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RESEARCH ARTICLE

Inferring the number of floors for residential buildings

Ellie Roya, Maarten Pronka,b , Giorgio Agugiaroa and Hugo Ledouxa

aDelft University of Technology, Delft, Netherlands; bDeltares, Delft, Netherlands

ABSTRACT
Data on the number of floors is required for several applications,
for instance, energy demand estimation, population estimation,
and flood response plans. Despite this, open data on the number
of floors is very rare, even when a 3D city model is available. In
practice, it is most often inferred with a geometric method: eleva-
tion data is used to estimate the height of a building, which is
divided by an assumed storey height and rounded. However, as
we demonstrate in this paper with a large dataset of residential
buildings, this method is unreliable: <70% of the buildings have
a correct estimate. We demonstrate that other attributes and
characteristics of buildings can help us better predict the number
of floors. We propose several indicators (e.g. construction year,
cadastral attributes, building geometry, and neighbourhood cen-
sus data), and we present a predictive model that was trained
with 172,000 buildings in the Netherlands. Our model achieves an
accuracy of 94.5% for residential buildings with five floors or less,
which is an improvement of about 25% over the geometric
approach. Above five floors, our model has only a slight improve-
ment on the geometric approach (5%). The main culprit is the
lack of training data for tall buildings, which is uncommon in the
Netherlands.
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1. Introduction

In the context of urban and regional applications, the number of floors of buildings is
useful in several use-cases: estimation of building energy demand and retrofitting
costs (Nouvel et al. 2014, Agugiaro 2016), estimation of population (Lwin and
Murayama 2009, Alahmadi et al. 2013, Krayem et al. 2021), reconstruction of the interi-
ors of 3D building models (Boeters et al. 2015), and assessment of damage after flood-
ing. For example, the Dutch government has developed a model describing whether
any dry storeys would remain in residential buildings given a major breach of the
country’s flood defences (see https://www.overstroomik.nl).

In practice, the number of floors is seldom stored as an attribute in buildings data-
sets, even when a 3D representation of the buildings is available. One example is the
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3D BAG dataset in the Netherlands (Dukai et al. 2021, Peters et al. 2022), it has
detailed 3D models with accurate roof geometries but no information about the floors.
OpenStreetMap (OSM) has in theory an attribute for this, but it is rarely used: Biljecki
(2020) reports that in Singapore only 15% of buildings have it and that in the rest of
Southeast Asia it is <2–3%; in Germany it was <0.1% in 2014 (Fan et al. 2014); but it
can be as high as 84% for specific manually built datasets like in Vienna
(Agugiaro 2016).

When a 3D model of a building or elevation information (e.g. a point cloud) is avail-
able, it is often assumed that deriving the number of floors is a simple geometric task.
As shown in Figure 1(a), we can estimate the number of floors by dividing the height
of a building with an assumed average storey height (the results are typically rounded
to the nearest integer). In a research context, Alahmadi et al. (2013), Nouvel et al.
(2014), and Shiravi et al. (2015) all use this geometric method for their applications,
and it is the model most often mentioned by practitioners (the Dutch model for flood-
ing uses this method). However, assuming that the number of floors is a simple linear
function of the height will only work for simple buildings with flat roofs [which are
estimated to account for only 34% of building stock in the Netherlands (Dukai et al.
2019)], and in practice, it may fail for buildings with slanted roofs, those having a floor
lobby taller than the floors above, or complex configurations (we give examples in
Section 3). As shown in Figure 1(b), the main issue is that it is not clear what the sin-
gle height of a building should be [we refer to this concept as the height reference
(Biljecki et al. 2014)], especially if we have 3D models where the shape of the roofs
and extra installations, such as chimneys and antennas are modelled; we elaborate on
these concepts in Section 2.

Another alternative to obtain the number of floors is to count the number of win-
dows, in the vertical direction, from street-view imagery (Biljecki and Ito 2021). This
method appears to be used by many, e.g. by Shiravi et al. (2015), to manually perform
a visual inspection of the results (after having used the geometric method); we used it
too during the development of our methodology. However, it should be added that
interpreting façade images to unambiguously determine the number of storeys is an
intricate task because of the several possible configurations (see for instance Figures 5

Figure 1. (a) Geometric approach to estimate number of floors from building height. (b) The sev-
eral height references that can be used to assign one height to a building.
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and 13), and because of the several occlusions caused by trees and parked cars. Even
a human visually inspecting those images could hesitate between two answers.
Nonetheless, Iannelli and Dell’Acqua (2017) trained a convolutional neural network
(CNN) for residential houses in the USA, and Wu et al. (2021) developed a network to
identify where floors are located in an image of a façade (a closely related problem).
Those methods are also limited to the availability of street-view images, which are sel-
dom available as open data (open datasets of lidar measurements are nowadays rela-
tively frequent1).

In this paper we investigate whether other attributes and characteristics related to
buildings (footprints, 3D models, cadastral, and census datasets) can help us better
predict the number of floors than using just a geometry-based method; we are not
aware of any other research project attempting this. We propose and describe in
Section 3 several potential indicators, and we present a predictive model that was
trained with around 173,000 residential buildings in the Netherlands (for which we
have the footprint, the point cloud, and the detailed 3D model). We focus in this
paper solely on (mixed-)residential buildings because commercial and other buildings
(such as churches, shopping malls, and factories) have often little correlation between
the height and the number of floors, and also because our principal application is sav-
ing lives in case of flooding: people live in residential buildings. As further described
in Section 4, our model achieves an accuracy of 94.5% and a mean absolute error
(MAE) of 0.06 for buildings with five floors or less, which is a substantial improvement
over the results of the ‘standard’ geometric approach (accuracy of 69.9% and MAE of
0.31). However, above five floors, our model has only a slight improvement on the
geometric approach (accuracy of 52.3% and MAE of 0.62, whereas the geometric
approach was 47.5% accurate and had an MAE of 0.70). We further elaborate on this
in Section 5, but the main culprit is the lack of training data for buildings having more
than five floors (Dutch buildings are rarely above 5 floors, see details in Section 3.1).
One interesting result of our work is that detailed models with roof shapes (commonly
referred to as ‘LoD2’, see Section 2) are not contributing much to having a better
model; the simple extrusion of footprints to a single height (Ledoux and Meijers 2011)
is sufficient. This fact would allow practitioners to save money on data acquisition and
processing if they wanted to obtain the number of floors for their applications.

2. Background and related work

The level-of-detail (LoD) of a 3D model of a building describes its complexity, allowing
its degree of resemblance to the real-world situation to be portrayed (Biljecki et al.
2016b). While different categorizations exist, the most widely used standard for speci-
fying the LoD is that of CityGML (Gr€oger and Pl€umer 2012, OGC 2012), which has
been refined by Biljecki et al. (2016b). LoD1 refers to a block model, which is easily
obtained by extruding footprints to a single height. This height is usually obtained by
processing the point cloud points inside the footprint (and finding the median after
filtering). LoD2 refers to a general model of the building structure including simplified
roof shapes. LoD3 models are architecturally detailed and include windows, doors,
and chimneys.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 3



Despite the apparent simplicity of the LoD1 block model, there is a high level
of ambiguity in its geometric representation (Biljecki et al. 2014). As illustrated in
Figure 1(b), the position of the top surface varies significantly depending on the
height reference chosen to represent the building’s height. If we are extruding foot-
prints to reconstruct LoD1 models, these height references can be taken into account
by using different percentiles of the point cloud’s z-coordinates, those points whose
projection on the xy-plane intersects the footprint (Dukai et al. 2019). The 100th per-
centile would be the highest points (potentially a chimney or an antenna), and the
50th percentile should be around the eave since there will most likely be many points
located on the façades of the building. In the context of our work, the height referen-
ces representing the ridge and eaves are the most important (see Figure 1(b)). The dif-
ference between these heights could potentially be used to identify storeys beneath
slanted roofs.

The average storey height—used for the geometric approach—is not actually a sin-
gle, static value, but it varies historically and geographically. For example, in the
Netherlands, it is around 2.65m for buildings built since 2003, but it was around 3m
one hundred years ago (Ministry of the Interior and Kingdom Relations 2012). As a
matter of fact, such reasoning can be extended to several other countries, too. For
this reason, in our proposed method, we use the construction year of the building as
one of the indicators.

3. Datasets and methods

3.1. Datasets

We use three openly available datasets in the Netherlands:

1. BAG: 2D footprints and addresses of all buildings in the Netherlands. Each foot-
print is associated with several attributes, such as construction year and current
use, but the number of floors is currently not included. We used the dataset as of
04–2020 from https://bag.basisregistraties.overheid.nl

2. 3D BAG: 3D models automatically reconstructed (in LoD2) by using a lidar point
clouds (Dukai et al. 2021, Peters et al. 2022). We used version 21.03.1 from https://
3dbag.nl

3. Census data: we used the 2019 neighbourhood census data from Statistics
Netherlands (CBS in Dutch: https://cbs.nl). Since this dataset is only available at a
neighbourhood level, buildings from the same statistical neighbourhood received
the same value for each feature. A neighbourhood is defined as a homogenous
area [in terms of buildings and socio-economical characteristics (CBS 2020)]. As an
example, Amsterdam has its 219 km2 divided into 481 neighbourhoods, which
means that each is about 0.2 km2 in size.

We also obtained training data from four municipalities in the Netherlands:
Amsterdam,2 Rotterdam, The Hague, and Rijssen-Holten (see Figure 2(a)). These munic-
ipalities either assigned manually the number of floors or retrieved this information
from one of their databases; as shown below the datasets contained noise and errors
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and we had to (semi-)manually clean them. The first three municipalities correspond
to the three largest cities in the Netherlands, while Rijssen-Holten is a more rural
municipality located in the west of the country. It was added to provide the algo-
rithms with data that was also representative of less densely populated regions of the
country. However, the majority of buildings originate from Rotterdam (Figure 2(b)),
meaning that the dataset mainly corresponds to urbanized areas. A comparison of the
different training datasets is provided in Table 1.

Since each municipality has a different approach towards storing the number of
floors, we cleaned the input datasets to remove any obvious errors (e.g. where the
number of floors was zero or a negative value) and to somehow standardize the data.
In addition, we filtered the data to keep only the residential buildings and those that
are semi-residential (most often having shop on the ground floor and apartments
above, see Figure 5(a) for one example); the filtering was performed on an attribute of
the BAG.

We further cleaned the training data because it contained several (gross) errors, this
was carried out using a combination of (semi-)automatic and manual steps. As can be
seen in Table 1, in total 59% of the input data on the number of floors remained after
cleaning. The cleaning steps mainly focused on removing obvious errors and outliers
from the data. To speed up the data cleaning process, the strong correlation between
building height and the number of floors was utilized. As shown in Figure 3, we used
box plots to filter erroneous labels, e.g. we removed all values above the 75th percent-
ile and under the 25th percentile. We also used violin plots show the probability dens-
ity of the data distribution (Hintze and Nelson 1998), these plots were used to show
the distribution for slanted and horizontal roofs separately, allowing the influence of
roof type to be analysed. Cases where the number of floors was missing (i.e. zero or

Figure 2. Overview of training dataset.

Table 1. Quantitative comparison of the training data by municipalities.
Municipality # bldgs Residential bldgs. Median # floors Pop. density # clean bldgs

Amsterdam 22,328 64% 4 5.21k/km2 8757
Rotterdam 206,809 56% 3 2.96k/km2 105,245
The Hague 53,730 99% 3 6.52k/km2 48,450
Rijssen-Holten 11,879 97% 3 0.41k/km2 10,700
Total 294,746 67% 3 173,152

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5



NULL), larger than 48 or <0 were removed, as well as any duplicate buildings. Also,
since there was an insufficient number of buildings to provide reliable trends above
17 floors, the semi-automatic cleaning process was not performed for buildings with
more than 17 floors. Instead, these buildings were cleaned through manual inspection
using Google Street View.

We chose to aggressively remove wrong labels (thus removing about 40% of the
data that were available) to ensure that the training data was—as much as possible—
free of errors, although this came at the cost of removing good labels (Figure 4).

After cleaning, the training dataset consists of 173,152 buildings, ranging from 1 to
45 floors. These buildings cover a variety of architectural styles, construction periods,
and building types. A number of examples from each municipality are provided in
Figure 5. These buildings are used as case studies during the analysis in order to gain
a more concrete understanding of model performance. Some examples were selected
to represent particularly challenging aspects of the prediction problem. For instance,
buildings with varying storey heights, elevator shafts, or multiple storeys beneath
slanted roofs. The example shown in Figure 5(b) was selected because the building in
the centre has one floor less than its neighbours due to a double-height caf�e on the
ground floor. The geometric approach would be unable to distinguish these cases.

Figure 3. Semi-automatic data cleaning steps.
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As shown in Figure 2(c), the training dataset is quite heavily skewed towards buildings
with lower numbers of storeys (around 90% of the available training data consists of build-
ings with 5 floors or less). Data imbalance is problematic because most machine learning
algorithms aim to minimize the overall error rate (Chen and Breiman 2004). In order to take
data imbalance into account, we report on our results in Section 4 low (�5) and high (>5)
storey buildings separately. This prevents the prediction errors for high storey buildings from
being masked by the results for low storey buildings. Furthermore, a stratified approach was
used to create the train-test split. This stratification was based on building height since this
is known to be highly correlated to the number of floors (Biljecki et al. 2017).

3.2. Predictors for the number of floors

We looked at different studies where the heights of buildings are predicted from dif-
ferent predictors, and we compiled the 19 predictors shown in Table 2. Those features
are subdivided into 4 classes: (1) cadastral; (2) 2D geometric (based footprints); (3) 3D
geometry (based on the 3D model); (4) and census-based features. The relevance of
the features is explained in the table. Notice that since the 3D geometry-based predic-
tors are computed for both the LoD1 and LoD2 models, we obtain a total of 25 poten-
tial predictors (which we call features).

Most predictors are attributes in the datasets we use or result from simple GIS
operations. Only three require more details:

#13 ridge-eave heights: this was computed from the LoD2 model. For slanted
roofs, ridge height was computed as the 90th percentile of the roof surface z-coordi-
nates while eave height was computed as the 75th percentile (Figure 6(a)). For build-
ings with completely horizontal roofs, ridge height was computed as the 90th
percentile of the roof surface z-coordinates, minus ground height. We also extended
this to buildings with multiple horizontal roof surfaces, to potentially allow buildings

Figure 4. Scatter plot of buildings kept and removed by the semi-automatic cleaning steps.
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with elevator shafts and other roof installations to be distinguished (Figure 6(b)).
These structures increase the measured height of a building, but should not contrib-
ute to the floor count. An attempt was made to define ridge and eave height in such
a way that they could be used to distinguish buildings with elevator shafts. A larger
difference between these percentiles could indicate that elevator shafts are present.
However, the disadvantage of this approach is that the 75th percentile could also cor-
respond to lower roof sections, such as balconies or porches.

Figure 5. Examples of buildings in the training dataset. The results obtained with the standard
geometric approach (geom) and our results with machine learning (see Section 4) are between
parentheses. Source: Google Street View (2022).

8 E. ROY ET AL.



#14/15 roof1wall surface areas: computed from both the LoD1 and
LoD2 models.

#16 building volume: in our LoD2 dataset, more 95% of the buildings are geomet-
rically and topologically valid (Ledoux 2018), but it is in practice often significantly
lower (Biljecki et al. 2016a). If the solid contains errors (gaps, self-intersections, etc.)
then it is not possible to compute its volume by using its geometry. For those

Table 2. Features used are classified into four classes: cadastral, 2D geometric, 3D geometric,
and census.

Feature Details and relevance

1 Construction year Construction period is often related to storey height. For instance, after 2003,
the Dutch building code increased the required storey height of new
buildings from 2.4 to 2.6 m (Ministry of the Interior and Kingdom
Relations 2012). This means that construction year could be used to
distinguish buildings with the same number of floors but different heights.

2 Building function A distinction is made between residential and mixed-residential, as mixed-
residential buildings have been found to exhibit different properties than
purely residential buildings (Biljecki et al. 2017).

3 Net internal area Previous research has found that taller buildings (with more storeys)
generally have a higher net internal area (Biljecki et al. 2017).

4 Number of units Similar to the net internal area, buildings with more storeys generally contain
more building units (e.g. apartment blocks).

5 Building type 4 possible values: detached, semi-detached, terraced and apartment blocks.
Apartment blocks generally have a higher number of floors than (semi-)
detached and terraced buildings

6 Area Dividing the net internal area by the footprint area can provide an indication
of the number of floors.

7 Perimeter In combination with area, perimeter can provide information about the
footprint shape, such as its compactness and complexity (L�ansk�y 2020).

8 No. vertices A higher number of footprint vertices could indicate a more complex shape
(L�ansk�y 2020). Computed after simplification by Douglas-Peucker.

9 No. neighbours The number of neighbouring building centroids within a 100m radius of the
footprint centroid. Buildings with many storeys are generally surrounded
by more open space (Biljecki et al. 2017). Buildings in rural areas also
generally have fewer neighbours (L�ansk�y 2020).

10 No. adjacent buildings The number of buildings within a 0.1m buffer of each footprint. Lower
storey buildings in urban areas generally have more
immediate neighbours.

11 Building height Computed for the minimum, maximum, 50th and 70th roof height
percentiles (available as attributes of the 3DBAG). Building height is
strongly related to number of floors, especially for residential buildings
(Biljecki et al. 2017).

12 Roof shape An attribute provided for each building in the 3DBAG. In combination with
building height, roof shape could provide information about the likelihood
that storeys are present beneath slanted roofs.

13 Ridge-eave heights The difference between the height of the ridge and eaves of the roof. Similar
to roof shape, this could provide some indication of whether storeys
might be present beneath slanted roofs (Figure 6).

14 Roof surface area Computed for both LoD1 and LoD2 to describe building geometry.
15 Wall surface area Computed for both LoD1 and LoD2 to describe building geometry.
16 Building volume Computed for both LoD1 and LoD2. A larger volume is somewhat linked to a

larger number of floors.
17 Population per km2 Areas with a higher population density generally have more high storey

buildings to accommodate all residents.
18 Percent multi-household Multi-household buildings, such as apartment blocks, generally have more

storeys than single family homes.
19 Average # of caf�es <1 km The average number of caf�es shows a strong link to area morphology and

could be used to distinguish central business districts from rural and
suburban areas. Other amenities were also considered but the average
number of caf�es showed the clearest relationship to area morphology. The
CBS dataset we use contains the number of amenities within 1 km, but
other sources, such as OpenStreetMap could easily be used.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 9



buildings, we implemented our own version of the voxel-filling algorithm of Steuer
et al. (2015), which gives in most cases a reliable approximation.

3.3. Predictions models

Is inferring the number of floors a regression or a classification problem? On the one
hand, floor count is generally an integer value, which could be predicted as discrete
classes by a classification algorithm or obtained after rounding the predictions of a
regression algorithm. However, classification would require the training data to include
examples of all possible floor counts that exist in reality. In practice, it would be diffi-
cult to find this data, meaning that the model would be unable to predict the number
of floors of the missing classes. In contrast, the predictions of a regression model are
not limited to the training data examples, allowing predictions to be made also for
unseen cases. The model takes into account the ordinal nature of the number of floors
and remains applicable to new buildings with higher floor counts. A further advantage
of regression is that floor count is predicted as a decimal value, allowing buildings
with ‘half floors’ to be taken into account. This is required for certain applications,
such as energy demand estimation. Therefore, we consider the number of floors as a
regression problem.

Three different predictive models were trained: Random Forest (RF), Gradient
Boosting (GB), and linear Support Vector Regression (SVR). The training process was
performed using an iterative approach and some data preparation steps, such as data
cleaning, were repeated throughout the process (as explained in Section 3.1). We used
80% of the 173,152 cleaned buildings for the training, and the other 20% was kept for
testing. A stratified approach was used to create the train-test split, this stratification
was based on building height since this is known to be highly correlated to the num-
ber of floors.

Each model was first trained on all available features and then trained with three
subsets of the features. As explained in Section 4.1, we used for each two filter

Figure 6. Ridge vs. eave height based on roof type.
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methods and one embedded method (using the model weight for the SVR). The
hyperparameters of the best model of each algorithm were tuned, see Section 4.2 for
details. Based on these, the SVR turned out to perform poorly. Both RF and GB per-
formed similarly, GB having a slightly better prediction accuracy. In the following, we
focus on the GB model, and the final results are obtained by tuning its hyperpara-
meters (see Section 4.2).

3.4. Data handling and software

The methodology was implemented entirely in Python using:

1. scikit-learn library (Pedregosa et al. 2011) for the prediction models;
2. PostGIS (Strobl 2008) to store all input datasets;
3. the 2D geometric features were extracted with PostGIS functions;
4. the 3D geometric features were implemented by ourselves

Our code is publicly available at: https://github.com/ellieroy/no-floors-inference-NL.

4. Results and evaluations

We trained four Gradient Boosting (GB) models, one with all the 25 features in Table
2, and three with different subsets of 10 features (obtained with statistical analysis,
see Section 4.1).

To evaluate the performance of these models, the MAE (mean absolute error), the
RMSE (root mean square error), maximum error, and accuracy were computed on the
predictions obtained for the test dataset (20% of the cleaned buildings). We report
these metrics separately for buildings with 5 floors or fewer, and for those with more
than 5 floors, to distinguish the errors caused by high-rise buildings with low data
availability. Buildings with 5 or fewer floors represent around 90% of the train-
ing dataset.

We then tuned the hyperparameters of the best model (GB-2) (this is further
detailed in Section 4.2), and this allowed us to greatly improve the model. Its final
accuracy is 94.5% for buildings containing 5 floors or less, and 52.3% for taller ones.
After tuning the hyperparameters, the MAE was almost halved and the maximum error
for buildings taller than 5 floors was reduced by one floor (but for 5 floors and less it
increased by one).

You can see the results for the standard geometric approach (as explained in the
Introduction), it is the row ‘Geom.’ in Table 3. Building height was based on the 70th
percentile of the lidar inside the footprint (all feature selection methods have the 70th
percentile as the best predictor, see Section 4.1), and an assumed storey height of
2.65m was used [this value is derived from the Dutch building code (Ministry of the
Interior and Kingdom Relations 2012)]. As is the case for our model, the results were
rounded to the nearest integer rather than rounded down. This reduces the likelihood
of overestimation, which is useful for one of the main applications in Netherlands,

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 11

https://github.com/ellieroy/no-floors-inference-NL


flooding assessment since overestimation could potentially cause the presence of dry
floors to be incorrectly identified.

These results show that our model performs better according to all four error met-
rics, apart from the maximum error for buildings with �5 floors. For buildings below 6
floors, the best model has a much lower MAE and is �25% more accurate than the
geometric approach. In addition, for buildings above 5 floors, the performance differ-
ence is less notable.

It is interesting to note that, similar to machine learning, the geometric approach
performs worse for higher storey buildings (Figure 7). This suggests that the number
of floors of these buildings is inherently more difficult to predict. This could be due to
building characteristics, such as the presence of elevator shafts or double storey
ground floor lobbies. The input data (quality and completeness) could also play a role.
As a result, machine learning may require more training instances of high storey build-
ings to reach a similar level of performance to lower storey buildings.

The cumulative error distributions of our final model and that of the geometric
approach are shown in Figure 8. These plots show the fraction of buildings with an
error less than or equal to a certain number of floors. If all buildings are considered
(Figure 8(a)), the number of floors is predicted within 1 floor of the true value in
�99% of cases for our model, and in only 90% for the geometric approach. If build-
ings above 5 floors are considered separately (Figure 8(b)), the cumulative error distri-
butions are almost identical. This shows that even the best predictive model does not
provide a substantial improvement on the current estimate.

Table 3. Model evaluation results, for �5 and >5 floors.

Hyper

MAE RMSE Max error Accuracy (%)

�5 >5 �5 >5 �5 >5 �5 >5

GB-all No 0.11 0.98 0.33 1.29 2 4 89.6 25.6
GB-1 No 0.11 1.04 0.33 1.36 2 5 89.4 24.1
GB-2 No 0.11 0.98 0.33 1.31 2 5 89.6 27.0
GB-3 No 0.12 1.02 0.25 1.33 2 4 88.4 23.7
GB-2 Yes 0.06 0.62 0.24 1.00 3 4 94.5 52.3
Geom. N/a 0.31 0.70 0.57 1.09 2 5 69.9 47.5

Figure 7. Mean absolute error per number of floors.
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Figure 8 shows the results obtained with the geometric approach and our model.
This analysis was conducted to ensure that the performance differences were not
always caused by incorrectly labelled buildings. The results show that our model pro-
vides a better estimate of the number of floors for buildings with larger than average
storey heights. For example, the five-storey building in Figure 5(e), and three-storey
building in Figure 5(h) have slightly higher storey height than average. These exam-
ples were predicted correctly by our model, whereas they were overestimated by the
geometric approach. In addition, our machine learning model provides a more accur-
ate estimate for the five-storey building in Figure 5(b) with a caf�e on the ground floor.
The neighbouring buildings are purely residential and have 6 floors, whereas the
building with the caf�e has only 5 floors due to the double-height ground floor. The
geometric approach could not distinguish this case and provided an overestimate of 2
floors. Machine learning was also able to distinguish buildings with and without stor-
eys beneath slanted roofs. For instance, the number of floors of the single-storey
building with a slanted roof in Rijssen-Holten was predicted correctly. This example
was overestimated by the geometric approach because the slanted roof increased the
measured height of the building. The slanted roof of the 2-storey building in Den
Haag also caused the geometric approach to overestimate the number of floors. None
of the approaches were able to correctly determine the floor count of the four-storey
building in Figure 5(a). The number of floors was overestimated by 1 floor in both
cases. This is most likely due to the differences in storey height throughout the build-
ing. Furthermore, both approaches performed worst for the examples of high storey
apartment blocks. Our model generally underestimated the number of floors of these
buildings, whereas the geometric approach provided an overestimate.

4.1. Feature selection

We performed feature selection to determine which features have the best prediction
power and to eliminate any redundant or irrelevant features. This allows us to reduce
the number of input variables that the model has to fit, which lowers the

Figure 8. Cumulative errors of the best predictive model compared to geometric approach.
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computational cost of training. Secondly, only the most relevant features are used and
less useful features are removed, reducing noise in the training data. Furthermore, the
performance of the model may be improved since the algorithm does not focus on fit-
ting the model to irrelevant features, which could lead to an overfit on the train-
ing data.

To rank and select the features according to their predictive power, we have used
and compared different methods.

First, we have used two filter methods: (1) Pearson correlation coefficient and (2)
the Mutual Information (MI) methods. The benefit of this filter methods is that it is
computationally light and independent of the machine learning algorithm used
(Chandrashekar and Sahin 2014). This means that the likelihood of overfitting is
reduced, as the selection is not tuned for a specific learning algorithm (Guyon and
Elisseeff 2003). The top ten features based on MI and Pearson’s correlation coefficient
are shown in Table 4. The two filter methods provide very similar results, the top five
features are the same in both cases and the results differ by only one feature overall.
As expected, building height has the strongest level of correlation, with 70th percent-
ile height ranking highest for both methods. Two other 3D geometric features, roof
area, and volume, are also found to be related to the number of floors. Please observe
that the correlation is approximately the same, irrespective of the LoD of the model.

Second, we have used embedded methods, which are integrated as part of the train-
ing process, meaning they are dependent on the machine learning algorithm used.
The importance of each feature is derived based on its contribution to the predictive
model. The interaction between features is taken into account, enabling a better
understanding of the training dataset to be obtained. A common example of an
embedded method is the impurity-based feature importance built into tree-based
models (Lal et al. 2006). The top 10 features for the Gradient Boosting (BG) are shown
in Table 4. As is the case for the filter method, the 70th percentile building height is
the most important feature. However, fewer 3D geometric features are selected.
Furthermore, unlike the filter-based method, the LoD2 features rank higher than their
LoD1 equivalents, which are not included in the feature subsets. It is also interesting
to note that 70th percentile building height has a much higher importance than all
other features combined. However, since the importance scores are based on the
training set, the other features could still be useful for predicting the number of floors
of unseen cases.

Table 4. Top ten features selected by different methods.
Mutual information Pearson correlation Embedded GB

Feature Value Feature Value Feature Value

1 Height (70th) 1.00 Height (70th) 1.00 Height (70th) 0.883
2 Height (max) 0.89 Height (max) 0.79 Height (max) 0.071
3 Height (50th) 0.85 Height (50th) 0.58 Net internal area 0.020
4 Roof area (LoD1) 0.63 Roof area (LoD1) 0.11 No. units 0.005
5 Roof area (LoD2) 0.60 Roof area (LoD2) 0.11 Height (50th) 0.004
6 Net internal area 0.59 No. units 0.05 Construction year 0.004
7 Volume (LoD1) 0.51 Volume (LoD1) 0.04 Roof area (LoD2) 0.003
8 Volume (LoD2) 0.50 Volume (LoD2) 0.04 Avg. no. caf�es in 1 km 0.002
9 Population density 0.47 Net internal area 0.03 % multi-household 0.001
10 % multi-household 0.34 % multi-household 0.03 Ridge-eave height 0.001
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Overall, the results of the filter and embedded methods are quite varied, highlight-
ing the difficulty to select the best subset. However, several features were not
included in any of the subsets, suggesting they are not relevant to the prediction
problem. These features were: wall surface area, building function, and all 2D geomet-
ric features, aside from the number of neighbours.

A drawback of filter and embedded methods is that the selected subsets include
many similar features. This is because these are not independent, and may have a
high level of correlation between them. We calculated the level of correlation between
the input features with the variance of an independent variable method (VIF), which is
shown in Table 5 for features selected by the MI and the embedded-GB methods. The
VIF describes the extent to which the variance of an independent variable is increased
by its correlation to other variables; a value of 1 indicates the absence of collinearity
and, as a general rule of thumb, values above 5 or 10 indicate high collinearity (James
et al. 2021). The VIF scores show that there is a high level of multicollinearity present
in the selected feature subsets, particularly for the filter-based subset. Seven of the
features selected using the filter-based method have a VIF score higher than 5. The
subset based on GB feature importance performs slightly better, as the number of fea-
tures with a VIF score higher than 5 is reduced to five.

To reduce the groups of correlated features, we applied hierarchical clustering, a
process that enables closely related variables to be grouped together based on a simi-
larity measure (Rokach 2010). We used Ward’s linkage, which computes the ‘distance’
between two clusters as the increase in the error sum of squares after merging two
clusters together. The resulting clusters are visualized by the dendrogram shown in
Figure 9. A threshold distance of 0.4 was used to assign features to the same cluster.
This value was chosen to group together as many similar features as possible. The
groups shown in red, green, orange, and purple represent different clusters, while the
features linked in blue were not assigned to a cluster.

To select a feature subset with reduced multicollinearity, a filter-based approach was
first performed on each cluster. The feature with the highest MI score was selected per
cluster. Then, the features with the ten highest MI scores were selected from the best
feature per cluster and the remaining unclustered features. The results are shown in
Table 6, alongside the MI scores. It is noticeable that the MI score of some features is
quite low. However, a number of these features were also considered important by the
embedded method. Features with low individual relevance can still be useful when

Table 5. Variance inflation factor (VIF) of two feature subsets.
Mutual information Embedded GB

Feature Value Feature Value

1 Height (70th) 51.8 Height (70th) 44.9
2 Roof area (LoD1) 38.6 Height (max) 27.6
3 Volume (LoD1) 26.5 Height (50th) 18.2
4 Height (50th) 23.0 Roof area (LoD2) 9.2
5 Roof area (LoD2) 21.6 No. units 5.1
6 Height (max) 20.0 Net internal area 2.4
7 Volume (LoD2) 17.0 % multi-household 1.9
8 Net internal area 4.7 Ridge-eave height 1.8
9 % multi-household 2.0 Avg. no. caf�es in 1 km 1.6
10 Population density 1.9 Construction year 1.4
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combined with other features (Guyon and Elisseeff 2003). For comparison, the VIF scores
are also shown. All scores are lower than 10 and only one feature has a score slightly
higher than 5, showing that multicollinearity was successfully reduced.

4.2. Hyperparameters tuning

Because hyperparameters control the learning process, tuning them can help to
improve a model’s generalization performance. This means that the algorithm will be

Figure 9. Hierarchical clustering between input features based on the Pearson correlation
coefficient.

Table 6. Feature subset with reduced multicollinearity.
Feature MI score VIF score

1 Building height (70th) 1.00 3.28
2 Roof area (LoD2) 0.60 6.63
3 Population density 0.47 2.16
4 % multi-household 0.35 2.30
5 Construction year 0.24 1.31
6 Footprint perimeter 0.18 4.34
7 Building height (min) 0.14 1.09
8 Ridge-eave height 0.12 1.17
9 No. adjacent buildings 0.05 1.29
10 No. neighbours in 100m 0.04 1.42

16 E. ROY ET AL.



able to generate a model that provides a good fit to the training data, but will also
perform well on other unseen data. We can see in Figure 3 that this was indeed the
case, especially for the buildings with more than 5 floors.

There are six hyperparameters to tune for Gradient Boosting: (1) maximum depth
of each tree in the ensemble; (2) minimum number of samples of leaf nodes; (3) min-
imum number of samples of internal nodes; (4) maximum number of features; (5)
number of trees in the ensemble; (6) learning rate. To tune our model, as shown in
Figure 10, a grid of possible values for each hyperparameter was created. A random-
ized search was performed over 75 different combinations of these values. This means
that our model was trained 75 times on different combinations of the hyperparameter
values provided. As a result, not all possible combinations were tested. However, this
approach was preferred over an exhaustive search since this would have a much
higher computational cost.

To determine appropriate parameter values to test, validation curves for each
hyperparameter were plotted. Figure 11 shows three of them, but this was done for
all six. To obtain such a plot, each hyperparameter was altered in isolation and 5-fold
cross-validation was used to evaluate model performance. Since the dependence
between hyperparameters is not considered, these plots are not fully representative of
the impact on model performance. However, they are still useful to gain an initial
understanding of which values to test. The impact of each hyperparameter on the
model performance was assessed using the RMSE because of its higher sensitivity to
larger errors.

Figure 10. Visualization of train-test split and cross-validation. Adapted from Scikit-
learn (2007–2021).
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Figure 11(a) shows that increasing the tree depth initially led to a reduction in
RMSE for both the training and cross-validation sets. However, beyond a certain depth,
the cross-validation error no longer improved and even began to increase. At the
same time, the training error continued to decrease until a plateau. This shows that
increasing the maximum tree depth caused the model to overfit the training set and
prevented it from generalizing to the test set.

Increasing the number of trees generally leads to better model performance, how-
ever using many trees also slows down the training process. Figure 11(b) shows that
the RMSE was reduced by increasing the number of trees. The decrease in RMSE was
initially very high, since using only a few trees causes the algorithm to underfit the
training data. Beyond a certain point, the decrease was more gradual, showing that
using more trees does not substantially improve model performance.

The contribution of each tree is determined by the learning rate parameter. A lower
learning rate means that more trees are required to fit the data, but generally results
in better model generalization (G�eron 2019). Figure 11 shows that increasing the
learning rate initially led to a reduction in RMSE. However, when the learning rate
became higher, the gap between the two curves increased. This shows that the model
started to overfit the training data and did not generalize well to the validation set.

4.3. Impact of rounding on results

Figure 12(a) shows the distribution of the fractional part of all predictions (before
rounding to the closest integer). It is interesting to observe that most predictions have
a fractional part of either below 0.1 or above 0.9. This suggests that our rounding
strategy did not have a large impact on the results, as the majority of predictions
were already very close to an integer value.

It is also interesting to determine how often the fractional part caused the model
to over- or under-estimate the target value after rounding. This was achieved by ana-
lysing the fractional part of predictions that had an absolute error of 1 floor after
rounding (Figure 12(b)). The results show that increasingly more predictions were
over- or under-estimated the closer the fractional part got to the halfway point
between two integers, which makes sense as this is the most ambiguous case. The dis-
tribution is quite balanced, meaning that rounding caused a similar number of over-
and under-estimations.

Figure 11. Validation curves for three Gradient Boosting hyperparameters.
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Furthermore, an over-estimation of 1 floor after rounding was mainly caused by frac-
tional parts of above 0.5. Relatively few cases were overestimated by 1 floor because
the fractional part was <0.5. This occurs when the predicted value is 1–1.5 floors larger
than the target (e.g. a prediction of 3.1 for a target value of 2). Conversely, an underesti-
mation of 1 floor after rounding was mainly caused by fractional parts below 0.5.
Relatively few cases were underestimated by 1 floor because the predicted value was
1 to 1.5 floors smaller than the target (e.g. a prediction of 1.8 for a target value of 3).

4.4. Impact of data availability

The impact of data availability was assessed by training our predictive model (after
tuning the hyperparameters) on different categories of features. This provides us with
an indication of our model performances when certain datasets are unavailable, for
instance, LoD2 models might not be available in other countries. This also provides us
with another perspective on how different features contribute to the model.

The results are shown in Table 7.
The first model was based on all features to establish a baseline scenario in which

all datasets are available. The models with the most comparable performance to this
baseline were those based on the LoD1 and LoD2 features. The model based on LoD2
performed slightly better than LoD1. However, overall, there was very little difference
in performance, showing that a higher level of detail is not necessarily required. A
similar quality of predictions can be obtained based on LoD1.

The model based on cadastral features had the next best performance. For build-
ings below 5 floors, the MAE was almost double that obtained using the 3D geometric
features. In addition, the MAE above 5 floors was almost half a floor higher. On the
other hand, the accuracy was only reduced by around 8% and was more than 80% for
buildings with <5 floors. This shows that the 3D geometric features are more useful
for reducing the prediction error, but a reasonably good level of accuracy can still be
achieved with just cadastral features.

Figure 12. Analysis of fractional part of predictions.
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The worst performing models were those based on the census and 2D geometric
features. These models provided an accuracy of around 60–65% below 5 floors, but
only 5% or less for higher storey buildings. For buildings below 5 floors, the MAE
of these models was almost the same, suggesting that these feature categories
contribute a similar amount to model performance. However, the accuracy of
the model based on census features was lower. This model also made larger
prediction errors for buildings above 5 floors, showing that the 2D geometric fea-
tures are slightly more useful. This makes sense as the 2D geometric features were
extracted per footprint, whereas the census features were only available at a neigh-
bourhood level.

An accuracy of around 60% is still quite high, which is particularly surprising for the
model based on neighbourhood census data. This can be explained because a high
level of accuracy (55.5%) can still be achieved if the mean number of floors is pre-
dicted for all buildings. However, the subset based on census features still achieves a
5% higher accuracy than the model based on the mean. This shows that the add-
itional context that these features provide about the building’s surrounding environ-
ment helps to improve model performance.

Table 7. Impact of different feature subsets on model performance.
Features Model performance

Cadastral
Geometric

Census
MAE Accuracy (%)

2D LOD1 LOD2 �5 >5 �5 >5

1 � � � � � 0.05 0.64 94.8 51.7
2 � 0.19 1.35 82.5 25.3
3 � 0.39 2.23 65.2 5.8
4 � 0.10 0.89 90.1 32.5
5 � 0.10 0.87 90.5 34.8
6 � 0.41 2.55 61.7 3.6

Figure 13. Example of a ‘half-floor’ for a building in Amsterdam. Notice how the adjacent building
does not have this half-floor. Source: Google Street View (2022).
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5. Conclusions

We have shown that the standard geometric method, widely used by practitioners
and researchers, to estimate the number of floors of a building (i.e. dividing its height
by an assumed storey height, and rounding) has serious limits, especially for buildings
with slanted roofs, or when elevators shafts are present, or when a building has a
shop and/or restaurant on the ground floor. For a dataset in the Netherlands, this
method yields an accuracy of 69.9% for residential buildings with 5 floors or less, and
47.5% for the others.

The machine learning model we have designed, using the Gradient Boosting algo-
rithm, uses other attributes and characteristics of residential buildings to help better
infer the number of floors. It improves significantly on the geometric method: 94.5%
for buildings with 5 floors or less, and 52.3% for the others. We have defined and ana-
lysed 25 potential features (from cadastral attributes, building geometry at different
LoDs, and neighbourhood census data), and unsurprisingly our results show that
building height, particularly 70th percentile height, is most related to the number of
floors. Other 3D geometric features are also found to be quite closely related to the
number of floors, specifically roof area, and volume. Furthermore, models based on a
combination of different features performed better than models based on single cate-
gories of features. It should be stressed that a higher level of detail did not improve
significantly the results, i.e. reconstructing the LoD2 of a building, a complex and
costly operation, is not always necessary. If only footprints, some cadastral attributes,
and an elevation point cloud are available, then it is possible to obtain reliable floor
number predictions.

The results we obtained for residential buildings containing more than 5 floors do
not represent a significant improvement over the geometric approach, this is because
the training dataset was not representative of these buildings: around 90% of the
available training data consisted of buildings with 5 floors or less. As a result, it was
more difficult for machine learning to infer patterns for higher storey buildings. This
shows that better predictions can only be obtained if sufficient training instances are
available (which is not the case in the Netherlands).

One limitation of our approach is that we did not have training data for so-called
‘half-floors’ (an example is shown in Figure 13), which are quite common in the old
part of Amsterdam for instance. This prevented us from training our model for such
cases. Furthermore, the training data we obtained was in many cases not reliable, and
a rather complex and time-consuming cleaning process needed to be done, causing a
large amount of data to be removed. Also, model performance was assessed in terms
of absolute measures of performance. However, it would have been interesting to con-
sider the relative error distribution, since an error of 1 floor is more significant for a
one-storey building than a high storey apartment block. Finally, while the influence of
different height percentiles on the results of the geometric approach was not consid-
ered, our data suggest it is the most accurate. We have indeed tested four different
heights as features (0-, 50, 70-, 100-percentile), and for all the feature selection meth-
ods we used (see Section 4.1), the 70-percentile was the feature with the
best prediction.
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It should be noticed that our model can be used directly to predict the number
floors in the Netherlands and potentially in neighbouring European countries that
have similar building regulations and characteristics. However, for countries in the
Americas or in Asia, where typical buildings can be significantly different, training data
would need to be used and a specific model trained. This model would potentially
have different predictors than the ones we used. Our model can however also be
used as a mechanism to control the data that municipalities have. As mentioned in
Section 3.1, the data we obtained from municipalities were far from being perfect
(often outliers and gross errors were present). Based on our model, it would now be
relatively easy for a municipality to identify which buildings have errors, and thus to
only control manually those.

For future work, we would like to obtain more training data, especially for buildings
above 5 floors. We will need to look at other countries and potentially use OSM data-
sets, however at the cost of further data quality assessment and cleaning steps. We
would also like to investigate whether different features would be needed for tall
buildings and whether the accuracy of around 52% could be improved.

Notes

1. See for instance https://opentopography.org.
2. The dataset from Amsterdam is the only openly available dataset (accessible via their FTP-

server: ftp.data.amsterdam.nl).
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