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1
Introduction

The field of computer vision has seen a significant rise in recent years. Object detection is an area
in computer vision that deals with locating and identifying objects within images. Similarly to how
our eyes and brain work, we teach computers to recognize the objects. More specifically, we train an
algorithm by exposing it to example images and we help them to recognize patterns. With this training,
we aim to make the algorithm better at performing the task, also when dealing with new, unseen
images. Face recognition and car license plate detection are two great examples of applications of object
detection [1, 2].

Faster R-CNN (Region-based Convolutional Neural Network) [3] is one of the most commonly used
neural architectures designed for object detection. Like many other algorithms, Faster R-CNN relies on
patterns and structures in the images to identify objects. However, it can occur that the same objects
appear in different colors when looking at different images. There could be various causes for this, such
as changes in lighting or the use of different kinds of cameras. This raises the question of whether the
Faster R-CNN model will still perform well when faced with significant color variation in the image
data. As is discovered in this thesis, color variations pose a challenge for the standard Faster R-CNN
architecture, and therefore this thesis is focused on improving the robustness of the algorithm to these
variations.

Inspired by the work of Cohen et al. [4], this research attempts to enhance the robustness to color
variations of Faster R-CNN by making changes to its standard network architecture. These changes
improve the ability of the model to use the information that it has learned about patterns and structures
within images for different colors, including colors that it has not seen before. Several strategies are
analyzed and compared, providing a better understanding of the influence of the adaptations within
the network.

This report has the following structure: Chapter 2 is the scientific article of this thesis. It delves into
the details of the research, providing an in-depth explanation of the methodologies, experiments, and
findings. Chapter 3 explains the core concepts used in the scientific article. The technical background
of all used methods is described in a comprehensive manner. Chapter 4 describes and visualizes the
image datasets that are used for the experiments of this work.
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Abstract
This paper studies the effect of integrating color
equivariance and invariance into object detection,
in particular into the Faster R-CNN architecture.
To better understand the influence of this integra-
tion, we introduce modifications to the traditional
convolutional layers of the standard Faster R-CNN
model. By employing group theory in a similar way
as Group Equivariant Convolutional Networks (G-
CNNs), we replace the convolution operations with
operations that are equivariant to hue transforma-
tions. The modified models are tested on several
different datasets in which variations and imbal-
ances in color distributions are present. Our toy
experiments demonstrate that the replacement of
the convolutional layers can lead to significant im-
provements in performance, especially in scenar-
ios where the data contains a substantial amount of
color variation. The findings of this work suggest
that incorporating color equivariance and invari-
ance into the design of convolutional layers can en-
hance object detection, proposing interesting possi-
bilities for future research on real-world tasks.

1 Introduction
Color is an integral characteristic of visual perception and has
an important role in object detection, as it directly affects the
performance of object detection algorithms. The color fea-
tures of objects can provide essential information that makes
it easier to identify or recognize them. Unwanted variations in
color, however, which can be caused by factors such as light-
ing changes or object occlusions, introduce a challenge for
these algorithms. Recent advancements in the field of object
detection and recognition have achieved significant progress
because of the deployment of convolutional neural networks
(CNNs) [1]. Despite this, algorithms within this field often
struggle to deliver accurate results when dealing with datasets
containing a significant amount of color variation or imbal-
ance. This limits their reliability and applicability, especially
in scenarios where color variations are prevalent.

The Faster Region-based Convolutional Neural Network
(Faster R-CNN) [2] is one of the most commonly used ex-
amples of object detection algorithms. It has significantly

Figure 1: Our modified versions of the Faster R-CNN architecture
are color equivariant. More specifically, if a certain hue shift T is
applied to an input image x, it will result in a corresponding trans-
formation T ′ to the output y, which consists of the bounding box
and class predictions. An example of a hue shift is the transforma-
tion from a red MNIST digit to a green one, as is shown in the figure.

improved the efficiency and effectiveness of object detection.
It introduced an architecture that combines the advantages of
both region proposal and classification, enabling object de-
tection. Like other CNN-based models, however, Faster R-
CNN struggles with datasets that contain a significant amount
of color variation or imbalance. Because of this, its perfor-
mance in various applications, such as medical imaging [3],
autonomous driving [4], and surveillance systems [5], is lim-
ited. This forms the motivation of this study to explore how
color robustness can improve the effectiveness of Faster R-
CNN.



Equivariance and invariance to transformations [6] offer
potential strategies to tackle this challenge. Equivariance to
a certain transformation implies that transforming the input
leads to a corresponding transformation of the output [7].
This can improve the performance of a network on datasets
containing variations and imbalances. When a network is in-
variant to a certain transformation, it means that the output
of the network does not change when applying the transfor-
mation to the input [8]. Invariance is a special case of equiv-
ariance since the corresponding transformation is an identity
mapping. This property is often desirable when the classifica-
tion of an object is independent of its position or orientation
for instance. In this work, the influence of color equivariance
and invariance on object detection is investigated, in particu-
lar on Faster R-CNN.

We introduce a novel approach that is inspired by the
framework of Group Equivariant Convolutional Networks
(G-CNNs) [9]. The use of G-CNNs provides robustness to
various transformations, such as rotation and flipping. G-
CNNs achieve this by employing group theory to build trans-
formation equivariant features. This results in the fact that
applying a certain transformation to the input will result in
a predictable transformation to the output of a convolutional
layer. We propose versions of Faster R-CNN that are equiv-
ariant and invariant to color changes, in particular hue shifts,
see Figure 1. In doing so, we aim to improve the performance
of Faster R-CNN on datasets with color variety or imbalance
by making use of group equivariant convolutional layers.

In our experiments, we use a simple convolutional neu-
ral network as the backbone for the studied Faster R-CNN
versions, inspired by [10], and we replace the convolutional
layers of the architecture with color equivariant and invariant
counterparts. We then assess the performance of the mod-
ified models on several toy datasets that are derived from
the MNIST dataset [11]. The results of these experiments
empirically demonstrate that the replacement of the convo-
lutional layers has a positive effect on the color robustness
of the network when dealing with data that contains a signifi-
cant amount of color variation or imbalance. Furthermore, we
conduct experiments on small versions of a dataset contain-
ing 2D chess boards and the PASCAL VOC2012 dataset to
evaluate the performances on data containing more complex
color and shape variations.

The contributions of this research can be summarized as fol-
lows:

• We propose and implement modifications to the Faster
R-CNN architecture by integrating color equivariant
convolutional layers.

• We design comprehensive toy experiments to evaluate
the performance of our proposed models in scenarios
with varying color distributions. The results of these ex-
periments show that the modifications improve the color
robustness with respect to the standard architecture.

• We conduct more complex experiments of which the re-
sults suggest that the integration of equivariance within
the Faster R-CNN model is an interesting approach to
do future research on with real-world experiments.

The next section touches upon research that is done on
the equivariance, invariance, and robustness of convolutional
neural networks. Following that, the third section of this pa-
per describes the methodology used in the experiments, also
providing the details of the studied model architectures. Sec-
tion 4 discusses the results of the experiments, comparing the
standard and modified versions Faster R-CNN. Section 5 con-
cludes the paper and discusses the limitations of this work as
well as ideas for future work.

2 Related Work
This section reviews relevant works that focus on improving
the robustness to color changes and other transformations.
Several approaches integrate equivariance or invariance into
network architectures to attempt to improve the robustness,
while others use data augmentation to improve the ability of
a network to generalize.

Robustness to Color Variation The use of color informa-
tion can significantly enhance the performance of object de-
tection and recognition. However, datasets containing a sub-
stantial amount of color variation, imbalance, or bias often
pose challenges for these algorithms. This is because these
color variations, which can be caused by factors such as light-
ing changes, can have a significant influence on the reliability
of object detection and recognition algorithms [12, 13]. Sev-
eral strategies have been proposed to address these challenges
by focusing on robustness against color variation. Color con-
stancy, for example, enhances the robustness of color descrip-
tors in image recognition tasks with changing illumination
conditions [14]. Further research has also experimented with
learning color-constant descriptors which maintain invariance
to color transformations [15]. While these methods offer po-
tential strategies for improving the accuracy of object recog-
nition algorithms under color variations, this study focuses
more on color robustness of object detection, in particular
Faster R-CNN, by incorporating color equivariance and in-
variance into the network. We investigate the influence of
this on the performance of the algorithm.

Group Equivariant Convolutional Networks (G-CNNs)
G-CNNs make a notable contribution in the progression of
invariant and equivariant neural networks [9]. They employ
group theory to build transformation equivariant features, re-
sulting in the fact that applying a certain transformation to
the input will result in a corresponding transformation to the
output of a convolutional layer. The use of G-CNNs has led
to significant advancements in applications such as medical
imaging and pattern recognition [16, 17]. Moreover, further
research has extended the concepts of G-CNNs to also handle
more complex transformations [18]. These studies mainly fo-
cus on spatial transformations such as rotation and flipping.
In this research, however, we focus on the use of the G-CNN
concepts for handling color transformations. By doing this,
we attempt to improve the robustness of Faster R-CNN to
color variation and imbalance in datasets.

Data Augmentation using Color Transformations Be-
sides the strategy of employing equivariance and invariance
in neural network architectures, color variations in datasets



are also commonly handled by performing data augmenta-
tion using color transformations. Data augmentation implies
enhancing the dataset by applying transformations to its orig-
inal images, thereby improving the ability of the network to
generalize [19]. Color transformations can be executed in dif-
ferent color spaces, for example the RGB and HSV spaces. In
the RGB space, techniques like brightness adjustments, color
jittering, and channel shuffling have shown to be able to ef-
fectively augment data and improve the performance of deep
learning models [20]. As for the HSV space, randomly alter-
ing the hue, saturation, and values of an image could signifi-
cantly enhance the performance in object detection tasks [21].
In contrast to making adjustments to the data on which a net-
work is performing to improve its accuracy, we conduct re-
search in altering the network to achieve robustness.

3 Color Equivariant Faster R-CNN
In this section, we describe the methodology used for creat-
ing color equivariant and invariant versions of the Faster R-
CNN object detection network. We cover the structure of the
Faster R-CNN architecture, the principles of Group Equivari-
ant Convolutional Networks (G-CNNs), and the implementa-
tion details of the introduced Faster R-CNN variants.

3.1 Faster R-CNN
Faster R-CNN is a powerful object detection model that con-
sists of several primary components. The backbone is a deep
convolutional neural network that serves as a feature extrac-
tor. The Region Proposal Network (RPN) generates region
proposals that potentially contain objects by sliding over the
convolutional feature map that is provided by the backbone
CNN. The RPN is followed by a detection network for the
classification of objects within the proposed regions and re-
fining their spatial locations [2].

3.1.1 Backbone
The backbone of Faster R-CNN is a deep convolutional net-
work that extracts features from the input image. In this work,
we use a simple CNN consisting of only three convolutional
layers and two subsampling operations as the backbone. The
mathematical operation of a convolutional layer can be de-
scribed as:

[f ⋆ ψ](x) =
∑

y∈Z2

Cl∑

c=1

fc(y)ψc(y − x). (1)

where:
• [f ⋆ ψ](x) is the convolutional operation of the function
f with the kernel ψ at position x.

• y ∈ Z2 indicates that y is iterating over a 2D integer
grid, representing spatial positions in the input.

• c is the channel index iterating from 1 to Cl, where Cl

is the total number of channels in layer l.
• fc(y) is the value of function f at position y for channel
c.

• ψc is the value of the kernel ψ for channel c.

3.1.2 Region Proposal Network (RPN)
The RPN is a fully convolutional network that generates pro-
posals for object regions. The feature map that is the output of
the backbone is used as the input for the RPN. With a sliding
window approach and a given set of anchors, the RPN pre-
dicts the objectness scores for each anchor, which is a quan-
tification of the likelihood that a certain anchor box contains
an object, and therefore not only background. Also, the RPN
predicts bounding box adjustments, which are essentially re-
finements for each anchor box.

3.1.3 Region of Interest (RoI) Pooling and Detection
Network

The region proposals that are generated by the RPN are fed
into the RoI pooling layer. This layer crops these regions
from the feature map produced by the backbone CNN. Subse-
quently, these crops are fed into the detection network, which
consists of a series of fully connected layers for classification
and further adjustment of the bounding boxes.

3.1.4 Total Loss Function
The total loss function for Faster R-CNN combines the RPN
and detection network losses and can be represented as:

L = Lrpn + Ldet (2)

By combining both losses, the process of backpropagation
ensures that the weights of both the RPN and the detection
network are updated such that the model is able to return more
accurate bounding boxes and class scores.

3.2 Group Equivariant Convolutions
Group equivariant convolutions offer a way to build neural
networks that respect specific symmetries. [9]. This concept
is particularly useful when data consists of certain symme-
tries that the network should consider.

3.2.1 Equivariance
A convolutional neural network layer Φ is said to be equivari-
ant to a symmetry groupG if the transformations in the group
act similarly on the input and the resulting feature mapping
that is the output of the layer. In mathematical terms, equiv-
ariance can be represented as:

Φ(Tgx) = T ′
gΦ(x), ∀g ∈ G, (3)

where Tg and T ′
g are the transformation operators correspond-

ing to a group action g on the input and output, respectively.
Translation Equivariance A special instance of the con-
cept of equivariance is when Tg and T ′

g are identical, such
as in the case of translation equivariance. If shifting the in-
put results in an equally shifted feature map, the equivariance
condition simplifies to:

Φ(Tgx) = TgΦ(x), ∀g ∈ G. (4)



Invariance Another special instance of equivariance is
when the transformation on the input leaves the output feature
map unchanged, implying that T ′

g is the identity mapping. In
this case, the property is known as invariance:

Φ(Tgx) = Φ(x), ∀g ∈ G. (5)

3.2.2 Extending Convolutional Operations
The standard convolution operation in a CNN layer can be
described using the correlation between feature maps f and
filters ψ, see Equation (1). By considering a group action
g instead of translation x, this definition can be extended to
G-CNNs:

[f ⋆ ψ](g) =
∑

h∈G

Cl∑

c=1

fc(h)ψc(g
−1y). (6)

In the context of G-CNNs, it is often desirable to achieve in-
variance to a specific subgroup H of the symmetry group G.
This can be accomplished by applying a max pooling oper-
ation over the cosets of the subgroup, thereby reducing the
sensitivity of the network to transformations in H . Given a
feature map f , the max pooling operation over the cosets of
H can be defined as:

fpooled(gH) = max
h∈H

f(gh), ∀g ∈ G, (7)

where gH denotes the coset of H under the action of g, and
the max pooling is performed over all elements h in the sub-
group H . This operation allows the network to focus on the
most prominent features that are consistent across the sub-
group, which improves the ability to recognize patterns that
are invariant to transformations in H .

3.2.3 Color Equivariant Convolutional Layer (CEConv)
Color equivariant convolutions provide a robust feature repre-
sentation that stays consistent under changes in hue. The hue
value is encoded by an angular scalar value within the HSV
color space. A hue shift is performed as follows:

H ′ = (H + θ) mod 360 (8)

where H and H ′ are the original and transformed hue values,
respectively, and θ is the rotation angle. When projecting the
HSV representation onto the RGB color space, the same hue
shift becomes a rotation along the [1, 1, 1] diagonal vector.

In the context of group equivariant convolutions, we can
define a color equivariant convolutional layer (CEConv) by
considering the group G = Z2 × Hn, which represents a
direct product of the 2D translations and discrete hue shifts.

CEConv Layer The CEConv layer in the input can be de-
fined as:

[f ⋆ ψ](x, k) =
∑

y∈Z2

Cl∑

c=1

fc(y) ·Hn(k)ψc(y − x), (9)

where f is the input, ψ is the filter, and Hn(k) represents the
orthogonal matrix corresponding to a hue shift by k.

Equivariance to Hue Shifts The main idea of the CEConv
layer is that it is equivariant to hue shifts. We define an oper-
ator L(t,m) as:

[L(t,m)f ](x) = Hn(k)f(x− t). (10)

where t is a translation and m is a hue shift, both acting on
input f . Using the orthogonal property of Hn, we can derive
the relationship between a hue-shifted input and a filter:

Hnf · ψ = f ·H−1
n ψ. (11)

The above relationship leads to the equivariance property:

[[L(t,m)f ] ⋆ ψ](x, k) =
∑

y∈Z2

f(y) ·Hn(k −m)

· ψ(y − (x− t)), (12)

where we apply the hue shift and translation to both the input
and the filter. By rearranging, we have:

[[L(t,m)f ] ⋆ ψ](x, k) =
∑

y∈Z2

f(y) ·Hn(k −m)

· ψ(y − x+ t)

= [L′(t,m)[f ⋆ ψ]](x, k). (13)

In this way, the CEConv layer ensures that the transforma-
tions in the color space (hue shifts) are reflected in the result-
ing feature maps, preserving the relationships between differ-
ent colors in the images.

3.3 Implementation of CEConv Layers in Faster
R-CNN

In our approach, the CEConv layers are implemented in a
way that is similar to Group Convolution (GConv) [9] by ex-
tending the feature map tensor with an additional dimension
to account for the color transformations. This allows for the
incorporation of spatial and hue transformations within the
convolutional layers of the Faster R-CNN architecture. We
describe the main components of this implementation, as well
as the implemented versions of Faster R-CNN that are exper-
imented with.



3.3.1 Extended Feature Map Tensor
The feature map tensor X is extended with an extra dimen-
sion Gl of size [Cl, Gl, H,W ], where Cl represents the num-
ber of channels, Gl denotes the transformations that leave the
origin invariant (including hue shifts), and H and W repre-
sent the height and width of the feature map at layer l. The
dimension corresponding to the batch size has been excluded.

3.3.2 GConv Filter
A GConv filter F̃ is of size [Cl+1, Gl+1, Cl, Gl, k, k], where
the dimensions correspond to the channels and transforma-
tions of the next layer and the current layer, as well as the
spatial dimensions of the filter. We define the GConv in terms
of tensor multiplication operations:

X l+1
c′,g′,:,: =

Cl∑

c=1

Gl∑

g=1

X l
c,g,:,:F̃

l
c′,g′,c,g,:,:. (14)

This operation essentially captures the relationship between
spatial structures and color transformations in the feature map
and the filter, resulting in a new feature map that preserves the
spatial and color relationships.

3.3.3 Implemented Versions of Faster R-CNN
We experiment with several different versions of the PyTorch
implementation of the Faster R-CNN model1, all using a sim-
ple CNN with three convolutional layers and two subsam-
pling operations as the backbone:

• Standard Faster R-CNN (ST): This version is the stan-
dard implementation of the Faster R-CNN model with
the simple CNN integrated as the backbone.

• Grayscale Faster R-CNN (GS): For this version, the
standard implementation of Faster R-CNN is used as the
architecture, exactly as for the ST version. However, the
input images are converted to grayscale images before
they are fed to the model. This eliminates the ability of
the model to use color information.

• Faster R-CNN with a Color Equivariant Backbone
(CEB): In this version, the Faster R-CNN architecture is
modified such that the simple backbone is color equiv-
ariant. The convolutional layers of the backbone are re-
placed by CEConv layers, max pooling subsampling op-
erations are replaced by group max pooling subsampling
operations, and a 3D convolutional layer serves as a fully
connected layer for each pixel, eliminating the group di-
mension.

• Faster R-CNN with a Color Invariant Backbone
(CIB): This version is similar to the CEB version, but
the last layer of the backbone is a group coset max pool-
ing that eliminates the group dimension and provides the
color invariance property.

• Fully Color Equivariant Faster R-CNN (CE): This
version features a fully color equivariant architecture.
The backbone is adapted with CEConv layers and group

1https://pytorch.org/vision/main/models/faster rcnn.html

max pooling subsampling operations. There is no last
pooling layer in the backbone, so the output feature map
retains the group dimension. The convolutional layer in
the RPN is replaced by a CEConv layer which is fol-
lowed by a 3D convolutional layer.

• Fully Color Invariant Faster R-CNN (CI): This ver-
sion features a fully color invariant architecture and is
similar to the CE version. However, a group coset max
pooling follows the CEConv layer in the RPN, providing
the invariance property.

All CEConv layers that are used to replace the standard con-
volutions have 3 rotations of 120◦, implying that the extra di-
mension of the feature map tensors that represents the trans-
formation group is of size 3. This also implies that there is
an increase in the total amount of parameters of the modi-
fied versions. This is accounted for by lowering the number
of hidden channels within the backbone CNN. We perform
an ablation experiment with the amount of parameters in the
appendix.

The replacement of the convolutional layers in the modi-
fied Faster R-CNN versions enables the models to share shape
information across different colors. This allows the models to
generalize shape features over different colors, which can for
example be useful for recognizing an object that appears in
different colors but maintains the same shape.

4 Experiments
In this section, we conduct experiments with the implemented
versions of Faster R-CNN. We aim to compare the levels of
color equivariance, invariance, and robustness by experiment-
ing with different kinds of toy datasets. The goal of these ex-
periments is to gain a better understanding of the influence
of the modifications in the Faster R-CNN network on the de-
tection results. Furthermore, we conduct an experiment on a
2D chess board dataset that contains more complex color and
shape variations.

All experimented models are trained for 200 epochs using
the Stochastic Gradient Descent (SGD) optimizer [22] with
a learning rate of 0.01, a momentum of 0.9, and a weight
decay of 0.0005. Each model is trained 5 times with different
random initializations, and the results show the average of
the highest measured Mean Average Precision (mAP) [23]
scores.

Experiment 1: Color Equivariance In the first experi-
ment, we compare the ability of the Faster R-CNN versions
to distinguish objects that differ in color. For this, we gener-
ate a variant of the MNIST dataset [11] that contains images
of size 64 x 64 with a randomly scaled digit on a random po-
sition within the image frame. The digit is either red, green,
or blue, and each possible combination of the digits and the
colors is assigned a class label, implying that there are 30
classes in total. Each image has a gray background that con-
tains noise. The train set consists of 1514 images. In this train
set, we introduce a class imbalance by drawing the number of
samples per class from a power law distribution. This results
in different class frequencies. On the other hand, the test set
consists of 960 images where each class contains 32 images.



Figure 2: The Mean Average Precision (mAP) results of Experiment 1. The top figure shows the mAP measurements for an Intersection over
Union (IoU) of 0.5 and the figure below shows the mAP measurements for an IoU of 0.75. On the horizontal axis, all 30 classes are listed
along with the corresponding amount of samples (drawn from a power law distribution) contained in the training dataset. G3 denotes a green
3, B0 denotes a blue 0, R5 denotes a red 5, etc. The results show that the replacement of the convolutional layers with CEConv layers has a
positive effect on the performance, especially for the classes that have lower frequencies in the train set.

By using these datasets for training and testing, we investi-
gate the influence of replacing the convolutional layers of the
Faster R-CNN architecture on the efficiency in sharing shape
information across different colors. The models are trained
with a batch size of 8.

The results, presented in Figure 2, show that the replace-
ment of the convolutional layers has a positive effect on
the performance. Especially for the classes that have lower
frequencies in the train set, the performances of the modi-
fied models are significantly higher than that of the standard
model. Furthermore, the Color Equivariant Backbone (CEB)
and Fully Color Equivariant (CE) versions perform slightly
better than the other versions on the classes with extremely
low amounts of samples. This indicates that the shape infor-
mation across different colors is maintained in the output of
these architectures, showcasing their color equivariance prop-
erty.

Experiment 2: Color Invariance Next, we perform an ex-
periment on a dataset that is similar to the version of the
MNIST dataset from Experiment 1 to validate the color in-
variance properties of the modified Faster R-CNN architec-
tures. Exactly as in the original MNIST dataset, the data that
is used in this experiment is now comprised of 10 classes,
each corresponding to a digit. Several combinations of
grayscale colors and the colors red, green, and blue are used
for both the digits and the background. The train set con-
sists of 1152 images with each color combination contain-
ing 64 images, and the test set consists of 576 images, each
color combination having 32 images. Since the hue differ-
ences between the colors red, green, and blue match the 120◦
RGB rotations of the CEConv layers that are integrated into
the modified architectures, we expect a significant increase
in performance relative to the standard architecture. In this
experiment, a batch size of 16 is used.



Figure 3: The Mean Average Precision results of Experiment 3. The left figure shows the mAP measurements for an IoU of 0.5 and the
right figure shows the mAP measurements for an IoU of 0.75. The standard Faster R-CNN (ST and GS) models show a significantly stronger
decrease in efficiency compared to the architectures with the CEConv layers (CIB, CEB, CI, and CE).

Figure 4: The Mean Average Precision results of Experiment 4. The left figure shows the mAP measurements for an IoU of 0.5 and the right
figure shows the mAP measurements for an IoU of 0.75. The modified versions (CIB, CEB, CI, and CE) achieve overall better performance
than the standard version (ST and GS) across all tested dataset sizes.

model mAP 0.5 mAP 0.75

ST 69.1± 4.2 52.0± 4.2
GS 75.0± 5.5 57.6± 4.7
CIB 93.5 ± 0.5 89.6 ± 1.1
CEB 92.8± 0.3 89.4± 1.2
CI 93.1± 0.4 88.5± 0.7
CE 92.2± 0.4 88.1± 1.8

Table 1: The Mean Average Precision results of Experiment 2. The
results show that the output of the equivariant architectures is robust
to the difference of the colors red, green, and blue.

Table 1 shows that the versions of Faster R-CNN with the
CEConv layers are indeed more efficient. As we would ex-
pect, the color invariant variants (CIB and CI) achieve the
overall highest Mean Average Precision scores. This points
to the fact that the output of the architectures is invariant to
the difference between the colors red, green, and blue. How-
ever, the color equivariant versions (CEB and CE) also per-
form surprisingly well, indicating that even when the output is

transformed the robustness to the color variations maintains.

Experiment 3: Color Robustness For the third experi-
ment, we evaluate the models on a dataset in which a color
bias is introduced to compare the robustness to color varia-
tion. We generate multiple MNIST variants with each vari-
ant containing digits of which the colors provide different
amounts of representativeness to their digit. More specifi-
cally, each of the 10 classes is assigned a specific hue value
that is defined in degrees. Multiple datasets are created that
randomly shift the hue values of the colors by a specific
amount, derived from a normal distribution. The normal dis-
tributions corresponding to the different datasets have stan-
dard deviations ranging from 0 to 106. In the dataset where
the standard deviation is 0, the color of the digits perfectly
represents their class. The higher the standard deviation, the
less useful the color of the digits is for their classification. The
train sets contain 1024 images and the test sets 512. Again,
the models are trained with a batch size of 16.

When comparing the performances of the architectures, vi-
sualized in Figure 3, we can see that the standard Faster R-
CNN (ST and GS) models show a significantly stronger de-



crease in efficiency compared to the architectures with the
CEConv layers. This showcases the increase in robustness to
color variation that is provided by the CEConv layers. Be-
sides, the color invariant architectures (CIB and CI) perform
slightly better than the color equivariant architectures (CEB
and CE). This behavior is expected since the color infor-
mation is not reliable for determining the class in this case.
Hence, these results demonstrate that color invariance can be
beneficial in scenarios where color is not a reliable feature.

Experiment 4: 2D Chess Boards The fourth experiment
aims to investigate whether the replacement of the convo-
lutional layers in the simple Faster R-CNN architecture is
also beneficial when dealing with a dataset that contains more
complex variations of shapes and colors. For this, we experi-
ment with a dataset consisting of images of 2D chess boards2.
We take random samples of the entire dataset that are rela-
tively small and compare the implemented versions of Faster
R-CNN on each of them. All trained models are tested on a
test set consisting of 256 images. Furthermore, all train and
test images are modified in such a way that each image only
contains a single chess piece. The models are trained using a
batch size of 8.

The results of this experiment are shown in Figure 4, where
it is visible that the modified versions (CIB, CEB, CI, and CE)
achieve overall better performance than the standard version
(ST and GS) across all tested dataset sizes. This shows that
even when dealing with more complex variations of shapes
and colors, the replacement of the convolutional layers can
have an interestingly positive influence on the performance
of Faster R-CNN.

Experiment 5: PASCAL VOC2012 In the last experiment
of this study, we use a small sample of the PASCAL Visual
Object Classes 2012 (VOC2012) dataset [24, 25] to compare
the models on more real-world images. This dataset is widely
used for object detection, segmentation, and image classifica-
tion. It contains images from 20 different object classes such
as various animals, vehicles, and indoor items. The height
and width dimensions of the images vary between 100 and
500 pixels, but we resize all of them to 128 x 128. The train
dataset used in this experiment consists of 2048 images and
the test set contains 512 images. A batch size of 8 is used.
The results of this experiment are shown in Table 2.

model mAP 0.5 mAP 0.75

ST 16.1± 3.9 6.0± 3.4
GS 14.8± 2.8 5.8± 2.8
CIB 17.9 ± 2.7 7.8 ± 2.6
CEB 17.3± 2.3 7.4± 2.1
CI 17.8± 2.7 7.7± 2.7
CE 16.2± 3.2 6.1± 2.9

Table 2: The Mean Average Precision results of Experiment 5. The
achieved performances are relatively low, but we can still see that the
modified versions (CIB, CEB, CI, and CE) perform slightly better
than the ST and GS versions.

2https://www.kaggle.com/datasets/koryakinp/chess-positions

Although the achieved performances are relatively low, we
can still see that the modified versions (CIB, CEB, CI, and
CE) perform slightly better than the ST and GS versions.
The low mAP scores follow most likely from the fact that
the backbone is relatively small and a low amount of small-
sized images is used as training data. Because of these low
performances, we cannot make reliable conclusions from this
experiment about the translation of the color robustness im-
provements to real-world data. Despite all of this, the experi-
ment does show that it will be interesting to compare color
equivariant versions of Faster R-CNN with more complex
backbones on real-world datasets.

5 Conclusion
To conclude, this work presents a comprehensive investiga-
tion of the integration of color equivariance and invariance
into the Faster R-CNN object detection framework. With the
conducted experiments, we demonstrate that the replacement
of the standard convolutional layers in Faster R-CNN with
color equivariant and invariant operations leads to significant
improvements in performance when dealing with datasets
containing diverse color distributions. The color equivariant
and invariant models (CEB, CE, CIB, and CI) showed im-
proved performance in comparison to the standard Faster R-
CNN version on data with color variations and imbalances.
These results reaffirm that color variations and their infer-
ences play an important role in the field of object detection,
which highlights the significance of the introduction of the
color equivariance and invariance properties.
Limitations and Future Work Although the results of the
toy experiments show a significant improvement in perfor-
mance when replacing the standard convolutional layers in
Faster R-CNN with color equivariant layers, this study con-
ducts only a limited amount of research on real-world data.
This is because of the use of a simple CNN for the back-
bone, as well as the long duration of the training processes
combined with time constraints. However, this study does
show that it would be interesting to conduct further research
on the influence of the modifications when using more com-
plex, state-of-the-art backbone CNNs for Faster R-CNN. Fur-
thermore, this research performs an ablation study (see the
appendix) that consists of only a single toy experiment in
which the influence of adding more parameters to the CIB and
CEB models on their learning curve is measured. However, a
more extensive ablation study that also includes experiment-
ing with the amount of parameters by varying the amount of
rotations of the CEConv layers, which is fixed to 3 in this
research, would provide more insight into this.
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3
Methods

This chapter gives comprehensive technical explanations of the methods that are used in the scientific
article from Chapter 2.

3.1. Computer Vision by Deep Learning

Computer vision is about teaching machines to interpret visual data, similar to how humans are able to
perceive and understand images and videos [5]. Various techniques that range from traditional image
processing techniques to more advanced machine learning algorithms are being used in the field of
computer vision. In recent years, however, deep learning has revolutionized the approach to performing
computer vision tasks.

Deep learning is a specific subset within the area of machine learning [6]. It uses algorithms, known as
neural networks, that are comprised of layers that each perform a mathematical operation. The "deep"
in deep learning refers to the high number of layers in these architectures. Traditional neural networks
contain only a couple of layers, while deep networks can have hundreds. Deep learning models learn
directly from data and there is no need for providing them with instructions. In general, the more
training data is given to these networks, the higher their performance on computer vision tasks.

A neural network learns by updating the learnable weights of each of its mathematical operations in
such a way that the loss in for example a computer vision task is minimized. This loss can be defined as
a quantification of the difference between the predictions of the network and the actual ground truth
targets. The exact updates are calculated by during the training process, in which the network is shown
a large amount of examples. Because this is a thesis in the field of computer vision, these examples
are represented by images in this work. Typically, the more example data that is used for training a
network, the better the network is able to perform the task.

For the calculation of the weight updates, a loss function is used. This loss function can for example be
the Mean Squared Error (MSE) or the Cross-Entropy Loss, and it essentially quantifies the error of the
neural network that is being trained. By performing backpropagation, the gradients of the loss function
with respect to each weight are calculated such that each weight can be updated accordingly.

3.2. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a kind of deep learning models that are designed for tasks
with grid-like data, such as images [7]. Essentially, an image is a grid of pixels. CNNs can learn patterns
within the structures of these images, from simpler patterns such as edges and textures in the initial
layers of the networks, to more complex patterns in the deeper layers. This layered approach results in

15
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the fact that a CNN is able to automatically learn the most important features in an image, without
having to provide the network with instructions, making them perform accurately in image recognition
tasks such as object detection.

3.2.1. Convolutions in CNNs
An important aspect of CNNs is the convolution operation, which combines two functions together [8].
In the context of CNNs, these functions are an input image or feature map, and a kernel that serves as a
filter. A kernel is a matrix, usually of smaller height and width, and its depth corresponds to the number
of channels of the input, which is 3 for an RGB image. The convolution operation can be described as
an element-wise multiplication of the values of the kernel with the image pixel values, followed by a
summation of the resulting values. This operation is performed for every spatial position of the input,
resulting in an output feature map that can have a different amount of channels than the input image. It
can be expressed with the following formula:

[ 𝑓 ★𝜓](𝑥) =
∑
𝑦∈Z2

𝐶 𝑙∑
𝑐=1

𝑓𝑐(𝑦)𝜓𝑐(𝑦 − 𝑥). (3.1)

Here is a breakdown of the components of the formula:

• [ 𝑓 ★𝜓](𝑥) denotes the resulting feature map of the convolution of the function 𝑓 with the kernel
𝜓 at a specific spatial position 𝑥. For the first layer of a CNN, 𝑓 is an input image and 𝑥 is a pixel
from the image in the context of this thesis. The result [ 𝑓 ★𝜓](𝑥) can be seen as a feature map that
captures specific patterns from the original image and can be passed as the input function for the
next layer within the network.

• The term 𝑦 ∈ Z2 means that the operation is performed over a 2D grid. In the context of images,
this represents the fact that the operation iterates over all pixel positions in a two-dimensional
space, where 𝑦 stands for a particular position.

• 𝑐 denotes an index for channels. In a typical RGB image, there are 3 channels, namely for the
colors red, green, and blue. However, as images are processed through a CNN, the feature maps
that come out of its layers can have many more channels. The value 𝐶 𝑙 denotes the total number
of channels within the feature map of layer 𝑙.

• 𝑓𝑐(𝑦) represents the value of the input function 𝑓 at position 𝑦 for channel 𝑐.
• 𝜓𝑐 is the convolutional kernel for channel 𝑐. In a CNN, these kernels are the learnable parameters,

meaning that during the training process, these values are adjusted in such a way that the
performance of the whole convolutional neural network is maximized for the specific computer
vision task that it is used for.

Essentially, the convolution operation involves sliding the kernel over the image and computing the
sum of element-wise products at each pixel, see Figure 3.1.

Figure 3.1: A schematic visualization of a convolution operation [9]. Using a sliding window approach, the values for each spatial
location of the resulting feature map are derived by calculating a sum of products of the values of the input and kernel functions.
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3.2.2. Subsampling by Pooling
Subsampling has as its main purpose that it reduces the spatial dimensions of the feature maps,
which also reduces the computational complexity so that the network can focus on the most important
features within the feature maps. Two of the most commonly used strategies for subsampling are max
pooling and average pooling. In max pooling, a window slides over the input feature map, similar to a
convolution operation. For each position of the window on the feature map, the maximum value within
the window is selected for the resulting pooled output. With average pooling, an average of the values
within the window is taken instead of the maximum value. While average pooling is sometimes utilized,
max pooling is more commonly used since it retains the most important features, often leading to better
efficiency. The max pooling and average pooling operations can be mathematically expressed as:

𝑝max(𝑥) = max
𝑦∈𝑊𝑥

𝑓𝑐(𝑦), (3.2)

𝑝avg(𝑥) =
1

|𝑊𝑥 |
∑
𝑦∈𝑊𝑥

𝑓𝑐(𝑦), (3.3)

where:

• 𝑝max(𝑥) is the resulting pooled value at spatial position 𝑥 after applying max pooling.
• 𝑝avg(𝑥) is the resulting pooled value at spatial position 𝑥 after applying average pooling.
• 𝑊𝑥 denotes the set of spatial positions in the pooling window when it is centered at 𝑥.
• 𝑓𝑐(𝑦) represents the value of the input feature map 𝑓 at spatial position 𝑦 for channel 𝑐.

Both operations are visualized in Figure 3.2. The height and width dimensions are halved since the size
of the pooling window is 2 x 2 for both pooling operations.

Figure 3.2: A schematic visualization of the max pooling and average pooling operations [10]. The height and width dimensions
are halved since the size of the pooling window is 2 x 2 for both operations.
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3.2.3. A Visualization of a CNN
Figure 3.3 shows a schematic example of a simple CNN that contains only three convolutional layers
and two max pooling layers. The max pooling layers serve as subsampling layers by using a 2 x 2
pooling window to halve the height and width dimensions of their input feature maps. Since there are
two max pooling layers, the output feature map has height and width dimensions that are only 25%
the size of the height and width dimensions of the original input image. The figure also shows how
the convolutional layers are able to change the number of channels within the feature map. This exact
example network is used in this thesis as the backbone CNN for the Faster R-CNN object detection
model, as will be explained in the next section.

Figure 3.3: A schematic example of a simple CNN that contains only three convolutional layers and two max pooling layers. The
blue blocks represent the output feature maps of the convolutional layers, and the red blocks those of the max pooling layers. For
each layer, the amount of channels of its output feature map is also specified. This exact example network is used in this thesis as

the backbone CNN for the Faster R-CNN object detection model.

3.3. Object Detection with Faster R-CNN

Object detection is a computer vision task that tries to locate objects within an image, and also to
identify them. Faster R-CNN (Region-based Convolutional Neural Network) is one of the most notable
examples of object detection architectures [3]. It has a backbone CNN that produces feature maps that
are processed by the Region Proposal Network (RPN) to predict object bounding boxes, and by the
detection network to classify the objects within those bounding boxes. Figure 3.4 visualizes an overview
of the Faster R-CNN architecture.

3.3.1. Backbone
The backbone CNN extracts features from the input image, resulting in a feature map. The CNN
architecture that is depicted in 3.3 is the exact architecture that is used for the backbone in the models
that are studied in this thesis. It is composed of three convolutional layers and two max pooling layers
that each have a 2 x 2 pooling window. This results in the fact that the output feature map of this
backbone CNN has height and width dimensions that are 25% the height and width dimensions of the
original input image. This feature map is then processed by the Region Proposal Network (RPN) and
the classification network.
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Figure 3.4: An overview of the Faster R-CNN architecture. The input image is processed by the backbone network to produce a
feature map that is used by the RPN to propose object regions. These proposals are classified and refined by the final layers of the

network [3].

3.3.2. Region Proposal Network (RPN)
The RPN is a fully convolutional network that generates proposals for object regions. The feature map
that is the output of the backbone is used as the input for the RPN. With a sliding window approach and
a given set of anchors, the RPN predicts the objectness scores for each anchor, which is a quantification
of the likelihood that a certain anchor box contains an object, and therefore not only background. Also,
the RPN predicts bounding box adjustments, which are essentially refinements for each anchor box
coordinates to more precisely fit around the targeted object in the image. The loss function for RPN
consists of two parts:

• Objectness Loss (ℒobj): This loss measures the differences between the predicted objectness scores
(𝑝) and the ground-truth labels (𝑝∗). We use the logistic loss [11], which is the most common
approach for computing this metric.

• Regression Loss (ℒreg): This loss measures the difference between the predicted bounding box
adjustments (𝑡) and the ground-truth adjustments (𝑡∗). This metric is typically computed using
the smooth L1 loss [12], which we also utilize in our approach.

The overall loss function for the RPN is:

ℒrpn({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁obj

∑
𝑖

ℒobj(𝑝𝑖 , 𝑝∗𝑖 )

+ 𝜆
1

𝑁reg

∑
𝑖

𝑝∗𝑖ℒreg(𝑡𝑖 , 𝑡∗𝑖 ) (3.4)

where 𝑖 is the index of an anchor box, 𝑝𝑖 and 𝑡𝑖 are the predicted objectness score and bounding box
adjustments, and 𝑝∗

𝑖
and 𝑡∗

𝑖
are the corresponding ground-truth values. 𝜆 is a weighting factor that

balances the contributions of both losses to the total RPN loss.



3.4. Group Equivariant Convolutional Neural Networks (G-CNNs) 20

3.3.3. Region of Interest (RoI) Pooling and Detection Network
The region proposals that are generated by the RPN are fed into the RoI pooling layer. This layer crops
these regions from the feature map produced by the backbone CNN. Subsequently, these crops are fed
into the detection network, which consists of a series of fully connected layers for classification and
further adjustment of the bounding boxes. The loss function for the detection network consists of:

• Classification Loss (ℒcls): This part of the loss measures the discrepancy between the predicted
class scores (𝑐) and the ground-truth class labels (𝑐∗). This metric is computed using softmax loss.

• Bounding Box Loss (ℒbox): This metric compares the predicted bounding box coordinates (𝑏) to
the ground-truth coordinates (𝑏∗). Similar to the RPN, we compute this metric using the smooth
L1 loss.

The overall loss for the detection network is calculated as follows:

ℒdet({𝑐𝑖}, {𝑏𝑖}) =
1

𝑁cls

∑
𝑖

ℒcls(𝑐𝑖 , 𝑐∗𝑖 )

+ 𝛽
1

𝑁box

∑
𝑖

𝑐∗𝑖ℒbox(𝑏𝑖 , 𝑏∗𝑖 ) (3.5)

where 𝑖 is the index of a bounding box prediction, 𝑐𝑘 and 𝑏𝑘 are the predicted class score and bounding
box coordinates, and 𝑐∗

𝑘
and 𝑏∗

𝑘
are the corresponding ground-truth values. 𝛽 is a weighting factor that

balances the contributions of both losses to the total detection network loss.

3.3.4. Total Loss Function
The total loss function for Faster R-CNN combines the RPN and detection network losses and can be
represented as:

ℒ = ℒrpn + ℒdet (3.6)

By combining both losses, the process of backpropagation ensures that the weights of both the RPN
and the detection network are updated such that the model is able to return more accurate bounding
boxes and class scores. It is important to understand the structure of the Faster R-CNN object detection
architecture, as well as its loss function, to be able to reason about certain results that follow from the
experiments of this work.

3.4. Group Equivariant Convolutional Neural Networks (G-CNNs)

Group Equivariant Convolutional Neural Networks (G-CNNs) are CNNs that are modified in such a
way that they take specific symmetries within the input data into consideration [4]. This can make them
more robust to specific variations or imbalances in datasets. This section provides a comprehensive
description of how G-CNNs use the theory of symmetry groups to achieve equivariance to certain
transformations in the data. The concept of G-CNNs is also applied in this research by designing
versions of the Faster R-CNN object detection model that are equivariant to color transformations that
change the hue values of an image.

3.4.1. Symmetry Groups
A symmetry of an object is a transformation that is applied on the object without changing it, for example
rotating the object by 90◦. If two symmetry transformations have the property that combining both
transformations results in another symmetry transformation, and if the inverse of both transformations
also results in symmetries, the two transformations are said to be in the same symmetry group. One
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example of a symmetry group is the group 𝑝4, see Figure 3.5. This group consists of all possible
combinations of spatial translations and rotations by 90◦ around any spatial center of rotation within a
feature map. It can be parameterized by three integers 𝑟, 𝑢, and 𝑣:

𝑔(𝑟, 𝑢, 𝑣) =

cos

(
𝑟𝜋
2
)

− sin
(
𝑟𝜋
2
)

𝑢

sin
(
𝑟𝜋
2
)

cos
(
𝑟𝜋
2
)

𝑣
0 0 1

 (3.7)

where:

• 𝑟 captures the rotational symmetries of the square. 𝑟 can be either 0, 1, 2, or 3, specifying no
rotation, 90◦ rotation, 180◦ rotation, and 270◦ rotation, respectively. The rotational transformation
is captured in the matrix by the cos

(
𝑟𝜋
2
)

and sin
(
𝑟𝜋
2
)

terms.
• 𝑢 and 𝑣 encode the translational symmetries on a discrete plane. The parameters take values

in the integer lattice Z2, representing translations in the 𝑥 and 𝑦 directions, respectively. In the
matrix representation, 𝑢 and 𝑣 appear as translational components.

Figure 3.5: A 𝑝4 feature map and its rotation by 𝑟 [4].

3.4.2. Equivariance and Invariance
Equivariance and invariance are two concepts that can be integrated into deep learning networks with
the goal of making them consider symmetry groups. A convolutional neural network layer Φ is said to
be equivariant to a symmetry group 𝐺 if the transformations in the group act similarly on the input and
the resulting feature mapping that is the output of the layer. In mathematical terms, equivariance can
be represented as:

Φ(𝑇𝑔𝑥) = 𝑇′
𝑔Φ(𝑥), ∀𝑔 ∈ 𝐺, (3.8)

where 𝑇𝑔 and 𝑇′
𝑔 are the transformation operators corresponding to a group action 𝑔 on the input and

feature space, respectively.

A special instance of the concept of equivariance is when 𝑇𝑔 and 𝑇′
𝑔 are identical, such as in the case of

translation equivariance. If shifting the input results in an equally shifted feature map, the equivariance
condition simplifies to:

Φ(𝑇𝑔𝑥) = 𝑇𝑔Φ(𝑥), ∀𝑔 ∈ 𝐺. (3.9)



3.4. Group Equivariant Convolutional Neural Networks (G-CNNs) 22

Another special instance of equivariance is when the transformation on the input leaves the output
feature map unchanged, implying that 𝑇′

𝑔 is the identity mapping. In this case, the property is known as
invariance:

Φ(𝑇𝑔𝑥) = Φ(𝑥), ∀𝑔 ∈ 𝐺. (3.10)

3.4.3. Integrating Color Equivariance into Faster R-CNN
In this thesis, several versions of the Faster R-CNN object detection architecture with the simple backbone
from Figure 3.3 are implemented in which color equivariance is integrated. This work defines color
equivariance as equivariance to hue shifts, hue being a component of the Hue-Saturation-Value (HSV)
color space which provides an alternative representation of colors to the standard Red-Green-Blue
(RGB) color space. The RGB space represents colors as combinations of the colors red, green, and blue,
and the HSV space describes colors in terms of tint, shade, and tone. The HSV color space consists of
three components:

• Hue (H): Representing the type of color, such as red or green, and is measured in degrees from 0◦
to 360◦.

• Saturation (S): Specifying the vibrancy of the color, ranging from 0 (gray) to 1 (pure color).
• Value (V): Denoting the brightness of the color, with 0 being black and 1 being the full brightness

of the color.

A color in the RGB space can be converted to HSV using the following formulas:

𝐻 =


60(𝐺−𝐵)/(𝑉−𝑚)

𝑚𝑜𝑑 6 if 𝑉 = 𝑅
60(𝐵−𝑅)/(𝑉−𝑚)+2

𝑚𝑜𝑑 6 if 𝑉 = 𝐺
60(𝑅−𝐺)/(𝑉−𝑚)+4

𝑚𝑜𝑑 6 if 𝑉 = 𝐵

(3.11)

𝑆 =

{
0 if 𝑉 = 0
𝑉−𝑚
𝑉 otherwise

(3.12)

𝑉 = max(𝑅, 𝐺, 𝐵) (3.13)

where 𝑚 = min(𝑅, 𝐺, 𝐵). When projecting the HSV representation onto the RGB color space, the same
hue shift becomes a rotation along the [1, 1, 1] diagonal vector. In this thesis, we define the symmetry
group 𝐻𝑛 of multiples of 360/𝑛-degree rotations about the [1, 1, 1] diagonal vector in 𝑅3 space. We can
parameterize 𝐻 in terms of integers 𝑘, 𝑛 as:

𝐻𝑛(𝑘) =


cos

(
2𝑘𝜋
𝑛

)
+ 𝑎 𝑎 − 𝑏 𝑎 + 𝑏

𝑎 + 𝑏 cos
(

2𝑘𝜋
𝑛

)
+ 𝑎 𝑎 − 𝑏

𝑎 − 𝑏 𝑎 + 𝑏 cos
(

2𝑘𝜋
𝑛

)
+ 𝑎


(3.14)

with 𝑛 the total number of discrete rotations in the group, 𝑘 the rotation,

𝑎 =
1
3 − 1

3 cos
(
2𝑘𝜋
𝑛

)
(3.15)

and

𝑏 =

√
1
3 sin

(
2𝑘𝜋
𝑛

)
. (3.16)
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A group action in this group is a matrix multiplication that transforms RGB pixel values. In the color
equivariant versions of Faster R-CNN that are implemented in this research, the convolutional layers
are replaced by color equivariant convolutional layers that are equivariant to this transformation group.
Figure 3.6 shows examples of hue shifts on images to which the modified Faster R-CNN versions are
equivariant.

(a) (b)

Figure 3.6: Examples of hue shifts on images with 𝑛 = 3 (a) and 𝑛 = 4 (b).





4
Datasets

The experiments of this thesis, described in the scientific article in Chapter 2, are conducted on several
kinds of image datasets. This chapter describes the details of these datasets and how they are modified
to generate different versions. The images of the datasets are also visualized in this chapter.

4.1. MNIST Variants

The MNIST (Modified National Institute of Standards and Technology) dataset [13] is a large database of
images containing handwritten digits, see Figure 4.1. It is commonly used for training image processing
algorithms. It consists of 60,000 train images and 10,000 test images, all distributed over 10 classes. Each
image in the dataset is a 28 x 28 pixel grayscale image of a single digit labeled as a number from 0 to 9.
Because of the small size and simplicity of the images, the MNIST dataset is widely used for evaluating
and comparing model architectures in computer vision.

Figure 4.1: Example images from the MNIST dataset with the corresponding class labels at the top of the figure [14].

25
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Experiment 1
For the first experiment of this work, a variant of the MNIST dataset is generated that contains images
of size 64 x 64 with a randomly scaled digit on a random position within the image frame, see Figure 4.2.
The scale factor is drawn from a uniform distribution and is between 0.5 and 2.0. The random position
is chosen in such a way that the full MNIST image is contained within the resulting image frame. The
digit is colored either red, green, or blue, and each possible combination of the digits and the colors is
assigned a class label, implying that there are 30 classes in total. Each image has a gray background
with an intensity of 0.33, and noise is added with a standard deviation of 0.1. The train set consists of
1514 images. In this train set, a class imbalance is introduced by drawing the number of samples per
class from a power law distribution. This results in different class frequencies, see Table 4.1. On the
other hand, the test set consists of 960 images where each class contains 32 images.

Figure 4.2: Example images from the MNIST variant that is used in Experiment 1. For each image, the corresponding bounding
box and class label are also visualized. G9 denotes a green 9, B1 denotes a blue 1, R2 denotes a red 2, etc.

G3 G7 B1 B7 B2 R7 B4 B9 G1 G9 R2 R8 G6 G0 B3 B0 R9 R3 R1 R5 G4 G5 G2 R6 R4 B6 B5 G8 B8 R0

128 118 112 107 98 98 92 89 85 76 72 69 65 57 55 36 24 24 24 24 13 12 10 9 8 3 3 1 1 1

Table 4.1: Class labels and corresponding amounts of samples of the train dataset used in Experiment 1. G9 denotes a green 9, B1
denotes a blue 1, R2 denotes a red 2, etc.

Experiment 2
The second experiment is conducted with a generated variant of MNIST where the images are 64 x 64
pixels and the digits are randomly scaled and positioned in a similar way as in Experiment 1. However,
the 10 class labels of the original MNIST dataset are maintained. 18 different combinations of grayscale
colors and the colors red, green, and blue are used for both the digits and the background, see Figure
4.3. The backgrounds do not contain any noise. The train set consists of 1152 images with each color
combination having 64 images, and the test set consists of 576 images with each color combination
having 32 images.
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Figure 4.3: Example images from the MNIST variant that is used in Experiment 2. For each of the 18 color combinations for the
digits and backgrounds, a single example image is shown. In this figure, a black outline is added to the images with a white

background for visualization purposes. However, the dataset does not have any outlines around images.

Experiment 3
The third experiment is the last experiment of this work that is conducted on MNIST digits. Similarly
to Experiment 1, the images are of size 64 x 64 and the digits are randomly scaled and positioned. In
this experiment, however, the 10 class labels of the original MNIST dataset are maintained. 7 variants
are generated with each variant containing digits of which the colors provide different amounts of
representativeness to their digit. More specifically, each of the 10 classes is assigned a specific hue
value that is defined in degrees. Each variant randomly shifts the hue values of the colors by a specific
amount, derived from a normal distribution. The normal distributions corresponding to the 7 datasets
have the standard deviations 0, 12, 24, 36, 48, 60, and 106. In the dataset where the standard deviation is
0, the color of the digits perfectly represents their class. The higher the standard deviation, the less
useful the color of the digits is for their classification, see Figure 4.4. Again, the backgrounds of the
images are grayscale, now with an intensity of 0.5, and noisy, with a standard deviation of 0.1. The train
sets contain 1024 images and the test sets 512.

(a) (b)

Figure 4.4: Example images from two MNIST variants that are used in Experiment 3. (a) shows the variant where the standard
deviation of the hue shifts is 0, and (b) shows the variant where it is 32.
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4.2. 2D Chess Boards

For Experiment 4 of this thesis, a dataset consisting of images of 2D chess boards1 is utilized. The 80,000
train and 20,000 test images of this dataset are of size 400 x 400 and contain randomly generated 2D
chess positions. The chess pieces represent the objects that need to be detected and are labeled one of 6
possibilities; pawn, bishop, knight, rook, queen, or king. 28 different styles of chess boards and 32 styles
of chess pieces were used. The number of chess pieces in the images varies between 5 and 15, but in this
study, the amount of pieces is fixed to a single piece per image. This is done by modifying the original
images by replacing random pieces with random empty squares.

Experiment 4
In this experiment, the 2D chess board images are modified in such a way that each image has a single
chess piece on the board, see Figure 4.5.

Figure 4.5: Example images from the 2D chess board dataset that is used in Experiment 4. The bounding boxes and
corresponding labels of the pieces are also visualized in this figure.

1https://www.kaggle.com/datasets/koryakinp/chess-positions

https://www.kaggle.com/datasets/koryakinp/chess-positions
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4.3. PASCAL VOC2012

The PASCAL Visual Object Classes Challenge 2012 (VOC2012)2 is a widely used dataset for object
detection, segmentation, and image classification. It contains images from 20 different object classes
such as various animals, vehicles, and indoor items, see Figure 4.6. More specifically, the class labels are
person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair,
dining table, potted plant, sofa, and tv/monitor. The height and width dimensions of the images vary
between 100 and 500 pixels.

Figure 4.6: Example images from the PASCAL VOC2012 dataset that is used in Experiment 6. The bounding boxes and
corresponding labels of the objects are also visualized in this figure.

Experiment 5
For Experiment 5, a random subsample of the original PASCAL VOC2012 dataset is taken. The train
dataset used in this experiment consists of 2048 images and the test set contains 512 images. All images
are resized to 128 x 128.

2http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
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Appendix

Ablation Study

In the experiments of this thesis, a simple CNN is used with only three convolutional layers and two
downsampling operations as the backbone for the studied Faster R-CNN versions, see Figure 3.3. The
replacement of a traditional convolutional layer with a CEConv results in a more computationally
expensive operation since the amount of learnable parameters is increased. Similarly, the complexity
of the Faster R-CNN object detection architecture increases when integrating the color equivariant
convolutions. For the ST and GS versions of the model, all convolutional layers have 256 output channels,
whereas the first two convolutional layers of the other versions (CIB, CEB, CI, and CE) only have 64
output channels. This is implemented this way to account for the increase in complexity that is caused
by the modifications. The choice of these amounts of output channels, however, leads to the fact that the
CIB and CEB models have significantly fewer parameters than the ST model. We perform an ablation
study in which we compare the CIB and CEB models to more complex versions of themselves and
we label these versions as CIBm and CEBm, respectively. This extra complexity is achieved by simply
doubling the output channels of both the first layer and the second layer of the CNN backbone from 64
to 128. Table 2 shows a comparison of the number of parameters for each of the Faster R-CNN versions.

model number of parameters
ST 15845064
GS 15845064
CIB 15212040

CIBm 15988296
CEB 15408904

CEBm 16185160
CI 15802376
CE 16196104

Table 2: A comparison of the number of parameters for each of the Faster R-CNN versions.

We perform an ablation study on the training processes of the CIB, CIBm, CEB, and CEBm models, and
we compare the test mAP curves from CIB and CEB with those from CIBm and CEBm, respectively. We
use the MNIST dataset variant from Experiment 2 of this thesis for this ablation study. The models
are trained for 200 epochs using the SGD optimizer with a learning rate of 0.01, a momentum of 0.9, a
weight decay of 0.0005, and a batch size of 16. Each model is trained 5 times with different random
initializations. The results for the comparison of CIB and CIBm are visible in Figure 7, and the results for
the comparison of CEB and CEBm are visible in Figure 8. From the mAP curves, we can see that there is
no significant difference in performance when adding complexity to the backbone of the models.
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Figure 7: The Mean Average Precision results of the comparison of the CIB and CIBm models. The left figure shows the mAP
measurements for an IoU of 0.5 and the right figure shows the mAP measurements for an IoU of 0.75. There is no significant

difference in performance.

Figure 8: The Mean Average Precision results of the comparison of the CEB and CEBm models. The left figure shows the mAP
measurements for an IoU of 0.5 and the right figure shows the mAP measurements for an IoU of 0.75. There is no significant

difference in performance.
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