyperbolic sine), this shape has a

constraint equation i¥* whenr, >r,, when considering the tangential thrust profilaeT

geometric parametek; is negative, so in order to respett>0:
1+ tarf y>‘k1m2 cosh?( m9)‘ (6.24)

The left-hand side and the right-hand side of cioowli(6.24) have their lowest and highest

values, respectively whed =6 . The equation for the flight path angle is givey b

(equation (B.27), in appendix B):
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tany=r%.’ =-mk tanH{ n®)

In this way, like for the Archimedean spiral, thendition (6.24) can be tested before the

integration procedure begins and shapes Witk 0 will be picked up and discarded.

Note that whenr, <r,, the geometric parametds will always be positive and” will

never be negative.

6.3.5. Sinusoidal Spiral

The radius equation for the sinusoidal spiral (¢igua(6.10)) and the equation fa#?

(equation (B.37), in appendix B) are given by:

r = (k, cos(mg) + kl)ym

g =M acosa tary-a, sim+ 1
r® tar’ y(1+m)+k,CCmcog nd) + 1

= & :ﬂa . 1 for the tangential cas
r® tan’ y(1+m)+k,CCOmcog nd) + 1

The paramete€ is given by:

C =k cos{md) + k)

The geometric variablen was chosen to be an input parameter. This variedotevary

from (—1,1). Note thatm cannot have a zero value, otherwise equation &a0Gnot be

used. The other two geometric parametkysand k; are computed through the radius

equations at the departure and target planets:
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r, = (kocos(mg) + k)" = k="~ k, cog ng])

1/m (6.25)
r2=(kocos(m¢9f)+ kl) - kD:(r;“— rlm)/( co§m9f)— co(snﬁi))

Unlike the other shapes, the behaviour of the siida$ spiral in terms ofd® being

negative is unpredictable. In order to hage>0, the following condition should be

respected:

tar? y( 1+ m) + k COmcog nd) + b | (6.26)

The expressiortan’ y( 1+ m) + 1 is always positive, however the sign lofC Cmcos( n®)
can vary. The sign of theos( ) depends on the input parameté&sand A@ that are
picked. Also,C can be negative, depending on the signcoﬁ( ) and the geometric

parameters, and k. If k,CCmcos( n#) is negative, then the condition (6.26) should be

written as:
tar’ y( 1+ m) + 1>‘K;“CDmco$ rﬂ)‘ (6.27)

The allowable region for the geometric parametarmot be defined through a constraint

equation that can be applied for any combinatiorpafameters of this shape. For this

reason, the only alternative is to stop the intégmnaprocedure oncé? becomes zero.

6.4. Constraint Equations and Computation Problems -
Acceleration Inversely Square and Constant Accelera  tion
Cases of the Thrust Profile

Until this moment, when dealing with constraint atjons, only the situation using the
tangential thrust profile was mentioned. For theeseration inversely square and the
constant acceleration cases of the thrust prdfike,reasoning to find constraint equations

is not as straightforward as for the tangentialecdr each shape that was discussed

before, the difference between the equationséfofor different thrust profiles lies in the
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numerator: a,tany cosr—a, sim+ (for the acceleration inversely square case),
(]/r)(aO u/rf tany cosr—a, u/r? sim + pfr 2) (for the constant acceleration case) and 1

(for the tangential case). In the case of the Angdean spiral, for example, the
denominator for & is always positive. Therefore in order to haw# >0,

a,tany cosr —a, simr+ for the acceleration inversely square case oftlihagst profile
and (a, 4/ tany cosr —a, /1 sim+4/r?) for the constant thrust one have to be

always positive. The constraint equations that vedready defined for the tangential case
will be also used for the acceleration inverselyasg and the constant acceleration cases

of the thrust profile, together with the constraggfuations:a,tany cosr - a, sim+ & |

and a, 4/ r? tany cosy —a, ufr? simr+ufr?> | respectively.

Besides the computation problems presented inose6ti3, another computation problem
may occur when considering the acceleration inWersfiuare and the constant
acceleration cases of the thrust profile. Duringititegration procedure to obtain the TOF,
the integrator can throw an error. This error stateat the program is unable to meet
integration tolerances at a certain instant of t{that is smaller than the time required for
the spacecraft to meet the target planet) witheducing the step-size below the smallest
value allowed. In order words, a singularity wasrfd. This problem happens because at a
certain point in the trajectory, the denominator df will be zero and the integration
procedure cannot be completed. AccordindRetropoulos et al, 1999]when past this
point, there is no thrust direction which can maimtthe selected shape and continuity of
velocity, using the current thrust profile. This ane that the spacecraft cannot follow the
prescribed shape. There is no way to predict thiatson. However, the integration should
be stopped once the denominator @f becomes zero. A numerical example of this

problem is given in appendix C.
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6.5. Summary

In table 6.1, the constraint conditions for theefshapes addressed in this chapter will be

summarized for the tangential case of the thrusdlpr

Nt

Shapes Condition for feasibility (tangential case
Archimedean spiral m> —]/tanz y‘ﬂ ~1(r, <r,)

None (r, >r,)
Logarithmic spiral |rr1 <1
Poinsot’s spiral (hyperbolic sine) kP
sint? (m(6+¢
None (r, >r,)
Poinsot’s spiral (hyperbolic cosing) 1+ tarf y‘e:e, >‘klmz coshz( mﬂ)‘ (r,>r,)
None (, <r,)
Sinusoidal spiral tar’ y(1+m) + b‘lg;“CDmcoﬁ rﬂ)‘

1+tarf y> )) (r,<r,)

Table 6.1: Conditions required for the Archimedeanspiral, the logarithmic spiral, the Poinsot’s spird
(hyperbolic sine), the Poinsot’s spiral (hyperbolicosine) and the sinusoidal spiral to obtain feasi®
trajectories for a low-thrust problem

For the remainder two cases of the thrust profile,equations presented in table 6.1 will
still have to be taken into account. Since the mamoe for the acceleration inversely

square and for the constant acceleration caseheoftirust profile can be negative,
a,tany comr —a, sim+ * 1 and a, u/r?tany cosr —a,u/r? sim+u/r?> (will have

to be respected.

86



Analytical Representations for Low-Thrust Traje@sr

7. Sensitivity Study of the Shapes’ Performance

In this chapter, an analysis of the Archimedeamnasgsection 7.1), the logarithmic spiral
(section 7.2), the Poinsot’'s spirals (hyperbolinesiand cosine) (section 7.3 and 7.4,
respectively), the sinusoidal spiral (section AB) the exponential sinusoid (section ¥.6)
will be done in terms of time of flight (TOF), exgevelocities and thrust acceleration. In
this master thesis, results for 3 mission examplas Earth-Mars flight, an Earth-Jupiter
flight and an Earth-Mercury flight — will be shovand the shapes’ performance will be
compared between different missions and betwedrrdiit cases of the thrust profile.
Note that, as mentioned in chapter 6, a two-dinmeraiproblem and a circular motion for
the planets’ orbit was assumed. In this way, tred ephemeris was not applied to this
problem to obtain the position and the velocityhe# planets with time. Instead, a constant

distance between the Sun and the planets was uged, (=0.3871 AU, rg,,,=0.9997

AU, r, . =1.523¢ AU andr

Viars Jupiter = 9-2032 AU).

Only the results and conclusions for the Earth-Mamssion using the acceleration
inversely square and the tangential cases of tiusttprofile will be given in this chapter.
The results for the constant acceleration casaridearth-Mars flight will be presented in
appendix D. Results for the other two missions gigime exponential sinusoid and the
acceleration inversely square and tangential cagebe presented in the appendix E (for
the other 5 shapes the results and remarks aréagimlhe reason why the constant
acceleration case analysis was excluded from tiapter is because the results from this

sensitivity analysis were not promising (appendiarial section 7.7).

* The mathematical expressions for the 5 shapesdinted in this master thesis is different fromdhes
given in literature (chapter 6)
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7.1. Archimedean Spiral

In this section 7.1, results for the TOF, the exoadocities and the thrust acceleration will
be shown and discussed for the Archimedean spir@dlfar an Earth-Mars mission. The
thrust profiles used in this analysis are: “acadlen inversely square”, where the

magnitude of the thrust acceleration monotonicalgcreases with the square of the

distance to the Suna = g, ;1/ r* (a) and the tangential case (b).

a) Acceleration Inversely Square Case of the Thrust Rxfile

Figures 7.1 and 7.2 show the TOF and the totalssxeelocity when varying parametér
and the transfer anglAéd, when the number of revolutions N is 0. Note tthe polar
angle at the target planet is given I8:=8 + A8+ 27N. The values used in figures 7.1
and 7.2 for the geometric parametarwas 0.05, for the initial value of (a,) were (-
600, -50°, -40°, -30°, -20°), for the initial potargle & were (0°, 120°, 240°, 360°) and the
transfer angledd@ were (90°, 150°, 210°, 270°, 340°).

The initial polar angleg is considered an input variable, since by startmglifferent

segments of the shape, different results for tha Bxcess velocity, the thrust acceleration

and the TOF might be obtained. Note that this aéplis the polar angle for the shape and

it is different from the initial polar angle of tlgpacecraft in its interplanetary trajectory in
the non-rotating heliocentric ecliptic referencanfie. The normalised thrust acceleration

a, value used in figures 7.1 and 7.2 was 0.1.
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Figure 7.1: TOF for & values of (0°, 120°, 240°, 360°) from left to rigin the figure, a, values of (-60°,

-50°, -40°, -30°, -20°)A8 values of (90°, 150°, 210°, 270°, 340°) (N=0)0.05, a, =0.1, acceleration
inversely square case of the thrust profile (Archiredean spiral), Earth-Mars flight
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Figure 7.2:V__ for g values of (0°, 120°, 240°, 360°) from left to rigin the figure, a, values of (-60°,

-50°, -40°, -30°, -20°)A8 values of (90°, 150°, 210°, 270°, 340°) (N=@}0.05, a, =0.1, acceleration
inversely square case of the thrust profile (Archiredean spiral), Earth-Mars flight
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Some remarks can be drawn from figures 7.1 and As2expected, the TOF increases

when increasing the transfer angle, while the tetetess velocity \(,, ;o et V.

o arrive)
decreases. By changing the initial polar anglethe differences between values for the
TOF and for the total excess velocity are signifttasmall. The order of magnitude of the
highest difference in TOF between differehtfor the same transfer angle aagl is 10™
seconds, while the order of magnitude of the higb@terence in total excess velocity is
10 ny s. By changing the initial value af,, the order of magnitude of the differences in
TOF is10° years, which is less than a day. The TOF increades increasing values of
a,. On the other hand, the total excess velocity esas when increasing, (see figure

7.2).

Similar figures can be shown for 1 and 2 revoluionsing the same values for the
geometric parametemn, for the transfer angl& & and for the initial values ofr and 4.
The values for the normalised thrust acceleratigrused in figures 7.3 and 7.4 were 0.03
and 0.02 for N=1 and N=2, respectively. Note that talues assumed fay, for N=1 and
N=2 are the minimum values that can be used in baffes for this shape without facing
integration problems for the interval of input paeters considered (explained in section
6.4). These values were chosen because, for higikees ofa,, the total excess velocity

values will also be higher. Note that for N=2, thenimum value allowed is smaller than
for N=1.

90



Analytical Representations for Low-Thrust Traje@sr

& =0° g =0°
6 =120 8 =120°
8 =240° 6, =240
6, =360° 8 =360
27 T T T T T TX X% 41 T T T T T T IR
oI S U : ) S S S S SN S S m
25 frmrennhoneeeas | S banneees “fetepebe
24 --ne b 3B beresees “pebebebes
g 23 5 3T breeeees Shepepet
® = : :
2 2 ! !
o 2 36 --eees Freesees “tepeper
[T w
[=] =] H
= 21kt = 35F------ FEEEEEE B R

transfer angle 6, = [0°,120°,240°,360°]

transfer angle /6, = [0°,120°,240°,360°]

Figure 7.3: TOF for 8 values of (0°, 120°, 240°, 360°) from left to rigin the figure, a, values of (-60°,
-500, -40°, -30°, -20°)A4 values of (90°, 150°, 210°, 270°, 340%)=0.05, acceleration inversely square
case of the thrust profile (Archimedean spiral), Eeth-Mars flight, N=1 ( a, =0.03) and N=2 @, =0.02)
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Figure 7.4:V__ for g values of (0°, 120°, 240°, 360°) from left to rigin the figure, a, values of (-60°,

-50°, -40°, -30°, -20°)A4 values of (90°, 150°, 210°, 270°, 340%)0.05, acceleration inversely square
case of the thrust profile (Archimedean spiral), Eah-Mars flight, N=1 ( a,=0.03) and N=2 @, =0.02)

From figures 7.3 and 7.4, as expected, when N as&®g the TOF increases and the total

excess velocity decreases. As for the N=0 case@rtter of magnitude of the differences in

TOF and total excess velocity between differ@nwvalues and for the same transfer angle

and a, can be neglected for the cases N=1 and N=2. fnwily, due to the significantly
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small influence that the paramet@rhas on the TOF, on the total excess velocity dsml a

although not shown in the previous figures, ondbeeleration, this parameter will not be

considered a variable in the optimisation procedoren Earth-Mars flight in chapter 8.

The TOF range for this Earth-Mars flight is fron8877 years to 4.0801 years. The total
excess velocity has a minimum value @f2767%nys and a maximum value of
14.381%ny s. The maximum differences in TOF between 2 consesutalues of the

transfer angleA@ are about 0.27 years. For a certain number of luéwas, these
differences increase when increasing the trangfglea The differences in terms of total
excess velocity between 2 consecutive transfereanglalways highest betwe&® =90°

and A8 =150°. The maximum value for these difference$i853%ny s for N=0 and the

minimum value is abou0m/ s for N=2.

Tables 7.1 and 7.2 show the TOF and the excessiteil@lues, for an Earth-Mars flight.
Parameteld was assumed 0°, parametgr was assumed -20°, the transfer anyte was
assumed 90° and N was taken 1 for the first tatdie2afor the second one. In table 7.1, the

normalised thrust accelerati@y assumed was 0.04 and in table 7.2, it was 0.03.

N=1 m=0.02 | m=0.64 | m=1.26 | m=1.88 | m=25
V,ow (kM9 | 2.9742 | 3.051€ | 3.1977 | 3.4182 | 3.722¢
V,,(km'g | 1.626z | 1.849z | 2.1155 | 2.435]1 | 2.821€
V.,(km'g | 1.348C | 1.202¢ | 1.082z | 0.983C | 0.9012
TOF (years)| 1.721¢ | 1.747C | 1.772% | 1.798% | 1.826(

Table 7.1: The excess velocities and the TOF valules N=1, §=0°, A8 =90°, a,=-20°, a,=0.04,m

values of (0.02;0.64;1.26;1.88;2.5), acceleratianviersely square case of the thrust profile
(Archimedean spiral), Earth-Mars flight
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N=2 m=0.02| m=0.64| m=1.26 | m=1.88| m=2.5

V,ow (kM9 | 1.6955 | 1.743¢ | 1.830€ | 1.9591 | 2.133€

V.,(km/9 | 0.9089 | 1.033z | 1.182C | 1.3607 | 1.576!

V,,(km'9 | 0.786% | 0.7106 | 0.648¢ | 0.5984 | 0.557¢

TOF (years)| 3.101¢ 3.1451 3.1884 3.231¢ 3.274¢

Table 7.2: The excess velocities and the TOF valules N=2, §=0°, A8 =90°, a,=-20°, a,=0.03,m

values of (0.02;0.64;1.26;1.88;2.5), acceleratianviersely square case of the thrust profile
(Archimedean spiral), Earth-Mars flight

From tables 7.1 and 7.2, the order of magnitudeheftotal excess velocity values is
10° km/ <. For increasing values o, the total excess velocity and the TOF increake. T

values for the total excess velocity are highernvNel than when N=2, i.e., although the
TOF is higher, there is an advantage in terms eff dansumption (total excess velocity is

lower) when using N=2. Note that the excess velogjt, increases faster than the excess
velocity V,, , decreases and the value\of, whenm=2.5 is about 3 times smaller than

the value ol , for both cases of N.

In figures 7.5 to 7.9, the polar plot, the thrustelerationa, the thrust angler, the polar

angle rated and the flight path angle as function of time #ltestrated for N=1 and N=2

cases that were presented in tables 7.1 and 7.2.
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270

Figure 7.5: Polar plot for N=1 (a,=0.04) and N=2 @ =0.03), § =0°, Ag =90°, a,=-20°,m values of
(0.02;0.64;1.26;1.88;2.5), acceleration inverselgwsare case (Archimedean spiral), Earth-Mars flight
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Figure 7.6:a plot for N=1 (&, =0.04) and N=2 @, =0.03), 8 =0°, Af =90°, a,=-20°,m values of
(0.02;0.64;1.26;1.88;2.5), acceleration inverselgware case (Archimedean spiral), Earth-Mars flight
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Figure 7.7: a plot for N=1 (&, =0.04) and N=2 @, =0.03), § =0°, Ag =90°, a,=-20°,m values of
(0.02;0.64;1.26;1.88;2.5), acceleration inverselgwsare case (Archimedean spiral), Earth-Mars flight
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Figure 7.8: & plot for N=1 (a,=0.04) and N=2 @, =0.03), 8 =0°, AF =90°, a,=-20°,m values of
(0.02;0.64;1.26;1.88;2.5), acceleration inverselgware case (Archimedean spiral), Earth-Mars flight

95



Analytical Representations for Low-Thrust Traje@sr

55 T T T T T T T T T 35

increasing values of m

gammaidegrees)
w
2]
gammaldegrees)

increasing values of m

25F q
151 B
2L 4
I I L I L L L I L I I 1 1 L "

02 04 06 08 1 12 14 16 18 2 0 05 1 15 2 25 3 358
time(years) time(years)

Figure 7.9: y plot for N=1 (a,=0.04) and N=2 @, =0.03), § =0°, Ag =90°, a,=-20°,m values of
(0.02;0.64;1.26;1.88;2.5), acceleration inverselgware case (Archimedean spiral), Earth-Mars flight

From figure 7.6, the magnitude of the thrust agegien is higher for N=1 than for N=2

because the assumed normalised thrust accelerajiaa also higher for N=1 than for

N=2. Since these are the minimum valuesagffor N=1 and N=2, the magnitude of the
instantaneous thrust required for a longer flightsmaller. Note also that the thrust
acceleration trend is similar to tté&trend, since for the acceleration inversely squase

a varies withy/r> and @ varies withl/r* (¥ (8) (3/r* term in & has higher influence than

f(H)). The values of the thrust angte are higher for N=1 than for N=2. During the

interplanetary flight for both cases in figure 7.7, thacecraft is thrusting inwards in the
radial direction, while in the tangential direction it thrustghie positive directiond is
negative, higher thar90° - see figure 5.2b). This means that the vehicle is tilgisn
the same direction of the gravitational acceleration. Siigtion will be further analysed
in section 7.7. The magnitude values of the flight paitilea) are smaller for N=2 than

for N=1.
b) Tangential Case of the Thrust Profile

Figures 7.10 and 7.11 show the TOF and the total exgssity when varying the

parametergd and the transfer anglag@ (N=0). The values used in figures 7.10 and 7.11
for m were (0.02; 0.64; 1.26; 1.88; 2.5), for the initial palagle & were (0°, 120°, 240°,
360°) and for the transfer anghed were (90°, 150°, 210°, 270°, 340°).
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Figure 7.10: TOF for g values of (0°, 120°, 240°, 360°) from left to rigin the figure, m values of

(0.02;0.64;1.26;1.88;2.5) A8 values of (90°, 150°, 210°, 270°, 340°) (N=0),dential thrust profile
(Archimedean spiral), Earth-Mars flight
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Figure 7.11:V__ for g values of (0° 120°, 240°, 360°) from left to rigin the figure, m values of

(0.02;0.64;1.26;1.88;2.5) A8 values of (90°, 150°, 210°, 270°, 340°) (N=0),dential thrust profile
(Archimedean spiral), Earth-Mars flight

Some remarks can be drawn from figures 7.10 and ByLthanging the initial polar angle

6, the differences between values for the TOF and fortokel excess velocity are

negligibly small, just like for the acceleration inversetyuare case of the thrust profile.
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The order of magnitude of the highest difference irFT@tween different) for the same

transfer angle andn is 10" seconds, while the order of magnitude of the highest
difference in total excess velocity1®*'m/s. The differences for the total excess velocity
between different values ain increase when increasing this geometric parameter. For

higher values ofn, the total excess velocity and the TOF increase.

Similar figures can be shown for 1 and 2 revolutionsngighe same values for the

geometric parametem, for the transfer angl& g and for the initial value ot (6?,) as

the ones used for N=0.
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Figure 7.12: TOF for g values of (0°, 120°, 240°, 360°) from left to rigin the figure, m values of

(0.02;0.64;1.26;1.88;2.5)A8 values of (90°, 150°, 210°, 270°, 340°), tangehtiaust profile
(Archimedean spiral), Earth-Mars flight, for N=1 and N=2
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Figure 7.13:V__ for & values of (0° 120°, 240°, 360°) from left to rigim the figure, m values of

(0.02;0.64;1.26;1.88;2.5)A8 values of (90°, 150°, 210°, 270°, 340°), tangehtiaust profile
(Archimedean spiral), Earth-Mars flight, for N=1 and N=2

Similar remarks to the ones given for N=0 can be driowfigures 7.12 and 7.13, when in
this case for N=1 and N=2, the highest differench&TOF between differerd and for
the same transfer angle and is about 0.2 seconds, while the order of magnitudéef
highest difference in the total excess velocityl&™ny's. As already verified for the
acceleration inversely square case of the thrust prafile, to the significantly small
influence that the parameté has on the TOF, total excess velocity variation and thrus

acceleration (although it is not shown in previous figyrélsls parameter will not be

considered a variable in the optimisation procedurarfidearth-Mars flight in chapter 8.

The TOF range for this Earth-Mars flight is frobn361% years to 4.3365 years. The total
excess velocity has a minimum value @f228%nys and a maximum value of
16.965%ny s. The maximum differences in TOF between two consecwiahees of the

transfer angleA@ are about 0.29 years. For a certain number of revokitithese
differences increase when increasing the transfer amyke differences in terms of total
excess velocity between two consecutive transfer angleslwiays highest between

AB=90° and AG=150° The maximum value for these differences6i€897kny s for

N=0 and in the minimum value B4.82ny s for 2 revolutions.
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Tables 7.3 and 7.4 show the values of the TOF andxitese velocity for an Earth-Mars

flight. Parameterd assumed was 0°, the transfer anglé assumed was 90° and the

number of revolutions was taken 1 for the first table 2far the second one.

N=1 m=0.02| m=0.64| m=1.26 | m=1.88 | m=2.5

Voow(kn/9 | 2.8912 | 29649| 3.1074 3.3250  3.6279

V,.(km/9 | 1.6034 | 1.8313| 2.1038 2.4318  2.8277

V.,(km'9 | 1.2879 | 1.1336| 1.0037  0.8937  0.8001

TOF (years)| 1.7472 1.7726 1.7980D 1.8233 1.8484

Table 7.3: The excess velocities and the TOF valukes N=1, §=0°, A8 =90°m values of
(0.02;0.64;1.26;1.88;2.5), tangential thrust profd (Archimedean spiral), Earth-Mars flight

N=2 m=0.02| m=0.64| m=1.26 | m=1.88| m=2.5

Vo (KM 9 | 1.6074 | 1.6489| 17287 1.8499  2.0179

V.,(kY9 | 0.8914 | 1.0187| 1.1708 13533  1.5733

V,,(kmf9 | 07160 | 0.6302| 0.5579  0.4967  0.4446

TOF (years)| 3.1418| 3.1856  3.2294  3.2729  3.3159

Table 7.4: The excess velocities and the TOF valukes N=2, §=0°, A8 =90°,m values of
(0.02;0.64;1.26;1.88;2.5), tangential thrust profd (Archimedean spiral), Earth-Mars flight

From tables 7.3 and 7.4, the order of magnitude of ¢ked £xcess velocity values is
10° km/ s. For increasing values ah, the total excess velocity and the TOF increase. The
values for the total excess velocity are higher wheh tian when N=2, and the values for
Vv, , are at least 3 times smaller than the valued/fqr like for the acceleration inversely

square case. Compared with this case of the thrustep(tdibles 7.1 and 7.2), the TOF is

higher and the total excess velocity is smaller for dingéntial case.
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In figures 7.14 to 7.17, the polar plot, the thrust kezeéion a, the thrust angler and the
polar angle rated as function of time are illustrated for N=1 and N=2 sat@t were

presented in tables 7.3 and 7.4.

270 270

Figure 7.14: Polar plot for N=1 and N=2,8 =0°, A =90°,m values of (0.02;0.64,1.26;1.88;2.5),
tangential thrust profile (Archimedean spiral), Earth-Mars flight
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Figure 7.15:a plot for N=1 and N=2, § =0°, Ag =90°,m values of (0.02;0.64;1.26;1.88;2.5), tangential
thrust profile (Archimedean spiral), Earth-Mars fli ght
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Figure 7.16: a plot for N=1 and N=2, 8 =0°, Ag =90°,m values of (0.02;0.64,1.26;1.88;2.5), tangential
thrust profile (Archimedean spiral), Earth-Mars fli ght
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Figure 7.17: i plot for N=1 and N=2, § =0°, A8 =90°,m values of (0.02;0.64;1.26;1.88;2.5), tangential
thrust profile (Archimedean spiral), Earth-Mars fli ght

The magnitude of the thrust acceleration is higher for tmah for N=2 which means that
the magnitude of the instantaneous thrust requiredaftamger flight is smaller (figure

7.15). The values of the thrust angte are higher in magnitude for N=1 than for N=2.
Note that, compared with the acceleration inversely requase (figure 7.7), the thrust
angle in figure 7.16 presents a more stable behavialtrenvalues are always positive for

the entire mission. The plot of the flight path anglan function of time is not shown,

since in the tangential case= y. The differences in magnitude of the polar angle éte

between N=1 and N=2 are significantly small (figur&7J.
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7.2. Logarithmic spiral

In this section 7.2, results for the TOF, the excesscitgds and the thrust acceleration will
be shown and discussed for the logarithmic spiral fancan Earth-Mars mission. The

thrust profiles used in this analysis are the same fmsehe Archimedean spiral.
a) Acceleration Inversely Square Case of the Thrust Rifile

Figures 7.18 and 7.19 show the TOF and the total exetssity when varying parameter

6 and the transfer anglag, when the number of revolutions N is 0. The valuetfier
geometric parametem used in figure 7.18 and 7.19 was 0.05, the valueshi® initial
value of @ were (-60°, -50°, -40°, -30°, -20°), for the initial palagle 8 were (0°, 120°,
240°, 360°) and for the transfer angle were (90° 150°, 210°, 270° 340°. The

normalised thrust accelerati@y value used in figures 7.18 and 7.19 was 0.11.

E KR OK
T3 S SN SO SO SO -
L L L e R EE R —
T S R S S -
e 0L e b -
in
b
a»
e R e e R e A EELEEEEL EEE LR EEETEERE CEEEEE —
[T
(e
e 1 T U AU SRR Uy SRS SUURI SN -
(17 L St rp—
. Sy &, =-30°
a, =—40°
04k S S S S w %y = _30°
HHH Y« — 200
1 1 1 1 1 1
g 1500 210¢ 2700 340

transfer angle 8 = [0°,120°,240° 360°]
Figure 7.18: TOF for g values of (0°, 120°, 240°, 360°) from left to rigim the figure, a, values of (-

60°, -50°, -40°, -30°, -20°A @ values of (90°, 150°, 210°, 270°, 340°) (N=0)50.05, a, =0.11,
acceleration inversely square case of the thrust pfile (logarithmic spiral), Earth-Mars flight
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Figure 7.19:V__ for & values of (0° 120°, 240°, 360°) from left to rigin the figure, a, values of (-
60°, -50°, -40°, -30°, -20°1\@ values of (90°, 150°, 210°, 270°, 340°) (N=0)0.05, a, =0.11,
acceleration inversely square case of the thrust pfile (logarithmic spiral), Earth-Mars flight

By changing the initial polar anglé (same transfer angle ang,), the differences
between values for the TOF and for the total excesiglare significantly small. For
increasing values ofy,, the total excess velocity decreases, while the TORasess. The
total excess velocity differences between different vatfes, increase when increasing

the transfer angl&g.

Similar figures can be shown for 1 and 2 revolutionshgigshe same values for the
geometric parameten, for the transfer angl&@ and the initial values off and 8. The
normalised thrust acceleratiay values used in figures 7.20 and 7.21 were 0.03 &®l O
for N=1 and N=2, respectively. Like for the Archimedespiral, the values assumed &r

are the minimum values that can be used in both casethifoshape without facing
integration problems for the interval of input parameterssictered. The minimum values

for a, were chosen because the total excess velocity irgedsen increasing the values

of a,.
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transfer angle ¢ 6 = [0°.120°,240°.360°] transfer angle /& = [0°,120°,240°,360°]

Figure 7.20: TOF for g values of (0°, 120°, 240°, 360°) from left to rigim the figure, a, values of (-
60°, -50°, -40°, -30°, -20°N\ & values of (90°, 150°, 210°, 270°, 340)0.05, acceleration inversely
square case of the thrust profile (logarithmic spial), Earth-Mars flight, N=1 ( a,=0.03), N=2 (@, =0.02)
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Figure 7.21:V__ for & values of (0° 120°, 240°, 360°) from left to rigin the figure, a, values of (-
60°, -50°, -40°, -30°, -20°\ @ values of (90°, 150°, 210°, 270°, 340P%0.05, acceleration inversely
square case of the thrust profile (logarithmic spial), Earth-Mars flight, N=1 ( a,=0.03), N=2 (@, =0.02)

Similar remarks to the ones given for N=0 can be driowrfigures 7.20 and 7.21. As for
the Archimedean spiral, due to the very small influethes the parametefl has on the
TOF, total excess velocity variation and thrust acce@ra(although not shown in
previous figures), this parameter will not be consideredhable in the optimisation

procedure for an Earth-Mars flight in chapter 8.
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The TOF range for this Earth-Mars flight is from 0.37%&ans to 3.9702 years. The total
excess velocity has a minimum value &f2397%m/s and a maximum value of
14.681%ny s. As expected, the minimum value for the TOF and theirmam value for

the total excess velocity occur for the smallest transhgiea— 90° (N=0); while the
maximum value for the TOF and the minimum value for ttal excess velocity occur for

the highest transfer angle presented — 340° (N=2).

The maximum differences in TOF between two consecutaleeg of the transfer angle
A@ are about 0.25 years. The differences in terms of éxizess velocity between two
consecutive transfer angles is always highest betw®@r 90° and Ag=150°. The

maximum value for these differencessi$85%ny s for zero value of N and the minimum

value is abou77.25my s for 2 revolutions.

Tables 7.5 and 7.6 show the values for the TOF andxbess velocities for an Earth-Mars

flight. Parameterd was assumed 0°, parametey was assumed -20°, the transfer angle

A8 was assumed 90° and the number of revolutions takeroma for the first table and

two for the second one. In tables 7.5 and 7.6, themalised thrust acceleratiog,

considered was 0.05.

N=1 m=0.05| m=0.15| m=0.25| m=0.35| m=0.45
V,ow (kM9 | 3.0424 | 2.9825 | 3.2022 | 3.6382 | 4.217¢
V.. (km' 9 1.654: | 1.100t | 0.726t | 0.497% | 0.372¢
V., (kn/9 | 1.3881 | 1.882C | 2.4757 | 3.1407 | 3.8457
TOF (years)| 1.713€¢ | 1.6421 | 1578z | 1523t | 1.4784

Table 7.5: The excess velocities and the TOF valules N=1, §=0°, A8 =90°, a,=-20°, a,=0.05,m
values of (0.05; 0.15; 0.25; 0.35; 0.45), acceleaat inversely square case of the thrust profile

(logarithmic spiral), Earth-Mars flight
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N=2 m=0.05| m=0.15| m=0.25| m=0.35| m=0.45

V,ow (kM9 | 1.8191 | 1.965¢ | 2.5192 | 3.244¢ | 4.0104

V,.(km'9 | 0.8131 | 04281 | 0.295¢ | 0.264% | 0.257C

V,,(k'9 | 1.006C | 1.537¢ | 2.2238 | 2.980%5 | 3.7534

TOF (years)| 3.022F | 2.817¢ | 2.661% | 2.5531 | 2.480C

Table 7.6: The excess velocities and the TOF valules N=2, §=0°, A8 =90°, a,=-20°, a,=0.05,m

values of (0.05; 0.15; 0.25; 0.35; 0.45), acceleaat inversely square case of the thrust profile
(logarithmic spiral), Earth-Mars flight

From tables 7.5 and 7.6, for increasing valuemgfthe total excess velocity increases for
N=2, while the TOF decreases. For N=1, the total exwe$scity decreases between
m=0.05 and m=0.15, while for higher values ofn, it increases. Note that, the excess

velocity V,,, decreases slower than the excess velogjty increases, except for N=1
betweenm=0.05 and m=0.15. The value ofV, , whenm=0.45 is more than 10 times
higher than the value o¥,, for N=1 and more than 14 times higher for N=2. This

situation is attractive for a mission where swing-bys ased instead of orbit insertion

(section 7.7).

In figures 7.22 to 7.26, the polar plot, the thrust bred¢ion a, the thrust angler, the

polar angle ratéd and the flight path angle as function of time are illusttdor N=1 and

N=2 cases that were presented in tables 7.5 and 7.6.
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Figure 7.22: Polar plot for N=1 and N=2,8 =0°, Ag =90°, a, =-20°, a,=0.05,m values of (0.05; 0.15;
0.25; 0.35; 0.45), acceleration inversely squaresmof the thrust profile (logarithmic spiral), Earth-

Mars flight
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Figure 7.23:a plot for N=1 and N=2, § =0°, Ag =90°, a,=-20°, a, =0.05,m values of (0.05; 0.15; 0.25;

0.35; 0.45), acceleration inversely square casetbé thrust profile (logarithmic spiral), Earth-Mars
flight
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Figure 7.24: o plot for N=1 and N=2, § =0°, A8 =90°, a, =-20°, a,=0.05,m values of (0.05; 0.15; 0.25;
0.35; 0.45), acceleration inversely square casetbé thrust profile (logarithmic spiral), Earth-Mars

flight
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Figure 7.25: 2] plot for N=1 and N=2, § =0°, A8 =90°, a,=-20°, a,=0.05,m values of (0.05; 0.15; 0.25;

0.35; 0.45), acceleration inversely square casetbé thrust profile (logarithmic spiral), Earth-Mars
flight
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Figure 7.26: y plot for N=1 and N=2, § =0°, A8 =90°, a,=-20°, a, =0.05,m values of (0.05; 0.15; 0.25;

0.35; 0.45), acceleration inversely square casetbé thrust profile (logarithmic spiral), Earth-Mars
flight

Note that, although the assumed normalised thrust acceteggtis the same for N=1 and

for N=2, differences in the instantaneous thrust acatder values between the two cases
can be seen in figure 7.23. During the interplanetarytfligr both cases in figure 7.24, the
spacecraft is thrusting inwards in the radial direction, whilthétangential direction it
thrusts in the positive directiona( is negative, higher than-90°), like for the

Archimedean spiral.

b) Tangential Case of the Thrust Profile

Figures 7.27 and 7.28 show the TOF and the total exeeksity when changing
parameterd and the transfer angl&d, when the number of revolutions N is 0. Values of
(0.05; 0.15; 0.25; 0.35; 0.45), (0°, 120°, 240°, 360€) @0°, 150°, 210°, 270°, 340°) were
used in these figures for the geometric parametefor the initial polar angleég and for

the transfer angl& &, respectively.
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Figure 7.27: TOF for g values of (0°, 120°, 240°, 360°) from left to rigin the figure, m values of

(0.05; 0.15; 0.25; 0.35; 0.45A8 values of (90°, 150°, 210°, 270°, 340°) (N=0),dantial thrust profile
(logarithmic spiral), Earth-Mars flight
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Figure 7.28:V__ for g values of (0° 120°, 240°, 360°) from left to rigin the figure, m values of (0.05;

0.15; 0.25; 0.35; 0.45)A8 values of (90°, 150°, 210°, 270°, 340°) (N=0),dantial thrust profile
(logarithmic spiral), Earth-Mars flight

Some remarks can be drawn from figures 7.27 and B@8hanging the initial polar angle

g , the differences between values for the TOF andhertatal excess velocity are again

very small, like for the acceleration inversely squaase. For increasing values of, the
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TOF decreases while the total excess velocity increasésafisfer angles higher than 210°

(inclusive) and it decreases for transfer angles snthier 210°.

Similar figures can be shown for 1 and 2 revolutionsngishe same values for the

geometric parametem, for the transfer angl&éd and for the initial value ot (9,) as

the ones used for N=0.
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Figure 7.29: TOF for g values of (0°, 120°, 240°, 360°) from left to rigin the figure, m values of (0.05;

0.15; 0.25; 0.35; 0.45)A8 values of (90°, 150°, 210°, 270°, 340°), tangehtiaust profile (logarithmic
spiral), Earth-Mars flight for N=1 and N=2
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Figure 7.30:V__ for & values of (0° 120°, 240°, 360°) from left to rigim the figure, m values of (0.05;

0.15; 0.25; 0.35; 0.45)A8 values of (90°, 150°, 210°, 270°, 340°), tangehtiaust profile (logarithmic
spiral), Earth-Mars flight for N=1 and N=2



Analytical Representations for Low-Thrust Traje@sr

Similar remarks to the ones given for N=0 can be drawrfifores 7.29 and 7.30. For
higher values of N, the differences in total excesscigicand in TOF, between the

minimum and the maximum values of, increase.

The TOF range from Earth-Mars is from 0.3482 yeard.@®22 years. The total excess
velocity has a minimum value 4£2004ny s and a maximum value d#4.461kny s. The

maximum differences in TOF between two consecutive valtidge transfer angld g are
about 0.27 years. The differences in terms of totaégxeelocity between two consecutive
transfer angles is always highest betwégh=90° and A@ =150°. The maximum value
for these differences i5.6372ny s for N=0 and the minimum value is {93601y s for

2 revolutions.

Tables 7.7 and 7.8 show the values for the TOF anéxbess velocity for an Earth-Mars

flight. Parameterf was consider 0° the transfer andl® was consider 90° and the

number of revolutions was taken 1 for the first table 2o the second one.

N=1 m=0.05| m=0.15| m=0.25| m=0.35| m=0.45
V,om (KM 9 | 2.8972 2.8423 3.0621 3.5041 4.1119
V.. (km/ 9§ 1.6212 1.0440 0.6422 0.3793 0.2165
V,,(km/ § 1.2761 1.7983 2.4199 3.1248 3.8955
TOF (years)| 1.7492| 1.6758  1.6093 1.55]17  1.5033

Table 7.7: Excess velocities and TOF values for N=8 =0°, Ag =90°,m values of (0.05; 0.15; 0.25;
0.35; 0.45), tangential thrust profile (logarithmicspiral), Earth-Mars flight
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N=2 m=0.05| m=0.15| m=0.25| m=0.35| m=0.45

V., total (km/ Q 1.5781 1.7360 2.2633 2.9881 3.8035

Voo'l(km/ Q 0.7597 0.3201 0.1182 0.0397 0.0125

V,,(km/g | 08184 | 1.4159| 2.1451] 29485  3.7970

TOF (years) 3.0934 2.8823 2.720P 2.6079 2.5304

Table 7.8: Excess velocities and TOF values for N=28 =0°, Ag =90°,m values of (0.05; 0.15; 0.25;
0.35; 0.45), tangential thrust profile (logarithmicspiral), Earth-Mars flight

For increasing values ai, the total excess velocity increases for N=2, while td#T
decreases. For N=1, the total excess velocity decrémtegenm=0.05 and m=0.15,
while it increases for higher values of. Normally for longer missions (higher TOF), the
total excess velocity decreases. This does not hapggem®énm=0.05 and m=0.15 for
N=1. As for the previous situations, the values for th& Excess velocity are higher when
N=1 than when N=2. Note that, like for the acceleratroreisely square case, the excess

velocity V, , increases faster than the excess velodfty decreases, except for N=1
betweenm=0.05 and m=0.15. The value ofV, , whenm=0.45 is more than 17 times
higher than the value of,, for N=1 and more than 300 times higher for N=2. Cared

with the acceleration inversely square case, the TORhantbtal excess velocity values
from tables 7.7 and 7.8 are higher and smaller, otispédy for the tangential case. For
values ofm higher than 0.45, the total excess velocity increasasni=1 and N=2, the
total excess velocity is8.895Ckny s and for m=1.5, the total excess velocity is
14.733kny s. These values are too high to be considered in sionigrom Earth-Mars,
when doing orbit insertion, but they still can be usedlfdnys. Note that for higher values
of m, the order of magnitude of, , is 10°kny s or less and/, , is approximatelyV, ..
Unfortunately, for values of higher than 1, the thrust acceleration starts to iserea
significantly to orders of magnitude df0?nys’. These values of thrust acceleration
correspond to the upper limit that can be used in a loustimission. In this way and

since feasible shapes can always be comput{zrq #1 (see section 6.3.2), values of

114



Analytical Representations for Low-Thrust Traje@sr

higher than 1 in the optimisation procedure for an Elfidins flight (chapter 8) will not be

considered.

In figures 7.31 to 7.34, the polar plot, the thrust kezeéion a, the thrust angler and the

polar angle rat& as function of time are illustrated for the cases N=1Nm2 that were

presented in tables 7.7 and 7.8.

Figure 7.31: Polar plot for N=1 and N=2,8 =0°, A@ =90°,m values of (0.05; 0.15; 0.25; 0.35; 0.45),
tangential thrust profile (logarithmic spiral), Ear th-Mars flight
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Figure 7.32:a plot for N=1 and N=2, § =0°, Ag =90°,m values of (0.05; 0.15; 0.25; 0.35; 0.45),
tangential thrust profile (logarithmic spiral), Ear th-Mars flight
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Figure 7.33: o plot for N=1 and N=2, § =0°, A8 =90°,m values of (0.05; 0.15; 0.25; 0.35; 0.45),
tangential thrust profile (logarithmic spiral), Ear th-Mars flight
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Figure 7.34: é plot for N=1 and N=2, § =0°, A@ =90°,m values of (0.05; 0.15; 0.25; 0.35; 0.45),
tangential thrust profile (logarithmic spiral), Ear th-Mars flight

From figure 7.32, the magnitude of the thrust acctteras higher for N=1 than for N=2
for most of the interplanetary flights which means thatrttagnitude of the instantaneous
thrust required for a longer flight is smaller. Excégt m=0.05, the thrust acceleration
will increase during time until it reaches its maximum vallreost in the end of the flight.
Note that the differences between the maximum values dbr N=1 and N=2 are
negligibly small. Although there are no significant dififeces between the maximum
values for the thrust angle for N=1 and for N=2, during most of the interplanetdight,

the values for this angle are smaller for N=2 than fot.N=
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7.3. Poinsot’s spiral (hyperbolic sine)

Results for the TOF, the excess velocities and the ttleeeleration will be shown and
discussed for the Poinsot’s spiral (hyperbolic sine) fandin Earth-Mars mission in this
section. The thrust profiles used in this analysis are dngesas the ones used for the

shapes previously presented.
a) Acceleration Inversely Square Case of the Thrust Rifile

The TOF and the total excess velocity when changingnpetex 8 + @ and the transfer

angle A@ (N=0) are shown in figures 7.35 and 7.36. The vaked form in figures 7.35
and 7.36 was 0.6, the values used for the initial paigleacombined with the phase angle
6 +¢@ were (120°, 200°, 280°, 360°) and the valuesofoend A8 were the same as for

the previous shapes. Note thét+ ¢ cannot be zero, otherwige= . The value for the

normalised thrust accelerati@y value used in figures 7.35 and 7.36 was 0.11.
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11 w By = 300 | b b -
x Fo= 2200
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transfer angle /8 +¢ =[120°,200°,280°,360°]

Figure 7.35: TOF for g + @ values of (120°, 200°, 280°, 360°) from left taytit in the figure, a, values
of (-60°, -50°, -40°, -30°, -20°\@ values of (90°, 150°, 210°, 270°, 340°) (N=@)0.6, a =0.11,
acceleration inversely square case (Poinsot’s spirgnyperbolic sine)), Earth-Mars flight
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Figure 7.36:V_, for g +¢ values of (120°, 200°, 280°, 360°) from left tafit in the figure, a, values
of (-60°, -50°, -40°, -30°, -20°\@ values of (90°, 150°, 210°, 270°, 340°) (N=0)0.6, a =0.11,
acceleration inversely square case (Poinsot’s spirdhyperbolic sine)), Earth-Mars flight

From figures 7.35 and 7.36, by increasing the combinatiaanglesé + ¢, the TOF and
the total excess velocity decrease. The highest diferem TOF and in total excess
velocity between differentd + ¢ occurs betweerg +@=120° and 8 +@=200°. For
higher values of + ¢, the variations in TOF and in total excess velocity arg serall.
The highest difference in TOF between differént ¢ for the same transfer angle auogl

is about 0.014 years, while the highest difference inl tet@ess velocity is about

0.294%kny s. For increasing values of the initial thrust angle the total excess velocity

decreases, while the TOF increases.

Similar figures can be shown for 1 and 2 revolutionsyguthe same values fan, for A8

and for the initial values ofr and 8+¢. The normalised thrust acceleratiap values

used in figures 7.37 and 7.38 were 0.03 and 0.0Afdr and N=2, respectively. Similar

remarks as the ones given for N=0 can be drawndards 7.37 and 7.38.
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a0 150° rilig 270 340° o 1500 210° a70° 340°

transfer angle /6 +¢ = [120°,200°,280°.360°] transfer angle /8 + ¢ =[120°,200°,280°,360°]
Figure 7.37: TOF for g + @ values of (120°, 200°, 280°, 360°) from left taytit in the figure, a, values

of (-60°, -50°, -40°, -30°, -20°N@ values of (90°, 150°, 210°, 270°, 340%)0.6, acceleration inversely
square case (Poinsot’s spiral (hyperbolic sine), Bh-Mars flight, N=1 ( a,=0.03) and N=2 @, =0.02)
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Figure 7.38:V_, for g +¢ values of (120°, 200°, 280°, 360°) from left tafit in the figure, a, values
of (-60°, -50°, -40°, -30°, -20°N\ @ values of (90°, 150°, 210°, 270°, 34Gf)0.6, acceleration inversely
square case (Poinsot’s spiral (hyperbolic sine), Bh-Mars flight, N=1 ( a,=0.03) and N=2 @, =0.02)

The TOF range for an Earth-Mars flight is from 0.35&hrng to 4.0842 years. The total
excess velocity has a minimum value @f2754nys and a maximum value of
14.599kny s. The maximum differences in TOF between two consecwiaes of the

transfer angleA@ are about 0.27 years and for a certain number \aflugons, these
differences increase when increasing the transfer amyke differences in terms of total
excess velocity between two consecutive transfer angleslwiays highest between

AB@=90° and A@=150° as for the previous situations. The maximum valuetiese
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differences is5.352%m/s for N=0 and the minimum value is abod9nys for 2

revolutions.

Tables 7.9 and 7.10 show the values for the TOF anéxbess velocities for an Earth-

Mars flight. Paramete + @ was consider 120°, parametey was consider -20°, the

transfer angleA@ was consider 90° and the number of revolutions takes11 for the first

table and 2 for the second one. In table 7.9, the algsed thrust acceleratios, was 0.05,

while in table 7.10, this parameter was 0.04.

N=1 m=0.01 | m=0.11| m=0.21 | m=0.31| m=0.41
Voow (K9 | 4.6797 | 4.4645 | 4.0855 | 3.745; | 3.498¢
V,.(km/9 | 3.822F | 3.486% | 2.927C | 2.468C | 2.1601
V,,(km'9 | 0.856¢ | 0.9780 | 1.1584 | 1.277z | 1.338¢
TOF (years)| 1.876C | 1.8354 | 1.786€ | 1.753€ | 1.7347

(hyperbolic sine)), Earth-Mars flight

Table 7.9: The excess velocities and the TOF valules N=1, § + ¢=120°, Ag =90°,m values of (0.01,
0.11; 0.21; 0.31; 0.41)a,=-20°, a,=0.05, acceleration inversely square case (Poinsospiral

N=2 m=0.01 | m=0.11| m=0.21 | m=0.31| m=0.41
Voo (KM 9 | 3.4777 | 3.0791| 25845 22606  2.0680
V,.(kf9 | 29203 | 2.4177| 1.8182 14476  1.2351
V,,(knf9 | 0.5574 | 0.6613| 0.7663  0.8130  0.8329

TOF (years)| 3.4155| 3.3009  3.1894  3.1353  3.1103

(hyperbolic sine)), Earth-Mars flight

12C

Table 7.10: The excess velocities and the TOF vakitor N=2, § + ¢=120°, A8 =90°,m values of (0.01;
0.11; 0.21; 0.31; 0.41)a,=-20°, a,=0.04, acceleration inversely square case (Poinsospiral
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For increasing values ah, the total excess velocity and the TOF decrease. Not¢hthat

excess velocityv, , decreases faster than the excess veldgjty increases, as for the

Archimedean spiral.

In figures 7.39 to 7.43, the polar plot, the thrust bred¢ion a, the thrust angler, the

polar angle ratéd and the flight path angle as function of time are illusttdor N=1 and

N=2 cases that were presented in tables 7.9 and 7.10.

Figure 7.39: Polar plot for N=1 (a, =0.05) and N=2 @, =0.04), 8 + ¢=120°, A8 =90°,m values of (0.01;

0.11,; 0.21; 0.31; 0.41)a, =-20°, acceleration inversely square case (Poinsogpiral (hyperbolic sine)),
Earth-Mars flight
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Figure 7.40:a plot for N=1 (&a,=0.05) and N=2 @, =0.04), § + ¢=120°, Ag =90°,m values of (0.01;

0.11; 0.21; 0.31; 0.41)@, =-20°, acceleration inversely square case (Poinsepiral (hyperbolic sine)),
Earth-Mars flight
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Figure 7.41: a plot for N=1 (a,=0.05) and N=2 @, =0.04), § + ¢=120°, A8 =90°,m values of (0.01,

0.11,; 0.21; 0.31; 0.41)a, =-20°, acceleration inversely square case (Poinsogpiral (hyperbolic sine)),
Earth-Mars flight
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Figure 7.42: @ plot for N=1 (a,=0.05) and N=2 @, =0.04), § + ¢=120°, A6 =90°,m values of (0.01;

0.11,; 0.21; 0.31; 0.41)a, =-20°, acceleration inversely square case (Poinsgpiral (hyperbolic sine)),
Earth-Mars flight
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Figure 7.43: y plot for N=1 (&a,=0.05) and N=2 @ =0.04), § + =120°, A8 =90°,m values of (0.01;

0.11; 0.21; 0.31; 0.41)@, =-20°, acceleration inversely square case (Poinsepiral (hyperbolic sine)),
Earth-Mars flight

From figure 7.40, the magnitude of the thrust acctateras higher for N=1 than for N=2

because the assumed normalised thrust accelerajiaas also higher for N=1 than for

N=2. Note that the thrust acceleration trend is similahéoé trend, as already seen for
the previous shapes and explained for the Archimedpiaal.sThe values of the thrust
angle a are higher for N=1 than for N=2. For most of the iptanetary flight, for both

cases in figure 7.41, the spacecraft is thrusting inwartiseimadial direction, while in the

tangential direction it thrusts in the positive directian {s negative, higher thar90°),
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like for the previous shapes. This situation will be fertlinalysed in section 7.7. The

magnitude values of the flight path angteare smaller for N=2 than for N=1.

b) Tangential Case of the Thrust Profile

Figures 7.44 and 7.45 show the TOF and the total exedssity when varying parameter
6 +¢ and the transfer angladd (N=0). The values used in these figures fior for the

initial angle 8 +¢ and the transfer anglAgd were the same as the ones used for the

acceleration inversely square case.
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Figure 7.44: TOF for g + ¢ values of (120°, 200°, 280°, 360°) from left tagtit in the figure, m values of

(0.01; 0.11; 0.21; 0.31; 0.41YA@ values of (90°, 150°, 210°, 270°, 340°), (N=0pdantial thrust profile
(Poinsot’s spiral (hyperbolic sine)), Earth-Mars fight
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Figure 7.45:V__ for g + ¢ values of (120°, 200°, 280°, 360°) from left tagtit in the figure, m values of

(0.01; 0.11; 0.21; 0.31; 0.41)A@ values of (90°, 150°, 210°, 270°, 340°), (N=0pdantial thrust profile
(Poinsot’s spiral (hyperbolic sine)), Earth-Mars fight

From figures 7.44 and 7.45, by increasing the initial a®jteg, the TOF and the total
excess velocity decrease as for the acceleration glyesguare case. The differences in
TOF and in total excess velocity between different vatdes decrease when increasing
6 +¢. The highest difference in TOF between differént ¢ for the same transfer angle
and m is 0.0567 years, while the highest difference in texakss velocity i2.163kny s,

which are higher compared with the acceleration inversglyare case. The differences in
TOF and in total excess velocity between different vatfesy increase when increasing

the transfer angldé.

Similar figures can be shown for 1 and 2 revolutionsngishe same values for the

geometric parametem, for the transfer angldd and for(6?i +(p) as the ones used for

N=0.
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Figure 7.46: TOF for 8 + ¢ values of (120°, 200°, 280°, 360°) from left tagtit in the figure, m values of

(0.01; 0.11; 0.21; 0.31; 0.41\8 values of (90°, 150°, 210°, 270°, 340°), tangehtiaust profile
(Poinsot’s spiral (hyperbolic sine)), Earth-Mars fight, N=1 and N=2
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Figure 7.47:V__ for g + ¢ values of (120°, 200°, 280°, 360°) from left tagtit in the figure, m values of

(0.01; 0.11; 0.21; 0.31; 0.41\8 values of (90°, 150°, 210°, 270°, 340°), tangehtiaust profile
(Poinsot’s spiral (hyperbolic sine)), Earth-Mars fight N=1 and N=2

Similar remarks to the ones given for N=0 can be drwfigures 7.46 and 7.47, when in
this case for N=1, the highest difference in TOF leetwdifferentd + ¢ and for the same
transfer angle is about 0.1229 years, while the hightstehce in total excess velocity is
1.1776km/ s. For N=2, the highest difference in the TOF betweeferdift § + ¢ and for

the same transfer angle amd is about 0.1763 years, while the highest difference in the
total excess velocity i$.1487mny s. Compared with the acceleration inversely square case,

these differences are much higher. So, in the tangewsa, the results for the TOF and
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the total excess velocity are more sensitive toghep variation. Note that the differences

between the total excess velocity and the TOF valuesiffereht values ofm increase
between N=1 and N=2.

The TOF range for an Earth-Mars flight is from 0.36Eang to 4.5782 years. The total
excess velocity has a minimum value @f234%nys and a maximum value of
14.9404ny s. The maximum differences in TOF between two consecuwiaes of the

transfer angleA@ are about 0.31 years and for a certain nhumber \aflugons, these
differences increase when increasing the transfer amyke differences in terms of total
excess velocity between two consecutive transfer anglemwiays highest between
AB=90° and A@=150° like for the previous shapes. The maximum value fosehe
differences is5.490%ny s for N=0 and the minimum value &1.22my s for N=2.

Tables 7.11 and 7.12 show the values for the TOFtlamdxcess velocity for an Earth-

Mars flight. Paramete# + @ was assumed 120°, the transfer anyie was assumed 90°

and the number of revolutions was taken 1 for tret fable and 2 for the second one.

N=1 m=0.01| m=0.11| m=0.21| m=0.31| m=0.41

V,om (KM 9 | 45194 4.3276 3.9723 3.6403 3.3924

V,,(km/§ | 3.8617 | 3.5236| 2.9584 2.4908  2.1731

mez(km/ S) 0.6577 0.8040 1.0139 1.149% 1.2194

TOF (years)| 1.8957| 1.8658  1.8204  1.7882  1.7697

Table 7.11: Excess velocities and TOF values for N=6 + ¢=120°, Ag =90°,m values of (0.01; 0.11;
0.21; 0.31; 0.41), tangential thrust profile (Poinst’s spiral (hyperbolic sine)), Earth-Mars flight
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N=2 m=0.01| m=0.11| m=0.21| m=0.31| m=0.41

Voou(km/ § | 3.2626 | 2.9186| 24547 21354  1.9391

V,,(km/' 9 | 29545 | 2.4497| 1.8440 14651  1.2437

V.,(km/'9 | 03080 | 0.4689| 0.6106 0.6704  0.6953

TOF (years) 3.4695 3.3579 3.246p 3.1920 3.1668

Table 7.12: Excess velocities and TOF values for 876 + ¢=120°, A =90°,m values of (0.01; 0.11;
0.21; 0.31; 0.41), tangential thrust profile (Poinst’s spiral (hyperbolic sine)), Earth-Mars flight

For increasing values oh, the total excess velocity and the TOF decrease. Notdikiat,

for the acceleration inversely square case, the exetssity V,,, decreases faster than the

excess velocity,, , increases. Compared with this previous case of thsttprofile, the

values for the TOF and the total excess velocity givenhitesa7.11 and 7.12 are higher

and smaller, respectively, as for the previous shapes.
In figures 7.48 to 7.51, the polar plot, the thrust kezeéion a, the thrust angler and the

polar angle rated as function of time are illustrated for N=1 and N=2 eat@t were
presented in tables 7.11 and 7.12.
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Figure 7.48: Polar plot for N=1 and N=2,8 + ¢=120°, A8 =90°,m values of (0.01; 0.11; 0.21; 0.31;
0.41), tangential thrust profile (Poinsot's spiral(hyperbolic sine)), Earth-Mars flight
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Figure 7.49:a plot for N=1 and N=2, § + ¢=120°, A8 =90°,m values of (0.01; 0.11; 0.21; 0.31; 0.41),
tangential thrust profile (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight
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Figure 7.50: a plot for N=1 and N=2, § + ¢=120°, A =90°,m values of (0.01; 0.11; 0.21; 0.31; 0.41),
tangential thrust profile (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight
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Figure 7.51: 2] plot for N=1 and N=2, § + ¢=120°, A8 =90°,m values of (0.01; 0.11; 0.21; 0.31; 0.41),
tangential thrust profile (Poinsot’s spiral (hyperbolic sine)), Earth-Mars flight

The magnitude of the thrust acceleration is higher for t=mab for N=2 which means that
the magnitude of the instantaneous thrust required fongetdflight is smaller. Also, the

values for the thrust angle are smaller for N=2 than for N=1.

7.4. Poinsot’s spiral (hyperbolic cosine)

In this section 7.4, results for the TOF, the excefscitees and the thrust acceleration will

be shown and discussed for the Poinsot’s spiral (hyperbodime) and for an Earth-Mars

13C



Analytical Representations for Low-Thrust Traje@sr

mission. The thrust profiles used in this analysis aresttlree as the ones used for the

shapes previously presented.
a) Acceleration Inversely Square Case of the Thrust Rifile

Figures 7.52 and 7.53 show the TOF and the total exadecity when varying parameter

€ and the transfer anglad, when the number of revolutions N is 0. The valueduis
figures 7.52 and 7.53 fan was 0.05, fora, was 0.09, the values far, were (-60°, -50°,
-40°, -30°, -20°), for the initial polar angl® were (30°, 140°, 250°, 340°) and for the

transfer angleA@ were (90°, 150°, 210°, 270°, 340°).
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o, =-=30° : :
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x % = -30° i . . i i
(101 T [FOSRE SRS S EE SIS S o
n ' *®
g 1""""""""l""""""""l""""""""f')’(';'i """""""" _
2 ; ' %
= ; ; : ; ; ; ; ;
S P P T R
1 ¥ 1 1
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| Do KXW | | | | |
0.4 p---amme peeeoees pmmeee Feeneees R e A
L 1 H 1 1 1 1 1
0.2 | | | | | | | |
a0° 150 2100 270 340

transfer angle / 6, = [30°,140°,230°,360°]

Figure 7.52: TOF for g values of (30°, 140°, 250°, 340°) from left to tigin the figure, a, values of (-
60°, -50°, -40°, -30°, -20°0\ @ values of (90°,150°,210°,270°,340°) (N=@)50.05, a, =0.09, acceleration
inversely square case (Poinsot’s spiral (hyperbolicosine)), Earth-Mars flight
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Figure 7.53:V_ . for g values of (30°, 140°, 250°, 340°) from left to figin the figure, a, values of (-

60°, -50°, -40°, -30°, -20°) @ values of (90°,150°,210°,270°,340°) (N=0)0.05, a, =0.09, acceleration
inversely square case (Poinsot’s spiral (hyperbolicosine)), Earth-Mars flight

Some remarks can be drawn from figures 7.52 and ASZxpected, the TOF increases
when increasing the transfer angle, while the total excessity decreases. By increasing

the initial polar angleg , the TOF increases while the total excess velocities @sese The
highest variation in TOF and in total excess velocityewlthanginggd is between
€ =30° and 8 =140°, as for the Poinsot’'s spiral (hyperbolic sine). Thisiateon

becomes smaller for higher values of the transfer aAAgleThe highest difference in TOF

between differen® for the same transfer angle aag is 0.0747 years, while the highest

difference in total excess velocity B311kny s. For increasing values af,, the total

excess velocity decreases and the TOF increases.

Figures 7.54 and 7.55 show the TOF and the total exedasity for 1 and 2 revolutions,

using the same values fon, for A@, for a, and 8 as for the situation where N=0. The

normalised thrust acceleratiay values used in these figures were 0.04 and 0.03#$dr N

and N=2, respectively.

13z



Analytical Representations for Low-Thrust Traje@sr

* o, =—60° : : : : : : * @, = —60°
@ = -30° : : : : 3 3 @, = -50° : : : : 3 P

Bl 130° 210" 270° 340¢ o0 150° 210° 270 3400

transfer angle ¢ 8 = [30°,140°,250°,360°] transfer angle ; g = [30°,140°,250°,360°]

Figure 7.54: TOF for 8 values of (30°, 140°, 250°, 340°) from left to tigin the figure, a, values of (-
60°, -50°, -40°, -30°, -20°\ & values of (90°, 150°, 210°, 270°, 340):0.05, acceleration inversely
square case (Poinsot'’s spiral (hyperbolic cosinetarth-Mars flight, N=1 ( a,=0.04) and N=2 @, =0.03)
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Figure 7.55:V__ for & values of (30°, 140°, 250°, 340°) from left to figin the figure, a, values of (-
60°, -50°, -40°, -30°, -20°\ @ values of (90°, 150°, 210°, 270°, 3407)0.05, acceleration inversely
square case (Poinsot’s spiral (hyperbolic cosinetarth-Mars flight, N=1 ( a,=0.04) and N=2 @ =0.03)

Similar remarks as the ones given for N=0 can be drawrfigures 7.54 and 7.55. In

figure 7.55, when increasing , for highest value ofr, the total excess velocity trend is
not monotonous. For N=1, the highest difference in T@fween differeng and for the
same transfer angle anr is about 0.1238 years, while the highest differenchentotal
excess velocity i9.166ny s. For N=2, the highest difference in TOF between differe

6 and for the same transfer angle ang is about 0.1609 years, while the highest

13z



Analytical Representations for Low-Thrust Traje@sr

difference in total excess velocity 651026kny s. In this way, for increasing values of N,
the TOF becomes more sensitiveochanges, while the total excess velocity becomes

less sensitive to these changes.

The TOF range for this Earth-Mars flight is from 0.29&&ng to 3.8762 years. The total
excess velocity has a minimum value @f166%nys and a maximum value of
16.657&kny s. The maximum differences in TOF between two consecwiges of the

transfer angleA@ are about 0.25 years. For a certain number of revaokitithese
differences increase when increasing the transfer ampke differences in terms of total
excess velocity between two consecutive transfer anglemwiays highest between
AG=90° and A@=150°. The maximum value for these differences6i888&kny s for

N=0 and the minimum value is abot®ny s for 2 revolutions.

Tables 7.13 and 7.14 show the values for the TOFtlamdexcess velocity for an Earth-

Mars flight. Paramete was chosen 30°, parametef was chosen -20°, the transfer

angle A@ was chosen 90° and the number of revolutions was thkenthe first table and

2 for the second one. In table 7.13, the normalisagstiacceleratiora, considered was

0.04, while in table 7.14, this parameter was 0.03.

N=1 m=0.01| m=0.11| m=0.21| m=0.31| m=0.41

V. oa (kY9 | 2.8684 | 2.6497 | 2.403€ | 2.297€ | 2.2838

V.,(kn/9 | 0.432¢ | 0.465: | 0.5354 | 0.622¢ | 0.7157

V.,(km'g | 24355 | 21841 | 1.868z | 1.674¢ | 1.568]

TOF (years)| 1.5654 1.583C 1.6124 1.637¢ 1.656¢

Table 7.13: The excess velocities and the TOF vakitor N=1, § =30°, AG =90°, a, =-20°,m values of

(0.01; 0.11; 0.21; 0.31; 0.41)n, =0.04, acceleration inversely square case (Poinsogpiral (hyperbolic
cosine), Earth-Mars flight
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N=2 m=0.01| m=0.11| m=0.21| m=0.31| m=0.41

Vo (kM9 | 1.6262 | 1.363% | 1.239% | 1.229C | 1.254C

V,.(km'9g | 02212 | 02479 | 0.2964 | 0.350% | 0.4052

V,,(km'9 | 1.405C | 1.1154 | 0.9430 | 0.878F | 0.848¢

TOF (years)| 2.8141 | 2.886€ | 2.960€ | 3.004:z | 3.030:

Table 7.14: The excess velocities and the TOF vakuitor N=2, § =30°, Af =90°, a, =-20°,m values of

(0.01; 0.11; 0.21; 0.31; 0.41)p, =0.03, acceleration inversely square case (Poingospiral (hyperbolic
cosine), Earth-Mars flight

From tables 7.13 and 7.14, the order of magnituddeftdtal excess velocity values is
10° km/ <. For increasing values of, the total excess velocity decreases, while the TOF

increases for N=1. For N=2, the total excess velocégrehses untim=0.31 and it
increases betweem=0.31 and m=0.41, while the TOF increases like for N=1. Note that

the excess velocity,, , decreases faster than the excess veldityincreases, except for

N=2 betweerm=0.31andm=0.41.
In figures 7.56 to 7.60, the polar plot, the thrust kred¢ion a, the thrust angler, the

polar angle ratéd and the flight path angle as function of time are illusttdbr N=1 and
N=2 cases that were presented in tables 7.13 and 7.14.
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Figure 7.56: Polar plot for N=1 (a, =0.04) and N=2 @, =0.03), § =30°, A6 =90°, a, =-20°,m values of

(0.01; 0.11; 0.21; 0.31; 0.41), acceleration invely square case (Poinsot’s spiral (hyperbolic cosé,
Earth-Mars flight

increasing values of m
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Figure 7.57:a plot for N=1 (a,=0.04) and N=2 @, =0.03), § =30°, Ag =90°, a,=-20°,m values of (0.01;

0.11; 0.21; 0.31; 0.41), acceleration inversely sape case (Poinsot’s spiral (hyperbolic cosine), Etr-
Mars flight
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Figure 7.58: a plot for N=1 (a,=0.04) and N=2 @ =0.03), § =30°, Af =90°, a,=-20° m values of

(0.01; 0.11; 0.21; 0.31; 0.41), acceleration invely square case (Poinsot’s spiral (hyperbolic cosé,
Earth-Mars flight
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Figure 7.59: @ plot for N=1 (a,=0.04) and N=2 @, =0.03), 8 =30°, AF =90°, a,=-20°,m values of

(0.01; 0.11; 0.21; 0.31; 0.41), acceleration invely square case (Poinsot’s spiral (hyperbolic coss),
Earth-Mars flight
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Figure 7.60: y plot for N=1 (a,=0.04) and N=2 @, =0.03), 8 =30°, A8 =90°, a,=-20° m values of

(0.01; 0.11; 0.21; 0.31; 0.41), acceleration invely square case (Poinsot’s spiral (hyperbolic coss),
Earth-Mars flight

From figure 7.57, the magnitude of the thrust acceteras higher for N=1 than for N=2
because the assumed normalised thrust accelerafiaas also higher for N=1 than for
N=2. Note that the thrust acceleration trend is similar to&heend. The values for the
thrust anglea are higher for N=1 than for N=2. For most of the intemptary flight for
both cases in figure 7.58, as for the other shapespteecraft is thrusting inwards in the

radial direction, while in the tangential direction it thrustshe positive direction. The

magnitude values of the flight path angteare smaller for N=2 than for N=1.

b) Tangential Case of the Thrust Profile

Figures 7.61 and 7.62 show the TOF and the total exeelecity for (30°, 140°, 250°,
360°) values of parametél and (90°, 150°, 210°, 270°, 340°) values of the eamrsfgle

A@ (N=0). The values used in these figures for the geatnparameterm were (0.01;
0.11; 0.21; 0.31; 0.41).
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Figure 7.61: TOF for g values of (30°, 140°, 250°, 360°) from left to tigin the figure, m values of

(0.01; 0.11; 0.21; 0.31; 0.41)A8 values of (90°, 150°, 210°, 270°, 340°) (N=0),dential thrust profile
(Poinsot’s spiral (hyperbolic cosine)), Earth-Marsflight
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Figure 7.62:V__ for g values of (30°, 140°, 250°, 360°) from left to figin the figure, m values of

(0.01; 0.11; 0.21; 0.31; 0.41)A8 values of (90°, 150°, 210°, 270°, 340°) (N=0),dantial thrust profile
(Poinsot’s spiral (hyperbolic cosine)), Earth-Marsflight

From figures 7.61 and 7.62, by increasing the armglethe TOF increases and the

differences in total excess velocity between differemtias of m decrease. The highest

difference in TOF between differef} for the same transfer angle amdis 0.0836 years,

while the highest difference in total excess velocityt.893%ny s. For higher values of
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m, the TOF increases, while the total excess velocity deeseforg =30° and § =140°,

and it increases fof] = 250° and g =360°.

Similar figures can be shown for 1 and 2 revolutionsngidhe same values for the

geometric parametem, for the transfer angldg and for the initial value ol as the

ones used for N=0.
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Figure 7.63: TOF for g values of (30°, 140°, 250°, 360°) from left to tigin the figure, m values of

(0.01; 0.11; 0.21; 0.31; 0.41\8 values of (90°, 150°, 210°, 270°, 340°), tangehtiaust profile
(Poinsot’s spiral (hyperbolic cosine)), Earth-Marsflight, N=1 and N=2
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Figure 7.64:V__ for g values of (30° 140°, 250°, 360°) from left to figin the figure, m values of

(0.01; 0.11; 0.21; 0.31; 0.42A@ values of (90°, 150°, 210°, 270°, 340°), tangehtiaust profile
(Poinsot’s spiral (hyperbolic cosine)), Earth-Marsflight, N=1 and N=2
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For N=1, the highest difference in TOF between differ@nfor the same transfer angle
and m is about 0.1371 years, while the highest difference ial ®xcess velocity is
0.7976kny s. For N=2, the highest difference in TOF between diffiérd for the same
transfer angle is about 0.1696 years, while the high#stehce in total excess velocity is

0.5334ny s. Therefore, when increasing N the TOF becomes mersitive to 8

changes, while the total excess velocity becomestsstive tod changes.

The TOF range for this Earth-Mars flight is from 0.30&2ns to 4.1081 years. The total
excess velocity has a minimum value 6f768%m/s and a maximum value of
15.3776ny s. The maximum differences in TOF between two consecwiaees of the

transfer angleA@ are about 0.27 years and for a certain number \ajlugons, these
differences increase when increasing the transfer afgle difference in terms of total
excess velocity between two consecutive transfer amgleighest betweed =90° and
AB =150° for N=0. The maximum value for these difference8.i8795%ny s for N=0 and

the minimum value i$0.03y s for N=2.

Tables 7.15 and 7.16 show the values for the TOFlandxcess velocity in an Earth-Mars

flight. Parameterd was chosen 30°, the transfer angl@ was chosen 90° and N was

taken 1 for the first table and 2 for the second one.

N=1 m=0.01 | m=0.11| m=0.21| m=0.31| m=0.41
V,om (KM 9 | 2.6984 2.4687 2.2125 2.0987 2.0794
V,.(km/ § 0.2619 0.2956 0.3681 0.4574 0.5520
V. (km/'§ | 24365 | 2.1731| 1.8444 1.6413 15274
TOF (years)| 1.5854| 1.6042 1.6350 1.6615  1.6810

Table 7.15: Excess velocities and TOF values for =6 =30°, Ag =90°,m values of (0.01; 0.11; 0.21;
0.31; 0.41), tangential thrust profile (Poinsot’'s giral (hyperbolic cosine)), Earth-Mars flight
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N=2 m=0.01 | m=0.11| m=0.21| m=0.31| m=0.41
V. ow (KM/ 9 | 1.4696 1.1940 1.0600 1.0454 1.0689
V,.(km/ § 0.0851 0.1150 0.1676 0.2248 0.2819
V., (km/ 9§ 1.3844 1.0791 0.8924 0.8206 0.7871
TOF (years) | 2.8476 2.9227 2.998 3.0426 3.0692

Table 7.16: Excess velocities and TOF values for 976 =30°, A@ =90°,m values of (0.01; 0.11; 0.21;
0.31; 0.41), tangential thrust profile (Poinsot’s giral (hyperbolic cosine)), Earth-Mars flight

For increasing values ah the TOF increases and the total excess velocityedses for
N=1. For N=2, the total excess velocity decreases unti0.31 and increases fom
between 0.31 and 0.41, as for the acceleration invesspigire case. The values for the
total excess velocity are higher when N=1 than when Nfe that the excess velocity

V,, decreases faster than the excess veldgjty increases, except for N=2, fan

[

between 0.31 and 0.41. As for the other shapes, thkeexcess velocity and the TOF are
smaller and higher, respectively, compared with thelexatén inversely square case of

the thrust profile.

In figures 7.65 to 7.68, the polar plot, the thrust Ered¢ion a, the thrust angler and the

polar angle rated as function of time are illustrated for N=1 and N=2 sat®t were

presented in tables 7.15 and 7.16.
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270

Figure 7.65: Polar plot for N=1 and N=2,8 =30°, A@ =90°,m values of (0.01; 0.11; 0.21; 0.31; 0.41),
tangential thrust profile (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight
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Figure 7.66:a plot for N=1 and N=2, § =30°, A8 =90°,m values of (0.01; 0.11; 0.21; 0.31; 0.41),
tangential thrust profile (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight
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Figure 7.67: a plot for N=1 and N=2, § =30°, Ad =90°,m values of (0.01; 0.11; 0.21; 0.31; 0.41),
tangential thrust profile (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight
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Figure 7.68: é plot for N=1 and N=2, § =30°, Af =90°,m values of (0.01; 0.11; 0.21; 0.31; 0.41),

tangential thrust profile (Poinsot’s spiral (hyperbolic cosine)), Earth-Mars flight

The magnitude of the thrust acceleration is higher for tmh for N=2 which means that
the magnitude of the instantaneous thrust required fongetdflight is smaller. Also, the

values for the thrust angle are smaller in magnitude for N=2 than for N=1.
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7.5. Sinusoidal spiral

Results for the TOF, the excess velocities and the ttleeeleration will be shown and
discussed for the sinusoidal spiral and for an EarthsMassion in this section. The thrust
profiles used in this analysis are similar to the ones deedhe shapes previously

presented.
a) Acceleration Inversely Square Case of the Thrust Rifile

Figures 7.69 and 7.70 show the TOF and the total exedssity when varying parameter

6 and the transfer angl&@, when the number of revolutions N is 0. In these &guthe
value used fom was 0.05, fora, was 0.09, the values far, were (-60°, -50°, -40°, -30°,
-20°), for the initial polar anglé were (120°, 200°, 280°, 360°) and for the transfglean
A@ were (90°, 150°, 210°, 270°, 340°).
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Figure 7.69: TOF for g values of (120°, 200°, 280°, 360°) from left tagfit in the figure, a, values of (-
60°, -50°, -40°, -30°, -20°A @ values of (90°, 150°, 210°, 270°, 340°) (N=0)0.05, a, =0.09,
acceleration inversely square case of the thrust pfile (sinusoidal spiral), Earth-Mars flight
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Figure 7.70:V__ for g values of (120°, 200°, 280°, 360°) from left tayhit in the figure, a, values of (-
60°, -50°, -40°, -30°, -20°\@ values of (90°, 150°, 210°, 270°, 340°) (N=10)0.05, a, =0.09,
acceleration inversely square case of the thrust pfile (sinusoidal spiral), Earth-Mars flight

From figures 7.69 and 7.70, the TOF increases whdddtal excess velocities decreases,

when increasing . The differences in TOF and in total excess velocitywben different
values of@ , decrease for higher values of the initial polar anfite highest difference in
TOF between differeng for the same transfer angle ang is 0.0369 years, while the
highest difference in total excess velocityOi8027mny s, which are higher than the ones
for the Poinsot’s spiral (hyperbolic sine). For highalues ofa,, the total excess velocity

decreases, while the TOF increases.

Figures for 1 and 2 revolutions, using the same vdirethe geometric parameten, for
the transfer angl& @ and for the initial values off and @ can be shown. The normalised

thrust acceleratiom, values used in figures 7.71 and 7.72 were 0.04 @8ifor N=1 and

N=2, respectively.
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Figure 7.71: TOF for g values of (120°, 200°, 280°, 360°) from left tagfit in the figure, a, values of (-
60°, -50°, -40°, -30°, -20°N\ & values of (90°, 150°, 210°, 270°, 340)0.05, acceleration inversely
square case of the thrust profile (sinusoidal spify Earth-Mars flight, N=1 ( a,=0.04), N=2 (@, =0.03)
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Figure 7.72:V__ for g values of (120°, 200°, 280°, 360°) from left tayfit in the figure, a, values of (-
60°, -50°, -40°, -30°, -20°\ & values of (90°, 150°, 210°, 270°, 340)0.05, acceleration inversely
square case of the thrust profile (sinusoidal spify Earth-Mars flight, N=1 ( a, =0.04), N=2 (@, =0.03)

In figures 7.71 and 7.72, for N=1, the highest diffeeem TOF between differer] for

the same transfer angle ang is about 0.0707 years, while the highest differencetal to
excess velocity i$7.70821/ s. For N=2, the highest difference in TOF between differe
6 for the same transfer angle aagl is about 0.0995 years, while the highest difference in
total excess velocity i98.7113r/ s. Therefore, for higher values of N, increases and

decreases its influence in the TOF and in the total exedssity, respectively.



Analytical Representations for Low-Thrust Traje@sr

The TOF range for this Earth-Mars flight is from 0.33Hang to 3.8613 years. The total
excess velocity has a minimum value @f182Cknys and a maximum value of
14.6387%ny s. The maximum differences in TOF between two consecwiees of the
transfer angleA@ are about 0.25 years and for a certain number \aflugons, these
differences increase when increasing the transfer amyke differences in terms of total
excess velocity between two consecutive transfer angleswiays highest between

AG=90° and A@=150° as for the other shapes. The maximum value for these

differences is5.604%ny s for N=0 and the minimum value is abot@.73ry s for N=2.

Tables 7.17 and 7.18 show the values for the TOFtlamdxcess velocity for an Earth-

Mars flight. Parameter§ , a,, A@ were assumed 120°, -20° and 90°, respectively. The
number of revolutions was taken 1 for the first table arfdr the second one. In table
7.17, the normalised thrust acceleratignwas 0.04, while in table 7.18, this parameter
was 0.03. Note that the values assumedafofor N=1 and N=2 are the minimum values

that can be used in both cases for this shape withoutgfatiegration problems for the

interval of input parameters considered.

N=1 m=0.01 | m=0.055| m=0.1 | m=0.145| m=0.19
V,.ow (K79 | 2.8108 2.7616 2.6656 2.5239 2.3377
V.. (kny § 0.6601 0.6781 0.7160 0.7791 0.8772
V,,(km'9 2.1507 2.0835 1.9496 1.7448 1.46Q05
TOF (years)| 1.6039 1.6093 1.6204 1.6384 1.6653

Table 7.17: The excess velocities and the TOF vakuitor N=1, § =120°, Ag =90°, a,=-20°,m values of

(0.01; 0.055; 0.1; 0.145; 0.19p, =0.04, acceleration inversely square case (sinusalgpiral), Earth-

Mars flight
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N=2 m=0.01| m=0.055| m=0.1 | m=0.145| m=0.19
V,ow (kM9 | 1.5861 1.5105 1.3054 1.0891 0.8450
V,.(km'g | 0.2891 0.3028 0.3386 0.4135 0.5727
V,,(km'g | 1.2970 1.2083 1.0068 0.6757 0.2723
TOF (years)| 2.8608 2.8815 2.9326 3.0302 3.21189

Table 7.18: The excess velocities and the TOF vakuitor N=2, § =120°, Ag =90°, a,=-20°,m values of

(0.01; 0.055; 0.1; 0.145; 0.19p, =0.03, acceleration inversely square case (sinusaigpiral), Earth-
Mars flight

From tables 7.17 and 7.18, the order of magnituddeftdtal excess velocity values is
10°kny s and 10" kny s. For increasing values ah, the total excess velocity decreases,
while the TOF increases. The values for the total exeelegity are higher for N=1 than
for N=2. Note that the excess velochy , decreases faster than the excess velagjty

increases, for both cases N=1 and N=2. For all valties cexcept form=0.19, V, , is

higher tharV,, ,, a situation that is attractive for the use of swing-bys.
In figures 7.73 to 7.77, the polar plot, the thrusteteation a, the thrust angler, the

polar angle ratéd and the flight path angle as function of time are illusttdbr N=1 and

N=2 cases that were presented in tables 7.17 and 7.18.
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Figure 7.73: Polar plot for N=1 (a, =0.04) and N=2 @ =0.03), § =120°, A8 =90°, a, =-20°,m values of
(0.01; 0.055; 0.1; 0.145; 0.19), acceleration ingaly square case (sinusoidal spiral), Earth-Marsifjht

increasing values of m
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Figure 7.74:a plot for N=1 (a,=0.04) and N=2 @, =0.03), § =120°, A8 =90°, a,=-20°,m values of
(0.01; 0.055; 0.1; 0.145; 0.19), acceleration ine&ly square case (sinusoidal spiral), Earth-Marsifiht
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Figure 7.75: a plot for N=1 (a,=0.04) and N=2 @,=0.03), §=120°, A8 =90°, a,=-20°m values of
(0.01; 0.055; 0.1; 0.145; 0.19), acceleration ing&ly square case (sinusoidal spiral), Earth-Marsifjht
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Figure 7.76: & plot for N=1 (a,=0.04) and N=2 @, =0.03), § =120°, AG =90°, a,=-20°,m values of
(0.01; 0.055; 0.1; 0.145; 0.19), acceleration ingaly square case (sinusoidal spiral), Earth-Marsifjht
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Figure 7.77: y plot for N=1 (a,=0.04) and N=2 @, =0.03), §=120°, A8 =90°, a,=-20° m values of

(0.01; 0.055; 0.1; 0.145; 0.19), acceleration ing&ly square case (sinusoidal spiral), Earth-Marsifjht
The magnitude of the thrust acceleration is higherNed than for N=2 because the
assumed normalised thrust acceleratigris also higher for N=1 than for N=2. Note that
the thrust acceleration trend is similar to thetrend, since the acceleration inversely
square case of the thrust profile is being consideree.values of the thrust angke are
higher for N=1 than for N=2. For most of the interptang flight for both cases in figure
7.75, the spacecraft is thrusting inwards in the radi&ction, while in the tangential

direction it thrusts in the positive directiorr (is negative, higher thar90°), like for the

other shapes.

b) Tangential Case of the Thrust Profile

In figures 7.78 and 7.79, the TOF and the total exeekgity are illustrated for different

values of parameted and of the transfer anglA8d (N=0). The values used in these

figures form were (0.01; 0.055; 0.1; 0.145; 0.19), rand forA& were the same as the

ones used for the acceleration inversely square case.
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Figure 7.78: TOF for g values of (120, 200°, 280°, 360°) from left to higin the figure, m values of
(0.01; 0.055; 0.1; 0.145; 0.19) ¢ values of (90°, 150°, 210°, 270°, 340°) (N=0),dential thrust profile

(sinusoidal spiral), Earth-Mars flight
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Figure 7.79:V__ for g values of (120, 200°, 280°, 360°) from left to hgin the figure, m values of
(0.01; 0.055; 0.1; 0.145; 0.190\8 values of (90°, 150°, 210°, 270°, 340°) (N=0),dential thrust profile

(sinusoidal spiral), Earth-Mars flight

Some remarks can be drawn from figures 7.78 and. BY9ncreasing the initial polar

angle €, the TOF increases, as for the acceleration inversgyre case. The highest

difference in TOF and in total excess velocity betwedferent values of§ occurs

betweengd =120° and € =200°. The highest difference in TOF between differéntor

15z



Analytical Representations for Low-Thrust Traje@sr

the same transfer angle andis 0.07458 years, while the highest difference in ttakss

velocity is 0.259&ny s. For higher values ofn, the total excess velocity decreases, while

the TOF increases.

Similar figures can be shown for 1 and 2 revolutionsngigshe same values for the

geometric parametem, for the transfer angl&g and for the initial value ol as the

ones used for N=0.
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Figure 7.80: TOF for g values of (120, 200°, 280°, 360°) from left to hgin the figure, m values of

(0.01; 0.055; 0.1; 0.145; 0.19)8 values of (90°, 150°, 210°, 270°, 340°), tangehtiaust profile
(sinusoidal spiral), Earth-Mars flight for N=1 and N=2
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Figure 7.81:V__ for g values of (120, 200°, 280°, 360°) from left to hgin the figure, m values of

(0.01; 0.055; 0.1; 0.145; 0.19)8 values of (90°, 150°, 210°, 270°, 340°), tangehtiaust profile
(sinusoidal spiral), Earth-Mars flight for N=1 and N=2
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Similar remarks to the ones given for N=0 can be drawrfifjures 7.80 and 7.81. The

differences between the minimum and the maximum gaddier, in total excess velocity

and in TOF increase with the number of revolutions @sd with the transfer anglaé.
Note that the TOF and the total excess velocity, for N¥d. =2, become more sensitive

to &4

change than for N=0 and for the acceleration inversgbare case. For N=1, the
highest difference in TOF between differéhtfor the same transfer angle andis about
0.3946 years, while the highest difference in total exgefocity is1.350&ny s. For N=2,
the highest difference in TOF between differéhtfor the same transfer angle and is

about 9.7278 years, while the highest differencetal excess velocity i9.640ny s.

The TOF range for this Earth-Mars flight is from 0.33@&&ug to 14.9125 years. The total
excess velocity has a minimum value 6f422%m/s and a maximum value of
14.179%kny s. The maximum differences in TOF between two valfeh® transfer angle

A@ are about 7.1279 years, which much higher than footier shapes. The difference in
terms of total excess velocity between two consecutamsfer angles is highest between
AG =90°

5.752kny s for zero value of N and the minimum value4i8180y s for 2 revolutions.

and A@=150° for N=0. The maximum value for these differences is

Tables 7.19 and 7.20 show the values for the TOFtlamdxcess velocity for an Earth-

Mars flight. Parameteg was assumed 120°, the transfer anyte was assumed 90° and

the number of revolutions was taken 1 for the first talole 2 for the second one.

N=1 m=0.01 | m=0.055| m=0.1 | m=0.145| m=0.19
V. ow (km/ 9 | 2.7085 2.6572 2.5579 2.4126 2.2241
V.. (km/ 9§ 0.5746 0.5935 0.6332 0.6989 0.800Q2
V., (km/ 9 2.1339 2.0638 1.9247 1.7137 1.4239
TOF (years) | 1.6259 1.6315 1.643p 1.662 1.6899

0.145; 0.19), tangential thrust profile (sinusoidaspiral) Earth-Mars flight

15t

Table 7.19: Excess velocities and TOF values for =6 =120°, A8 =90°,m values of (0.01; 0.055; 0.1,
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N=2 m=0.01| m=0.055| m=0.1 | m=0.145| m=0.19

V., total (km/ Q 1.4787 1.4015 1.2303 0.9596 0.6214

V,,(kw'g | 02098 | 0.2256 | 0.2660 0.347§  0.5146

V,,(km/'9 | 1.2690 | 1.1759 | 0.9643  0.6120  0.1068

TOF (years) 2.8957 2.9170 2.9693 3.0690 3.2602

Table 7.20: Excess velocities and TOF values for 876 =120°, A8 =90°,m values of (0.01; 0.055; 0.1,
0.145; 0.19), tangential thrust profile (sinusoidaspiral) Earth-Mars flight

From tables 7.19 and 7.20, the order of magnituddeftdtal excess velocity values is
10° kny s and 10 kny <. For increasing values ah, the total excess velocity decreases,
while the TOF increases. The values for the total exagssity are higher when N=1 than
when N=2. Note that the excess velodty, decreases faster than the excess velagity
increases. As for the other shapes, compared witladbeleration inversely square case,
the TOF and the total excess velocity are higher andller for the tangential case,

respectively.

In figures 7.82 to 7.85, the polar plot, the thrust kezeéion a, the thrust angler and the
polar angle rated as function of time are illustrated for N=1 and N=2 sat®&t were

presented in tables 7.19 and 7.20.
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Figure 7.82: Polar plot for N=1 and N=2,6 =120°, Ag =90°,m values of (0.01; 0.055; 0.1; 0.145; 0.19),
tangential thrust profile (sinusoidal spiral) Earth-Mars flight

increasing values of m
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Figure 7.83:a plot for N=1 and N=2, § =120°, A8 =90°,m values of (0.01; 0.055; 0.1, 0.145; 0.19),
tangential thrust profile (sinusoidal spiral) Earth-Mars flight
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Figure 7.84: o plot for N=1 and N=2, § =120°, Ag =90°,m values of (0.01; 0.055; 0.1; 0.145; 0.19),
tangential thrust profile (sinusoidal spiral) Earth-Mars flight
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Figure 7.85: @ plot for N=1 and N=2, 6=120°, A8 =90°,m values of (0.01; 0.055; 0.1; 0.145; 0.19),
tangential thrust profile (sinusoidal spiral) Earth-Mars flight

From figure 7.83, the magnitude of the thrust acceteras higher for N=1 than for N=2
which means that the magnitude of the instantaneous teqisred for a longer flight is
smaller. Also, the values for the thrust angleare smaller for N=2 than for N=1.

7.6. Exponential Sinusoid

In this section 7.6, results for the TOF, the exces<itede and the thrust acceleration will

be shown and discussed for the exponential sinusoidasreh Earth-Mars mission. The
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thrust profiles used in this analysis are the sameeasrths used for the shapes previously

presented.
a) Acceleration Inversely Square Case of the Thrust Rifile

Figures 7.86 and 7.87 show the TOF and the total exeeksity when changing
parameterk, and the transfer angl&d, when N=0. Note that the initial polar angh is
zero degrees. The values used in these figures éoggbmetric parametde, were (0.1;
0.15; 0.2; 0.25), for the initial value af were (20°, 30°, 40°, 50°, 60°), for the initial flight
path angley, was 0° and for the transfer angl@ were (90°, 150°, 210°, 270°, 340°). The

normalised thrust accelerati@y value used in figures 7.86 and 7.87 was 0.07.

Note that values used for the geometric param&emwere not chosen according to
equation (5.4) presented in chaptemMy;,, =1/(2k,). Instead, the interval of values fly

was selected because it could be usedNor0,1,2 and for different values of transfer

angles A@ without causing integration errors (chapter 6), while ushwey acceleration
inversely square case. Through equation (5.4), thenmimi value for the geometric

parameterk, can be computed for a trajectory that has its minimadiius (pericentre) at

the initial point of the thrust arc and its maximum radius ¢aptre) when the spacecraft

reach the final point of thrust arc. In this master ihethis equation was not used as a
constraint, i.e., smaller values & than the ones given by equation (5.4) can still be
picked. In this way, feasible solutions with these vahfek, are still taken into account.

In order to better compare the results between the adietemaversely square case and

the tangential case, the same valuek,o0f0.1; 0.15; 0.2; 0.25) were used for this last case

of the thrust profile (section 7.6b).

Note also that the values chosen for the initial thrusteaog were positive, unlike the

values chosen for the other five shapes. For the otlagres, integration errors occur if the

positive values are used, however for the exponentiassid if the negative values of,
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are assumed, the total excess velocity values will beehighmpared with the situation

where positive ones are picked.
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Figure 7.86: TOF for k, values of (0.1; 0.15; 0.2; 0.25) from left to righin the figure, a, values of (20°,
30°, 40°, 50°, 60°)A8 values of (90°, 150°, 210°, 270°, 340°) (N=B)70°, y,=0°, a =0.07, acceleration
inversely square case of the thrust profile (expomial sinusoid), Earth-Mars flight
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Figure 7.87:V__ for k, values of (0.1; 0.15; 0.2; 0.25) from left to righin the figure, a, values of (20°,

300, 40°, 50°, 60°)A8 values of (90°, 150°, 210°, 270°, 340°) (N=0)70°, y,=0°, a =0.07, acceleration
inversely square case of the thrust profile (expomial sinusoid), Earth-Mars flight
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Some remarks can be drawn from figures 7.86 and. B87increasing the geometric
parameterk,, the TOF increases, while the total excess velocity dece&ise differences

in TOF and in total excess velocity between differesmues of k, increase for higher
values of the transfer angled. The highest difference in TOF between different vabfes
k, for the same transfer angle aagl is 0.0187 years, while the highest difference in total
excess velocity i9.6295ny s. For increasing values af,, the TOF increases while the

total excess velocity decreases for transfer angles esnththn 210° (inclusive) and it

decreases for transfer angles higher than 210°.

Similar figures can be shown for 1 and 2 revolutions, gudhre same values for the
geometric parametek,, for AG, a, and y,. The normalised thrust acceleratian values

used in figures 7.88 and 7.89 were 0.04 and 0.0:Nfdr and N=2, respectively. Unlike
for the other shapes, the normalised thrust acceleratibigher for N=2 than for N=1.

This is due to integration errors that occur for thengetwic parameteik, and for the

initial flight path angley; chosen.

a0° 150° 210° 2707 340° ity 150° 210° 270° 340°

transfer angle s &, = [0.1:0.15:0.2;025] transfer angle ¢ &, = [0.10.15,0.2;025]

Figure 7.88: TOF for k, values of (0.1; 0.15; 0.2; 0.25) from left to righin the figure, a, values of (20°,
30°, 40°, 50°, 60°)A8 values of (90°, 150°, 210°, 270°, 3409)=0°, 8 =0°, acceleration inversely square
case of the thrust profile (exponential sinusoid)zarth-Mars flight, N=1 ( a,=0.04) and N=2 @, =0.05)
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245

wox ®
o

total excess velcoity (km/s)
total excess velcoity (km/s)

= O =307

a0+ 150° 210° 270 340° a0+ 1500 210* L 340°

transfer angle &, =[0.1;,0.15:02:025] transfer angle 7k, =[0.1,0.15:02;025]

Figure 7.89:V__ for k, values of (0.1; 0.15; 0.2; 0.25) from left to righin the figure, a, values of (20°,
30°, 40°, 50°, 60°)A8 values of (90°, 150°, 210°, 270°, 3409)=0°, 8 =0°, acceleration inversely square
case of the thrust profile (exponential sinusoid)zarth-Mars flight, N=1 ( a,=0.04) and N=2 @, =0.05)

Similar remarks as the ones given for N=0 can be dfawfigures 7.88 and 7.89. Note
that, unlike for N=0 and N=1, for N=2 and betwekn=0.2 and k, =0.25, the total
excess velocity increases. For N=1, the highest difterém TOF between differerd, and

for the same transfer angle ang is about 0.2311 years, while the highest difference in
total excess velocity i4.272%ny s. These differences are considerably high compared
with the ones for the sinusoidal spiral, for the samesthpuofile. For N=2, the highest
difference in TOF between differelt, and for the same transfer angle amdis about

2.6208 years, while the highest difference in total sxaelocity is about.3kny s.

The TOF range for this Earth-Mars flight is from 0.27@hng to 6.4256 years. The total
excess velocity has a minimum value 6f3715%m/s and a maximum value of
20.253%ny s. As expected, the minimum value for the TOF and theimmam value for

the total excess velocity occur for the smallest traresfgle — 90° (N=0). The maximum
value for the TOF occurs for the highest transfer apgisented — 340° (N=2), while the
minimum value for the total excess velocity occurs for tfamsfer angle 210° (N=2),

unlike for the other shapes.
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The maximum difference in TOF between two consecwialaes of the transfer angled

is about 1.41 years. The maximum value for theserdiffees is10.966Xkny s for N=0 and

the minimum value is about6.26ny s for 2 revolutions.

Tables 7.21 and 7.22 show the values for the TOFtlamdexcess velocity for an Earth-
Mars flight. Parametek, was chosen 0.01y, was chosen 200\8 was chosen 90° and N
was taken 1 for the first table and 2 for the secorel ém these tables, the normalised
thrust acceleratior, was 0.04. Note that the values assumedafoior N=1 and N=2 are
the minimum values that can be used in both cases fashthge without facing integration

problems for the interval of the geometric paramgteand for the other input parameters

considered.
N=1 y,=0° | ,=0.75°| y,=1.5° | ), =2.25¢| y,=3°
V.o (kM 9 | 2.5808 2.6746 2.7666 2.8564 2.9449
V,.(km'g | 15x10*| 0.3920 | 0.7834 1.1742 1.5644
V,,(km's | 25806 | 2.2826 1.9832 1.6822 1.3805
TOF (years)| 1.5476 1.5874  1.6298 1.673 1.7192

Table 7.21: The excess velocities and the TOF vakitor N=1, k,=0.01, A8 =90°, a,=20°, y, values of
(0°;, 0.75% 1.5°; 2.25° 3%)a, =0.04, §=0°, acceleration inversely square case (exponertsanusoid),
Earth-Mars flight

N=2 y,=0° | y;=0.75°| y,=1.5°| y,=2.25° ), =3°
V.o (kM 9 | 1.6411 1.6292 1.7236 1.848( 2.0391
V,.(km'9 | 0.1418 | 0.4212| 0.7985 1.1831 1.5695
V,,(km'g | 1.4994 1.2080 | 0.9252  0.6649 0.4696
TOF (years)| 2.7789| 2.9085  3.0464  3.193 3.3498

Table 7.22: The excess velocities and the TOF vakitor N=2, k,=0.01, A =90°, a,=20°, y, values of

(0°; 0.75°% 1.5°; 2.25° 3%)a, =0.04, § =0°, acceleration inversely square case (exponertsanusoid),
Earth-Mars flight
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For increasing values ah, the total excess velocity and the TOF increase. Theegdbr

the total excess velocity are higher for N=1 than for N¥@e that the excess veloch ,

increases faster than the excess veloéjty decreases, for both cases N=1 and N=2.

In figures 7.90 to 7.94, the polar plot, the thrust kred¢ion a, the thrust angler, the
polar angle ratéd and the flight path angle as function of time are illusttdte N=1 and

N=2 cases that were presented in tables 7.21 and 7.22.

270 270

Figure 7.90: Polar plot for N=1 and N=2,a,=0.04, k,=0.01, A8 =90°, a,=20°, y, values of (0° 0.75°

1.5°; 2.25°; 3°),8 =0°, acceleration inversely square case (exponentsnusoid), Earth-Mars flight
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a(m/s?)

Figure 7.91:a plot for N=1 and N=2, a, =0.04, k,=0.01, A@ =90°, a,=20°, y, values of (0° 0.75°,

alpha(degrees)
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2.25°% 3°),8 =0°, acceleration inversely square case (exponerit&nusoid), Earth-Mars flight
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Figure 7.92: a plot for N=1 and N=2, a, =0.04, k,=0.01, Ag =90°, a,=20°, y, values of (0°; 0.75°; 1.5°,

2.25°% 3°),8 =0°, acceleration inversely square case (exponeritgnusoid), Earth-Mars flight
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increasing values of gammal
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Figure 7.93: 8 plot for N=1 and N=2, a,=0.04, k,=0.01, A@ =90°, a, =20°, y, values of (0% 0.75°; 1.5°;

2.25°% 3°),8 =0°, acceleration inversely square case (exponeritgnusoid), Earth-Mars flight

gammaldegraes)
w
=
|
gammaldegrees)

increasing values of gammat increasing values of gamma
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Figure 7.94: y plot for N=1 and N=2, a, =0.04, k,=0.01, Ag =90°, a,=20°, y, values of (0°, 0.75°; 1.5°

2.25°% 3°),8 =0°, acceleration inversely square case (exponerit&nusoid), Earth-Mars flight

From figure 7.91, although the assumed normalised thrasteaationa, is the same for
N=1 and for N=2, differences in values of the instaataus thrust acceleration between

the two cases of N. Note that the thrust acceleration iesiilar to thed trend. The
values of the thrust angler are higher for N=1 than for N=2. For most of the
interplanetary flight for the case N=1 in figure 7.92, $hpacecraft is thrusting inwards in
the radial direction, while in the tangential direction it thsustthe positive directiona

is negative, higher than90°), as for the other shapes.
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b) Tangential Case of the Thrust Profile

Figures 7.95 and 7.96 show the TOF and the total exeeksity when changing

parameterk, and the transfer anglagd (N=0). The values used in these figures for the
geometric parametek, were (0.1; 0.15; 0.2; 0.25), for the initial flight patrgkny, were

(0°; 0.75°; 1.5°; 2.25°; 3°) and for the transfer adglewere (90°, 150°, 210°, 270°, 340°).
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transfer angle /&, = [0.1;0.15:02;025]

Figure 7.95: TOF for k, values of (0.1; 0.15; 0.2; 0.25) from left to righin the figure, ), values of (0°
0.75°% 1.59 2.25°; 3°)9 =0°, A& values of (90°, 150°, 210°, 270°, 340°) (N=0),dential thrust profile
(exponential sinusoid), Earth-Mars flight
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total excess welcoity (km/s)

90° 150° 2100 270° 3400

transfer angle ¢k, =[0.1;0.15:02;025]

Figure 7.96:V__ for k, values of (0.1; 0.15; 0.2; 0.25) from left to righin the figure, ; values of (0%
0.75° 1.59 2.25°; 3°)9 =0°, A& values of (90°, 150°, 210°, 270°, 340°) (N=0),dential thrust profile
(exponential sinusoid), Earth-Mars flight

From figures 7.95 and 7.96, by increasing the geompaiameteik,, the TOF increases,

while the total excess velocity decreases, as fordbeleration inversely square case. For

increasing values of;, the TOF increases, while the total excess velocity deesedhe
highest difference in TOF between differeky for the same transfer angle amd is
0.02547 years, while the highest difference in total exeefocity is 0.534%ny s. The
differences in TOF and in total excess velocity betwe#earent values ofy, increase and

decrease, respectively for higher values of the traasigle AG .

Similar figures can be shown for 1 and 2 revolutionshgishe same values for the

geometric parametek, , for the transfer angl&& and for the initial flight path anglg as

the ones used for N=0.
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TOF (years)
TOF (years)

o0° 150% palig 2790 3400 Bl 150° 210" 270° 340%

transfer angle k, =[0.:0.15:0.2:025] transfer angle / &, =[0.1,0.15;02:025]

Figure 7.97: TOF for k, values of (0.1; 0.15; 0.2; 0.25) from left to righin the figure, y, values of (0°
0.75°; 1.5°; 2.25°; 3°)f =0°, A@ values of (90°, 150°, 210°, 270°, 340°), tangehtiaust profile
(exponential sinusoid), Earth-Mars flight, N=1 andN=2
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Figure 7.98:V__ for k, values of (0.1; 0.15; 0.2; 0.25) from left to rigtin the figure, ), values of (0%
0.75°; 1.5°; 2.25° 3°)g =0°, Ad values of (90°, 150°, 210°, 270°, 340°), tangehthaust profile
(exponential sinusoid), Earth-Mars flight, N=1 andN=2

Similar remarks to the ones given for N=0 can be drawrfifores 7.97 and 7.98. For

N=1, the total excess velocity decreases with the istorgaof k, for transfer angles

smaller or equal to 150°. For higher valuesAd@, the total excess velocity increases for

values of k, higher than 0.15 (for the highest values gf). For N=1, the highest
difference in TOF between differeRf for the same transfer angle aagl is about 0.3825
years, while the highest difference in total excess itglag 1.1566km) s. For N=2, the

highest difference in TOF between differdgtfor the same transfer angle aagl is about
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5.5085 years, while the highest difference in totakessovelocity is3.188%ny s. So, for
higher values of N, the TOF and the total excess veldi@tsome more sensitive to,

variation.

The TOF range for this Earth-Mars flight is from 0.27%2ng to 10.6231 years. The total
excess velocity has a minimum value 6f273%m/s and a maximum value of
20.223%ny s. As expected, the minimum value for the TOF and thgimum value for

the total excess velocity occur for the smallest tranafegle — 90° (N=0); while the
minimum value for the total excess velocity occurs for tfamsfer angle 210° (N=2),

unlike for the other shapes.

The maximum difference in TOF between two consecwtalaes of the transfer angled

is about 3.1011 years. For a certain number of rewamistithese differences increase when
increasing the transfer angle. The difference in termstaf excess velocity between two
consecutive transfer angles is highest betwAéh=90° and A8 =150° for N=0. The

maximum value for these differencesli8.485kny s for N=0 and the order of magnitude

of the minimum value i40™* ny s for 2 revolutions.

Tables 7.23 and 7.24 show the values for the TOFtlamdxcess velocity for an Earth-

Mars flight. Parametek, was assumed 0.01, the transfer anfyie was assumed 90° and

the number of revolutions was taken 1 for the first tabi@ 2 for the second one.

2.25°% 3°),8 =0°, tangential thrust profile (exponential sinusai), Earth-Mars flight

17C

N=1 y,=0° | ;=075 p,=1.5°| ;=225 p,=3°
V.o (kM 9 | 2.7967 2.6945 2.7448 2.8113 2.8818
V.. (km/ 9§ 0.2057 0.4206 0.7882 1.1721 1.5597
V,,(kn/ § | 2.5909 2.2739 1.9566 1.6393 1.3221
TOF (years) | 1.5652 1.6072 1.6506 1.695 1.7420

Table 7.23: Excess velocities and TOF values for N=k,=0.01, Ag =90°, y, values of (0°; 0.75° 1.5°
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N=2 V=00 | ), =0.75°| y,=1.5° | ), =2.25¢| ), =3°
Vooa (KW 9 | 1.4997 | 15122 | 15841  1.6577  1.7348
V,,(km/9 | 0.0631 | 0.3918| 0.7800  1.1695  1.5590
V.,(km/9 | 1.4366 | 1.1204| 0.8041  0.4882  0.1758
TOF (years)| 2.8267| 2.9597| 3.1006  3.2498  3.4081

Table 7.24: Excess velocities and TOF values for ®B=k,=0.01, Ag =90°, y, values of (0°; 0.75° 1.5°
2.25°% 3°),8 =0°, tangential thrust profile (exponential sinusai), Earth-Mars flight

For increasing values of;, the TOF and the total excess velocity increase for Fo2.
N=1, the total excess velocity decreases betweerD° and y; =0.75° while it increases
for values of )y, between 0.75° and 3°. The opposite situation occurrettiéosicceleration

inversely square case.

In figures 7.99 to 7.102, the polar plot, the thrustederationa, the thrust angler and 8

as function of time are shown for N=1 and N=2 casesented in tables 7.23 and 7.24.

270

270

Figure 7.99: Polar plot for N=1 and N=2,k,=0.01, Ag =90°, y, values of (0°; 0.75°; 1.5°; 2.25°; 3°),
g =0°, tangential thrust profile (exponential sinusad), Earth-Mars flight
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Figure 7.100:a plot for N=1 and N=2, k,=0.01, A8 =90°, y, values of (0° 0.75°; 1.5°, 2.25°; 3°% =0°,
tangential thrust profile (exponential sinusoid), Earth-Mars flight
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Figure 7.101: a plot for N=1 and N=2, k,=0.01, A8 =90°, y, values of (0°; 0.75°; 1.5°; 2.25°; 3°} =0°,
tangential thrust profile (exponential sinusoid), Earth-Mars flight



Analytical Representations for Low-Thrust Traje@sr

increasing values of gammat increasing values of gammai
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Figure 7.102: é plot for N=1 and N=2, k,=0.01, A8 =90°, y, values of (0°; 0.75°; 1.5°; 2.25°; 3°f =0°,

tangential thrust profile (exponential sinusoid), Earth-Mars flight

The values for the thrust angte are smaller for N=2 than for N=1. The magnitude of the
thrust acceleration is higher for N=1 than for N=2 whickans that the magnitude of the

instantaneous thrust required for a longer flight isllEena
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7.7. Conclusions

Some conclusions can be drawn from the analyse ddhe previous sections.

The variation of the parametél does not have any influence on the performance of the
spacecraft in terms of TOF, thrust acceleration and exggscities for the Archimedean
spiral and for the logarithmic spiral, for both thrustfiles analysed in this chapter and for
the constant acceleration case of the thrust profile pegs@mtappendix D. In this way, for

these two shapeg)] is not part of the class of variabl&s(chapter 6) that are required as

an input for a low-thrust problem.

As already mentioned in this chapter, due to integratiobl@nos (chapter 6), feasible
shapes can only be found for certain combinationav&imeters. For the lowest value of
the normalised thrust acceleration in the accelerahwarsely square case of the thrust
profile (to obtain a feasible shape), the availablerwadeof values for the geometric
parameter is always narrower than the interval for theetatrad case. However, in order to
have a better comparison between different thrustlpspfthe same values for the input
variables (transfer angle, geometric parameters and |irptéar angle) were used.
Therefore, a narrower interval of values for the gaomearameters was used for the
tangential case compared with the available intervaldbakd have been chosen for this

thrust profile.

Note that for the logarithmic spiral and for the Poinsotisasghyperbolic cosine), for the

examples given in this chapter, the excess velocity attdinget planet \(,,) is
significantly higher than the excess velocity at the depaptareet {/,,,). This situation is

attractive for a mission where swing-bys are used. iBdhse, there is no need to slow

down the spacecraft, therefore high values of the exeglscityV, , are preferable if the

purpose is to use gravity assist at that planet andrbittimsertion.
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Table 7.25 shows the range for the thrust acceleratidrilee minimum values for the total
excess velocity for the cases presented in this chaptefoaride acceleration inversely
square and tangential cases of the thrust profile.

Shapes Minimum V. Range fqra Minimum V. Rangg fora
lerati : (acceleration inversely ¢ tial ' (tangential case)
uceloraon | are ey | (ansematease] (7
kny s
case) kny s) (/<) ( :
ArCl;LI’Ti:‘(;?ean 12767 "‘08 _ 24(10‘4 12285 ~02 _ 3210‘4
i
Poinsot’; spiral 1.2754 ~1 - 310" 1.2349 ~0.2 — 5.5%10"
(hyperbolic sine)
Pomsot’_s splr_al 1.1663 ~0.8 — 2.410™ 0.7682 ~0.8 — 1410°
(hyperbolic cosine
Sinusoidal Spil’al 1.1820 ~0.8 — 24(10‘4 0.4223 ~10‘5 _ l.4x10_4
E);ipr?unseorilgal 0.3715 ~1— 24(10‘4 0.2732 ~10‘5 _ l.6x10_4

Table 7.25: Minimum values for the total excess vetity and the range of values for the thrust
acceleration, for the acceleration inversely squarand tangential cases of the thrust profile

In the tangential thrust case, for the examples given, ithes@dal spiral and the
exponential sinusoid have the lower values of thrustleat®n, while the Poinsot’s spiral
(hyperbolic sine) and the Archimedean spiral havehilghest. In terms of total excess
velocity, the sinusoidal spiral and the exponential sinugdoidvshe lowest values, while
the Poinsot’s spiral (hyperbolic sine) has the higheste that this does not mean that this
last shape performs worse that the other shapes. Thisnoe#ns that for the input
parameters chosen, this shape showed the worst rd3uftag this sensitivity analysis, it
was not possible to understand completely the influeniceghe input parameters

(8,06,K) on the shapes’ performance (TOF, excess veloatesthrust acceleration).

For instance, the excess velocity variation trend with tioengéric parameter might not be
monotonous (the logarithmic spiral (table 7.7) and the eaptal sinusoid (table 7.23))

for a certain value of the transfer an@ié, but it can be for other values A6 .

In the acceleration inversely square thrust profile clasehe examples given (table 7.25),
the exponential sinusoid has the lowest value of the #taéss velocity, while the
Archimedean spiral has the highest one. The shapdsrmpance in terms of TOF, thrust
acceleration and excess velocities depends on the miniallowed value for the
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parametera, for certain combination of input parameters. For higladues of the transfer
angle A@ and complete number of revolutions N, the minimum edbr a, that can be

selected without having integration errors (chapter 6egdly decreases. However, this
value not only depends oA@ and N, but also on the geometric parameter and on the
initial values for@ and a that are being picked. Often during this sensitivity anslys
when changing the available interval of values for anmut parameter, the interval of
available values for the other input parameters is @&ffledn this way, it is not possible to
limit the search space in order to avoid integration lprab, since the available interval of
values for each input variable constantly varies. In @raptand 9, an optimisation
procedure will be done in order to compare the shgpedbrmance. Due to the fact that
there will be no reduction on the search space of thet wvgriables, computation time of
this optimisation procedure will be significantly larger conggwith the tangential case,
since there are two more input variables and there wilinbegration problems that will

slow down the program.

Comparing the performance between the accelerationsielyesquare case of the thrust
profile and the tangential case, the instantaneous thoegtleration values are generally
higher for the first case than for the tangential orlsoAthe total excess velocity values
are generally smaller for the tangential case thathfoacceleration inversely square case
of the thrust profile. Note that although in these examplesicceleration inversely square
case performed worse than the tangential case, it ddesiean that this thrust profile

should be discarded. An optimisation procedure is stillireduor both cases in order to

compare them and to find which one yields the bestteesu
Table 7.26 shows the minimum values for the total excdssityeand for the normalised

thrust acceleration for the example cases presenttiisichapter and in appendix D, for

the acceleration inversely square and constant actefecases of the thrust profile.

17¢



Analytical Representations for Low-Thrust Traje@sr

Shapes Minimum V__ Minimum a, Minimum V__ Minimum a,
(acceleration inversel (acceleration | (constant acceleration (constant
square case)k{ty s) inversely square case) acceleration
case) (kny's) case)
Archimedean 1.2767 0.02 1.4630 0.02
spiral
Logarithmic 1.2397 0.02 1.4021 0.02
spiral
Poinsot’s spiral 1.2754 0.02 2.5842 0.04
(hyperbolic sine)
Poinsot’s spiral 1.1663 0.03 1.3095 0.02
(hyperbolic
cosine)
Sinusoidal spiral 1.1820 0.03 1.3107 0.02
Exponential 0.3715 0.04 0.3772 0.03
sinusoid

Table 7.26: Minimum values for the total excess vetity and for the normalised thrust acceleration,
for the acceleration inversely square and constargcceleration cases of the thrust profile

Regarding the constant acceleration case of the thrusiepthe minimum total excess
velocity values are always higher than for the accelerativersely square case of the
thrust profile. Note that the values for the input vddabin both cases were the same in
this chapter and in appendix D, except for the normalisedt acceleration ones. For all
shapes, except for the Poinsot’s spiral (hyperbolic sittgd minimum values for the
normalised thrust acceleration used without causing irtiegrarrors are higher or equal
for the acceleration inversely square case of the throfitepthan for the constant thrust
one. Generally, for increasing values of the tranafgle A@ and of the complete number
of revolutions N, the difference of values for the minnmnormalised thrust acceleration
between these two cases of the thrust profile decrdasethe Archimedean spiral and for

the logarithmic spiral, the values used fay are the same for both cases of the thrust
profile, for N=2. Note that the thrust acceleration regplifor the constant acceleration
case is significantly higher since the differences gn between this case and the
acceleration inversely square one are not significanti hind a = 30/1/ 7 = const (for

the constant acceleration case), while for the accelarati@rsely square case, the thrust
acceleration decreases witfr?. Also, the total excess velocity is, generally, highentha

for the acceleration inversely square case. For thesems, the analysis for the constant
acceleration case of the thrust profile will not carry od an optimisation procedure will
not be done in chapter 8.
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Figure 7.103: Representation of the dynamic paramets: thrust acceleration (a ), the velocity of the
spacecraft (V ), the thrust angle (a ) and the flight path angle (y)

One important remark was present in all sections of thapter and in appendix D for the
acceleration inversely square and constant acceleratises of the thrust profile: the
negative values of the thrust angte. Figure 7.103 illustrates the situation that will be
discussed in this paragraph. In all shapes, the tangle a is negative and it can reach
values of -70°; this means that the spacecraft is almoditittguinwards in the radial
direction, in the same direction as the gravitational aca@be, while in the tangential
direction it thrusts in the positive direction. These resalts valid since they were
benchmarked by a test program. The only explanatiorthiese negative values of the
thrust angle is that in order to satisfy the initial amlificonditions imposed by the low-
thrust problem (Earth-Mars flight), the spacecraft wilvddo thrust inwards in the radial

direction. Note that all the initial values for the thrust anglg were negative, except for

the exponential sinusoid. Negative values were chdsergause otherwise the trajectory
would not be computed, due to integration problems. Naefor the tangential case, the
magnitude of the thrust angle is not higher than 17%floshapes. On the other hand,

values for the thrust angle will have to reach at least #i08rder for the spacecraft to

thrust according t@ = g, i/ r* or a= a, u/ r? = const.
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8. Optimisation

Optimisation refers to a study of a problem, where “thst”beut of many solutions is
sought. In an interplanetary mission where a spacettagdictory is being designed, “the
best” means the trajectory that can perform “better” thay other possible trajectory.
Performing “better” means that the trajectory chosen miags or minimizes a certain
objective function. Often, for a trajectory design pewb) the fuel mass consumption and
the time of flight (TOF) functions are the ones thatdht® be minimized. Note that the
optimized trajectory is chosen among possible trajegprie., among trajectories that
respect constraints that the user imposes for the prolfleminstance, constraints can be
given for the maximum TOF, the maximum total excessaisl or interval of time for the

launch date.

In sections 8.1 and 8.2, an overview of some optitimisanethods and a brief description
about multi-objective optimisation will be presented, respelgtiven explanation about

the optimisation procedure implemented in this master thelsisergiven in section 8.3.

8.1. Optimisation Methods

Optimisation methods are divided in two categori®omen, 2007] the analytical
methods that have a direct solving and the numerical adsththat need an iteration
procedure to be solved. Among the numerical methtiise are three main types
[Melman, 2007]

* Calculus-based
*  Enumerative

« Random search

These three methods will be discussed in detail in th@afimg sections.
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8.1.1. Calculus-Based Methods

Calculus- or gradient-based techniques are optimisaigthods that use the derivatives of
the objective function. Calculus-based methods anelelivin two main classes: the direct
methods and the indirect methoflglelman, 2007] The indirect methods find the
maximum or the minimum of a certain objective functignsetting its gradient equal to
zero, while the direct methods find the optimal solutignmoving in the direction of the
largest gradienfMelman, 2007] Unfortunately, these methods are only efficient if the
objective function is unimodal, i.e., it has only one lanaximum or minimum. To better
explain this situation, figure 8.1 illustrates a functibwat is multimodal, i.e., that has
multiple minima and maxima. For instance, if the seamhtlie global minimum starts
near one of the local minima, the procedure will riotl foverall the optimal one. This
means that frequently the use of calculus-based methdbsikind of functions results in
the determination of a local optimum. Note that the fact tleaivatives are required
represents a drawback in these methods. In many pmebléhe expressions for the

derivatives are quite complex and also present singularities

Figure 8.1: A multimodal function: f (x,y) = 3(1— )5) e U 10( {5 %- )7) gV - 13V
[Melman, 2007]

The problem presented in this master thesis is a comptxnaiftimodal problem, with

several undefined derivatives. For this reason, thaikesdased method was not chosen

in this master thesis.
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8.1.2. Enumerative Methods

Enumerative methods are quite straightforward methodghiWa search space, these
methods find the optimal solution by looking at all objectivaction values, one at the
time. They are mostly rejected due to their lack of efficyen.e., the search space, for
most problems, is too large to search for all objective funotedues one at the time. A
more advanced form for the enumerative techniques maDjc Programming (DP). The
DP technique divides a complex problem into many sublgnab that are more likely to
be solved[Melman, 2007] Knowing the sub-solutions of the simpler problems, the
solution of the original problem can be found by comlgninese sub-solutions. DP has
the disadvantage of becoming very slow when the prolitequestion increases in size

and complexity.

The Simulated Annealing (SA) can be also consideretl giadhe enumerative methods
[Noomen, 2007] This technique imitates the annealing of metal, wheee dbjective
function corresponds to the energy state of the medilhths to be minimizefMelman,
2007]. This method makes use of a search procedure tharaiséom choice as a tool to
guide a highly exploitative search through a coding patamspace. This kind of search

does not necessarily mean directionless, unlike for thdora methods (see section 8.1.3).

According to [Noomen, 2007] the Genetic Algorithm (GA) method (or Evolution
Programming (EP)) can be inserted in the categoryy@fenumerative methods. GA is a
relatively new area of research that applies the ‘suraf4tthe fitness’ principle. It tries to
find the optimal solution through a certain population ofutsans that have the
opportunity to evolve and create new solutions (individudlgg fittest individuals have
higher probability to be chosen to produce offspringd after a certain number of
generations, only fitter individuals are most likely wangve and become close to the

optimal solution. Figure 8.2 illustrates how GA works.
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Select randomly individuals

Population —— Compute objective function —— Obtain fitness —— Global sohtion found? —— Yes

| |

"Offspring” Genetic operators No End the optimization procedure

Figure 8.2: Scheme illustrating the steps to takenia GA method

An initial population is created randomly. This means thgbad starting point is not
necessary. Afterwards, the objective function is esald for each individual in the
population, yielding the fitness of each individual. NeéRg test is made to check if the
global solution was found. If the optimal was found, thegpam will stop; otherwise,
some genetic operators (crossover, mutation, immigratioongmthers) are applied to the
population creating offspring. The offspring will takeetplace of their parents and form a
new population. In this way, the cycle will be repeatedr@and over until the optimum is

found.

GA has already proven to be useful in large and compteklems[Melman, 2007]
Although very efficient, GA is not going to be used in thiaster thesis. The problem does
not have many independent variables and, mainly dusogggmming time, it will have to

be rejected.

8.1.3. Random Methods

In random methods, individuals are randomly picked dwt oertain search space, their
objective function is computed and the best one is salesl are not expected to perform
better that the standard enumerative methods. The Moat® @chnique (random
method) has the advantage of being a straightforward ohétjuite simple to implement).
Since the problem in this master thesis does not involve m@ut variables (at maximum
five), there is no need to use a more complex metlikel,the GA method. The time
required to implement a Monte Carlo algorithm is signifibalgss than the one required
for the GA, the SA or the DP.
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8.2. Multi-Objective Optimisation

Often when designing an interplanetary mission, more tharobjective is required to be
optimized. The mass of the spacecraft is normally tiragry measure of performance,
i.e., the objective is usually to maximize the mass of gaeexraft (minimize fuel mass
consumption). However, the minimization of the TOF, fotanse, can also be considered
an important optimisation objective. Depending on the mispiarpose, other objectives
might be chosen. The combination of these objectivessyeeltiulti-objective optimisation

problem.

In multi-objective optimisation, a common method used iscémbine the multiple
objectives into a scalar objectivie. This is obtained by weighting the influence of each

sub-objectivef; and summing theifMelman, 2007]

F(a)=2 o f;(a) (8.1)

The parametery, in equation (8.1) is a weighting factor. This is atesimple method,

but it introduces new parameters: weighting factorsortter to use this method, the user
should be familiar with the proper value that shouldtiebuted to the weighting factors.
Note that a single-objective optimisation will generally hawsngle optimal solution. This
means that using this method, it is not possible to sée@nalyse trades between different
objectives. An optimal solution will depend on the relatop between the sub-objectives
(weighting factors). The determination of the weightiagtors itself can be considered an
optimisation procedure. Due to the lack of experienahoosing values for the weighting
factors, this method was not used in this master thesteabhsa Pareto optimisation was

implemented.

Pareto optimisation uses the principle of optimizing multipl¢edives. The Pareto-
optimum is a group of optimal individuals and they areinogk in the sense that no
improvements can be obtained in one objective withoutadiagion in the othef®lelman,
2007}
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f(a)sf(b) O 1<isk; f(a)<f(bh O 1<isk (8.2)

In the case of minimization, individuél is dominated by individuah if the conditions in
(8.2) are satisfied. This means that individbaperforms worse or equal to individual

In the case where individua is not dominated by any other individual in the population,
this individual is called Pareto-optimal and it belongs toRbeeto front. The Pareto front
corresponds to a family of individuals that are Paretoyag. In figure 8.3, the individuals
selected for the Pareto front are represented with a obxirc while the rest of the
individuals of the population that were not selected are Widttk colour. Note that

although individuala performs better in terms of the objective with respect to

individual b, it performs worse in terms of the objectivg with respect to individuad.

Al e o e,
@) . .
£6) L
i) 7,(0) 5

Figure 8.3: Example of a Pareto front (individualsin red)

In this master thesis, after using a Monte Carlo optimisaiethod, a Pareto front will be
built using two objectives: the fuel mass consumptionifduthe low-thrust flight) and the

total excess velocity (chemical burn). Both objectivesikhbe minimized.
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8.3. Optimisation Procedure

The first step before using optimisation is to choose teescthat are the most interesting
to be analysed. For instance, there is no time to s@ajl shapes for all combinations
possible of departure and target planets and thrust mofitestead, 3 representative
missions are selected — Earth-to-Mars, Earth-to-Jupitdr Earth-to-Mercury, for the 2
thrust profiles presented before and for the 6 shagaened in chapter 6. Therefore, 36
cases will be analysed.

8.3.1. Description of the Optimisation Problem

In this master thesis, a Monte Carlo optimisation method (ge8til.3) was used to obtain
Pareto fronts (section 8.2) for the 6 shapes desciibeldapter 6, for 3 missions: Earth-to-
Mars, Earth-to-Jupiter and Earth-to-Mercury and for 2ughrprofiles: “acceleration
inversely square”, where the magnitude of the thrustlacation monotonically decreases
with the square distance to the Sun and the tangentalTdre number of individuals of
the population used in the program was 75 000 for thgetatral and for the acceleration
inversely square cases of the thrust profile. 75 086 the number chosen for both thrust

profiles after some tests with different numbers fergbpulation (see appendix G).

In order to implement a Monte Carlo method, random valere picked for each input

variables. For the acceleration inversely square tiasse values are:
input=| K*,8 A8+ 27N 2, 3]
For the tangential thrust profile case, the input variadnes
input=[ K", A+ 27N |

Note thatK™ represents all the geometric variables that have to lem gis input in order

to compute the radiug . For all shapes, except for the exponential sinusid,
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corresponds to only one variable. In the case of xperential sinusoid shape, there are 2

geometric variables that have to be given as an ingl#ars no longer an input variable

(see section 5.5). Also, for the Archimedean spiralfandhe logarithmic spiral@ is no

longer an input variable, therefore the number of varsaldgwo for the tangential case
and four for the acceleration inversely square casleeathrust profile. Note thak & is the

angle betweenr; and T,, without taking into account the number of revolutions
(6, =6 +A6+27N). Notice that the termA&+ 277N are considered only one parameter

in the optimization procedure. This optimisation procedubebe done for at maximum 3
complete revolutions in the Earth-Mars case, 4 revolstiorthe Earth-Jupiter case and 2

revolutions in the Earth-Mercury case.

Due to lack of time, a two-dimensional problem optimisati@s wsed, instead of a three-
dimensional one. So, the real three-dimensional ephemfetise glanets was not taken
into account. Note that vector§ and r, are not part of the input parameters, only
AG+27nN is, sincer, andr, are considered to be constants for a particular mi$siom
one planet to another, as for the sensitivity analysis apteln 7. In the optimisation
procedure, the TOF for each individual was computedhtgrating @, as explained in
section 6.2. This means that the technique used to finftabegeometric parameter (the
intersection between the TOF curve and a horizontal linthenplot TOF versus free
geometric parameter (figure 5.6a)) by knowing the=Ti@quired through the position of

the departure and target planets for the departureaivél dates was not applied in this

master thesis (see section 5.5).

The values of the geometric parameters and the thcastemation during time, as well as
the excess velocities and the TOF, are stored, irr todabtain the Pareto front in the end.
The theory behind a Pareto front conception was ginesection 8.2. The two objectives
chosen were the total excess velocity and the total fued thaswas consumed during the
low-thrust phase. Note that instead of optimizing the toia@less velocity, the total

impulsive shotAV; could have been one of the objective functions. Thigblr AV, can

be computed through equation (4.11) in chapter 4. flleé mass consumption for the

electric part and the chemical part could have been otedpmnd added, using a single

18¢



Analytical Representations for Low-Thrust Traje@sr

objective optimisation instead of a multiple objective optimisatHowever, this was not

done. This decision will be explained in following section.

8.3.2. Computation of the Total Fuel Mass Consumpti  on”

Assuming a value for the initial mass of the spacedwft the mass of the vehicldl,
after the first impulsive shot can be computed throughinitel impulsive shotAV,
expression calculated through equation (4.9). KnowiNg, the spacecraft's mass after the

first impulsive shot can be computed through Tsiolkalsdkw (equation (3.5)):

M;:Moexp[l_AvlJ

sp;go

The variablel, is the specific impulse for the chemical burn. In ordecdmpute the

total fuel mass consumption during the two burns, Tsiegd's law is again used:

-AV,
M e = M elow—thrustexp( 2 ]

Ingo

The variableM is the initial mass of the spacecraft before the secwpdlisive

e,low-thrust
shot (or after the low-thrust transfer) and it can be condpbyeknowing the fuel mass

consumption during the low-thrust transfer. The varia¥leis the spacecraft's mass at the

end of its mission. The final impulsive sh&¥, can be calculated through equation (4.10).
The total chemical mass can be computed by addinguierfass consumption during the
first and the second burns (equation (4.11)). In the, ¢he fuel consumption from the
chemical burns could have been added to the fuel nwssumption from the low-thrust
phase. In this way, a single optimisation could have lised. However, note that in this

case three assumptions would have to be madé forfor the altitudes of the parking

orbits at departure and target plangfs and h_ , respectively (from equations (4.9) and

® This was not implemented in the master thesis
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(4.10)). These variables influence the computatiotheffuel mass consumption for the
chemical burns. A study would be necessary to firedtost suitable values. Since the
objective is not to design a mission, but to study the pedoce of the shapes already
mentioned, a multiple-objective optimisation procedure etaxsen instead of a single one,
separating the electric part from the chemical one. Alsdtotal excess velocity was used

instead of the impulsive shots in order to avoid awgsions forl, , h, andh_ .

As an example, consider a spacecraft using a lowitheagine and moving with
continuous thrust from Earth-Mars. An individual in therd®a front of the sinusoidal

spiral that has excess velocity values\qf, =0.280%ny s and V., =0.195%ny < was

picked. Assuming values for the heights of the circolbits of the spacecraft around the

departure and target planets; =185 km and h, =300 km, respectively, the impulse

velocitiesAV, and AV, can be computed through equations (4.9) and (4ré€pectively:

AV, =3.2334kny s
AV, =1.4152ny s

ConsideringM, =1200 kg, through equation (3.5), the mass of spacecraft afeefirtst

burn M, would have to be:
Mg =Moexp(-aV,/(1,9.)) = 12000exf- 3233/ 350 9PE  467.95

Note that the value taken for the specific impulse dubth chemical burns at the
departure and target planets was 350 seconds. For tlvedirad, 91.48 kg were spent
during the low-thrust transfer (see further equatioB)§8 The mass of the spacecratft in the

end of this mission can be computed using again equ&id) (

Me =M goums@P(-AV,/(1,,0)) = 376.4T0exp- 14156 350 91 =249.3C
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In this mission, 859.22 kg was spent in total during thediamical burns, which is more
than 9 times the value spent during the low-thrust tranBfall the fuel is spent in this
mission, the dry mass is about 20.78% of the initialarihat was initially assumed. It is
more important to choose individuals with lower values ofttital excess velocity than
with lower values of fuel mass consumption during the tlomust transfer. However,
normally these individuals require also a higher TOFctvié the drawback of the electric

propulsion technology.

8.3.3. Fuel Mass Consumption (Low-Thrust Phase)

In order to obtain the fuel mass consumption duringitberplanetary phase (low-thrust
engine), some assumptions have to be made and somelesrhave to be given. The
values used for the Deep Space 1 (DS1) mission will lentak a reference for the Earth-
Mars flight:

Characteristics Deep Space-1
Propellant Xenon
Thrust (N) 9.2x 10?

Specific Impulse (s) 1900- 320(

Initial mass (kg) 486.%

Table 8.1: Deep Space 1 characteristigRayman, 1999] [NASA/JPL, 2002]

The thrust generated by the propulsion system is giyeagbation (3.2):

T=MDHA=m (8.3)

The variableM is the instantaneous mass of the vehielas the vehicle’s acceleration,
m is the rate of mass change due to propellant expulsanigmegative andv is the
exhaust velocity of the stream. As a matter of simplicity, gpecific impulse will be
considered constant and equal 26505, which is the average value of the interval

presented in table 8.1. In this way, using equation (8gbation (8.3) can be rewritten:
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o I""f;l dt - de:—jh(T)l—g'\:(t)dt (8.4)

dM
(t

Since the thrust acceleration and the instantaneous roasst dary rapidly during time,

the total fuel mass consumed until the instantwill be:

A/ (ti+1) =M e (ti) +| (8.5)

Note that the second term on the right hand side of equéi®) has to be always
positive, independently if the spacecraft is thrustingpposite direction to its velocity.

The instantaneous mass for each instant of time isdiye
M (ti+1) =My =M (ti+l) (8.6)

In this way, in order to compute the fuel mass conswnmuring the interplanetary flight,

the mass of the spacecraft before the low-thrust entames svill have to be assumed. The
massM, considered in the Earth-Mars case Wi6.Xkg (the same as for DS1), in the
Earth-Jupiter case it wa®223kg (the same as the Galileo spacecraft) and in the Earth-
Mercury case it wasl093kg (the same as the Messenger spacecraft). Note that the

missions done by these spacecraft (DS1, the GaliledhenMessenger) are very different
from the type of mission that is being tested. GalileoMedsenger did not use low-thrust
propulsion as primary source, only high-thrust propulsiz®l used low-thrust propulsion,
but the thrust was not continuous and this spacecrafialicheet Mars, it encountered two
comets and one asteroid (at ~1.3 AU, while Mars is ab AlU). Since no low-thrust

missions were planned for Mercury, Mars or nor Jupigng continuous thrust, these

values for M, were chosen and they should only be considered dal igitesses.

BepiColombo, as already mentioned in chapter 3, will bedaad in 2013 to Mercury
with a launch mass of 2300 kg (MPO mass is 520 kg eiMIO mass is 250 kg)
[ESA/BepiColombo, 2008]The data of BepiColombo were not used in this maktsis
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since it was considered to be preferable to use aighial mass for these simulations.
Note that the fuel mass spent during the first burn wagaken into account in these

values.

The values for the specific impulse for Earth-to-Jupitet #or Earth-to-Mercury missions
were considered the same as the one used for thetBavtars flight.

8.3.4. Thrust Acceleration Constraint

Note that the total fuel mass spent during the flight is néficent to evaluate the

performance of an individual during the transfer orblie energy source of most low-
thrust engines comes from the Sun. So, for far awstantes, the available energy and
consequently the thrust acceleration that the spacedsraftowed to achieve, decreases.
For this reason, it is important that the maximum ratio betwleenhrust acceleration that
is given as an output from a certain shape and thigabkathrust acceleration of each

individual in the Pareto front is less or equal to one:

a"shape
aavailable

<1, for Ot (8.7)

Again, the DS1 mission was taken as reference for thé-B&ars flight. For this mission,

the nominal thrustT, ) is considered®.2x107 N (table 8.1). Knowing the initial mass for

the DS1 M, = 486 .3kg), the trend of the thrust acceleration can be giyen b

a'available = a0 ,u/r 2 = 0032/1/r 2

This is the available thrust acceleratioa,,.,.. The available thrust acceleration is

important in order to test if the values of acceleratiomputed using the 6 analytical
representations can be achieved in a real mission. Innthster thesis, the thrust

acceleration values given by the 6 shapes will be testedthvigl different trends of the

available thrust acceleration: (1p,,.,. =0.032u/r®> (the same as DS1), (2)
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a =0.048u/r* (1.5 times a,, ., i DS1) and (3)a,, ... = 0.064u/r? (twice

available

&m0 1IN DS1). Tests were performed for different valuesgf,,.,.. After these tests, the

lable *

values of available thrust acceleration (2) and (3)ewehosen to show the trend of the

number of individuals in the Pareto front that respeettf),,..,. constraint.

For the other missions, Earth-Jupiter and Earth-Merdhgeyyalues for the available thrust
acceleration will not be the same as for the Earth-to-Mayist. During the sensitivity
study in chapter 7 and in appendix E, for the accelerativersely square case of the

thrust profile using the exponential sinusoid, the mininuatues for the magnitude of the

thrust acceleration were given bya, = 004y/r®, a, =007u/r* and
a,, =—0064/r?, for an Earth-to-Mars mission, for an Earth-to-Jupitegsion and an

Earth-to-Mercury mission, respectively. Sinag is approximately twicea,, for the same

values of heliocentric distance, the three different trefitlseoavailable thrust acceleration
considered for an Earth-Jupiter flight will be also twice ¢times assumed for an Earth-

Mars mission. These three trends will be: 1), = 0.0644/r? (twice a,,..,, iN DS1),

2) a =0.0964/r® (3 timesa,,,,. in DS1) and (3)a =0.128u/r? (4 times

available available

a

waiaole 1N DS1). For an Earth-Mercury flight, sinde,,,| is 1.5 timesa,, , the three
different trends of the available thrust acceleratiorsimmred for this mission will be also

1.5 times the ones assumed for an Earth-Mars missian.available thrust acceleration

will be given by: (1) a =0.048u/r* (1.5 times a, .. in DS1), (2)

available

a =0.072u/r? (2.25 timesa,,;,,,, iN DS1) and (3)a,,,;.,e = 0.0964/r? (3 times

available

a,.ia0e 1N DS1). Note that for an Earth-Mercury flight, the aabié thrust is increasing by

r’ when the spacecraft is moving from Earth towards Msgrclihis means that the

vehicle will be able to achieve higher levels of thrust acaBtan for distances nearer the
Sun. However, in reality, the maximum thrust that the sgaftecan obtain depends on the
maximum power that the solar arrays can provide. Thisnm#aat for missions to inner

planets, at certain point, the maximum thrust thatptner system can provide will be
achieved. From this point on, the thrust acceleration ra@aronger increase with?.

Instead, it will depend only on the instantaneous masg. drothis master thesis, this
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situation was not considered. In this way, the avail#étinest acceleration for an Earth-

Mercury flight will have the same trend as for the otiagr missions to outer planets.
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9. Verification

This master thesis deals with many mathematical expres@ppgndix B), so mistakes
can be made easily when writing the equations in MATLaBle. A MATLAB program
was developed in this thesis in order to compute the thcgsieation, the thrust angle,
the TOF, the excess velocities and the fuel consumptimimgl the heliocentric phase,
giving the geometric parameters as input for a certagsion with a certain profile. This
MATLAB program can be calletbw2D. In order to verify the results achieved in low2D
for each shape (TOF, excess velocities, thrust actielerand thrust angle), another
program in MATLAB was developediest2D This program uses the values of the thrust
acceleration, thrust angle, the TOF and the initial posdiuh velocity of the spacecraft in
the heliocentric phase as inputs. Through a Runge-Ki{&nintegrator, it computes the
trajectory of the spacecraft in the transfer planghé&end, if low2D is correct, the values
for the final position and velocity should match the onegrmgiby Test2D (appendix F).
For the examples given in appendix F, the differemecgmsition at the final point of the
thrust arc between low2D and Test2D are less than 6@kmsidering that the position of
the targets are always given in astronomical units ¥180 km), these differences are
negligibly small. In terms of velocity at the end point of tfeust arc, maximum

difference values of ~29y s are achieved. The order of magnitude of the hyperboli

velocities at the target planet 1€” kny s, therefore these differences are negligibly small

also.

The verification will only be complete if the results givby low2D are compared with
other results given by independent software. Unfortiyatiee only performance results
available in literature are for the exponential sinusoidggatial thrust) and they can be
found in[lzzo, 2006] in GalomusifMelman, 2007] in STA [Paulino, 2008] and in the
Swing-By Calculator (SBOUAQAR, 2007] among other software.

Galomusit is a software tool that was built by students ftben Faculty of Aerospace

Engineering in Delft and it handles interplanetary trajectouging high-thrust and, more

recently, low-thrust trajectories using the exponential sidy§orradini, 2008].
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STA stands for Space Trajectory Analysis and, like Gakin it can compute
interplanetary trajectories, using multiple flybys and higihd low-thrust propulsion. STA

software is developed by ESA in cooperation with ssMéaropean universities.

As the name suggests, the “Swing-By calculator”, isfawspe to compute interplanetary
missions using multiple flybys. The version 8 of the SB@g the opportunity to use
optimisation in low-thrust trajectories described by the oeemtial sinusoids. This

software was used to verify STA.

Since STA was developed by me during my internshipSTEC, it cannot be used for
verification in this master thesis. Unfortunately, SBC canalsb be used for the
verification. The output results given by this softwareicltare the excess velocities and
the total fuel mass consumption (chemical plus electricalf@ra 3D case, while in this
master thesis, a 2D problem was considered. On the bdnd, a 2D problem for low-
thrust trajectories using the exponential sinusoids imgsdemented in Galomusit by
Stefano Corradini. The results were verified for 3vdlials in an Earth-Mars flight. The

test scenario is shown in table 9.1.

r_., (km) r,.. (km) k, ¥, (rad) A6 (rad)
Individual 1 151366683.169 206953872.627 0.7013 03868 1.9532 (N=0)
Individual 2 150950940.668  207035807.816 0.3192 23402 1.7915 (N=1)
Individual 3 147943444.631 222257727.478 0.1524 148 0.0419 (N=3)

Table 9.1: Test scenario (Earth-Mars mission) for grification of the excess velocities, TOF and
fuel mass consumption computed in low2D

Given the heliocentric distance at the departure plahéteaarrival planet, the geometric
parameterk,, the initial flight path angley,, the transfer angldég and the number of

revolutions N; the geometric parametdss k, and ¢, the excess velocities at departure
and arrival, the TOF and the fuel mass consumptiomguhe low-thrust phase were
computed using low2D and Galomusit. Table 9.2 shthesvalues achieved for the test

scenario in table 9.1, using Galomusit and low2D. The initess used was 1000 kg and

the specific impulse during the low-thrust phase w&03@conds.
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Individual 1 Individual 2 Individual 3
Galomusit Low2D Galomusit Low2D Galomusit Low2D
V. o (km/ s) 4.2057 4.2057 0.7339 0.7339 0.3218 0.3218
V.., (km/ S) 7.6969 7.6969 0.2569 0.2569 0.0818 0.081¢
TOF (days) 123.4091 126.233% 624.0333 624.3738 3392 1552.6437
M. (kg) 27.5688 27.1462| 132.3082  124.1012  183.4770  167.8474

Table 9.2: Results from Galomusit and low2D for the8 individuals, Earth-Mars flight

In terms of excess velocities, values from low2D matuwh ones given by Galomusit.

However, the values for the TOF and the fuel massuwopgon are significantly different.

In table 9.3, the errors between the excess velocity, @& and the fuel mass

consumption values computed with Galomusit and the oives gn low2D (considering

the values obtained with Galomusit the nominal onesiasn.

Error (%) Individual 1 Individual 2 Individual 3
0 0 0
o, dep
0 0 0
TOF 2.29 0.06 0.02
M 153 6.20 8.52
fuel

Table 9.3: Errors between the results given by Galausit and low2D

Note that the error for the TOF decreases for higteues of number of complete
revolutions N. In order to compute the TOF, an integr&garequired: in Galomusit, a
composite Cavalieri-Simpson formula was used, while in W integrator used was a
Runge-Kutta 4(5). A second verification was made usingritegrator routines that Dario
Izzo [Izzo, 2006]used to compute the TOF for the exponential sinusoidigmobGiven
the geometric parameters of the exponential sinusoid @afomusit as an input, the TOF
is calculated using a recursive adaptive Lobatto quadr. The values for individual 1,
individual 2 and individual 3 presented in the test sderiartable 9.1 are given in table
9.4.
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TOF Galomusit (days) TOF Low2D (days) TOF Izzoyg)a Error (%)
Individual 1 123.4091 126.2335 126.2338 2%10"
Individual 2 624.0333 624.3738 624.3739 2%10°
Individual 3 1552.3217 1552.6437 1552.6427 6x10°

Table 9.4: TOF given by Galomusit, low2D and |zzo’integrator routines and the errors between the
results given by Izzo and low2D

Considering the values obtained with 1zzo’s integrator mleeninal ones, the errors
between the TOF values calculated with 1zzo’s integrator the Runge-Kutta 4(5) are
shown in table 9.4 for individual 1, 2 and 3. Due to $ignificantly small error values
between 1zzo’s integrator and low2D integrator, the geuutta 4(5) used in this master
thesis can be considered well implemented in low2D. Avéh a different integrator in

Galomusit is recommended.

In terms of fuel mass consumption, the errors betweennteiv and low2D increase for
higher values of complete number of revolutions. Thalmer of iteration steps to compute
this parameter was fixed and equal to 200 for Galamwsiile for low2D it depends on
the number of steps and the tolerance used by theeRuiga 4(5) integrator. In low2D,
the number of steps was 633, 521 and 653 for indalgll, 2 and 3, respectively. Note
also that the integrator RK4 (5) uses a variable step-Szeeven if the number of steps
was the same between the two programs, the resultsddu¢h mass consumption will
still be different, since it depends on the instant of tina¢ e thrust acceleration is being
calculated. Although the comparison between STA an®Ibwvs not fair, since both
software were developed by me, the results for the T@Rwet mass consumption during
the low-thrust transfer are shown in table 9.5. Note 87a& was verified using JAQAR

(see appendix F).
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Individual 1 Individual 2 Individual 3

STA ‘Main’ Error STA ‘Main’ Error STA ‘Main’ Error
(%) (%) (%)

TOF | 126.2335] 126.2335 0 | 624.3738 6243738 0  1552.64%52.6437| O
(days)

M 27.1278 | 27.1462] 0.0678 124.0658 124.1012 0.0285 .8446T | 167.8474| 0.003B

fuel

(kg)

Table 9.5: Results from STA and low2D for the 3 intbiduals, for Earth to Mars

Although STA and the low2D are programmed in diffédlanguages, C++ and MATLAB,
respectively, the integrators implemented are Runge-K(fja Bherefore, the error for the
TOF between the two software is zero. Regarding fuekrnassumption, STA uses a fix
step size of 500 and the errors between STA and low&Braaller than 0.07%, which is
much smaller than the values of error achieved betv@@Eomusit and low2D. This is
probably due to a smaller value of integration steps us&hlomusit compared with the
number used in STA and in low2D.

Considering the differences between these three s&ftarad that errors below 10% were
achieved, the fuel mass consumption computation will Insidered well implemented in
low2D.
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10. Results

During 2008, a master student Bram De Vogeleer devel@ehape-based method:
expansions of power series, which are expressions withrdicombinations of many terms
(coefficients) that allow an optimisation proceddie Vogeleer, 2008] His pseudo-

spectral method is useable and it provides good resuttaiy problems. He compared his
results with the ones given by the exponential sinusoidhendoncluded that this shape
requires velocity increments at departure and arrivaledamlso sometimes requires high

acceleration levels that his shape-based analysis tighow.

In this chapter, like in Bram De Vogeleer's thesis,omparison between the analytical
representations mentioned in the previous chapters anexgienential sinusoid will be
made. The Pareto fronts will be illustrated and analyseth&6 shapes mentioned before:
the Archimedean spiral, the logarithmic spiral, the Pdiasspiral (sine hyperbolic), the
Poinsot’s spiral (cosine hyperbolic), the sinusoidal sprad the exponential sinusoid.
Only the Earth-to-Mars flight and the Earth-to-Mercury ftighill be analysed in this
section. Two cases of the thrust profile were studiezlatiteleration inversely square and
the tangential cases of the thrust profile describecchapter 6. However, for the
acceleration inversely square case, due to lack of timlg,tbe sinusoidal spiral and the
exponential sinusoid were analysed, since they hatidbe performances in terms of the
Pareto front in the tangential case (see sections 16.1@R). The results for the Earth-to-
Jupiter mission using the tangential thrust profile areemivn appendix H. The
computation time required for the Earth-Jupiter missiesmg the acceleration inversely
square case was extremely high and unfortunately st mea possible to obtain results.

Therefore, the results for this mission will not be givethia master thesis.

10.1.  Earth - Mars Flight: Tangential Thrust

Figure 10.1 illustrates the Pareto fronts using the tandi¢itiest profile in an Earth-Mars
flight for all 6 shapes. As already mentioned in chapteéhd® population that is being used
is 75000 individuals for each shape.
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Figure 10.1: Pareto fronts for the Archimedean spial, logarithmic spiral, Poinsot’s spiral (hyperbolic
sine), Poinsot's spiral (hyperbolic cosine), sinugtal spiral and exponential sinusoid, tangential thust
profile, Earth-Mars flight

In figure 10.1, there are significantly high differeade scale in terms of total excess
velocity between the 6 shapes illustrated. For the Aredean spiral and the Poinsot’s
spiral (hyperbolic sine), only individuals with low values abtaexcess velocity and high
values of fuel mass consumption were selected fordhet®front. These two shapes show
worse results compared with the other 4 shapes, betaiseimber of individuals in the
Pareto front is significantly low and individuals with lowetues of total excess velocity

and fuel mass consumption can be obtained using thegitapes.

Figure 10.2 summarizes the Pareto fronts for all 6eshdp the plot in the right-hand side,
the same Pareto fronts are represented but only wittidondls with values of total excess

velocity lower than3knys and values of fuel mass consumption between 80 ah#d.0
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Figure 10.2: Pareto fronts for the Archimedean spial, logarithmic spiral, Poinsot’s spiral (hyperbolic

sine), Poinsot’s spiral (hyperbolic cosine), sinustal spiral and exponential sinusoid, tangential thust

profile, Earth-Mars flight. On the right, only indi viduals with values of total excess velocity lowehan
3 km/s and values of fuel mass consumption betwe86 and 100 kg are present

Table 10.1 shows the minimum values for the fuel massuwuption and the total excess

velocity for the individuals represented in the Pareto friortall 6 shapes.

Archimedean| Logarithmic Poinsot’s Poinsot’s Sinusoidal | Exponential
spiral spiral spiral spiral spiral sinusoid
(hyperbolic | (hyperbolic
sine) cosine)
Minimum 98.98 4.4 98.98 13.9 0.09 135
M fuel (kg)
Minimum 1.2075 1.1817 1.2053 0.7444 0.1854 0.2645
v, (k9

Table 10.1: Minimum values for the fuel mass consuption during the low-thrust phase and for the
total excess velocity for the individuals in the Pato fronts for all 6 shapes, tangential case, Ealnt
Mars flight

The minimum value of fuel consumption is achieved with #ieusoid spiral (for

6, =109.1°) and it is 0.09 kg, i.e., negligibly small (closethe high-thrust Lambert

problem). Note that the total excess velocity values foretowalues of fuel mass
consumption are significantly high. It is more important toase individuals with lower
values of total excess velocity than with lower values ef fiass consumption during the
heliocentric phase (chapter 8). This is because the it Zluring the chemical burns
(even for small values of excess velocity) is mucthéighan fuel spent during the low-

thrust phase. Individuals with high values of total exoesscity cannot be taken into
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account in a real mission. However, in order to undadsthe limits of each shape, they

were not excluded from the Pareto front.

In table 10.1, the minimum value of the total excess gl achieved with the sinusoid
spiral and it is0.1854ny s. Individuals with TOF values higher than approximatey 4.

years were not selected for the Pareto fronts, dineee was a limit for the maximum

number of complete revolutions: 3 (chapter 8).

From figure 10.2, the Pareto fronts for the exponesiialisoid and the sinusoidal spiral
provide lower values of fuel mass consumption for thees total excess velocity when
comparing with the other shapes. The logarithmic spiad the highest number of
individuals in the Pareto front of all 6 shapes. The eamigfuel mass consumption values
for the sinusoidal spiral is the widest one. This shapd the exponential sinusoid have
similar performances for fuel mass consumptions higtesr #80 kg. However, in general,

the sinusoidal spiral has the best Pareto frontl & slhapes.

10.1.1. Analysis of the Pareto Fronts

In this section, an analysis of the Pareto fronts shiowfigure 10.1 will be given. In
particular, the results achieved for the sinusoidal spirdithe exponential sinusoid will be

discussed in the following paragraphs.

From figure 10.1, generally for higher TOF values (higredues of transfer angl&dg and
higher values of number of complete revolutions N), tthtal excess velocity decreases
while the total fuel consumption increases. However, tlaeeesome individuals in the
Pareto front of the sinusoidal spiral for which this aiton does not happen and they seem

to be misplaced (see figure 10.3).
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Figure 10.3: Pareto front for the sinusoidal spira) Earth-Mars flight

For this shape, there are 3 individuals in the Pareta fnah have TOF values between 1.8

and 2.7 years and fuel mass consumption values loveer &5 kg (see figure 10.3,
individuals with green colour). The geometric param¢m¢ris approximately 1 in all 3

cases. Figure 10.4 illustrates the trajectory of onbexfa shapes.

270

Figure 10.4: Polar plot for the sinusoidal spiral Earth-to-Mars flight ( m =-0.9996, A@ =175.8° with
N=1 and§ =194.79
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From figure 10.4, the spacecraft no longer perforragii@l type of trajectory, but almost a
circular one. The spacecraft will depart from the Eéetld dot) and it encounters the target
planets’ orbital trajectory (green dot) twice: one withONend the other after completing
already one revolution. Note this trajectory is similaathigh-thrust trajectory and it will
not be used in a real mission, since other individuals leitler values of excess velocity

can be used instead (with similar values of TOF).

The Pareto front obtained for the exponential sinusalidhave to be discussed in detail.
Note that this Pareto front (figure 10.1) has 2 diffetesrids: after and before ~30 kg. The
bent seen in figure 10.1 at ~30 kg was studied in da@nderstand why there are two
different curves in the Pareto front. To help in unteding, figure 10.5 shows the

corresponding geometric paramekgras function of the fuel mass consumption.

0ol
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06} %, }

k2
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04r .
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U 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
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Figure 10.5: k, of the Pareto front individuals versus the fuel mas consumption during the low-thrust
phase, exponential sinusoid, Earth-to-Mars flight

Note that for values of fuel mass consumption lower th80 kg, the parametek,

increases, while for higher values, it decreases. AcaprdifPetropoulos and Longuski,
2004], for higher values of the transfer angled and higher number of complete

revolutions N, the values fok, should decrease. As already discussed before, éor th

20¢



Analytical Representations for Low-Thrust Traje@sr

exponential sinusoid, the fuel mass consumption is dirgetdportional to the TOF and
consequently to the transfer angle and number of commetdutions. In this way, the

plot of k, should always decrease when increasing the values eofful mass
consumption, which does not happen for values lower #38nkg. Note that at ~30 kg,

reaches approximately the maximum value allowed by thinigaition program: 1. As

already explained before in chapter 5, the maximurnevébr k, taken was 1, because
according to Petropoulos and LonguskPdtropoulos and Longuski, 2004]the thrust

levels can become unreasonably high w(ﬂs—nklk,j) approaches zero. This statement was

proven to be correct, since if no constraints arergitee this geometric parameter, the

Pareto front will be the same as the one with the constigip, =1. In this way, the

difference between trends in the Pareto front of th@meamptial sinusoid is most likely due
to the fact that the performance of this shape dependth® values chosen for the
geometric parameters and their capability to describeliysical problem. An example
can be given with the sinusoidal spiral in order to bettdersiand the situation. In figure
10.6, two Pareto fronts of the sinusoidal spiral areesgmted: in blue is the one where the
interval of values ofmis (-1; 1); in red is the one where the interval of vahfes is [-0.7;
0.7]. This means that in this last Pareto front, thenmatefor the optimisation variablm

was restricted.
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In this case, a restriction in the geometric parameteaused the bend, since values of
mD(— 0.71) that were being picked by the optimizer for fuel massseorption values

lower than ~50 kg in the Pareto front with a red colaumr not be picked for the Pareto

front in blue colour.

In the exponential sinusoid case, when increagingrom higher fuel mass consumption

to lower fuel mass consumption values (figure 10.1)r afteertain value (~30 kg), the
influence of this geometric parameter on the dynamicghef problem is different.

Therefore, the bend occurs because the optimizer ea@saller values df, (see figure

10.5).

10.1.2. Thrust Acceleration Constraint

As already mentioned in section 8.3.4, the fuel mas4 sjpgimg the flight is not sufficient

to evaluate the performance of an individual duringtthasfer orbit. It is important that
the maximum ratio between the thrust acceleration tlgivés as an output from a certain
shape and the available thrust acceleration of eachidodivin the Pareto front is less or

equal to 1.

Computation times were tracked for all 6 shapes anddheywhown in table 10.2. Also,
the percentage of the individuals in the Pareto front atldeippopulation that respects the
maximum ratio between the thrust acceleration that isngagean output from a certain
shape and the available thrust acceleratioh)(is presented for 3 different cases. The 3
cases are for the following available thrust acceleratiends: (1)a =0.032u/r?

available

(the same as DS1), (2an =0.048u/r? (1.5 times a in DS1) and (3)

available available

e = 0.0641/1? (twice &, in DS1) (see chapter 8).

20¢



Analytical Representations for Low-Thrust Traje@sr

Computation time,
Shapes f Nl G ) | Gy (0)
(hours)
Archimedean spiral 0.5 6 100/100/100 17.5/26.8/32|9

Logarithmic spiral 0.45 486 3.3/15/23.9 4.8/9.3214.
Poinsot’s spiral (hyperbolic sine) 0.42 11 100/100/ 46.6/61.4/69.9
Poinsot’s spiral (hyperbolic cosine) 0.47 54 5387677.8 62.1/73.6/79.5
Sinusoidal spiral 1.23 104 49/100/100 16.1/32.847

Exponential sinusoid 1.9 80 7.8/54.5/59.7 0.8/M9/1

Table 10.2: Computation time, number of individualsin the Pareto front (N, ) and the percentage of

individuals in the Pareto front G, and in the population G, that respect the maximum value for the

ratio between the required thrust acceleration of he spacecraft and the available one for the 6 shape
and for the 3 cases 0B, _ ... = ao,D51(1?1-5?2) , Earth-Mars flight (tangential case)

From table 10.2, the optimisation procedure when usingefp®nential sinusoid took
more computation time than the other shapes. Also, treepige of individuals in the
population that do not respect the maximum value fordtie between the required thrust
acceleration of the spacecraft and the available one iditthest for the exponential
sinusoid for all 3 cases. On the other hand, the logaigtspiral has the lowest percentage
of individuals in the Pareto front that respects the traimds for the thrust acceleration.
Note that although 100% of the individuals in the Pareto fr@spect the thrust
acceleration constraint for the Archimedean spiral andPbi@sot’s spiral (hyperbolic
sine), the fuel mass consumption for both shapes is highen compared with the fuel

mass consumption of the other 4 shapes.

Figures 10.8 and 10.9 illustrate the Pareto frontsttier sinusoidal spiral and for the
exponential sinusoid when considering only the individuralthe population that respect
the condition in (8.7). Only these two shapes areemssmted, since they have the best

Pareto fronts (figure 10.2). Using the condition in Y&§ a constraint, for the two shapes

20¢



Analytical Representations for Low-Thrust Traje@sr

named before a certain number of individuals in thpufation is discarded before the
Pareto front is built. Figures 10.7 and 10.8 showRheeto fronts for the sinusoidal spiral

and exponential sinusoid, respectively when the availatileust acceleration

— . s 2 H H
A, = (0.032,0.0480.064) 4/r ? is given as a constraint.
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Figure 10.7: Pareto fronts for the sinusoidal spir§ for the entire population (on the right) and only for
individuals in the population that respect the condion (8.7) (the 3 cases of available thrust
acceleration), tangential thrust profile, Earth-Mars flight
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Figure 10.8: Pareto fronts for the exponential singoid, for the entire population (on bottom right) and
only for individuals in the population that respectthe condition (8.7) (the 3 cases of available thst
acceleration), tangential thrust profile, Earth-Mars flight
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From figures 10.8 and 10.9, for both sinusoidal s@iral exponential sinusoid, there is a

gap in the Pareto fronts, where there are no individigals, .. =0.032u/r?. For the

sinusoidal spiral, Pareto fronts for the cases wheg,,,. = (0.0480.064)u/r? are the

same as the Pareto front for the case without a constitasanh be concluded that there is a

higher percentage of individuals that respect the thrustlaration constraint using the

sinusoidal spiral than using the exponential sinusoid.

10.2.

Earth - Mercury Flight: Tangential Thrust

Figure 10.9 gives the Pareto fronts using the tangentiadttprofile for the Earth-Mercury

flight for all 6 shapes. As already said before, the pdjmahat is being used for each

shape contains 75000 individuals.
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Figure 10.9: Pareto fronts for the Archimedean spial, logarithmic spiral, Poinsot’s spiral (hyperbolic
sine), Poinsot's spiral (hyperbolic cosine), sinugtal spiral and exponential sinusoid, tangential thust
profile, Earth-Mercury flight
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In figure 10.9, the logarithmic spiral shows the woestults compared with the other 5
shapes, since there is only one individual in the Pretd and it has the highest value of
fuel mass consumption of all individuals in all Paretafso A similar situation to the one
for the Archimedean spiral and the Poinsot’s spiral (Hyger sine) in an Earth-Mars
flight occurs for this shape when the target planet isrimith respect to the departure

planet.

Figure 10.10 shows the Pareto fronts for all 6 shdpedke plot in the right-hand side, the

same Pareto fronts are represented but only with indilduah values of total excess

velocity lower than10knys and values of fuel mass consumption between 500 @d 5

kg.
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Figure 10.10: Pareto fronts for the Archimedean spal, logarithmic spiral, Poinsot’s spiral (hyperbolic
sine), Poinsot’s spiral (hyperbolic cosine), sinustal spiral and exponential sinusoid, tangential thust
profile, Earth-Mercury flight

Table 10.3 shows the minimum values for the fuel masswaption and the total excess

velocity for the individuals represented in the Pareto friortall 6 shapes.
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Archimedean Logarithmic Poinsot's Poinsot’s Sinusoidal | Exponential
spiral spiral spiral spiral spiral sinusoid
(hyperbolic | (hyperbolic
sine) cosine)

Minimum 5.2 568.6 331.8 325.8 0.28 178.3
Mfuel (kg)
Minimum 5.7375 7.4889 5.8513 47214 1.2609 1.3082
V., (k9

Table 10.3: Minimum values for the fuel mass consuption during the low-thrust phase and for the
total excess velocity for the individuals in the Pato fronts for all 6 shapes, tangential case, Eant
Mercury flight

The minimum values of fuel mass consumption are actliewth the sinusoid spiral (for

6, =161.9°) and it is 0.28 kg, respectively (close to the Highst Lambert problem).

Note that, in this case, the values achieved for the tatass velocity are significantly
high and they are not used in a real mission. The minimalme of the total excess
velocity is achieved with the sinusoid spiral and itli260%ny s. Note that the total

excess velocity values for this mission are higher tharvalues for the Earth-Mars flight.
This was possibly due to the restriction made in the maxi value of N (complete

number of revolutions) that was 2. Again, the sinusasgahl has the best Pareto front of
all 6 shapes. Individuals with TOF higher than 1.2 yeassewot selected for the Pareto

fronts, due to the limitation on N.

The range of fuel mass consumption values is the widestarrihe sinusoidal spiral. This

shape and the exponential sinusoid have similar pedioces for fuel mass consumptions
higher than ~320 kg. Note that the Pareto front ofetkgonential sinusoid has 2 different
trends: after and before ~320 kg. The situation forBEhgh-Mars case that was already

studied in section 10.1.1 and this one are similar (sdaredjon in this section).

10.2.1. Thrust Acceleration Constraint

Computation times were tracked for all 6 shapes anddheyhown in table 10.4. Also,
the percentage of the individuals in the Pareto front atldeippopulation that respects the
maximum ratio between the thrust acceleration that isngagan output from a certain

shape and the available thrust acceleratioh)(is presented for 3 different cases. The 3
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cases are for the following available thrust acceleratitth:a =0.048u/r?* (1.5

available

times a, ., IN DS1), (2) a =0.072u/r* (2.25 timesa,_,,,. in DS1) and (3)

available

A, ae = 0.0964/r% (3 timesa,,,,,. in DS1) (see chapter 8).
Shapes Com?:;it:z)n e Ny Gp; (%) Geop (%)
Archimedean spiral 0.61 1430 9.7/35.1/47.1 2.233%2

Logarithmic spiral 0.46 1 0/100/100 0.03/0.46/0.5
Poinsot’s spiral (hyperbolic sine 0.64 224 23.21'846 13.5/35.3/49.5
Poinsot’s spiral (hyperbolic cosing) 0.45 52 23014455.8 20.5/46.1/58.7
Sinusoidal spiral 1.28 105 19/46.7/97.1 3.62/1B%?2
Exponential sinusoid 1.37 111 0/7.2/26.1 0.05/0.9/3

Table 10.4: Computation time, number of individualsin the Pareto front (N, ) and the percentage of

individuals in the Pareto front G, and in the population G, that respect the maximum value for the

ratio between the required thrust acceleration of lhe spacecraft and the available one for the 6 shape
and for the 3 cases of, ... = a,.,(1.5,2.25;3 , Earth-Mercury flight (tangential case)

From table 10.4, the optimisation procedure when usingefpmnential sinusoid took
more computation time than the other shapes. Also, treemige of individuals in the
population and in the Pareto front that do not respectrtii@mum value for the ratio
between the required thrust acceleration of the spaftemnd the available one is highest
for the exponential sinusoid in all 3 cases (excludingléigarithmic spiral). Note that
although 100% of the individuals in the Pareto front forldgarithmic spiral respect the
constraint in the thrust acceleration, the fuel mass copisomnfor this shape is higher
when compared with the other 5 shapes. Like for taghEMars mission, the Poinsot’s
spiral (hyperbolic cosine) had the highest number of iddafs in the population that

respect the acceleration constraint cases. Note that,atechpiith the previous mission,
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the percentage of individuals that respect the constisaiotver in the population and in

the Pareto fronts.

Figures 10.11 and 10.12 illustrate the Pareto fronts #rsthusoidal spiral and for the

exponential sinusoid when considering only the individualthe population that respect
the condition in (8.7). As for the Earth-Mars flight, $ke2 shapes have the best

performance in terms of the Pareto front (figure 10.UEjng the condition in (8.7) as a

constraint, for the 2 shapes named before a certanbeuof individuals in the population
is discarded before the Pareto front is built. Figd@41 and 10.12 illustrate the Pareto

fronts for the sinusoidal spiral and exponential sinus@dpectively when the available

thrust acceleratioly,;,.. = (0.048;0.072;0.096) u/r? is given as a constraint.
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Figure 10.11: Pareto fronts for the sinusoidal spail, for the entire population (on the right) and orly
for individuals in the population that respect thecondition (8.7) (the 3 cases of the available thrus
acceleration), tangential thrust profile, Earth-Mercury flight
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Figure 10.12: Pareto fronts for the exponential sinsoid, for the entire population (on the right) and
only for individuals in the population that respectthe condition (8.7) (the 3 cases of the availabilerust
acceleration), tangential thrust profile, Earth-Mercury flight

From figure 10.12, for the exponential sinusoid, only iihlials with a fuel mass
consumption higher than 400.5 kg for the case with the sigh@ue ofa, ;.. were
selected for the Pareto front. For increasing valties,g,.,... the number of individuals in

the Pareto front increases and lower values of fuesmassumption are allowed. For the

sinusoidal spiral (figure 10.11), there is a gap in the tBafeont for the cases

aavai,able=(0.072;0.09$,u/r2, where no individuals are presented, as it happenethéor

Earth-Mars mission. Again, the sinusoidal spiral shawsgher percentage of individuals
in the Pareto front that respect the thrust acceleratoorst@aints compared with the

exponential sinusoid.
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10.3.  Earth-Mars Flight: Acceleration Inversely Squ  are Case

Figure 10.13 gives the Pareto fronts using the acceleratiersely square case in an
Earth-Mars flight only for the sinusoidal spiral and the egutial sinusoid. As already

mentioned in chapter 8, the population that is being iss@8000 for each shape.
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Figure 10.13: Pareto fronts for the sinusoidal spil and the exponential sinusoid, acceleration
inversely square case, Earth-Mars flight

In order to provide a clear representation in figure 10fiBe Pareto fronts, an upper limit

for the total excess velocity was giveBOkny s. Otherwise, since individuals with values

of the order ofl0* kny s were selected for the Pareto front (untenably higi®,range of
values for the total excess velocity represented woulthtge and it would have been
more complicated to analyse the Pareto front. Obvio@6lyny s is still an unreasonably

high value. Individuals with TOF values higher than ~d aB.5 years were not selected
for the Pareto fronts, for the sinusoidal spiral arel ékponential sinusoid, respectively.
Note that for both shapes, the maximum number of revolsii® 3 (see chapter 8), which

restricts the maximum value for the TOF of the individsalected for the Pareto fronts.

From figure 10.13, generally for higher TOF values lfeigvalues of transfer angd

and of number of complete revolutions N), the total exeesscity decreases while the
total fuel consumption increases. Unlike for the tangko#iae, there are no individuals in
the Pareto front that seem to be misplaced in term©®&f for the sinusoidal spiral (section
10.1.1). Also, the presence of two curves in the Pdretd of the exponential sinusoid

cannot be clearly seen in figure 10.13, since the nuwitiadividuals in the Pareto front is
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significantly smaller for the acceleration inversely squase®f the thrust profile than for

the tangential case.

Figure 10.14 shows the Pareto fronts of both shapekelplot in the right-hand side, the
same Pareto fronts are represented but only with indilduah values of total excess

velocity lower than2kny's and values of fuel mass consumption between 80 an&édL30
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Figure 10.14: Pareto fronts for the sinusoidal spil and the exponential sinusoid — acceleration
inversely square case of the thrust profile, EartiMars flight

In figure 10.14, individuals with values lower than 1dldnd 4.1 kg are not present in the
Pareto fronts for the sinusoidal spiral and for the expiialesinusoid, respectively. The
minimum values of the total excess velocity in the Paresatdrare 0.2145knys and
0.283%ny s for the sinusoidal spiral and for the exponential sinuseisipectively. The

Pareto front for the sinusoidal spiral provides lowdu&s of fuel mass consumption for
the same total excess velocity when compared witlexpenential sinusoid, for fuel mass
consumption values lower than ~40 kg. Both shapes Bawilar performances for fuel

mass consumption values higher thad0 kg.The range of fuel mass consumption for the

sinusoidal spiral is the widest one.
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10.3.1. Thrust Acceleration Constraint

Computation times were tracked for both shapes andateghown in table 10.5. Also,
the percentage of the individuals in the Pareto front anlderpopulation that respects the
maximum ratio between the thrust acceleration that isngagan output from a certain

shape and the available thrust acceleratoh)(is presented for 3 different cases. The 3

cases are for the following nominal thrust values: &}),.,. = 0.032u/r? (the same as

DS1), (2) auaiape = 0.048u/r? (1.5 times Qvaianie N DS1) and (3)a,ziape = 0.0644/r?
(twice a,,,, IN DS1) (see chapter 8).
Computation time
Shapes P Nes Gy (%) Gpop (%)
(hours)
Sinusoidal spiral 57.6 26 77.8/94.4/100 1.3/4.3/8.6
Exponential sinusoid 94 31 80.6/100/100 0.1/0.7/2

Table 10.5: Computation time, number of individualsin the Pareto front (N, ) and the percentage of

individuals in the Pareto front G, and in the population G, that respect the maximum value for the
ratio between the required thrust acceleration oflhe spacecraft and the available one, for the
sinusoidal spiral and the exponential sinusoid, 3ases ofa, ... = & ..,(1;1.5;2) , Earth-Mars flight
(acceleration inversely square case)

From table 10.5, the optimisation procedure wheimgushe exponential sinusoid used
more computation time than the sinusoidal spir@m@ared with the tangential case, the
computation time is significantly higher. This igsedto integrations errors (section 6.4) that
occur for individuals using the acceleration inedyssquare case. Also, in table 10.5, the
number of individuals in the population that redpde thrust acceleration constraint is
lower for this case of the thrust profile compavéth the tangential one. This percentage
of individuals in the population is higher for th&nusoidal spiral. However, the

exponential sinusoid presents a significantly highember of individuals in the Pareto

front that respect the thrust acceleration constranlike for the tangential case where this
shape was the one that had lower percentage ofidicils in the Pareto front that respect

this constraint.
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Figures 10.15 and 10.16 illustrate the Pareto $rdat the sinusoidal spiral and for the
exponential sinusoid when considering only indilduin the population that respect the
condition in (8.7). Figures 10.15 and 10.16 shog/Rareto fronts for the sinusoidal spiral

and exponential sinusoid, respectively when the ilave thrust acceleration

_ . s 2 H H
a0 = (0.0320.0480.064) 1/r? is given as a constraint.
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Figure 10.15: Pareto fronts for the sinusoidal spal, for the entire population (on the bottom right)
and only for individuals in the population that respect the condition (8.7) (the 3 cases of the avdile
thrust acceleration), acceleration inversely squarease, Earth-Mars flight
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Figure 10.16: Pareto fronts for the exponential sinsoid, for the entire population (on the right) and
only for individuals in the population that respectthe condition (8.7) (the 3 cases of the availabilerust
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From figures 10.15 and 10.16, for both sinusoigalad and exponential sinusoid, there are
no significant differences between the Pareto &dot all 3 cases. From the first to the

second cases df, ..., for both shapes, there is a lack of individuasaeen 80 kg and

100 kg.

10.4.  Earth - Mercury Flight: Acceleration Inversel y Square
Case

Figure 10.17 illustrates the Pareto fronts usireggabceleration inversely square case in the
Earth-to-Mercury flight for the sinusoidal spirahda for the exponential sinusoid. As

already said before, the population that is beisegdils 75000 individuals for each shape.

Sinusoidal spiral . Ezponential situsoid
50 60 T T T
% % TOF between 0 and 0.2 years # % TOF between 0 and 0.2 years
ot TOF between 0.2 and 0.4 years | | & 50 B TOF hetwsen 0.2 and 0.4 years | ]
é TOF hetween 0.4 and 0.6 years g * TOF between 0.4 and 0.6 years
= * TOF between 0.6 and (.5 yeare = 40F #  TOF between 0.6 and 0.8 years |
b EL) % TOF between 0.8 and 1 year i} = w = TOF between 0.8 and 1 year
S 2 ol e il
8 8 x
& or 1 &
E = 20F 4
E E
= 10 b 2 ol i
U L L 1 L L - ><| XN D 1 1 1 1 ® L Lt
i} 100 200 300 400 500 600 700 100 200 300 400 500 600 700 800
Fuel mass consumption (k) Fuel mass consumption (k)

Figure 10.17: Pareto fronts for the sinusoidal spil and the exponential sinusoid, acceleration
inversely square case, Earth-Mercury flight

Note that the total excess velocity values for lowalues of fuel mass consumption are
significantly high. Individuals with these valueftotal excess velocity cannot be taken
into account in a real mission. Again an uppertlifor the total excess velocity was used:

60kny s for the same reasons already mentioned in setfdh

Figure 10.18 illustrates the Pareto fronts for siraisoidal spiral and for the exponential
sinusoid. In the plot in the right-hand side, thene Pareto fronts are represented but only
with individuals with values of total excess vetgdiower than4knys and values of fuel

mass consumption between 550 and 800 kg.
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Figure 10.18: Pareto fronts for the sinusoidal spial and for the exponential sinusoid, acceleration
inversely square case, Earth-Mercury flight

Individuals with values lower than 24.4 kg and BlRg are not present for the Pareto
fronts for the sinusoidal spiral and for the exputied sinusoid, respectively. The minimum
values of the total excess velocity in the Paretmits are0.4967km/s and 0.255kny s

for the sinusoidal spiral and the exponential shnlisrespectively. Unlike for the other 3
missions shown in this chapter, the minimum valtithe total excess velocity is lower for
the exponential sinusoid and not for the sinusogfatal. Individuals with TOF values
higher than ~0.94 years were not selected for #retB fronts for a maximum number of

complete revolutions of 2.

From figure 10.18, the Pareto fronts for the simielospiral provide lower values of fuel

mass consumption (for values lower than ~500 kg}He same total excess velocity when
comparing with the exponential sinusoid. The raoféuel mass consumption values for
the sinusoidal spiral is the widest one. This shakthe exponential sinusoid have similar

performances for fuel mass consumptions higher th&f0 kg.

10.4.1. Thrust Acceleration Constraint

Computation times are given for both shapes inetdlfl.6. Also, the percentage of the
individuals in the Pareto front and in the popuwatithat respects the maximum ratio
between the thrust acceleration that is given aswput from a certain shape and the

available thrust acceleratiorsl) is presented for 3 different cases of availalbleidt
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acceleration: (1) a, .. =0048u/r> (1.5 times a . in DS1), (2

a =0.072u/r* (2.25 timesa, .., iN DS1) and (3)a,,, ;... = 0.0964/r? (3 times

available

a'available in DSl) (See Chapter 8)

Computation time
Shapes f Ner Gt (%) Gpop (%)
(hours)
Sinusoidal spiral 40.5 46 47.8/84.8/100 0.5/2/5.3
Exponential sinusoid 85.5 41 0/23.8/97.6 0.02/0%/2

Table 10.6: Computation time, number of individualsin the Pareto front (N, ) and the percentage of

individuals in the Pareto front G and in the population G, that respect the maximum value for the
ratio between the required thrust acceleration of he spacecraft and the available one, for the
sinusoidal spiral and the exponential sinusoid, 3ases ofa, , ... = %,031(1-5?2-25?3 , Earth-Mercury
flight (acceleration inversely square case)

From table 10.6, the optimisation procedure usirege@xponential sinusoid required more
computation time than the sinusoidal spiral. Aldte percentage of individuals in the
population and in the Pareto front that do not eesgghe maximum value for the ratio
between the required thrust acceleration of theexpaft and the available one is highest
for the exponential sinusoid in all 3 cases. Comgawvith the Mars mission, there are

more individuals in the Pareto front for the Eavtkscury flight.

Figures 10.19 and 10.20 illustrate the Pareto &rdat the sinusoidal spiral and for the
exponential sinusoid when considering only thevitlials in the population that respect
the condition in (8.7). Figures 10.19 and 10.2@siitate the Pareto fronts for the sinusoidal

spiral and exponential sinusoid, respectively witee available thrust acceleration

A aiable = (0.048:0.072;0.096) u/r? is given as a constraint.
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Figure 10.19: Pareto fronts for the sinusoidal spil, for the entire population (on the right) and orly
for individuals in the population that respect thecondition (8.7) (the 3 cases of the available thrus
acceleration), acceleration inversely square casgarth-Mercury flight
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From figure 10.19, for the sinusoidal spiral, thex@ gap in the Pareto front for the case
e = 0-048u/ 1%, where individuals with fuel mass consumption eslbetween ~260
kg and ~560 kg are not present. From figure 10t6,Pareto front for the exponential
sinusoid only has individuals with fuel mass conption values higher than 550 kg for the

constraint a =0.048u/r?. For the other cases and for both shapes, there no

available

significant differences between the Pareto frorthaut applying the constraint and with

the constrainta —(0.072;0.096),u/r2. Note that in some cases, the individuals

available

chosen had TOF higher than 1 year (maximum TORerRareto front in figure 10.17 was
~0.94 years).
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10.5. Conclusions

Some important remarks can be made in this sedioout the optimisation results

presented in this chapter.

For all example missions and for both thrust pedfipresented, the sinusoidal spiral
achieved the best results in terms of Pareto fibime exponential sinusoid was generally
the second best in all analyse, but always theesktzgat required the highest computation
time. The Archimidean spiral and the Poinsot’s apihyperbolic sine) had the worst
performance in the Earth-to-Mars mission (tangéntiase), since the number of
individuals in the Pareto front was significantijmall and their fuel mass consumption
values were higher compared with the values fordtier shapes. The same situation
occurred for the logarithmic spiral in the Earth4liglery mission. In this way, after a more
detailed study, conclusions can be drawn: the géwr@operties of these shapes cannot
satisfy the physical problem when the target plasetner (logarithmic spiral) and outer
(Archimedean spiral and the Poinsot’s spiral (hippéc sine)) with respect to the
departure planet. For this reason, these 3 shapeslds not be used as analytical

representations for low-thrust trajectories.

In terms of the thrust acceleration constraint, slmeisoidal spiral shows always a higher
percentage of individuals in the Pareto front tmaspect this constraint than the
exponential sinusoid, except for the Earth-Marssiois using the acceleration inversely
square case. For higher values of transfer anglenamber of complete revolutions N,
generally there is a higher difference betweenniaaimum values of thrust acceleration

used and the maximum thrust available.

When comparing the results between the accelerativarsely square case and the
tangential case, the computation time requiredHerfirst case is significantly higher than
for the later one (at least 30 times higher for shreusoidal spiral and 49 times for the
exponential sinusoid). Also, the number of indiatkuin the Pareto front is at least twice
higher for the tangential case. Figure 10.21 itatsts the Pareto fronts for the sinusoidal

spiral and the exponential sinusoid for an Earttrdvhaission.
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Figure 10.21: Pareto fronts for the sinusoidal spial and the exponential sinusoid, acceleration
inversely square case, tangential thrust, Earth-Mas flight

From figure 10.21, the sinusoidal spiral performsags better (for values of fuel mass
consumption lower than 100 kg), using the tangénpi@file than the acceleration
inversely square case. The exponential sinusoibimes better with the tangential profile
for fuel mass consumption values higher than ~35akg lower than 100 kg. The
minimum values of total excess velocity (Earth-Mangssion) for the sinusoidal spiral

were 0.1854km/s and 0.2145km/s for the tangential and accelerations inverselyasgu

cases of the thrust profile, respectively. In teohfuel mass consumption during the low-
thrust phase, the sinusoid spiral, for the acce@ranversely square case uses 153.25 kg,
while for the tangential case 96.43 kg are speritis Tmeans that the fuel mass
consumption spent during the heliocentric phase thedtotal excess velocity required
were higher for the acceleration inversely squaseccompared with the tangential case.
In terms of thrust acceleration constraint, the benof individuals in the Pareto front that
respect the constraint is always higher for theekeration inversely square case than for
the tangential case. On the other hand, the numbardividuals in the population that
respect the thrust acceleration constraint is geiydnigher for the tangential case than for

the acceleration inversely square case.

Figure 10.22 shows the Pareto fronts for the siigadspiral and the exponential sinusoid
for an Earth-Mercury mission. For this mission, tmenimum values of total excess

velocity for the sinusoidal spiral wede260%nys and 0.4967kny's for the tangential and
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accelerations inversely square cases, respectihelyerms of fuel mass consumption
during the low-thrust phase, the sinusoid spimal,the acceleration inversely square case
uses 648.18 kg, while for the tangential case ¥BBare spent. This means that although
the fuel mass consumption spent during the lowsthrphase was higher for the
acceleration inversely square, the total excesscitglrequired is smaller compared with

the tangential case.
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Figure 10.22: Pareto fronts for the sinusoidal spial and the exponential sinusoid for the acceleratio
inversely square case of the thrust profile and théangential thrust for an Earth-Mercury flight

Due to the significantly high computation time ahd worse performances for most of the
individuals in the Pareto fronts, the acceleratiorersely square case of the thrust profile

should not be considered for a mission generatdofe-thrust trajectories.

From the excess velocity values achieved in theetPafronts in this chapter, the
application of this shape-based technique is ordyammgful if a multi-revolution case is
considered (see figure 10.23). For smaller valuedl dlower TOF), for the examples
shown in this chapter, the total excess velocitlues are, many times, too high to be
considered in a mission and/or to have the advantdgising the low-thrust propulsion

technology instead of the chemical one in a mission
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11. Final conclusions

The aim of this master thesis was to come up witrreative mathematical functions and
thrust profiles to represent low-thrust interplamgttrajectories, different from the one
presented irjPetropoulos et al., 1999{exponential sinusoid using continuous tangential
thrusting). Six shapes (including the exponentialisoid), combined with three thrust

profiles (the tangential profile included) werediad.

The constant acceleration case of the thrust profithere the thrust acceleration is
constant and equal ta= aoy/ r7, was discarded after the sensitivity analysis geta7)

and consequently it was not used in the optimisattapter 9).The results shown for this
thrust profile case were not as satisfactory agHerother thrust profiles, in terms of total

excess velocity and thrust acceleration. Theredockalso due to lack of time, the study of
this thrust profile was not extended. An optimisatiprocedure was done for 6 shapes,
with 2 different thrust profiles and for 3 diffetemissions: Earth-Mars, Earth-Jupiter and
Earth-Mercury (chapter 9).

Concerning the results from the sensitivity analysly using the acceleration inversely
square and constant acceleration cases, integetiors can easily occur. Many times, for
certain geometric parameters and normalised thausteleration values, feasible
trajectories cannot be computed. When the integrait completed without errors, the
shapes combined with these thrust profiles foreesmacecraft to use negative (but higher
than -90°) values of the thrust angte This means that the spacecraft most of its tisne i
thrusting inwards in the radial direction, while radial velocity is positive (like the engine
is trying to slow down the spacecraft). Also, frtme analysis done in chapter 7, the search
space for the input variables required cannot B&icted in order to prevent integration
errors. This led to significantly higher values @imputation time in the optimisation
procedure (chapter 10) using the acceleration sahgrsquare case than with the tangential
thrust profile. Any definite conclusions could rim¢g made after the sensitivity analysis in
chapter 7. Optimisation was necessary to analysepénformances of each shape and to

compare them.
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In chapter 10, Pareto fronts were built for the ed@@tion inversely square and the
tangential cases and for 2 missions. Generally, simisoidal spiral had the best
performance in terms of the Pareto front in allesasCompared with the exponential

sinusoid, the computation time was smaller.

The Pareto front trend of the exponential sinusoid studied in chapter 10. Two types of
curvatures were verified in the Pareto front foe ttangential thrust profile for the 2

mission examples. For values of fuel mass consumptiwer than a certain valul

fuel ?
the parametek, increases, while for higher values, it decrea8esording to Petropoulos

and Longuski[Petropoulos and Longuski, 20Q4for higher values of the transfer angle
A@ and higher number of complete revolutions N (higha@lues of fuel mass

consumption), the values fdg, should decrease. In this way, the plotkgfshould always

decrease when increasing the values of the fue$ m@ssumption, which does not happen

for values lower thanM At M k, approximately reaches the maximum value

fuel * fuel ¥

allowed by the optimisation program: 1. When ineieg@ k, from higher fuel mass

consumption to lower fuel mass consumption valadsgr M the influence of this

fuel ¥
geometric parameter on the dynamics of the prodkerifferent. Therefore, the bend

occurs because the optimizer chooses smaller vafues

From the optimisation results obtained for the @@l case, the Archimedean spiral, the
logarithmic spiral and the Poinsot’s spiral (hypsid sine) were not considered suitable
for the representation of low-thrust trajectori€dnly the sinusoidal spiral and the

exponential sinusoid were used in the optimisagpvacedure, using the acceleration
inversely square case. Compared with the tangecdisé, the computation time is more
than 30 times higher and the number of individualthe Pareto front is more than twice
less. The minimum values for the total excess vsloare higher for the acceleration

inversely square case than for the tangential caske Earth-Mars flight, while for the

Earth-Mercury mission, the opposite occurs. Fohboissions, the fuel mass consumption
values are much higher for the acceleration invgrsquare case than for the tangential
one. The acceleration inversely square case iscéegh¢o have a better Pareto front than

the tangential case, since it uses 2 more variathlas the other one (there is more
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flexibility). This does not happen, because thebpm also becomes more complex.
Again, the geometry combined with the demands entlinust profile cause integration
errors that narrow the search space of each ingnainpeter (section 6.4) and it limits the
number and the performance of the individuals ia ®areto front. Also, there is a
restriction in the thrust acceleration trend. Fa@se reasons, the tangential case should be

the thrust profile chosen to be used in a missEmegator.

Note that although the sinusoidal spiral had aebetiverall performance than the
exponential sinusoid, it is worse than this lasapsh (chapter 6) in terms of constraint

equations and singularities. It was not possiblehiapter 6 to find a constraint equation to

ensure thatd” is always positive. Individuals that do not redpée>0 were discarded

during the integration procedure, unlike the expia¢ sinusoid where only individuals

that respectd® >0 a priori are picked. In spite of this, the compiata time of the
sinusoidal spiral was shorter than for the expdaérginusoid. Note that, as already
explained before, a three-dimensional problem watsimplemented in the optimisation
procedure and consequently, the geometric paranietea required TOF for a specific
mission was not computed using the plot TOF astfonof the free geometric parameter
(in case of the sinusoidal spiral 8- see section 5.5). In the case of the sinusoipiahls

(unlike the exponential sinusoid), the intervalvalues form would have been always

(—1,1) and m# 0. However, there is no guarantee that there wilalbeays a sinusoidal

spiral for the TOF required.

In terms of the thrust acceleration constraint,dimeisoidal spiral showed always a higher
percentage of individuals that respect this comgtthan the exponential sinusoid, for the

tangential case.

Finally, from chapter 10, the application of thimape-based technique is only meaningful
if a multi-revolution case is considered. For aozealue of N, the total excess velocity
values are many times too high to be consideredrnmission and/or to have the advantage
of using the low-thrust propulsion technology irsteof the chemical one (constraints in

the maximum thrust acceleration available are t&ola
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From this master thesis 6 shapes and 3 differemisttprofiles were studied. Only the
sinusoidal spiral performs better than the expdaknsinusoid using continuous tangential

thrust in terms of computation time, total exceslogity and thrust acceleration constraint.
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12. Recommendations

Although much analysis has been done in this malsésis, there are some areas that still

need to be investigated.

Even if the sinusoidal spiral was considered thepshthat had the best performance after
the optimisation procedure, a more detailed mathieaiaand physical analysis should be
done, in order to find a constraint equation asdpetulos did for the exponential sinusoid
[Petropoulos and Longuski, 2004]

During the optimisation procedure, the fuel masssconption during the high-thrust phase
should be computed. Another combination of objecfivnctions should be tested, like the
total impulse shotsAV (chemical) versus the fuel mass consumption duting

interplanetary low-thrust phase.

Also, the optimisation procedure was done withowing the TOF as an input for the
optimizer (three-dimensional case). The exponemdialisoid is already implemented in
Galomusit[Corradini, 2008] together with a multi-objective optimizer (withettobjective

functions: total hyperbolic excess velocity verdugl mass consumption during the
interplanetary phase). The sinusoidal spiral camalse implemented in Galomusit and
results between these two shapes can be compaimgl the JPL's Ephemeris model,

instead of a two-dimensional one.

The results obtained from the exponential sinuaaid the sinusoidal spiral should serve as
an input for a real mission generator, where pbdtions are taken into account. The
concept of using analytical representations for-tbwst trajectories should be analysed. If
the variation in final position and velocity of thepacecraft using the full numerical
integration of the transfer orbit with respect toe tresults given by the analytical
representation technique is significantly smallerththis shape technique using the
sinusoidal spiral or the exponential sinusoid Wwél worthwhile taking into account for an
initial guess to compute low-thrust trajectoriesn @e other hand, if the differences

between the numerical integration results and tr@ytical representation results are not
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acceptable, other methods different from the oneeld@ed by Dario 1zzdlzzo, 2006]
should be taken into account. The method develdyediesbroek, 2006that uses pre-
described thruster models or the one done by Deedeg[De Vogeleer, 2008hlready
mentioned in this thesis are two examples of sachriiques. In the following paragraphs,
a comparison between the software implemented by@geleer{De Vogeleer, 2008and

Izzo’s technique will be done in order to underdtéimeir advantages and disadvantages.

As mentioned before, the purpose of the thesisldped by De Vogeleer was to find a
method that serves as an initial guess to compge Bw-thrust trajectories between two
celestial bodies. The method works very well agjlas the number of revolutions N is
smaller than 2, while 1zzo’s method has no limdaton this parameter. Both methods are
independent of the initial or final orbit parameteDe Vogeleer's method calculates
feasible trajectories for fixed initial and finabgitions and velocities, while in 1zzo’s
techniqudlzzo, 2006]there is only a match in initial and final positg As mentioned in
the beginning of this chapter, De Vogeleer usesegipns of power series to represent the
low-thrust trajectory of the spacecratft, i.e., @gsions with linear combinations of many
terms (coefficients). These coefficients act ageleg of freedom and are therefore some of
the optimization variables. The amount of coeffitgedepends on the range of the mission,
i.e., for an Earth-Mars flight the software will @tk fewer coefficients than for an Earth-

Jupiter flight. l1zzo’s technique, on the other hamdes only 3 optimization variables

(tdepanure,TOF, I<2) for a direct flight (exponential sinusoid) indeplently of the initial and

final orbit parameters. Also, a sensitivity anadyisi required in order to choose the correct
values for the order of the expansions and theiyeoisthe time grid to achieve consistent

integrations. This kind of sensitivity analysisist needed with 1zzo’s technique.

Advantages and disadvantages can be found in bethaus with respect to each other. De
Vogeleer's method is more desirable for orbit itisar missions, because a match in
position and velocity is achievable. 1zzo’s tecluggis a much more straightforward
method, but it requires significantly high initiahd final excess velocities in order to
perform orbit insertions. Note that the sinusoigigiral and the exponential sinusoid have
similar performances in terms of excess velocityhigh values of number of revolutions.
Therefore, De Vogeleer's method is still more dul#afor orbit insertion missions than

Izzo’s technique using the sinusoidal spiral. Om tither hand, the excess velocities
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achieved by 1zzo’s method make it more attractwethrust arcs where flybys are taken
into account. In this situation De Volgeleer’'s natlcannot perform efficiently, since the
final velocity is already fixed. A combination ozZo’s technique and the Vogeleer's

method will be advantageous for a mission genexttow-thrust trajectories.
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Appendix A: Derivation of Equations

1. Derivation of the equation: 6° :(ﬁj 3 cosa tary= & S+ .

r tan® y+kkis+1

First the derivatives in equations (5.6) are sul&td in the first equation of motion
represented in (5.5):

r(é(q+k1kzc)+6?2(q+ kk Q" -6% k& )s— €2+rﬂ2: aina (A.1)

The second equation of motion in (5.5) is usedlimieate § from equation (A.1) and

(q+kk,g is substitute bytany (equation (5.7)):

(acosa— 2(9) tary+r(92 tahy—921<1k223)— r6'?2+r—/é= a sio -

(acosa— X672 tary) tary+r(5}2 taﬁy—ékkfs)— n9-2+r£2= A si o
' (A.2)
r5r2(-2tan2 y+ tarf y—kk’s- ): a sim— a cos talﬂ—r—/': _

3 2
L (tan2 y+kkis+ ]) :r_( aco® tay- a sio+ )1
H H
In the following step, the thrust acceleratianis replaced by the parametay according

to equation (5.9). Passing all the terms in lefichaide to the right hand-side excefft,

equation (5.8) is obtained.

Note that for the tangential thrusting case= y+nsr, with n=0,1 and consequently

acosa tary=a sim .
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2. Derivation of the equation:
a= [(tanyé?zr?’ lu- 2, cosa)( tafy +kKk’s+ )f -

—(a, cosa tary—a, simr+ )(kik?z’c— 2tayrlg|§§
—aoklkﬁscosa(taﬁy+ kK s )}9 [( a sim tap+ @ cas)( tap+ kk 8 )JJ

Equation (5.8) can be written as:
éz(tan2y+ kk?s+ ]) =r—'L;( a cowr tay- g sio+ ).
Taking the derivative of equation (5.8) in bothhtigind left sides:

%[éz(tan2y+ k kZs+ ])]:%{%( 3 com tawy- @ sio+ )ﬂ -
26?6'?(tar12 y+k1k§s+])+93(— 2k K stary+ glz:t}:— é;%r( acos tan- @ sin+ )t

+%(—dsinatany—9klk§s Cosr — & coa) - (A.3)

g’(zér_;(tanz y+k k2 s+ ])+9'2%(— 2kk?Zstany + klkj(j+

+3tany(a, cosr tay-3a, siov+ )k gkl s cans)=—c‘r a( ¢n tpr  a@op

Substituting the second equation of (5.5) in (Aa3yrder to eliminated :
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H(Z(acosa 20° tary)ﬂ( tahy +k kZs+ )BHZ ( RK's tan+ ggp
+3tany(a, cosr tay-a, siv+ )k akKs cans):—a a( sn tar e

9(2@, cosa - 4tary92ﬁJ( tahy + k kZ s+ ):Hé?zr ( RKs tgn+ lfgp
H (A.4)

+3tanyd” (tan y+kk s+])+ akk scoan -0 g sim tap+ cap) =

6 -2ncom 4 tang | ey Joo (- gk s e kB

—a kK scosa)=c‘r a(sinr tary+ cog)

Finally, multiplying both right and left parts ofjeation (A.4) by(tan2 y+k s+ :I) the

equation (5.11) is obtained.

3. Derivation of the equation:

_(-1) tany 1 O K( X9
2cosy | tafy+kkis+ 1 (tan2 y+k kst ])2

Equations of motion (5.5) are added, yielding:

F-r6® + £+ 2 6+r 6 =a (cosa + sinr) -
r

r(étany+6?2 tarf y— 6% k2s—- 0%+ B? tary+9)+r—€: a cos+ sim) -

r(é(tany+:l)+6?2(2taﬁy+ 2tap— tay —kk’s— )}92K|§5)+ (A.5)

+r—/£ =a(cosa + simy) =

r(é(tany+:l)+6?2(2taﬁy+ 2tawr)—6?2( taﬁ/+k1kzs+1)) ﬁzz a cosa + sin)

Substituting equation (5.13) in this last step dividing it by cosy, the expression for the

thrust acceleration magnitude is given by:
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a:L(é+2€'2 tany) (A.6)
cosy

Now, an expression fof must be computed differentiating equation (5.18hwespect to

time:

e

r.3

‘ (A.7)
266(tarf y+k k2 s+ )+ 6%(- K K stary+ kB §= —3rrf1
Isolating & term, the equation (A.7) yields:
. —3tanpu/r®-0*(- xk?’s tary+
b= i/ ( 1K S tary ka() (A.8)

2(tan2 y+k K s+ ])

Substituting this last equation (A.8) in equatiéng), the thrust acceleration is given by:

a= [ utany {_34_( 2k Kis— K }_ ( 2 tany }
r

= " 2r3(tar12 yrkkist ]) tarf y + k I s+ ;t tady+ kKK & )1
o= FHtany —3/2+2 2kkgs-K - (A.9)
cosyr® (tan2 y+kkis+ J) 2(taﬂ2 y+kKk s+ ])2 |
o Mtany 1 _ K(1-s)
2cospr? (tan2 y+kKs+ J) (tan2 y+k kst ])2

To obtain the normalised thrust acceleratgn the left side of equation (A.9a should

be substituted by equation (5.9) to finally obtaiquation (5.14). Note that only the
situation where the thrust vector is along the e#yovector was considered in equation
(A.9).
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4. Derivation of the conditions:

< tar’ y - 2, In( rn;in/rB) andk? < tar’ y+ X, In( fsz/fmax)
(In(rmi"/rB)) (ln(rB/rmax))

Note that the quantitk,,, is given by:

Kios = kG s (A.10)

Using the trigonometry identitysin® 8+ cos 8 = - and equation (5.7), equation (A.10) can

be rewritten as:

Gk - K tan’y- K, = 0. =BT VRIS :12"12"2252 (A11)

The geometric parametek, can be rewritten through the variables, =k,e™ and

r, =k,€%°, that are given by equation (5.3):

k = —(kls+ln[r;ﬂn (A.12)

To obtain the condition given in (5.17), equatiénlQ) is substituted in the denominator

of equation (A.11). A similar reasoning is applidobtain the condition (5.18), using

r.. =Kg£4, instead ofr_ .

] 2
In(r,/r,) +(tany, k) S|r(k2¢9f) +tan2y1
1- cos(kzef) k?

5. Derivation of the equation: k’ =

Using the two equations of motion in (5.29) andsidering 8 = 0°, the following relation

can be derived:
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L
2

_ k,sing 3 L
= ex (WJ - In(rl/rz)—kl(sm¢ sirlk 4, +(p)) (A.13)

Using the addition theoremsin(B, +8,) = sin(B3,) co§B3,)+ cofB,) sif3,), equation

(A.13) can be rewritten as:

In(rl/rz):kl(sinqo—(sin(kﬁf) cogp+ sip cc(gggf))) -
In(r,/r,) =k,sing-sin(k £, ) tary,/k,— k, sip coskg, ) =

 sing= In(r,/r,) +sin(k29f ) tany,/k,
1- cos(kzef)

(A.14)

The left side of equation (A.14) can be rewritten a

k, sing=k./1- cod g = kl\/ r taﬁyl/(klkz)2 :ﬁ«/ K- taty,/ K (A.15)

Substituting equation (A.15) in equation (A.14) atlaring both, right and left sides of

the last equation in (A.14), the geometric paramktean be computed:

In(r,/r,) +sin(k26?f ) tany/sz2

(sign(kl)x/kf —tarty,/ k§)2 :[ 1-cog(k,6, )

2 2 . In(rl/r2)+sin(k26?f)tanyMk2 ?
ki —tan J/l/kz ‘[ 1= COS(kZQf) - (A16)
, [ In(r,/r,)+(tany, k) Sir(kzgf) 2+tan2yl

) 1-cog k.6, ) K2

Note that the sign of the geometric paraméders the same as the right side of the last

equation in (A.14).
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6. Derivation of the condition: tany, O( tary,,, ,tary, ).,

K [— In[ij cotkz—zefix/Z} and A:w—lnz[ij

with tany, = Ez

4
r2 2 r2

The constraint condition given in (5.34) can beritt@n as:

In(r,/r,) +(tany, k) sin(k 4, )JZ

tar’ y, |, 4
+ ky <le
1-cogk,8, ) k2 |°?

e |
: (A17)
(KeIn(r/r,)+k,tany,sin(k 8, )+ tariy,~( & cofks,)) < |

After some algebraic manipulation, the last cooditintroduced in (A.17) can be written

as:

2k22(1— cos(kzé?f )) tafy,+ & I{ij si(1k2¢9f) tay, +

P

K |n2(ij ~(1-cogk8,)) < 0

I

(A.18)

Solving this quadratic equation tany; through the formula:

tany, = andA” =¢ —4ac, where:

NN
2a

a=2k (1— cos( k.6, ))
b= 2K |n(:—lJ sin( k6, )

2

c=k; Inz(:—g —(1— cos( k0, ))2

In this way,A” can be derived:
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A =4KS Inz(

8k (1- co{k g, ) (kz Inz[
A" = 4K (1- cog k.6, ))(I (r—l (# cobke,))-

A =4 (1— co{ k.0, )) (k%( + cofkg, ))_

Note that A :k—24(1— cos(kzé?f )) - Irf

lj(l— co§ k26?

2

r

1
r

N

))-
J-(x cobia)) |-

2|%{rj+k_4( 1 cdks,)) j
|

)
i

:

[ij in equation (A.19). Finally,tany, can be
r2

(A.19)

2

computed through:

tany,, ,, = —k—22
tany, , = —k—22
tany, , = —k—22
tany,, v k—22

In (rl/rz)sin(k B )
1- cos(kzef)

In(r,/,) 1+ cogc4,))
sin(kzé?f )

n(r/r,)(1+cos (k.8 / 3- sid(k 4,/ 3)
2sin(k,6, / 9 cofk.6, | 3

(In (r./r,) co1(k6?/3+ )

+

_JZJ“

iﬁ} -
(A.20)

J?\/ZJ -
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Appendix B: Equations of the Shapes

In this appendix, the equations for the dynamiapeaters for each one of the 6 shapes:
Archimedean spiral, the logarithmic spiral, therRoit’s spiral (hyperbolic sine and cosine
expressions), the sinusoidal spiral and the expaiesinusoid will be presented. The
equations for the dynamic parameters are givethtoB cases of the thrust profile.

1. Archimedean spiral

The radius equation for the Archimedean spiralvsmg by equation (6.2):
r=(k,0+k,)"

The radial velocity and acceleration and the flighth angle for the Archimedean spiral

are given by:

= (ym)kr(kg+ k)™ (B.1)
tany = =(4m) (ko + k) (8.2)
F=(Ym) ko (ko + k)™ (G r+O7-6rky(kp+ k) (8.3)

For acceleration inversely square case of the tipradile, > and & are given by:

P :ﬂaocos(a) tary - a, sifa)+ :
r (m+1)tarf y+1

(B.4)

a":{—299[(m+1) tarf y + :I]+ 2’5?3[(mz+ n) taﬁy]—r—'tg mtafyd g cde)+

' (B.5)
+%(aosin(a)—aocos(a) tary - )-} kﬁs(ao cdar)+a s(@) t:—y)}

10
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For constant acceleration case of the thrust sl anda are given by:

e a,cos(a) tary - g, sirﬁa)+r—/§
- r((m+1) tar? y+])

(B.6)

d:{(—299r—92r)[(m +1) tarf y+ :I]+ D (m2+ m) tady+ %

r‘ | (B.7)
—a,cos(a)fmtad y+ E erj—s} Va cor)+a siw) tan| >

For the tangential thrust profilé? is given by equation (B.4). Note that in the tartis
case,,cos(a) tary = g, sifa). Parametes, is given by:

r*(8+ 267 tany
a = ( ) (B.8)
[1COSY

Parametel is given by:

_3'2” +26° (m? + m) tar’ y
g=—"— (B.9)
26?((m+1) tarf y+ ])

2. Logarithmic spiral

The radius equation for the logarithmic spiraliigeg by equation (6.4):

r=k,e™ +k

The radial velocity and acceleration and the flighth angle for the logarithmic spiral are

given by:

r =mék,e” (B.10)

11
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tany:L. :kornr:fé“g (B.11)
ré ke™+k
F =k,me” (6 + nt?) (B.12)
For acceleration inversely square case of the tipnadile, 8 and & are given by:
22 :ﬂsaocosa tary-a, sim+ . (B.13)
r* 2tafy-mtary+ 1
c‘r=(299(2tarf y-m tary+ ).+93( Bn tahy— 4tdny— nt téyr)+
3ur/r(a, cosa tary-a, sim+ J-u/r’fa, cas(m tgn- téy()) (B.14)
(—,u/rg’(aosina'tany+a0 cossr))
For constant acceleration case of the thrust grdfiland & are given by:
— i 2
g2 = 18 cosa tary-a, simr + /v (B.15)
r 2tarf y—m tary+ 1
d:((299r+92r)(2tarfy—m tary + )+93r( B tahy— 4taly-m?’ teyr)+
(B.16)

2ur /r® -a, cosaé(m tary - taﬁy))/(—(a0 siv tap+ a, cag)

For the tangential thrust profilé? is given by equation (B.13). Note that in the &mtal
case,a, cos(a) tary = a, siffa). Parameten, is given by:

_ r3(9+29'2 tany)
%= 5%

Parametel is given by:

12
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be —3utany/r®- 292( Bn tady— 4tahy—m? tayl)
- 2(2tarf y—m tary + )

(B.17)

3. Poinsot’s spiral (hyperbolic sine)

The radius equation for the Poinsot’s spiral (hippéc sine) is given by equation (6.7):

r =k, [sinh(m(6+¢))]"

The radial velocity and acceleration and the fliglatth angle for the Poinsot’s spiral

(hyperbolic sine) are given by:

r =—k,mocoth(m(8+¢)) r (B.18)
tany:%:—mk1 cot{ m(6+¢)) (B.19)

i= —klm[ércoth( m(6+¢))+8r cot{ m(6+¢)) -6’ rn{ sintf {6+ ¢))]_2} (B.20)

Parameterp was added in equation (6.7) in order to warn ter that the term inside the

sinh( ) should not be zero, otherwisebecomes».

For acceleration inversely square case of the tipnadile, & and g are given by:

ol a,cos(a) tary - g, sifa)+ 1

r* tar? y—kn? sinf{ m(8+¢)) " + 1 (&2
a :{26?6?(tar12 y- klmz( sint{ rr(9+¢)))_2 + ;H
+26°m’ coth( m(9+¢))( sint{ n(9+¢)))‘2( - ‘1%)"‘ oo

+3;1r’/r4(610 coqa) tary-a, sifa)+ )l_

- p/r*kymPg, cos(a) O sink{ n(9+¢)))_2}/[—/1/ F(a cofa)+ a sife) tap)]

13
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For constant acceleration case of the thrust gdfiland @ are given by:

g docosa) tary-a, Sirﬁa)wgz (B.23)
r(tan2 y—klmz(sinl'(m(6’+¢))) + :)

o ={{88r 06717 ko sin{m(+ )]+ J+
+26°rm® coth( m(6 + ¢))( sin{ m(6+ ¢)))_2( k- I§)— (B.24)
-, cos{a) knfd( sint{ n(6?+¢)))_2 + U /F}/(—% cofr)- a sifr) tan)

For the tangential thrust profil&? is given by equation (B.21). Note that in the emiipl
case,a,cos(a) tary = a, siffa). Parameten, is given by:

_ r3(<§?+26'?2 tany)
%= %

Parametel is given by:

5o 3ui + 263 (sinb(m(6+9)))” cosm(6+9))( ¥ - k)

26'?(tar12 y—kl(sinr(m(e+¢)))-2 2+ ) (B.25)

14
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4. Poinsot’s spiral (hyperbolic cosine)

The radius equation for the Poinsot’s spiral (hippéc cosine) is given by equation (6.8):
r =k, (cosh(mg)) ™

The radial velocity and acceleration and the fliglath angle for the Poinsot's spiral
(hyperbolic cosine) are given by:

r =-k,mgtanh( mg) r (B.26)
tany:r%.’:—mkl tant{ n®) (B.27)
P = —klm[étanh( mg) r+ 6t tan{ ) +6” rm cosk ( rm?)] (B.28)

For acceleration inversely square case of the tipnadile, & and g are given by:

P _ 4 &coda) tary -3, sifa)+
r® tan’ y+km? cosh?(mg)+ 1

(B.29)

a :{_zgg(tan? y+knt cosh’( ng)+ ).—
- 2m°¢* (cosH(m8))” tanlf ) ( K- K+
3,ur'/r“(a0 sin(a)-a, coga) tay- )1_

— 1/ r*k,m?6(cosh( m9))_2 a coﬁa)}/(,u/ (g cowr)+ a siw) tar))

(B.30)

For constant acceleration case of the thrust rdfiland @ are given by:

ol cos(a) tary-a, sifa)+u/r’
r tarf y+km’ cosh’(ng) + 1

(B.31)

15
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a :{—(Zéér +92r)(k12m2tankf(n€)+ k nf cosh?( n#) + )l—
- 2m°6°r (cosh( m9))_2 tani m9)( K- l§)— (B.32)

- kn?6(cosh(9))” 4 cofa) - } /( a colr)- kmtarhis) a o))

For the tangential thrust profilé? is given by equation (B.29). Note that in the &mial
case,a, cos(a) tary = a, siffa). Parameten, is given by:

_ r3(9+29'2 tany)
%= [/ COSy

Parameted is given by:

jo —3;1r'/r“—29'3r‘r13(cost(m€))_2 tan(1m9)( K- Ig)
29'(tan2 y+k ( costfmd))” nf+ )I.

(B.33)

5. Sinusoidal spiral

The radius equation for the sinusoidal spiral i®giby equation (6.10):

1/m

r = (k, cos(md) + k)

The radial velocity and acceleration and the flighth angle for the sinusoidal spiral are
given by:

= —6rk, sin(mé)(k, cog mg) + k)™ (B.34)
tany:r%? = —k, sin(md) (k, cof nd)+ k)™ (8.35)
=k, [ Csin(mg) fr+ Cne” cog nd) r+ Csir{ )8 w Csilf 8)6" (B.36)

16
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where C =(k,cos(m8) + k)™ andC = k,mdsin( ng) C
For acceleration inversely square case of the tipragile, & and g are given by:

=M a,cosa tary—a, sSimr+ 1
r® tan’ y(1+m) + k,CCmcog nd) + :

(B.37)

d:[zéé(—tarf y( 2+ m)-k Cmcog n#) - ),+
-6 (2CCk sin® () (1+ m)+ K C @ sin( 28)( ¥
+k,Cmeos( nd) - tary rﬁé)+ 7 (g sim- g cos tan- )%
—,u/r3a0cosako(C sin(mg) + Cné co$ rﬂ))] Q,u/ t( g cos+ g sim ta/r))

(B.38)

For constant acceleration case of the thrust rdfiland @ are given by:

g2 = 3 COSa tary— 3, simr + p/ r°
r(tan2 y(1+m)+k,COmcog n) + ).

(B.39)

o ={~(268r + 67 )((1+m) tarf y+k,Cm co§ ng) + )+
—H'Zr(Z(OZCCsinz(nﬁ)(H m+ ¥ Cidsin 2@6)( ¥
+k,Cmcos( nd) + Mo tary)— @ cog K( Csif #)+ Céh cds ﬁ))_

2ur
-5

(B.40)

}/(a0 cosa + g, siny tary)

For the tangential thrust profilé? is given by equation (B.37). Note that in the &miipl
case,,cos(a) tary = g, sifa). Parametes, is given by:

_ r3(67+26?2 tany)
%= LICOSy

Parametel is given by:

17
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é:{_rﬁlr ‘92(‘2tanykom(l+ m)(”9C00$ ng)+ Csif nﬁ))+

ke Ceod{ ) - Cré si ) { 2 tady( & e X © ods By b

(B.41)

6. Exponential sinusoid

The radius equation for the exponential sinusoglven by equation (5.3):

r =k eq€+klsir1( k0+¢)
0

The radial velocity and acceleration and the fligath angle for the exponential sinusoid

are given by equations (5.6) and (5.7), respedtivel

r=8(q+kk,o)r
r=(6(a+kko)+o (arkk§ =67 KK b
tany=r%-,=q+k1kzc

For acceleration inversely square case of the thpusfile, & and ¢ are given by

equations (5.8) and (5.11), respectively:

g2 = M 3 Cosa tary—a, sim+ .
r tan’ y+kkis+1

d:{(tany92r3 - 2, cosr)( tahy+kkis+ )L -
~(a,cosa tary-a, simr+ J(kKc- 2tapk R $
~akKscosa(taiy+ kR & }8/(( g sim tap+ g car)( taw+ kks )

For constant acceleration case of the thrust grdfiland @ are given by:

18
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g2 = 3 COSa tary - a, simr + 1/ r? (B.42)
r(tar? y+kkis+1) '

d:{(tan2y+k1k§s+])(299r+92r)+93r(—2<1k223tary+ Iglf()+
}/(—( g sinx tary+ g cos))

(B.43)

a,cosak kK G+ Zr/f

For the tangential thrust profil@? is given by equation (5.13). Note that in the tamial

case,aocos(a) tary = a, sirﬁa). The equation for the parametay was already derived

in appendix A.

19
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Appendix C: Integration Error

The objective in this appendix is to study and shiog behaviour of the thrust angle rate
(a) during the integration procedure to obtain theishangle &), using the integration
method Runge-Kutta 4(5).

The Archimedean spiral combined with the acceleraitnversely square case will be used

in this demonstration. The equations for the dymapsrameters®d?> and ¢ are given in
appendix B.

A mission example is presented: a flight from EaatiMars, using one revolutiorN(=1).

The phase angle between one arbitrary point ahBaotbit (B) and one arbitrary point at
Mars’ orbit (P,) is 7.1427rad = 409.247. The initial values forg, and a, are assumed

to be zero and the value fag is assumed to be 0.04.

When m=2.2, there is an integration error, stating that thegpam was unable to meet

integration tolerances without reducing the stee dielow the smallest value allowed
(2.98023% 10 ) at instant of time 1.41698% 10 s 0.449323ye. Figure 24

illustratesa values before and at the moment that the failutbe integration occurs.

20
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oW B
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2t

alpha dot(rad/s)
=

W W ®

1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3
time({seconds) from t~1.416985E7 seconds

Figure 24: ¢ as function of time from 1.416985% 10s= 0.4493:years

In order to understand why the failure occuis,is computed at the two last instants of

time before the error message, nangd and t,, wheret, is the last instant of time

computed.

a(t_,) =-1.0436415568989ad s

a(t) =4.999352593484d

The expression forr is complex, so in order to find where the problismthe equation

was divided in two parts: the numeraton,) (upper part of the fraction) and the

denominator ¢,) (the lower part of the fraction):

n,(t_, )= 2.47049193627266x10 %
n, (t,) = 247049107036708x107%

d, (t_,)=-236718432689962x10
d, (t ) = 4.94162198887792x10°%

21
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Clearly, the denominator of equatian is responsible for the large variationsdnresults

for small time step sizesl, is given by:

Parametersy and a, are constants and equal 182712440018 m® ¢ and 0.04,

respectively.

For m=2.2, k, =7.31558775696605%1 it andk =1.471041108704898 I Since the
difference between,_, andt, is very small, it is understandable thatand r yielded the

same values for both instants of time:

6 =2.4273968603034&d
r =1.780522308862669 1tn

Since @ is constant front,_, to t;, tany is also constant between time instants. In this

way, the only variable that changes between themstants of time isr :

a(t_,) =1.6349360195440&d
a(t)=1.6349357159123d

The difference between the values is significantly small, but it is sufficieto cause the

integration error. Neglecting the terpr)/r3 :

t_,:—1.006845193199726 10

cosl a) + tal sifa) =
3 cos(a) + tarya, sifa) {ti:2.101842382865752 10

By changinga value by10°rad will make a,cos(a)+ tarya, sifa) vary between

negative and positive values. At a certain instdnime, a, cos(a) + tarya, sifa)= (.

22
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According to[Petropoulos et al, 1999]when past the point in the trajectory where the
denominator ofd is zero, there is no thrust direction which canntzn the selected
shape and continuity of velocity, using the currégmtist profile. In this way, the fact the
integration procedure cannot be completed is dugetmmetric properties of the shape
selected that cannot satisfy the physic problem.

If this situation happens during the optimizatiomgedure, the individual is discarded.
Unfortunately, this integration error cannot bediceed before the integration starts.

23
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Appendix D: Analysis of the Shapes for the Constant
Acceleration Case of the Thrust Profile

In this appendix, results and some remarks wiljiven for all 6 shapes using the constant
acceleration case of the thrust profile, for antfizég-Mars mission. The conclusions about

these results are presented in section 7.7.

1. Archimedean spiral

In this section, results for the TOF, for the exceslocities and for the thrust acceleration
will be shown and discussed for the Archimedeamaspihe thrust profile used in this

analysis is the second thrust profile mentionedhapter 6, where the magnitude of the
thrust acceleration is constant and equalate g, 4/ 7, where r, is the heliocentric

distance of the starting point of the thrust arc.

Figures 2 and 3 show the TOF and the total excelsxity when changing parametér

and the transfer angl&ég (N=0). Note that the polar angle at the targehglas given by:

6, =8 +A8+2nN. The value used in figures 2 and 3 for the gedmptarametem was

0.05, the values used for the initial valueamfwere (-60°, -50°, -40°, -30°, -20°), for the

initial polar angleg@ were (0°, 120°, 240°, 360°) and for the transfgfeaAd were (90°,

1500, 210°, 270°, 340°). The normalized thrustlacaton a, value used in figures 2 and 3
was 0.07.
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Figure 25: TOF for g values of (0°, 120°, 240°, 360°) from left to rign the figure, a, values of (-60°,

-50°, -40°, -30°, -20°)A8 values of (90°, 150°, 210°, 270°, 340°) (N=@)0.05, a, =0.07, constant
acceleration case of the thrust profile (Archimedea spiral), Earth-Mars flight
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Figure 26: V. for g values of (0° 120°, 240°, 360°) from left to rigin the figure, a, values of (-60°, -
500, -40°, -30°, -20°)A8 values of (90°, 150°, 210°, 270°, 340°) (N=@}0.05, a,=0.07, constant
acceleration case of the thrust profile (Archimedea spiral), Earth-Mars flight

Some remarks can be drawn from figures 2 and 3expected, the TOF increases when
increasing the transfer angle, while the total sgceelocity decreases. By changing the

initial polar angled , the differences between values for the TOF andHh®e total excess
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velocity are significantly small. The order of mé#gde of the highest difference in the
time of flight between differen§ for the same phase angle amglis 10° seconds, while
for the highest difference in the total excess eigJas 10° ny s. The TOF increases when

increasing values ofr,, while the total excess velocity decreases (fi@)re

Similar figures can be shown for 1 and 2 revoluiionsing the same values for the
geometric parametan, for the transfer angld@ and for the initial values ofr and 4.

The values for the normalized thrust acceleraagmsed in figures 4 and 5 were 0.03 and

0.02, respectively for N=1 and N=2.

It
-

44 ‘ : ‘ : : :

[
=

g
o

g
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TOF (years)
BN
ra [

e

o 150° 2100 370 3400 o0 150° pilig 270° 340°

transfer angle /6 = [0°,120°,240°,360°] transfer angles g = [0°,120°,240°, 360°]
Figure 27: TOF for g values of (0°, 120°, 240°, 360°) from left to rigin the figure, a, values of (-60°,

-500, -40°, -30°, -20°)A8 values of (90°, 150°, 210°, 270°, 340f)0.05, constant acceleration case of
the thrust profile (Archimedean spiral), Earth-Mars flight, N=1 (a, =0.03) and N=2 @, =0.02)
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Figure 28: V__ for & values of (0° 120°, 240°, 360°) from left to rigin the figure, a, values of (-60°, -
50°, -40°, -30°, -20°)A8 values of (90°, 150°, 210°, 270°, 340%0.05, constant acceleration case of the
thrust profile (Archimedean spiral), Earth-Mars fli ght, N=1 (a, =0.03) and N=2 @, =0.02)

Similar remarks to the ones given for N=0 can bewar for figures 4 and 5. Note that
when increasing the number of complete revolutir{figures 3 and 5), the differences in
total excess velocity between different valuesagf increase. As for the N=0 case, the
differences in the TOF and total excess velocitiwben differentd and for the same
transfer angle andr, can be neglected for N=1 and N=2. In this way, doethe
significantly small influence that the parame#r has in the TOF, in the total excess

velocity and also, although not shown in the prasidigures, in the thrust acceleration,

this parameter would not be considered a variaibthe optimization procedure.

The TOF range for this Earth-Mars flight is fron8622 years to 4.0527 years. The total
excess velocity has a minimum value @f463%knys and a maximum value of
14.2794ny s. As expected, the minimum value for the TOF arel rtfaximum value for

the total excess velocity occur for the smalleansfer angle — 90° (N=0); while the
maximum value for the TOF and minimum value for tibial excess velocity occur for the

highest transfer angle presented — 340° (N=2).

The maximum differences in TOF between two conseeutalues of the transfer angle
A@ are about 0.27 years. For a certain number ofluéwas, these differences increase

when increasing the transfer angle. The differenceserms of total excess velocity
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between two consecutive transfer angles is alwaghebt betweenAd=90° and

A@=150° The maximum value for these differences5i420%kny s for N=0 and the

minimum value is abouf1ny s for 2 revolutions.

Tables 1 and 2 show the values of the TOF and xkess velocity for an Earth-Mars

flight. Parameterd was assumed 0°, parametey was assumed -20°, the transfer angle
A8 was assumed 90° and the number of revolutionstakas 1 for the first table and 2
for the second one. In table 1 the normalized traoseleratiora, was 0.04, while in table
2, this parameter was 0.02. Note that these valoesa, for N=1 and N=2 are the

minimum values that can be used in both caseshfershape without facing integration

problems for the interval of the input parametenssidered.

N=1 m=0.02| m=0.64 | m=1.26 | m=1.88 | m=2.5
Voow (K9 | 3.3071 | 3.4080| 3.5776 3.8208  4.1444
V,.(knf9 | 1.6362 | 1.8581| 2.1225 2.4394  2.8216
V,,(km'g | 1.6709 | 1.5500| 1.4551  1.3809  1.3228
TOF (years)| 1.7003| 1.7241  1.7480  1.7722  1.7970

Table 7:

The excess velocities and the TOF valuesr N=1, 8=0°, Ag =90°, a,=-20°, fora,=0.04,m
values of (0.02; 0.64; 1.26; 1.88; 2.5), constardceleration case (Archimedean spiral), Earth to Mag
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N=2 m=0.02 | m=0.64| m=1.26 | m=1.88| m=25
Voow(km'g | 1.7942 | 1.8533| 1.9501 2.0872  2.2691
V,.(kny9 | 09054 | 1.0304| 1.1796  1.3582  1.5730
V,,(km's | 0.8888 | 0.8229| 0.7705  0.7290  0.6961
TOF (years)| 3.1004| 3.1425  3.184 3.2270  3.2701

Table 8: The excess velocities and the TOF valuesr N=2, 8 =0°, Ad =90°, a, =-20°, a,=0.03,m values
of (0.02; 0.64; 1.26; 1.88; 2.5), constant acceléicm case (Archimedean spiral), Earth to Mars

From tables 1 and 2, the order of magnitude of tthtal excess velocity values is
10° km/ <. For increasing values af, the total excess velocity and the TOF increake. T
values for the total excess velocity are higher wwhi==1 than when N=2. Note that the

excess velocity,, , increases faster than the excess veld¢jty decreases and the value

of V,,, whenm= 2.5 is more than twice smaller than the value&/of in both cases of N.

In figures 6 to 9, the polar plot, the thrust angle the polar angle raté and the flight

path angle as function of time are illustratedMerl and N=2 (tables 1 and 2).

270

270

Figure 29: Polar plot for N=1 (a, =0.04) and N=2 @, =0.02), § =0°, Af =90°, a, =-20°,m values of
(0.02; 0.64; 1.26; 1.88; 2.5), constant acceleraticase (Archimedean spiral), Earth-Mars flight
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Figure 30: o plot for N=1 (a,=0.04) and N=2 @, =0.02), § =0°, A8 =90°, a, =-20°,m values of (0.02;
0.64; 1.26; 1.88; 2.5), constant acceleration ca@echimedean spiral), Earth-Mars flight

teta dot(dearees)
w

increasing values of m

3t J
Tr J
5 L 1 1 1 1 1 L 1 E 1 1 L 1 1 1 “-
0 0.2 04 0.6 0.8 1 12 14 1.6 1.8 0 05 1 15 2 25 3 35
time(years) time(years)

Figure 31: & plot for N=1 (a,=0.04) and N=2 @, =0.02), § =0°, Af =90°, a, =-20°,m values of (0.02;
0.64; 1.26; 1.88; 2.5), constant acceleration ca@echimedean spiral), Earth-Mars flight
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Figure 32: y plot for N=1 (&, =0.04) and N=2 @, =0.02), § =0°, A8 =90°, a,=-20°,m values of (0.02;
0.64; 1.26; 1.88; 2.5), constant acceleration ca@echimedean spiral), Earth-Mars flight

The values of the thrust angle are higher for N=2 than for N=1. During the
interplanetary flight for both cases in figure fetspacecraft is thrusting inwards in the
radial direction, while in the tangential directigrthrusts in the positive directiora( is
negative, higher thar-90°). This means that the vehicle is thrusting in favof the
gravitational acceleration. This situation is expda in section 7.7. The magnitude values

of the flight path anglg/ are smaller for N=2 than for N=1.

2. Logarithmic spiral

In this section, results for the TOF, the excedsoiges and the thrust acceleration will be
shown and discussed for the Logarithmic spiraluFég 10 and 11 show the TOF and the
total excess velocity when changing parameéeind the transfer anglA@, when the
number of revolutions N is 0. The value used irufgg 10 and 11 for the geometric
parametem was 0.05; the values used for the initial valuergffor the initial polar angle

6 and for the transfer anglAd were the same as for the Archimedean spiral. The

normalized thrust acceleratiay value used in figures 10 and 11 was 0.08.
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Figure 33: TOF for g values of (0°, 120°, 240°, 360°) from left to rign the figure, a, values of (-60°,

-50°, -40°, -30°, -20°)A8 values of (90°, 150°, 210°, 270°, 340°) (N=8)0.05,a, =0.08, constant
acceleration case of the thrust profile (logarithmgi spiral), Earth-Mars flight
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Figure 34: V__ for g values of (0° 120°, 240°, 360°) from left to rigin the figure, a, values of (-60°, -
50°, -40°, -30°, -20°)A8 values of (90°, 150°, 210°, 270°, 340°) (N=®}0.05, a, =0.08, constant
acceleration case of the thrust profile (logarithmi spiral), Earth-Mars flight

From figures 10 and 11, by changing the initialgpaingle 8 , the differences between

values for the TOF and for the total excess veyagite significantly small. For increasing

values ofa,, the total excess velocity decreases, while thE F©reases. The total excess
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velocity differences between different valuesaf increase when increasing the transfer

angleAd.

Similar figures can be shown for 1 and 2 revolwijonsing the same values for the
geometric parametan, for the transfer angld@ and for the initial values ofr and 4.

The normalized thrust acceleratiap values used in figures 12 and 13 were 0.03 ar@i 0.0

for N=1 and N=2, respectively.
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Figure 35: TOF for g values of (0°, 120°, 240°, 360°) from left to rign the figure, a, values of (-60°,
-50°, -40°, -30°, -20°)A8 values of (90°, 150°, 210°, 270°, 340%)0.05, constant acceleration case of
the thrust profile (logarithmic spiral), Earth-Mars flight, N=1 (a,=0.03) and N=2 @, =0.02)
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Figure 36: V__ for & values of (0° 120°, 240°, 360°) from left to rigin the figure, a, values of (-60°, -

50°, -40°, -30°, -20°)A8 values of (90°, 150°, 210°, 270°, 340%0.05, constant acceleration case of the
thrust profile (logarithmic spiral), Earth-Mars fli ght, N=1 (a,=0.03) and N=2 @, =0.02)

33



Analytical Representations for Low-Thrust Traje@er

Similar remarks to the ones given for N=0 can l@nwarfor figures 12 and 13. As for N=0,
the differences in the TOF and in total excessamidetween differeng for the same
transfer angle and, can be neglected. In this way, like for the Arcadean spiral, due to
the significantly small influence that the paramefe has in the TOF, in the total excess

velocity and also, although not shown in the prasidigures, in the thrust acceleration,

this parameter would not be considered a variabtha optimization procedure.

The TOF range for this Earth-Mars flight is fron8098 years to 3.9452 years. The total
excess velocity has a minimum value @f402knys and a maximum value of
14.5984ny s. The maximum differences in TOF between two coutee values of the

transfer angleAd are about 0.25 years. The differences in term®tal excess velocity
between two consecutive transfer angles is alwaghighest one betweehd =90° and

A =150°. The maximum value for these difference$i585%ny s for zero value of N

and the minimum value is abo@®.86ny s for 2 revolutions.

Tables 3 and 4 show the values for the TOF andexioess velocities for an Earth-Mars
flight. Parameterd considered was 0°, parametgy considered was -20°, the transfer
angle A@ considered was 90° and the number of revolutiakert was 1 for the first table

and 2 for the second one. In tables 3 and 4, thealzed thrust acceleratiosy, was 0.03.

N=1 m=0.05 | m=0.15 | m=0.25 | m=0.35 | m=0.45

Vowa (kM9 | 3.1337 | 3.0405| 3.2302 3.6326  4.1674
V.,(km/9 | 1.6349 | 1.0696| 0.6815 0.4354  0.2931
V.,(k/9 | 1.4987 | 1.9708| 25487 3.1972  3.8743
TOF (years)| 1.7166| 1.6464 15841 15312  1.4883

Table 9: The excess velocities and the TOF valuesr N=1, §=0°, A8 =90°, a,=-20°, a =0.03,m values
of (0.05; 0.15; 0.25; 0.35; 0.45), constant accedéipn case (logarithmic spiral), Earth-Mars flight
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N=2 mMm=0.05| m=0.15| m=0.25| m=0.35| m=0.45
Voow (kM9 | 1.9389 | 2.0149| 25141 3.2109  3.9482
V,.(km'g | 0.7810 | 0.3670| 0.2056  0.1646  0.1558
V.,(kn/9 | 1.1580 | 1.6479| 2.3085  3.0463  3.7923
TOF (years)| 3.0260| 2.8259  2.6730  2.5687  2.4984

Table 10: The excess velocities and the TOF valutes N=2, §=0°, A =90°, a,=-20°, a =0.03,m

values of (0.05; 0.15; 0.25; 0.35; 0.45), constatceleration case (logarithmic spiral), Earth-Mars
flight

For increasing values ah, the total excess velocity increases (except fot,Nbetween
m=0.05 and m=0.15), while the TOF decreases. The values for thd #teess velocity

are higher when N=1 than when N=2. Note that, teess velocityv, , decreases slower
than the excess velocity, , increases (except for N=1, betweerr 0.05 and m=0.15).

The value ofV, , when m=0.45 is more than 13 times higher than the valug/of for

N=1 and more than 24 times higher for N=2.

In figures 14 to 17, the polar plot, the thrustlang, the polar angle raté and the flight

path angle as function of time are illustratedMerl and N=2 cases (tables 3 and 4).
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Figure 37: Polar plot for N=1 and N=2, § =0°, Af =90°, a, =-20°, a =0.03,m values of (0.05; 0.15;
0.25; 0.35; 0.45), constant acceleration case ottthrust profile (logarithmic spiral), Earth-Mars f light
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Figure 38: a plot for N=1 and N=2, § =0°, A8 =90°, a, =-20°, a,=0.03,m values of (0.05; 0.15; 0.25;
0.35; 0.45), constant acceleration case of the thstuprofile (logarithmic spiral), Earth-Mars flight
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Figure 39: 8 plot for N=1 and N=2, § =0°, A8 =90°, @, =-20°, a,=0.03,m values of (0.05; 0.15; 0.25;
0.35; 0.45), constant acceleration case of the thstuprofile (logarithmic spiral), Earth-Mars flight
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Figure 40: y plot for N=1 and N=2, § =0°, A8 =90°, a,=-20°, a,=0.03,m values of (0.05; 0.15; 0.25;
0.35; 0.45), constant acceleration case of the thstprofile (logarithmic spiral), Earth-Mars flight

The values of the thrust angle are higher for N=1 than for N=2. During the
interplanetary flight for both cases in figure 1 spacecraft is thrusting inwards in the
radial direction, while in the tangential directigrthrusts in the positive directiora( is
negative, higher thar90°), like for the Archimedean spiral. This situatimas analysed

in section 7.7. The magnitude values of the flighth angley are smaller for N=2 than

for N=1.
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3. Poinsot’s spiral (hyperbolic sine)

In this section, results for the TOF, the excedsoiges and the thrust acceleration will be
shown and discussed for the Poinsot’s spiral (Hyger sine). Figures 18 and 19 show the
TOF and the total excess velocity when changin@ipaterd + ¢ and the transfer angle

A@, when the number of revolutions N is 0. The valsed in figures 18 and 19 for the
geometric parametan was 0.6, the values used for the initial valuerofvere (-60°, -50°,

-40°, -30°, -20°), for the anglé + ¢ were (120°, 200°, 280°, 360°) and for the transfer
angle A8 were (90°, 150°, 210°, 270°, 340°). Note tHat @ cannot be zero, otherwise

r =oo . The normalized thrust acceleratign value used in figures 18 and 19 was 0.1.
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Figure 41: TOF for g + ¢ values of (120°, 200°, 280°, 360°) from left taghit in the figure, a, values of
(-60°, -50°, -40°, -30°, -20°N\6 values of (90°, 150°, 210°, 270°, 340°) (N=1050.6, a, =0.1, constant
acceleration case of the thrust profile (Poinsot'spiral (hyperbolic sine)), Earth-Mars flight
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Figure 42: V__ for g + ¢ values of (120°, 200°, 280°, 360°) from left tafit in the figure, a, values of

(-60°, -50°, -40°, -30°, -20°N @ values of (90°, 150°, 210°, 270°, 340°) (N=0%0.6, a, =0.1, constant
acceleration case of the thrust profile (Poinsot’spiral (hyperbolic sine)), Earth-Mars flight

Some remarks can be drawn from figures 18 and y9inBreasing the combination of

anglesg + ¢, the TOF and the total excess velocity decreake. Highest difference in
TOF and in total excess velocity between differént ¢ occurs betweerf +¢=120°
and @ +@=200°. For higher values o8 +¢, the variations in TOF and in total excess
velocity are significantly small. The highest diface in the TOF between differefit+ ¢

for the same phase angle amgl is about 0.0456 years, while the highest diffeecimcthe
total excess velocity is abo@t239%ny s. For increasing values of the initial thrust angle

a,, the total excess velocity decreases, while the TOreases.

Similar figures can be shown for 1 and 2 revoluiionsing the same values for the
geometric parametem, for the transfer angld@ and for the initial values otr and

6 +¢@. The normalized thrust acceleratiag values used in figures 20 and 21 were 0.05

and 0.04 for N=1 and N=2, respectively.
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Figure 43: TOF for g + ¢ values of (120°, 200°, 280°, 360°) from left taghit in the figure, a, values of
(-60°, -50°, -40°, -30°, -20°N\ @ values of (90°, 150°, 210°, 270°, 340%50.6, constant acceleration case
(Poinsot’s spiral (hyperbolic sine), Earth-Mars flight, N=1 (a, =0.05) and N=2 @ =0.04)
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Figure 44: V__ for g + ¢ values of (120°, 200°, 280°, 360°) from left tafit in the figure, a, values of
(-60°, -50°, -40°, -30°, -20°A\ @ values of (90°, 150°, 210°, 270°, 340%50.6, constant acceleration case
(Poinsot’s spiral (hyperbolic sine), Earth-Mars flight, N=1 (a, =0.05) and N=2 @, =0.04)

Similar remarks to ones given for N=0 can be dréarfigures 20 and 21. Note that the

variation in total excess velocity betweént+ ¢=120° and 8 + = 200° is considerably

higher for N=1 and N=2 than for N=0. For N=1, thghest difference in TOF between
different 8 + ¢ and for the same transfer angle amdis 0.1067 years, while the highest

difference in the total excess velocity 12456k s. For N=2, the highest difference in
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TOF between different +¢ and for the same transfer angle amg is 0.1655 years,

while the highest difference in the total excedsaity is 1.1920kny s.

The TOF range for this Earth-Mars flight is fron8882 years to 4.0485 years. The total
excess velocity has a minimum value @f584%m/s and a maximum value of
15.052%m/ s. The maximum differences in TOF between two coutee values of the

transfer angleAd are about 0.3 years and for a certain number wbludons, these
differences increase when increasing the trangfglea The differences in terms of total
excess velocity between two consecutive transfgleans always the highest one between
A6 =90° and A8 =150°. The maximum value for these differences4i860ny s for

N=0 and the minimum value is abds@®ny s for 2 revolutions.

Tables 5 and 6 show the values for the TOF ancefitess velocities for an Earth-Mars

flight. Parameterg +¢ was considered 120°, paramei@y was considered -20°, the
transfer angleA@ was considered 90° and the number of revolutioas taken 1 for the
first table and 2 for the second one. In table &rbrmalized thrust accelerati@y was
0.05, while in table 6, this parameter was 0.04teNbat these values fa,, for N=1 and

N=2 are the minimum values that can be used in ba#fes for this shape without facing

integration problems for the interval of input paeters considered.

Table 11:

N=1 m=0.01| m=0.11| m=0.21 | m=0.31| m=0.41
Voow(km'9 | 5.3020 | 5.0473| 4.6156  4.2441  3.9823
V,.(kmg | 3.8225 | 3.4865| 29270 2.4680  2.1601
V,,(km's | 1.4795 | 1.5608| 1.6885 1.7760  1.8222
TOF (years)| 1.8297| 1.8000 1.7559  1.7249  1.7071

The excess velocities and the TOF valules N=1, § + =120°, A8 =90°, a,=-20°, a, =0.05,

m values of (0.01; 0.11; 0.21; 0.31; 0.41), constaxtceleration case (Poinsot’s spiral (hyperbolicrse),
Earth-Mars flight
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N=2 m=0.01 | m=0.11| m=0.21| m=0.31| m=0.41
V.o (KM 9 | 4.0485 3.6050 3.0692 2.7283 2.5287
V.. (km' g 2.9203 2.4177 1.8182 1.4476 1.2351
V,,(km'9 1.1282 1.1873 1.2510 1.2807 1.2937
TOF (years)| 3.3588 3.2524 3.146P 3.0953 3.0714

Table 12: The excess velocities and the TOF valuies N=2, 8 + ¢=120°, Ag =90°, a,=-20°, a, =0.04,

m values of (0.01; 0.11; 0.21; 0.31; 0.41), constatceleration case (Poinsot’s spiral (hyperbolicrse),
Earth-Mars flight

For increasing values ah, the total excess velocity and the TOF decrease.values for

the total excess velocity are higher when N=1 thdren N=2. Note that the excess

velocity V,, , decreases faster than the excess veld(ityincreases.

In figures 22 to 25, the polar plot, the thrustlang , the polar angle raté and the flight
path angle as function of time are illustratedMerl and N=2 cases that were presented in

tables 5 and 6.

270 270

Figure 45: Polar plot for N=1 (a, =0.05) and N=2 @, =0.04), 8 + ¢=120°, A8 =90°, a, =-20°, a, =0.04,

m values of (0.01; 0.11; 0.21; 0.31; 0.41), constatceleration case (Poinsot’s spiral (hyperbolic 1s¢)),
Earth-Mars flight
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Figure 46: a plot for N=1 (a,=0.05) and N=2 @, =0.04), § + ¢=120°, A8 =90°, a,=-20°, a =0.04,m

values of (0.01; 0.11; 0.21; 0.31; 0.41), constatceleration case (Poinsot’s spiral (hyperbolic s&)),
Earth-Mars flight
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Figure 47: 6 plot for N=1 (a, =0.05) and N=2 @, =0.04), § + ¢=120°, A8 =90°, a,=-20°, a,=0.04,m

values of (0.01; 0.11; 0.21; 0.31; 0.41), constatceleration case (Poinsot’s spiral (hyperbolic s&)),
Earth-Mars flight
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Figure 48: y plot for N=1 (a,=0.05) and N=2 @, =0.04), § + ¢=120°, A8 =90°, a,=-20°, a,=0.04,m

values of (0.01; 0.11; 0.21; 0.31; 0.41), constatceleration case (Poinsot’s spiral (hyperbolic s#)),
Earth-Mars flight

The values of the thrust angle are higher for N=1 than for N=2. For most of the
interplanetary flight for both cases in figure 23¢ spacecraft is thrusting inwards in the
radial direction, while in the tangential directigrthrusts in the positive directiora( is
negative, higher thar90°), like for the other 2 shapes. The magnitude \&abfehe flight

path angley are smaller for N=2 than for N=1.

4. Poinsot’s spiral (hyperbolic cosine)

In this section, results for the TOF, the excedsoiges and the thrust acceleration will be
shown and discussed for the Poinsot’s spiral (Hygé&r cosine). Figures 26 and 27 show

the TOF and the total excess velocity when changarameterd and the transfer angle
A8 (N=0). The value used in figures 26 and 27 fiorwas 0.05; the values used fay
were (-60°, -50°, -40°, -30°, -20°), fér were (30°, 140°, 250°, 360°) and #hE were
(90°, 150°, 210°, 270°, 340°). The normalized thawselerationa, value used in figures
26 and 27 was 0.07.
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TOF (years)

90° 1500 210 27 340°

transfer angle /6 = [30°,140°,230°,360°]

Figure 49: TOF for g values of (30°, 140°, 250°, 360°) from left to tigin the figure, a, values of (-
60°, -50°, -40°, -30°, -20°N\ @ values of (90°, 150°, 210°, 270°, 340°) (N=0), n8&) a, =0.07, constant
acceleration case (Poinsot’s spiral (hyperbolic coee)), Earth-Mars flight
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Figure 50: V__ for g values of (30°, 140°, 250°, 360°) from left to hgin the figure, a, values of (-60°,

-50°, -40°, -30°, -20°)A4 values of (90°, 150°, 210°, 270°, 340°) (N=0), n6&) a, =0.07, constant
acceleration case (Poinsot’s spiral (hyperbolic coee)), Earth-Mars flight

Some remarks can be drawn from figures 26 and 274n&easing the initial polar angle

6, the TOF increases while the total excess velab#tgreases. The highest variation in

TOF and in total excess velocity when changtigis betweeng =30° and 8 =140°.
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This variation becomes smaller for higher valueshef transfer anglé\@. The highest

difference in TOF between differeé} for the same phase angle amgl is 0.0649 years,
while the highest difference in total excess vejod 2.2820kmny s. For increasing values

of a,, the total excess velocity decreases and the TiCrEases.

Similar figures can be shown for 1 and 2 revoluiionsing the same values for the
geometric parametan, for the transfer angld@ and for the initial values ofr and 4.

The normalized thrust acceleratiap values used in figures 28 and 29 were 0.03 ari2l 0.0

for N=1 and N=2, respectively.
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Figure 51: TOF for g values of (30°, 140°, 250°, 360°) from left to higin the figure, a, values of (-

60°, -50°, -40°, -30°, -20°\@ values of (90°, 150°, 210°, 270°, 340M=0.05, constant acceleration case
(Poinsot’s spiral (hyperbolic cosine)), Earth-Marsflight, N=1 (a, =0.03) and N=2 @, =0.02)
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Figure 52: V__ for 6 values of (30°, 140°, 250°, 360°) from left to figin the figure, a, values of (-60°,
-50°, -40°, -30°, -20°)A8 values of (90°, 150°, 210°, 270°, 340%0.05, constant acceleration case
(Poinsot’s spiral (hyperbolic cosine)), Earth-Marsflight, N=1 (a, =0.03) and N=2 @, =0.02)

Note that for N=1 and N=2, the differences in tb&alt excess velocity between different

values ofa, are higher than for N=0. Also, in figure 32, whieereasingé , the total
excess velocity trend is not monotone, unlike fetONFor N=1, the highest difference in
TOF between differeng) and for the same transfer angle amdis 0.1083 years, while
the highest difference in the total excess velotsty).1100kny s. For N=2, the highest
difference in TOF between differe@ and for the same transfer angle amdis 0.1307

years, while the highest difference in total exoesecity is 71.4032r/ s.

The TOF range for this Earth-Mars flight is fronR987 years to 3.8112 years. The total
excess velocity has a minimum value @f3095%nys and a maximum value of
16.661kny s. The maximum differences in TOF between two cousee values of the

transfer angleA@ are about 0.25 years and for a certain numbeewblutions, these
differences increase when increasing the transfglea The differences in terms of total
excess velocity between two consecutive transfagleanis always highest between

AB=90° and AG=150° The maximum value for these differences6i802&ny s for

N=0 and the minimum value is abo®f.0646m/ s for two revolutions.
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Tables 7 and 8 show the values for the TOF andefoess velocity for an Earth-Mars

flight. Parameterd was assumed 30°, parametgr was assumed -20°, the transfer angle
A8 was assumed 90° and the number of revolutionstakes 1 for the first table and 2
for the second one. In table 7, the normalizedsthaccelerations, was 0.03, while in
table 8, this parameter was 0.02. Note that thedges fora, for N=1 and N=2 are the

minimum values that can be used in both caseshiershape without facing integration

problems for the interval of input parameters coesad.

N=1 m=0.01| m=0.11| m=0.21| m=0.31| m=0.41
Voow(kn/9 | 29391 | 2.7213| 24838 2.3879  2.3819
V..(km'g | 0.3869 | 0.4197| 0.4907 05787  0.6723
V.,(km'g | 25522 | 2.3016| 1.9932 1.8092  1.7096

TOF (years)| 1.5615| 15788 16074  1.6322  1.6504

(hyperbolic cosine)), Earth-Mars flight

Table 13: The excess velocities and the TOF valuies N=1, 8 =30°, Ag =90°, a,=-20°, m values of
(0.01; 0.11; 0.21; 0.31; 0.41)p, =0.03, constant acceleration case of the thrust dite (Poinsot's spiral

N=2 m=0.01| m=0.11| m=0.21| m=0.31 | m=0.41
Voo (kM9 | 1.6461 | 1.3943| 12833 1.2801  1.3091
V.,(km/9 | 0.1727 | 0.2003| 0.2503  0.3056  0.3614
V.,(k/9 | 1.4734 | 1.1940| 10331 0.9745  0.9478

TOF (years)| 2.8152| 2.8865 29598  3.0021  3.0276

Table 14: The excess velocities and the TOF valutes N=2, §=30°, Ag =90°, a,=-20°,m values of

(0.01; 0.11; 0.21, 0.31; 0.41)g, =0.02, constant acceleration case of the thrust dite (Poinsot’s spiral
(hyperbolic cosine)), Earth-Mars flight

From tables 7 and 8, the order of magnitude of tttal excess velocity values are
10° km/ <. For increasing values of, the total excess velocity decreases, while th& TO

increases for N=1. For N=2, the total excess valodecreases untim=0.31 and
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increases betweem=0.31 and m=0.41, while the TOF increases like for N=1. The
values for the total excess velocity are higher nwhie=1 than when N=2. Note that the

excess velocityv, , decreases faster than the excess veldgjty increases, except for

N=2 betweemm=0.31andm=0.41

In figures 30 to 33, the polar plot, the thrustlang, the polar angle raté and the flight
path angle in function of time are illustrated =1 and N=2 cases that were presented in
tables 7 and 8.

270

Figure 53: Polar plot for N=1 (a, =0.03) and N=2 @ =0.02), § =30°, A =90°, a,=-20°,m values of

(0.01; 0.11; 0.21; 0.31; 0.41), constant accelemti case (Poinsot’s spiral (hyperbolic cosine)), Etr to
Mars
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Figure 54: a plot for N=1 (a,=0.03) and N=2 @, =0.02), § =30°, A8 =90°, a, =-20°,m values of (0.01;
0.11; 0.21; 0.31; 0.41), constant acceleration caginsot’s spiral (hyperbolic cosine)), Earth to Mrs
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Figure 55: & plot for N=1 (a,=0.03) and N=2 @, =0.02), 8 =30°, A6 =90°, a, =-20°,m values of (0.01;
0.11; 0.21; 0.31; 0.41), constant acceleration ca#oinsot’s spiral (hyperbolic cosine)), Earth to Mrs
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Figure 56: y plot for N=1 (&a,=0.03) and N=2 @, =0.02), § =30°, A8 =90°, a, =-20°,m values of (0.01;
0.11; 0.21; 0.31; 0.41), constant acceleration ca#oinsot’s spiral (hyperbolic cosine)), Earth to Mrs

Similar remarks to the ones given for the previshapes can be given.

5. Sinusoidal spiral

In this section, results for the TOF, the excedsoiges and the thrust acceleration will be
shown and discussed for the sinusoidal spiral. rEg®B4 and 35 show the TOF and the
total excess velocity when changing paraméerand the transfer anglAg, when the
number of revolutions N is 0. The value used irufgg 34 and 35 for the geometric
parameterm was 0.05, the values used for the initial valuerofvere (-60°, -50°, -4Q°, -
30°, -20°), forg were (120°, 200°, 280°, 360°) and v were (90°, 150°, 210°, 270°,

340°). The normalized thrust acceleratenvalue used in figures 34 and 35 was 0.07.
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Figure 57: TOF for g values of (120°, 200°, 280°, 360°) from left tagtit in the figure, a, values of (-
60°, -50°, -40°, -30°, -20°)\@ values of (90°, 150°, 210°, 270°, 340°) (N=0)0.05, a,=0.07, constant
acceleration case (sinusoidal spiral), Earth-Marslight
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Figure 58: V__ for g values of (120°, 200°, 280°, 360°) from left tayht in the figure, a, values of (-
60°, -50°, -40°, -30°, -20°)\@ values of (90°, 150°, 210°, 270°, 340°) (N=0)0.05, a,=0.07, constant
acceleration case (sinusoidal spiral), Earth-Marslight

Some remarks can be drawn from figures 34 and 8%x{pected, the TOF increases when
increasing the transfer angle, while the total egceelocity decreases. By increasing the

initial polar angled , the TOF increases while the total excess velodégreases. The
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differences in TOF and in total excess velocitywassn different values of) , decreases
for higher values of the initial polar angle. Thghest difference in TOF between different
6 for the same phase angle ang is 0.0332 years, while the highest differencehia t

total excess velocity i9.337%kny s. For higher values ofr,, the total excess velocity

decreases, while the TOF increases.

Similar figures can be shown for 1 and 2 revoluiionsing the same values for the
geometric parametan, for the transfer angl& g and for the initial values ofr and 4.

The normalized thrust acceleratiap value used in figures 36 and 37 was 0.02.
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Figure 59: TOF for g values of (120°, 200°, 280°, 360°) from left tagtit in the figure, a, values of (-
60°, -50°, -40°, -30°, -20°N & values of (90°, 150°, 210°, 270°, 3407)0.05, constant acceleration case

(sinusoidal spiral), Earth-Mars flight, N=1 (a, =0.02) and N=2 @ =0.02)
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Figure 60: V__ for g values of (120°, 200°, 280°, 360°) from left tayht in the figure, a, values of (-
60°, -50°, -40°, -30°, -20°\ @ values of (90°, 150°, 210°, 270°, 340M=0.05, constant acceleration case
(sinusoidal spiral), Earth-Mars flight, N=1 (a, =0.02) and N=2 @, =0.02)

From figures 36 and 37, the differences in theltetaess velocity between different
values ofa, increase with the number of revolutions. For NthE highest difference in
TOF between differen for the same transfer angle angl is about 0.0631 years, while
the highest difference in total excess velocity8&.6342n/s. For N=2, the highest
difference in TOF between differeét for the same transfer angle is about 0.0823 years,

while the highest difference in total excess vejois 33.10821/ s.

The TOF range for this Earth-Mars flight is fron8811 years to 3.8103 years. The total
excess velocity has a minimum value @f3107%nys and a maximum value of
14.712%ny s. The maximum differences in TOF between two coutee values of the

transfer angleA@ are about 0.25 years. For a certain number oflugwos, these
differences increase when increasing the transfgkea The differences in terms of total
excess velocity between two consecutive transfglearis always the highest one between

AB=90° and AG=150° The maximum value for these differences6i864Xny s for

N=0 and the minimum value is abottny s for N=2.

Tables 9 and 10 show the values for the TOF andexicess velocity for an Earth-Mars

flight. Parameterd was consider 30°, parameigf was consider -20°, the transfer angle
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A@ was consider 90° and the number of revolutions taksn 1 for the first table and 2

for the second one. In tables 9 and 10, the nozexlihrust acceleratios, was 0.02.

N=1 m=0.01 | m=0.055| m=0.1 | m=0.145| m=0.19

Vow (K79 | 2.7498 2.7044 2.6154 2.4829 2.3087

V,.(kmY9 | 0.6095 | 06281| 0.6673 07323  0.8322

V.,(k'g | 21402 | 20762 | 1.9482 17507 = 1.4742

TOF (years)| 1.6192| 1.6243] 1.6340  1.6522  1.6786

Table 15: The excess velocities and the TOF values N=1, 8 =120°, Ag =90°, a,=-20°,m values for
(0.01; 0.055; 0.1, 0.145; 0.19p, =0.02, constant acceleration case (sinusoidal spiraEarth-Mars flight

N=2 m=0.01| m=0.055| m=0.1 | m=0.145| m=0.19

Voo (Km'9 | 1.6247 | 15533 | 1.3982  1.170§  1.0130

V,,(km/9 | 02550 | 0.2697 | 0.3076 0.3857  0.5489

V.,(km/9 | 1.3697 | 1.2836 | 1.0906  0.7848  0.4641

TOF (years)| 2.8613| 2.8816| 29317  3.0275  3.2122

Table 16: The excess velocities and the TOF valules N=2, 8 =120°, Ag =90°, a,=-20°,m values for
(0.01; 0.055; 0.1, 0.145; 0.19p, =0.02, constant acceleration case (sinusoidal spixaEarth-Mars flight

From tables 9 and 10, the order of magnitude of tttal excess velocity values is
10°kny s. For increasing values of, the total excess velocity decreases, while th& TO
increases. The values for the total excess velarityhigher when N=1 than when N=2.

Note that the excess velocit, , decreases faster than the excess velagjtyincreases,

for both cases N=1 and N=2.

In figures 38 to 41, the polar plot, the thrustlang, the polar angle raté and the flight
path angle as function of time are illustratedMerl and N=2 (tables 9 and 10).
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Figure 61: Polar plot for N=1 and N=2, 8 =120°, Ag =90°, a,=-20° m values for (0.01; 0.055; 0.1,
0.145; 0.19),a,=0.02, constant acceleration (sinusoidal spiral),d&th-Mars flight
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Figure 62: a plot for N=1 and N=2, § =120°, Ag =90°, a, =-20°,m values for (0.01; 0.055; 0.1; 0.145;
0.19), a,=0.02, constant acceleration (sinusoidal spiral),d&th-Mars flight
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Figure 63: é plot for N=1 and N=2, § =120°, Ag =90°, a,=-20°,m values for (0.01; 0.055; 0.1; 0.145;
0.19), a,=0.02, constant acceleration (sinusoidal spiral),d&th-Mars flight
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Figure 64: y plot for N=1 and N=2, § =120°, A@ =90°, a,=-20°,m values for (0.01; 0.055; 0.1; 0.145;
0.19), a,=0.02, constant acceleration (sinusoidal spiral),d&th-Mars flight

Similar conclusions to the ones given for the prasishapes can be drawn.

6. Exponential Sinusoid

In this section, results for the TOF, the excedsoiges and the thrust acceleration will be
shown and discussed for the exponential sinusaidrés 42 and 43 show the TOF and the

total excess velocity when changing paraméteand the transfer anglagd (N=0). The

values used in these figures for the geometricrpaterk,, were (0.1; 0.15; 0.2; 0.25), for
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a, were (20°, 30°, 40°, 50° 60°), for the initiagtk path angley, was 0° and forAd

were (90°, 150°, 210°, 270°, 340°). The valuesfoused in figures 42 and 43 was 0.05.

TOF (years)

Figure 65: TOF for k, values of (0.1; 0.15; 0.2; 0.25) from left to righin the figure, a, values of (20°,
300, 40°, 50°, 60°)AF values of (90°, 150°, 210°, 270°, 340°) (N=@)=0°, a, =0.05, constant
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Figure 66: V_ . for k, values of (0.1; 0.15; 0.2; 0.25) from left to rigtin the figure, a, values of (20°,
300, 40°, 50°, 60°)AF values of (90°, 150°, 210°, 270°, 340°) (N=@)=0°, a, =0.05, constant
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Fom figures 42 and 43, by increasing the geometaiameterk,, the TOF increases,
while the total excess velocity decreases. Theewdiffces in TOF and in total excess

velocity between different values &, increase for higher values of the transfer angle
A8 . The highest difference in TOF between differ@nfor the same phase angle amgl
is 0.0178 years, while the highest difference taltexcess velocity i€.630&ny s. For

increasing values ofr,, the TOF increases while the total excess velatgtreases.

Similar figures can be shown for one and two retiohs, using the same values for the

geometric parametek,, for the transfer angld& and for the initial values ofr and y,.

The normalized thrust acceleratiap values used in figures 44 and 45 was 0.03.
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- ! ! ! ! T 6.5 ! ! ! , —
* e, =20 : : : % e, =20° ' ' '
% =30° a, =30°
26 a, =40° [ &; e | b _
« &, 2500 e o
24 « %y =60° . ' ' 55 T S O RGGERRRY SRR _
— T i i ix -

TOF (years)
TOF (years)

: 25

270 340° o0 150° 210 e 400

50° 150° 210°
transfer angle /&, =[0..0.15.0.2,025] transfer angle ¢k, =[0.1:0.15,02;025]

Figure 67: TOF for k, values of (0.1; 0.15; 0.2; 0.25) from left to righin the figure, a, values of (20°,
30°, 40°, 50°, 60°)AH values of (90°, 150°, 210°, 270°, 3409)=0°, constant acceleration case
(exponential sinusoid), Earth-Mars flight, N=1 (a, =0.03) and N=2 @, =0.03)
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Figure 68: V__ for k, values of (0.1; 0.15; 0.2; 0.25) from left to righin the figure, a, values of (20°,
300, 40°, 50°, 60°)A8 values of (90°, 150°, 210°, 270°, 3409)=0°, constant acceleration case
(exponential sinusoid), Earth-Mars flight, N=1 (a, =0.03) and N=2 @, =0.03)

Similar remarks to the ones given for N=0 can bawar for figures 44 and 45. The

differences in the total excess velocity betwedfedint values ofa, are higher for N=1
and N=2 than N=0. Note that, unlike for N=0 and Ntk N=2 and betweek, =0.2 and

k, =0.25, the total excess velocity increases. For N=1, lilghest difference in TOF
between differenk, and for the same transfer angle amdis about 0.2302 years, while
the highest difference in total excess velocity1i®955%ny s. For N=2, the highest
difference in TOF between differeit, and for the same transfer angle is about 2.6039

years, while the highest difference in the totaless velocity i€.398kny s.

The TOF range for this Earth-Mars flight is fron2002 years to 6.4163 years. The total

excess velocity has a minimum value 6f3774m/s and a maximum value of
20.526%ny s. As expected, the minimum value for the TOF are tiaximum value for

the total excess velocity occur for the smalleshgfer angle — 90° (N=0). The minimum

value for the total excess velocity occur for transfer angle — 210° (N=2).

The maximum differences in TOF between two conseeutalues of the transfer angle

A@ are about 1.4080 years. The maximum value foretiiferences i41.078%ny s for

N=0 and the minimum value is abd®8.3969 s for 2 revolutions.
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Tables 11 and 12 show the values for the TOF aadxtess velocity for an Earth-Mars
flight. Parametelk, assumed was 0.01, parametgrassumed was 20°, the transfer angle
A@ assumed was 90° and the number of revolutionstekes one for the first table and

two for the second one. In tables 11 and 12, thenalized thrust acceleratioa, was

0.03.
N=1 y,=0° | y;=0.75°| y,=1.5°| y,=2.25° ), =3°
V.o (kM 9 | 2.7437 2.7940 2.8941 2.9954 3.1006
V,.(km'g | 0.0515 | 0.3900| 0.7803  1.1710 1.5614
V,,(km's | 2.6923 | 2.4040| 2.1138 = 1.8244 1.5393
TOF (years)| 1.5438| 1.5829  1.6239  1.6670  1.7126

Table 17: The excess velocities and the TOF valuies N=1, k,=0.01, Ag =90°, a,=20°, y, values of
(0°; 0.75°% 1.5°; 2.25° 3%)a =0.03, constant acceleration case (exponential ssuid), Earth-Mars flight

N=2 y,=0° | y;=0.75%| p,=1.5° | y, =225 ), =3°
V.o (kM 9 | 1.7485 1.7978 1.9373 2.1181 2.3695
V,.(kmg | 0.0904 | 0.4051| 0.7896  1.1771 1.5650
V,,(km'g | 1.6581 | 1.3927 | 1.1477  0.9411 0.8044
TOF (years)| 2.7739| 2.9001  3.0341  3.1764  3.3277

Table 18: The excess velocities and the TOF valuies N=2, k,=0.01, Ag =90°, a,=20°, y, values of
(0°; 0.75°% 1.5°; 2.25° 3%)a, =0.03, constant acceleration case (exponential ssuid), Earth-Mars flight

For increasing values ah, the total excess velocity and the TOF increake. vialues for

the total excess velocity are higher when N=1 thdren N=2. Note that the excess
velocity V,,, decreases faster than the excess veldgjtyincreases, for both cases N=1

and N=2.
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In figures 46 to 49, the polar plot, the thrustlang, the polar angle raté and the flight
path angle as function of time are illustratedMerl and N=2 cases that were presented in
tables 11 and 12.

270 270

Figure 69: Polar plot for N=1 and N=2,k,=0.01, A§ =90°, a,=20°, y, values of (0% 0.75°; 1.5°; 2.25°

3°), a,=0.03, constant acceleration case (exponential suid), Earth-Mars flight
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Figure 70: a plot for N=1 and N=2, k,=0.01, A =90°, a,=20°, y, values of (0°; 0.75° 1.5° 2.25°; 3°),

a,=0.03, constant acceleration case (exponential sBuid), Earth-Mars flight
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Figure 71: & plot for N=1 and N=2, k,=0.01, A8 =90°, a,=20°, y, values of (0° 0.75° 1.5°; 2.25°; 3°),

a,=0.03, constant acceleration case (exponential ssuid), Earth-Mars flight
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Figure 72: y plot for N=1 and N=2, k,=0.01, Ad =90°, a, =20°, y, values of (0°; 0.75°; 1.5°; 2.25°; 3°),

a,=0.03, constant acceleration case (exponential ssuid), Earth-Mars flight

The values of the thrust angle are higher for N=1 than for N=2. For most of the
interplanetary flight for both cases in figure 4ffe spacecraft is thrusting inwards in the
radial direction, while in the tangential directigrthrusts in the positive directioro( is
negative, higher thar-90°). This means that the vehicle is thrusting in favof the
gravitational acceleration. This situation will lberther analysed in section 7.7. The

magnitude values of the flight path angteare smaller for N=2 than for N=1.
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Appendix E: Analysis of the Exponential Sinusoid fo ran
Earth-Jupiter Flight and for an Earth-Mercury Fligh  t

In this appendix, a similar analysis to the oneadmappendix D will be done one for the
exponential sinusoid, for an Earth-to-Jupiter ftigind an Earth-to-Mercury flight, using
the acceleration inversely square and the tanderats®es of the thrust profile. Results for
the constant acceleration case of the thrust prefill not be shown (see chapter 7). Like

in appendix D, the conclusions about these reattgjiven in section 7.7.

1. Earth-Jupiter Flight, using the Acceleration Inversely Square Case of the
Thrust Profile
Figures 50 and 51 show the TOF and the total exadesity when changing parameter
and the transfer angla@, when the number of revolutions N is 1. The valussd in
figures 50 and 51 for the geometric parametgmwere (0.05; 0.08; 0.11; 0.14), for the
initial value of & were (20°, 30°, 40°, 50°, 60°), for the initizgtik path angley, was 0°
and for the transfer anglAg were (90°, 150°, 210°, 270°, 340°). The normalibedst

acceleratioms, value used in figures 50 and 51 was 0.13.
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Figure 73: TOF for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, a, values of
(20°, 30°, 40°, 50°, 60°NE were (90°, 150°, 210°, 270°, 340°) (N=1),=0°, a,=0.13, acceleration
inversely square case (exponential sinusoid), Eartbupiter flight
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Figure 74: V__ for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, a, values of (20°,
30°, 40°, 50°, 60°)A8 were (90°, 150°, 210°, 270°, 340°) (N=1),=0°, a =0.13, acceleration inversely
square case (exponential sinusoid), Earth-Jupitedifht

Some remarks can be drawn from figures 50 and Skxpected, the TOF increases when
increasing the transfer angle, while the total egceelocity decreases. By increasing the

geometric paramete,, the TOF increases, while the total excess velatgtreases. The
highest difference in TOF between differdgtfor the same phase angle amglis 0.5154
years, while the highest difference in total excesiscity is 0.8344ny s. For increasing

values ofa,, the TOF and the total excess velocity increases.

Similar figures can be shown for 2 and 3 revoluionsing the same values for the

geometric parametd,, for AG@ and the initial values ofr and y,. The normalized thrust
accelerationa, values used in figures 52 and 53 were 0.09 and faON=2 and N=3,

respectively.
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Figure 75: TOF for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, a, values of
(20°, 30°, 40°, 50°, 60°NE were (90°, 150°, 210°, 270°, 340%),=0°, acceleration inversely square case
(exponential sinusoid), Earth-Jupiter flight, for N=2 (a,=0.09) and N=3 @, =0.07)
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Figure 76: V__ for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, a, values of (20°,
30°, 40°, 50°, 60°)A8 were (90°, 150°, 210°, 270°, 3409),=0°, acceleration inversely square case
(exponential sinusoid), Earth-Jupiter flight, for N=2 (a, =0.09) and N=3 @, =0.07)

Similar remarks to the ones given for N=1 can bawar for figures 52 and 53. The

differences in total excess velocity between d#fgrvalues ofa, are higher for N=1 and
N=2 than N=0. Note that, unlike for N=1 and N=2r f¢=3 and betweerk, =0.11 and

k, =0.14, the total excess velocity increases for a tranafle of 340°. For N=2, the
highest difference in TOF between differdgt and for the same transfer angle is about

2.4626 years, while the highest difference in tetaless velocity i4.3337ny s. For N=3,
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the highest difference in TOF between differ&ntand for the same transfer angle is about

9.9958 years, while the highest difference in tetaless velocity i4.5506kmny s.

The TOF range for this Earth-Jupiter flight is fr@8876 years to 22.7594 years. The total

excess velocity has a minimum value 6f455X&ny/s and a maximum value of
5.987Xny s. As expected, the minimum value for the TOF ars riteximum value for

the total excess velocity occur for the smalleansfer angle — 90° (N=1); while the

minimum value for the total excess velocity ocaurthe transfer angle 210° (N=3).

The maximum differences in TOF between two conseeutalues of the transfer angle

A@ are about 1.52 years. The maximum value for thifferences is0.754%ny s for

N=1 and the minimum value is abds®.69031y s for 3 revolutions.

Tables 13 and 14 show the values for the TOF amexcess velocity for an Earth-Jupiter
flight. Parameterk, was considered 0.01, paramet®; was considered 2008 was
considered 90° and N was taken 1 for the firstetalold 2 for the second one. In tables 13
and 14, the normalized thrust acceleration valyesere 0.09 and 0.07, respectively. Note
that these values fa,, for N=2 and N=3 are the minimum values that cam$ed in both

cases for this shape without facing integratiorbf@ms for the interval of the parameters

considered.
N=2 y,=0° | ,=0.75°| y,=1.5° | ), =2.25¢| y,=3°
V.o (kM 9 | 3.1884 3.2792 3.4954 3.7244 3.9546
V,.(kmg | 0.2166 | 0.4501| 0.8125  1.1912 1.5744
V,,(km'g | 2.9718 | 2.8291| 2.6830]  2.5337 2.3802
TOF (years)| 6.8536|  7.0891  7.3441  7.617 7.9099

Table 19: The excess velocities and the TOF valuies N=2, k,=0.01, Ag =90°, a,=20°, y, values of

(0°; 0.75°% 1.5°; 2.25°% 3%)a, =0.09, acceleration inversely square case (exponeahisinusoid), Earth-

Jupiter flight
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N=3 y,=0° | y,=0.75°| y,=1.5° | ), =2.25¢| y, =3°
V.o (kM 9 | 2.3289 2.3968 2.5988 2.8186 3.0426
V,.(km'g | 0.2412 | 0.4603| 0.8168 1.1931 1.5751
V,,(km'g | 2.0877 | 1.9364| 1.7821 1.6255 1.4651
TOF (years)| 9.8651| 10.3911 10.9668 11.5989  12.2757

Table 20: The excess velocities and the TOF valukes N=3, k,=0.01, A =90°, a,=20°, y, values of

0°; 0.75°%; 1.5°; 2.25°; 3°)a =0.07, acceleration inversely square case (exponhtsinusoid), Earth-
a,
Jupiter flight

For increasing values ah, the total excess velocity and the TOF increake. Vialues for
the total excess velocity are higher when N=2 thdren N=3. Note that the excess

velocity V,, , decreases faster than the excess veldgjtyincreases, for both cases N=2

and N=3.

In figures 54 to 58, the polar plot, the thrustederationa, the thrust angler , the polar
angle rated and the flight path angle as function of time #testrated for N=2 and N=3

cases that were presented in tables 13 and 14.

210%

270 270

Figure 77: Polar plot for N=2 (a, =0.09) and N=3 @, =0.07), k,=0.01, A8 =90°, a, =20°, y, values of
(0°; 0.75°; 1.5°; 2.25°; 3°), acceleration inversesquare case (exponential sinusoid), Earth-Jupiteftight
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Figure 78:a plot for N=2 (a,=0.09) and N=3 @, =0.07), k,=0.01, A8 =90°, a,=20°, , values of (0
0.75°; 1.59; 2.25°; 3°), acceleration inversely sgre case (exponential sinusoid), Earth-Jupiter fligt
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Figure 79: a plot for N=2 (a,=0.09) and N=3 @, =0.07), k,=0.01, A8 =90°, a, =20°, y, values of (0°;
0.75°; 1.5°; 2.25°; 3°), acceleration inversely sgre case (exponential sinusoid), Earth-Jupiter fligt
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Figure 80: & plot for N=2 (a,=0.09) and N=3 @, =0.07), k,=0.01, AG =90°, a, =20°, y, values of (0°;

0.75°; 1.5°; 2.25°; 3°), acceleration inversely sgre case (exponential sinusoid), Earth-Jupiter fligt
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Figure 81: y plot for N=2 (a,=0.09) and N=3 @, =0.07), k,=0.01, A8 =90°, a,=20°, y, values of (0°;
0.75°; 1.5°; 2.25°; 3°), acceleration inversely sgre case (exponential sinusoid), Earth-Jupiter fligt

The magnitude of the thrust acceleration is thellemior N=2 than for N=3 because the

assumed normalized thrust accelerat&gris also smaller for N=2 than for N=3. Note that

the thrust acceleration trend is similar to thérend. The values of the thrust angteare
higher for N=1 than for N=2. For most of the intarpetary flight for both cases in figure
56, the spacecraft is thrusting inwards in the aiadirection, while in the tangential
direction it thrusts in the positive directiorr (is negative, higher thar90°), as already
mentioned for the Earth-Mars flight. This situatieill be further analysed in section 7.7.

The magnitude values of the flight path anglare smaller for N=3 than for N=2.
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2. Earth-Jupiter Flight, using the Tangential Thrust Profile

Figures 59 and 60 show the TOF and the total exadesity when changing parameter
and the transfer angld@ (N=1). The values used in these figures for thengstric

parameterk, were (0.05; 0.08; 0.11; 0.14), for the initialgfit path angley, were (0°
0.75°; 1.5°; 2.25°; 3°) and the transfer anfgge were (90°, 150°, 210°, 270°, 340°).

TOF (years)

35
270° 3400

o0 150° 210°

transfer angle ; & =[0.05:0.08;0.11;0.14]
Figure 82: TOF for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, y, values of (0°;

0.75°; 1.59; 2.25° 3°)Af values of (90°, 150°, 210°, 270°, 340°) (N=1),dantial thrust (exponential
sinusoid), Earth-Jupiter flight
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Figure 83: V__ for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, for ), values of
(0°; 0.75°; 1.5°; 2.25°; 3°) and foA@ values of (90°, 150°, 210°, 270°, 340°) (N=1) whika tangential
thrust profile is being applied (exponential sinusml), Earth-Jupiter flight

From figures 59 and 60, by increasing the geometsiameterk,, the TOF increases,
while the total excess velocity decreases, whitggasing the values gf, the TOF and
the total excess velocity increases. The highdfrdince in TOF between differef for
the same phase angle apdis 0.7101 years, while the highest differenceoialtexcess
velocity is 0.755kny s. The differences in TOF and in total excess véjobietween

different values ofy, increase for higher values of the transfer argfe

Similar figures can be shown for 2 and 3 revoluionsing the same values for the

geometric parametek, , for the transfer angl&& and for the initial flight path anglg as

the ones used for N=1.
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Figure 84: TOF for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, y, values of (0°;

0.75°; 1.5°; 2.25°; 3°)A@ values of (90°, 150°, 210°, 270°, 340°), tangehtiaust, (exponential
sinusoid), Earth-Jupiter flight, N=2 and N=3
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Figure 85: V__ for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, y, values of (0%

0.75°; 1.59; 2.25° 3°)A@ values of (90°, 150°, 210°, 270°, 340°), tangehtiaust (exponential sinusoid),
Earth-Jupiter flight, N=2 and N=3

Similar remarks to ones given for N=1 can be dréovrfigures 61 and 62. The differences
in TOF for different values of; are higher for N=2 and N=3 than N=1. For N=2, tibtal

excess velocity decreases when increagingHowever, for N=3, for transfer anglés?
higher than 150°, the total excess velocity in@sasetweerk, =0.11 and k, =0.14 for
higher values ofy,. For N=2, the highest difference in TOF betwedfedént k, for the
same transfer angle ang is about 3.6608 years, while the highest diffeeeirc total

excess velocity i4.260&ny s. For N=3, the highest difference in TOF betwedfed:nt
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k, for the same transfer angle apdis about 17.4482 years, while the highest diffeeen

in total excess velocity i$.4635%ny s.

The TOF range for this Earth-Jupiter flight is fr@9®567 years to 35.0279 years. The total
excess velocity has a minimum value 6f349%&nys and a maximum value of
6.2544ny s. As expected, the minimum value for the TOF arel ifraximum value for

the total excess velocity occur for the smalleshdfer angle — 90° (N=1). Note that the

minimum value for the total excess velocity ocaurthe transfer angle 210° (N=3).

The maximum differences in TOF between two conseeutalues of the transfer angle
A@ are about six years. For a certain number of tewwis, these differences increase
when increasing the transfer angle. The differenderms of total excess velocity between
two consecutive transfer angles is highest betw&@r 90° and A@ =150° for N=1. The

maximum value for these differencesds841%ny s for N=1 and the minimum value is

35.29681 s for 3 revolutions.

Tables 15 and 16 show the values for the TOF amexcess velocity for an Earth-Jupiter
flight. Parameterd is zero and parametds, was considered 0.01, the transfer anfyi

was considered 90° and the number of revolutiorstaleen 2 for the first table and 3 for

the second one.

2.25°%; 39), tangential thrust (exponential sinusoig Earth-Jupiter flight

75

N=2 $=0° | y,=0.75%| y,=1.5°| ;=225 y,=3°
V.o (KM/ 9 | 3.2450 3.2815 3.4731 3.6862 3.9043
V,,(knV'§ | 0.2494 | 0.4495| 0.8058  1.1845  1.5691
V,,(kn/ § 2.9956 2.8319 2.6673 2.5018 2.3353
TOF (years) | 6.9792 7.2470 7.5296 7.828 8.1436

Table 21: Excess velocities and TOF values for N=&,=0.01, Ag =90°, y, values of (0° 0.75° 1.5
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N=3 $,=0° | y;=0.75%| y,=1.5°| ;=225 ), =3°

Voow(km/' § | 22056 | 2.3223| 25360 27547  2.9739

V,,(kw'g | 01190 | 0.4031| 0.7850 1.1725  1.5612

V,,(kw'g | 2.0867 | 1.9192| 17510  1.5822  1.4137

TOF (years)| 10.0493 10.6167 11.2291 11.8906 12.6058

Table 22: Excess velocities and TOF values for N=8,=0.01, Ag =90°, y, values of (0° 0.75°; 1.5°,
2.25°; 39), tangential thrust (exponential sinusoid Earth-Jupiter flight

For increasing values gf;, the TOF and the total excess velocity increabke. alues for
the total excess velocity are higher when N=2 thdren N=3. Note that the excess

velocity V,, , has the same trend as the total excess velodiije the excess velocity, ,

decreases.

In figures 63 to 66, the polar plot, the thrustedeationa, the thrust anglex and the
polar angle rated as function of time are illustrated for N=2 and Neases that were

presented in tables 15 and 16.

270 270

Figure 86: Polar plot for N=2 and N=3, k,=0.01, Ad =90°, y, values of (0°; 0.75°; 1.5°; 2.25°, 3°),
tangential thrust (exponential sinusoid), Earth-Jupter flight
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Figure 87:a plot for N=2 and N=3, k,=0.01, A8 =90°, y, values of (0° 0.75°; 1.5°; 2.25°; 3°), tangential
thrust (exponential sinusoid), Earth-Jupiter flight
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Figure 88: a plot for N=2 and N=3, k,=0.01, Ag =90°, y, values of (0°; 0.75°; 1.5°; 2.25°, 3°),
tangential thrust (exponential sinusoid), Earth-Jupter flight
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Figure 89: é plot for N=2 and N=3, k,=0.01, A8 =90°, y, values of (0°; 0.75°; 1.5°; 2.25°; 3°),
tangential thrust (exponential sinusoid), Earth-Jupter flight

The values for the thrust angte are smaller for N=3 than for N=2. The plot of flight

path angley in function of time is not shown, since in thedantial casex = y. Finally,

the thrust acceleratioa values are smaller for N=3 than for N=2.

3. Earth-Mercury Flight, using the Acceleration Inversely Square Case of the
Thrust Profile

Figures 67 and 68 show the TOF and the total exadesity when changing parameter

and the transfer anglad (N=0). The values used in figures 67 and 68 fergeometric

parameterk, were (0.05; 0.08; 0.11; 0.14), far, were (20°, 30°, 40°, 50°, 60°), fgrwas

0° and forA@ were (90°, 150°, 210°, 270°, 340°). The normalibedst acceleratiora,

value used in figures 67 and 68 was -0.25.
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Figure 90: TOF for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, a, values of
(20°, 30°, 40°, 50°, 60°N\@ values of (90°, 150°, 210°, 270°, 340°) (N=0)=0°, a, =-0.25, acceleration
inversely square case (exponential sinusoid), Eartiercury flight
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Figure 91: V__ for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, a, values of (20°,

30°, 40°, 50°, 60°)A8 values of (90°, 150°, 210°, 270°, 340°) (N=0)=0°, a, =-0.25, acceleration
inversely square case (exponential sinusoid), Eartllercury flight

From figures 67 and 68, as expected, the TOF isesewhen increasing the transfer angle,

while the total excess velocity decreases. By msirgy the geometric parametey, the

TOF and the total excess velocity decrease. THerdiices in TOF and in total excess
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velocity between different values &, increase for higher values of the transfer angle
A@ . The highest difference in TOF between differénfor the same phase angle amg

is 0.0063 years, while the highest difference taltexcess velocity i9.665%ny s. For
increasing values ofr,, the TOF decreases while the total excess velactyeases for

transfer angles higher than 210° and it decreasdsahsfer angles lower than 210°.

Similar figures can be shown for 1 and 2 revoluiionsing the same values for the

geometric parametek,, for the transfer angld@ and for the initial values ofr and y,.
The normalized thrust accelerati@y values used in figures 69 and 70 were -0.09 and -

0.06 for N=1 and N=2, respectively.
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Figure 92: TOF for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, a, values of
(20°, 30°, 40°, 50°, 60°\@ values of (90°, 150°, 210°, 270°, 340p)=0°, acceleration inversely square
case (exponential sinusoid), Earth-Mercury flightN=1 (a, =-0.09) and N=2 @, =-0.06)
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Figure 93: V__ for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, a, values of (20°,
300, 40°, 50°, 60°)A8 values of (90°, 150°, 210°, 270°, 340°), fgr=0°, acceleration inversely square
case (exponential sinusoid), Earth-Mercury flightN=1 (a, =-0.09) and N=2 @, =-0.06)

Similar remarks to the ones given for N=0 can bawar for figures 69 and 70. The

differences in total excess velocity between d#fgrvalues ofa, are higher for N=1 and
N=2 than N=0. For N=1, the highest difference inFTRetween differenk, and for the
same transfer angle ang, is about 0.0509 years, while the highest diffeeeirc total
excess velocity i4.5947mny s. For N=2, the highest difference in TOF betwedfed:nt
k, and for the same transfer angle is about 0.19%4syevhile the highest difference in

total excess velocity i2.527%ny s.

The TOF range for this Earth-Mercury flight is frodn2358 years to 2.0252 years. The
total excess velocity has a minimum value 2£83km/ s and a maximum value of
46.7494ny s. The maximum differences in TOF between two conseg values of the
transfer angleA@ are about 0.15 years. The maximum value for thdierences is

16.5936kny s for N=0 and the minimum value is abduB236kny s for 2 revolutions.

Tables 17 and 18 show the values for the TOF amdetttess velocity for an Earth-

Mercury flight. Parametek, was assumed 0.01, parametey was assumed 20°, the

transfer angleAd was assumed 90° and N was taken 1 for the fibde tand 2 for the

second one. In tables 17 and 18, the normalizadtlacceleratiora, values were -0.09
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and -0.06, respectively. Note that these valuesafoffor N=1 and N=2 are the minimum

values that can be used in both cases for thisesiwi@thout facing integration problems for
the interval of the input parameters considered.

N=1 y=-3° | y,=-2.25°| y,=-15°| ), =-0.75°| ,=0°

V.ow(kn/9 | 10.4821| 10.6811| 10.889¢  11.1134  11.3622

V,,(km'9 | 1.5877 1.1895 0.7921 0.3956| 3.97x 10°

V.,(knf9 | 8.8944 | 94916 | 10.097§  10.7178  11.3621

TOF (years)| 0.7947 0.8173 0.840% 0.8644 0.8890

Table 23: The excess velocities and the TOF valukes N=1, k,=0.01, Ag=90°, a,=20°, y, values of (-

39, -2.25°% -1.5% 0.75% 0°)a, =-0.09, acceleration inversely square case (expottiahsinusoid), Earth-
Mercury flight

N=2 V,=-3° | y,=-2.25°| y,=-15°| ), =-0.75°| ), =0°

V,.ow (kM9 | 5.6018 5.7841 5.9779 6.1913 6.5220

V,.,(km/'g | 15993 | 1.2074 | 0.8186|  0.4395|  0.1620

V.,(km'g | 40025 | 45767 | 5.1593| 57518  6.3598

TOF (years)| 1.2949 1.3575 1.4233 1.4926 1.5657

Table 24: The excess velocities and the TOF valules N=2, k,=0.01, Ag=90°, a,=20°, y, values of (-

30, -2.25°; -1.5°; 0.75°, 0°)a, =-0.06, acceleration inversely square case (expotiahsinusoid), Earth-
Mercury flight

From tables 17 and 18, the order of magnitude efetkcess velocity values 1€° kny s

and 10 kny s. For increasing values afi, the total excess velocity and the TOF increase.
The values for the total excess velocity are highieen N=1 than when N=2. Note that the
excess velocity/, , increases faster than the excess veldgjty decreases, for both cases

N=1 and N=2.
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In figures 71 to 75 the polar plot, the thrust dedion a, the thrust angler , the polar
angle rated and the flight path angle as function of time @testrated for N=1 and N=2

cases that were presented in tables 17 and 18.

270

Figure 94: Polar plot for N=1 (a, =-0.09) and N=2 @, =-0.06), k,=0.01, A8 =90°, a,=20°, , values of
(-39;-2.25%;-1.5%;,0.75%;0°), acceleration inversebquare case (exponential sinusoid), Earth to Merey
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Figure 95: a plot for N=1 (a,=-0.09) and N=2 @, =-0.06), k,=0.01, AG =90°, a,=20°, y, values of (-3°-
2.25°;-1.5%0.75%;0°), acceleration inversely squarcase (exponential sinusoid), Earth to Mercury
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Figure 96: a plot for N=1 (a,=-0.09) and N=2 @,=-0.06), k,=0.01, A =90°, a,=20°, y, values of (-
39;-2.250;-1.5°;0.75°;0°), acceleration inverselgsare case (exponential sinusoid), Earth to Mercury
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Figure 97: & plot for N=1 (a,=-0.09) and N=2 @, =-0.06), k,=0.01, A8 =90°, a,=20°, y, values of (-
3°;-2.25°;-1.5°;0.75°;0°), acceleration inverselgsare case (exponential sinusoid), Earth to Mercury
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Figure 98: y plot for N=1 (&, =-0.09) and N=2 @, =-0.06), k,=0.01, AG =90°, a,=20°, y, values of (-
39;-2.250;-1.5°,0.75°;0°), acceleration inverselgsare case (exponential sinusoid), Earth to Mercury

The magnitude of the thrust acceleration is higleerN=1 and for N=2 because the

assumed normalized thrust acceleratinis also higher for N=1 than for N=2. For most

of the interplanetary flight for both cases in figur4, the spacecraft is thrusting inwards in
the radial direction, while in the tangential difen it thrusts in the positive directiom (
is negative, higher thar90°), like for the other two missions. This situationll be

further analysed in section 7.7. The magnitudeashf the flight path anglg are smaller

for N=2 than for N=1.

4. Earth-Mercury Flight, using the Tangential Thrust Profile

Figures 76 and 77 show the TOF and the total exadssity when changing parameteyr
and the transfer angl®@d (N=0). The values used in these figuresKpmwere (0.05; 0.08;
0.11; 0.14), fory, were (-3°; -2.25°; -1.5° -0.75°; 0°) and #6 were (90°, 150°, 210°,
270°, 3400).
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Figure 99: TOF for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, y, values of (-3°
-2.25%; -1.5°% -0.75°%; 0°)A@ values of (90°, 150°, 210°, 270°, 340°) (N=0),dential thrust (exponential

total excess velcoity (km/s)

Figure 100:V__ for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, y, values of (-
3°; -2.25°; -1.5° -0.75°; 0°)A& values of (90°, 150°, 210°, 270°, 340°) (N=0),dantial thrust

From figures 76 and 77, as expected, the TOF isesewhen increasing the transfer angle,

while the total excess velocity decreases. By m&ireg k,, the TOF and the total excess

velocity decrease. For increasing values jpf the TOF and the total excess velocity
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increase. The highest difference in the time afhilibetween differenk, for the same
phase angle ang is 0.0056 years, while the highest differencenmtbtal excess velocity

is 0.6826kny s. The differences in TOF between different valukg,oincrease for higher

values of the transfer angled .

Similar figures can be shown for one and two retvohs, using the same values for the

geometric parametek, , for the transfer angl&& and for the initial flight path anglg as

the ones used for N=0.

TOF (years)

08

07 L

o0° 150° 210° 70° 340 oW 150° nr i kT

transfer angle / & = [0.05,0.08,0.140.14] transfer angle s & = [0.05:0.08;0.11;0.14]

Figure 101: TOF for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, y, values of (-

39; -2.25°; -1.5% -0.75°; 0°)A8 values of (90°, 150°, 210°, 270°, 340°), tangehtimust (exponential
sinusoid), Earth-Mercury flight, N=1 and N=2
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total excess veleolty (km/s)
total excess velcoity (km/s)

a0° 1500 21 270 340° o L30° 210 270 34

transfer angle 1 &, = [0.05;0.08:0.11;0.14] transfer angle /& = [0.05:0.08:0.11:0.14]

Figure 102:V_ for k, values of (0.05; 0.08; 0.11; 0.14) from left toght in the figure, y;, values of (-

39; -2.25°; -1.5% -0.75°; 0°)A& values of (90°, 150°, 210°, 270°, 340°), tangehtimust (exponential
sinusoid), Earth-Mercury flight, N=1 and N=2

Similar remarks to ones given for N=0 can be dr&owvriigures 78 and 79. The differences
in TOF for different values ofy;, are higher for N=1 and N=2 than N=0. For N=1, the
highest difference in TOF between differdgtfor the same transfer angle apdis about
0.0489 years, while the highest difference in tetaless velocity i4.6434ny s. For N=2,
the highest difference in TOF between differéntfor the same transfer angle apdis

about 0.1897 years, while the highest differendetal excess velocity i2.703ny s.

The TOF range for this Earth-Mercury flight is frodn2343 years to 1.9719 years. The
total excess velocity has a minimum value 108834ny s and a maximum value of
45.9447kny <. The maximum differences in TOF between two coutee values of the

transfer angleA@ are about 0.13 years. For a certain number ofluéwos, these
differences increase when increasing the transiglea The difference in terms of total
excess velocity between two consecutive transfajleanis the highest one between
AG=90° and A@=150° for N=0. The maximum value for these differences i
14.4967kmn s for N=0 and the minimum value &2335%ny s for N=2.

Tables 19 and 20 show the values for the TOF amdetttess velocity for an Earth-

Mercury flight. Parameteg is zero and parametd, assumed was 0.01, the transfer
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angle A8 assumed was 90° and the number of revolutionsitedes 1 for the first table

and 2 for the second one.

N=1 y,=-3° | y,=-2.25°| y,=-1.5°| ,=-0.75°| ), =0°

V. ow(km/ § | 10.4787| 10.7028| 10.9418  11.2330  11.7050

V,,(km/'9 | 1.5738 | 1.2029 0.8516 0.5571|  0.4481

V,,(km/'g | 89049 | 9.4999 | 10.0902  10.6759  11.2569

TOF (years) 0.7721 0.7935 0.8156 0.8384 0.8621

Table 25: Excess velocities and TOF values for N=k,=0.01, Ag =90°, y, values of (-3°; -2.25° -1.5°; -
0.75°; 0°), tangential thrust (exponential sinusoid Earth-Mercury flight

N=2 yy=-3° | ;=-2.25°| y,=-15°| ),=-0.75°| y,=Q°

V.o (KM 9 | 5.4540 5.6858 5.9173 6.1549 6.5023

V,.(km/'§ | 1.5590 1.1700 0.7835 0.4054 0.1407

V.,(km/§ | 3.8949 | 45157 5.1338 57491  6.3616

TOF (years)| 1.2661 1.3264 1.3900 1.4574 1.5287

Table 26: Excess velocities and TOF values for N=%&,=0.01, Ag =90°, y, values of (-3°; -2.25° -1.5°; -
0.75°%; 0°), tangential thrust profile (exponentiakinusoid), Earth-Mercury flight

From tables 19 and 20, the order of magnitude ef ttital excess velocity values is
10° kny s and 10" kny s. For increasing values gf, the TOF and the total excess velocity
increase. The values for the total excess velauigy higher when N=1 than when N=2.

Note that the excess veloci¥y, , has the same trend as the total excess velodiije the

excess velocity,, , decreases.

In figures 80 to 83, the polar plot, the thrustedetation a, the thrust angler and the

polar angle rated as function of time are illustrated for N=1 and Neases that were
presented in tables 19 and 20.
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Figure 103: Polar plot for N=1 and N=2,k,=0.01, Ag =90°, y, values of (-3°; -2.25°; -1.5°; -0.75°; 0°),

tangential thrust profile (exponential sinusoid), Erth-Mercury flight
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Figure 104:a plot for N=1 and N=2, k,=0.01, A& =90°, y, values of (-3°; -2.25°; -1.5°; -0.75°; 0°),

tangential thrust profile (exponential sinusoid), Erth-Mercury flight
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Figure 105: a plot for N=1 and N=2, k,=0.01, Ag =90°, y, values of (-3°, -2.25° -1.5° -0.75°; 0°),
tangential thrust profile (exponential sinusoid), Earth-Mercury flight
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Figure 106: i plot for N=1 and N=2, k,=0.01, A8 =90°, y, values of (-3°; -2.25°; -1.5°; -0.75°; 0°),
tangential thrust profile (exponential sinusoid), Erth-Mercury flight

The values for the thrust angte are smaller in magnitude for N=2 than for N=1. That

of the flight path angley in function of time is not shown, since in thedantial case

a = y. Finally, the magnitude of the thrust accelerators higher for N=1 than for N=2.
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Appendix F: Verification

As already mentioned in chapter 9, this masterishdsals with many mathematical
expressions (appendix B). In this way, mistakesbmamade when writing the equations in
MATLAB code. The MATLAB program that was developéy giving the geometric
parameters as an input in order to compute thesthacceleration, the thrust angle, the
TOF, the excess velocities and the fuel mass copsamfor a certain mission is called
Low2D. Since the results achieved for each shape nebd terified, a test program was
developedTest2D This program uses the values of the thrust a@de, thrust angle,
the TOF and the initial position and velocity aputs. Through a Runge-Kutta 4(5)
integrator, it computes the trajectory of the spaak in the transfer plane. In the end, if
the MATLAB code is correct, the values for the finmosition and velocity given by
Test2D should match the ones used in Low2D.

Test2D was verified using the following inputs: theriod of the Earth for the TOF, the
circular velocity of the Earth and its distancdhe Sun. In this test, the thrust acceleration
and angle were considered zero. If Test2D is cyrtke final position and velocity should
be the same as the initial position and velocigpectively. The trajectory was computed

and the final position and velocity at the instaneeTOF differ from the initial position
and velocity by 40°km and ~10™°knys, respectively. Since these differences are

significantly small, the results given by Test2 dge considered verified.

Tables 21 to 23 present the differences in ternposition and velocity at the target planet
between the values given by Low2D and Test2D. Thiadkdes were built for the

acceleration inversely square case. In these talsleaspe 1’ is the Archimedean spiral,
‘shape 2’ is the logarithmic spiral, ‘shape 3’he tPoinsot’s spiral (hyperbolic sine), ‘shape
4’ is the Poinsot's spiral (hyperbolic cosine),agle 5’ is the sinusoidal spiral and ‘shape

6’ is the exponential sinusoid.
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Shapel| Shape2 Shapg3 Shape4 Shape5 Shape 6
|Ar2| (km) 0.5495 0.5471 1.7395 1.4766 1.066 1.4788
|AV2| (mnY <) | 0.8985 0.9016 2.3288 1.1593 1.2178 1.1858

Table 27: Variation between the values given in LoD and Test2D for the position and velocity at the
target planet, Earth-Mars flight, A@=90°, N=1, acceleration inversely square case

Shapel| Shape2 Shapeg3 Shape4 Shape5 Shape 6
|Ar,| (km) 3.5433 | 36.8599 49.2149 6.1633  6.5041  0.8981
|AV,| (mnys) | 0.6754 | 3.0193| 3.5887 0.1 0.5996  0.4012

Table 28: Variation between the values given in Lo@D and Test2D for the position and velocity at the
target planet, Earth-Jupiter flight, A@=90° N=1, acceleration inversely square case

Shapel| Shape2 Shapg3 Shape4 Shape5 Shape 6
|Ar2| (km) 0.8386 6.3592 2.5299 6.0732 5.7877 6.4705
|AV2| (mnys) | 3.3911 | 21.7885 5.1442 20.6900 21.5630 21.333

Table 29: Variation between the values given in LoD and Test2D for the position and velocity at the
target planet, Earth-Mercury flight, A& =90° N=1, acceleration inversely square case

A similar test can be done for the constant acagter case of the thrust profile case. The

results are presented in tables 24 to 26.

Shapel| Shape2 Shapg3 Shape4 Shape5 Shape 6
|Ar2| (km) 0.2830 0.2635 2.4502 0.058% 0.4280 0.1912
|AV,| (mnys) | 0.1537 | 0.1342| 0.8413 0.6048 0.8326  0.63p7

Table 30: Variation between the values given in LoD and Test2D for the position and velocity at the
target planet, Earth-Mars flight, A8 =90°, N=1, constant acceleration case
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Shapel| Shape2 Shapg3 Shape4 Shape5 Shape 6
|Ar2| (km) 19.3649 | 48.7194 60.9231 27.4681 29.1238 39.6[79
|AV2| (mnY <) | 2.0560 1.082 0.8752 0.0227 0.326 0.6815

Table 31: Variation between the values given in LoD and Test2D for the position and velocity at the
target planet, Earth to Jupiter, A8 =90°, N=1, constant acceleration case

Shapel| Shape2 Shapeg3 Shape4 Shape5 Shape 6
|Ar,| (km) 1.8913 | 19.2616] 1.088| 25.5034 12.8667 56.1440
|AV,| (mnys) | 25.1917| 108.82| 2.316 127.4 64.67 297.9

Table 32: Variation between the values given in Lo@D and Test2D for the position and velocity at the
target planet, Earth to Mercury, A8 =90°, N=1, constant acceleration case

A similar test can be done for the tangential a#sie thrust profile case. The results are

presented in tables 27 to 29.

Shape 1| Shape2 Shape3 Shape4 Shape5 Shape6
|ar,| (km) 0.3942 | 0.8078| 118.038017.6294 | 14.8096 19.5991
|AV,| (mnys) | 0.2459 | 0.5656| 238.9 13.71 14.5 13.0f

Table 33: Variation between the values given in Lo@D and Test2D for the position and velocity at the
target planet, Earth-Mars flight, A8 =90°, N=1, tangential case

Shapel| Shape2 Shapg3 Shape4 Shape5 Shape 6
|Ar,| (km) 4.1238 | 0.9518| 125.645631.1107 | 33.8446 29.7854
|AV,| (mm ) | 0.6405 42 99.8 10.97 10.02 10.7

Table 34: Variation between the values given in LoD and Test2D for the position and velocity at the
target planet, Earth-Jupiter flight, A@=90°, N=1, tangential case
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Shapel| Shape2 Shapg3 Shape4 Shape5 Shape 6

|Ar2| (km) 456.3820| 121.6437| 49.8625| 41.9713 45.5778 41.8992

|AV2| (mnys) | 3193.5 243.7 288.9 89.34 112.7 82.14

Table 35: Variation between the values given in LoD and Test2D for the position and velocity at the
target planet, Earth-Mercury flight, A8 =90°, N=1, tangential case

The variation values in terms of velocity of theaspcraft at the target are the highest one
for the Earth-Mercury mission in all 3 cases of thaust profile. In this case, a higher
tolerance can be used. The variation values ingerhposition are highest for the Earth-
Jupiter mission except for the tangential casefandhe exponential sinusoid. Generally,

the errors increase for higher integration timenc8ithe order of magnitude of the
travelling distance of the spacecraftli@'m and the order of magnitude of the velocity at

the target i0* ny s, Low2D can be considered benchmarked in this test.

As already mentioned in chapter 9, Low2D was alsafied with the MATLAB routines
given by Dario Izzdlzzo, 2006]for the exponential sinusoid using the tangeltiaist.

Also, the computation of low-thrust trajectoriesngsSTA was verified with the software
JAQAR. In table 30 the scenario for testing the Sidule to compute low-thrust
trajectories is shown. Note that this test scenads performed with version 8 of the SBC
[JAQAR, 2007]

Departure date (departure planet) 18/08/2009 (arth
Arrival date (arrival planet) 02/11/2010 (Mars)
Geometric paramettk, 0.7071
Number of revolutions N 0

Table 36: Test scenario for STA
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Departure| STA JAQAR Error

planet | v (kmis) | V. (kmis) | V. (%)
Earth 1.8528 | 1.8678] 0.8031
Arrival STA JAQAR Error STA: Mfuel (low- JAQAR: Mfuel (low- Error:
planet | v (km/s) | V. (kmis)| V. (%) | thrust+AV, ) (kg) thrust+AV, ) (kg) 'V('f;)e'

0
Mars 1.7504 | 1.7522| 0.102B 342.5350 342.3587 0.0515

Table 37: Values for the excess velocities and theel mass consumption using STA and JAQAR, for
the test scenario in table 30

Since the ephemeris used in both software is éiffieand that the values for the errors in
table 31 are smaller than 1%, the computation of-tlrust trajectories in STA was

considered well implemented.
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Appendix G: Test of the Number of Individuals

In this appendix, a test will be made to verifythE number of individuals used for the
population in the Monte Carlo optimization providecurate results for the Pareto fronts.
This test will only be made for one shape - theomgmtial sinusoid and for the tangential
and the acceleration inversely square cases dhthet profile. 4 Pareto fronts were built

for: 25 000, 50 000, 75 000 and 100 000 individdatsthe population, for the tangential

case. Figure 107 shows these 4 Pareto fronts.
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Figure 107: Pareto fronts for the number of individuals of the population: 25 000, 50 000, 75 000 and
100 000, tangential case

From figure 84, the differences between the Pafedats for different sizes of the
population are significantly small. The number mdividuals in the Pareto front is: 50 for
25 000 individuals, 75 for 50 000 individuals arf@ f8r 75 000 and 100 000 individuals.
This means that, since the Pareto fronts are guntdar and there is no difference in terms
of the number of individuals in the Pareto front 7 000 and 100 000 individuals in the
population, 75 000 will be the number of individsiahosen for the population.

For the acceleration inversely square case, 4 ®&its were built for: 25 000, 50 000,
75 000 and 100 000 individuals for the populatemwell.
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Figure 108: Pareto fronts for the number of individuals of the population: 25 000, 50 000, 75 000 and

100 000, acceleration inversely square case

From figure 85, the differences between the Pafatats for 75 000 and 100 000

individuals of the population are significantly din&lote that just a few green individuals

can be seen in figure 85, because most of theidtwls in the Pareto front for 75 000

individuals are also present in the Pareto frorthwli0O 000 (black individuals). The

number of individuals in the Pareto front is: 3¢ 5 000 individuals, 29 for 50 000

individuals, 31 for 75 000 and 33 for 100 000 indials. Note that these numbers are
much lower than the ones given for the tangentiaec This is due to the integration errors
that occur for the acceleration inversely squarge and consequently many individuals
have to be discarded during the optimization pracedSince the difference for the

number of individuals between the 4 Pareto frositsmall and there is no much difference
between the Pareto front for 75 000 and 100 OOWinhahls, the number of the population

will be 75 000.
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Appendix F: Optimization for an Earth-Jupiter Fligh t

In this appendix, the optimization results for Eerth-Jupiter flight using tangential thrust
will be shown. Figure 109 illustrates the Paretinfs using the tangential thrust profile in

an Earth-Jupiter flight for allé6 shapes. As alreadyd in chapter 8, the population that is

being used is 75000 individuals for each shape.
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Figure 109: Pareto fronts for the Archimedean spir§ logarithmic spiral, Poinsot’s spiral (hyperbolic
sine), Poinsot’s spiral (hyperbolic cosine), sinugal spiral and exponential sinusoid, tangential thust,

Earth-Jupiter flight

In figure 86, the Archimedean spiral and the Pdissspiral (hyperbolic sine) show worse
results compared with the other 4 shapes: thedoiesumption values are higher and the

number of individuals in the Pareto front is sigrahtly low, as for the Earth-Mars flight.

Figure 110 summarizes the Pareto fronts for aldpss. In the plot in the right-hand side,

the same Pareto fronts are represented but onfyimdividuals with values of total excess
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velocity lower than5kmy's and values of fuel mass consumption between 16601400
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Figure 110: Pareto fronts for the Archimedean spir§ logarithmic spiral, Poinsot’s spiral (hyperbolic
sine), Poinsot’s spiral (hyperbolic cosine), sinugal spiral and exponential sinusoid, tangential thust,
Earth-Jupiter flight

Individuals with values lower than 407.25 kg, 424Kg and 465.18 kg are not present for
the Pareto fronts for the logarithmic spiral, foe tPoinsot’s spiral (hyperbolic cosine) and
for the exponential sinusoid, respectively. The imum value of fuel consumption is
achieved with the sinusoidal spiral and it is 094 (close to the targeting Lambert
problem). The minimum values of the total exceskoity in the Pareto fronts are

2.0525%ny s, 1.269%ny s and 0.327Ckny s for the logarithmic spiral, for the Poinsot’s

spiral (hyperbolic cosine) and for the exponensi@usoid, respectively. The minimum

value for the total excess velocity of all shapeadhieved with the sinusoidal spiral and it
is 0.271%kny s. Individuals with TOF values higher than 20 yeaese not selected for the

Pareto fronts, since the maximum number of compietelutions was 3. The TOF range
of most individuals in Pareto front for the 4 shapmeentioned above (logarithmic spiral,

Poinsot’s spiral (hyperbolic cosine), sinusoidatapand exponential sinusoid) is between
0 and 8 years.
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Note that the total excess velocity values for lowalues of fuel mass consumption are
significantly high. Individuals with these valuettotal excess velocity cannot be taken
into account in a real mission. However, in ordeunderstand the limits of each shape,

they were not excluded from the Pareto front.

From figure 87, the Pareto fronts for the exporarginusoid and the sinusoidal spiral
provide lower values of fuel mass consumption fag same total excess velocity when
comparing with the Poinsot’s spiral (hyperbolic ic@3 or the logarithmic spiral. The

logarithmic spiral has the highest number of indiinls in the Pareto front of all 6 shapes.

The range of fuel mass and total excess velocityegafor the sinusoidal spiral is the
widest one. This shape and the exponential sinusai@ similar performances for fuel

mass consumptions higher thary00 kg.

Note that the Pareto front of the exponential siidhas 2 different trends: after and

before ~ 700 kg. The bent seen in figure 86 at700 kg was already studied in section

10.1.1, in order to understand why there are tWiemint curvatures in the Pareto front.

The situation for the Earth-Mars case and thisareesimilar.

* Thrust Acceleration Constraint

Computation times were tracked for all 6 shapesthay are shown in table 32. Also, the
percentage of the individuals in the Pareto framd & the population that respects the
maximum ratio between the thrust acceleration ihagiven as an output from a certain
shape and the available thrust acceleratioh)(is presented for the three different cases.

The three cases are for the following availableughracceleration trends: (1)

=0.064u/r? (twice a_,,,, in DS1), (2)a

available

a =0.0964/r? (3 timesa,,.,. iN

available

DS1) and (3)a,

available

=0.128u/r? (4 timesa,,,,, in DS1) (see chapter 8).
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Computation
Shapes . P N g Gy (%) Gopgp (%)
time (hours)
Archimedean spiral 1.41 2 100/100/100 2.7/5.8/8.2
Logarithmic spiral 0.69 6158 0.1/1.2/4.2 2.3/6.38L0
Poinsot’s spiral (hyperbolic sine) 0.73 9 100/100/1 27.6/43.6/54.5
Poinsot’s spiral (hyperbolic cosine 0.72 44 34371%63.3 47.4/63.8/72.5
Sinusoidal spiral 2.71 95 25.3/41/64.2 7.7/20/30.7
Exponential sinusoid 3.06 99 4/9.1/17.2 0.4/1.8/3.9

Table 38: Computation time, number of individuals n the Pareto front (N, ) and the percentage of

individuals in the Pareto front G, and in the population G, that respect the maximum value for the
ratio between the required thrust acceleration of lhe spacecraft and the available one for the 6 shape
and for the 3 cases 08, , ... = & pup e | 2/3/4] in an Earth-Jupiter flight (tangential case)

The optimization procedure when using the expoaéstnusoid used more computation
time than the other shapes. Also, the percentageliiduals in the population that do not
respect the maximum value for the ratio betweenréugiired thrust acceleration of the
spacecraft and the available one is highest fore#pmonential sinusoid in all three cases.
However, the logarithmic spiral has the lower patage of individuals in the Pareto front
that respects the constraints for the thrust acatsde available. Note that although 100%
of the individuals in the Pareto front for the Airtledean spiral and the Poinsot’s spiral

(hyperbolic sine), the fuel consumption for botlasés are higher when compared with the
other 4 shapes.

Figures 88 and 89 Illustrate the Pareto fronts tfee sinusoidal spiral and for the
exponential sinusoid when only considering thevidlials in the population that respect
the condition in (8.7) in chapter 8. As for the tBavlars flight, these two shapes have the
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best performance in terms of the Pareto front. ¢#ire condition in (8.7) as a constraint,
for the two shapes named before, a certain humberdoviduals in the population are
discarded, respectively and a new Pareto frontils. B-igures 88 and 89 show the Pareto

fronts for the sinusoidal spiral and exponentialusbid, respectively when the available

thrust acceleratiom, ;... = (0.064,0.096,0.128) 1/r? is given as a constraint.
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Figure 111: Pareto fronts for the sinusoidal spiralfor the entire population (on the right) and onlyfor
individuals in the population that respect the condion (8.7) (the three cases), tangential thrust, &th-
Jupiter flight
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Constraint @ matasee = 0.064 21/#* Constraint @ pamme = 0096 /r?
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Figure 112: Pareto fronts for the exponential sinusid, for the entire population (on the right) and aly
for individuals in the population that respect thecondition (8.7) (the three cases), tangential thras
Earth-Jupiter flight

From figures 88 and 89, for the exponential sindisthe individuals in the Pareto front
have a mass fuel consumption values higher thark§6@r the case with the highest value
Of 8y aiae- FOr iNCreasing values d, , .i..e. the number of individuals in the Pareto

front increases and lower values of fuel mass aopsion are allowed. For the sinusoidal

spiral, there is a gap in the Pareto front, whieeee are no individuals.
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End of Document
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