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Coupled Multiscale System With Time Delay
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'Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands, Department of
Geoscience and Engineering, Delft University of Technology, Delft, Netherlands

Abstract Aerosols exert a net cooling effect on the climate system by reflecting solar radiation, both
directly and indirectly through their role in cloud formation, known as aerosol-cloud interactions. The
multiscale nature of aerosol-cloud interactions, and especially their mesoscale adjustments and associated
challenges for their representation in climate models, makes the aerosol forcing a key uncertainty of climate
projections. Here we show that a physics-informed data-driven approach in the form of delay differential
equations (DDEs) for coupled cloud-rain dynamics of mesoscale adjustments can combine the interpretability
of conceptual models with the quantitative reliability of large-eddy simulations (LESs). Applied to a conceptual
model that describes the coupled system as a predator-prey relationship between cloud depth H and cloud
droplet number concentration N, the proposed approach faithfully reconstructs the known DDEs when
providing information about the microscale physics in the form of an assumed rain-formation function. We
further apply our approach to approximate governing DDEs for the complex aerosol-cloud adjustments modeled
by LESs. Capturing the governing cloud-rain dynamics as coupled DDEs also requires providing macroscale
physics, which translates into separating the rain and nonrain regimes and assumptions about their asymptotic
behavior. These governing equations offer a quantitative pathway for predicting the emergent behaviors of
aerosol-cloud-precipitation interactions.

Plain Language Summary Aerosol-cloud interactions are a major source of uncertainty in climate
predictions. Their complex, multiscale nature makes it difficult to accurately represent them in climate models,
limiting our understanding of their role in the climate system. To address this, we propose a machine learning-
based approach that simplifies these interactions. Our method uses a physics-informed technique to represent
aerosol-cloud-precipitation interactions (ACPIs) as coupled delay differential equations (DDEs). We test this
approach with two toy models that represent ACPIs as predator-prey systems, incorporating microscale physics
through a simplified rain-formation function. We further apply our method to analyze how clouds respond to
aerosol changes using data from large-eddy simulations (LES). The results show our method is effective in
reconstructing coupled DDEs and uncovering physical principles from LES data. This work advances our
understanding of ACPIs and their role in climate systems.

1. Introduction

Aerosol-cloud interactions have been recognized as one of the largest uncertainties in climate projections by
Intergovernmental Panel on Climate Change assessments (Forster et al., 2021). Aerosol-cloud interactions are
multiscale, nonlinear processes, where aerosol perturbations lead to changes in cloud formation and the micro-
scopic composition of a cloud, which in turn affect rain formation and cloud dissipation. These cloud-scale re-
sponses trigger mesoscale adjustments, that is, responses on time scales of several hours and spatial scales of
cloud fields (Alinaghi et al., 2024; Glassmeier et al., 2021a; Savic-Jovcic & Stevens, 2008; Seifert et al., 2015;
Wang & Feingold, 2009; Yamaguchi et al., 2019). This complexity makes aerosol-cloud interactions a challenge
for climate modeling and projections (Bellouin et al., 2020).

Aerosol-cloud interactions have been numerically captured with a broad spectrum of approaches that range from
conceptual models on one end (Glassmeier & Feingold, 2017; Koren et al., 2017; Koren & Feingold, 2011) to
purely data-driven approaches (Alfonso & Zamora, 2021; Gettelman et al., 2021; Glassmeier et al., 2019, 2021a;
Gryspeerdt et al., 2022; Lamb et al., 2024; Silva et al., 2021) on the opposing end. Conceptual models prioritize
interpretability, whereas many data-driven approaches amount to black-box modeling, that is, quantitatively
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optimized. Most classical parameterizations of cloud-rain dynamics influenced by mesoscale adjustments in
models (e.g., Ekman et al. (2023); Flossmann and Wobrock (2010); Gao et al. (2016); Gettelman et al. (2015);
Terai et al. (2020); Zhang et al. (2021)) can be situated in between these two extremes. For aerosol-cloud-
precipitation interactions (ACPIs) in stratocumulus clouds, one notable conceptual approach employed to
characterize the ACPI system is found in the work of Koren and Feingold (2011), who proposed a predator-prey
model (KF model hereafter) in the form of two delay differential equations (DDEs). By setting key parameters
(notably, time delay, cloud depth, and cloud droplet concentration), their DDEs were able to qualitatively
replicate the emergent mesoscale behaviors of aerosol-stratocumulus interactions. The KF model distinguished
distinct states of the system, including nonprecipitating, weakly precipitating, and strongly precipitating clouds.
Using a simplified version of the KF model by Koren et al. (2017) (KTF model hereafter), Lunderman
et al. (2020) illustrated how conceptual models are often the starting point for more quantitative descriptions and
parameterizations by estimating the parameters of the KTF model. On the other end of ACPI descriptions,
Glassmeier et al. (2021a) and Gryspeerdt et al. (2022) provided data-driven descriptions of aerosol-stratocumulus
interactions on the mesoscale.

To combine the strengths of both conceptual models and data-driven approaches, physics-informed tools have
emerged as a promising alternative. By integrating physical principles into data-driven frameworks, these tools
enhance predictive accuracy while preserving interpretability, offering a balanced and robust approach to un-
derstanding complex systems. In this context, the sparse identification of nonlinear dynamic (SINDy) framework
(Brunton et al., 2016) has received considerable attention in recent years, and variants of SINDy algorithms have
successfully discovered many dynamical systems. The SINDy algorithm assumes that only a few terms control a
physical system to find the optimal balance between model accuracy and complexity, so that the discovered
equations are sparse in the space of possible functions that follow physical laws (Brunton et al., 2016). This
assumption contributes to the success of SINDy in determining the underlying governing equations of nonlinear
dynamical systems from data. Examples include sparse identification of nonlinear dynamics for model predictive
control (Kaiser et al., 2018) and for boundary value problems (Shea et al., 2021), and parallel implicit sparse
identification of nonlinear dynamics to identify implicit dynamics and rational nonlinearities (Kaheman
et al., 2020). Recently, Sandoz et al. (2023) discovered DDEs from experimental data of gene expressions.

Against this background, it is interesting to explore whether the SINDy approach can discover the DDEs of ACPIs
from data. The special challenge of ACPIs lies in that they are governed by delay-coupled interactions between
precipitation, clouds, and aerosols. Furthermore, the sensitivity of clouds and precipitation to aerosol perturba-
tions exhibits regime dependency, notably on nonprecipitating and precipitating regimes, as, for example,
elucidated by Savic-Jovcic and Stevens (2008), Stevens and Feingold (2009), and Wang and Feingold (2009).
Recently, analytical progress in capturing this complexity in DDEs of Koren and Feingold (2011) has been made
by means of reduced-order methods (Chekroun et al., 2020, 2022; Liu, Pei, & Qi, 2022; Liu, Pei, Wang, &
Qi, 2022). Specifically, the studies of Chekroun et al. (2020, 2022) applied Galerkin-Koornwinder techniques to
approximate DDEs as systems of ODEs. This complexity sets ACPI dynamical systems apart from the more
general DDE investigations conducted in Sandoz et al. (2023).

In this work, we propose a pragmatic approach to adapt the SINDy framework for the coupled time-delayed
nature of ACPI dynamics. It combines the advantages of conceptual models (interpretability), machine
learning (efficiency), and detailed cloud models (accuracy). In the remainder of the manuscript, Section 2 de-
scribes the proposed coupled time-delay SINDy model, including model architecture and optimization process.
We then test the proposed method by discovering the known KTF and KF models from data generated by them
(Section 3). Subsequently, we apply the approach to a large ensemble of LESs (Section 4). Discussion and
conclusions are provided in Section 5.

2. Adaptation of SINDy Framework to Coupled DDE

Considering a coupled DDE system of the following forms:

dx(t)

7 =f(x(t)’x(t - T)’y([)’y(t - T))’ (1)
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Figure 1. Schematic of the coupled time-delay sparse identification of nonlinear dynamic model to discover the governing delay-differential equations. Data are
collected from simulations on different initial conditions, and the spatial average values of variables are derived by preprocessing. The feature library is constructed with
variables x(7) and y(¢) and the corresponding time-delayed terms x(t — T) and y(r — T'). This nonlinear feature library is used to construct the sparse regression model
for finding the fewest terms and best time delay to obtain the governing equations.

ay(t)

o SO0 =T).x(0.x(1 = T)),

@

where x and y are physical state vectors (i.e., time series data sets), and 7 denotes the time delay. For simplifi-
cation, we use G to represent the variables x and y (G = (x,y)) so that the total data set can be summarized as
follows:

G, (ty) G, (tn)
3)
Gn (t 0) Gn (tM )

where n represents the number of state variables (i.e., the number of cases with different initial conditions for
simulations in Figure 1). M denotes the number of time steps, and the time domainist € [f_p,#,_p]| for G(t). The
corresponding time-delayed state vector G(t — T) (where G(t — T) = (x(t — T),y(t — T))) is defined
for(t — T) € [t_p.ty_p]-

The SINDy method approaches the coupled DDE in Equation 1 and Equation 2 based on the assumption that the
dynamic models f could be represented by a set of nonlinear functions ® weighted by coefficients = as follows:
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400 _ 060,60 - M= @)

where O(G(¢), G(t — T)) denotes candidate nonlinear functions, and Z; is the coefficient (E; = [51, ,fn]T).
Considering the library consisting of polynomials up to order R, the library matrix @(P) (P = (G(1),G(t — T)))
becomes as follows:

e(P) = [1 P P* - PR]. (%)

2.1. Model Optimization

In Equation 4, coefficients E; can be solved by regressions. Each entry in E; corresponds to a term in the
discovered dynamical system, while only a few terms in the regression are essential. Thus, it is important to
employ sparse regression to identify a sparse matrix of coefficients Z; signifying the fewest active terms from the
library that result in a good model fit. The sparse regression problem can be solved by classical regression
methods, for example, the sequential thresholded ridge regression (STRidge) method. The STRidge method
rapidly converges to a sparse solution in a small number of iterations (Brunton et al., 2016; Rudy et al., 2019). By
using the STRidge method, the loss function is defined as follows:

2

+AlIZg15. (6)
2

‘G—@(G) =)

€ = arg ming

where G represents the time derivative of G(r) computed by the finite differentiation method, and 2 is a
hyperparameter to weight the sparsity constraint. At each iteration, all coefficients whose magnitudes fall below 4
are removed, and the model is refit to the remaining terms until only those exceeding the threshold remain. This
constraint ensures that the identified model is parsimonious and physically interpretable, which helps to reduce
the risk of overfitting the data. As different A values are likely to produce different coefficient estimates and,
ultimately, different discovered models, we adopt the cross-validation method as recommended by Naozuka
et al. (2022). The cross-validation method defines a prior set of A values, computes the cross-validation error for
each defined value, and selects the value of A with the smallest cross-validation error.

As O(G) contains the time-delayed variable G(r — T) in Equation 6, we pragmatically employ an additional
optimization procedure to optimize the delay time step D. We consider a range of delay time steps
D €[0,1,2,--- ] and compute the reconstruction error (D) for a fixed D as follows:

e(D) = arg ming_|| G — ©(G(1), G(t — DAN)Eg || + Al|Eg]- (7

The optimal delay time is estimated as the solution of the following equation:
D* = arg minpe(D). ®)

The model optimization process is trained using the stochastic gradient descent by performing alternative updates
of each component as Algorithm 1.

Algorithm 1. Parameter optimization in the coupled time-delay SINDy model.

e Obtain the time series inputs G = [G;(7) -+ G,(7)].
o Initialize delay time step D and sparsity scale A.
for D = 1 to N, (the maximum value of time delay) do
for k = 1 to N, (iterations for updating the coefficients in cross-validations) do

e Obtain the derivatives G of G() by the finite difference method.
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Table
Continued

&(D) = arg ming_||G — O(G(1), G(r — DAN)Eq || + Al Eg ;.-

end for

o Obtain the optimal hyperparameter 4, and the corresponding model score.
arg min;, (D).

end for

e Obtain the optimal delay time step D, and the corresponding coefficient matrix =g in Equation 4.

2.2. Model Selection Using Akaike Information Criterion

Accurate identification of the model in Equation 6 depends on selecting an appropriate value for . However, the
“optimal” 1, determined from cross-validation in Section 2.1 yields models with differing numbers of terms that
exhibit comparable prediction performance. To automate the model selection procedure, we follow Mangan
et al. (2017) in utilizing the Akaike information criterion (AIC) as the statistical metric to trade off model fit with
sparsity. For least squares fitting, the AIC value for each candidate model fz ;, that is, the library functions with
coefficients 2 that remain for sparsity scale 4, is calculated as follows:

AC() =204 minRSE) i

where k is the number of free parameters (terms) and m the number of observations. The residual sum of squares is

given by RSS = Z:":l(y,- - fEVl(xl-))z, where x; and y; represent the independent state and observed state,

respectively.

The model selection procedure is shown in Algorithm 2. Both Algorithm 1 and Algorithm 2—adapted from prior
work (e.g., Brunton et al. (2016); Rudy et al. (2019); Mangan et al. (2017))—are included with methodological
extensions for delay time step optimization and AIC-based model selection, respectively, to support transparency
and reproducibility.

Algorithm 2. Model selection in the coupled time-delay SINDy model.

o Obtain the time series inputs G = [G;(?) -+ G,(1)].

e Obtain the optimal delay time step D from Algorithm 1.

o Define the refined 4 scales around the optimal hyperparameter 4, from Algorithm 1.
fork =1to N, do

o Generate libraries E; that contain m candidate terms.

e Obtain Model (k) from SINDy (G, Z;,4;).

¢ Numerically integrate the DDE system from Model (k) and obtain fz,, ;, ().

e Compute AIC(k, G().fz,, (1)

¢ Rank models by AIC score.

end for

e Return model with lowest AIC score.
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Table 1

The Definition of Variables Used in KTF and KF Equations

Variable Definition

H Cloud depth.

H, Maximum cloud depth/cloud carrying capacity.

N Cloud droplet concentration.

Ny Maximum background aerosol concentration.

a A scaling constant links cloud depth, droplet concentration, and
rain rate.

T Delayed time converting cloud water into rain by stochastic

microphysical collection processes.

7 (17) Cloud recovery time when H would reach the maximal potential
in the absence of rain-related losses.

7 Cloud recovery time when N would reach the maximal potential
in the absence of rain-related losses.

c A temperature-dependent constant.
cy Constant.
R Rain rate.

3. Reconstruction of Cloud and Rain Equations

In this section, we evaluate the performance of the proposed approach in reconstructing two known cloud-rain
models, which employ a single DDE (KTF model, Koren et al. (2017)) and a set of two DDEs (KF model,
Koren and Feingold (2011)) to capture the interplay between cloud and rain dynamics, respectively.

3.1. Reconstruction of KTF Equation

Koren et al. (2017) proposed a DDE that captures the nonlinear effect of depletion by rain on cloud depth H:

dH _Hy—-H a

-z \/—]\7

H>(t—T), (10)

where variables are defined and summarized in Table 1.

The evolution of cloud depth in the KTF equation derives from a predator-prey analogy. The second term on the
right-hand side of Equation 10 corresponds to rain as a “predator” that consumes the cloud (“prey”) with a delay T
that is associated with the time required for cloud droplets to coalesce to form larger raindrops. Equation 10
features a Hopf bifurcation that produces different dynamic regimes (Koren et al., 2017), namely, a steady state
where rain consumes cloud at an exact rate, and oscillations when stronger rain depletes the cloud, which dis-
sipates until the cloud thickens enough to reform rain again. In this validation experiment to estimate the nonlinear
sensitivity of the time-delay SINDy model with respect to cloud-rain states, three scenarios have been set up to
represent the cloud dynamics: (a) steady state, (b) oscillation, and (c) oscillation to steady state, with different
initial parameter settings in Table A1. We present the full details of data set generation in the three scenarios in
Appendix Al.

Time delay discovery: Figures 2a—2c present the relationship between time delay and model performance,
measured by the coefficient of determination (rz) in different scenarios. Without time delay (D = 0), Equation 10
cannot capture oscillations, which is reflected in the weak correlation (2 < 0.35) for scenarios 2 and 3 in this case
and the magenta line in Figure 3. The optimal delayed time steps, at which the models achieve their strongest
correlation (2 > 0.99), are found to be 50, 250, and 150, which correspond to 5, 25, and 15 min of time delay 7'
(T = DAt, Ar = 0.1minute), respectively, as expected from Table Al. It is noted that the strength of the cor-
relation, as measured by % in the three scenarios, exhibits a pattern of decrease, increase, and then decrease again
as the time delay increases. It is important to note that the strong correlation (+> > 0.99) in Figure 2 indicates
agreement between the derivatives of the true and learned models during training, but this does not necessarily
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Figure 2. Model training performance with different delay time steps in the three scenarios: (a) steady state, (b) oscillation,
and (c) oscillation to steady state.

guarantee accurate forward predictions. Even minor discrepancies in the learned dynamics—despite near-perfect
derivative fits—can lead to substantial divergence over time due to the accumulation of integration errors
(Brunton et al., 2016). Therefore, while 72 values in Figure 2 remain high (very close to 1), minor fluctuations of
r? values reflect variations in the coefficients of the discovered equations due to different delay configurations.
These variations, in turn, lead to differences in forward predictions, as illustrated in Figure 3. The model pre-
diction is only apparently correlated with the observations (refer to the orange line with D = 20) during the first
decrease pattern of 72 values. As the time delay continues to increase, the models exhibit improved performance,
as reflected from D = 50 (green line) to 250 (pink line). However, further increasing the time delay leads to a
decline in the 72 values beyond the optimal point, and the predictions fail to capture the dynamics, as shown in the
yellow line (time delay D = 400) in Figure 3.

Model candidate importance: Table 2 shows the discovered equations with different items in the scenario of
oscillation. We choose polynomials to two orders, that is, @(H) = [1,H(¢),H(t — T), H(@)*, HOH( — T),
H(t — T)2] as the library functions. With a relatively small threshold 4 in Equation 6, there are many terms in the
discovered equations (see the discovered equation with full terms). When increasing the threshold, the discovered
terms are reduced (from full terms, 4 terms, to 2 terms). The optimal discovered equation has 4 terms, which
achieves the balance between model accuracy and equation complexity to avoid overfitting. In accordance with our
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Figure 3. Model predictive performance in an oscillation test case with different time delays of D = 20, 50, 100, 200, 250, 400,
and O (without time delay).

expectations, we observe that the discovered equation with 3 terms, including H(r — T)2 term (orange line),
achieves at least a similar or even better performance in model prediction than that of the discovered model with 4
terms (green line) in Figure 4. It is not easy to set the threshold 4 value because the terms H(r — T) and H(r — T)*
both feature coefficients of order 10~*, but the model can better capture high peaks without the H(t — T) term. In
addition, in the comparison of 2 and 3 terms with different candidate terms, it is found that although the coefficient
of H(r — T)*is of order 10~*, which is the same as the coefficient of H(t — T) (blue line), its presence is crucial.
This finding highlights the significance of small coefficients; however, detecting them proves challenging when
employing a singular threshold, 1, and simultaneously disregarding items with similar magnitudes of small co-
efficients. This aspect warrants future study, for example, using ensemble SINDy to reduce coefficient differences
(Fasel et al., 2022).

Overall, the proposed approach can provide an excellent estimation of the optimal delay time and identify the
correct items in the library. The summary of discovered equations in three scenarios is shown in Table 3, and
model predictive performance is further provided in Appendix A2.

Table 2
Discover Equations and Akaike Information Criterion (AIC) Score for Different Values of A and the Corresponding Numbers
of Terms in the Scenario of Oscillation (With the Optimal Time Delay T = 25 Minutes)

1 H Hl —T) H? HH(t — T) H@ — T)
Terms Coefficients AIC score
KTF 10 —1.25 x 1072 0 0 0 -1.73 x 107
Full terms  9.95 —1.23 x 1072 —3.37 x 10°* 140 x 1077 750 x 1077 —173 x 10~
4 terms 995 —1.23 x 102 —1.22 x 107* 0 0 —-1.73 x 107 —154.82
3terms-1 995 —1.23 x 1072 0 0 0 -1.73 x 10~ —129.29
3terms2 154  —1.12 x 1072 —6.59 x 1072 0 0 0 15,213.35
2 terms 017 —44 x 10~ 0 0 0 0 25,847.48

Note. Full terms represent the 6 library functions O(H) = [1,H(?), H(t — T),H(t)*, HOH( — T),H(t — T)*]).
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Figure 4. KTF model predictive performance with different terms in the library functions: (a) Akaike information criterion
criteria for all possible models (blue dots) and the best one found by sparse identification of nonlinear dynamic (orange dot)
shown in Table 2 (red circle). (b) Shows model predictive performance compared to observation values, where the full terms
include 6 library functions, 4 terms exclude the terms H(1)* and H()H(t — T), the 3 terms-1 further exclude the H(t — T)
terms, whereas the 3 terms-2 exclude the H(t — T)2 term in the discovered equations, and the 2 terms only have the A term and
constant term.
3.2. Reconstruction of KF Equations
To further investigate the proposed tool in discovering coupled DDEs, we focus on the KF equations proposed by
Koren and Feingold (2011), which use the coupled predator-prey models with delays to mimic the interplay
between aerosol, cloud, and rain as follows:
dH Hy—H aH*(t—T) (11
dt - T ClN(t_T)’
dN Ny—N
= aH(=T), (12)
dl (%)
where the rain rate R is a function of H and N:
aH(t—T
R(@) = # (13)
N(t—T)
We obtain the different dynamic regimes of the cloud-rain system by varying the delay time (see Table 3). To test
the performance of the sparse regression part of our approach, it is therefore sufficient to focus on one dynamic
regime, for which we choose an oscillation case. Full details of data set generation are given in Appendix B.
Library function setting: We approach the rediscovery of Equation 11 and Equation 12 by considering them as
implicit differential equations. This amounts to generalizing the library ®(G) in Equation 4 to include basic
functions of (H(t),H(t — T),N(t),N(t — T)) and (H, N) (H denotes %). The implicit DDEs reformulate the
Table 3
Coefficient Comparison Between the Original and Discovered KTF Equations in Three Scenarios
Scenario Original equation Discovered equation
Scenario 1 H =10 — 1.25 x 1072H — 1.73 x 10~*H(r — 5)° H =99 —1.03 x 102H — 1.79 x 10~*H(r — 5)°
Scenario 2 H =10 — 1.25 x 1072H — 1.73 X 10~*H(t — 15)? H =99 — 124 x 1072H — 1.73 x 10~*H(t — 15)*
Scenario 3 H =10 — 1.25 x 1072H — 1.73 x 10~*H(t — 25)* H =10 — 1.24 x 1072H — 1.73 x 10~*H(t — 25)*
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Table 4

Coefficient Comparison in the Original and Discovered KF Equations

Original equation Discovered equation

1 =883 — 1.67 x 1072H — 6.96 x 1071 (=29 A =885 — 1.67 x 107°H — 695 x 1072 (=29
N =3 — 1.67 x 102N — 4.17 x 107 8H>(t — 25.4) N =3.01 — 1.67 x 102N — 4.17 x 10 8H3(r — 25.4)

SINDy problems in an implicit form (Mangan et al., 2016): ©(G(),G(t — T), "g—g’))EG = 0 (different from
Equation 4). However, it is worth mentioning that finding a matrix Z; whose columns &; multiply the library
functions to obtain zero vectors is challenging. As discussed by Wu (2023), the success of sparse identification
hinges significantly on the quality of the constructed library functions. In our case, this translates to constraining

our library based on physical knowledge. We specifically provide microscale physical knowledge in the form of

H*(—T)

NG =T} and H3(t — T) as library functions.

rain formation relationships by adding

Reconstructed model predictive performance: Table 4 shows the reconstructed coefficients in equations, which
closely match those of the original KF equations. The relative errors of the reconstructed model over time are
further elucidated in Figures 5a and 5b. It can be seen that the relative errors of cloud depth H and cloud droplet
concentration N are between —0.1% to 0.15% and between —0.2% to 0.6%, respectively. Notably, these errors
exhibit a pattern of being positive around the high peaks and negative around the low peaks of cloud depth (H) or
cloud droplet concentration (N). These biases arise from discrepancies between the reconstructed and original
coefficients within the coupled DDEs, as illustrated in Table 4. When H and N values exceed a certain value, the
predictive derivatives are positive, and then H and N increase (gradually overestimated in high peaks). At some
point, the predictive derivatives become negative, thus making H and N decrease (gradually underestimating the
low peaks). It is essential to emphasize that the proposed model demonstrates the capability to discern small
coefficients, such as the H(r — T)3 term with values on the order of 10~® within the discovered models. While
minor errors persist, these promising results underscore the robustness of the proposed coupled time-delay SINDy
model in accurately identifying coefficients of coupled DDEs within the KF structure.

4. Discovering ACPI Equations From Large-Eddy Simulations

We have demonstrated the capability of the proposed tool in reconstructing DDEs that capture ACPI on the
mesoscale from two idealized models if library functions are constrained by our microscale knowledge about rain
formation. In this section, we will demonstrate the versatility of our coupled time-delay SINDy model in
approximating a predator-prey-like model derived from large-eddy simulations (LESs) of cloud systems.

4.1. Data Sets

The LESs were carried out using the System for Atmospheric Modeling (Khairoutdinov & Randall, 2003). The
model domain area is 48 km X 48 km at a horizontal resolution of 200 m and a vertical resolution of 10 m. The
simulation duration is 12 h, with a time step of 1 s. For more details on the model setup, see the study by

(@) (b)

0.0015 0.006
= =

e 0.0010 £ 0.004
£ =
® 0.0005 &

g 0.002
> >
= 3
=~ 0.0000 _—

< @ 0.000
~ &~

-0.0005 ~0.002

(1] 1000 2000 3000 0 1000 2000 3000
Timestep Timestep

Figure 5. Model predictive performance assessment: (a) and (b) represent the relative errors of cloud depth H and cloud
droplet concentration N at different time steps throughout all test cases, respectively, and the shaded regions represent
standard deviations.
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Figure 6. A total of 107 large-eddy simulation simulations with varying initial conditions in an N-H space (H and N are the
spatial-averaged values of cloud fields in each trajectory), colored by the temporal scale from 2 to 12 hr. The dashed orange
line corresponds to an adiabatic volume-mean droplet radius at the cloud top of about 12 pm, which separates the regimes of
no-rain (droplet sizes are too small for precipitation formation) and rain states (droplet size crosses the threshold value for
precipitation formation). The top and bottom snapshots illustrate the open-cell and closed-cell cloud depth fields in temporal
evolution in no-rain and rain regimes. Red letters A and B indicate trajectories discussed in the main text.
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103 Yamaguchi et al. (2017). By varying initial conditions (e.g., aerosol con-

centration in a well-mixed boundary layer) in the model simulations of

2

Glassmeier et al. (2021a), we obtained a total of 107 simulations (Figure 6). It
is worth mentioning that the total of 107 simulations could be separated into

oR®
98
oge
oo

two regimes: no-rain and rain, as shown in Figure 6. The separation is based
on an adiabatic volume-mean droplet radius at the cloud top of about 12 pm;
for details, see the study by Glassmeier et al. (2021a). We remove simulations
with cloud base at Sm or lower for a notable part of the time series. After this

2680,
08 O? e

H (m)

filtering, 81 simulations remain. We discard the first 2 hr of spin-up and use
data sets from 2 to 12 hr, at output intervals of 10 min. In the no-rain regime,
there are 77 simulations associated with 60 time steps for model training,
whereas for the rain regime, there are only 4 simulations with 30 time steps.
oo 20X logN 2.6 During the model validation process, we utilized the data from the initial time

0.0 Iog N+ 24 delay period as inputs for the derived equations and conducted forward
predictions, which were subsequently compared with the remaining time

102

10! 102 steps of each simulation in both regimes.

N (cm3)

4.2. LES-Derived Equations

°N

3 30 300 It is challenging to directly discover the governing equations from LESs, as
sampling density (ntm/ bin) the LES simulations resolve the complex governing equations to faithfully
represent the formation of stratocumulus clouds and their interaction between
aerosols and rain. We therefore adapt the predator-prey model to LES data
Vy (% day™) sets. Based on previous studies pointing out the distinction between clouds in
no-rain and rain regimes (Chen et al., 2014; Koren & Feingold, 2011; Liu, Pei,
-600 -400  -200 0 200 400 600 Wang, & Qi, 2022; Terai et al., 2020), we approximate the predator-prey-like
Figure 7. Emulated N-H surface of H-component Vy = d In H/dt of the flow n?odles i.n the. two separate regimes. Unli.ke the 'estimation of parameter value
field as a function in cloud depth H and cloud droplet concentration N, distributions in a KTF model from LES simulations (Lunderman et al., 2020),
details of surface interpolation referring to Glassmeier et al. (2019, 2021a). The ~ We approach the discovery of governing equations from LES data sets by
blue and yellow lines indicate the location of steady-state H in the no-rain and  approximating a KF framework, which includes the coupled dynamical
rain regimes, respectively. system between aerosols, precipitation, and clouds. However, it is noted that
the parameters in the KF equation shown in Table B1 are unknown (except for
At = 10 minutes) for LES simulations. Among these parameters (see Table 1), we assume the typical time scales
71, 75, and the coeffcients a, ¢y, and ¢, to be only dependent on the overall regime such that they are treated as
constants within the two regimes, while H,, and N, vary across all simulations. According to the definitions of H

and Ny, we make the following assumptions to constrain them:

1. In the no-rain regime, H, represents the maximum cloud depth that is reached asymptotically in the absence of
arain sink. This value corresponds to the steady state where cloud deepening due to radiative and surface-flux
cooling (exemplified by trajectory A) and cloud thinning due to entrainment drying (exemplified by trajectory
B) approximately balance each other in the central region of Figure 6 (Hoffmann et al., 2020). To approximate
the steady state in N-H space, we extract N-H tendencies from all LES data sets and then interpolate the
tendencies using Gaussian-process emulation (Glassmeier et al., 2019, 2021a) to obtain the tendency surface
(Figure 7). We assume a log-log-linear relationship between H and N (blue line) to obtain the steady-state
function as follows:

IOgH() =-0.1 logNinitial + 26, (14)

when additionally assuming the absence of a tendency in N such that the starting value N;,;;, of the N-evolution is
maintained.

2. Inthe no-rain regime, N is the aerosol concentration obtained asymptotically in response to the aerosol flux from
the surface. As the simulations maintain a slow but steady increase in N, we set Ny, = 1000 cm~3 for all LES
simulations.
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Table 5
Approximated Coefficients in the Discovered Equations in Two Regimes
No-rain H =1.08 x 107 Hy — 892 x 107H — 5.05 x 107+£0=20
et i =034 Hy +9.97 x 107°H — 5.46 x 10°4(=20
No-rain N =292 x 10~ Ny — 5.92 x 105N — 3.82 x 10°H3(r — 270)
No-rain N = —2.61 x 1072 Ny + 1.86 x 1072N — 1.42 x 1077H3(t — 20)
3. In the rain regime, where rain consumes aerosols and droplets and dissipates clouds, H, and N, each balance at
small values. We choose Hy = 10 m and Ny = 10 cm™3.
In addition to these asymptotic constraints, we also keep the microscopic constraints (emphasizing that these
constraints originate from small-scale physical processes—rain formation, aerosol, and cloud microphysics)
implemented through the library function settings in Section 3.2 and obtain the approximated coefficients sum-
marized in Table 5 for the coupled DDEs for the LES data set. For the H-evolution, coefficients in Table 5 clearly
reflect the role of rain in the two cases. In the no-rain case, the main sink of H is the H-term in the library, which
decreases large H and corresponds to evaporation drying, because the H2/N-term, which corresponds to rain, has a
small coefficient. In the rain case, the H>/N-term is the dominant and only sink because the H-term has a positive
coefficient. The role of rain for the N-evolution is similar, where it is, however, noteworthy that the source term
decreases with decreasing N due to the positive coefficient of that term. Physically, this would correspond to a
complete rainout and aerosol scavenging. The optimal time delays 7 are 270 and 20 min for no-rain and rain re-
gimes, respectively. The delay in the rain regime is consistent with the time required for rain formation through
collision and coalescence. We interpret the time delay of 270 min in the no-rain regime as a low probability of
having an influence of the nonlinear rain term, that is, collision-coalescence rarely affects cloud evolution in this
regime. Additionally, note that the rain term is relatively unimportant in the no-rain regime as discussed above.
Figure 8 presents the comparison of the cloud depth A and the cloud droplet concentration N obtained from the
LES-derived equations (discovered models) and the original LES data sets. These equations well capture the
tendency of the trajectories from LES simulations in the no-rain and rain regimes. In the no-rain regime, N-
evolution is negligible compared to the equilibration of H to its steady state
(Hoffmann et al., 2024). In contrast, the rain regime features a rapid co-
- decrease of cloud depth H and cloud droplet concentration N. Figures 9
sl l [ oA and 10 present the prediction accuracy of derived equations by correlation
coefficients and relative errors, respectively. It can be noted that correlation
3001 coefficients of H and N in two regimes are beyond 0.98 in Figure 9, which
indicates a good match of model predictions from LES-derived equations
0 with the LES data sets. Furthermore, Figure 10 depicts the relative errors at
’é‘ different time steps in two regimes. It can be seen that in no-rain and rain
E’ 3001 regimes, the relative errors are between —10% to 10% and between —5% to
5% for cloud depth H, respectively, which for cloud droplet concentration N
200 1 are between —5% to 5% and between —15% to 10%, respectively. In the no-
rain regime, the relative errors are 0 from O to 27 time steps because the
100 predictions are the observations in the initial delayed period. After the delayed
period, the relative errors of derivatives are gradually increased due to the
0

Figure 8. Comparison between the model predictions based on the

error accumulation in the predictive period (28 — 60 time steps). We can
understand the systematic error that leads to the accumulations as follows:
Predicted tendencies are “slower” than the LES data sets in high-H trajec-
tories that evolve toward lower H (“downward” in Figure 8), which is caused

discovered equations in Table 5 and the large-eddy simulation (LES) data by the slight underestimation of model predictive H in each time step. Similar
from LES data sets with varying initial conditions in an N-H space. The blue but opposite behavior is found for low-H trajectories. Mean relative errors in

and yellow lines represent LES and predictions, respectively, and the green
points are the initial values in each simulation. The dashed orange line
mentioned in Figure 6, corresponds to an adiabatic volume-mean droplet

Figure 10 are close to 0, which indicates the discovered equations capture
ACPIs in the LES data set reasonably well. Thus, the proposed coupled time-

radius at the cloud top of about 12 pm, which separates the regimes of no- delay SINDy model presented here is useful for characterizing ACPIs and for

rain and rain states.

deepening our understanding of cloud microphysics on the mesoscale.
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Figure 9. Correlation coefficients between model predictions in Figure 8 and large-eddy simulation data: (a) cloud depth H
and (b) cloud droplet concentration N in the no-rain regime, and (c) cloud depth A and (d) cloud droplet concentration N in
the rain regime. The points are excluded in the time delay period of 270 and 20 min in the no-rain and rain regimes, respectively.

4.3. Extrapolation and Asymptotic Behavior of Discovered ACPI Equations

For further analysis of the governing equations discovered from the LES data set, we extend the predictions in
Figure 8 to 1,000 and 60 time steps in the no-rain and rain regimes, respectively, as shown in Figure 11. In the no-
rain regime, it depicts that the cloud droplet concentration N increases gradually, whereas cloud depth H exhibits
a steady state. This behavior suggests that high aerosol concentrations suppress droplet growth, leading to more
but smaller cloud droplets and preventing precipitation. In contrast, the cloud depth H and cloud droplet con-
centration N both rapidly decrease to O in the rain regime. With low cloud droplet concentration, these droplets
efficiently collide and coalesce into raindrops, initiating precipitation and leading to a decrease in cloud depth
over time. Although the derived equations in the two regimes here are only indicative of N-H coupled re-
lationships and cannot represent the full complexity of ACPI in the LES, they provide a pathway to predicting the

(2) (b)
0.2 0.2
— No rain Rain —— No rain Rain
0.1 0.1
13 13
=] =]
Bt B
3 3
s 0.0 s 0.0
= >
3 5
£ -0.1 &-0.1
02770 20 30 40 50 60 %2% 10 20 30 40 50 60
Timestep Timestep

Figure 10. Relative errors between model predictions in Figure 8 and large-eddy simulation data at different time steps of
(a) cloud depth H and (b) cloud droplet concentration N in the no-rain and rain regimes. The shaded regions represent
standard deviations. In the no-rain regime, there are 77 simulations associated with 60 time steps for model comparison, whereas
for the rain regime, there are 4 simulations and 30 time steps. In addition, the relative errors are set to 0 in the time delay period
of 270 and 20 min in the no-rain and rain regimes, respectively.
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600 emergent behavior of ACPI on the mesoscale. They especially highlight the
4 roles of different time scales in ACPI, notably the stark difference between
e the slow equilibration of N in the no-rain regime as opposed to its very rapid
400 AL decline in the rain regime.
A
é 300
= 200] 5. Discussion and Conclusions
100 17 i ; We have presented a physics-informed sparse regression approach for ACPI
s R as a coupled multiscale system with time delay (Section 2). We demonstrate
¢ 0 200 400 600 800 our approach by rediscovering a single DDE (DDE) that conceptually cap-
N (ecm3) tures ACPI (KTF model, Section 3.1). Application to a coupled set of DDEs
for ACPI highlights the need for informing equation discovery by providing
Figure 11. Time series extension of model predictions based on the knowledge about the physics of rain formation (KF model, Section 3.2).
discovered equations in Table 5 in an H-N space. The green points are the Capturing ACPI as represented by LESs with our approach highlights the

initial values of trajectories from large-eddy simulation data sets. The dashed  multiscale challenge of the system (Section 4) in that we require microscale

orange line mentioned in Figure 6 corresponds to an adiabatic volume-mean
droplet radius at the cloud top of about 12 pm, which separates the regimes of

no-rain and rain states.

rain formation as well as information about asymptotic regimes, whose
quantitative details reflect the large-scale conditions. The LES-derived
equations combine the physical understanding and interpretability of a con-
ceptual model with the quantitative reliability of a full-complexity LES data
set. In doing so, they not only provide a parameterization of ACPI, but are also an instructive demonstration of
two key differences of conceptual models as compared to purely data-driven approaches. First, functional re-
lationships like Equation 13 would be considered complex if part of a general function library but owe their
simplicity to the fact that they have a direct physical interpretation. In other words, conceptual models are simple
because they condense the complexity of physical processes into a few clear relationships, not because these
relationships are mathematically simple. This can be considered a core challenge for the automatic discovery of
conceptual models illustrated by the rain formation term, which cannot be discovered with a standard polynomial
SINDy library. Second, conceptual models are characterized by a parametric flexibility. Together with their
physics-based justification, this is why we trust that conceptual models can be extrapolated. This point closely
mirrors discussions about physics-based versus empirical parameterizations, notably in application to weather
forecast and climate projection (Lohmann et al., 2007), which depend on subgrid-scale schemes to represent
unresolved small-scale processes due to the coarse resolution. As demonstrated by Koren et al. (2017) for the KTF
model, governing equations might scale with such parameters. We had to add such scaling as asymptotic in-
formation capturing large-scale physics to the purely data-driven equation discovery.

A key future direction is to leverage LES-derived equations to improve subgrid parameterizations in climate
models. LES-derived equations, by capturing essential turbulent dynamics at subgrid scales, offer physically
grounded relationships that can help refine these schemes. One challenge lies in the limited diversity, spatial
extent, and duration of most LES data sets. LES is typically performed over small domains and short periods,
often focused on specific regimes (e.g., stratocumulus or shallow cumulus), limiting the generalizability of
derived parameterizations. In contrast, climate models must represent a broad and continuous spectrum of at-
mospheric states across the globe. Applying LES-informed parameterizations without sufficient regime diversity
and contextual representativeness may lead to reduced robustness and performance in out-of-sample conditions.
To address this gap, more comprehensive LES ensembles—such as the Botany ensemble (Jansson et al., 2023),
which systematically varies large-scale forcings—are needed to capture a wider range of cloud regimes. In turn,
hybrid approaches may also help to better interpret observations: Alternative functional forms for the rain rate in
Equation 13 are also consistent with observations (Geoffroy et al., 2008). An LES data set with a suitable
sampling, as discussed above, might be leveraged to find the optimal formulation.

In conclusion, we find the sparse regression-based discovery of governing equations a useful tool to capture ACPI
dynamics on the mesoscale, where we so far lack physical understanding. Equation discovery thus fills the gap
between the microscale and the large-scale if informed by our physical understanding of these two neighboring
scales.
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Appendix A: KTF Equation
Al. Data Generation

For a given set of parameters and initial conditions, we solve Equation 10 numerically by a fourth-order Runge-
Kutta method with time step At. In each scenario, we create 130 time series by prescribing that the cloud depth H
(t) in the initial time delay period (¢ € [-T,0]) is constant, where H(¢) € [50,180] with an interval of 1
(Figure A1). We use 104 (80%) time series in each scenario for time-delay SINDy model training and validation,
and the remaining 20% time series for testing. The parameter setting for three scenarios is shown in Table Al.
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Figure Al. Data sets in the three scenarios generated by KTF equations with parameter settings in Table A1l: (a) steady state, (b) oscillation, and (c) oscillation to steady
state. Here we assume the cloud depth H(t) in the initial time delay period is constant (as amplified in the yellow rectangular region), and H(r) € [50,180] (+ € [-T,0])
with a total of 130 time series of each scenario.
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Table A1
Parameter Setting in the KTF Model to Describe Cloud-Rain States
Parameters Steady state Oscillation Oscillation to steady state
Hy(m) 800 800 800
T(s) 5 25 15
N(em™3) * 16 16 16
7(s) 80 80 80
a(day~'m2%) 1,000 1,000 1,000
Af(s) 0.1 0.1 0.1
Note. The values of N * refer to the study by Koren et al. (2017).
A2. Discovered Model Prediction
The discovered equations in three scenarios are summarized in Table 3. In order to further evaluate the predictive
performance of the discovered equations, we compare all of the test trajectories in three different scenarios
(Figure A2). The predictions generated by the discovered equations (middle column) exhibit a remarkably good
agreement with the observations obtained from the KTF models (right column). The relative errors (right column)
of cloud depth H and cloud droplet concentration N are between —0.05% and 0.15%, indicating the high accuracy
of the predictions. The large values of relative errors occur in the low and high peaks of cloud depth H in the
(a KTF model H (m) (b) Discovered model Hm © Relative error
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Figure A2. Trajectory comparisons between the KTF equation (left column) and the discovered models with 3 terms shown in Table 3 (middle column) across the
remaining 20% test cases. The right column displays the relative errors of model predictions.
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scenario of oscillation and oscillation to steady state, whereas for the scenario of steady state, the predictions are
generally slightly higher than the observations (from the KTF model). These biases are caused by the differences
between the reconstructed and original coefficients in the DDEs, as shown in Figure 4 (orange line with 3 terms).
Overall, the promising result shows that the proposed coupled time-delay SINDy model is robust to discovering
the correct underlying KTF structure.

Appendix B: Data Generation of KF Equation

For a given set of parameters in Table B1, we solve Equation 11 and Equation 12 numerically by a fourth-order
Runge-Kutta method with time step Ar. We create 500 time series (Figure B1) by a combination of input

Table B1

Parameter Setting in the KF Model to Describe ACPIs

Parameters H, Ny ok 7,(8)* a* c* c At
Unit m cm™3 min min day~'m=%> mm/ m? m™! min
Value 530 180 60 60 2 2 x 107° 3 x 10* 0.1

Note. The values of * refer to the study by Koren and Feingold (2011).
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Figure B1. Data sets generated by the KF equation with parameter settings in Table B1: (a) time series of cloud depth H, (b) time series of cloud droplet concentration N,
and (c) H-N cycles.
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parameters and initial values in the time delay period, where the cloud depth H(t) and N(t) in the initial time
delay period (¢ € [-T,0]) are constant, and H(¢) € [350,400] with an interval of 1 and N(¢) € [70,80] with an
interval of 1. We use 400 (80%) time series of cloud depth H and cloud droplet concentration N for coupled
time-delay SINDy training, and the remaining 20% time series are used for testing.
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