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Abstract
In mathematical models of eco-evolutionary dynamics with a quantitative trait, two species
with different strategies can coexist only if they are separated by a valley or peak of the
adaptive landscape. A community is ecologically and evolutionarily stable if each species’
trait sits on global, equal fitness peaks, forming a saturated ESS community. However, the
adaptive landscape may allow communities with fewer (undersaturated) or more (hyper-
saturated) species than the ESS. Non-ESS communities at ecological equilibrium exhibit
invasion windows of strategies that can successfully invade. Hypersaturated communities
can arise through mutual invasibility where each non-ESS species’ strategy lies in another’s
invasion window. Hypersaturation in ESS communities with more than 1 species remains
poorly understood. We use the G-function approach to model niche coevolution and Dar-
winian dynamics in a Lotka–Volterra competition model. We confirm that up to 2 species
can coexist in a hypersaturated community with a single-species ESS if the strategy is scalar-
valued, or 3 species if the strategy is bivariate. We conjecture that at most n · (s + 1) species
can form a hypersaturated community, where n is the number of ESS species at the strat-
egy’s dimension s. For a scalar-valued 2-species ESS, 4 species coexist by “straddling” the
would-be ESS traits. When our model has a 5-species ESS, we can get 7 or 8, but not 9 or
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10, species coexisting in the hypersaturated community. In a bivariate model with a single-
species ESS, an infinite number of 3-species hypersaturated communities can exist. We offer
conjectures and discuss their relevance to ecosystems that may be non-ESS due to invasive
species, climate change, and human-altered landscapes.

Keywords Hypersaturated communities · Non-ESS communities · Mutual invasibility ·
Niche coevolution · Darwinian Dynamics · Evolutionary game theory

1 Introduction

Closely related, coexisting species generally differ in just a few ecologically relevant traits.
For instance, eastern grey squirrels (Sciurus carolinensis) and eastern fox squirrels (Sciurus
niger) of the Midwestern United States differ in body size (the former smaller than the latter
species), coat color (the former with a variable grey coat and the latter with a much less
variable orange coat), and temperament, with grey squirrels being more social and adept at
interspecific competition and fox squirrels seeminglymore adept at managing predation risks
[30, 41]. For Darwin’s finches, beak length, beak depth and overall body size are the salient
traits that allow coexisting species to partition niche axes of seed size and seed hardness [23,
40]. These examples illustrate the interplay between suites of continuous traits possessed by
coexisting species competing for resources along one or several niche axes.

Evolutionary game theory can be used to model these systems. The traits of the related
species can vary along continuous trait axes. These differences permit or preclude coexistence
along the corresponding niche axes. Via ecological and evolutionary dynamics, these games
of community organization model species diversity, coevolution and speciation [24, 29, 33].
Such games are usually built upon models from population ecology (e.g. Lotka–Volterra
competition equations [9, 28, 43]), where some of the model parameters are modified as
functions of the strategies of the individuals in a population. Here, we consider game theoretic
strategies to be heritable phenotypes. In game theoretic models, a species can be defined as a
group of individuals possessing the same strategy, different species are groups with different
strategies. An evolutionary equilibrium of such models may contain a single evolutionarily
stable strategy (ESS) or multiple ESS strategies forming stable communities of one or more
species. How do the different species come to be in such models?

One approach is to let the community achieve evolutionary equilibrium by the combined
effects of strategy and population dynamics, sometimes termed Darwinian dynamics [42] or
adaptive dynamics [21, 31, 32]. Faunal buildup can occur as strategies evolve to a convergent
stable minima of the adaptive landscape [8]. Such points have been termed evolutionarily
stable minima [3] or branching points [21]. One can imagine adaptive speciation resulting
from the disruptive selection that acts on these points [11, 16, 17, 39]. Eventually, the diversity
of species and their strategy values may converge on one or multiple ESSs. Or, if not, then
additional species can be added until the ecological and evolutionary dynamics acting on each
species and its strategy converge on an ESS community. At this point, all species’ strategies
reside on peaks of the adaptive landscape and no rare species with an alternative strategy can
invade. The ESS community is thus diverse enough to resist invasion, but not so diverse to
be unstable.

An alternative approach to adding diversity to a game of community structure is to intro-
duce invading species with distinct yet evolutionarily fixed strategies. Such additions can
grow, shrink or maintain the community’s diversity based on whether successful invasions
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result in the loss of none, one or more current species [12]. In the absence of evolutionary
dynamics acting on the species’ strategies, species cannot evolve to adaptive peaks. However,
they may still coexist or go extinct depending on competitive dynamics. The resulting com-
munities will be non-ESS, in that species may reside near peaks of the adaptive landscape,
but only coincidentally on a peak. In this way, a kind of co-evolutionary dynamics emerges
either through (1) the success of an invader species with a novel strategy resulting in either
the loss or addition to the existing species, or (2) existing species produce occasional, rare
mutant species with strategies that may be close to or far from the progenitor species [13,
14]. If mutations around extant species are small and relatively frequent, an eco-evolutionary
dynamic can emerge in which strategies climb the slopes of the adaptive landscape [19].

Thus, in game theoretic models of ecological communities, coexisting groups of species
may possess the strategies of the ESS (ESS communities) or strategies that are close or far
from the actual ESS (non-ESS communities). Real communities may exhibit the same. Per-
haps some communities have had sufficient time, strategy diversification, and coevolution to
achieve their ESS. Or, because of continual disturbances, invasions or extinctions, the diver-
sity of species and their strategies are non-ESS. In fact, with the scale of human disturbance to
communities around the world, few communities may be at their ESS. But, ecologically, do
ESS and non-ESS communities really differ in ways that would be important or conspicuous
to us?

Our goal is to explore this question using an evolutionary game based on G-functions
formulated as Lotka–Volterra competition.We shall explore the community properties of this
model when the number of species at the ESS varies from few to many, and when the trait
space is one or two dimensional. We compare ESS communities to non-ESS communities.
Of particular interest is an important result by Durinx et al. [18] and further explored by
Rubin et al. [37], showing that more species can coexist within a non-ESS than an ESS
community. We explore Durinx et al.’s Proposition 5 in more detail with an emphasis on
its ecological implications for natural communities and invasive species ecology. We can
use the Lotka–Volterra evolutionary game to make predictions for how ESS and non-ESS
communities differ and how they might be identified in nature. This becomes important as
we may expect non-ESS communities to exhibit rapid evolution towards fewer species, or
quite different patterns of community structure.

2 Background

In theG-function approach, the fitness (or per capita growth rate) of a focal individual depends
on its own strategy v, as well as the strategies of other individuals in the population u � (u1,
u2, . . . , un). It is also influenced by the population sizes corresponding to these strategies
x � (x1, x2, . . . , xn) where xi represents the population density of individuals with strategy
ui and n is the number of distinct strategies in the community. This relationship is captured by
G(v, u, x). For our purposes, we see distinct ui ’s as different species and thus n represents
current species richness. This function is analogous to the invader fitness function of adaptive
dynamics [1, 2, 25].

UsingDarwinian dynamics, the changes in the population size of species i can be described
as

dxi
dt

� xiG(v, u, x) (1)
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and the change in the strategy value of species i as

dui
dt

� σui
∂G(v, u, x)

∂v
(2)

where both expressions are evaluated at v � ui . Here, σui determines the speed at which
the strategy of species i climbs the fitness gradient. These dynamics play out on an adaptive
landscape defined as the plot of G versus v for a fixed (u, x). If there is negative density
dependence ∂G

∂xi
< 0 ∀i , an increase in xi will lower the fitness landscape for all values of v

and the current strategy u. As a result, changes in ui will move in the direction of the fitness
gradient.

Under Darwinian dynamics or adaptive dynamics [1], a number of key results emerge.
First, there are eco-evolutionary singular points where G(·) � 0 and ∂G

∂v
� 0 for u with

positive population sizes x∗. These pairs of (ui , x∗
i ) occur at minima, maxima or inflection

points on the adaptive landscape. Second, the coalition of singular points will form an ESS
if the singular points are at global maxima of the adaptive landscape. Third, for the coalition
of singular points, we will define the points as n-species convergent stable if for any ui in
the coalition, strategies in a close neighborhood of ui can be invaded by strategies that are
closer to ui for each i . Fourth, the coalition of singular points will form a neighborhood
invader strategy (NIS) if the singular points are at minima of the adaptive landscape under
entrant strategy variation. Fifth, for the coalition of singular points, we will define the points
as n-species mutually invadable if for any ui in the coalition, two strategies in a sufficiently
close neighborhood of ui , and on opposite sides of the maximum on the fitness landscape can
mutually invade each other on an ecological time scale for each i . We note that convergence
stability is not well defined for higher dimensional singular points [12].

Conditions for the first property of maximum or minimum on the adaptive landscape has
been proven for any value of n and for any dimensionality of ui [24, 42]. Conditions for
convergence stability and NIS have been formalized for cases where there is a single species,
n � 1, and for scalar-valued ui [6]. Mutual invasibility around a singular point has only been
formalized for scalar-valued ui [5, 6].

With these conditions, a number of key results emerge for our present exploration of ESS
and non-ESS communities:

(1) With scalar-valued strategies, for two species of the G-function to coexist, they must be
separated by at least one peak or valley of the adaptive landscape.

(2) If the coexisting species, at their equilibrium population sizes, are all on global peaks
of the adaptive landscape, their fitness, G(·), will be 0 at such points, the fitness of all
other strategies on that landscape will be negative, and this community of species, (u,
x), is an ESS where no alternative species with an infinitesimally small population can
invade.

(3) For a single species ESS, n � 1, that is NIS, via mutual invasibility, it is possible to have
up to s + 1 coexisting species as a non-ESS community where s is the dimensionality
of ui .

(4) By way of conjecture, for an ESS that is NIS, mutual invasibility makes it possible to
have non-ESS communities with up to n · (s + 1) coexisting species where clusters of
s + 1 species occur directly in the neighborhood of each u∗

i of (u
∗, x∗)

(5) By way of conjecture, for hypersaturated non-ESS communities of coexisting species,
the coexisting species associated with a particular u∗

i will converge on (u∗
i , x

∗
i ) if each

species strategy is allowed to evolve according to the Darwinian dynamics.
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In the following, we use G-functions that generate Lotka–Volterra competition equations
to illustrate and further these conjectures, as well as suggest additional properties of ESS and
hyper-diverse non-ESS communities.We considermodels of competitionwith either a scalar-
valued strategy along a single niche axis, or a vector-valued strategy based on two niche axes.
For the single strategy, we examine how communities with 1, 2, 3, 4 or 5 coexisting species
at the ESS can sustain up to 2, 4, 5, 7 and 8 species when the community is not at its ESS (up
to or close to twice the number of species in the hypersaturated community relative to the
ESS community). For the vector-valued strategy with two quantitative traits we examine how
communities with a single-species ESS can sustain up to 3 species in a non-ESS community.
While necessary and sufficient conditions for convergence stability, neighborhood invader
strategies and mutual invasibility properties for ESSs with multiple species or vector-valued
strategies remain elusive, we can use these examples to offer several conjectures that aim
to advance evolutionary game theory, niche coevolution with communities of competing
species, and species diversity in ESS and non-ESS communities.

2.1 TheModel

We consider a G-function that generates Lotka–Volterra competition equations:

G(v, u, x) � r

(
K (v) − ∑n

j�1 x jα(v, u j )

K (v)

)
(3)

where carrying capacity K (v) is influenced by the strategy v of the focal individual and the
competition coefficient α(v, u j ) depends on the strategy of the focal individual and strategies
of others.

Model for a scalar-valued strategy: For the case of a scalar-valued strategy, s � 1, we use
the following forms for K (v) and α(v, ui ) :

K (v) � Kmax exp

(
− v2

2σ 2
K

)
(4)

where Kmax is the maximum carrying capacity achieved when v=0, and carrying capacity
declines as a Gaussian function as v deviates in either direction from v=0 at a rate determined
byσ 2

K where a larger value ofσ 2
K meansK declinesmore slowlywith v around 0. The carrying

capacity curve can be thought of as the resource axis, v as position along that axis, and σ 2
K

as the breadth of the resource axis. Holding all else equal, a wider resource axis (larger σ 2
K )

permits more species to coexist by equalizing the fitness of differing species, which is a
criterion of the ESS, while a narrower resource axis (smaller σ 2

K ) causes fewer species to

occur via niche partitioning by introducing sharp fitness differences among similar species
[10].

α
(
v, u j

) � 1 + exp

(
−

(
v − u j + β

)2
2σ 2

α

)
− exp

(
− β2

2σ 2
α

)
(5)

where the Gaussian function implies that like competes most with like, and this competition
is somewhat asymmetric. Individuals with larger strategy values have a greater competitive
effect on those with smaller values than vice-versa. The degree of this asymmetry is deter-
mined by the “bully” term β ≥ 0. When β � 0, competition is symmetrical and becomes
increasingly asymmetric as β increases. As expected of Lotka-Volterra models, intraspecific
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competition yields a competition coefficient α(ui , ui ) � 1. As the deviation between the
competitors’ strategies (v − ui ) goes to infinity, the competition coefficient converges on a
positive value that increases with β:

α(v, ui ) � 1 − exp

(
− β2

2σ 2
α

)
(6)

The term σ 2
α determines the width of the competitive niche axis. Small values mean that

competition between two species declines rapidly as their strategies diverge, and vice-versa
for large values.Depending upon the fixed value ofσ 2

K , the number of species at theESS either

declines as σ 2
α increases, or at first increases and then declines. Thus, there is an interesting

interaction between σ 2
α and σ 2

K , where species diversity at the ESS always increases as σ 2
K

increases but where the relationship between σ 2
α and species diversity at the ESS is not

necessarily monotonic (Fig. S3, supplementary material). Other parameters of the model do
not influence the number of species at the ESS, and it appears that there is just one ESS for
any fixed parameter values [42].

Model for a vector-valued strategy: We use a bivariate form of the prior scalar-valued
G-function to permit two resource or niche axes:

K (v) � Kmax exp

(
−v21 + av22

2σ 2
k

)
(7)

α
(
v, u j

) � 1 + exp

(
−

((
v1 − u j1

)
+ b

(
v2 − u j2

)
+ β

)2
2σ 2

α

)
− exp

(
− β2

2σ 2
α

)
(8)

The strategy of the focal individual now has two components v � (v1, v2), where each
species’ strategy is now a vector ui � (ui1, ui2) and the strategies in the overall community
of n species is a vector of vectors: u � (u1, u2, . . . un). Carrying capacity, K (v), is now
a bivariate Gaussian that reaches a maximum of Kmax at v � (0,0) and the term a allows
for the rate of decline in K with v2 to be larger (a > 1) or smaller (0 < a < 1) than that
of v1. Similarly, the competition coefficient is bivariate, preserving the property that α(ui ,
ui ) � 1. The bully term β remains the same, and the parameter b allows the rate of decline
in α with v2 to be larger (b > 1) or smaller (0 < b < 1) than that of v1. Table 1 shows the
default values of the parameters that were used for all the simulations and results presented
in this study, unless otherwise mentioned.

Approach to non-ESS simulations: At an ESS, there is ecological stability whereG(·) � 0
and evolutionary stability where ∂G

∂v
� 0, and at evolutionary equilibrium, all strategies

reside on global, equal fitness peaks, forming a saturated ESS community. However, if
evolutionary dynamics are slower than ecological dynamics, and if natural systems have
fluctuating and variable selection pressures in ecological time, then we envision non-ESS
communities to be those where communities approach an ecological equilibrium, but not an

Table 1 Default parameter values used in this study

r Kmax σ 2
α β σui a b σ 2

K

0.25 100 4 2 0.5 0.9 1.1 Varied
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evolutionary equilibrium. Thus, to analyse non-ESS communities, our approach was to turn
off evolutionary dynamics and only permit ecological dynamics. We sought stable non-ESS
communities in the following way:

(1) Identifying ESS communities (u∗, x∗) whereG(·) � 0:We seeded p populations with
initial trait values u0 uniformly spaced in the interval [-10, 10], and initial population sizes
x0 randomly chosen from the interval [ Kmax

125 , Kmax
100 ] where Kmax � 100 is the maximum

carrying capacity. p was set to 10 unless otherwise mentioned. The system was then allowed
to reach both ecological and evolutionary equilibria following the dynamics given by Eq. 1
and Eq. 2. For our numerical solutions, ecological equilibrium and evolutionary equilibrium
are said to be reached at a time t when both the change in frequencies of the populations and
change in trait values u of the populations are less than 10−7 for 5000 consecutive simulated
time units respectively (Eqs. 9 and 10).∣∣∣∣∣ xτ

i∑
i x

τ
i

− xτ−�t
i∑
i x

τ−�t
i

∣∣∣∣∣ ≤ 10−7 ∀i ∈ {1, .., p}, ∀τ ∈ [t − 5000, t] (9)∣∣∣uτ
i − uτ−�t

i

∣∣∣ ≤ 10−7 ∀i ∈ {1, .., p}, ∀τ ∈ [t − 5000, t] (10)

The trait values possessed by the populations at equilibrium are assumed to be the ESS
trait values u∗. The population sizes x∗ at equilibrium are assumed to be the population
sizes of the ESS trait values. In case multiple populations evolve to have the same trait
value at equilibrium, their corresponding populations sizes are summed and are considered
to be the same species. Thus, u∗ has elements u∗

k where u∗
k is the kth ESS trait value,

k ∈ {1, . . . , nESS}, where nESS is the number of unique trait values possessed by species at
ESS.

(2) We open an invasion window, an interval around each ESS defined by positive fitness
(U+ � {v ∈ UN |G(v, u, x) ≥ 0}, where UN � {v|∣∣v − u∗

i

∣∣ ≤ 0.25} is the set of trait values
in the neighbourhood of an ESS trait u∗

i ), by moving one or more ui values off of its peak
by a value δ ∈ {0.01, 0.05, 0.1, 0.2, 0.3}. Similarly, we add a second species on the other
side of that peak (δ ∈ {−0.3, −0.2, −0.1, −0.05, −0.01}), within the invasion window.

(3) We then allow only the ecological dynamics (Eq. 1) to evolve with this new over-
saturated community and keep u fixed. (4) The resulting non-ESS communitywas considered
ecologically stable once the populations converged to equilibrium according to the condition
given by Eq. 9. (5) If a population went extinct, we tried the following strategies to find a new
set of trait values for the members of the non-ESS community, in an attempt to maximize the
number of surviving, coexisting species:

(a) Change its trait value by ε, where ε is randomly chosen from the interval [0.01, 0.1] in
the direction of the invasion window formed around its peak without crossing the ESS
value

(b) Change the trait value of its counterpart (on the other side of the peak) by ε, where ε is
randomly chosen from the interval [0.01, 0.1], away from the invasion window formed
around its peak

(c) Change the trait value of its neighbours at higher trait values, if any, by ε, where ε is
randomly chosen from the interval [0.01, 0.1], in the direction of increasing trait value

(d) Change the trait value of its neighbours at lower trait values, if any, by ε, where ε is
randomly chosen from the interval [0.01, 0.1], in the direction of decreasing trait value

We repeated step (5) at least 150 times to find a non-ESS community with twice the
number of species as ESSes in the 1, 2, 3, 4, and 5-species ESS cases.
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It is important to note that if the evolutionary dynamics were allowed to evolve as well (u
is not fixed), such communities would not be evolutionarily stable, and one species would
displace the other to reach the peak of the fitness landscape. However, if evolutionary dynam-
ics are slower than ecological dynamics, such communities could persist for a long period of
time in nature.

3 Results

Scalar-valued strategy: It is well established that σ 2
K is a bifurcation parameter determining

the number of species at the ESS [18, 21, 31]. If β �� 0, then as σ 2
K increases, the niche

breadth increases, and the ESS increases successively from 1, 2, 3, … to n species. If β � 0
(competition is symmetric), then the system jumps from a single species ESS to one with an
infinite number of species as σ 2

K increases [15].

Single species ESS: When we have a single species, the ESS (e.g., σ 2
K � 4) is NIS and

exhibits mutual invasibility for diverse pairs of (u1, u2) (Fig. 1a–c). For the example in
Fig. 1a, the ESS strategy, u∗ � 1.21, is greater than the value that would maximize carrying
capacity (u � 0). Thus, x∗ � 83.2 is less than the potential of Kmax � 100 at u � 0,
illustrating that under frequency-dependent selection, natural selection does not necessarily
maximize equilibrium population size. At the ESS, no other species can exist within this
community – it is both ecologically and evolutionarily stable. As a hypersaturated, non-ESS
community, the two species with strategies u′ � (−0.50, 1.90) and equilibrium population

Fig. 1 Results for the single strategy (σ2K � 4) (a, b, c) and two strategy (σ2K � 12.5) (d, e, f) ESS cases. Colored

circles represent species’ strategies. Solid and dotted lines represent the value of the G-function vs strategy
value when the resident has the strategy marked by the respective colored circle on the lines. The G-function
lines of all the species overlap in c, d, e, and f, and only one line is visible. The dashed vertical lines show
the location of the ESS strategy values on the x axis. (a) Single strategy ESS. (b) Invasion windows (light
green shaded regions) of each of the two non-ESS species with strategies above and below the ESS when they
are the sole population and are at ecological equlibrium. The overlap of the respective invasion windows is
the bright green region. (c) Adaptive landscape when the two non-ESS species coexist. (d) Convergent stable
minimum before reaching two strategy ESS. (e) Two strategy ESS. (f) Adaptive landscape when 4 non-ESS
species coexist
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sizes of x ′ � (27.99, 50.18) can coexist. It should be noted that this successful coexistence
is not limited to these specific values of strategies. In our simulations, coexistence was easily
achieved for numerous strategy pairs as long as they straddled the ESS. This can be seen in
Fig. 1b, by each strategies’ invasion window. The invasion window of strategy i is defined
as the set of strategies Ui such that G(v, ui , x∗

i ) > 0 for all v ∈ Ui . In this example,
mutual invasibility is always possible, and indeed well characterized since u1 and u2 are
elements ofU2 andU1, respectively. With a single species ESS with scalar valued strategies,
the hypersaturated non-ESS community can have up to 2 coexisting species (Fig. 1c). If
evolution occurs, natural section will drive both species’ strategies to the ESS (Fig. 1a). Note
that there are an infinite number of strategy pairs that can coexist. But, the range of these
strategy pairs are constrained to satisfy mutual invasibility.

Two species ESS: With a broader niche breadth (σ 2
K � 12.5) the ESS contains two species

u∗ � (−0.24, 3.13) at x∗ � (39.28, 51.06) (Fig. 1e). If the community begins with a single
species, its strategy will evolve to a convergent stable minimum of u � 3.79 at x � 56.28
(Fig. 1d). This under-saturated communitywill remain at thisminimumunless another species
with a different strategy is introduced. With two species, their strategies will evolve to the
ESS (Fig. 1e). If one or the other of these species is removed from the community, then the
other species increases in abundance and possesses an invasion window that includes the
other strategy of the ESS (Fig. 1d, for example).

For this example, there exist combinations of 4 species that can coexist as pairs of
species straddling the strategies of the ESS. Here we explore one such community u′ �
(−0.60, −0.10, 2.90, 3.35) at x′ � (14.50, 23.79, 29.73, 22.28) (Fig. 1f). Because there
are 2 possible invasion windows for each ESS (e.g., Fig. 1b), when considering all possible
subsets of the 4 species, there are now 14 possible invasion windows for a hypersaturated
community built from the two-ESS example: 4 with 1 species (Fig. 2), 6 with 2 species
(Fig. 3a, b, e, f), and 4 with 3 species (Fig. 3c, d). Not all of these invasion windows are
continuous sets, and not all of them can occur due to competitive exclusion within particular
combinations of species. In the next section we describe these subsets of invasion windows
to show: (i) that unlike a 1-species ESS where it is immediately possible to determine mutual
invasibility, when there is more than 1 species it becomes difficult to determine mutual inva-
sibility for subsets of the hypersaturated community because these subsets may not contain
the strategy values of other species; (ii) that the ESS might not be in the invasion window of
the subset of species; (iii) that the invasion window may not be continuous, and (iv) that not
all subsets will allow successful invasion of all species.

First, consider, as shown in Fig. 2a, the invasion window for species 1 (blue dot) with
respect to the other three species (stars) shown in Fig. 1f. Here, all of the other three species
reside in the invasion window of species 1 (Fig. 2a; u′

2, u
′
3 and u

′
4 ∈ U ′

1). If this world with
species 1 was invaded by the other 3 species, then the invasion window shown in Fig. 2a
could lead to a 4-species hypersaturated community because it contains the invasion window
of the other three species, it contains the ESS, and the window is continuous. However, this
situation is not always true for all possible starting conditions. For example, both species
1, u′

1, and the first strategy of the ESS, u∗
1, are absent from the invasion window of non-

ESS species 2, u′
2 (Fig. 2b), meaning a world starting with u′

2 would lead to a 3-species
hypersaturated community not the 4-species hypersaturated community shown in Fig. 1f.
The invasion window of species 3, u′

3, contains all of the other species (Fig. 2c), whereas
non-ESS species 3, u′

3, and the second ESS species, u∗
2, are absent from non-ESS species 4’s

invasion window, u′
3 (Fig. 2d).
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Fig. 2 The non-ESS community shown in Fig. 1f has strategies u � (−0.60, −0.10, 2.90, 3.35). Here, the
invasion windows of each of the 4 non-ESS species in Fig. 1-f are shown as if the starting conditions reflected
each of those four species alone. Invasion windows (light green shaded regions) of species 1 (a) and 4 (d)
contain all the other species’ strategies. Invasion windows of species 2 (b) and 3 (c) do not contain one of
the other three species’ strategies. Species 3 (c) and 4 (d) have discontinuous invasion windows with valleys
separating the two regions of the invasion window. Colored circles represent species’ strategies. Solid lines
represent the value of the G-function vs strategy value when the resident has the strategy marked by the
respective colored circle on the lines. The vertical dashed lines show the location of the ESS strategy values
on the x axis

Second, consider the non-ESS species from Fig. 1f in 2 species combinations (Fig. 3a, b,
d, e). Of the 6 possible combinations of 2 species out of a pool of 4 species, two combinations
cannot occur because species 1 and 2 can never coexist as a two species pair (Fig. 2b; species
2 outcompetes species 1), and species 3 and 4 can never coexist as a two species pair (Fig. 2d;
species 4 outcompetes species 3). However, the remaining 4 of 6 2-species invasion windows
can be drawn. For species 1 and 3, species 2, u′

2, and the first ESS species, u∗
1, are not in the

pair’s invasion window, u′
1, 3 (Fig. 3e). For species 1 and 4, species 2 and 3, and both ESS

species are within the pair’s invasion window, u′
2, 4 (Fig. 3a). The same holds for the invasion

window of species 2 and 3, u′
2, 3 (Fig. 2d). The invasion window of species 2 and 4, u′

2, 4,
excludes species 1, u′

1 (Fig. 2b). In summary, only 4 of the possible six 2-species combinations
are possible and have invasion windows. This highlights how worlds with different starting
conditions might lead to different non-ESS communities and depends on the invading species
involved. It also shows how invasion windows are not necessarily continuous when there is
a valley between peaks on the adaptive landscape.

Lastly, there are 4 possible combinations of the four non-ESS species in 3-species combi-
nations but as above, not all of them can occur due to competitive exclusion within particular
combinations. Two 3-species combinations are not possible: species 1, 2, and 3; and species
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Fig. 3 The non-ESS community shown in Fig. 1f has strategies u � (−0.60, −0.10, 2.90, 3.35). Here, the
invasion windows are shown for all combinations of two species as the initial conditions (a, b, d, e) and two
three species initial conditions (c, f) non-ESS species coexist. Invasion windows when species 1 and 4 coexist
(a), 2 and 3 coexist (d) contain all other strategies within them, whereas 2 and 4 (b) and 1 and 3 (e) do not. The
two possible 3-species combinations have invasion windows that contain the fourth strategy (c, f). Colored
circles represent species’ strategies. The solid line represents the value of the G-function vs strategy value
when the coexisting residents have the strategies marked by the colored circle on the lines. The vertical dashed
lines show the location of the ESS strategy values on the x axis

1, 2, and 4 cannot coexist and thus there are no invasion windows for these combinations.
The invasion window of species 1,3, and 4, u′

1, 2, 4, contains species 2 and both species of the
ESSs (Fig. 3f). The invasion window of species 2, 3, and 4, u′

2, 3, 4, contains species 1 and both
species of the ESSs (Fig. 3c). Thus, of the 14 possible initial conditions leading to a 4-species
hypersaturated community through invasions, only 6 (Fig. 2a, c; Fig. 3a, c, d, f) could lead
to the fully hypersaturated 4-species non-ESS community shown in Fig. 1f because 4 cannot
occur due to competitive exclusion and 4 of them lead to fewer than 4 coexisting species in
the final hypersaturated non-ESS community (Fig. 2b, d; Fig. 3b, e). Furthermore, 6 of these
possible invasion windows are discontinuous while only 4 are continuous.

Five species ESS: With a larger σ 2
K , the ESS transitions from 3 to 4 to 5 species (Fig. 4 a, b,

d, e), and more due to speciation. Here, we consider σ 2
K � 96 which results in a five species

ESS u∗ � (−5.33, −1.43, 2.19, 5.70, 9.25), x∗ � (19.93, 32.24, 35.06, 29.49, 17.47)
(Fig. 4c). Consider the undersaturated communities. With a single species, Darwinian
Dynamics leads to a convergent stable minimum (u′′ � 29.11, x ′′ � 1.21; Fig. 4a). With
speciation from even a tiny mutation, or the addition of another species, the eco-evolutionary
dynamics result in a convergent stable singular point with the higher valued strategy,(
u′′ � 16.79, x ′′ � 11.03

)
at a peak and the lower valued,

(
u′′ � 13.05, x ′′ � 29.30

)
,

at a minimum (Fig. 4d). Similarly, the 3-species convergent stable equilibrium, u′′ �
(4.81, 8.42, 11.92) and x′′ � (47.00, 30.97, 16.32), has the two higher strategies
at peaks and the lowest strategy at a minimum (Fig. 4e). At four species, u′′ �
(−0.73, 2.92, 6.41, 9.94) and x′′ � (38.47, 37.44, 30.20, 17.39) all converge to peaks of
the adaptive landscape, yet are not at an ESS, there is an invasion window at lower values,
but a valley separates the lowest extant species from the invasion window (Fig. 4b). The
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Fig. 4 a, d, e, b show stages of evolutionary branching with convergent stable equilibria before reaching the
5 species ESS (c). Adding species on each side of the 5 ESSs leads to 3 species going extinct and 7 species
coexisting (f). The insets above (f) show the two species around peak 1 (left inset, blue species does not
survive) and peak 5 (right inset, both species survive). Colored circles represent species’ strategies. The solid
line represents the value of the G-function vs strategy value when the residents have the strategies marked by
the colored circle on the lines. The vertical dashed lines show the location of the ESS strategy values on the x
axis. The (bright-) light-green shaded regions represent (overlapping) invasion windows (Color figure online)

5-species ESS can only be established by adding a species with a strategy value far from the
lowest value in the 4-species equilibrium (Fig. 4c).

The 5-species ESS results in a matrix of interaction coefficients showing asymmetries
as species with higher strategy values have a stronger effect on species with lower strategy
values than vice-versa (Fig. 5a). Each species is most affected by its next nearest neighbor
with a higher strategy value because the bully term intensifies this effect for larger strategy
values. An ecologist studying nature would see this 5-species community without necessarily
knowing the underlying adaptive landscape connecting them. Removal experiments are often
used by experimental biologists to give insights into species interactions, and we undertake
this type of analysis to explore the non-ESS community.

Removing species 5 (the species that sacrifices carrying capacity for competitive dom-
inance) results in the extinction of species 1 (the species that sacrifices carrying capacity
to avoid competition). This comes about through diffuse competition. Removal of species 5
releases species 4 from competition, depressing species 3, releasing species 2 that then drives
species 1 extinct. Species 5 would be seen as a keystone species.

Removing species 4 results in a shorter but similar cascade of lowered and heightened
competition as species 2 now goes extinct. Species 3 removal, like removing species 5,
drives species 1 extinct, while removals of species 1 or 2 result in no additional species
losses. Species 3 and 4 are keystone, species 1 and 2 not.

At first, we expected to achieve a hypersaturated community of 10 species by locating 5
pairs of species around each peak of the ESS. Each species pair would have strategies very
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Fig. 5 Network depicting the effect of competition of each species on the others for the 5 ESS species (a)
and 7 non-ESS species (b) systems. The nodes represent the species and edge thickness denotes the effect of
competition of the source species on the sink species. In (a), the effect of competition is greatest from the
immediate neighbor with higher strategy value. In hypersaturated communities, the interactions are stronger
because more species are very similar (b)

close together (we tried differences of 0.05, 0.1, 0.2, and 0.3 around the ESS peak between
potentially similar coexisting species), and each pair straddled an ESS value.Wewere unsuc-
cessful. Upon viewing the shifts in the adaptive landscape resulting from the collapse of these
10 species communities, we attempted to shift the pair rightwards or leftwards depending
upon the gradient (detailed explanation can be found in the methods section). This also failed
to produce communities with 10 coexisting species.

What did we learn from 150 attempts?We regularly achieved hypersaturated communities
of 7 species (see Fig. 4f for an example), and with much trial and error, a community with 8
coexisting species, but never one with 9 or 10.Wemake the following observations regarding
hypersaturated communities: (1) they had some pairs of species associated with peaks of the
ESS, (2) coexisting pairs did not always straddle the ESS of their peak, (3) obtaining pairs
for the higher ESS peaks appeared easier than the lower ESS peaks, (4) we were never able
to obtain a coexisting pair for the 2nd – 5th peaks of the ESS when all other species were
fixed at their ESS values, and (5) we were never able to obtain a coexisting pair of species
around the 1st peak of the ESS even when all other species were fixed at their ESS.

After 150 attempts to achieve hypersaturated non-ESS communities, we make the follow-
ing conjectures without proofs. First, considering each peak of the ESS, in turn, the 1st peak
is not locally NIS, while the remaining 4 peaks are locally NIS.We observe a similar behavior
in the 3-species and 4-species ESS cases too (Fig S1, supplementary material). Second, the
lack of NIS of the 1st peak precludes a 10-species hypersaturated community. Third, the lack
of NIS for the first peak may be related to the 4-species undersaturated community having
all four species at local maxima of the adaptive landscape. Fourth, the NIS property of the
remaining four peaks means that it is possible to have a 9 species community with pairs
associated with each of these 4 peaks and 1 species associated with the first – though after
150 attempts, we never actually found a 9-species community. Fifth, the increasing difficulty
of finding hypersaturated communities of 7 and then 8 species results from increasing diffuse
competition (Fig. 5).
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As a final exercise, we can take the 7 species, hypersaturated community shown in Fig. 4f
and examine its structure by performing the 7 separate single species removals to see the
resulting changes in the remaining 6 species. Figure 5b shows the network of interaction
strengths that emerge from these removals. Recall species 1, 2 and 3 of this community
reside near ESS peaks 1–3, species 4 and 5 straddle the 4th ESS peak, and species 6 and 7
straddle the 5th ESS peak.

In the 7 species hypersaturated community, removing species 7 (the one with highest strat-
egy value) results in species 5 going extinct, and consequently species 4 and 6 experiencing
competitive release. Removing species 6 causes extinction of species 4 and release of species
5 and 7. The removal of species 5 leads to the release of species 4 and 7, and the removal of
species 4 causes species 7 to go extinct and the release of species 5 and 6.

So far, species 1, 2, and 3 remain unaffected. However, removal of species 3 causes species
1 and 5 to go extinct while releasing the others. Removing species 2 releases species 1 and
leads to extinction of species 7, and removal of species 1 leads to extinction of species 5 and
6 while releasing species 4 and 7. With this hypersaturated community, we see that the effect
of competition now goes in both directions (towards higher and lower strategy values) while
it only goes towards the lower strategy values in the 5 species ESS community (Fig. 5).

We also considered ESSs with 3 and 4 species (σ 2
K � 30 and 40, respectively). While it

may be possible to get 6 and 8 coexisting species, respectively, in the hypersaturated, non-
ESS communities, we were unable to find any. Instead, it was easy to find up to 5 and 7
species, respectively, in the non-ESS communities (see Fig. S2, supplemental material).

Single species ESS with vector-valued strategy: We use the bivariate model of competition
with two niche axes to further explore non-ESS communities. A species’ strategy is now a
vector with two components, each describing its niche position along one of the axes. As
above, for small values of σ 2

K the resulting ESS has a single species residing at a global

maximum on the hilltop of a 2-D adaptive landscape (Fig. 6a). For our example, we have the
single strategy u∗ � (0.61, 0.74) with x∗ � 80.6. Note that u � (0, 0) would maximize total
population size, 100. But, this “team optimum” is not ESS, and subject to invasion because
of the bully term.

As predicted by Durinx et al. [18], it is possible to have a hypersaturated community
of 3 coexisting species straddling the single species ESS when the traits are bivariate

Fig. 6 a The single species ESS when vector-valued traits are considered. b Coexistence of three non-ESS
species. c Interaction network of the three non-ESS species. Here σ2K � 2. Colored circles represent species’

(vector-valued) strategies. The surface represents the value of the G-function vs strategy values when the
residents have the strategies marked by the colored circle on the surfaces. The vertical dashed lines show the
location of the ESS strategy values on the trait 1-trait 2 plane. The color gradient on the surface scale the value
of the highest fitness (green) relative to the lowest (purple) invasion windows (Color figure online)
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Fig. 7 Invasion windows of each of the three non-ESS species (a–c) and when they coexist in pairs (d–f) Each
invasion window contains the other species’ strategies (marked by crosses). Colored circles represent species’
(vector-valued) strategies. The surface represents the value of the G-function vs strategy values when the
residents have the strategies marked by the colored circle on the surfaces. The vertical dashed lines show the
location of the ESS strategy values on the trait 1-trait 2 plane. The color gradient on the surface scale the value
of the highest fitness (green) relative to the lowest (purple) invasion windows (Color figure online)

(Fig. 6b). An example includes u′ � ((0.00, 0.00), (1.10, 0.00), (0.60.1.60)) at x′ �
(64.59, 20.28, 6.61). Note how the total population size of this community is larger than
that of the ESS while smaller than 100. The 3-species hypersaturated community generates 6
invasion windows: 3 single species (Fig. 7a–c) and 3 combinations of 2 species (Fig. 7d–f).
In all cases, each invasion window includes the ESS and the other species. Thus, all pairs of
species can form stable communities (Fig. 6c).

Absence of single species ESSwith a vector-valued strategy:We had expected that increas-
ing σ 2

K would, as in the case of the scalar-valued strategy, yield ESS communities with

successively more species. This was not the case. By increasing σ 2
K from 2 to 50 (while

keeping σ 2
α � 4, β � 2), the single species ESS did not break down. With a single species,

the Darwinian dynamics came to rest at a convergent stable saddle point (similar to Fig. 8b,
but not shown) that exhibited a large invasion window indicating a non-ESS community of
1 species. For all attempts to introduce a second species, the resulting transient dynamics
resulted in the extinction of the first species as the second species evolved to occupy its place
at the saddle point (Fig. 8 provides snapshots of this process). All attempts to introduce up to
11 novel species with strategies sometimes far from the saddle point resulted in Darwinian
dynamics leading to a single species at the convergent stable saddle point. At present we
have no explanation for this intriguing phenomenon.
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Fig. 8 Fitness landscape at different times (progressing anti-clockwise, a-c-d-e) when a new species is added
with σ2K � 14. When a second species is introduced at u � (0.17, −0.05) (orange dot, top of the landscape in

(a)) with the resident species at the saddle point (blue dot in (a)), the adaptive landscape changes drastically.
Soon, a valley forms (c) and the resident is pushed out and goes extinct, and the new species evolves back
towards the saddle point (d, b). Colored circles represent species’ (vector-valued) strategies. The surface
represents the value of the G-function vs strategy values when the residents have the strategies marked by the
colored circle on the surfaces. The color gradient on the surface scale the value of the highest fitness (green)
relative to the lowest (purple) invasion windows (Color figure online)

4 Discussion

Here, we explored non-ESS communities that had ecological dynamics but not evolutionary
dynamics, and were both undersaturated and hypersaturated with respect to the number of
species in the ESS community had the evolutionary dynamics been turned on. Communities
with fewer (undersaturated) or greater (hypersaturated) numbers of coexisting species, though
ecologically stable, have invasion windows. In the presence of evolutionary dynamics, this
means the extant species will speciate, evolve, or the non-ESS community can be invaded
by species with alternative strategies. Undersaturated communities may fill out the ESS
community via evolutionary branching where the strategy of one or several of the species
evolve to convergent stable minima of the adaptive landscape; or the species’ strategies
may evolve to local peaks of the adaptive landscape, where reaching the invasion window
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requires the introduction of one or more species on the other side of a valley in the adaptive
landscape. In this latter case, finding and achieving the ESS community may be challenging
via Darwinian dynamics. As our example with a 5-species ESS, simply adding a 5th or
6th species to the community of 4 species residing on local peaks often resulted in transient
dynamics that returned the community to the 4-species undersaturated community. In natural
evolutionary systems, crossing valleys in the adaptive landscape and achieving the ESS
may not be as easy as adding a species on the other side of the fitness valley. In simulated
communities, however, applying the ESS maximum principle and numerically solving for
the conditions for joint ecological and evolutionary stability (in this case 10 simultaneous
equations) offers a simpler path to the 5 species ESS.

Hypersaturated communities involve pairs (scalar-valued strategies; Figs. 1, 2, 3, 4, 5)
or triplets (vector-valued strategy with 2 components; Figs. 6, 7, 8) of coexisting species
exhibitingmutual invasibility. Each speciesmust residewithin the invasionwindowof another
species or some combination of other species. When the ESS community possesses a single
species, then these conditions follow directly from proofs provided by Durinx et al. [18].
When the ESS community possesses several strategies, conditions for mutual invasibility
remain to be proved. But four conjectures stand out: (1) the maximum number of species in
a hypersaturated community is n·(s + 1) where n is the number of species at the ESS and s
is the dimension of an individual’s strategy; (2) the coexisting species represent pairs (scalar
valued strategy), triplets (2-D strartegy), etc. grouped around separate peaks of the adaptive
landscape that are near the ESS; (3) the invasion window of one or several species may be
discontinuous; (4) a peak of the ESS must be locally NIS for it to possibly support more than
one species within the hypersaturated community.

Apaloo [4] derived conditions for finding local NIS conditions in multi-species, scalar-
valued/vector-valued (co-)evolutionary games. In an n species evolutionary game, the
coalition of singular points u∗ � (u∗

1, u
∗
2, . . . , u∗

n), which is a vector of vectors, is NIS
if G(u∗

i , u
∗, i , x(u∗, i )) > 0 where u∗, i � (u∗

1, u
∗
2, . . . , u∗

i−1, ui , u
∗
i+1, . . . , u∗

n) for any ui
in a close neighborhood of, and distinct from, u∗

i for each i � 1, 2, . . . , n. Thus, the incum-
bent variation fitness landscape must take on minima at ui � u∗

i for each i � 1, 2, . . . , n. In
exploring the incumbent variation fitness landscape (NIS-landscape) in the vicinity of u∗

i one
must compute G(u∗

i , u
∗, i , x(u∗, i )) as ui is varied in the vicinity of u∗

i . Thus, the challenge

in plotting the NIS-landscape is the need to constantly update the population sizes of all the
species. In the case of single species evolution with scalar strategy, it has been shown that
a singular point that is an ESS and NIS is also convergent stable. If not ESS, we conjecture
that it is not possible for 2 species to coexist around that peak. It is interesting to note that
mutual invasibility can occur even if the singular point is neither ESS, NIS nor convergent
stable (Fig. 2h in [20]). Theory also suggests a singular point can be NIS but not allow for
mutual invasiblity (see Fig. 2d) in [20]). Even in the case where the singular point is an ESS,
NIS and thus convergent stable, additional condition needs to be met to guarantee mutual
invasibility. It does follow that if the singular point is ESS and permits mutual invasiblity,
then the point is both NIS and convergent stable. If it is NIS, then we conjecture it is possible
as a necessary condition, but possibly not sufficient.

Vector-valued strategies create greater opportunities for hypersaturated communities than
scalar strategies, yet understanding when and how non-ESS species can coexist becomes
more challenging. Furthermore, rigorous mathematical characterizations do not yet exist
beyond a single strategy ESS [18]. For instance, with scalar-valued strategies, two species
can coexist (whether ESS or otherwise) if and only if there is at least one peak or valley
of the adaptive landscape between them. In the example explored here, the hypersaturated
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community contained 3 species distributed around the single species ESS. Any of these two
species can coexist without the third, and when they do there is generally not a peak or
valley between them. Rather, if one examines the adaptive landscape as the plane between
them there is always peak between them. We conjecture that this result will be necessary for
pairwise coexistence. But will it be sufficient?

Once there are several species at the ESS in a bivariate strategy model then potentially
there may be 3 times as many coexisting species in the hypersaturated community. However,
like the 5-species ESS with scalar-valued strategies, diffuse competition and the lack of NIS-
like properties may preclude achieving this maximum number. A rigorous characterization
of convergence stability, NIS and mutual invasibility have not been achieved as of yet.

Here, we took advantage of the proof of Durinx et al. [18] that applies when there is just
one species at the ESS.We explored to what extent it naturally extends to ESSs with multiple
species. We saw that there are limits, which we hypothesized were a result of increasingly
diffuse competition and lack of NIS or NIS-like properties. Our work also builds upon
Rubin et al. [37] who demonstrated hypersaturated communities by starting with extreme
numbers of species and letting them triage down to diverse communities of coexisting species
at numbers well above the ESS diversity of species. Such communities can be defined as
invasion structured. Here, we took a more fine-tuned approach in examining a few examples
to generate specific conjectures regarding the properties of non-ESS communities be they
under- or hypersaturated.

This, and related modelling work, raises important empirical questions. First, what are the
differences in the community structure of invasion structured versus communities at ESSs?
The latter, as has been shown, can have more or fewer species than the ESS. They may be
ecologically stable but they are not evolutionarily so. Over time the evolved traits of these
species can be expected to change. How much and how fast becomes the empirical question
that determines the relevance of this and similar work to natural systems. When at ESS,
the community is both ecologically and evolutionarily stable. Such communities are diverse
enough as to be uninvadable and not so diverse as to be unstable. Second, to what extent are
most natural communities at or near their ESS? And, if non ESS, are natural communities
under-or hyper saturated?

Invasive species around the globe represent an important context for examining ESS and
non-ESS communities. In one sense, ESS communities might be seen as the gold standard
for conserving species and communities [27]. Within the present modeling framework, a
community is susceptible to invasion by novel species for one of two reasons. Firstly, the
invading species may represent a novel G-function, namely a species with a strategy and
strategy set different from any of the species present in the recipient community [35]. Such is
beyond the scope of our currentmodelling, but themodelling of communitieswith differentG-
functions such as predator–prey systems offer diverse pathways towards species coexistence
and niche coevolution [36]. Secondly, the invading species may share the same G-function
as the recipient community. In this case, it means the recipient community was not at its
ESS. It could be that the invader falls into an invasion window, in which case it may take
an undersaturated community and move it closer to the diversity of the ESS. Or, none of the
resident species are at their peaks and the invader will either replace one of these species or
contribute to a hypersaturated community.

The current bird communities of the Hawaiian Islands likely represent an example of both
processes. Many of the bird Families that have been introduced from Asia, South America,
Europe and North America represent novel “evolutionary technologies” (e.g., G-functions)
not yet present in Hawaii. Kotler et al. [27] make the case that the taxonomic level of either
Family or Order provides likely cut-offs for different G-functions (also see [7]). Of Hawaii’s
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roughly 64 endemic bird species, roughly 33 have gone extinct. At least 58 exotic species
were able to establish large populations in Hawaii, and over time some have gone extinct
themselves, leaving a current list of 52well-established exotic species. The overall bird diver-
sity of Hawaii has increased, likely as a result of new G-functions, the filling of unoccupied
niches of under-saturated communities, and possibly creating non-ESS hypersaturated com-
munities. One certainty is that the current birds of Hawaii form non-ESS, invasion structured
communities.

The birds of Hawaii are a microcosm for how global climate change, invasive species, and
land use changes likely leave most communities shifted away from their ESS. As non-ESS
communities, we can expect to see eco-evolutionary dynamics result in species deletions
for hypersaturated communities and additions to undersaturated ones. Rapid evolution has
now been widely documented in human dominated landscapes [22, 26, 34, 38]. We see the
modelling and understanding of ESS and non-ESS communities as essential to anticipating
these changes rather than being bystanders.
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32. Metz JAJ, Staňková K, Johansson J (2016) The adaptive dynamics of life histories: From fitness-returns
to selection gradients and Pontryagin’s maximum principle. J Math Biol 72(4):1125–1152. https://doi.
org/10.1007/s00285-015-0938-4

33. Nowak MA (2006) Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press.
https://doi.org/10.2307/j.ctvjghw98

34. Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293(5536):1786–1790.
https://doi.org/10.1126/science.293.5536.1786

35. Pintor LM,Brown JS,Vincent TL (2011)Evolutionary game theory as a framework for studying biological
invasions. Am Nat 177(4):410–423. https://doi.org/10.1086/658149

36. Ripa J, Storlind L, Lundberg P, Brown JS (2009) Niche co-evolution in consumer-resource communities.
Evol Ecol Res 11(2):305–323

37. Rubin IN, Ispolatov Y, Doebeli M (2023) Maximal ecological diversity exceeds evolutionary diversity in
model ecosystems. Ecol Lett 26(3):384–397. https://doi.org/10.1111/ele.14156

38. Salamin N, Wüest RO, Lavergne S, Thuiller W, Pearman PB (2010) Assessing rapid evolution in a
changing environment. Trends Ecol Evol 25(12):692–698. https://doi.org/10.1016/j.tree.2010.09.009

39. Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16(7):372–380. https://doi.org/
10.1016/s0169-5347(01)02198-x

40. Schluter D, Grant PR (1984) Ecological correlates of morphological evolution in a Darwin’s finch,
Geospiza Difficilis. Evol Int J Org Evol 38(4):856–869. https://doi.org/10.1111/j.1558-5646.1984.tb00
357.x

41. Sovie AR, Conner LM, Brown JS, McCleery RA (2021) Increasing woody cover facilitates competitive
exclusion of a savanna specialist. Biol Cons 255:108971. https://doi.org/10.1016/j.biocon.2021.108971

42. Vincent TL, Brown JS (2005) Evolutionary game theory, natural selection, and Darwinian dynamics.
Cambridge University Press

43. Vincent TL,CohenY,Brown JS (1993) Evolution via strategy dynamics. Theor PopulBiol 44(2):149–176.
https://doi.org/10.1006/tpbi.1993.1023

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1086/283049
https://doi.org/10.1017/CBO9780511806292
https://doi.org/10.1007/s11252-005-4865-9
https://doi.org/10.1007/s00285-015-0938-4
https://doi.org/10.2307/j.ctvjghw98
https://doi.org/10.1126/science.293.5536.1786
https://doi.org/10.1086/658149
https://doi.org/10.1111/ele.14156
https://doi.org/10.1016/j.tree.2010.09.009
https://doi.org/10.1016/s0169-5347(01)02198-x
https://doi.org/10.1111/j.1558-5646.1984.tb00357.x
https://doi.org/10.1016/j.biocon.2021.108971
https://doi.org/10.1006/tpbi.1993.1023

	Hyper Diversity, Species Richness, and Community Structure in ESS and Non-ESS Communities
	Abstract
	1 Introduction
	2 Background
	2.1 The Model

	3 Results
	4 Discussion
	Acknowledgements
	References


