
 
 

Delft University of Technology

A risk evaluation method for deformation monitoring systems

Zaminpardaz, S.; Teunissen, P.J.G.; Tiberius, C.C.J.M.

DOI
10.1007/s00190-020-01356-w
Publication date
2020
Document Version
Final published version
Published in
Journal of Geodesy

Citation (APA)
Zaminpardaz, S., Teunissen, P. J. G., & Tiberius, C. C. J. M. (2020). A risk evaluation method for
deformation monitoring systems. Journal of Geodesy, 94(3), Article 28. https://doi.org/10.1007/s00190-020-
01356-w

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00190-020-01356-w
https://doi.org/10.1007/s00190-020-01356-w
https://doi.org/10.1007/s00190-020-01356-w


Journal of Geodesy           (2020) 94:28 
https://doi.org/10.1007/s00190-020-01356-w

ORIG INAL ART ICLE

A risk evaluation method for deformation monitoring systems

S. Zaminpardaz1 · P. J. G. Teunissen2,3 · C. C. J. M. Tiberius3

Received: 11 July 2019 / Accepted: 24 January 2020
© The Author(s) 2020

Abstract
In this contribution, we propose a method for statistically evaluating the risk in a deformation monitoring system. When the
structure under monitoring moves beyond tolerance, the monitor system should issue an alert. Only a very small probability
is acceptable of the system telling us that no change beyond a critical threshold has taken place, while in reality it has. This
probability is referred to as integrity risk. We provide a formulation of integrity risk where the interaction between estimation
and testing is taken into account, implying the use of conditional probabilities. In doing so, we assumed different scenarioswith
the alerts being dependent on both the identified hypothesis and the threat that the estimated size of deformations entails. It is
hereby highlighted that a correct risk evaluation requires estimation and testing being considered together, as they are typically
intimately linked. In practice, one may, however, find it simpler computation-wise to neglect the estimation–testing link. For
this case, we provide an approximation of the integrity risk. This approximation may provide a too optimistic or pessimistic
description of the integrity risk depending on the testing procedure and tolerances of the structure at hand.Monitoring systems,
besides issuing timely alerts, are also required to provide threat estimates together with their corresponding probabilistic
properties. As the testing outcome determines how the threat gets estimated, the threat estimator will then inherit the statistical
properties of both estimation and testing. We derive the threat estimator b̄ j and its probability density function, taking the
contributions from combined estimation and testing into account. It is highlighted that although the threat estimator under the
identified hypothesisH j , i.e., b̂ j , is normally distributed, the estimator b̄ j is not. It is explained that working with b̂ j instead
of b̄ j , thus ignoring the estimation–testing link, may provide a too optimistic description of the threat estimator’s quality. The
presented method is illustrated by means of two simple deformation examples.

Keywords Deformation · Monitoring system · Statistical testing · Integrity risk · Threat estimation · Conditional distribution

1 Introduction

Monitoring systems for both man-made structures (such as
a dam, a dike, or a bridge) and natural Earth structures (such
as a volcano, a fault, or tectonic plates), which—upon load
or changing circumstances—may be subject to deformation
and/or displacement, are safety-critical. The monitor system
should timely detect a real effect, but on the other hand issue
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as few false alarms as possible. When a deformation or dis-
placement beyond the tolerance of the structure occurs and
goes unnoticed, the structure may ‘suddenly’ fail or collapse
with possibly dramatic consequences such as loss of human
lives and huge damage. Therefore, in practice, only a very
small probability is acceptable of the system telling us that no
change beyond a critical threshold has taken place (issuing
no alert), while in reality it has. We refer to this probability
as integrity risk.

The structure under consideration is typically believed to
be stable (null hypothesis H0), implying no threat. We need
to be alerted, however, upon undesired deformation or dis-
placement (alternative hypotheses Hi ), in particular when
they are beyond tolerances of the structure. The situation
in which the structure moves beyond tolerance should obvi-
ously be avoided as much as possible, but when it happens,
the monitor system should issue an alert based on the moni-
toring measurements being carried out. In order to quantify
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the performance of the monitoring for a specific hypothesis,
the corresponding integrity risk needs to be evaluated. Such
an evaluation can even already be done in the designing phase
prior to the operational phase of the monitoring systemwhen
the actualmeasurements are collected. For example, onemay
tune the statistical testing procedure such that a (very) small
integrity risk is guaranteed.

Many studies have so far been devoted to analysis of
structural deformation measurements and designing proper
deformation monitoring procedures. Pelzer (1971) was one
of the first to set out a mathematical framework for geodetic
deformation analysis. The analysis is based on the so-called
(global) congruence test, carried out on the difference vec-
tor between the coordinates at two epochs in time, formally
to find out whether shape and/or size of the pointfield has
changed or not.When this test is passed, the conclusion reads
that there is no deformation or displacement of the point-
field covering the object/area of interest and its surroundings.
The mathematical procedure was extended and elaborated
on by van Mierlo (1978). The identification of shifted points
was subsequently investigated through a variety of statisti-
cal methods (Caspary and Borutta 1987; Chen et al. 1990;
Niemeier 1985; Setan andSingh2001; Sušić et al. 2017;Kon-
akoğlu and Gökalp 2018). In Eichhorn (2007), an overview
of techniques and trends in geodetic deformation analysis is
presented. A recent overview of geodetic deformation anal-
ysis is given in the textbook (Heunecke et al. 2013). This
book also covers kinematic, static and dynamic deformation
models, with the aim of estimating the deformation parame-
ters of interest, see also (Verhoef and De Heus 1995), which
proposes the use of polynomial models. A comprehensive
review of dam deformation monitoring technologies is pro-
vided in Scaioni et al. (2018). Recent studies are still inspired
by the earlier framework for geodetic deformation analysis,
see, e.g., Durdag et al. (2018) and Yavaşoğlu et al. (2018). In
the latter paper, once the global congruence test has detected
‘some’ displacement, attempts are made to fit models con-
sisting of position/displacement, velocity and acceleration
parameters. Velocity and acceleration estimators are then
tested on significance.

This paper presents a newcontribution to the field of defor-
mation monitoring and analysis. We propose a method to
statistically evaluate the risk in deformation monitoring. It is
highlighted that in the processing of measurements of a mon-
itoring system, estimation and testing are intimately linked
and should be considered together when presenting the qual-
ity of the output of the monitoring system (Teunissen 2018).
As such, the risk assessment under a hypothesis, sayH j , can
only be done correctly when all testing decision probabilities
are taken into account, as well as the implications of test-
ing on the distributions of the estimators for the parameters
involved. This needs eventually to be done for all hypotheses
at hand in order to arrive at the overall integrity risk.

This contribution is organized as follows. In Sect. 2, we
first describe the null and alternative hypotheses considered
for deformation monitoring analysis. The role of the mis-
closure space partitioning in testing these hypotheses is then
highlighted, and the testing procedure is accordingly speci-
fied. It is hereby shown how the estimator b̄ j of a deformation
parameter is formed, capturing the contributions from both
testing and estimation. We also derive the distribution of the
estimator b̄ j . The integrity risk is mathematically formu-
lated in Sect. 3. For different scenarios, we provide a strict
formulation where the estimation–testing link is taken into
account, implying the use of conditional probabilities. We
then provide an approximation following from neglecting the
conditioning on the testing outcome, which might be consid-
ered simpler computation-wise.We hereby highlight that this
approximation may provide a too optimistic or pessimistic
description of the integrity risk depending on the testing pro-
cedure and tolerances of the structure under monitoring.

In Sect. 4, for a simple observational model with just a sin-
gle alternative, the integrity risk is evaluated both using the
strict and approximate approach. We demonstrate in graphi-
cal form the factors driving the difference between these two
approaches. Assuming that a deformation has taken place,
we then provide an analysis of precision of the deformation
parameter estimator, with and without accounting for condi-
tioning on testing decision. It is highlighted that negligence
of this conditioning process may provide a too optimistic
description of the estimator’s quality. The integrity risk
evaluation is then continued, but now for an actual deforma-
tionmeasurement system example withmultiple hypotheses.
Finally a summary with conclusions is presented in Sect. 5.

2 Deformationmonitoring

2.1 Null and alternative hypotheses

As our starting point, we characterize the null and alternative
hypotheses, denoted by H0 and Hi , respectively. Typically
in change detection, the null hypothesisH0 is the ‘all-stable,
no movement’ model, which, here, is assumed to be given as

H0 : E(y) = Ax; D(y) = Qyy (1)

with E(·) the expectation operator, D(·) the dispersion oper-
ator, y ∈ R

m the normally distributed random vector of
observables (with the measurements typically collected at
multiple epochs in time), x ∈ R

n the estimable unknown
parameters, A ∈ R

m×n the design matrix of rank(A) = n,
and Qyy ∈ R

m×m the positive-definite variance matrix of y.
The redundancy of the model of observation equations under
H0 is r = m − rank(A) = m − n.
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As alternative hypotheses, we consider those describing
different dynamic behavior of the structure under considera-
tion. In this contribution, we limit ourselves—for simplicity
of the analyses—to movements which can be characterized
by a single scalar. The observational model under Hi (for
i = 1, . . . , k) is of the form

Hi : E(y) = Ax + ci bi ; D(y) = Qyy (2)

where ci ∈ R
m describes the presumed movement signa-

ture, and bi ∈ R\{0} is the size of the nonzero movement,
e.g., a displacement (step or jump), or a velocity (rate of
change). With bi = 0, we are effectively back at H0 in
(1). Note that [A ci ] is a known matrix of full rank, i.e.,
rank([A ci ]) = n+1, and scalar bi is unknown. The hypothe-
ses Hi (i = 0, 1, . . . , k) are mutually exclusive, implying
that E(y) cannot have the same location (in R

m) under dif-
ferent hypotheses. We further assume that the hypotheses at
hand do not occur simultaneously, indicating that only one
hypothesis is true at a time.

As a simple example, one could imagine that the height
of a single point is repeatedly observed at several epochs
in time and stacked in vector y. The all-stable, no move-
ment null hypothesis H0 is then represented by a model in
which all observations relate to a single unknown parameter,
namely the height of the point under consideration, through
the design matrix A which equals a vector of all ones. One
of the alternative hypotheses, say Hi , could imply a sudden
shift in the point height, which is supposed, for example, to
occur after the third epoch. Therefore, the shift is present in
the height of the point from the fourth epoch onward. Then,
scalar bi represents the unknown shift, and the vector ci takes
zeros as its first three entries and ones elsewhere.

Alternative hypotheses (2) imply an extension of null
hypothesis (1). An extra parameter, namely bi , is introduced
in the alternative hypothesis with respect to the null hypothe-
sis, for instance, to accommodate a jump or a rate of change.
The very same pair of hypotheses can also be given another
interpretation. The alternative hypothesis presents the more
general situation, including a possible displacement or rate
of change, through parameter bi . In the null hypothesis, this
parameter is constrained to zero; with bi = 0, the alterna-
tive hypothesis reduces to the null hypothesis. According to
this interpretation, one is testing the significance of the extra
parameter bi , for instance the rate of change being zero (null
hypothesis) or not, and hence significant (alternative hypoth-
esis).

Finally, we mention that, in practice, alternative hypothe-
ses may also concern incidental outliers and faults in the
measurements of the monitoring system, or distortions in
individual benchmarks. These hypotheses are omitted in the
present contribution for the sake of clarity—we focus on
actual deformations.

2.2 Hypothesis testing

All information required to test the hypotheses at hand
against one another is contained in the misclosure vector
t ∈ R

r given as

t = BTy (3)

where B ∈ R
m×r is a full-rank matrix, with rank(B) = r ,

such that [A B] ∈ R
m×m is invertible and ATB = 0. With

y
Hi∼ N (Ax+ci bi , Qyy) for i = 0, 1, . . . , k and c0b0 = 0 (to

accommodate also the null hypothesis in (1)), the misclosure
vector is then distributed as

t
Hi∼ N (μti = BTci bi , Qtt = BTQyy B), for i = 0, 1, . . . k

(4)

The testing procedure can be established through unambigu-
ously assigning the outcomes of t to the statistical hypotheses
Hi for i = 0, 1, . . . , k, which can be realized through a
partitioning of the misclosure space R

r . Therefore, with
Pi ∈ R

r being a partitioning of the misclosure space, i.e.,
∪k
i=0Pi = R

r and Pi ∩ P j = ∅, the testing procedure is
unambiguously defined as (Teunissen 2018)

select Hi ⇐⇒ t ∈ Pi , for i = 0, 1, . . . k (5)

As (5) shows, the decisions of the testing procedure are
driven by the outcome of the misclosure vector t . If Hi is
true, then the decision is correct if t ∈ Pi , and wrong if
t ∈ P j 	=i . As such, based on the outcomes of t , we have
tabulated the set of events under H0 and Hi in Table 1. The
probabilities of the occurrence of these events, denoted by
P∗ with ∗ = {CA,FA,MDi ,CDi ,WIi ,CIi }, satisfy

PCA + PFA = 1

PMDi + PCDi = 1

PWIi + PCIi = PCDi (6)

Table 1 Statistical events underH0 andHi , given the outcome of mis-
closure vector t , for i = 1, . . . , k

H0 true Hi true

t ∈ P0 CA: correct acceptance MDi : missed detection

t /∈ P0 FA: false alarm CDi : correct detection

t ∈ Pi FAi : false alarm due to Hi CIi : correct identification

t ∈ P j 	=0,i WI j,i : wrong identification
due to H j

t ∈ ∪ j 	=0,iP j WIi : wrong identification

Note that when there is one single redundancy under H0, then identifi-
cation is not possible
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Except for FAandCAevents, the probabilities of other events
under an alternative hypothesis, sayHi , depend on the threat
value bi . Also note that for the special case of having only
one single alternative, say H1, we have P1 = R

r\P0 which
implies PWI1 = 0, thereby PCD1 = PCI1 .

In this study, our testing strategy comprises two steps of
detection and identification, respectively, and is specified as
follows

– Detection: The validity of the null hypothesis (all stable)
is checked through an overall model test (the redundancy
needs to be r > 0). The null hypothesis H0 is accepted
if t ∈ P0 with

P0 =
{
t ∈ R

r
∣∣∣∣ ‖t‖2Qtt

≤ kα,r

}
(7)

in which ‖.‖2Qtt
= (.)TQ−1

t t (.) and kα,r is the α-
percentage of the central Chi-square distribution with r
degrees of freedom. α is the false alarm probability, i.e.,
α = PFA, which is usually set a priori by the user.

– Identification: If the defaultworkingmodelH0 is rejected
in the detection step, a search is carried out among the
specified alternatives Hi (i = 1, . . . , k) to pinpoint the
potential source of deformation (note that with r = 1
identification is not possible). The alternative hypothesis
Hi 	=0 is selected if t ∈ Pi 	=0 with

Pi =
{
t ∈ R

r\P0

∣∣∣∣ |wi | = max
j∈{1,...,k} |w j |

}
, i = 1, . . . , k

(8)

in whichwi is Baarda’s test statistic computed as (Baarda
1967; Teunissen 2000)

wi = cTti Q
−1
t t t√

cTti Q
−1
t t cti

; cti = BTci , i = 1, . . . , k (9)

It can be shown that the set of regionsPi (i = 0, 1, . . . , k)
in (7) and (8) forms a partitioning of the misclosure space if
and only if cti 	= γ ct j for any i 	= j and for any nonzero
scalar γ ∈ R\{0} (Zaminpardaz and Teunissen 2019). This
implies that for the case of r = 1 where cti ∈ R, none of the
alternative hypotheses is separable from one another.

Note that once one of the alternatives, sayHi , is identified
through the above procedure, then follow-on estimations, like
deformation estimation, take place according to model (2).
This will be discussed in the following subsection.

We remark that since t = BTy = BTê0, with ê0 =
y − Ax̂0, the above procedure can be (equivalently) formu-
lated in terms of the least-squares residual vector ê0 as well,
providing a more recognizable form of the testing procedure

(Teunissen 2000).Also note that here, for simplicity,wework
with alternative hypotheses that are 1-dimensional extensions
of the null hypothesis (cf. (2)). Nevertheless, our method
is equally valid for higher-dimensional cases, provided that
the selection of the Hi ’s can be done unambiguously (cf.
(5)). Finally, note that although we use likelihood-ratio-
based statistical tests through (7)–(9), our point, that testing
and estimation are intimately linked, holds true for any
data-driven decision procedure like p-values (Lehmann and
Lösler 2016) and the Akaike Information Criterion (AIC)
(Akaike 1974; Burnham and Anderson 2003).

2.3 Threat estimation

In deformation analyses, monitoring systems have the task
of not only issuing timely alerts when the situation is deemed
too dangerous, but also providing threat estimates with their
corresponding probabilistic properties. Let b j , themovement
size under H j (cf. (2)), be the threat one is concerned with.
Depending on whether or not the hypothesis H j is selected
through the testing procedure in (5), estimation of b j would
be different; b j is estimated once H j is selected, and kept
zero otherwise. Therefore, the outcome of testing determines
how the deformation b j gets estimated. The probabilistic
properties of such an estimation–testing combination can be
captured through a unifying framework presented by Teunis-
sen (2018). As such, the estimator of b j is given as

b̄ j = b̂ j p j (t) for j = 1, . . . k (10)

with p j (t) being the indicator function of regionP j (cf. (5)),
i.e., p j (t) = 1 for t ∈ P j and p j (t) = 0 for t elsewhere, and
b̂ j the estimator of b j under H j . In this paper, we make use
of Best Linear Unbiased Estimation (BLUE), fromwhich the
estimator of b j follows as

b̂ j = c+
t j t (11)

where c+
t j = (cTt j Q

−1
t t ct j )

−1cTt j Q
−1
t t is the BLUE-inverse of

ct j = BTc j . As b̂ j is a linear function of the normally dis-
tributed misclosure vector t , with (11) and (4), we then have

b̂ j
Hi∼ N

(
c+
t j μti , σ

2
b̂ j

= 1

‖ct j ‖2Qtt

)
, for i = 0, 1, . . . k

(12)

Note that although estimator b̂ j is normally distributed, esti-
mator b̄ j of (10) is not. The estimator b̄ j is namely, next
to its dependence on b̂ j , also nonlinearly dependent on the
misclosure t through the indicator function.
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2.4 The PDF of the threat estimator

To gain an understanding of the properties of the threat
estimator b̄ j in (10), its probability density function (PDF)
needs to be studied. As (10) shows, the estimator b̄ j is con-
structed from themisclosure vector t and theBLUE b̂ j which,
according to (11), is also fully driven by t . Therefore, the
probabilistic characteristics of b̄ j are governed by those of t .
In order to derive the PDF of b̄ j under Hi , we first apply a
one-to-one transformation to the misclosure vector t as fol-
lows

[
b̂ j

t̃ j

]
=
[
c+
t j

c⊥T

t j

]

︸ ︷︷ ︸
T j

t; b̂ j ∈ R, t̃ j ∈ R
r−1 (13)

where c⊥
t j ∈ R

r×(r−1) is a full-rank matrix of which the

range space is orthogonal to that of ct j , i.e., c
⊥T

t j ct j = 0,

which implies that the normally distributed b̂ j and t̃ j are
independent. We remark that t̃ j represents the ‘remaining’
misclosures, once parameter b j is estimated according to
model (2) for H j . In other words, t̃ j is a misclosure vector
obtained employing the alternative hypothesis H j for esti-
mation. For the special case of having only one redundancy
(r = 1), we have t ∈ R implying that b̂ j would be the scaled
version of misclosure and t̃ j would no longer exist. For this
single-redundancy scenario, no identification can be exer-
cised which means that only one alternative hypothesis can
be considered, i.e., j = 1 and k = 1, such that rejection of
H0 implies acceptance of H1.

Applying transformation (13) to the regions Pi (i =
0, 1, . . . , k), we obtain the new regions P̃i (i = 0, 1, . . . , k)
defined as

P̃i =
{
b̂ j ∈ R, t̃ j ∈ R

r−1

∣∣∣∣∣
[
b̂ j

t̃ j

]
=
[
c+
t j

c⊥T

t j

]
t; t ∈ Pi

}

(14)

These regions, like Pi in (5), form a partitioning of Rr . We
are now in a position to derive the PDF of b̄ j . In doing so,
we discriminate between the two cases r = 1 (t ∈ R) and
r > 1 (t ∈ R

r>1).

Theorem 1 (PDF of b̄ j ) Let b̄ j be given as (10). Then, the
PDF of b̄ j under Hi can be expressed as

(i) for r = 1 (t ∈ R):

fb̄ j
(b|Hi ) = fb̂ j

(b|Hi ) p j (ct j b) + δ(b)P(t /∈ P j |Hi )

(15)

(ii) for r > 1 (t ∈ R
r>1):

fb̄ j
(b|Hi ) = fb̂ j

(b|Hi )

∫
Rr−1

ft̃ j (τ |Hi ) p̃ j (b, τ ) dτ

+δ(b)P(t /∈ P j |Hi ) (16)

with δ(b) the multi-dimensional Dirac delta distribution,

p̃ j (b, τ ) = p j

(
T −1
j

[
b
τ

])
the indicator function of the

region P̃ j , and P(·) the probability of the occurrence of the
event within parentheses.

Proof See Appendix. ��
As was mentioned before, case (i) is of relevance only

for binary hypothesis testing as, with r = 1, one cannot
discriminate between alternative hypotheses. Case (i) can be
seen as a special case of (ii), since when r = 1, the indicator
function p̃ j (b, τ ) reduces to p j (ct j b), and by substituting
this into (16) one gets (15).

The above theoremshows that thePDFof b̄ j is constructed
from twoparts. Thefirst part applieswhen t ∈ P j , andb j gets
estimated according to (11), resulting in a normal PDF with
no probability mass over a specific interval, while the second
part applies when t /∈ P j , and hence, b j is estimated as
zero, which leads to all probabilitymass getting concentrated
at b = 0. Equations (15) and (16) imply that even if the
misclosure vector t of (4), and thus the estimator b̂ j of (12)
as well, is normally distributed, b̄ j does not have a normal
distribution.

Example Let y ∈ R
2 contain the observations of a single

point height over two epochswhich are uncorrelated and have
the same standard deviation σ . Under the null hypothesis
H0, the height of this point, x ∈ R, is assumed to remain
unchanged over time, whereas under the alternative H1, it
is assumed that a shift of size b1 in the height of the point
occurs at the second epoch, i.e., c1 = [0, 1]T. These two
hypotheses are then formulated as

H0 : E(y) =
[
1
1

]
x, D(y) = σ 2 I2

H1 : E(y) =
[
1
1

]
x +

[
0
1

]
b1, D(y) = σ 2 I2 (17)

with I2 being the identity matrix of dimension two. The
redundancy of H0 is r = 1, implying that t ∈ R. For this
binary hypothesis example (k = 1), the partitioning of the
misclosure space R is formed by two regions, i.e., P0 and its
complement P1 = R\P0 = Pc

0 . As r = 1 (t ∈ R), the PDF
of b̄1 is obtained from (15). Figure 1 illustrates the PDF of
b̄1 underH0 andH1 assuming b1 = 3 cm, for three different
sets of values of σ and α, i.e., σ = 1/

√
2 cm and α = 0.01

(left), σ = 1/
√
2 cm and α = 0.1 (middle), σ = 1 cm and

α = 0.01 (right).
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Fig. 1 Illustration of the PDF of b̄1 in (17) under H0 (top) and under H1 assuming b1 = 3 cm (bottom). [Left] σ = 1/
√
2 cm and α = 0.01;

[middle] σ = 1/
√
2 cm and α = 0.1; [right] σ = 1 cm and α = 0.01

It is observed that the PDF of the threat estimator b̄1 is
made of two parts: a curve and a spike (cf. (15)). The former
is obtained by the normal PDF fb̂1(b|Hi ) of which the proba-
bility mass is set to zero over an interval where p1(ct1b) = 0.
With P0 = [−√kα,1σt ,

√
kα,1σt ], p1(ct1b) gets zero for

b ∈ [−√kα,1σt/ct ,
√
kα,1σt/ct ]. For the example at hand,

we have σt/ct = √
2σ , implying that p1(ct1b) = 0 for

b ∈ [−√2 kα,1σ,
√
2 kα,1σ ]. Therefore, the larger the σ ,

the wider the interval where p1(ct1b) = 0. This can also be
confirmed by comparing the left and right panels. The sec-
ond part of the threat estimator PDF is formed by a spike
of which the height is given by P(t ∈ P0|H0) = 1 − α for
the top row and by P(t ∈ P0|H1) for the bottom row. The
former is the CA-probability (see Table 1) which depends
solely on the user-determined α; the larger the α, the smaller
the CA-probability, whereas the latter is the MD-probability
(see Table 1) which increases when α decreases and/or σ

increases.

3 Integrity

With the null hypothesisH0 in (1) as the ‘all-stable, nomove-
ment’ model, the alternative hypotheses H j ( j = 1, . . . , k)
in (2) are assumed to cover potentially dangerous deforma-
tions/movements, and their sizes are characterized through

the scalars b j . The monitoring system is therefore required
to issue an alert when a significant movement (e.g., dis-
placement or velocity) has occurred. The term ‘alert’ here
should not be confused with the term ‘alarm’ in Table 1.
While the latter is driven by testing procedure only, the
former is in addition driven by the threat estimate. The
critical or threshold movement is called ‘Alert Limit’ and
denoted by AL. A movement of this magnitude is deemed
to pose an immediate dangerous threat to the structure. A
region of acceptable threat values b j is then defined as
BAL = [−AL, AL] which is a zero-centered region (for-
mally with the origin excluded). Note that, in practice, AL
and hence the region BAL may vary for different alternative
hypotheses. In the sequel however, for simplicity, we assume
that the same threshold value AL applies to all alternative
hypotheses.

Definition 1 (Integrity risk) The integrity risk for a monitor-
ing system is defined as the probability of not alerting while
an alternative hypothesis, say H j , holds true, and the corre-
sponding threat b j goes beyond the alert limit AL.

With the above definition, no risk will be involved if either
H0 is true or H j holds true while the corresponding threat
b j lies below the alert limit. Therefore, the integrity risk (IR)
under H0 and H j reads
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Table 2 An overview of integrity risk computation (cf. (19), (20)) for deformation monitoring application

Integrity risk under a specific hypothesis, say H j , is constructed from the probability of the corresponding missed alerts (in red). False alerts (in
yellow) are inconvenient and typically imply costs or hassle (taking infrastructure out of service, or evacuating population, while this is not needed).
The white areas indicate correct alerts, meaning that a critical movement occurs in reality, and the monitoring system issues indeed an alert (though
this may be based on an incorrectly identified hypothesis); the word ‘correct’ is to be interpreted from a safety perspective. By ‘no threat’ (in green)
we mean that the threat in reality is still below the AL, and hence deemed not immediately dangerous. The decision for H0,H1, . . . ,Hk is driven
by the misclosure vector t , see (5)

IR|H0 = 0

IR|H j = P(no alert|H j ) ι(b j ) for j = 1, . . . , k (18)

where ι(b j ) is the indicator function of the region R\BAL

defined as ι(b j ) = 0 for b j ∈ BAL, and ι(b j ) = 1 elsewhere.
Thus, IR|H j = 0 if b j ∈ BAL. Through the testing proce-
dure, if H0 is selected then there would be no threat to be
estimated, and in caseHi 	=0 is selected then b̂i is provided as
the estimate of bi . With this in mind, the event of ‘no alert’
occurs when either ‘H0 is selected’ or ‘Hi 	=0 is selected and
b̂i ∈ BAL (i = 1, . . . , k),’ occurs, see also Table 2. The
integrity risk IR|H j in (18) for j = 1, . . . , k can then be
expressed as

IR|H j = {P(t ∈ P0|H j )

+ P(b̂ j ∈ BAL, t ∈ P j |H j )

+
k∑

i 	=0, j

P(b̂i ∈ BAL, t ∈ Pi |H j )} ι(b j )

= {P(t ∈ P0|H j )

+ P(b̂ j ∈ BAL|t ∈ P j , H j ) P(t ∈ P j |H j )

+
k∑

i 	=0, j

P(b̂i ∈BAL|t ∈Pi , H j )P(t ∈Pi |H j )} ι(b j )

(19)

where the second equality results from application of the
conditional probability rule. We remark that since the events
‘H0 is selected’ and ‘Hi 	=0 is selected and b̂i ∈ BAL

(i = 1, . . . , k)’ are mutually exclusive, see (5), the proba-
bility of their union, i.e., the integrity risk, can be written as
the summation of their individual probabilities. The first, sec-
ond and third terms on the right-hand side of (19) represent
the risks incurred by the MD-event, CI-event and WI-event,
respectively, see Table 1.

In (19), the integrity risk is presented in case the alterna-
tive hypothesis H j holds true. We have to consider this for
all alternative modelsHi with i = 1, . . . , k, as all alternative
hypotheses, once the movement is beyond the Alert Limit,
are considered here dangerous. Assuming that H0 and Hi

(i = 1, . . . , k) cover all the events that can possibly occur,
we then have

∑k
i=0 P(Hi ) = 1 with P(Hi ) being the proba-

bility of occurrence ofHi . The overall integrity risk can then
be obtained using the total probability rule (Papoulis 1984)
as

IR =
k∑

i=1

(IR|Hi ) × P(Hi ) (20)

Note that the above equation contains no H0-related term
as under the null hypothesis there would be no integrity
issue, i.e., IR|H0 = 0, that is, false alarm is not consid-
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ered an integrity risk. To get a better understanding of the
factors contributing to the overall risk, Table 2 visualizes the
construction of the IR from the testing decisions and threat
estimations.

Here, it is important to realize that the expression in (20)
depends on the (true) value of b j underH j for j = 1, . . . , k
(cf. (19)), which are unknown. Hence, the actual integrity
risk cannot be computed but only as a function of b j ’s
( j = 1, . . . , k). To be conservative, one can then have a look
at ‘worst case’ scenarios by considering the largest possible
value that the IR can take as a function of b j ’s ( j = 1, . . . , k),
i.e., maximizing IR|H j for each j = 1, . . . , k. Also, in
case the a-priori probabilities P(H j ) ( j = 1, . . . , k) are not
known, one can stay with individual integrity risks IR|H j

and work with k worst-case scenarios, equivalent to setting
P(H j ) = 1 for j = 1, . . . , k.

3.1 Approximate integrity risk

As (19) suggests, computation of the integrity risk for a
certainH j requires the computation of k conditional proba-
bilities, i.e., probabilities of b̂i ∈ BAL conditioned on t ∈ Pi

and H j (i = 1, . . . , k), which may impose heavy com-
putational burden particularly when dealing with a large
number of alternative hypotheses. One may, however, find
it more convenient to neglect the correlation between b̂i
(i = 1, . . . , k) and t , and hence the conditioning on the test-
ing outcome, and arrive at the following approximation of
the integrity risk

IRo|H j = {P(t ∈ P0|H j )

+P(b̂ j ∈ BAL|H j ) P(t ∈ P j |H j )

+
k∑

i 	=0, j

P(b̂i ∈ BAL|H j ) P(t ∈ Pi |H j )}ι(b j )

(21)

The overall approximate integrity risk then reads

IRo =
k∑

i=1

(IRo|Hi ) × P(Hi ) (22)

It is important to note that whether IRo provides a conserva-
tive or optimistic approximation of IR depends on how the
regions Pi (i = 0, 1, . . . , k) and BAL are defined.

We note that with IR|H j , one conditions on both the
hypothesis and the testing outcome (cf. (19)), while with
IRo|H j , one conditions only on the hypothesis and not
on the testing outcome (cf. (21)). The difference between
the integrity risk and its approximation, under H j , can be
expressed as

IR|H j − IRo|H j =
k∑

i=1

P(t ∈ Pi |H j )

×
{
P(b̂i ∈ BAL|t ∈ Pi , H j ) − P(b̂i ∈ BAL|H j )

}
ι(b j )

(23)

which is driven by the difference between the conditional
non-normal PDFs fb̂i |t∈Pi

(b|t ∈ Pi , H j ) and the normal
PDFs fb̂i (b|H j ) (i = 1, . . . , k) over BAL. These PDFs are
linked by virtue of the total probability rule as

fb̂i (b|H j ) = fb̂i |t∈Pi
(b|t ∈ Pi , H j )P(t ∈ Pi |H j )

+ fb̂i |t /∈Pi
(b|t /∈ Pi , H j )P(t /∈ Pi |H j ) (24)

which implies that if P(t ∈ Pi |H j ) → 1, then fb̂i |t∈Pi
(b|t ∈

Pi , H j ) → fb̂i (b|H j ). The following Lemma gives the
conditional PDF fb̂i |t∈Pi

(b|t ∈ Pi , H j ). Here, we again

distinguish between r = 1 (t ∈ R) and r > 1 (t ∈ R
r>1),

and emphasize that the former is of relevance only for binary
hypothesis testing as, with r = 1, one cannot discriminate
between alternative hypotheses.

Lemma 1 (PDF of b̂i |t ∈ Pi ) Let b̂i and t be linked to
each other according to (13). Then, the conditional PDF
fb̂i |t∈Pi

(b|t ∈ Pi , H j ) follows as

(i) for r = 1 (t ∈ R)

fb̂i |t∈Pi
(b|t ∈ Pi , H j ) = fb̂i (b|H j ) × pi (cti b)

P(t ∈ Pi |H j )

(25)

(ii) for r > 1 (t ∈ R
r>1)

fb̂i |t∈Pi
(b|t ∈ Pi , H j ) = fb̂i (b|H j )

×
∫
Rr−1

ft̃i (τ |H j ) p̃i (b, τ )

P(t ∈ Pi |H j )
dτ

(26)

Proof See Appendix. ��
As the above Lemma shows, the conditional PDF
fb̂i |t∈Pi

(b|t ∈ Pi , H j ) at each value of b is obtained by scal-
ing the corresponding value of the normal PDF fb̂i (b|H j ).
For example, for the case of r = 1, fb̂i |t∈Pi

(b|t ∈ Pi , H j )

equals fb̂i (b|H j ) divided by P(t ∈ Pi |H j ) if cti b ∈ Pi , and
zero if cti b /∈ Pi .

Figure 2 shows, for the binary example of (17), the PDFs
fb̂1(b|H1) (red) and fb̂1|t∈P1

(b|t ∈ P1, H1) (blue). The
underlying settings are b1 = 3 cm and σ = 1 cm. The
conditional PDF fb̂1|t∈P1

(b|t ∈ P1, H1) is given for two
values ofα, i.e.,α = 0.1 (solid curve) andα = 0.001 (dashed
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Fig. 2 Illustration of the PDFs fb̂1 (b|H1) (red) and fb̂1|t∈P1
(b|t ∈

P1, H1) (blue) corresponding to (17), assuming b1 = 3 cm and σ =
1 cm. The solid and dashed blue curves, respectively, show the results
of α = 0.1 and α = 0.001

curve). As was mentioned previously, p1(ct1b) gets zero for
b ∈ [−√2kα,1σ,

√
2kα,1σ ]. In Fig. 2, given σ = 1 cm,

the probability mass of fb̂1|t∈P1
(b|t ∈ P1, H1) is zero over

the interval [−√2 kα,1,
√
2 kα,1]. The PDF fb̂1|t∈P1

(b|t ∈
P1, H1) takes larger values when α decreases. This is due
to the fact that decreasing α leads to the probability P(t ∈
P1|H1), the denominator of (25), decreasing as well.

3.2 Further simplification

Suppose that the goal is to correctly detect a real effect (defor-
mation), say H j , no matter the value of the estimated threat
b̂ j . In this case, selection of an alternative hypothesis always
goes with an alert. In other words, an alert will be issued
if the null hypothesis is rejected and the event of ‘no alert’
reduces to ‘H0 is selected.’ The integrity risk for this case
then becomes

IR|H j = P(t ∈ P0|H j ) ι(b j ) (27)

in which there is no longer an integrity risk associated with
the CI-event, nor with the WI-event. In Table 2, then only
the red cells with ‘ 0©’ remain to contribute to the IR and the
columns b̂ j ∈ BAL effectively vanish (with j = 1, . . . , k).
This approach was exercised, for instance, in Lepadatu and
Tiberius (2014), considering a single alternative hypothesis.
One can easily observe that the IR in (27) is smaller than IR
in (19). With the event of ‘no alert’ corresponding to (27), an
alert is given foranyvalue ofmovementwhenb j is estimated,
with j = 1, . . . , k, leading also to a larger number of false
alerts compared to the case when the event of ‘no alert’ is
defined such as corresponding with (19).

3.3 Only subset of alternatives implying threats

So far, it was assumed that all alternative hypothesesHi (i =
1, . . . , k) can pose dangerous threats. For the case when only
a subset of alternatives, sayHi for i = 1, . . . , q with q ≤ k,
is considered dangerous, then the event of ‘no alert’ contains
the following events: ‘H0 is selected,’ ‘Hi is selected and
b̂i ∈ BAL (i = 1, . . . , q),’ and ‘Hi is selected (i = q +
1, . . . , k).’ For this scenario, the integrity risk corresponding
toH j ( j = 1, . . . , q) is no longer given by (19), but by

IR|H j = {P(t ∈ P0|H j )

+P(t ∈ ∪k
i=q+1Pi |H j )

+
q∑

i=1

P(b̂i ∈ BAL, t ∈ Pi |H j )} ι(b j ) (28)

In the special case when only one alternative, sayH j , is con-
sidered dangerous (q = 1) and we are only concerned with
the threat b j /∈ BAL (single-threat scenario), the integrity risk
simplifies to

IR|H j = {P(t /∈ P j |H j ) + P(b̂ j ∈ BAL, t ∈ P j |H j )} ι(b j )

= P(b̄ j ∈ BAL|H j ) ι(b j ) (29)

4 Numerical analysis

In this section, we illustrate the proposed method of evaluat-
ing the integrity risk and estimating the threat, by means of
two examples. We evaluate the integrity risk given by (19)
and also compare itwith its approximation in (21). To provide
insight into their characteristics, we first consider the simple
observational model in (17), and then further continue with a
basic, though more realistic deformation model considering
multiple alternative hypotheses.

4.1 Single alternative hypothesis

For our analysis in this subsection, we consider the binary
hypothesis example given in (17). Since r = 1only, no identi-
fication is possible, just detection, with consequent partition-
ing of the misclosure space in P0 = [−√kα,1σt ,

√
kα,1σt ]

and Pc
0 .

4.1.1 Integrity risk

To form the single misclosure t underH0, we choose matrix
B = [−1, 1]T, cf. (3), and thus the BLUE of b1 is
given by b̂1 = t . In this case, we have fb̂1(b|H1) =
ft (b|H1). The conditional PDF fb̂1|t∈P1

(b|t ∈ P1, H1),
with (t ∈ P1|H1) = CD (see Table 1), can be expressed as
fb̂1|CD(b|CD) and is given by (25) which simplifies to
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Fig. 3 Illustration of the PDFs fb̂1 (b|H1) (red) and fb̂1|CD(b|CD)

(blue) corresponding with (17), assuming b1 = 3 cm, σ =
1/

√
2 cm, α = 0.01. kα,1 is the α-percentage point of the central

Chi-square distribution with one degree of freedom

fb̂1|CD(b|CD) = 1

PCD
ft (b|H1) p1(b) (30)

As there is only one alternative hypothesis H1 (k = 1), the
events in Table 1 reduce to four: CA, FA, MD and CD. Note
that the subscript of CD in (30), as in Table 1, is dropped

as H1 is the only alternative. With t
H1∼ N (b1, σ 2

t = 2σ 2),
Fig. 3 shows the PDFs fb̂1|CD(b|CD) (blue) and fb̂1(b|H1)

(red) for b1 = 3 cm, σ = 1/
√
2 cm and α = 0.01.

In Fig. 3, it can be observed that the conditional PDF
fb̂1|CD(b|CD)has nomass over the interval

[−√kα,1,
√
kα,1
]
,

due to the presence of p1(b) in (30). Therefore for AL ≤√
kα,1, we have P(b̂1 ∈ BAL|CD) = 0, thus IRo|H1 >

IR|H1, cf. (23). In case AL >
√
kα,1, we have

AL∫
−AL

fb̂1|CD(b|CD) db = 1

− 1

PCD

⎧⎨
⎩

−AL∫
−∞

ft (b|H1) db +
∞∫

AL

ft (b|H1) db

⎫⎬
⎭ (31)

as p1(b) = 1 for b ∈ 〈−∞,−AL] and b ∈ [AL,∞〉, and
AL∫

−AL

fb̂1(b|H1) db = 1

−
⎧⎨
⎩

−AL∫
−∞

ft (b|H1) db +
∞∫

AL

ft (b|H1) db

⎫⎬
⎭ (32)

Denoting the term within brackets by γ , we have (32)> (31)
as γ < γ/PCD. Therefore, IRo|H1 > IR|H1 always holds
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Fig. 4 [Top] the difference of the strict and the approximate integrity
risks IR|H1 − IRo|H1 as a function of the threat value b1 and alert limit
AL, corresponding to the model in (17), assuming σ = 1/

√
2 cm and

α = 0.01. The thick black diagonal line indicates b1 = AL. [Bottom]
a cross section of the colormap on top for AL = 3 cm (in red) and the
corresponding curve of IR|H1 (in blue)

true, implying that IRo|H1 provides in this case a conserva-
tive (i.e., safe) description of the integrity risk.

Shown in Fig. 4 [top] is the colormap of the difference
IR|H1 − IRo|H1 as a function of b1 horizontally, and AL
vertically. The top half of this graph is left empty as integrity
risk concerns those situations where the threat goes beyond
the Alert Limit (cf. (18)). It is indeed observed that IRo|H1 is
always larger than IR|H1. Due to this conservatism and also
the lower computational burden of the approximate integrity
risk than the strict one, one may then be inclined to compute
and use IRo|H1 instead of IR|H1. However, one should also
bare inmind the additional costs incurred by too conservative
values of integrity risk (look at the blue area in Fig. 4 [top]).

The bottom panel in Fig. 4 illustrates a cross section of
the shown colormap on top for AL = 3 cm (in red) and the
corresponding graph of IR|H1 (in blue). The integrity risk
IR|H1 (cf. (19)), for a givenAL, shows a decreasing behavior
as function of b1 which can be understood by looking at the
contributing factors
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IR|H1 = PMD + P(t ∈ Pc
0 ∩ BAL|H1) (33)

The first term on the right-hand side, i.e., PMD, is a decreas-
ing function of the threat value b1. The second term on the
right-hand side equals zero if AL≤ √kα,1. Otherwise, since√
kα,1 < AL < b1, the probability mass of ft (τ |H1) over

Pc
0 ∩ BAL will decrease as b1 increases. Therefore, IR|H1

for a given AL, is a decreasing function of b1. In the extreme
case when b1 → ∞, we have IR|H1 → 0. Likewise, for
approximate integrity risk (cf. (21)) which is computed as

IRo|H1 = PMD + P(t ∈ BAL|H1) (1 − PMD) (34)

when b1 → ∞, we have IRo|H1 → 0 as a result of P(t ∈
BAL|H1) → 0 and PMD → 0. Consequently, we would
expect that the difference (IR|H1 − IRo|H1) → 0 in case
b1 → ∞. For completeness, we mention again that there is
no integrity risk associated with H0.

4.1.2 Threat estimation precision

Assuming that model identification is successful and in this
case that we have correctly detected the real effect H1, we
now provide a precision analysis of the estimator for the cor-
responding deformation parameter b1. For such an analysis,
we are interested in the separation between the estimator and
its (unknown) true value, and connect this separation to a
probability. For instance, we define an interval around the
true value (which we do know in simulation), in the context
of the example of Fig. 3, as [b1 − rβ, b1 + rβ ], and we are
interested to evaluate the probability that this interval con-
tains the estimator for b1 (10).

We first consider the normal PDF of b̂1 (in red, in
Fig. 3), ignoring the conditioning of estimation on testing.
We demand 95% probability from which rβ=0.025 is deter-
mined. Then, no matter the actual value for b1, this interval
will always represent 95% probability of containing the esti-
mator b̂1, the red line in Fig. 5. In the next step, we use the
correct PDF (in blue, in Fig. 3), acknowledging the condi-
tioning of estimation on testing, to evaluate the probability
that the estimator b̂1|CD is inside [b1 − r0.025, b1 + r0.025].
Figure 5 shows this probability P(|b̂1 − b1| < r0.025|CD)

as a function of the true value b1 ∈ [0, 10] (in blue),
together with the constant 95% probability corresponding
to the estimator b̂1 (in red). As can be seen, for b1 < 2.5 cm,
the probability P(|b̂1 − b1| < r0.025|CD) is smaller than
P(|b̂1 − b1| < r0.025|H1), implying that ignoring the con-
ditioning on the testing decision results in a too optimistic
description of the estimator’s quality. When the uncondi-
tional interval P(|b̂1 − b1| < r0.025|H1) is used to present
the estimator’s quality after testing, it should in fact be made
larger in order to contain 95% probability (i.e., a larger value
is to be taken for r0.025).
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Fig. 5 The probability that the estimators b̂1|H1 (red) and b̂1|CD (blue)
are inside [b1 − r0.025, b1 + r0.025] as a function of the threat value b1
corresponding to themodel in (17), assumingσ = 1/

√
2 cm, α = 0.01.

r0.025 is chosen such that P(|b̂1 − b1| ≤ r0.025|H1) = 0.95

4.2 Multiple alternative hypotheses

Here, we consider a dam deformation monitoring case
inspired by an example in (Heunecke et al. 2013, p. 227).
Let the dam shown in Fig. 6 be subject to the load caused
by water in the lake. For simplicity, we assume that the dam
is vertically stable. To monitor the horizontal displacement
of this dam, use is made of a 2D terrestrial survey network
of six points: two (points 5, 6) are established on the dam as
object points, and four (points 1, 2, 3, 4) are located in a sta-
ble area close to this dam as reference points. To determine
horizontal deformations of the dam, one can then compare
the object points’ coordinates obtained at different times.We
assume that at two times (or epochs) l = 1, 2, each point is
occupied by a total station taking distance and directionmea-
surements to the rest of the points. With six network points
(two object and four reference points), we will then have 60
measurements: 30 distance measurements and 30 direction
measurements. The distance and direction measurements are
assumed to be normally distributed with standard deviations
of 3 mm and 5 seconds of arc, respectively. The measure-
ments are assumed to be all uncorrelated. To make the scale,
orientation and location of the 2D survey network estimable,
the coordinates of the reference points 1 and 2 (black tri-
angles in Fig. 6) are assumed given. The 60 distance and
direction observations at epoch l are then used to estimate
the Easting and Northing of points i = 3, . . . , 6, together
with the unknown instrument scale factor (one for the whole
network) and six unknown orientations (one per instrument
setup).

As the input for the following deformation analysis, we
take the epoch-wise estimated coordinates of points i =
3, . . . , 6 and their corresponding variance matrices. With
xi,l ∈ R

2 (for i = 3, . . . , 6 and l = 1, 2) containing the
unknown Easting and Northing of point i at epoch l, we
define xl = [xT3,l , xT4,l , xT5,l , xT6,l ]T ∈ R

8 for l = 1, 2. Under
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Fig. 6 Deformation monitoring of a dam, after (Heunecke et al. 2013,
p. 227). The horizontal monitoring network consists of four reference
points around the dam and two object points on the dam (points 5 and
6)

the null hypothesis H0 where no deformation occurs, we
assume

H0 : x2 = x1 (all stable) (35)

The redundancy under H0 is r = 8. For simplicity of our
analysis, we make the following assumptions about the alter-
native hypotheses that may occur. In case of deformation, we
assume that either only one or both of the dam points are
unstable, with their deformation being in the direction per-
pendicular to the dam in this example (the dam is supposed
to be subject to load of the water in the lake, and hence points
5 and/or 6 may be pushed back, in the southwest direction).
Thus we have, in case only one point is unstable,

Hi : x2 = x1+(ui⊗d) bi (point i+4 is unstable, i = 1, 2)

(36)

with ui ∈ R
4 the canonical unit vector having the 1 as its

(i + 2)th entry, d ∈ S
2 the known unit vector in the direc-

tion perpendicular to the dam, bi ∈ R the unknown scalar
deformation size parameter, and ⊗ the Kronecker product
(Henderson et al. 1983). In case both of the object points 5
and 6 are unstable, we assume that they deformwith the same
amount as
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Fig. 7 Illustration of the overall integrity risk IR (top) and its difference
with approximate one IR− IRo (bottom) as a function of the alert limit
AL, corresponding with the terrestrial monitoring network in Fig. 6.
The standard deviations of distance and direction measurements are,
respectively, set to be 3 mm and 5 seconds of arc, α = 0.001, P(H0) =
0.97, and P(Hi ) = 0.01 (i = 1, 2, 3). The results for each value of
AL are presented for two threat values bi = AL + 1mm (blue) and
bi = AL + 5mm (red)

H3 : x2 = x1 + (u3 ⊗ d) b3 (points 5 and 6 are unstable)

(37)

in which u3 = u1 + u2 and b3 ∈ R is the unknown defor-
mation parameter. Note, although in the current example we
have considered 1-dimensional alternative hypotheses, that
our proposed risk evaluation method can be applied to more
general situations where the alternative hypotheses are of
multiple dimensions and different from each other.

Assuming P(Hi ) = 0.01 (i = 1, 2, 3) and α = 10−3,
Fig. 7 [top] shows the overall integrity risk IR, and [bottom]
its difference with the approximate one IR − IRo, as a func-
tion of AL, based on (20) and (22). The results for each value
of AL are presented for the threat values bi = AL+1mm (in
blue), and AL+5mm (in red). We note that since r = 8 > 1,
our testing procedure involves both detection and identifica-
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tion steps (7) and (8), see also Table 1. It is observed (on
top) that the overall integrity risk decreases as the AL, and
thus in this case the deformation magnitudes bi (i = 1, 2, 3),
increase. This indeed makes sense as larger alert limits imply
that the structure under monitoring can stand larger defor-
mations, thus encountering a lower risk of failure, and larger
changesbi aremore easily detected (and identified).Weagain
notice the smaller values of the strict integrity risk compared
to the approximate one.

When the AL gets larger than a specific value, the strict
integrity risk IR and the difference IR − IRo both become
stable, which can be explained as follows. When the AL
increases, then bi , which is chosen here as bi =AL+1mm
and AL+5mm, also increases as well. This in turn results in
a larger CI-probability and lower MD- and WI-probabilities
(see Table 1). Therefore, we have P(t ∈ Pi |Hi ) → 1 and
P(t ∈ P j 	=i |Hi ) → 0, thus P(b̂i ∈ B, t ∈ Pi |Hi ) → P(b̂i ∈
B|Hi ) and P(b̂ j 	=i ∈ B, t ∈ P j 	=i |Hi ) → 0. As a result of
this, both IR and IRo go toward

∑k
i=1 P(b̂i ∈ B|Hi )P(Hi ),

thereby thus IR− IRo → 0. Given the definition of BAL, one
can write

P(b̂i ∈ B|Hi ) = P(−AL ≤ b̂i ≤ AL|Hi )

= P(−AL − bi ≤ b̂i ≤ AL − bi |H0)

≈
AL→∞ P(b̂i ≤ AL − bi |H0)

= Φ

(
AL − bi

σb̂i

)
(38)

where Φ(·) denotes the cumulative distribution function of
the standard normal distribution. As bi = AL + 1mm and
AL + 5mm, then AL − bi remains constant if AL increases
which explains why the IR becomes stable when AL → ∞.

To gain an understanding of the contribution of the differ-
ent hypotheses into the construction of the overall integrity
risk, Fig. 8 shows the graphs of IR|H1, IR|H2 and IR|H3,
as a function of the alert limit AL for the threat value
bi = AL + 1mm. It is observed, for all ranges of AL, that
IR|H2 > IR|H3 > IR|H1. For the sake of simplicity, we
explain this behavior for large alert limits where the integrity

risk IR|Hi can be approximated by Φ

(
AL−bi

σb̂i

)
(cf. (38)).

According to (12), the variance of b̂i is characterized through
‖cti ‖2Qtt

which is also the indicator ofminimal detectable bias
(MDB) underHi (Baarda 1968; Teunissen 2000); the larger
the value of ‖cti ‖2Qtt

, the smaller theMDB, and thus the better
the detectability under Hi . For the model at hand, we have

‖ct1‖2Qtt
≈ 3 × 105, ‖ct2‖2Qtt

≈ 105, ‖ct3‖2Qtt
≈ 2 × 105

(39)
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Fig. 8 Illustration of the components of the overall integrity risk for
the case of blue curve in Fig. 7 [top], for bi = AL+1mm, as a function
of the alert limit AL

implying that σb̂2 > σb̂3
> σb̂1

which with b1 = b2 = b3 >

AL (hence AL − bi < 0), gives AL−b2
σb̂2

> AL−b3
σb̂3

> AL−b1
σb̂1

.

AsΦ(·) is amonotonously increasing function of (·), we then
have IR|H2 > IR|H3 > IR|H1.

5 Summary and conclusion

It is crucial for deformation monitoring systems to timely
detect a dangerous displacement beyond tolerances of the
structure under consideration. This contribution presents a
method for statistically evaluating the risk in a deformation
monitoring system. In order to quantify the performance of
the monitoring under a particular deformation, the corre-
sponding integrity risk needs to be evaluated. We referred to
integrity risk as the probability of the monitoring system fail-
ing to issue an alert, when in fact one should have been given.

The integrity components of deformation monitoring
were introduced and discussed. As deformation monitor-
ing involves statistical testing of multiple hypotheses, the
integrity risk was mathematically developed for the multi-
ple hypothesis testing problem. In doing so, the alerts were
assumed to be dependent on both the identified hypothesis
and the threat that the estimated size of deformations entails.
It was thereby highlighted that for a correct evaluation of the
risk, estimation and testing should be considered together, as
they are intimately linked in practice. This in turn leads to the
use of conditional probabilities when computing the integrity
risk. One may, however, find it simpler computation-wise to
neglect the interaction between estimation and testing. For
this case, we provided an approximation of integrity risk.
It was emphasized that this approximation may provide a
too optimistic or pessimistic description of the integrity risk
depending on the testing procedure and tolerances of the
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structure at hand. The integrity risk was also formulated for
some other simplified scenarios and compared with the strict
formulation.

In addition to timely detecting hazardous deformations,
monitoring systems are also required to provide threat
estimates together with their corresponding probabilistic
properties. It was shown that the outcome of testing deter-
mines how the threat gets estimated. The threat estimator
b̄ j and its associated distribution were then derived, cap-
turing the contributions from both testing and estimation. It
was emphasized that although the threat estimator under the
identified hypothesisH j , i.e., b̂ j , is normally distributed, the
estimator b̄ j is not due to its nonlinear dependency on the
misclosure.

For a simple observational model with just a single alter-
native, the integrity risk was evaluated both using the strict
and approximate approach. The difference between these
two approaches was analyzed, and the role of different con-
tributing factors was highlighted. We pointed out that when
choosing one approach over another, one should, besides the
computational burden, also take the additional costs incurred
by conservatism into account. Assuming that a deformation
has taken place, we then analyzed the precision of the threat
estimator with and without accounting for conditioning on
testing decision. It was explained that negligence of this con-
ditioning process may provide a too optimistic description of
the estimator’s quality. Our evaluations were extended to a
basic deformation measurement system example with multi-
ple alternative hypotheses, where monitoring measurements
were provided by a 2D terrestrial survey network.

Finally, we remark that although our analyses were pre-
sented for hypotheses of the same dimensions (1D), our risk
evaluation method can be applied to more general situations
where the alternative hypotheses are of different dimensions.
This is due to the fact that it is driven by the concept of
misclosure space partitioning and this is irrespective of the
alternative hypotheses having the same dimension, or being
of different dimensions. Hence, as soon as the hypothesis-
selection has been made unambiguous, the corresponding
partitioning of the misclosure space enables a direct appli-
cation of our risk evaluation method. Moreover, the method
can also be used to compare the performance of different sets
of partitionings Pi for the same set of hypotheses and thus
be used to study and compare the performances of different
hypothesis-selection mechanisms.
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Appendix

Proof of Theorem 1 With b̄ j in (10) for j = 1, . . . , k, and P̃i

(i = 0, 1, . . . , k) being a partitioning ofRr (cf. (14)), for any
interval B ⊂ R, we have

P(b̄ j ∈ B|Hi )

= P(b̄ j ∈ B, t ∈ P j |Hi ) + P(b̄ j ∈ B, t /∈ P j |Hi )

= P(b̂ j ∈ B, t ∈ P j |Hi ) + P(t /∈ P j |Hi )

∫
B

δ(b) db

(40)

The first equality follows from an application of the total
probability rule, while the second from (b̄ j |t ∈ P j ) =
(b̂ j |t ∈ P j ) and the fact that (b̄ j |t /∈ P j ) = 0. In the second
equality, the second term on the right-hand side vanishes if
0 /∈ B.

(i) If r = 1 (t ∈ R), then b̂ j = t/ct j (cf. (11)). With this in
mind, (40) can be expressed in terms of the integral of
the corresponding PDFs as

∫
B

fb̄ j
(b|Hi ) db

=
∫
B

{
fb̂ j

(b|Hi )p j (ct j b) + P(t /∈ P j |Hi )δ(b)
}
db

(41)

Since B is arbitrary, (15) follows from (41).
(ii) Now, we consider the case of r > 1 (t ∈ R

r>1). Using
the one-to-one link between P̃ j and P j , see (13) and
(14), the first probability on the right-hand side of (40)
in the second equality can be rewritten as

P(b̂ j ∈ B, t ∈ P j |Hi ) = P

([
b̂ j

t̃ j

]
∈ P̃ j ∩

[ B
R
r−1

] ∣∣∣∣Hi

)

(42)

With the above expression, (40) can be presented in
terms of the integral of the corresponding PDFs as
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∫
B

fb̄ j
(b|Hi ) db

=
∫
B

{
fb̂ j

(b|Hi )

∫
Rr−1

ft̃ j (τ |Hi ) p̃ j (b, τ ) dτ

+P(t /∈ P j |Hi )δ(b)

}
db (43)

Since B is arbitrary, (16) follows from (43). ��

Proof of Lemma 1 Using the conditional probability rule, we
can write for any B ⊂ R

P(b̂ j ∈ B|t ∈ P j , Hi )

= P(b̂ j ∈ B, t ∈ P j |Hi )/P(t ∈ P j |Hi ) (44)

The above conditional probability can be expressed in terms
of the integral of the corresponding PDF, i.e., P(b̂ j ∈ B|t ∈
P j , Hi ) =

∫
B

fb̂i |t∈Pi
(b|t ∈ Pi , H j ) db. The probability

P(b̂ j ∈ B, t ∈ P j |Hi ) is also given by the first term on the
right-hand side of (41) and (43) for, respectively, the cases
r = 1 and r > 1. Substituting these terms into the above
equation, (25) and (26) follow since B is arbitrary. ��
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