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Abstract

Online dating has become the most popular method of finding potential romantic
partners. At the core of these platforms, there is a reciprocal recommender system
which recommends users to other users on the platform. Breeze is an example of such
a dating app, serving its users potential romantic partners every day in the hopes of
sending them on a date. Current approaches to matchmaking depend exclusively on
interaction data and static features such as age, height and location. There is more
information present on the user profiles, however, in the form of bios and answers
to open questions. Given the state-of-the-art performance of pre-trained language
models in a multitude of general language understanding tasks, these free-text profile
sections present a source of untapped potential.

Our work combines the potential of these free-text profile sections and the state-of-
the-art performance of recent language models to create a new approach for match-
making, or reciprocal recommender systems in general. In this work, the goal is to
find out how textual data from user profiles can be leveraged to make good suggestions
in a reciprocal recommender system, and how language models can be used for this.
Furthermore, this work also explores whether the cold-start problem can be alleviated
using this approach. We also perform user research to find out how Breeze users make
their decisions on suggestions served by the platform. We introduce LoveBERT, a model
to serve text-based recommendations, harnessing the power of several language mod-
els fine-tuned on different free-text user profile sections.

Our results show that while LoveBERT is better at predicting unidirectional likes
than traditional recommender system approaches, it does not outperform them when
considering bidirectional matches. Furthermore, we show that while LoveBERT is not
able to circumvent the cold-start problem, it is more robust, losing less performance
than traditional techniques. Lastly, we show that especially the relation between differ-
ent profile sections is an effective predictor for matches.
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Chapter 1

Introduction

Over the last 20 years, online dating sites and apps have quickly become one of the
most popular platforms where people find and look for potential romantic partners
[56]. The online domain is able to offer unprecedented levels of access to possible
matches that are simply not attainable through traditional means. In 2013 in the United
States, online platforms have surpassed meeting through friends as the most popular
way heterosexual couples meet, with 39% of couples having met in an online setting in
2017 [57].

At the core of most online dating platforms lies a recommender system (RS). Tradi-
tionally, RSs have been built with the goal of providing a user with a set of recommended
items that the system predicts that the user will like. With the enormous increase in
content on the internet over the last decade, especially driven by the social web with
its user-generated content, RSs have become ubiquitous. Therefore, the recommended
items can be virtually anything: movies, books, songs, apps, websites, holiday destina-
tions, people and e-learning material are all recommended by RSs on a daily basis [5]. It
is important to note that RSs produce personalised recommendations. In other words,
each user of the system receives a different list of recommendations based on their pref-
erences or behaviour. The recommendations of a RS can be based on either explicit
information, typically users’ ratings, or implicit information like the past behaviour of
users, such as previously watched videos or listened to songs. Users’ demographic data
like age, nationality and gender can also be leveraged to provide better suggestions [3,
59].

The RSs powering the matchmaking algorithms of all popular dating apps (e.g. Tin-
der, Badoo, Bumble) include certain subtleties which sets them apart from other RSs.
Namely, in these: (i) the users are now the object being recommended themselves, and
(ii) not only should suggestions be of interest to the user, but the suggested users should
also have an interest in those they are suggested to. That is, successful recommenda-
tions only occur when both people like each other, or reciprocate. Pizzato et al. defined
this family of RSs in 2010 as Reciprocal Recommender Systems (RRSs) [49].
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For example, let us imagine two people, Alice and Bob, who are actively looking for
a romantic partner and have signed up for a dating app. In a traditional user-to-user
RS, say Twitter’s recommendation list of people to follow, Bob might be suggested to
Alice as an interesting profile to follow. In this scenario, it does not matter what Bob
thinks of Alice, just whether Alice thinks Bob’s Twitter profile is interesting enough to
follow. In contrast, in the setting of our dating app (i.e. a RRS), if Bob is recommended
to Alice and she likes his profile, this is not enough to be considered a successful
match. An additional constraint is required, namely, Bob should also deem Alice’s
profile interesting enough to like her back. Both of their preferences should be taken
into account, as it does not make sense to recommend profiles to Alice which are
unlikely to like her back.

The extra constraint of reciprocity adds another layer of complexity to a RRS when
compared to a traditional RS. Therefore, aggregation strategies to combine the level of
reciprocity or mutual compatibility between two users based on unilateral preferences
is an active area of research [24, 46, 72]. Other challenges especially prevalent in
the RRS family include: the prevention of biased recommendations following (severe)
popularity imbalance between different users [24], the lack of available datasets to
stimulate more research as a result of privacy concerns, and data sparsity and the cold-
start problem [20]. The cold-start problem is particularly troublesome for a RRSs such
as an online dating platform. It concerns the issue where a RS cannot reliably draw
inferences for a user when it has not yet learned enough information about what they
like yet. Therefore, a matchmaking algorithm which can infer information based on
the explicit information in user profiles is desirable, rather than one that requires usage
data in the form of ratings. Some other fields besides online dating in which RRSs are
relevant include recruitment, online learning environments, mentoring, skill-sharing
and social media platforms on which reciprocity can produce better matching between
people [36, 37, 44, 47].

Building and evaluating RRS models requires a sufficient amount of high-quality
data (i.e. data of both user-system and user-user interactions, user-related information,
etc.). The vast majority of evaluations of RRSs, specifically those in the online dating
realm, rely on corporate data. For that reason, this thesis will be done in the context of
the Breeze dating app1. Breeze sets itself apart from other dating apps by not allowing
its users to chat at all. Once two people match, they immediately go on their first
physical date. As a result, Breeze users cannot endlessly swipe through an infinite
list of recommendations, as there is only limited availability for the number of dates
which can be planned. Instead, they are only presented with a few profiles each day.
Accordingly, Breeze’s matchmaking algorithm is paramount, even more so compared to

1https://breeze.social/

https://breeze.social/
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other dating apps. Unfortunately, the limited number of suggestions also exacerbates
the cold-start problem, as the system learns the user’s preference at a much slower pace.

One source of untapped potential are the free-text portions of user profiles, which
consist of personal bios, and open-ended questions which the users can answer. This
section of the profile allows users to describe themselves and what they like in their
own words, but also provide an indication of what they are looking for in a partner.
Answers can range from a few words to several sentences, and represent a source of ex-
plicit information given by the user. Fiore et al. found that the free-text components of
a user profile are important factors in determining its attractiveness [17, 18]. Tyson et al.
showed that profiles on Tinder without bios got significantly fewer matches than pro-
files with one [64], which also indicates users utilise the information present in free-text
portions of user profiles. It is not difficult to see that there can be invaluable informa-
tion present in these, currently unused, free-text profile sections that say a great deal
about the person’s interests and traits. Additionally, using this information presents an
opportunity to learn about the user before they have rated the first suggested profiles,
potentially alleviating the cold-start problem.

Recently, the field of Natural Language Processing (NLP) has been revolutionised by
self-supervised pre-trained language models. This approach first uses self-supervised
pre-training of a neural model on a large varied corpus of unlabelled text. This allows
the model to extract semantic information and relationships from general text data. Af-
terwards, these language models can be fine-tuned for specific NLP tasks or particular
domains. The most famous language model is BERT [15], which achieved state-of-the-
art results when it was initially released. The introduction of BERT spurred a wave of re-
search on pre-trained language models. Its derivatives, such as RoBERTa [38], still per-
form extremely well in several general language understanding tasks2. None of these
models have been applied to RRSs before in literature, though. This work aims to fill
that gap.

In our research, we intend to extend existing approaches to RRSs with pre-trained
language models using semantic information present in the free-text portions of user
profiles. The proposed approach will be tested on real-world data. Altogether, the
research questions we aim to answer in this work are as follows:

• RQ1: How can textual data from profiles be leveraged to suggest attractive user
profiles in a reciprocal recommender system?

– RQ1.1: Is there a difference in the effectiveness of the utilisation of the
various kinds of free-text data (e.g. bios, open answers)?

2The General Language Understanding Evaluation leaderboard is full of pre-trained language models:
https://super.gluebenchmark.com/leaderboard

https://super.gluebenchmark.com/leaderboard
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• RQ2: How can language models be used in a reciprocal recommender system,
and which technique performs best?

– RQ2.1: Can a language model help circumvent the cold-start problem?

The main contribution of this work is twofold:

• User research to discover what Breeze users generally look for in suggested user
profiles, what they deem important, and how they judge free-text profile sections.
Subsequently, these findings were used to inspire the design of:

• LoveBERT, a novel, generalisable model build with fine-tuned language model
components designed for reciprocal matchmaking systems.

The rest of this thesis is structured as follows. First, we discuss the background and
related work in Chapter 2. Then in Chapter 3, we discuss the user research performed
and introduce our novel approach to matchmaking at Breeze. In Chapter 4, we describe
the setup of our experiments and analyse our results. Chapter 5 contains a discussion of
the limitations of our work, and describes some avenues we explored that garnered no
meaningful results. We also discuss the practical implications of this work. Finally, we
conclude the thesis in Chapter 6 and provide some recommendations for future work.



Chapter 2

Background

In this chapter, we provide background information and an overview of relevant related
works. First, we take a look at recommender systems and describe some of the most
widely used approaches. Next, we zoom in on the reciprocal subset of these systems.
Finally, we discuss literature on extracting semantic meaning from short pieces of text,
and discuss related works.

2.1. Recommender Systems
In this section we provide an overview of the fundamentals of Recommender Systems
(RSs). RSs rose in popularity primarily throughout the advent of web 2.0. With the
massive amount of user-generated content available, users can easily be overwhelmed.
RSs are the solution presented to the problem of such information overload [50]. The
goal of a RS is to produce a list of recommendations to be presented to a user, where
these recommendations are useful to the user for the accomplishment of a certain task
[60]. The task can be anything, from the navigation to relevant web pages [35], browsing
a catalogue of items to buy [9, 68], explore learning resources [14] or find people to
socialise or collaborate with [31, 49, 55, 62]. In essence, the goal of a RS is to predict
user-item preferences (i.e. how much a user likes some previously unseen item) and
recommend the items which are probably liked most by the user.

Palomares et al. formally defined in [47] an item-to-user RS as follows:

Definition 2.1.1 (Item-to-user RS [47]). Given a user x ∈ U , a recommender R(x) is
a system that recommends a list of items R ⊂ I such that the (predicted) degree of
preference px,i by x towards every item i ∈ R is stronger than the preference degree
by x towards any item i ′ ∉ R:

RI (x) = {
i : px,i > px,i ′ ,∀i ∈ R,∀i ′ ∉ R

}
(2.1)

with R being the list of recommended items for x.

5
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Items are not the only things which can be recommended, though. Especially
since the rise of social media, there is a plethora of platforms which connect people
in different ways. To accommodate user to user recommendation, we extend definition
2.1.1 to formally define unidirectional user-to-user RSs.

Definition 2.1.2 (User-to-user RS [47]). Given a user x ∈ U , an unidirectional user-
to-user RU (x) is a system that recommends a list of users y ∈ R ⊂ U such that the
(predicted) degree of preference px,y by x for every y ∈ R is stronger than the preference
degree by x towards any other user y ′ ∉ R, and also y 6= x for every y ∈ R:

RU (x) = {
y : px,y > px,y ′ ,∀y ∈ R,∀y ′ ∉ R, y 6= x

}
(2.2)

with R being the list of recommended items for x.

In order to generate the list of recommendations, generally, the RS has to learn
something about the user’s behaviour. However, when a new user joins the system, the
RS cannot know anything about their preferences yet. This is known as the cold-start
problem [33] which will be expanded upon in Section 2.1.2.

The context of this work is the online dating app Breeze. In this app, users are
presented with a list of recommendations of people who they might want to date every
day. However, a date does not get planned immediately when such a recommendation
is liked. It is important that both sides like each other. There must be mutual interest.

2.1.1. Reciprocal Recommender Systems
RSs in which users are suggested to other users, but a successful match only occurs
when both parties of the recommendation like each other are called Reciprocal Recom-
mender Systems (RRSs). This term was coined by Pizzato et al. in 2010[49]. Their work
is widely seen as the foundational work specifically focusing on RRSs. An example of a
scenario where a RRS would be applicable is an employment recommender system in
which potential employees are looking for job positions, offered by employers in need
of suitable employees. Both of these parties need to be satisfied before a recommen-
dation can be seen as successful. Other examples include recruitment systems [21, 36,
37], skill-sharing platforms [44] and online learning environments. However, the vast
majority of RRS research, as well as this work, addresses a specific domain in which
RRSs are imperative: online dating platforms [23, 24, 30, 49, 55, 62, 72, 73].

There are several factors that differentiate a RRS from a traditional RS. An overview
of the largest differences is provided in Table 2.1. To further illustrate these differences,
we build upon our example of Alice and Bob from Chapter 1. As said before, reciprocity
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Traditional Recommender System Reciprocal Recommender System

Success is determined solely by the user receiv-
ing recommendations.

Success is determined by both sides of the rec-
ommendation.

Successful recommendations are likely to re-
tain users for more recommendations.

Successful recommendations may cause users
to leave the system.

Users build rich implicit preference profiles
through usage history.

Users can leave the system after a short time,
and often do not build a rich history of implicit
information. Cold-start problem is therefore
particularly critical.

Users tend not to provide detailed explicit user
profiles.

Users expect to provide detailed user profiles.

Same recommendation can generally be made
to many users.

Due to limited availability, one user cannot
be recommended to a large number of other
users.

It is allowed that some items are never recom-
mended.

It is important all users are part of recommen-
dations, or they might leave the system dissat-
isfied.

Small portion of recommendations can be of
poor quality.

Poor recommendations should be avoided, be-
cause users may suffer if they are rejected re-
peatedly.

Users expect a large number of decent recom-
mendations. Quantity is more important.

Users expect a few high-quality recommenda-
tions. Quality is more important.

Table 2.1: Major distinctions between traditional and reciprocal RSs.
Builds on the work of Pizzato et al. [49]

is a factor in RRSs. Therefore, success is determined by both sides of the recommen-
dation which makes success more rare. However, this also means that a successful rec-
ommendation may cause users to leave the system. For example, consider a traditional
RS like Netflix’s movie recommendation. When Alice gets very good suggestions for
content to watch, she will be impressed and keep coming back for more apt recom-
mendations. On the other hand, in a RRS like Breeze, when Alice and Bob are perfectly
matched they will go on a date, start a serious relationship, and live happily ever after.
Alice and Bob will likely never return to the system. This is also the case for other RRSs
such as job-seeking platforms. This is not an absolute truth, as some people will be in
need of several jobs or seek multiple partners.

However, a consequence of this characteristic is that RRSs should consider that the
accumulation of implicit information might end abruptly. Another reason Alice or Bob
might leave the system is because they are dissatisfied with the system’s performance.
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The key takeaway is that it can be very difficult for the system to distinguish between
these two cases. At any rate, the cold-start problem, which will be explained further
in the next section, is especially acute for RRSs. Luckily, new users, like Alice and Bob,
are much more inclined to provide a RRS with a lot of explicit information. They are
expected to complete a detailed user profile containing information about themselves
and their ideal partners. For example, by answering closed questions about attributes
such as gender, age, sexual preference and location. Generally, Alice and Bob will also
provide more complex data such as photos and free-text descriptions of themselves
called ‘bios’. These kinds of elaborate users profiles are rarely present in traditional RSs
such as movie recommenders.

The next big difference concerns overwhelming people with options. In a movie
RS, it is no problem for the same movie to be recommended to several dozen, or
even thousands, of people. However, in a RRS such as Breeze, the same user, say
Alice, should not be recommended to a large number of people. First of all, she can
only select a handful of people to date in a reasonable time frame. Additionally, say
Alice was recommended to Bob, Charles, Daniel, Edgar and Frans, who were all great
matches. When that results in five matches in a short time span, Alice could easily
become overwhelmed and stop responding to all of them. Conversely, if Alice is never
recommended to anyone at all, she will definitely experience the platform negatively,
as her efforts in finding a match would be fruitless. Yet, if a certain movie is never
recommended, it would generally be fine. Therefore, balance is key in the number of
recommendations in RRSs.

Another important distinction lies in the quality of the recommendations. In tradi-
tional RSs, a user can easily skip over a few bad recommendations and give no second
thought to them. However, this is different in RRSs due to the aforementioned limit on
the number of recommendations. Specifically, when Alice receives a set of poor recom-
mendations which would never reciprocate, this can be very discouraging and upset-
ting. For this reason, quality is more important to RRSs when compared to traditional
RSs.

Given all these characteristics, let us extend the definitions from section 2.1 and
formally define a RRS.

Definition 2.1.3 (Reciprocal Recommender System). Given two users x, y ∈ U , x 6= y ,
let x be the subject user who uses the system to receive recommendations, and let y
be an object user who is susceptible to being recommended to x where y ∈ R ⊂ U .
A reciprocal recommender, denoted by RRU (x), is a system which combines two
unidirectional user-to-user recommenders (see Definition 2.1.2) RU (x) and RU (y),
with the goal of simultaneously satisfying the interests of both x and any y ∈RRU (x).
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RRU (x) = {
y : y ∈RU (x) and x : x ∈RU (y)

}
= {

y : px↔y > px↔y ′ ,∀y ∈ R,∀y ′ ∉ R, y 6= x
} (2.3)

where px↔y is the measure of mutual interest or compatibility (reciprocity) between
users x and y , obtained using some aggregation function ϕ, i.e. px↔y =ϕ(px,y , py,x).

2.1.2. The Cold-start Problem
The cold start problem is a potential problem that affects RSs. It relates to the sparsity
of information available to the recommendation algorithm, making inference difficult
[33]. As mentioned before, this problem is especially serious in RRSs, because users will
leave the system more easily [49]. Generally, the cold-start problem is divided in three
different cases: new community, new item and new user [6]. The new user variant
is particularly relevant in our case. When a new user joins a system such as Breeze,
they have not liked any profiles yet. As a result, they cannot receive any personalised
recommendations based on their past behaviour; there is simply no data available.
In other words, there is no implicit information to go on. Even after the initial few
ratings, the data is generally too sparse to make Collaborative Filtering approaches
reliable, because as section 2.1.3 will explain, those rely on the presence of such implicit
information. Therefore, initially, it would be better if recommendations were based on
explicit information present in the user profiles. Such approaches tend to be Content-
based. Section 2.1.3 will elaborate on these different approaches. Our approach also
works like this, as it leverages static information from user profiles. We describe our
approach in more detail in section 3.2.2.

2.1.3. Taxonomy of Recommender System Approaches
In most literature, (R)RSs are divided into three main categories: collaborative filtering,
content-based filtering and hybrid approaches [5, 47, 50]. To provide a baseline un-
derstanding of each of these main families of algorithms within the scope of RSs, we
provide an outline of their basic principles and core ideas.

Collaborative filtering
Collaborative Filtering (CF) approaches are the most influential and widely used recom-
mendation technique [19, 42, 50]. CF approaches generate recommendations based on
similarities between user behaviour. It is based on the basic assumption that people
who had similar preferences in the past will also prefer similar things in the future [50].
CF approaches determine the relationships between different users, and the interde-
pendencies between recommended objects, be it items or people [19]. At its core, this
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is achieved through the use of implicit preference information gathered by the system,
i.e. active user ratings and other behavioural data. This can be represented as a matrix
in which each cell represents the user rating of a particular item or other user. In gen-
eral, CF approaches rely heavily on the availability of sufficient behavioural user data.
Their performance depends on adequate rating information, as this is the information
used to generate the recommendations. Therefore, it is particularly affected by the cold-
start problem [6, 19]. CF is also sometimes aptly called a people-to-people correlation
[50].

Resnick et al. [54] developed the first CF approach for a RS, called GroupLens. It was
built to recommend articles to ‘Netnews’ clients. It produced recommendations using
the rating server, which predicted scores based on the heuristic that people who rated
similarly in the past will probably give the same rating again.

More recently, CF has also successfully been applied to RRSs. Cai et al. [8] were the
first to capture the reciprocal role of user interactions within a social network. They for-
mulate a neighbour-based CF approach enabling people-to-people recommendation,
called SocialCollab. In their model, users can be similar to others in two ways: having
similar ‘taste’ in other users of the system, or having similar ‘attractiveness’ from other
users who liked them. More concretely, if two users x and y both like several users
z1, z2, ..., zn , then x and y have similar taste. Likewise, if two users x and y are liked by
several other users z1, z2, ..., zn , then x and y have similar attractiveness. Accordingly, y
should be recommended to x when y likes people with similar attractiveness to x, and
when people with similar taste to y like x.

Xia et al. [72] introduce similarity measures, similar to taste and attractiveness,
that capture the unique characteristics of the online dating network. They propose a
generalised RRS that aims to match people with mutual interest. The general procedure
consists of two steps: first preference fusion, where the reciprocal preference px↔y is
calculated using the harmonic mean; then filter for and recommend top-k users with
the highest reciprocal preference. This approach is relatively simple to implement and
understand, but it bears a high computational and temporal cost on large datasets.

Never et al. [45] introduce a model-based CF method for RRSs that determines
latent user attributes. The basic idea of this approach is that there are two preference
matrices: female-to-male preferences and male-to-female preferences. Subsequently,
a latent factor model is trained for each matrix through matrix factorisation. Finally,
the preference px↔y is estimated by taking the resulting dot product of the two latent
vectors. It boasts similarly promising performance to the approach by Xia et al. [72], but
with better efficiency, allowing for real-time recommendations even on large datasets.
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Content-based filtering
At its core, Content-Based (CB) recommendation is based on item descriptions or user
profiles containing characteristics. In traditional user-to-item systems, CB approaches
generate recommendations based on previously liked, bought or watched items [19,
50]. User models are generated from previously picked items by characterising users
according to the item attributes. Items are then recommended to the user based on the
items that are similar to the items they have liked before [42]. In the reciprocal setting,
this is done using similarity between users. Therefore, CB approaches largely rely on
explicit information from user profiles. Examples include profile bios, tags, specific
preferences like age and location ranges, or sexuality and gender. User profiles (or item
descriptions) can be analysed in order to establish a similarity between the objects [5].

There are some clear advantages to CB approaches. Firstly, CB methods tend to be
very explainable. They can provide a clear explanation as to why a certain item or user
was recommended [16], as the logic behind their recommendations is based on specific
attributes of the user (or item). Furthermore, they are less susceptible to the cold-start
problem, as most of the inference is based on explicit information from user profiles
[19]. They are also able to match users with peculiar or extremely specific interests.
There are also downsides, however. CB approaches can run into scalability issues, as
all users in the system have to be examined. Although in the reciprocal setting, this can
be greatly alleviated by the explicit preferences regarding location and range. There can
also be a lack of serendipity in the system [19], where users end up being recommended
things from a filter bubble of extremely similar things. However, this is much more
severe in an item-to-user system than in a RRS.

RECON, the first algorithm for a RRS, introduced by Pizzato et al. [49] used a CB
approach. Their approach is based on the set of attributes of user profiles from users
who messaged each other. RECON is built on two key ideas: (i) building user prefer-
ence models, and (ii) calculating compatibility with unknown users. Concretely, users
preferences towards attributes from other users (e.g. height, non-smoker, eye colour,
etc.) are predicted based on that user’s interaction history with others, e.g. messages
exchanged with users who exhibited specific attributes [49]. Unidirectional preferences
are subsequently aggregated into a reciprocal score px↔y using the harmonic mean.

Liu et al. introduced an employer-graduate oriented RRS in [36] and [37]. One
focused on the employer’s point of view, while the other focused more on the graduate
perspective. In these models, employers were modelled as a set of recently hired
graduates, and vice versa. Both these models were based on profile-to-profile similarity,
where the most similar profiles to positive samples were recommended next.
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Hybrid approaches
The hybrid recommendation approach, as the name suggests, aims to combine sev-
eral different RS methods in order to provide better recommendations than using a sin-
gle technique. Hybrid RSs are generally used to either leverage the power of several
data sources, or to increase the performance of existing RSs within a particular data
modality [32]. The main goal of a hybrid approach is to mitigate the weakness of sev-
eral paradigms (e.g. CF and CB), while capitalising on their complementary strength
in order to build a more robust system [19, 42, 50]. This is achieved by combining key
components from, say, CF and CB techniques into a single approach. There are various
ways to design such a hybrid approach, often resulting in increased complexity of the
system [19].

Akehurst et al. [1] introduced CCR, the first RRS that integrates CB and CF. It
combines the distance metrics from both CB and CF in order to determine interaction
groups (i.e. a list of potential good recommendations) for all users. The CB part is
activated first, which takes into account the distance between users based on profile
attributes. Inside this group of similar users, the CF component is applied that picks
out similar users who like and are liked by similar people.

The work of Rodiguez et al. [55] combines a CB and knowledge-based approach in
their BlindDate recommender. In order to identify potential matches between users,
BlindDate utilises DBPedia1 repositories to obtain information that is used to enrich
an ontology model. In this system, a similarity matrix is built from a multi-graph
conceptual model. The knowledge integration contributes to a higher precision than
non-hybrid baselines, though the specific and complex nature of the model limits its
generalisability.

Hong et al. [21] introduced a hybrid RRS for recruitment. In this system, users are
grouped based on their activity level by a clustering algorithm. Next, the cluster the
user belongs to dictates which of several different filtering approaches is applied. Users
who have logged sufficient activity in the system can rely on a CF process, while more
passive users were served recommendations based on a CB approach.

2.2. Attractiveness in Social Sciences
The vast majority of the previously described approaches all assume that the optimal
candidates to suggest are those most similar to the querier. The idea seems to stem from
more classical RSs, in which it makes sense to recommend similar items to those the
user is actively engaging with. However, we can ask whether this belief holds up for the
online dating domain. Is romantic mate selection in the real world based on similarity?

1https://www.dbpedia.org/

https://www.dbpedia.org/
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There has been some research surrounding this question in the social sciences.
Klohnen and Luo [25] were one of the first to show that self similarity, the similarity

of one’s partner to themselves, is indeed a predictor of attraction. This research is from
before online dating really took off, showing that even before a constant stream of easily
digestible user profiles, people typically tried to find similar mates.

More recently, Hudson and Fraley show that in dating in general, people are mostly
looking for similarities [22]. They found that anxious individuals tend to be more
satisfied with highly similar partners, while avoidant individuals appear to be more
satisfied with moderate levels of similarity. But in all cases similarity between mates
was desired.

Launay and Dunbar concluded the same, showing that having more shared traits
leads to linearly increasing ratings of partner likeability [27]. Moreover, they narrowed it
down to a few specific traits which were especially important, with musical taste, ethical
and political views, ethnicity and religion topping that list.

On the other hand, there is also research that shows no evidence for the similarity
principle [39]. Although, this research was based on the results of high volume speed-
dating only, meaning it does not necessarily represent a real-life scenario.

2.3. Semantic Information Extraction from Text
The science of extracting semantic information from textual data has changed dramat-
ically over the past decade. As the preferred name of this field gradually shifted to
Natural Language Processing (NLP), the methodology used has changed significantly
as well. The field has moved away from simpler probabilistic language models to self-
supervised pre-trained language models as a basis for a wide range of general language
understanding tasks aiming to extract different valuable insights from raw text.

One of the most famous language models is BERT [15], developed by Google re-
searchers. BERTs model architecture is a multi-layer bidirectional Transformer encoder
based on the original implementation described in Vaswani et al. [65]. BERT’s release
together with its impressive results kickstarted a new wave of research on pre-trained
language models, paving the way for auto-regressive models like GPT-3 [7], transfer
learning models like T5 [51], and models which fuse these methods like BART [29] and
ERNIE 3.0 [61].

One thing that all these works show is that language models are very powerful. They
are extremely effective at extracting semantic information from texts, oftentimes even
beating human performance2 Therefore, a system which has text data available that can

2For example, in several different tasks of the General Language Understanding Evaluation set: https:
//super.gluebenchmark.com/leaderboard

https://super.gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard
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be analysed presents an opportunity to leverage said text data to improve the system’s
performance. The Breeze dating app is such a system, where users can write a short
bio about themselves, and answer several open-ended questions freely. Furthermore,
there are several other RSs which have successfully utilised NLP techniques in order to
improve recommendations, which indicates there is ample opportunity to incorporate
NLP techniques in the Breeze matchmaking process.

2.4. Related work on NLP techniques in Recom-
mender Systems

There are several works which have attempted to incorporate different NLP techniques
to recommendation algorithms. We provide a brief description of the most relevant
ones, and explain how they relate to our work.

Musto et al. [43] extended a CB approach for an item-to-user RS by using word
embeddings learned from Wikipedia articles. This approach links each item to its
corresponding Wikipedia page, and builds an item embedding by taking the average
of all word embeddings from the (pre-processed) Wikipedia page. Different techniques
were used to retrieve word embeddings, with Word2Vec [12] performing best. Then,
user profiles were created for each user by taking the average of all their previously liked
items. The system’s recommendation list was generated by taking the item embeddings
closest to a user profile. The authors evaluated their system on two datasets: one
containing movies and the other containing books. Their results were in line with
state-of-the-art CF approaches, which usually achieved higher performance than CB
approaches. A downside of this approach is that it still requires a lot of historical data
to build reliable user profiles, and therefore does not solve the cold start problem. The
naive averaging of embeddings also allows for noisy results.

Wang et al. [67] introduced a CB RS to suggest the ideal conference or journal for
computer science publications. It works with the term-category principle, where cate-
gories can be distinguished by specific important terms. In this context, a conference
or journal is a category, and important terms appear in abstracts from the publications.
The system uses the chi-square statistic to measure dependence between the terms and
each category, in order to determine the most distinctive and defining terms for each
category. These terms are subsequently used to build feature vectors for each category.
A recommendation for the closest category for a publication is then found based on
the tf-idf measure of the terms in its abstract. This biggest disadvantage of this work is
the need for predefined categories, which makes it difficult to generalise to different do-
mains such as this thesis. Additionally, it relies on much longer texts than the generally
short user profile bios. Therefore, this approach does not translate well to the online
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dating domain.
CoupleNet, introduced by Tay et al. [62], is a hierarchical recurrent model utilising

multi-layered attentions at different hierarchical levels, which recommends two Twitter
users to explore a romantic relationship. The recommendations are based on text data
in large social media platforms like Twitter. Tweet embeddings are generated for all
tweets from a user using word embeddings and attention layers. A coupled attention
layer between users using their respective tweet embeddings is subsequently used to
calculate user embeddings, which are then compared using cosine distance. Finally,
nearby users are recommended as potential mates. While CoupleNet significantly
outperformed all baselines in terms of precision, the positive labels used for training
and tested were inferred from the type of language used in tweet (e.g. "I love you
@user1234" is labelled as people in a relationship). Such data is difficult to confirm, and
might not represent the ground truth. Although this architecture is very interesting, it
requires a lot of data (i.e. tweets) per person to build a representative user profile. It
is therefore quite difficult to implement on the comparatively limited user profiles in
dating apps such as Breeze.

In [69], Wang et al. introduce a sentiment-enhanced RS for movie recommendation.
Their system builds on a relatively straightforward CF approach, but incorporates re-
view data in the pipeline. The core idea is that the recommendation rank of a movie for
user x is influenced by positive or negative sentiment in movie reviews made by similar
users to x. Such an approach is clearly geared towards item-to-user RSs, which means
it is non-trivial to incorporate it in a dating app such as Breeze. One could incorporate
the sentiment of the profile bios in the matching algorithm, although this would add
little information due to the binary distinction (i.e. positive or negative). An interesting
approach could be to introduce an (anonymous) review functionality after users have
matched and been on a date, but this is out of scope for this thesis.

In the context of skill-sharing platforms, Neve et al. [44] presented a hybrid ap-
proach to reciprocal recommendation. It describes a RRS that facilitates the matching
of users in a recipe sharing service called CookPad.3 On CookPad, users can connect
with each other, public recipes can be shared, and users can indicate content prefer-
ence indicators. The basis of the algorithm uses the Jaccard Index4 to calculate user
similarity based on liked recipe overlap. However, the Jaccard Index only accounts
for co-occurrences of exactly the same item, while there are many recipes on the plat-
form which are very similar, but not identical. For example, Alice might like a potato
omelette recipe, with Bob liking a Spanish potato omelette recipe. In order to also in-
corporate such recipes, the system uses word embeddings to detect similar (but non-

3https://cookpad.com/
4The Jaccard Index is defined as J (A,B) = |A∩B |

|A∪B |

https://cookpad.com/
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identical) recipes. This approach works well with the inherent amount of overlapping
words in similar recipes (especially because of lists of identical ingredients), but this
performance does not necessarily transfer to the user profile domain due to their var-
ied nature. We need a more sophisticated comparison method than comparing all word
embeddings with each other, like a language model such as BERT [15].

One example of an item-based CF approach utilising BERT was introduced by Wang
et al. [68]. Their work is set in the context of Ebay, where items to be purchased next are
recommended to users. It works by using the next sentence prediction component of
BERT, by feeding it the seed item as sentence A, and target item as sentence B. Positive
samples are defined as items purchased within a single user session, and negative
samples are randomly sampled. The BERT model then predicts a next item to offer
the user based on an input. This approach is interesting, but difficult to apply to the
online dating setting. There are no clearly defined user sessions in a dating app, so it
would be difficult to extract positive training samples.

Quite recently, Malkiel et al. [40] introduced RecoBERT: a BERT-based approach
for learning catalogue-specialised language models for text-based item recommenda-
tion. They train a BERT-like language model using title description pairs as the input,
and create feature vectors based on the embedding sequence output of BERT. Through
this procedure, the model can score similarities between pairs of items, without the
need for item similarity labels. The final recommendations are generated by incorpo-
rating four cosine similarity scores (all combinations of seed title and description, and
candidate title and description). RecoBERT boasts state-of-the-art performance, and
can infer text-based item-to-item similarities more accurately than other techniques.
One obstacle in translating this approach to the online dating setting is that RecoBERT
requires two separate information points (title and description), as it also utilises the
relationship between those two. Such information is not present in Breeze data.

However, we can still use the general idea of fine-tuning a language model (LM)
using free-text data belonging to the objects in the catalogue. To that end, we introduce
LoveBERT: the matchmaking algorithm leveraging LMs. LoveBERT is built up from
several LMs, similar to RecoBERT. However, the LoveBERT components are all fine-
tuned on specific profile sections of users. For this, we use historical data of suggestions
made where likes are counted as positive samples, and the profile sections of both
the querier and candidate profile are the input of the LM. LoveBERT is extensible by
design, and works on any user-to-user RRSs with discernible free-text profile sections.
We elaborate further on the design of LoveBERT in section 3.2.2.



Chapter 3

Building a Matchmaking
Algorithm at Breeze

The goal of our study is to build and evaluate a new matchmaking algorithm for Breeze
which exploits the text data present in user profiles. In essence, this translates to the
NLP task of producing a label, i.e. whether two people are a match or not, based on
some textual input, i.e. the user profile texts. As discussed in Chapter 2, Language
Models (LMs) deliver state-of-the-art performance in such NLP tasks, and are therefore
the most promising avenue to explore. For that reason, our algorithm should utilise
a LM that takes a user’s bio and answers to questions as an input, and produce a list
of recommendations of other users consisting of potential romantic partners based on
their ‘match score’. In this section, we describe the design process of our proposed
matchmaking approach. Additionally, we introduce LoveBERT: our novel LM designed
specifically for RRSs in online dating. First of all, we describe the survey designed to
better understand the behaviour and motivations of users. Then, we characterise the
data and the different ways it is used. Lastly, we present the final design of LoveBERT.

3.1. User Research
Before we design our LM, it should first be understood how users make their decision.
What do they deem important when rating profiles? How do they judge bios and the
answers to open questions? What should be in them? To this end, we designed a survey
which was sent to a portion of active users of Breeze.

3.1.1. Methodology
The survey design is primarily based on information from ‘Introduction to Survey
Quality’ by Biemer and Lyberg [4] and the Pew Research Center [71], which has helped
with the phrasing of questions, order and scope of answers, and how to approach
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participants. The survey was held online as a Google Form. The full survey, including
all answers and results, has been published online1.

Question design
The survey was divided into three sections: questions about user profiles in general,
questions about bios specifically, and questions about open answers. The goal of the
profile questions was to determine the importance of each user profile section, and
whether they have to be similar to one’s own profile. For this, a Likert-type scale [34] was
used as this is the most widely used approach to scaling responses in scientific surveys.
For the bio and open answer questions, the main goal was to establish what ‘kind’ of
bio or answers people want to see on other profiles, as well as what they have on their
own profiles. Additionally, people were asked whether they have a bio at all (as this is
not a required profile section), including their reasoning for one or not. For questions
where it made sense, answer options were randomly shuffled for each participant, so as
to avoid bias for a certain option. There were several open questions to allow people to
give specific reasoning for some of their motivations and desires.

Participants
The link to the survey was sent to a subset of active users of Breeze through the in-
app help desk. The subset was created by randomly sampling users active in the last
month, with the only constraint being that they had not already been actively contacted
by Breeze recently for a different kind of input. Additionally, the link to the survey was
included in one of the marketing mails sent to people who have chosen to receive those.
In total, it was sent to roughly 800 people, which represented around 5% of the weekly
active userbase at the time. Participants had to actively opt-in to participate in the
survey by clicking the link and completing it. In the end, there were 46 respondents who
completed the survey. There was no direct incentive offered apart from the opportunity
to help improve Breeze’s matchmaking.

The opt-in nature of the survey resulted in a set of respondents based on conve-
nience sampling [4], a form of non-probability sampling usually inferior to e.g. random
sampling. However, Vehovar et al. present numerous examples of successful and cost-
effective implementations where it works in practice [66], especially when the survey
does not concern a divisive issue, so we accept this outcome. Furthermore, figure 3.1
shows the age distributions of the survey participants, as well as the overall userbase
age distribution. The respondents appear to accurately portray the overall userbase.

1https://bit.ly/3Q9qkoi

https://bit.ly/3Q9qkoi
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Figure 3.1: Age distribution of overall userbase and of the survey participants. Outliers are hidden for
visual clarity.

3.1.2. Key Results
The survey results let to several key insights about user profile data. The first question
asked, for each section of a user profile, how important it is in making the decision on
whether or not to like the suggested profile.

As can be seen in figure 3.2, the pictures are overwhelmingly the most important
aspect. This was to be expected, as looks are the first thing people look at on online
dating apps [17, 18], and also the biggest part of the profiles visually. In fact, it is the
only thing users see if they do not click on a profile to investigate it further. Second
place goes to the interests tags, which also makes sense, as people tend to want their
potential partner to have similar interests and hobbies, as we show in section 2.2. After
that come the personal attributes, which are things such as age, living location and
height. These attributes can be limited by the users in the app. While suggestions are
never made outside the limits set by people, these factors can still play a significant
role in deciding whether or not to date people. For example, if Bob’s age range is set to
20-26, a profile of a 28 year old will never be suggested. However, Bob may still prefer
someone in the 22-24 range over younger or older people. The free-text portions of the
profiles achieve the lowest importance rating, with the bio being deemed slightly less
important than the open answers. This can partly be explained by the fact that the bio
is a relatively recent feature (since late December 2021), so not nearly all profiles have
one.

Although people seem to not care about the bio that much, once we consider the
data, it interestingly shows that having a bio significantly improves the match rate.
Overall, the match rate of suggestions is 0.66%. When we consider suggestions in which
one of the two parties has a bio, the match rate increases to 0.76%. Moreover, the match
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Figure 3.2: Likert scale of the importance of each different section of a user profile.

Suggestions # of suggestions # of matches match %

All 5,314,152 35,110 0.660%
One user with bio 1,509,041 11,437 0.758%
Both users with bio 113,197 1,232 1.088%

Table 3.1: Overview of match percentages for suggestions with and without bios

rate of suggestions where both users have a bio is 1.09%, an increase of roughly 65%. An
overview of this is given in table 3.1. Fiore et al. showed that the bio is a very important
aspect of user profiles [18], and increases desirability [17], and our data confirms this,
even though people may not actively realise it.

The second question asked whether people mainly look for similarities or differ-
ences in suggested user profiles. As mentioned in section 2.2, Hudson et al. show that
in dating in general, people are mostly looking for similarities [22]. Launay and Dunbar
concluded the same, but narrowed it down to a few specific traits which were especially
important (i.e. musical taste, political/ethical views, hobbies and preferred jokes) [27].
Although, there is also research that shows no evidence for the similarity principle [39].
Our results appear to mimic that of the previous research. We found that people do
indeed mainly look for similarities in suggested profiles, with 28 of the respondents
(60.9%) indicating they look for similarities, and only 2 people (4.3%) actively looking
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for differences. The remaining 34.8% had no preference. Therefore, we conclude that if
people are looking for anything, they overwhelmingly look for similarities.

Bio
The following few questions all pertained to the bio. Together with the Breeze team, a
list of the different types of bio was devised, and users were asked which kind of bios
they preferred. More than one type of bio could be selected, so people did not have to

Figure 3.3: Bar chart of the different types of bio, showing how many people like each type.

choose between their preferences. Figure 3.3 provides an overview of the different types
of bios. It does not show a clear ‘winner’ in terms of what bio is universally liked most,
however there is a clear loser: a bio describing what the user is looking for in a partner.
From this, we conclude that in general, a bio should describe the user. This is further
confirmed by answers to an open question from the survey which asked, "What are you
looking for in the bio on suggested profiles?". Some answers include:

"Something fun and that someone had put in a little effort to showwhat
she likes/does/cares about etc."
"Something that shows the person's humor and general 'vibe'."
"Something that tells about themselves. Could be funny, serieus [sic],
personal or something they like doing."

The full list of responses can be found in the online publication of the results.2

Although there seems to be no dominantly preferred type of bio, preference is not
equally distributed among users. There are several correlations between the prefer-

2https://bit.ly/3Q9qkoi

https://bit.ly/3Q9qkoi
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Figure 3.4: Correlation heatmap of the relationship between the different types of bio.

ences of users, as shown in figure 3.4. First of all, a funny bio has a relatively strong
negative correlation with all other types of bio. This indicates that people looking for a
funny bio tend to be less interested in actual information about the person. Inversely,
people who are looking for the others’ interests, lifestyle, and particularly personality
do not prefer a joke or funny bio. Another relatively strong correlation can be found be-
tween a personality bio and an interests bio. This combo is further evidence that people
want descriptive bios, characterising the person. A lifestyle bio also correlates with per-
sonality, probably because one’s lifestyle can also paint a picture of what they are like.
Lifestyle bios also correlate with a ‘what are you looking for’-bio. This makes sense, as
describing what you are looking for also gives some hint as to what your lifestyle might
be.

Participants were also inquired about the length of bios. Figure 3.5 shows that the
length of a bio does not seem to matter too much. When it does matter, opinions are
divided roughly equally between the two options. Therefore, the bio length is difficult
to meaningfully employ in a matchmaking approach.

As the bio is an optional, relatively recently introduced profile section, not every
user has one. Of the surveyed people, 18 people (39.1%) had a bio at the time of filling
in the survey, which is roughly in line with the ratio of the total active userbase (∼35%).
People with a bio tend to be older than those without one, as can be seen in figure 3.6,
which also holds up for the overall active userbase. This again confirms that the survey
participants are a representative sample of active users.
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Figure 3.5: Opinion on the length of a bio, and whether it matters or not.

Figure 3.6: Age distribution of participant user profiles with and without a bio.

The participants who have a bio were also asked what type of bio they have them-
selves. Multiple options could be chosen, as multiple can be applicable. Most peo-
ple provide a description of their interests in their bio. A complete overview of the
responses is given in figure 3.7. People seem to want to describe the things they like.
It makes sense that people want to write what they are passionate about, and coinci-
dentally is also what others are generally looking for in a bio. This may be one of the
reasons why profiles with a bio have a significantly higher match ratio, as seen in table
3.1. A larger fraction of the participants, as well as the active userbase, does not have a
bio on the profile. These people were presented with a different section of the survey
asking about their lack of bio. The predominant reasons people do not have a bio are
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Figure 3.7: Bar chart of the different types of bio, showing how many of each type is present in people’s
own bios.

because they simply do not know what to put in it (53.6%), or think it is too much effort
(17.9%). The open questions provide a specific prompt that the user can answer directly,
while the bio is completely up to them. Therefore, it does require more creativity to fill
it in. Another often-mentioned reason was that some users think it makes the profile
too serious, especially by people under 30. Some examples of what people answered
include:

"It is really difficult to think of what to write in your bio. Maybe need
more hints"
"I feel like itmakesmyprofile too serious and I don't knowwhat Iwould
write there."
"Because I analyse other people’s bios closely, I’ve put too much pres-
sure on writing my own bio! :’) But I wish to add one soon."

Again, the full list of responses can be found in the online publication of the results.3

As the first response suggests, it might be worthwhile to provide some form of guidance
when editing a profile suggesting what to put in your bio, for example using the data
from figure 3.3.

Open questions
The final section of the survey asked about the open questions people can select and
answer on their profiles. Users can select any number of the predetermined twenty-
one open questions present in the app to answer freely, which will subsequently be

3https://bit.ly/3Q9qkoi

https://bit.ly/3Q9qkoi
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shown on their profile. Participants were asked to describe what they are looking for in
open answers in their own words, and pick from some predetermined ‘types’ of answers
again. As can be seen in figure 3.8, an overwhelming 89.1% of people want the open

Figure 3.8: Bar chart of the different types of open answers showing how many people prefer each type.

answers to paint a picture of what the person is like. A little over half of people are
also looking for humour in the answers, again positively correlated with younger users.
Participants were also asked directly whether or not the answers should be serious,
funny, or a mix of both. In this case, 73.9% of people wanted a mix of both. So answers
should still provide some insights about the user, and not just be a joke.

Another question asked whether participants look for answers similar to their own
answer to the question. This does not appear to be a useful factor however, as for 69.6%
of people, it depends on the question, and a further 10.9% does not care. Finally, they
were asked what the ideal number of open questions answered on a user profile is, and
how many they have on their own profile. Figure 3.9 shows that 2 to 3 questions appears
to be a good amount in general.
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Figure 3.9: Responses regarding number of open questions on a user profile. Left shows the ideal
number to include on a profile. Right shows how many answers the respondents have on their own

profile.

RQ1 Conclusion

RQ1 asks how textual data from profiles can be leveraged to find similar
user profiles in a reciprocal recommender system. We observe that there are
several ways to do this. Firstly, as the survey showed, people who describe
their own interests and hobbies are responsive to bios and open answers
which describe the others’ interests and hobbies. This also presents potential
in the link between different profile sections, rather than only comparing the
same section.
Crucially, we observe from the survey results that people are indeed over-
whelmingly looking for similarities in the suggested user profiles on Breeze.
As research also backs up that similarities tend to attract, we conclude that
attempting to match two similar profiles is the correct approach in a match-
making algorithm. Considering people are looking for similarities, we can
feed the bio and open answers into a LM which can find similarities inside
these profile sections. The most similar profiles are subsequently the best
candidates to suggest.
Another observation is that the, generally older, users with serious bios are
more interested in others who also have a more serious bio. Conversely, the
same hold for mainly younger users with a funny or jokey bio. Therefore,
we could use some form of humour detection to give each profile a ‘humour
index’, and match people with similar scores.
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3.2. Matching Two Lovebirds
Now that we have an idea of what the users are looking for, we present the final design of
our matchmaking algorithm. The procedure of matching two users together is divided
into two parts. First, we discuss our approach of finding the most similar users, which
is increasingly important as the size of the system (i.e. userbase) grows. Second, we
provide an outline of the final design of the LM at the core of our matching algorithm.

3.2.1. Finding Similar Plumage
Our goal is to find similar user profiles based on their bio and open answers, resulting
in a fully content-based (CB) approach. To achieve this goal, we will create profile
embeddings which are, in essence, a neural vector representation of all the textual
data of a user profile. Such embeddings are ubiquitous in the field of NLP nowadays,
so it should be a familiar data structure to most. The cosine distance between two
profile embeddings can subsequently be used to determine how well it mirrors user
judgement of similarity, based on the work of Le and Mikolov [28]. In our case, the
profile embeddings will be composed of two components: (i) a bio embedding, and (ii)
an open answers embedding. However, it is important to note that in practice, any text-
based profile section can be incorporated as a component of the profile embedding.

One naive approach would be to simply take the average of all the individual word
embeddings obtained by something like word2vec [41] or GloVe [48]. This approach is
sometimes called Continuous Bag of Words (CBoW). However, CBoW is a suboptimal
approach for several reasons. The order of the words in completely disregarded, it
does not take the context of a word into account, and two sentences with an opposite
meaning can result in the exact same embedding (e.g. "The attractive girl asked out
the shy boy " and "The shy boy asked out the attractive girl"). Basically, the semantic
information present in all the sentences would be lost, while that is very valuable
information. Musto et al. also show it allows for noisy results in their item-to-user RS
[43].

Instead, we want to use the semantic information present in the profile text and use
a context-aware approach. For this, we need transformers [65]; more specifically, we
need BERT [15]. As mentioned in section 2.3, BERT-based LMs achieve state-of-the-art
performance on virtually all NLP tasks, including sentence classification, sentence-pair
regression, and Semantic Textual Similarity (STS) tasks, which are especially relevant
in our context. For sentence-pair regression tasks, which our problem approximately
is, a basic BERT model uses cross-encoder networks where a sentence pair is passed
to the internal transformer network and a target value is predicted. Crucially, however,
a cross-encoder does not produce a sentence embedding, and cannot handle a single
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sentence as input. Rather, a cross-encoder infers the output for each possible pair of
sentences separately.

Unfortunately, this setup can be unsuitable for some pair regression tasks, because
the amount of possible combinations makes computation expensive (O(n2)). Finding
the sentence pair with the highest similarity in a collection of n = 10,000 sentences
would require n · (n − 1)/2 = 49,995,000 inference computations, which would take
about 65 hours even on a modern Nvidia V100 GPU [52]. At the moment, these com-
putations would not be an issue yet for Breeze, as they provide ∼100,000 suggestions
a day. However, scalability is an important factor to keep in mind when designing a
matchmaking system for a fast-growing start-up.

Figure 3.10: Siamese network structure in SBERT with a regression objective function.
The two BERT networks have tied weights.

Therefore, we want an approach which derives fixed-sized embedding vectors that
can be compared using measures such as cosine similarity or Manhattan / Euclidean
distance. Not only are these distance metrics orders of magnitude cheaper to compute,
but the embeddings can also be generated once per sentence (or bio/answer) and
subsequently saved and indexed, further decreasing computation time. We achieve this
by using SBERT (SentenceBERT) introduced by Reimers et al. [52]. SBERT makes use of
a Siamese network structure, initially introduced in the field of computer vision [10]. A
representation can be found in figure 3.10. This is an instance of a bi-encoder, which
does produce an embedding, and can take individual sentences as input. It should
be noted that the BERT component can be substituted by any other LM, as long as it
computes semantically meaningful embeddings. Calculating the embeddings for the
previously described example with 10,000 sentence pairs takes 5 seconds using this
technique, with the running time at inference being reduced to a few milliseconds [52].



3.2. Matching Two Lovebirds 29

What about migratory lovebirds?
Love transcends all borders. Furthermore, Breeze wants to be as inclusive as possible.
Therefore, it is important to be able to match profiles in different languages too. Cur-
rently, the user profiles on Breeze consist of a mix of Dutch and English, with plans to
expand to Belgium and Germany in the near future. Hence, it is paramount that our
matchmaking algorithm is language agnostic.

Figure 3.11: Example of knowledge distillation flow. Given parallel data (e.g. English and German), the
student model is trained to produce embeddings for both the English and German sentences that are

close to the teacher model’s embedding. Image taken from [53].

For this, we use a strategy that transforms monolingual embeddings into multilin-
gual embeddings called Knowledge Distillation, introduced by Reimers et al. [53]. This
approach is based on the idea that a sentence in one language should be mapped to the
same position in the vector space when translated to another language. An overview of
how it works can be seen in figure 3.11. In essence, a monolingual ‘Teacher’ model is
used to generate sentence embeddings on a specific input. Then, a new ‘Student’ model
is trained using these sentence embeddings as a target, for the (translated) embeddings
it generates itself. This way, it uses the same shared vector space for all different lan-
guages.

As we do not have an appropriate dataset available to create a model ourselves for
Breeze, as well as due to time constraints, we use a pre-trained model which was trained
using this technique. Specifically, we use distiluse-base-multilingual-cased-v14, which
supports 15 languages including Dutch, English, French, and German. That is, this
model constitutes the ‘BERT’ block from figure 3.10 in our case.

4An overview of the model can be found at https://huggingface.co/sentence-transformers/
distiluse-base-multilingual-cased-v1.

https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
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3.2.2. LoveBERT: the Language Model for Matchmaking
The downside of using the SBERT bi-encoder as described in section 3.2.1, is that it usu-
ally boasts lower performance than a cross-encoder [63]. A cross-encoder can simulta-
neously compare both inputs, while a bi-encoder has to map inputs independently to
a meaningful global vector space, which is arguably a more difficult task. Nevertheless,
the computational efficiency and ability to save and index the embeddings is simply
necessary for larger systems. Ideally, we want to combine the best of both worlds, where
we capitalise on the efficiency of a bi-encoder, while preserving the performance of a
cross-encoder.

In the context of Breeze, only a few (<15) suggestions per user are made each day.
As discussed in section 2.1.1 and table 2.1, RRSs are tailored towards a low number
of high-quality recommendations: quality is more important than quantity. This is a
typical feature that can be exploited; say there are 50,000 possibilities for suggestions,
then realistically, we only really care about the best 1,000. At the moment, this is not a
relevant problem from Breeze yet because of the size of the userbase, but it will be in
the near future at the current growth trajectory. Regardless, it is important to build a
scalable and expandable matchmaking algorithm.

Finding the top 1,000 ‘best’ suggestions would require calculating all 50,000 scores
when using a cross-encoder, but can be done for much cheaper using the cosine dis-
tance between indexed profile embeddings retrieved from a bi-encoder. Those embed-
dings could be calculated on profile creation (and refreshed on subsequent profile up-
dates). Ergo, the top-k closest profiles are selected using the embeddings retrieved from
a bi-encoder, and the final ranking of this top-k is then decided by a cross-encoder fine-
tuned on profile section pairs, yielding superior performance. This final cross-encoder
used is LoveBERT, our novel LM designed for matchmaking.

LoveBERT Architecture
LoveBERT is a novel, generalisable LM designed for reciprocal matchmaking systems.
It is fully content-based (CB), meaning it does not depend on implicit usage data, and
can therefore be applied immediately to cold (i.e. new) accounts. Not all matchmaking
systems are the same, they can contain different kinds of textual components on user
profiles. Therefore, LoveBERT is built with modularity in mind. The LoveBERT model
architecture and training is illustrated in figure 3.12.

For each text section of a user profile which should be considered by the match-
making algorithm, a separate LM is fine-tuned. In the context of Breeze, this means
one for the bios, and one for the user’s answers to open questions. The answers are
concatenated together to make a single input. These LMs are fine-tuned separately
by taking both positive ("real") profile section pairs from two people who liked each
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Figure 3.12: LoveBERT receives suggested profiles corresponding to positive (matches) and negative
(non-matches) samples, extracted from historical data. During training (a), the relevant profile sections
are propagated through the BERT backbone, fine-tuning it to recognise matches. At inference (b), three
scores are computed and combined to get the final inferred matching score. LoveBERT can be extended

by adding more components to process the relevant free-text profile sections.

other, and negative ("fake") pairs from two users who did not match. These blocks learn
which latent factors influence whether or not two users match based on what they put
in the corresponding profile sections. The base LM used for each component is XLM-
RoBERTa-base 5 [13], chosen for its impressive performance in multilingual modelling
without sacrificing per-language performance. Note that in practice, a different LM
which might make more sense can be substituted as the base for any of the LoveBERT
components.

Additionally, based on the link between different profile sections mentioned in our
RQ1 conclusion, an additional component is also added which is fine-tuned on inter-
sectional data. In this case, the bio and open answers of two people who have matched
are counted as positive samples. This goes both ways, so requires two additional
components. These blocks can learn links between the different profile sections which
might indicate reciprocity.

The final reciprocal preference score of LoveBERT is subsequently calculated by
taking a weighted average of the scores of each component, calculated as follows:

Itot al (Q,C ) =λ1SQbi o↔Cbi o +λ2SQanswer s↔Canswer s +λ3SQbi o↔Canswer s

where Q is the querier profile, C is the candidate profile, S the scores of each individual
component, Itot al the final reciprocal preference score, and λ1 . . .λ3 represent compo-
nent weights. The component weights could be set manually for greater control, ex-

5An overview of the model can be found at https://huggingface.co/xlm-roberta-base.

https://huggingface.co/xlm-roberta-base.
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plainability and interpretability, but can also be optimised as hyperparameters as we
do in chapter 4.

While a final fully connected layer could be used instead of weights, this would
require retraining of the whole network each time components are added, removed or
swapped. Because rapid prototyping and testing is important in the competitive field
of dating apps, this is not ideal. Additionally, it would be less transparent, as now there
is more direct control of what goes into the decision-making of the algorithm.



Chapter 4

Experiments

The goal of our work is to evaluate the capability of LMs in the context of a matchmaking
algorithm in a RRS. We do so through a set of research questions which we attempt to
answer by performing experiments. The research questions are as follows:

• RQ1: How can textual data from profiles be leveraged to suggest attractive user
profiles in a reciprocal recommender system?

– RQ1.1: Is there a difference in the effectiveness of the utilisation of the
various kinds of free-text data (e.g. bios, open answers)?

• RQ2: How can language models be used in a reciprocal recommender system,
and which technique performs best?

– RQ2.1: Can a language model help circumvent the cold-start problem?

4.1. Experimental Setup
In order to answer the research questions, we have fine-tuned LoveBERT as described
in section 3.2.2 on historical matching data from Breeze. As the bios are an integral part
of our approach, we only used historical suggestions in which both users had a bio for
training and evaluation.

RQ1 is answered in section 3.1. To answer RQ1.1, we can look at the cosine distance
between the two embeddings of the profile sections of two suggested users generated by
the SBERT network, as described in section 3.2.1. Additionally, we perform an ablation
study of the LoveBERT components. Each component is trained on a different free-text
section of the profile, so comparing their individual results provides insights into the
importance of each respective section.

To answer RQ2, we fine-tune a LoveBERT LM with historical Breeze data, and com-
pare the results to several baselines. We use CBOW and the cosine distance between
embeddings derived from the SBERT model to gauge the NLP-based performance. Ad-
ditionally, we use a standard CF approach implemented with xgboost, as well as the
current Breeze algorithm, to gauge the overall matchmaking performance.

33
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To answer RQ2.1, we divide our test data in two distinct sets: suggestions with
users present in the training data, and suggestions with unseen users not present in
the training data. To ensure there is sufficient data for unseen users, we perform the
test/train split based on date, so all the new users in the latest portion of the data will
not be present in the training set. We then compare and analyse the differences in
performance LoveBERT and all baselines between these two sets.

4.1.1. Evaluation
We evaluate the performance of LoveBERT through several evaluation metrics. Xia et al.
[72, 73] defined specific Precision and Recall metrics tailored specifically for RRSs. For
a given user u, we define three sets of users:

• T : the set of users we have suggested to u.

• L: the set of users who have been liked by u.

• R: the set of users who have been liked by u, and also reciprocated, i.e. liked u
back themselves. In other words, a match.

Using these sets, we define the following evaluation metrics as follows:

L-Precision = |L∩T |
|T | ,L-Recall = |L∩T |

|L|
and

R-Precision = |R ∩T |
|T | ,R-Recall = |R ∩T |

|R|
as well as their respective F-scores. By taking the top-k of set T , we can easily evaluate
these metrics at different sizes of the suggestion feed.

The R-metrics evaluate the match data, which is quite imbalanced in the context
of Breeze. Only a small portion of the suggestions eventually results in a match (for
illustration, around ∼1% in the training data). Therefore, we also use the Matthews
Correlation Coefficient (MCC), which is a score between -1 and 1, and is calculated
using the confusion matrix quadrants, and defined as follows:

MCC = T P ×T N −F P ×F Np
(T P +F P ) (T P +F N ) (T N +F P ) (T N +F N )

The MCC, as Chicco and Jurman explain in [11], is a more informative metric than F-
scores in evaluating binary classification problems, particularly imbalanced ones.

Finally, we consider the AUC-ROC curve to measure the performance of the models
at different threshold values.
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Baselines
All the aforementioned metrics will be used to compare the performance of LoveBERT
to several baselines. We include a main example for each of the different approaches
to (R)RSs described in chapter 2. One Content-Based (CB) approach, a Collaborative
Filtering (CF) approach, and a Hybrid approach. Additionally, we show the results of
two embedding-based NLP approaches: Continuous Bag of Words (CBoW) and the Bi-
encoder as described in section 3.2.1.

• Content-based: The CB approach is implemented using Xgboost. It uses differ-
ent features of profiles, such as age, height, and the accept rate and reverse accept
rate, which are metrics describing how often the user likes other profiles and is
liked themselves respectively. Additionally, some features of a suggestion are also
used, such as the distance between the two profiles’ hometowns or education
level. The standard xgboost Python library is used for implementation.

• Collaborative Filtering: The CF approach is implemented using Latent Factor
Models, a proven design in the field of user-item recommendation [26]. We use
an implementation, called Latent Factor model for Reciprocal Recommendation
(LFRR), specifically designed for RRSs by Neve and Palomares in [45]. In short, it
uses latent factor models to compute two unidirectional preference scores, which
are subsequently aggregated into a reciprocal score. Latent factor vectors are
initialised randomly, and optimised using interaction data to minimise errors. It
is implemented using the surprise Python library.

• Hybrid: The Hybrid baseline is based on a combination of the CB and CF base-
lines, and inspired by the algorithm powering Breeze at the time of writing. It is
simply a weighted combination of the aforementioned CB and CF scored, where
the weight of the CB part is 2/3. While there is no true ‘current’ Breeze imple-
mentation because of the continuous experimentation performed in the never-
ending pursuit for better performance, this is also a baseline used for internal
testing at Breeze.

• NLP: Lastly, two NLP-based approaches are also used. First off, Continuous
Bag of Words (CBoW), which simply takes the average of all the individual word
embeddings obtained by GloVe [48]. The other method to obtain embeddings
from the profile text is using SBERT, as described in section 3.2.1. In both cases,
the cosine distance is then computed between the two profiles, and the resulting
distance is mapped to the range of [0,1] to represent the matching score.
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4.1.2. Dataset & Training
Our dataset consists of historical suggestions made in the Breeze app. A suggestion
consists of a querier and candidate profile, including all their respective profile data.
We only used suggestions where both parties had written a bio, resulting in a dataset
of 113K samples. Users’ open answers were concatenated together as they were over-
whelmingly short enough. Additionally, we derive two labels: whether the querier liked
the candidate (i.e. like data), and whether the suggestion ended in a match (i.e. match
data), which happens if the candidate has already liked the querier at some point in the
past. As mentioned in table 2.1 in section 2.1.1, success is determined by both sides of
the recommendation in a RSS, meaning only a match is counted as a positive sample.
However, matches account for only around 1% of the suggestions, resulting in very im-
balanced data which leads to some problems which will be discussed in section 5.1.1.
Therefore, we use the like labels for training. Note that the set of liked suggestions L is
a strict subset of the set of suggestions part of matches R, i.e. L ⊂ R, as a match requires
a like in both directions. The dataset was split 70%/15%/15% into training, evaluation
and test sets respectively, resulting in 95K training samples and 17K validation and test
samples. The dataset is ordered by date (when the suggestion was made) before making
the split to ensure there are previously unseen users in the test set.

All experiments performed for this study were executed on an NVIDIA RTX 3060
Ti GPU. Each LoveBERT component was separately fine-tuned on a pre-trained XLM-
RoBERTabase model, using a batch size of 8. The pre-trained models were provided
by Huggingface1. The output layers of the models consist of a fully connected layer
with two output labels. A dropout probability of p = 0.1 is used, and a weight decay
of λ= 0.01. The used optimiser is AdamW with an epsilon value of ϵ= 1e-6. We found
training to be very sensitive to the learning rate, and consequently use different learning
rates for the fully connected classifier layers and the encoding layers. The optimal
learning rate is also different for each LoveBERT component. A warm-up period of
the learning rate consists of 10% of the training steps across the board. Max sequence
length is T = 512 tokens. Each LoveBERT component is trained for a maximum of 8
epochs. A full overview of the hyperparameters for each component can be found in
appendix A.

4.2. Results
Now, we present the results of our experiments and discuss the observations made
based on them. The threshold for a positive prediction is 0.5 across all experiments.
That is, a like or match is predicted if a model’s prediction score is ≥ 0.5.

1https://huggingface.co/

https://huggingface.co/
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L-metrics
We begin by looking at the L-metrics, where predicting likes is the goal. A like is the
first step towards a match, so it is important to analyse to make better suggestions.
Furthermore, when a person likes someone as the first party, they always end up in
the suggestion feed of the other, aiding the matchmaking system.

Table 4.1 shows the overall performance on the test set of the different models
we have tested. Figure 4.1 shows the corresponding ROC curve. There are several
interesting observations we can make based on these results.

Model Type L-Prec. L-Rec. L-F1 MCC AUC TN FP FN TP

Xgboost CB 0.286 0.185 0.225 0.108 0.587 12753 1333 2359 535

LFFR CF 0.278 0.126 0.173 0.083 0.583 13142 944 2530 364

Breeze Hybrid 0.293 0.174 0.219 0.110 0.589 12870 1216 2389 505

CBoW 0.170 0.969 0.289 -0.005 0.511 406 13680 90 2804
SBERT CB-NLP 0.171 0.905 0.288 0.008 0.519 1426 12660 275 2619
LoveBERT 0.683 0.468 0.555 0.496 0.862 13456 630 1539 1355

Table 4.1: Overall model performances when evaluating predictions using like data as the ground truth.
The best score achieved for each metric is displayed in bold.

Figure 4.1: ROC curve for like data.

Observation 1: LoveBERT greatly outperforms all baselines in predicting likes. While
all the models were trained on like data, LoveBERT significantly outperforms the others
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in the predictions of likes. It achieves an F1-score of 0.555, and a MCC of 0.496, com-
pared to the 0.225 and 0.110 respectively of the best performing non-NLP approaches.
When we look at the ROC curve in 4.1, we can see that LoveBERT is also more robust,
performing better than all other approaches for all threshold values.

Observation 2: Embedding-based approaches using the cosine distance make for ter-
rible predictors. Both the embeddings from CBoW and SBERT are barely better than
random guessing, and have an incredibly high false positive rate. This can be explained
by the fact that the cosine distance is exactly that, a distance metric, and cannot sensibly
be used as a prediction probability. The cosine distances are mapped to the [0,1] range.
As most of the distances were just over 0, the mapped scores ended up concentrated
around 0.55, as shown in figure 4.2. However, this distance can be useful in ranking the
closest profiles in terms of their text content.

Figure 4.2: Distribution of cosine similarity values of all suggestions.

Additionally, we take a deeper look at the precision and recall at different levels of
suggestion feed size. These Precision@k and Recall@k metrics are shown in figure
4.3, and are calculated by taking the top-k prediction scores of each classifier for each
unique querier, and use this as the set T in the metrics as defined in section 4.1.1. For
each k, we only include the querier if they had answered at least k suggestions. Different
values for k can give an impression of the precision and recall over different time spans,
as users only get a couple of suggestions per day.

For example, let us consider user u with three suggestions which are all likes in real-
ity. A model predicts the three scores [0.4, 0.6, 0.1] for the three suggestions. Only one
of them is convincing enough (i.e. pass the decision boundary), and predicted as a like,
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resulting in a recall of 1/3. However, when we look at the top-1 score of u, only the score
of 0.6 will be included and therefore classified correctly, with a corresponding recall of
1.0 for the top-1.

(a) L-Precision@k (b) L-Recall@k

Figure 4.3: L-Precision and L-Recall values for different sizes of suggestion feeds for each different
model. The mean value is indicated by the bars, with the lines indicating the confidence interval.

Observation 3: Precision drops off quickly the more suggestions are made. Figure
4.3a shows that as k increases, the L-Precision decreases. The precision of LoveBERT
predictions drops off most quickly, but remains the most performant up until a k of 40.
A drop in precision as more suggestions are made does make sense. As the predictions
are based on the top-k scores of the model, higher k values will include more instances
where the model’s prediction score is very low, but still in the top-k.

Observation 4: Recall drop is less severe, and the CF approach even increases initially
As can be seen in figure 4.3b, the L-Recall also drops as k increases in the LoveBERT
predictions. It remains the most performant for the lower values of k, while it loses its
edge after k passes 20. It is interesting to note that the L-Recall of the CF method LFRR
actually increases as k does as well. This makes sense, as it learns from a user’s liking
behaviour. Therefore, it should perform better on users with a high amount of rating
data, which it does.

R-metrics
It is in the best interest of both Breeze and the users to obtain matches. Breeze because
they make money per date, and users because they want to find a suitable partner. Also,
as mentioned in table 2.1 in section 2.1.1, not only do we want to make high-quality
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suggestions because of the limited availability of users in a RRS, many poor recommen-
dations resulting in repeated rejections might also dishearten use of the app. Therefore,
the R-metrics are of utmost importance, to a greater degree than the L-metrics.

Model Type R-Prec. R-Rec. R-F1 MCC AUC TN FP FN TP

Xgboost CB 0.023 0.371 0.043 0.057 0.671 14124 2686 107 63

LFFR CF 0.023 0.253 0.042 0.045 0.660 14966 1844 127 43

Breeze Hybrid 0.026 0.376 0.048 0.065 0.679 14383 2427 106 64

CBoW 0.010 0.965 0.020 -0.004 0.529 490 16320 6 164
SBERT CB-NLP 0.011 0.947 0.021 0.016 0.583 1692 15118 9 161
LoveBERT 0.017 0.241 0.032 0.028 0.631 14422 2388 129 41

Table 4.2: Model performances when evaluating match-based predictions. The best score achieved for
each metric is displayed in bold.

Figure 4.4: ROC curve for match data.

Table 4.2 shows the overall performance on the test set of the different models we
have tested when predicting matches is the objective. Figure 4.4 shows the correspond-
ing ROC curve. There are several interesting observations we can make based on this
data.
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Observation 5: Overall performance is quite low. This data shows that predicting
matches is a very difficult problem. The highest R-Precision of any of the classifiers is
0.026, showing it is quite difficult to refrain from suggesting false positives. The imbal-
anced nature of this data likely plays a significant role in this.

Observation 6: Distance-based classifiers remain woefully ineffective. The match
data confirms that it is not useful to use the distance between profile embeddings as
a prediction score. SBERT does achieve the highest recall with 0.965, but this is again
simply the result of most vectors being close to orthogonal to each other, resulting in
a score of just over 0.5 passing the classification threshold. The number of false posi-
tives is also extremely high compared to the others again. For the remaining part of this
chapter, we will generally disregard the cosine similarity scores.

Observation 7: LoveBERT’s superior performance does not transfer to the match do-
main. Table 4.2 shows that LoveBERT is outperformed in virtually all metrics by the
non-NLP based models. The Hybrid model is the clear winner here, boasting an R-F1-
score of 0.048 versus the 0.032 of LoveBERT, and an MCC of 0.065, more than double
the 0.028 of LoveBERT. The MCC is particularly important here, as that metric is de-
signed for imbalanced data like this. The CB and CF approach both also outperform
LoveBERT here. The AUC also shows that more traditional approaches are more robust
at different threshold values as well. Although, there do exist some threshold values
where LoveBERT outperforms them. This, together with the performance of LoveBERT
on like data, shows promise in fine-tuning LMs for matchmaking purposes.

(a) R-Precision@k (b) R-Recall@k

Figure 4.5: R-Precision and R-Recall values for different sizes of suggestion feeds for each different
model. The mean value is indicated by the bars, with the lines indicating the confidence interval.
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Again, we take a deeper look at the precision and recall at different levels of sugges-
tion feed size. The Precision@k and Recall@k metrics for the reciprocal match data are
shown in figure 4.5. Similar to before, they are calculated by taking the top-k prediction
scores of each classifier for each unique querier.

Observation 8: Trends from the like data repeat, with overall lower performance.
Once again, we see that precision drops as k increases across the board. This indicates
it is difficult to preserve the same level of preciseness when you keep trying to make
new predictions with a lower confidence level. Of course, in a live environment, there is
a steady increase of new users which can potentially have high scores again, somewhat
alleviating this problem.

Recall also steadily increases for the CF approach again, confirming that its perfor-
mance increases as more behavioural data of the users becomes available. Interestingly,
LoveBERT’s recall also steadily increases this time.

RQ2 Conclusion

RQ2 asks how language models can be used in RRSs, and which technique
performs best. We show two main ways to incorporate LMs in the match-
making algorithm of a RRS. Firstly, using LMs to create profile embeddings
and calculating the cosine distance between them. We show that this dis-
tance is not suitable to be used as a prediction score, but can effectively
rank suggestions based on how similar the free-text profile sections are. Sec-
ondly, we fine-tune a pre-trained LM with historical suggestion data in or-
der to predict likes and matches. Our observations show that while a LM-
based approach can effectively predict likes, it unfortunately lags behind in
performance when evaluating on match data. A more traditional Hybrid ap-
proach with a CB and CF component remains the most performant method
of accurately prediction matches between users in an online dating context.
However, our approach shows promise when considering the results on like
data, and the fact that there do exist threshold values where LoveBERT out-
performs the Hybrid approach. We also note that all approaches work better
for the top-k suggestions, meaning they all fulfil the goal stated in table 2.1
of providing fewer high quality matches over many worse ones.
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4.2.1. Cold-start Analysis
As mentioned in section 4.1.2, we made the train/validation/test split based on sugges-
tion date to ensure there are previously unseen users present in the test set. Such users
are called cold users, where no usage data has been available for training for CF meth-
ods. As a result, 25.50% of users in our test set are cold users, or 750 users of the 2941
unique users in total. We compare the performance between the set of cold users and
the rest of the test set to assess which method can handle the cold-start problem best.
Figure 4.6 shows the differences in precision and recall values for previously unseen (i.e.
cold) users, and users present in the training set. We observe several interesting things
in these graphs.

Observation 9: L-Precision and R-Recall both decrease somewhat for cold users. Fig-
ure 4.6a and 4.6d show that both metrics slightly drop when evaluating the set of cold
users. However, in both cases, the relative drop in the performance of LoveBERT when
compared to the other classifier is lower. In fact, for cold users LoveBERT just barely
outscores LFRR in R-Recall. Therefore, while LoveBERT is still affected by the cold-start
problem in these metrics, it is somewhat more robust to the effects than the other mod-
els.

Observation 10: L-Recall drops more significantly for LoveBERT, but it still comfort-
ably retains its performance lead over the other models. As shown in figure 4.6b, all
models also show a drop in L-Recall. Only the cosine similarity scores do not drop in,
but we have already concluded that is not an effective model to make suggestions re-
gardless. The drop for LoveBERT is comparatively bigger, but it still comes out ahead of
the others.

Observation 11: All models apart from LoveBERT lose a lot of R-Precision The three
more classical approaches all lose a considerable amount of precision when evaluating
on the match data. LoveBERT does not follow this trend, and instead gains a little.
However, while the gap tightens, LoveBERT remains unable to achieve a higher absolute
score. Note that the scale of figure 4.6c is over an order of magnitude smaller than the
other three. So while these changes might appear to be quite drastic, in absolute terms
it represents a very small change.
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(a) L-Precision of all classifier based on predicted like data. (b) L-Recall of all classifier based on predicted like data.

(c) R-Precision of all classifier based on predicted match data. (d) R-Recall of all classifier based on predicted match data.

Figure 4.6: Differences in Precision and Recall scores of each classifier between previously unseen (i.e.
cold) users, and users present in the training set, for both like and match data.
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RQ2.1 Conclusion

RQ2.1 asks whether or not a LM-based approach can circumvent the cold-
start problem. We show that in almost all metrics, every approach takes a hit
in performance when asked to make predictions for cold users. This means
the cold-start problem is, in fact, a problem. While LoveBERT cannot circum-
vent the cold-start problem entirely, we do show that it is more resistant to its
effects compared to the other approaches. This provides a promising avenue
for future research looking to tackle the cold-start problem.

4.2.2. Ablation Study
In order to gauge the performance of each individual component of LoveBERT, we per-
form an ablation study to find out how effective each part is. This is easily done by
setting all weights λ1 . . .λ3 and combinations of them to 0. This way, we only get the
scores of those components. Table 4.3 shows the performance of all (combinations of)
individual components.

Model R-Prec. R-Rec. R-F1 MCC AUC

LoveBERTλ1←0 0.015 0.165 0.027 0.017 0.654
LoveBERTλ2←0 0.016 0.118 0.029 0.018 0.606
LoveBERTλ3←0 0.015 0.141 0.027 0.016 0.553
LoveBERTλ1,λ2←0 (only bio-ans) 0.017 0.218 0.031 0.026 0.652
LoveBERTλ1,λ3←0 (only ans-ans) 0.015 0.165 0.027 0.017 0.606
LoveBERTλ2,λ3←0 (only bio-bio) 0.011 0.106 0.021 0.004 0.538
LoveBERTbest 0.017 0.241 0.032 0.028 0.631

Table 4.3: Ablation study results. When a single component is deactivated the
remaining two weights are set to 0.5. Best results are in bold.

Apart from discovering the influence of each (combination of) components, we also
want to know what combination of weights performs best. Therefore, we perform a grid
search on the weights in order to find the best performing model. An interval of 0.05
was used for the grid search for all three weights. The resulting combination of weights
yielding the highest performance is λ1 = 0.1,λ2 = 0.25,λ3 = 0.65.
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Observation 12: The bio-bio component of LoveBERT performs significantly worse
than all other components or their combinations. Table 4.3 shows the bio-bio compo-
nent scores significantly lower in all metrics than the other components. Its precision
is 0.011, while the next lowest precision is 0.015. Its MCC, which is the most significant
metric for the imbalanced match data, is the biggest tell that its performance is lacking
when compared to the other (combination of) components. It is only 0.004, 4 times
as low as the next lowest score of 0.016. This tells us that bios alone are not too useful
to predict matches. Further confirming this is the fact that the bio-bio component’s
weight is only 0.1. A likely explanation is that many of the bios are extremely short,
meaning there is less information available to learn from this component.

Observation 13: The bio-ans component is the most performant individually. While
the bios alone might not be enough to reliably predict matches, there is definitely some
useful information present in the bio. The bio-ans component is the best-performing
individual component. In fact, it performs nearly as well as the best performing model
on its own, with an MCC of 0.026 compared to LoveBERTbest ’s 0.028. This suggests
that there is a strong link between the information present in the bios of the querier,
and the answers of the candidate. We concluded in section 3.1.2 that most people’s
bios contain information about the user’s interests and lifestyle, as well as that people
generally look for similarities in other profiles. Combined with the fact that many of
the questions direct users to write about their interests or lifestyle, it makes sense that
there is valuable information present in the link between bios and open answers that
can be learned by our LoveBERT component. The fact that there are often multiple
questions answered on a profile also simply provides more information to process, and
subsequently to learn from for the model. This is further bolstered by the fact that every
combination where at least some component leverages open answers performs fairly
well.
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RQ1.1 Conclusion

RQ1.1 asks whether there is a discernible difference in the effectiveness of
the utilisation of the different free-text profile sections. The difference in per-
formance between all individual components is fairly drastic. The bio-bio
component performs significantly worse than the ans-ans component. In
turn, the bio-ans component combining the two different sections yields the
highest performance on its own. Therefore, we conclude that there is indeed
a difference in the effectiveness of the utilisation of the different profile sec-
tions. A key takeaway appears to be that longer texts mean more information
to learn from, which in turn leads to better results. Additionally, combining
different types of free-text data is also highly effective, outperforming both
individual profile sections on their own.
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Discussion

We summarise our results, and discuss the different limitations of our approach in this
section. Additionally, we briefly describe some explored avenues that failed to produce
meaningful results for our research.

5.1. Limitations
There are several limitations to this study which inhibit the performance of LoveBERT.
Some are specific to the context of Breeze, while others apply to the more general setting
of matchmaking with practical implications that are not solved easily.

5.1.1. Data Imbalance
We have mentioned before that only a very small number of suggestions result in a
match. In our case, there are 1232 matches in a dataset of 113K samples, so just
over 1%. One problem which presented itself was that it was not practical to get
sensible output when training on such imbalanced data. We have attempted some
standard ways to deal with imbalanced data, such as undersampling negative samples,
oversampling positive samples (including substituting words with synonyms [58]), and
using a weighted loss function. In the end, this all yielded lower performance than
simply using the unidirectional like data as the label instead of the reciprocal like (i.e.
match) data, as described in section 4.1.2. As dealing with data imbalance in NLP tasks
is an open task in research which could warrant a research project on its own, we simply
use like data and consider the overarching problem out of scope for this work.

5.1.2. Data Sparsity
The problem data sparsity presents is twofold in our case. Firstly, it decreases the size
of the usable dataset, because the bio section was introduced fairly recently and is not
mandatory. Therefore, the majority of users do not have a bio on their profile. As we are
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working with suggestions made, that means that if even one side of the equation lacks
a bio, we cannot effectively use it. Now, the usable dataset is still substantial enough at
113K samples, but that is just a fraction of the total number of suggestions made (5.3M).

The second side of data sparsity pertains specifically to the open questions. Users
have an open choice in which questions they answer on their profile. At the time
of conducting my experiments, there were twenty-one options to choose from. We
expect the system to learn something from the open answers best when the two users
have picked the same question, as in that case their answers are most likely to relate
to each other. As seen in section 3.1.2, as well as confirmed by the data, the vast
majority of people have 3 or fewer questions on their profile. For illustration, let us
see three independently randomly chosen questions of person A as ‘good’ options, and
the remaining 18 as ‘bad’ options. As the order of the questions does not matter, we
can calculate the number of possible combinations of questions using the binomial
coefficient C n

k defined as: (
n

k

)
= n!

k !(n −k)!

where n is the size of the set of all elements, and k the number of elements picked. Thus,
the probability that two users choose exactly the same 3 questions is:(
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Even an overlap of two questions is unlikely, even in a favourable case where both users
have picked 3 questions (which is fairly unlikely in and of itself):(
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1330
= 0.04

The point is, it is very unlikely people pick the same questions, which makes it less likely
their answers contain similarities, which in turn makes it more difficult for the model
to learn from.
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5.1.3. Mutable Training Data andUnreliable Ground Truth
Breeze does not save the history of the contents of profile sections. Therefore, the
profile section data corresponds to what it was at the latest point in the dataset, which
is early April. This means that like and match data from early January for example, does
not necessarily contain the correct corresponding profile data which was shown to the
users at that time. Obviously, this is suboptimal, as the training samples might not
represent the actuality of the situation at the time. Ideally, the profile information at the
time of rating is saved and linked to that suggestion. However, this was not attainable
in time for us. This issue would be less pronounced in a production setting where the
models are continuously fed new data and deployed.

The mutable training data might also lead to scenarios where both parties did not
like each other at the time, but if they had been presented with the updated profile
information, they might have. In such cases, negative samples should actually have
been positive ones. This can also happen when the same two users are suggested to
each other again after a longer time period. Breeze had not done this yet, but it could
happen in the future or in other contexts. People are not deterministic beings, and
people who do not match at one moment could easily match later in life, meaning the
ground truth is not always set in stone.

Finally, another problem with the ground truth in our context is that it is the ground
truth for the profile as a whole, and not merely for the free-text portions we focus on.
For example, two users can now be a perfect match based on the contents of the bio
and open answers, but simply not be physically attracted to each other. Ideally, we
would know when this was the case so the suggestion could still be used to improve the
text-based predictions. Unfortunately, this is currently not possible.

5.1.4. Bio Content Randomness
One of the less quantifiable problems is the randomness of the contents of people’s bios.
Unlike specific open questions or more concrete questions, there’s no particular sense
of direction. The lack of direction being a problem is confirmed by the data we present
in section 3.1.2, where we also conclude that people often find it challenging to write a
bio, because they do not know what to put in it.

As a result, many people do not write a bio, and those who do often write about a
divergent set of things, which makes learning from them more difficult. As suggested
before in section 3.1.2, this problem can likely be partially alleviated by providing some
sort of prompt or guidance when editing a bio with examples or tips of what to put in it.
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5.1.5. Lack of Datasets
Finally, there are no other datasets available for the online dating setting with matching
data, which makes it difficult to test our system on different data, as well as confirming
or comparing the results of other works. In fact, there are no ready-to-use datasets for
RRSs available in general, so we cannot even test LoveBERT on data from a different
context.

For the online dating domain, it makes sense as the data is extremely private, and
contains privacy-sensitive information. For that reason, we are unfortunately also
unable to publish our dataset. Nevertheless, it is a regrettable fact which makes it
difficult to gauge the state of the field.

5.2. Practical Implication
Our work reveals the following practical implications. These are matters which should
either be considered in future research on matchmaking or RRSs in general, or sugges-
tions which could aid Breeze or other online dating platforms in improving their prod-
uct.

5.2.1. LoveBERT Provides Possible Cold-start Alleviation
In section 2.1.2 we show that while we cannot circumvent the cold-start problem with
our approach, it does appear to be more robust to it. This indicates that CB-NLP ap-
proaches might be an effective approach to alleviate the cold-start problem in systems
that are particularly vulnerable to it.

5.2.2. Informative Bios are Necessary
Per section 3.1, one of the foremost reasons Breeze users currently do not have a bio
is that they are unsure of what to put in it. Additionally, many of the bios that do exist
are not necessarily sensible or do not follow a specific format, as we have discussed
in section 5.1. The more directed open answers section currently contributes much
more to LoveBERT’s performance, showing that there is valuable information present
in textual data. However, some kind of structure is necessary to extract it. Considering
the following two things: (i) both of these factors play a part in the disappointing
performance of LoveBERT, especially the bio-bio component, as shown in table 4.3,
and (ii) both of these issues could be alleviated by helping users fill out their bios. We
believe some kind of guideline or nudge should be present to aid users in writing a bio.
The specific form of this nudge is left open, but it should push towards a descriptive,
informative bio.
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5.3. Unsuccessful Endeavours
In addition to the limitations and implications of our work, there were also some ap-
proaches attempted, which unfortunately did not contribute to a meaningful increase
in performance. Nevertheless, for the sake of completeness, we still describe the con-
cepts we have explored, what went wrong, and if it could work given more resources.

5.3.1. Humour Detection
A key finding from section 3.1.2 is that people with a humorous bio and/or open
answers are looking for humour in others’ profiles as well. Inversely, people with more
serious profiles tend to look for other serious profiles. Therefore, something like a
‘humour index’ for all profiles might be a useful metric to use in the matching process.

Humour detection is an active area of research in the field of NLP, and there are
several LMs quite effective at detecting humour in (short) pieces of text. We have
attempted to apply some of these to our data to attribute a ‘humour index’ to each
profile, to no avail unfortunately. None of the models tried had sufficient performance
to be able to use in practice. Overall, there were two main problems. First of all, none of
the models were language-agnostic, generally only being able to handle English. This
was a big problem for Breeze, where most profiles are in Dutch. Secondly, most humour
detection models are trained specifically on jokes, often with a specific setup and a
punchline. For example, an instance from a 200K short text dataset used by one of the
models tested [2] is the following:

Why do time machines make you happy?
They're an anti de-present.

Bios on profiles can also be quite humorous, but often do not explicitly follow the
format of a joke, i.e. "My name is Janine but you can call me tonight!". This mismatch in
format makes it more difficult for the models to effectively detect humour in the profile
bios.

In table 5.1, we present a brief overview of specific problems for each of the models
we have tried. Due to time constraints and scope limitations, we did not attempt to label
part of our own data and train a model ourselves. In the end, we are not discounting the
idea of successfully applying humour detection in a matchmaking setting, but conclude
that it did not work in our current context.

1From https://huggingface.co/thanawan/bert-base-uncased-finetuned-humordetection

https://huggingface.co/thanawan/bert-base-uncased-finetuned-humordetection
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Model Problems encountered

ColBERT [2]
Trained on a joke dataset with a fairly specific format.
Only supports English and Hindi.

Weller and Seppi. [70]
Trained on jokes from a variety of sources, but only
supports English.

Thanawan.1
No information of dataset used available, unknown
which languages are supported (presumably only
English).

Table 5.1: Problems encountered for each humour detection LM.
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Conclusion

Attempting to suggest the ideal romantic partner is a daunting task. People are emo-
tional beings, meaning it can be difficult for hard science alone to solve this issue. Nev-
ertheless, there are several online dating platforms who try their best, and spend a lot
of resources to develop the most performant matchmaking system. This works con-
tributes to this objective, in the context of Breeze. Breeze is an online dating app where
users who match immediately go on a first date, without the ability to chat beforehand.
This means that some of the core principles of RRSs, such as favouring quality over
quantity, are extra important for them. Therefore, the matchmaking algorithm is per-
haps the most integral part of the platform.

This works contributes to the goal of suggesting the best possible matches in sev-
eral ways. First of all, we performed a user study with active users of the Breeze app,
asking about their desires and preferences regarding other user profiles. Second, we
have investigated the effectiveness of using NLP methods, specifically leveraging lan-
guage models, to generate better suggestions for potential romantic interests. To that
end, we have introduced LoveBERT, our novel, easily extendable LM-based matchmak-
ing model. We also show the promise of LoveBERT, and provide an analysis of the im-
portance of the different profile sections.

We set out to answer two research questions in this work, each with their own sub-
question. Each of the research questions is repeated below, together with the corre-
sponding conclusions.

RQ1: How can textual data from profiles be leveraged to suggest attractive user pro-
files in a reciprocal recommender system?
To answer this research question, we conducted a survey among active users of the
Breeze app to find out the general desires of the userbase. We concluded that people are
generally looking for similarities in the suggested user profiles on Breeze. As research
also backs up that similarities tend to attract, we conclude that attempting to match
two similar profiles is a good approach for a matchmaking algorithm. Additionally, we
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concluded that people who describe their own interests and hobbies are responsive to
bios and open answers which describe the others interests and hobbies. This initiated
the first steps in the design of LoveBERT. Finally, we concluded that users with serious
bios are more interested in others who also have a more serious bio, and vice versa for
funny bios. We explored this direction, without result, and therefore leave it as an open
problem.

RQ1.1: Is there a difference in the effectiveness of the utilisation of the various kinds
of free-text data (e.g. bios, open answers)?
To answer this research question, we performed an ablation study of the different com-
ponents of LoveBERT. We concluded that there is a drastic difference in performance
between all individual components. The bio-bio component performed significantly
worse than the ans-ans component, while the bio-ans component combining the two
different sections yielded the highest performance on its own. Therefore, there is in-
deed a difference in the effectiveness of the utilisation of the different profile sections.
Additionally, we concluded that combining different types of free-text data is most ef-
fective, outperforming both individual profile sections on their own.

RQ2: How can language models be used in a reciprocal recommender system, and
which technique performs best?
The second research question was answered by comparing LoveBERT, our novel match-
making algorithm, to existing approaches for RRSs and other NLP approaches. First
of all, we concluded that embedding-based distances cannot effectively be used for
predicting matches, but may be used to rank the similarity of profiles in suggestions.
Secondly, we conclude that LoveBERT is the superior method in predicting likes. Unfor-
tunately, we also conclude its performance does not hold up when predicting likes, be-
ing outperformed by the more traditional approaches, especially the Hybrid approach.
However, we concluded our approach shows promise, as there exist specific scenarios
where LoveBERT outperforms the Hybrid approach.

RQ2.1: Can a language model help circumvent the cold-start problem?
Finally, this research question was answered by splitting our test set in two distinct
sets: previously seen and previously unseen users. We concluded that when consid-
ering most metrics, every approach takes a hit in performance when asked to make
predictions for cold users. We confirm the existence of the cold-start problem. We also
conclude that while our LM-based approach cannot circumvent the cold-start problem
entirely, it is more resistant to the effects compared to the other approaches.
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6.1. Future Work
Conducting this study has provided us with several insights into the world of match-
making in RRSs. In this section, we share some recommendations for future research
and avenues to explore.

• Extending LoveBERT with additional profile section. LoveBERT was designed
with flexibility in mind. Therefore, we encourage further research exploring the
possibilities of adding more types of user data in the model. An example could
be more research into obtaining an accurate ‘humour index’, which could be
incorporated as a component into LoveBERT. The additional components do not
necessarily have to be LM-based. Anything which provides a prediction score or
probability could be included.

• Include LoveBERT in hybrid system to help with cold-start problem. As Love-
BERT appears to be more robust to the cold-start problem, we conjecture it could
be included in some hybrid approach which relies more on the CB-NLP compo-
nents earlier on while there is less data available. As more usage data comes in,
the hybrid system could gradually rely more on the more performant classical
approaches. Research on such a system could be very valuable.

• Creating an open dataset for RRSs. A huge problem in matchmaking research is
that there are no public datasets available. This presents a huge opportunity for
someone to create such a dataset. A main reason for this is likely the privacy-
sensitive nature of the data. However, methods may exist to anonymise such
data while still being useful for research purposes. It would also allow for better
comparison between different RRS approaches by providing a consistent dataset
people could evaluate on.

• Utilising the cosine distance between user profiles. We have shown that the dis-
tance between two profile embeddings cannot be effectively used as a prediction
score. However, these distance metrics are still useful to identify profiles with
extremely similar content. Further research on how to effectively use these dis-
tances in different approaches could aid in predicting likes and matches more
effectively.
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Appendix A

Hyperparameters

Table A.1 describes the hyperparameters for the fine-tuning of the different LoveBERT
components. We select the best hyperparameter values based on experimentation
with different values. Results were particularly sensitive to the Adam ϵ values and the
learning rate of the classifier layer.

Hyperparam bio-bio ans-ans bio-ans

Batch size 8 6 6
Max sequence length 512 512 512
Peak learning rate 4e-6 6e-6 4e-6
Learning rate decay linear cosine linear
Learning rate classifier layer 1e-4 2e-4 1e-4
Warmup ratio 0.1 0.1 0.1
Weight decay 0.01 0.01 0.01
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999
Adam ϵ 1e-6 1e-6 1e-6
Max epochs 8 8 8

Table A.1: Hyperparameters for fine-tuning the different LoveBERT components.
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