<]
TUDelft

Delft University of Technology

Document Version
Final published version

Licence
CCBY

Citation (APA)

Yuan, Y., Wang, K., Duives, D., Daamen, W., & Hoogendoorn, S. P. (2026). Machine learning-based bicycle delay
estimation at signalized intersections using sparse GPS data and traffic control signals: A Dutch case study using
random forest algorithm. Artificial Intelligence for Transportation, 3-4, Article 100037.
https://doi.org/10.1016/j.ait.2025.100037

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.

Unless copyright is transferred by contract or statute, it remains with the copyright holder.

Sharing and reuse

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.ait.2025.100037

Artificial Intelligence for Transportation 3-4 (2025) 100037

Contents lists available at ScienceDirect

Artificial
Intelligence for
Transportation &

Artificial Intelligence for Transportation

journal homepage: www.elsevier.com/locate/ait

Machine learning-based bicycle delay estimation at signalized intersections R

using sparse GPS data and traffic control signals - A Dutch case study using | %
random forest algorithm

Yufei Yuan®*, Kaiyi Wang"*, Dorine Duives? Winnie Daamen?, Serge P. Hoogendoorn?

a Department of Transport and Planning, Delft University of Technology, Delft, The Netherlands
b School of Business, The University of Queensland, Brisbane, Australia

ARTICLE INFO ABSTRACT

Keywords: Bicycle delay is an important variable to assess the performance of the cycling transportation system, especially
Machine learning as an indicator of intersection efficiency. This article estimates a machine learning (ML)-based model for esti-
Bicycle mating average bicycle delays at signalized intersections. This study evaluates various ML models with regressor
gglgay features, including random forest, k-nearest neighbor, support vector regression, extreme gradient boosting, and
Sparse neural networks. Sparse GPS cycling data (as reference data) from the Talking Bikes program in the Netherlands
VLOG data and the local control signal and flow detection information from the VLOG data provided by a Dutch city are

adopted to train the ML models. The findings illustrate the viability of estimating bicycle delays by consider-
ing the interplay among weather conditions, temporal factors, junction topology, and local traffic conditions.
The estimation model fit using the best-performing model - random forest - has doubled compared to the case
without such additional traffic information, indicating its improved performance. Insights gained from the esti-
mation model emphasize the potential of data-driven approaches to inform traffic management, bicycle policy,
and infrastructure development.

Random forest

1. Introduction

In modern urban mobility, bicycles have experienced a renaissance,
emerging as a focal point for daily commutes and strategic urban pol-
icy. This revitalization in cycling has been spurred by the emergence
of e-bikes and the global behavioral shift prompted by the COVID-19
pandemic, which has led to a surge in bicycle usage, as documented in
recent studies (Younes et al., 2023). Bicycles are now heralded in policy
circles as an eco-friendly replacement for cars, especially for short to
medium-range urban trips.

This policy shift is evidenced by a trend among metropolitan areas
worldwide to limit car traffic in city centers, aiming to reduce carbon
emissions and reclaim space for pedestrians and cyclists. Bicycles are not
only being integrated as a key component of urban transport networks
but are also pivotal in bridging the gap in first/last mile connections to
public transportation. Fraser and Lock (2010) further suggests that the
integration of bicycles into the urban fabric extends beyond environ-
mental benefits, touching on public health and socioeconomic factors
(Fraser & Lock, 2010).

Recognizing these multifaceted advantages, there has been a con-
certed push by governments, including incorporating advanced cycling
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infrastructure, secure bike parking at transit nodes, and robust promo-
tional initiatives advocating for cycling. Such strategic investments and
campaigns are increasingly recognized for their potential to significantly
elevate cycling as a preferred mode of transportation, as exemplified by
the progressive policies and infrastructure in places like the Netherlands,
which has become a global benchmark for cycling integration. Besides,
historically car-oriented cities, like Washington D.C., the US, and Frank-
furt am Main, Germany, successfully increased bicycle trip shares from
the late 1990s to 2018 through strategic bike planning and policy imple-
mentation, demonstrating that even car-centric urban areas can promote
cycling effectively (Buehler et al., 2021).

Bicycle-friendly cities are victims of their success. Unfortunately, our
understanding of bicycle flow remains in its infancy compared with the
seven decades of research and data collection on car-centric networks,
which hinders the smooth integration of cycling into urban spaces in a
safe and sustainable manner. Increasing cycling demand poses pressure
on entire city networks. Ensuring precise determination of average de-
lays, travel times, and stops for all road users, including vehicles, bikes,
and pedestrians, is paramount in effectively managing signalized inter-
sections at local and network levels (Bagdatli & Dokuz, 2021). Particu-
larly, understanding delays has tangible implications for cyclists’ daily
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Declarations

List of abbreviations

Al Artificial intelligence

Det Detection

KNMI Royal Netherlands Meteorological Institute
LR Linear regression

KNN K-nearest neighbor

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
MSE Mean Square Error

ML Machine learning

NN Neural networks

RF Random forest

RMSE Root Mean Square Error

SHAP Shapley Additive explanations
SVR Support vector regression
XGBOOST Extreme gradient boosting

lives. Excessive or unpredictable delays can discourage cycling for com-
muting, increase the likelihood of red-light running (Yang et al., 2012),
and reduce overall travel time reliability. Such effects impact both com-
muters and recreational cyclists, influencing route choice, safety, and
ultimately the attractiveness of cycling as a sustainable mode of trans-
port as when delays are perceived as too long, cycling becomes a less
appealing choice (Ton et al., 2017). Therefore, accurately quantifying
bicycle delay is essential not only for traffic signal optimization but also
for supporting broader goals of cycling promotion, urban livability, and
sustainable mobility.

While field studies are a conventional means to gather this infor-
mation, they can prove costly and time-consuming. Analytical meth-
ods, commonly employed for estimating delays, often struggle to gen-
erate accurate results, especially in scenarios of oversaturated traffic
flow (Bagdatli & Dokuz, 2021). Alternative approaches are wanted that
can provide more dependable and efficient estimates with minimal ef-
fort. Recently, delay estimation models based on artificial intelligence
(AI) have been introduced in the literature to estimate delay more accu-
rately and to simplify the relations amongst complex, influential factors
to infer this crucial quantity. However, these applications have primar-
ily focused on vehicular traffic (Bagdatli & Dokuz, 2021; Cheng et al.,
2016). Cyclist and car traffic behavior are quite different, hampering the
transferability of traffic algorithms initially developed for road traffic
management. In addition, cyclist trips are underreported in most travel
surveys or monitoring systems, which makes estimating bicycle demand
and delay even more challenging due to limited cycling data quantity
and quality.

Besides, the feed data for traffic state estimation models ranges from
camera reading (automatic image processing or manual counting) to
GPS data (either from a smartphone GPS module or from on-bike track-
ers/Apps). The former data source might provide the ground truth in-
formation, but the data extraction process is time-consuming and com-
plex; the latter one might only provide a subset of the total traveler
population (Yang et al., 2016). As an example, the Talking Bikes pro-
gram (Mobiliteits-Platform, 2020) has been operational in recent years
in the Netherlands, collecting GPS data and simultaneously integrat-
ing it with the broader “Talking Traffic” initiative. The outcome of the
Talking Bikes program is a comprehensive dataset of GPS cycling data
(from Apps or bike trackers), with over one million bicycle trips per
year geographically distributed across the Netherlands. While the over-
all dataset size is substantial, it is worth noting that the distribution of
trips at specific intersections may be limited, next to its data scarcity
features regarding reporting frequency and duration.

Moreover, analytical estimation models require site-specific traffic
control factors and demand information. This data category from sig-

Artificial Intelligence for Transportation 3—4 (2025) 100037

nalized intersections is, for instance, in the Netherlands, available in
the form of the VLOG format (Vialis, 2020). Note that this data is not
generally available in a national database but might be available at a
local scale. The VLOG data contains data on the control phase of traf-
fic lights for motorized vehicles, cyclists, pedestrians, buses, and trams.
Furthermore, data from several detection sensors (such as inductive
loops/cables on vehicular roads, bicycle paths, and dedicated bus/tram
lanes, request-green buttons for cyclists and pedestrians) near the in-
tersection is available. This information is deemed to possess a close
correlation with bicycle delays.

In this work, we develop and test a machine learning-based frame-
work for identifying average bicycle delays at signalized intersections,
using the relatively sparse GPS cycling data from the Talking Bikes pro-
gram, the local control signal and flow detection information from VLOG
data provided by the municipality of Delft, the Netherlands, and other
contextual variables such as weather and temporal features. The pro-
posed estimation model directly addresses the challenge of limited cy-
cling data quantity and quality, demonstrating that meaningful delay
patterns can still be captured under realistic data constraints. Its out-
comes provide actionable insights for both signal optimization, traffic
management and broader cycling policy. Compared with the authors’
previous work, this work enhances the capabilities and generalizabil-
ity of the bicycle delay estimation model by incorporating newly added
VLOG traffic control data, thereby offering a more robust and transfer-
able modeling approach.

The remainder of this paper is organized into five sections.
Section 2 presents the related work for data-driven bicycle delay es-
timation methods for signalized intersections. Section 3 elaborates on
the research methodology, including the conceptual framework and an
introduction to the model approaches. This is followed by Section 4,
which describes the case studies for estimating bicycle delays at signal-
ized intersections. Section 5 presents the modeling results and discusses
to what extent the case study validates the proposed concept. Finally,
Section 6 concludes the paper with a summary of the main findings and
some recommendations.

2. Related work to capture traffic delays

Many studies have investigated vehicle delays at signalized intersec-
tions (Bagdatli & Dokuz, 2021; Cheng et al., 2016). Vehicles experience
three types of delay at signalized intersections: control delay, stop delay,
and approach delay. Control delay is expressed as the total delay caused
by the intersection control, including deceleration, stop, and accelera-
tion delay. Stop delay is defined as the duration in seconds that traffic
users are forced to stop at an intersection. Approach delay occurs from
a predefined upstream point to the intersection stop line. This defini-
tion and concept are commonly employed in describing vehicle delays
(Cheng et al., 2016), and we posit that a similar framework applies to
bicycle traffic.

Only a limited number of studies have concentrated on cycling de-
lays at signalized intersections, whether wholly or partially. These stud-
ies primarily depend on analytical methods to deduce observed delays
based on bicycle trajectories. For instance, Velthuijsen (2020) directly
calculated and estimated bike delays from smartphone GPS data in
a Dutch city based on fundamental physics law (Velthuijsen, 2020).
This study considers three scenarios of defining reference speed val-
ues (as the ‘free-flow’ speed). Similarly, Rupi et al. (2020) and
Poliziani et al. (2022) inferred bicycle waiting times (including delays)
based on a predefined threshold speed, using relatively rich GPS traces
at a city scale in Italy (Poliziani et al., 2022; Rupi et al., 2020). The
novelty of these studies lies in a pre-processed map-matching operation
to enhance estimation accuracy. Gillis et al. (2020) measured bike de-
lays at signalized intersections by interpolation between GPS locations
before and after the intersections (Gillis et al., 2020), relying on data
from the Bike Count Week in Belgium (Lancering Nationale FietsTel-
Week 2015, 2015). A similar approach to deriving delay times can be
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Fig. 1. Conceptual framework of bicycle delays at signalized intersections. The highlighted influential variables are included as the independent variables in this

work.

found in studies in Canada (Strauss & Miranda-Moreno, 2017) and Swe-
den (Kircher et al., 2018). However, these studies did not develop spe-
cific estimation models to capture and reproduce typical delay patterns.

Yuan et al. (2019) developed a linear regression model to esti-
mate the start-up lost time as part of approach delay (which is used to
calculate bicycle flow capacity at intersections) from empirical trajec-
tory data derived from cameras at a specific intersection in Amsterdam
(Yuan et al., 2019). Few attempts have been made to utilize ML models
for bicycle delay estimation and inference. Reggiani et al. (2020) suc-
cessfully employed a neural network model to estimate individual cy-
clist travel times, considering various scenarios, including approach
delay, stop delay, and/or control delay (Reggiani et al., 2020). Their
study utilized data from cameras, loop detectors, and control signals
in a Dutch city-Utrecht. Previous work mainly applies a single model.
Yuan et al. (2023) have demonstrated the feasibility of estimating bicy-
cle delays via multiple ML models using only sparse GPS cycling data
and publicly accessible information, leveraging the burden of under-
standing local traffic conditions (Yuan et al., 2023). The work shows
that understanding the role of temporal/ weather variables and turning
typology can help in planning for expected/predicted delays during cer-
tain times/conditions and can inform strategies to manage and reduce
such delays at specific intersections or on a national level. While ML
has shown considerable promise in improving traffic state estimation,
its utilization for bicycle delay estimation is still rare, particularly in
situations where sparse GPS data and traffic controller information are
both involved. This study aims to address this research gap.

3. Methodology for bicycle delay estimation

This section presents the research methodology that enables us to
estimate the bicycle delay at a signalized intersection. This section first
describes the modeling conceptual framework. It is followed with a pre-
sentation of the set of mathematical models used to capture the intersec-
tion delay, the training procedure and the performance. Accordingly, a
description of the datasets is provided, including the definition of both
the dependent and independent variables.

3.1. Conceptual framework to capture bicycle delay

We have developed a conceptual modeling framework of all the most
relevant factors based on findings in the literature and authors’ assump-
tions (Yuan et al., 2023) to explain bicycle delays at intersections, as
shown in Fig. 1. Four categories are identified: characteristics of indi-
vidual travelers, intersection characteristics, traffic flow conditions, and

external factors. In the context of this work, the characteristics of inter-
sections are identified as an important attribute. The geometry design,
layout, pavement, and visibility will influence how cyclists interact with
other road users and the environment. The controller scheme (e.g., sig-
nals, logic, priority rules) contributes the most to the stop and control
delays at signalized intersections. Besides, the local traffic conditions
need to be considered, such as the demand and queue length of various
transport modes, saturated or oversaturated, because the control signals
may assign more green times to the mode with priorities.

In this article, we extend our previous work (Yuan et al., 2023) by ad-
ditionally including local control signals and traffic count information to
enhance estimation capability. Local control signals provide detailed in-
formation about signal timings and phase sequences specific to each in-
tersection. Count information includes the number of bicycles and other
road users passing through the intersection. Incorporating this data is
assumed to enhance the performance of delay estimations. Therefore,
the underlying datasets include sparse GPS cycling data, meteorologi-
cal data, temporal information, intersection topology, turning typology,
and newly added intersection control signal and count information. It
should be emphasized that our primary goal is not to develop the most
precise estimation model for real-time monitoring of bicycle delays on
a per-movement basis at signalized intersections. Instead, our focus is
on optimizing the utilization of existing data sources, considering their
quality and capabilities, to extract valuable insights for traffic manage-
ment.

3.2. Mathematical model description

This work will apply the same set of ML estimation models as in
Yuan et al. (2023), ranging from simple linear regression (one of the
most popular econometric models) to sophisticated machine-learning
approaches. Based on the characteristics of the dataset variables, we ini-
tially selected five widely recognized machine learning models equipped
with regression capabilities to address the problem at hand. These in-
clude random forest (RF), k-nearest neighbor (kNN), support vector re-
gression (SVR), extreme gradient boosting (XGBoost), and neural net-
works (NN). Note that the five chosen ML models have indicated their
validity for vehicle delay estimation to capture temporal trends and
physical processes (Bagdatli & Dokuz, 2021; Cheng et al., 2016). How-
ever, they have not yet been widely applied in the literature for bicycle
traffic state estimation at signalized intersections.

« Random Forest (RF)

Random Forest stands out as a multi-faceted machine learning tech-
nique adept at both regression and classification tasks (Biau & Scor-
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net, 2016). This method harnesses the power of ensemble learning,
where a collection of simple models, or "weak learners," are united to
create a strong, more predictive model. This approach is particularly
suitable for delay prediction due to its ability to handle many input
variables and its robustness to outliers, which is typical in urban cycling
data. It can effectively capture the non-linear and complex interactions
between various factors influencing bicycle delays.

* k-Nearest Neighbors (kNN)

The k-Nearest Neighbors algorithm operates on a principle of prox-
imity, making it an intuitively simple yet effective method for classifi-
cation and regression (Leif, 2009). It assigns outputs based on the pre-
dominant outcome or the mean of the 'k’ closest instances in the training
data. This proximity is quantified using distance metrics such as the Eu-
clidean or Manhattan distance, providing a straightforward mechanism
for pattern recognition. This algorithm relying on proximity could be
helpful in modeling delays, which can be highly localized and influ-
enced by nearby traffic conditions. Its simplicity also allows for quick
adjustments to the model as new data becomes available.

* Support Vector Regression (SVR)

Support Vector Regression, a regression-focused offshoot of Support
Vector Machines (SVM), tackles both linear and nonlinear regression
tasks (Smola & Scholkopf, 2004). SVR operates by mapping data to a
higher-dimensional feature space and determining the optimal hyper-
plane that remains within a predefined error margin, effectively balanc-
ing the model’s complexity with its predictive prowess. The capacity to
find a hyperplane that best fits the data makes it a good choice for de-
lay estimation, where the goal is to predict continuous delay times. It is
adept at managing the complexities of urban traffic data and can handle
non-linear patterns effectively.

« Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting is renowned for being a potent and fast
machine learning algorithm, particularly in regression and classifica-
tion domains (Chen & Carlos, 2016). It refines the concept of gradient
boosting by optimizing existing models and incrementally reducing er-
rors through its 'weak learners.” This results in a highly performant and
scalable model that is a favorite among data scientists for its efficacy.
XGBoost is suitable due to its high performance and speed, which are es-
sential in processing and analyzing large volumes of cycling data in real
time. Its ability to do feature engineering autonomously helps identify
the most significant factors affecting bicycle delays.

» Neural Networks (NN)

Neural Networks, inspired by the neural structures of the brain,
excel in detecting patterns and processing complex sensory data
(Goodfellow et al., 2016). These networks adeptly categorize or cluster
inputs, undergoing training to discern complex patterns and output pre-
dictions or decisions that mimic human cognitive processes. They are
especially powerful in situations where the input variables are tightly
linked to the predicted outcomes, making them invaluable tools in the
machine learning field. Thanks to their deep learning capabilities, NNs
are well-suited for capturing the intricate relationships within cycling
data. They can model the complex interactions of traffic dynamics that
traditional models might miss, thus providing a more accurate predic-
tion of bicycle delays.

3.3. Model training procedure

The predictors (independent variables) are stored in ’X’, while the
target dependent variable is stored in ’y’. To divide the data into training
(80 %) and testing (20 %) subsets, we employed a stratified sampling
technique, using intersection identifier (Intersection_ID’ in Table 1) as
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the stratification criterion to ensure a proportional representation of all
intersections across both datasets. Consequently, each dataset reflects a
balanced cross-section of intersections.

We developed a bicycle delay estimation model, employing multi-
variate linear regression as the benchmark due to its simplicity and inter-
pretability. The model was trained using a designated training dataset,
and we investigated the relevance of various features to travel delays
by analyzing their respective P-values. The other five ML models were
tuned and trained using a grid search strategy in combination with the
5-fold cross-validation. Gird search can ensure clarity and transparency
in hyperparameter tuning, though this method can be computationally
expensive. More advanced approaches such as ‘Hyperopt’ or random-
ized search could improve efficiency, and we intend to explore these
in future work with larger datasets. Cross-validation is a robust statis-
tical technique that helps prevent model overfitting by partitioning the
data into subsets, training the model on a subset, and then validating
it on the remaining data (in this case — 5 folds are created, the method
trains and evaluates the model 5 times, picking a different fold (20 %)
for evaluation every time and training on the other 4 folds (80 %)).
5-fold cross-validation is commonly used because it strikes a balance
between providing a stable estimate of model performance and main-
taining computational efficiency, unlike lower values of folds that may
yield more variable results and higher values that require more compu-
tational resources (Brownlee, 2020). This approach ensures the model’s
generalization ability, enhancing its predictive performance on unseen
datasets, thus strengthening the reliability and credibility of the study
(Aurélien, 2019). Considering our dataset’s extensive temporal range (of
over two years), we anticipate that the randomly constituted training
sets will encompass a comprehensive array of the characteristics (both
in space and time) in the overall sample population.

This systematic exploration and evaluation of numerous hyperpa-
rameter combinations aimed to optimize the predictive performance of
the models. The best scores achieved from the grid search, a machine
learning technique that methodically works through multiple combina-
tions of parameter tunes, cross-validating as it goes to determine which
tune gives the best performance, are reported in the subsequent sec-
tion corresponding to the lowest error rates. Note that all the estimation
models were written and interpreted in Python using the ‘scikit-learning’
package. (see: https://scikit-learn.org/stable/user_guide.html, accessed
on 1 Jan, 2024).

3.4. Model performance indicators

In the evaluation of the estimation models, two key performance in-
dicators, R-squared (R%) and Root Mean Square Error (RMSE), are em-
ployed to assess the model’s predictive accuracy and reliability for both
training and testing sets. The R-squared metric, also known as the co-
efficient of determination, quantifies the proportion of the variance in
the dependent variable (bicycle delay) that is predictable from the inde-
pendent variables. This metric measures how well-observed outcomes
are replicated by the model based on the proportion of total variation of
outcomes explained by the model. A higher R? indicates that the model’s
estimation aligns more closely with the observed data, signifying a more
accurate model.

RMSE, on the other hand, measures the average magnitude of the
prediction error, i.e., the differences between the predicted and ob-
served values. It quantifies the model’s predictive error, which is di-
rectly linked to the concept of reliability. A smaller RMSE indicates a
model that reliably produces less error, implying better reliability. Fur-
thermore, because RMSE penalizes larger errors more severely, models
that minimize RMSE are especially desirable when large prediction er-
rors are particularly problematic. In contrast, metrics like MAE (Mean
Absolute Error) would provide less significant penalization for larger er-
rors; MSE (Mean Square Error) does not provide the intuitive scale as
RMSE does; MAPE (Mean Absolute Percentage Error) can heavily pe-
nalize minor deviations when the actual values are low, which is not
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Table 1

Overview of influential variables used in the machine learning models.
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Example data

Predictors Data type Details entry
Intersection identifier Intersection_ID Integer Intersection index 1
Weather conditions Precipitation_Duration Integer Duration of precipitation in s over 10 min 600
Precipitation_Intensity Decimal Precipitation intensity over 10 min (mm/h) 2.41
Temperature Decimal Average air temperature in °C over 10 min 13.30
Wind_Average_Speed Decimal Average wind speed in m/s over 10 min 8.47
Wind_Maximum_Speed Decimal Max. actual wind speed in m/s over 10 min 12.43
Temporal features Weekday_Number Integer Day of the week of the travel record (with 1 denoting Sunday, 2 1
denoting Monday, and so forth until 7 [Saturday])
Hour Integer Hour of the day of the travel record 13
Peak_ Dummy Dummy Peak hour indicator (1: peak for the period between 7:00 and 1
19:00; 0: otherwise)
Control signal VLOG data  Car detection Integer Summation of all car counts (signal pulses) for all detectable 20
directions per interval (5 mins)
Bus/Tram detection Integer Summation of all bus/tram counts (signal pulses) for all detectable 10
directions per interval (5 mins)
Bike detection (request-green Integer Summation of all bike counts (push frequency, and signal pulses) 10
button and loop detection) for all detectable directions per interval (5 mins)
Pedestrian detection Integer Summation of all pedestrian counts (pulses) for all detectable 10
(request-green button) directions per interval (5 mins)
Car signal duration Decimal Relative green time per interval (5 min = 300 s) 0.15
Bus signal duration Decimal Relative green time per interval (5 min = 300 s) 0.15
Bike signal duration Decimal Relative green time per interval (5 min = 300 s) 0.15
Pedestrian signal duration Decimal Relative green time per interval (5 min = 300 s) 0.15
Intersection Stream_No. Integer Standard index of bike flow movements at intersections (1, 2, 3, ..., 2
characteristics 12)
Arms Integer Total No. of arms 4
Car_Lanes Integer Total No. of car lanes 12
Bike_Streams Integer Total No. of bike streams 12
Tram_Dummy Dummy The presence of the tram line (1: presence) 1
Bus_Dummy Dummy The presence of the bus lane (1: presence) 0

ideal for our application. Therefore, they are not selected as error indi-
cators. This study applied a log transformation (the natural logarithm
of one plus the input array) to improve the model’s performance to the
delay outcome variable. This transformation serves to temper the influ-
ence of extremely high values, resulting in a more symmetrical distri-
bution and, thus, more amenable to modeling (West, 2021). However,
due to this transformation, interpreting the R-squared and RMSE val-
ues should be cautiously approached as they now represent relation-
ships in the log scale (West, 2021). Additionally, to assess the statisti-
cal significance of performance improvements across scenarios, a paired
t-test was conducted on the prediction errors using the same training
or testing datasets. We tested the prediction errors across scenarios us-
ing the paired t-test, confirming the statistical significance of the differ-
ence/improvement.

A comparative analysis of the distribution of the predicted and origi-
nal delays was conducted using the testing set to assess the model perfor-
mance further. This involved visualizing the distributions of both data
sets to observe any differences or similarities. Given the significant right-
skewed distribution of the data, the median was chosen as a more robust
measure of central tendency compared to the mean. Therefore, the me-
dians were compared to provide a more accurate representation of the
central location of the data. This approach helps to mitigate the influ-
ence of outliers and provides a more reliable comparison between the
predicted and actual values for average delays and specific delays per
movement direction.

3.5. Description of the GPS dataset

The collected GPS cycling data records changes in locations and
time instances without differentiation based on individual transporta-
tion modes or motives which is in line with General Data Protection Reg-
ulation (GDPR) in Europe. The trip samples encompass cyclists utilizing
bike Apps (such as Ring-Ring (Mobiliteits-Platform, 2020)), shared bike
users, or company bike users (via bike trackers like Tracefy (Mobiliteits-
Platform, 2020)), amounting to approximately 3 million bicycle rides

without sociodemographic detail across the country within a two-year
span. While the dataset’s overall size is considerable, it is essential to
acknowledge that the distribution of trips at specific intersections over
two years may be limited. On average, there are around 4000 collected
daily trips distributed across the country. The sampling rate varies by
trip and data record due to occasional connectivity loss, ranging from
1 s to 30 s with a median data density of 7 reporting points and median
trip durations ranging from 407 s to 552 s, justifying this GPS dataset’s
inherently ’sparse’ and ’imperfect’ nature. Note that we use the ‘raw’
dataset from the Talking Bikes Program without additional refinement
or pre-processing using data augmentation and imputation strategies
(e.g., map-matching techniques as applied in Gao et al. (2024)). The cur-
rent dataset and its derived variables are used as the reference for this
analysis. These data imperfections (i.e., scarcity, irregular sampling) re-
flect real-world data collection variability and partly explain the upper
bound in achievable model performance under real-world data condi-
tions.

3.6. Delay definition (dependent variable)

In the conventional delay analytical approach, three delay types are
distinguished. The delay event contains processes distinct from each
other and has a multidimensional and nonlinear nature. The current
’sparse’ GPS data cannot capture all these details, such as when a cyclist
passes the stop line of a specific arm, which can be used to compute,
e.g., stop delay and approach delay. The VLOG data can only partially
reflect control delay; besides, identifying accurate control delay expe-
rienced by individual travelers for specific movement directions is a
challenging task. In our previous work, we have creatively developed
a method to define the travel time and, thus, the experienced bicycle
delay to compensate for the data incompetency (Yuan et al., 2023).

The experienced delay (as ’DelayTime’) is defined as the differ-
ence between the observed travel time (excluding activity travel time
(Hoogendoorn, 2005; Yuan et al., 2016) and the free-flow (or desired)
travel time for a specific path that follows the trajectory from the up-
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stream arrival location to the downstream departure location at the in-
tersection (e.g., turn left/right or cross straight ahead). The central as-
sumption is that this delay can cover all the delay components experi-
enced by cyclists passing an intersection.

With GPS data’s longitude and latitude coordinates, we can derive
the elapsed time (duration) between a detectable upstream GPS location
and a detectable downstream GPS location of the intersection, consider-
ing the observed travel time of individual rides. These observed travel
times are considered the actual travel times experienced by cyclists for
reference (as the ground truth for estimation models).

The free-flow travel time is calculated as the travel distance be-
tween the upstream and downstream GPS locations divided by a pre-
defined free-flow cycling speed (in this work, the value is set as 4 m/s
- obtained from the literature (Balevski & Lyubenov, 2018; Guo et al.,
2021)). Note that this fixed value provides a standardized reference and
isolates the effect of speed heterogeneity, and thus it may not reflect
variations across different age groups or trip purposes.

Besides, we distinguish these travel time/delay samples according to
their movement directions at intersections (numbered 1 to 12 clockwise;
movements of 1,2,3 are labeled at the right-handed (eastern) side of the
intersection). Given the relatively sparse data samples, we categorize
cycling movements into three main groups: right turns - R (movements
1, 4,7, 10), through-going - T (movements 2, 5, 8, 11), and left turns - L
(movements 3, 6, 9, 12), due to their specific movement features (e.g.,
cyclists turning right do not have to stop).

3.7. Description of the independent variables

The highlighted factors, as shown in Fig. 1, will be included in our es-
timation models, including intersection characteristics (control signals
and detection information per traffic mode from VLOG data (available
for this research), intersection layout, and external factors (weather in-
formation from KNMI and temporal messages). The detailed information
is further elaborated in Table 1. Specifically, the features are further de-
scribed as follows:

» VLOG data

The VLOG data contains data on the control phase of traffic lights
for motorized vehicles, cyclists, pedestrians, buses, and trams. Further-
more, data from several detection sensors (such as inductive loops on
vehicular roads and bicycle lanes, request-green buttons for cyclists and
pedestrians during red) near the intersection is available, see an exam-
ple in Fig. 2. This information is assumed to correlate strongly with
observed delays experienced by cyclists (and our result will prove this
assumption).

In particular, concerning the count information, for a generic appli-
cation, we aggregate all counts (number of times the button was pushed,
number of cable-occupied periods) per mode across all detectable move-
ment directions per output interval. This approach aims to isolate the
heterogeneity inherent in intersection detection configurations. Simi-
larly, we normalize control signal times per mode as model input, specif-
ically by averaging relative green time for all available streams per mode
within each output interval set at 300 s (the same as the default output
interval in the VLOG data). Please note that the count information can
only partially reflect the total traffic demand at intersections, as it may
involve instances of undercounting or double counting. Therefore, cau-
tion should be exercised when interpreting this absolute value.

« Intersection characteristics

Several intersection design features are considered during the ML
model training, such as the number of arms, car lanes, available bike
movement streams, and their corresponding stream numbers using stan-
dard directional codes. Additionally, dummy variables are incorporated
to indicate the presence of tram and bus lanes. For a detailed example,
please refer to the next section.
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» Temporal features

Temporal factors are also assumed to play a role in our analysis, and
we have included three features: weekday number, travel hour, and a
peak hour indicator. Note that the case study comprises a total of 504
trips (Table 2), with the highest number observed on Tuesdays (90 trips)
and the lowest on Saturdays (48 trips), averaging 72 trips per day, with
58 % occurring during peak hours.

» Weather data

We considered precipitation, temperature, and wind variables in our
initial exploration of weather data as a potential determinant for bicycle
delays. We sourced public open weather data from the Royal Nether-
lands Meteorological Institute (KNMI) Data Platform, downloading and
combining the ASCII data files. Upon reviewing the GPS coordinates of
the weather observatories, we selected to include data from several loca-
tions nearest to our specified intersections. These include Voorschoten
(for intersections at The Hague), Schiphol Location 18Ct (Amsterdam),
Rotterdam Location 24t (Rotterdam and Delft), Eindhoven Location A
(Eindhoven), and De Bilt Location A (Utrecht). Numerous weather vari-
ables were recorded in the merged dataset, from which we selected the
most representative predictors potentially related to travel delay, as re-
vealed in Yuan et al. (2023). These include precipitation duration and
intensity, temperature, average, and maximum wind speed, as further
elaborated in Table 1. The weather data provided primarily represents
the real-time conditions observed at the weather stations. While these
readings can be useful in predicting weather conditions at nearby in-
tersections, such interpretations must be cautiously made. This is be-
cause the physical distance between the weather station and a given in-
tersection can introduce discrepancies in the actual weather conditions
present at the intersection. Within the total trips in the case study, gen-
eral descriptive statistics for the five selected predictors are as follows:
precipitation duration (mean = 67.6, std. = 178.8), precipitation inten-
sity (mean = 0.15, std. = 0.77), temperature (mean = 11.4, std. = 5.5),
and average and maximum wind speed (mean = 4.7 and 7.0; std. = 2.9
and 4.4, respectively).

« Correlation analysis

A correlation analysis was conducted to examine potential multi-
collinearity among the independent variables (based on the data in the
case study), see Fig. 3. Overall, most predictors displayed modest cor-
relations, suggesting that they capture distinct aspects of the cycling
and traffic environment. Via this analysis, it is noticed that there ex-
ist high correlations between the average wind speed and max. actual
wind speed (corr. =~ 0.99), as well as bus detection and bus signal dura-
tion — relative green time per interval (corr. ~ 0.87). Both cases reflect
expected operational dependencies in weather data and control signal
data. We intentionally keep the information to avoid information loss.
Multicollinearity is a known issue in linear models, tree-based models
like Random Forest are generally robust to multicollinearity and can ac-
commodate interrelated predictors, as they do not rely on linear coeffi-
cients but instead use recursive binary splits. The observed correlations
deserve caution in result interpretation related to these two variable
pairs.

4. Case study description

This section describes the scenario setup, the configuration of the
estimation models, and the assessment criteria.

Access to the datasets used in this study is highly constrained, as the
Talking Bikes GPS data are available only through the Dutch Ministry
of Transportation, and the VLOG signal control data are not part of any
national database but were obtained only at a local scale. The data from
(only) two busy cycling intersections in Delft (namely, a 4-armed in-
tersection at Westlandseweg — Nieuwe Gracht — ID 1 and a T-junction
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Fig. 2. (a) A random VLOG sample visualized in CuteView software (Interstyles, 2021); (b) Recorded information of a random VLOG sample. Note, control signal
IDs: 02, 08, 26, and 36; detection sensor IDs: 21, 22, 23, 24, 81, 82, 83, 261, 262, 263, and 264.

Table 2

Intersection characteristics and the related data sample size.

#Bike Tram #Trip
ID #Arm #Car lanes Streams Dummy Bus Dummy Record
1 4 12 12 1 332
2 3 4 0 172

Note: # denotes number.

at Jaffalaan — Mekelweg — ID 2) are adopted. See Fig. 4 for a general
impression of the intersection, and Tables 2 and Table 3 for their char-
acteristics. These two intersections daily accommodate huge commuting
cycling flows to the train station and the university (Delft University of
Technology) of Delft, especially in peak hours before lectures start or
after they end.

Both intersections feature no directional restrictions. Consequently,
we can identify 12 movement directions for each of the two intersec-
tions. The municipality provided the corresponding information of traf-
fic controllers at these two intersections as model input.

4.1. Scenario setup

To validate the proposed approaches, two scenarios are designed.

Scenario 1 considers using the data from one intersection (ID 1) (in-
cluding control signals and detection information for cars, bikes, pedes-
trians, trams, and buses). Scenario 1 focuses on the standard 4-armed

signalized intersection; we would like to test our assumption that incor-
porating the VLOG data can enhance the performance of delay estima-
tions. To this end, we need to compare it with the scenario excluding
the VLOG data. Therefore, there are two testing variants.

Scenario 2 adopts the data from two intersections (ID 1 and ID
2) with sacrificed data features to maintain consistency of input vari-
ables between the two intersections (excluding bus/tram signal, bus,
and pedestrian detection). Scenario 2 extends the assessment of the
estimation models’ generalizability to additional intersections (ID2: T-
Junction).

4.2. Model training procedure and parameter setup for the case study

In this study, we first separated the dataset into predictors (X) and the
target variable (y). The predictors, stored in ’X’, encompass all columns
of the data except for '‘DelayTime’. Conversely, 'DelayTime’ was selected
as the target variable and stored in ’y’.
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Fig. 4. Snapshots (top) and top view
plans (bottom) of the intersections at
Westlandseweg-Nieuwe  Gracht (a) and
Jaffalaan-Mekelweg (b) in the city of Delft.

(@ID1 (b)ID2

Several tests of parameter turning have been conducted in this study 5. Results and discussion
after considering the successful applications in the literature. As a result

of this fallacy process of a grid search, the most successful parameters This section begins by providing an overview of the overall perfor-
were found in the models. This paper explicitly reports the optimized mance of the two scenarios, followed by an examination of their re-
parameters for Scenario 1 and Scenario 2, each incorporating weather, spective performance in terms of feature importance and comparison of
temporal, and topology data, as well as the VLOG data, with the detailed delay distributions. Specifically, in scenario 2 which benefits from its
outcomes provided in Table 4. enhanced representativeness, taking into account space limitations, we
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Table 4

Table 3

Overview of VLOG data characteristics for the two intersections.

Artificial Intelligence for Transportation 3—4 (2025) 100037

Int. ID 1 - Westlandseweg —
Nieuwe Gracht

Int. ID2 - Jaffalaan — Mekelweg

Availability # items Availability # items
Car Det. Yes 8 Yes 7
Bike Det. (loop + request) Yes 6+6 Yes 2+2
Ped Det. (request) Yes 16 No 0
Bus/Tram Det. Yes 4 No 0
Car signal Yes 10 Yes 2
Bike signal Yes 6 Yes 1
Ped signal Yes 8 Yes 1
Bus/Tram signal Yes 4 No 0

Note: # denotes number; Det.: detection.

Optimized parameters in the machine learning modeling process for Scenarios 1 and 2 with the VLOG data.

Algorithm Scenario 1 Optimized parameters Scenario 2 Optimized parameters
RF n_estimators: 84 (the number of trees in the forest) n_estimators: 190
criterion: Poisson criterion criterion: Poisson criterion
max_depth: 9 (the maximum depth of the tree) max_depth: 12
min_sample_leaf: 2 (the minimum number of samples required to be min_sample_leaf: 6
at a leaf node) min_samples_split = 1
min_samples_split = 1 (the minimum number of samples required
to split an internal node)
XGBoost n_estimators = 50 (the number of boosting stages to perform) n_estimators = 100
max_depth = 2 (maximum depth of the individual regression max_depth =5
estimators) min_sample_leaf = 4
min_sample_leaf = 1 (the minimum number of samples required to min_samples_split = 2
be at a leaf node) learning rate = 0.01
min_samples_split = 2 (the minimum number of samples required
to split an internal node)
learning rate = 0.1 (the rate shrinks the contribution of each tree)
kNN n_neighbors = 9 (number of neighbors to use by default for k n_neighbors = 9
neighbors queries) p_params: 2 (standard Manhattan distance)
p_params: 2 (standard Euclidean distance) Weights: Distance
Weights: Uniform
SVR Estimator_kernel = ‘rbf’ (the radial basis function) Estimator_kernel = ‘rbf’
Estimator_gamma= ‘scale’ (kernel coefficient) Estimator_gamma= ‘scale’
C =1 (a regularization parameter) c=1
epsilon = 0.1 (a parameter determines the width of the tube around  epsilon = 0.3
the estimated function)
NN hidden_layer sizes: (50,50,50) (the number of neurons in the ith hidden_layer sizes: (50,50,50)

hidden layer)

activation function = ‘tanh’ (the hyperbolic tan function)

solver = ‘sgd’(stochastic gradient descent.)

learning rate = ‘adaptive’ (adaptive learning rate schedule for

weight updates)
alpha = 0.05 (Strength of the L2 regularization term)

activation function = ‘tanh’

solver = ‘sgd’

learning rate = ‘constant’ (constant learning rate schedule
for weight updates)

alpha = 0.0001

Note: RF: random forest; XGBoost: extreme gradient boosting; KNN: K-Nearest Neighbors; SVR: support vector regression; NN: neural

networks.

conduct a detailed SHAP analysis to explore the influence of model fea-
tures. The section concludes with a reflection on the pertinent insights
gleaned for traffic management.

In the previous work (Yuan et al., 2023) employing the same model
set and considering weather data, demographic, complexity, and tem-
poral information (no VLOG data), the R? value of the best-performing
model (the RF model) was approximately 10 % with a 1.092 RMSE score
(log). This result was derived from training the model using data from
18 intersections from 6 representative Dutch cities. The RF model pre-
dicted bicycle delays based on multiple features outperforms the others
due to the advantage of being robust to outliers and non-linear data.
This finding is consistent with the previous application of vehicle delay
estimation in Bagdatli and Dokuz (2021), where both RF and XGBoost
techniques present their superiority. The RF model indicates that the
temperature variable was the most influencing predictor in the training
process (see Fig. 5). Other important features include the turning ty-
pology (‘Stream_Number’), wind variables (‘Wind_Maximum_Speed’ and
‘Wind_Average_Speed’), and temporal features (such as ‘Hour’, ‘Day’,
and ‘Weekday_Number’).

5.1. Overall performance of the two scenarios

Aligned with earlier findings, the RF model is the most effective ma-
chine learning model in our training evaluations across both scenarios.
Table 5 showcases a subset of these results, featuring a benchmark linear
regression model alongside various ML models from Scenario 1, which
utilize a combination of publicly accessible information and VLOG data.

The benchmark LR model performed significantly worse than the ML
models, likely due to its limited capacity to capture non-linear relation-
ships and complex interactions present in the data, as reflected by its
negative testing R?. Interestingly, we observe a case of overfitting for
the training set using the kNN model, which suggests this model is not
a favorite application. This is likely due to the model’s sensitivity to
sparse and noisy GPS-derived features and its severe reliance on local
neighborhoods, which may be misleading in high-dimensional, sparse
and unevenly distributed data. These limitations highlight the advan-
tages of ensemble methods like Random Forest, which demonstrated
more robust generalization under these conditions. Based on these per-
formance metrics, we have chosen the RF model as the best model for
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Table 5
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Training performances of estimation models: Scenario 1 - with VLOG data.

Training (266 samples)

Testing (66 samples)

Estimation models R2 RMSE (log) R2 RMSE (log)
Linear regression (LR) 0.045 1.141 -0.037 1.775
Random forest (RF) 0.777 0.899 0.159 1.599
Gradient boosting trees (XGBoost) 0.428 2.073 0.098 2.742
Support vector regression (SVR) 0.370 2.285 0.020 2.978
K-nearest neighbors (kNN) 0.994 0.019 0.082 2.791
Neural networks (NN) 0.369 2.287 0.017 2.989
Table 6
Random Forest model training and testing performances of two scenarios.
Training Testing
Scenario R? RMSE (log) R? RMSE (log)
Scenario 1 No VLOG 0.730 0.989 0.131 1.625
Scenario 1 VLOG data 0.777 0.899 0.159 1.599
Scenario 2 No VLOG 0.746 0.940 0.239 1.737
Scenario 2 VLOG data 0.741 0.949 0.242 1.734

Temperature
Stream_Number

Hour
Wind_Maximum_Speed
wind_Average_Speed
Population

Day

Intersection_Type
Weekday_Number

Car_Lanes

T

T T T T
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Feature Importance

T
0.02 0.04

Fig. 5. Feature importance (Random Forest algorithm) from the previous work
(Yuan et al., 2023).

further analysis. RF is typically resilient to outliers and can process them
effectively without requiring explicit detection and treatment. Given
the presence of extreme delay values in this dataset, it is plausible that
RF outperforms other models in handling such anomalies. The current
result demonstrates that by incorporating additional intersection con-
troller and detection information, the model performance has increased,
namely the R? value of the RF model can be elevated obviously (com-
pared with a R? value of the RF model of 10 %), even when utilizing
data from just 1 or 2 intersections (compared with the previous case of
18 intersections).

To provide specific scenarios, when using data from a single inter-
section (the 4-armed intersection in Delft), which had relatively limited
total data samples but more comprehensive signal control and demand
detection information for cars, bikes, pedestrians, buses, and trams, the
model’s performance improved regarding model fit and estimation ac-
curacy of bike delay medians (as seen in Table 6).

Similarly, when using data from the two concerned intersections (in
Scenario 2), certain data features in intersection ID 1, such as bus/tram
signals and pedestrian detection information, had to be sacrificed to
maintain data consistency. That means not all the influential features
can be included in the estimation models. However, the interpretabil-
ity of the machine learning model and the accuracy of delay estima-
tion remained consistent in both scenarios. Under realistic data con-
straints (limited sample sizes and inherent noise in the raw data), this
performance provides meaningful approximations of typical delay mag-
nitudes. Although the numerical improvements in RMSE and R? appear
modest in absolute terms, these changes are consistent with typical ef-
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fect sizes in travel behavioral modeling where behavioral variance is
high. These findings suggest that applying this machine learning model
to a broader range of intersection data (with more samples and varying
conditions) can enhance model accuracy and broaden its applicability.

In the comparative analysis of RF model performances across differ-
ent datasets, the study presents an intriguing evaluation of the model’s
ability to predict outcomes when trained with the original data variables
as used in Yuan et al. (2023) versus the case when supplemented with
the VLOG data (see Table 6). The best model results are observed in Sce-
nario 2 with the VLOG data, where it achieves the highest R? (elevated
to 24.2 %) value compared to the other scenarios.

In this study, we explored the efficacy of incorporating additional
VLOG data alongside traditional weather and temporal parameters in
enhancing the predictive capabilities of the RF model. The results, while
nuanced, offer valuable insights into model performance dynamics. Sce-
nario 2’s model, trained with the original data, demonstrated an exem-
plary fit to the training data, achieving an R? of 0.746, signifying a ro-
bust predictive alignment. When extended to the testing phase, although
the R? showed a decrease, the model still maintained a respectable level
of predictive accuracy. Furthermore, including the VLOG data presents
a promising trend of improved (lower) RMSE values, albeit with slight
variations. For instance, the RMSE (log) in Scenario 1 improved from
1.625 to 1.599 with the addition of VLOG data, a statistically signifi-
cant improvement. The disparity between predicted and observed delay
values across the two scenarios was found to be significantly different
based on a paired t-test (p = 0.0021). This enhancement, albeit modest,
underscores the potential of the VLOG data to contribute to the refine-
ment and sophistication of predictive models, highlighting the value of
integrating diverse data streams to capture a more holistic picture of the
variables in the real world and thus to enhance both explanatory power
and interpretability across scenarios. In the following sections, we will
further explore the performance of each scenario.

5.2. Individual performance of delay distribution

To further study the differences in model fit between the two sce-
narios, we dive deeper into the model specification of the best-fitting
models for Scenarios 1 and 2. In Section 5.2, delay distribution of Sce-
nario 1 of one 4-armed intersection and Scenario 2 of combined two
intersections are discussed in more depth.

5.2.1. Delay distribution of Scenario 1

Fig. 6 presents the delay distribution graphs for scenario 1. This
figure illustrates a promising alignment between the predicted and ac-
tual bicycle delay times in Scenario 1. While the model demonstrates
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Observed vs. Predicted Delay Distributions (Training vs Testing)
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Fig. 6. Distribution of the predicted (in blue) and original (in red) delay time,
Scenario 1.

a relatively good central tendency in predicting bicycle delay times,
with training and test set median predictions at 63.89 and 75.32 s, re-
spectively, we must admit that it notably overestimates shorter delays.
This overestimation suggests a divergence from the actual median de-
lay times of 49.00 and 61.00 s, indicating a potential underestimation
of longer delay samples.

A more balanced prediction across the entire range of delay times
is required to make the model applicable. To enhance its applicabil-
ity, we are considering multiple avenues: expanding the dataset to in-
clude more diverse intersection types, refining our delay calculation al-
gorithms, incorporating a more comprehensive range of variables, ex-
ploring advanced modeling techniques, and conducting a temporal and
error analysis. These steps aim to develop a more nuanced understand-
ing of delay distributions and improve the accuracy of our predictions
across the entire spectrum of delay durations.

Fig. 7 further illustrates the performance of a predictive model in es-
timating delay times for bicycles, broken down by movement direction:
right turn (R), straight through (T), and left turn (L). However, a loss
of variance exists, suggesting that our model may not capture the full
range of delay times as disparity exists (to a certain extent) between the
individual predicted and original delays per direction. The comparison
between the predicted and actual median delay times suggests that the
model can generally reflect the delay ranges, with predictions closely
matching the actual medians across all movement directions. For right
turns, the model slightly overestimates the delay, with a predicted me-
dian of 61.82 s compared to an actual median of 45.00 s.

When going straight through, the model’s overestimation is also ob-
served, with predicted and actual medians at 54.51 and 41.00 s, re-
spectively. For left turns, the predicted median is 118.55 s, moderately
deviating from the actual median of 155.00 s. The test set results largely
mirror the training set’s results, indicating the model’s consistency. The
clustering of predicted values around the medians confirms the model’s
capacity to capture the central tendency of delay times for different traf-
fic movements.

However, it becomes evident that the model underestimates the de-
lays for left-turn movements, which implies that the model is partic-
ularly conservative when estimating delays for this movement. Specifi-
cally, the model prediction of 119.94 s is substantially lower than the ob-
served delay of 244.00 s. This underestimation suggests that the model
may not fully capture the efficiency with which cyclists are completing
left turns, perhaps due to more favorable traffic conditions or quicker
identification of safe gaps in traffic than the model anticipates. Adjust-
ments to the model’s assumptions about traffic interactions and cyclist
behavior during left turns may be required to improve its predictive ac-
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curacy. Besides, this can also be attributed to the small sample popula-
tion for this specific movement direction in the testing dataset (about 20
trip records for this 4-arm crossing), leading to this specific chance find-
ing in statistics. It should also be noted that left-turning cyclists typically
face more conflicts with motorized traffic and need to wait for larger
or multiple safe gaps compared with through or right-turning move-
ments, which inherently contributes to higher delays. This behavioral
and infrastructural characteristic, combined with the small sample size,
helps explain the observed underestimation. Further investigation into
the data and refinement of the model’s parameters could provide a more
precise representation of the delays experienced by cyclists, particularly
in the complex and variable scenarios that left turns often present.

5.2.2. Delay distribution of Scenario 2

Fig. 8 presents the predicted and actual bicycle delay times distribu-
tion for Scenario 2, considering a combined dataset from intersections ID
1 and 2. The graph reveals that the model maintains a commendable pre-
diction accuracy despite omitting certain variables like bus/tram signal
and bus/pedestrian detection due to the combination of intersections.
While moderately overestimated, the predicted median delay times are
relatively close to the actual medians across both intersections. For in-
stance, the training set for intersection ID 1 shows a predicted median
delay time of 59.90 s against an actual median of 53.00 s (13.02 %),
and the test results indicate a predicted median of 78.55 s versus an
actual median of 69.00 s (13.84 %). Intersection ID 2’s training results
have a predicted median of 28.86 s, which is a notable overestimation
compared to the actual median of 22.50 s (28.27 % - note, a relatively
large percentage might owe to a relatively small actual delay median).
The test results show a predicted median of 37.64 s against an actual
median of 17.50 s.

The findings indicate that the model captures the central trend of
delay times with a consistent pattern across various scenarios and inter-
section conditions. While conservative, the model’s current estimations
provide a robust framework for estimating delays, ensuring that traf-
fic systems can accommodate fluctuations beyond average conditions.
However, it’s acknowledged that the current level of overestimation may
not be ideal for individual delay predictions. Improvements to the model
could involve recalibrating the estimation process to align more closely
with observed data, potentially integrating real-time traffic updates and
cyclist feedback to refine predictions, particularly to capture the vari-
ance of delay distributions.

To enhance the practical application, we propose a two-fold ap-
proach: short-term application in traffic management as a provisional
tool for planning, with a long-term strategy focusing on iterative model
refinement. The immediate use would be in a strategic capacity, guiding
the development of infrastructure and traffic signal adjustments, where
conservative delay estimates would assist in designing resilient systems.
Concurrently, we recommend an ongoing model improvement process,
incorporating additional data sources (e.g., data from other intersec-
tions and other cities) and applying machine learning techniques to re-
duce prediction errors. This would improve individual delay estimations
and enable the model to adapt to evolving urban landscapes and traffic
patterns.

5.2.3. Delay medians considering all movement directions in Scenario 2

For intersection ID 1 using the testing set, the model estimation per-
formance across all directions is marginally inferior compared to that in
the training set, with the most notable deviation occurring for left turns
where the predicted median (101.96 s) is significantly lower than the
actual median (324.00 s) as shown in Table 7. This suggests a partic-
ular challenge in accurately predicting delays for left-turn movements
at this intersection. Similar to Scenario 1, this can be attributed to the
small sample population for this specific movement, and inherent be-
havioral and infrastructural characteristics for left turners, leading to
this specific chance finding.
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Table 7
Delay medians for all movement directions of intersections 1&2 in Scenario 2.

Right turn (R)

Through going (T)

Left turn (L)

median (s) Predicted Original Sample Predicted Original Sample Predicted Original Sample
ID1 Training 55.95 50.00 65 48.64 43.00 110 157.94 161.00 90
Testing 72.38 45.00 16 60.54 30.00 28 101.96 324.00 23
ID2 Training 21.28 17.00 38 54.11 84.00 37 28.08 22.00 62
Testing 36.02 15.00 10 65.40 48.00 10 35.12 18.00 15

In contrast, for intersection ID 2 (T-junction) using the testing set,
the predicted medians are much closer to the actual values for the three
movement directions compared to the results for intersection ID 1 (4-
armed intersection). Note that we observe a higher delay in through-
going traffic (around 60 s) than the right-/left-turners (around 30 s).
This is because traffic signals are primarily regulated through traffic
(i.e., tidal commuting cycling flow between the university campus and
the station). The training set for intersection ID 2 shows a better per-
formance for the three movements with estimation errors of 25.18 %,
35.58 %, and 27.64 %.

5.3. Interpretation of feature importance

In Section 5.3, the interpretation of the features (independent vari-
ables) for both scenarios (including a SHAP analysis for Scenario 2) are
discussed in more depth.
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5.3.1. Feature importance of Scenario 1

In line with prior studies, our investigation assesses the impact of
various factors on cycling delays (Fig. 9(a)). The temperature variable
emerges as the foremost significant predictor within the RF model, cor-
roborating earlier findings (Yuan et al., 2023). The average green light
duration for cars within five-minute intervals ("Car_signal AVG’) ranks
as the second most pivotal factor influencing cycling delays. The green
light times for trams, buses, bicycles, and bike detection (request-green
button and loop) over the same interval significantly contribute to these
delays. This observation substantiates a close correlation between the
control signal and various delay components, notably stop and control
delays. It is a clear indicator that control signals play a pivotal role in
influencing and reflecting the primary causes of delays at intersections.

Additionally, features such as intersection turning typology
(’Stream_Number’) and temporal elements like 'Weekday_number’ and
"Hour’ are also recognized among the top ten influential factors, consis-
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tent with previous research outcomes. Car appearance detected at the
intersection during the 5-minute interval ("Car_det’) is also found to be
related to the travel delay. Overall, the current study highlights the im-
pact of traffic signals and detection information on bicycle travel delays.
Note that the detailed interpretation of various features will be discussed
for scenario 2 due to its enhanced representativeness.

5.3.2. Feature importance of Scenario 2

In Scenario 2, the RF model’s feature importance graph (Fig. 9(b))
highlights temperature as the most significant predictor in bicycle de-
lay times, reinforcing previous findings from Scenario 1 and emphasiz-
ing the critical impact of weather factors on cycling conditions. Detec-
tion indicators for bicycles ('Bike_det loops’) and cars (’Car_det’) rank
as crucial variables, underscoring the importance of intersection dy-
namics on delay times. This diverges slightly from Scenario 1, where
’Car_signal AVG’ — the average green time for cars — was more promi-
nent. Temporal features, such as the time of day ("Hour’) and day of the
week ("Weekday Number’), remain consistently important across both
scenarios, reflecting the influence of traffic patterns on delays. Com-
pared with scenario 1, the bus signal feature is absent due to data sacri-
fice. Wind speed variables (mean and maximum speeds) fall in signifi-
cance, suggesting that while they affect cycling conditions, their impact
is secondary to temperature and intersection-related factors. The con-
sistent prominence of ’Stream_Number’ across both scenarios indicates
the persistent effect of intersection-turning typology on delays. Overall,
this model illustrates the interplay between weather conditions, traffic
detection, and temporal factors in predicting bicycle delays at urban
intersections.

5.3.3. Feature influence based on SHAP analysis
To gain insights into how different factors affect bicycle delays, we
applied the SHAP (SHapley Additive exPlanations) package. This tool
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ranks the importance of each factor and shows how much each one con-
tributes to the model’s predictions individually. The influence of each
factor is displayed in Fig. 10. The horizontal axis measures the strength
of the impact, and the color signifies the value of the factor. The factors
are listed from the most to the least important, and the dots’ position
to the left or right of the center line indicates whether a factor tends to
increase or decrease the predicted bicycle delays.

5.3.4. Features with significant impact on delay estimation model
« Temperature

The SHAP analysis corroborates prior findings, highlighting temper-
ature as a significant factor influencing cycling delays. Temperature may
serve as a proxy for broader contextual conditions (e.g., weather-related
impacts on riding conditions and cyclist behavior), which collectively
influence delay outcomes. Warmer conditions tend to decrease delays,
whereas colder temperatures, especially those falling below the annual
Dutch average of 11 °C, have been observed to increase this quantity.
This relationship is attributed to the adverse effects of cold weather on
riding conditions and the consequent necessity for cyclists to proceed
with increased caution. The consistency of these findings across studies
emphasizes the critical role of temperature considerations in designing
and managing cycling infrastructure.

* Bicycle request-green button (Bike_det_push)

The plot indicates that cyclists pressing the button to request a green
signal usually experience a reduction in travel delay, as evidenced by a
cluster of mixed-color dots on the left side showing negative SHAP val-
ues. This suggests an adequate response from the traffic signal system to
the manual request, leading to shorter waiting times and, thus, delays.
Conversely, isolated blue dots on the right with positive SHAP values
suggest increased delays when the button is less frequently pressed, pos-
sibly due to non-optimized default signal timings. In other words, if the
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default timing of the traffic lights does not adequately account for the
presence of bicycles, because it is primarily set up to manage vehicu-
lar flow, then cyclists may face longer delays unless they actively use
the button to request a change in the signal. This highlights the impor-
tance of having a traffic signal system that is responsive to the needs
of cyclists, both through manual input (the request-green button) and
through automatic detection and signal adjustment.

« Bicycle loop detection (Bike_det_loops)

The predominance of blue and red dots on the right side with positive
SHAP values reveals that detecting many bicycles often correlates with
increased travel delays. This implies that detecting high bicycle traffic
volumes is often associated with increased delays. Sparse blue dots on
the left with negative SHAP values point to cases where detection with
lighter traffic conditions is related to decreased delays.

« Car detection (Car_det)
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A majority of data points with positive SHAP values indicate that
higher frequencies of car detection are associated with increased bicycle
delays, highlighting a potential congestion issue. The clustering of these
values, especially the red/pink dots, suggests a significant impact of ve-
hicular traffic on cycling delays at intersections. A minority of points
with negative SHAP values suggests that lower volumes of vehicular
traffic can decrease bicycle delays, emphasizing the need for adaptive
signal systems that consider the flow of all commuters (e.g., car and bike
travelers, as revealed by the model).

5.3.5. Features with mild impact on delay estimation model
» Wind speed (Wind_Average_Speed and Wind_Maximum_Speed)

The SHAP analysis from this study, with a smaller sample size,
suggests only a slight influence of wind speed on cycling delays, a
contrast to previous research with larger datasets (18 intersections —
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Yuan et al. 2023) that identified wind as a significant factor in increas-
ing delays. This difference could be attributed to the reduced statistical
power and variability inherent in a smaller dataset (as the two con-
cerned intersections are located in the same city, and thus, the data is
from the same weather station). Although our findings indicate a lesser
impact, they do not negate the potential effects of wind conditions ob-
served in larger-scale studies. Therefore, while wind speed’s contribu-
tion to delay times may appear modest in the current context, it is still an
important consideration in developing and managing cycling infrastruc-
ture, particularly in more comprehensive studies with larger datasets.
Moreover, as we observed a high correlation between the average and
maximum wind speed, the results are interpreted as reflecting the over-
all influence of wind conditions rather than emphasizing one specific
variable.

» Average signal duration (Car_signal AVG, Bike_signal AVG,
PED_signal AVG):

The SHAP summary plot reveals that the average green-time dura-
tions for cars, bikes, and pedestrians have a more centralized cluster
of SHAP values around the midpoint. This suggests a milder influence
of control signals on bicycle delays than variables like car detection,
manual bicycle green request, and bicycle loop detection, which exhibit
more pronounced clusters away from the center. Hence, while signal
timing affects delay, its impact appears less substantial than the pres-
ence of traffic demand and direct bicycle signal requests. Longer aver-
age green signal times for cars are generally linked to increased bicycle
delays, pointing to a vehicle-centric traffic signal approach. Increasing
bicycle signal durations do not consistently show a decrease in delays,
which could indicate complex dynamics at intersections affecting cy-
clists. The pedestrian signal averages display a mixed relationship with
bicycle delays, suggesting a variable impact that could depend on the
particularities of each intersection’s design and signal timing coordina-
tion.

This information holds value for cyclists, traffic planners, and poli-
cymakers alike. For instance, knowing that travel times are associated
with increased delays under certain weather conditions can inform deci-
sions about infrastructure improvements or traffic management strate-
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gies. Understanding the role of traffic demand detection (e.g., car and
bicycle flows) and deploying control facilities smartly (e.g., the request-
green buttons) can help in anticipating on-the-spot delays and formulate
strategies to manage and reduce such delays.

5.4. Discussion of the results

In the complex landscape of intersection dynamics, a profound un-
derstanding of bicycle delays emerges as a key focal point. As bicycles
increasingly become a popular mode of transportation, especially in ur-
ban areas, intersections serve as critical junctures where various modes
intersect, necessitating a thorough comprehension of how bicycle de-
lays impact overall traffic flow and efficiency. While we do not aim
to develop the best accurate estimation model for monitoring individ-
ual bicycle delays at signalized intersections (e.g., minimizing predic-
tion errors for individual delay samples) due to data scarcity and qual-
ity, instead, with the purpose of optimal utilization of the existing data
sources, we show that one of the ML models, the RF model, can estimate
and predict the average magnitude (regarding the central tendency, me-
dian and its distribution) of this crucial variable to an adequate level.
Insights into various influential factors (reflecting weather, temporal
information, topology, and traffic conditions) on bicycle delays from
the estimation model pose great value to cyclists, urban planners, and
policymakers. By closely examining turning maneuvers within intersec-
tions, we gain nuanced insights into the interplay of various traffic flows,
which is especially crucial in a context where bicycle demand at inter-
sections is notably high. This detailed examination allows us to discern
the intricacies of each movement direction, understanding how different
turns contribute to the overall traffic dynamics and how experiencing
delays varies per movement direction. With this knowledge, prioritizing
bicycle traffic becomes a possibility through strategies like introducing
an on-site traffic warning system (via variable message signages), allo-
cating more green time (via intersection controllers), or implementing
dedicated cycle paths (via infrastructure design). However, such adap-
tations may impact other road users, potentially causing delays for cars,
buses, or trams. Policymakers must weigh these considerations against
equity concerns for all road users and align decisions with specific policy
objectives and desired service quality. Our contribution to this decision-
making process lies in unraveling information and key factors on bicy-
cle delays. In addition, the model’s insights can inform the development
of dynamic route guidance tools that provide real-time information to
cyclists based on historical analysis. For example, mobile applications
could be developed to inform cyclists of expected delay times at intersec-
tions, allowing them to choose routes that minimize delays and improve
their commuting experience.

Notably, we admit that there exists observed bias (overestimating
short delays and underestimating longer ones, particularly for left-
turning movements) in the estimation. This reflects a common trade-
off in regression models trained on imbalanced data distributions. In
our case, this is largely due to the under-representation of extreme de-
lay cases in the dataset given data sparsity, and the behavioral com-
plexity of left turns, which involve more conflict points and dynamic
gap-acceptance behaviors than through or right-turn movement. From
a strategic planning perspective, the model provides a reasonable ap-
proximation of average system performance and can identify relative
differences across intersections or time periods. This supports decisions
such as prioritizing infrastructure upgrades or adjusting signal control
strategies at a network level. However, the same bias would be less ap-
propriate for individual-level predictions, where accurate estimation of
extreme values (e.g., very long delays) is critical. In such contexts, un-
derestimating high-delay conditions could lead to under-investment in
locations with more severe issues, whereas overestimating minor delays
may cause overallocation of resources to less critical points. Recognizing
this limitation, we suggest that future work incorporate more balanced
or targeted data collection to better capture the tails of the delay distri-
bution.
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To mitigate and quantify these limitations, several methodological
extensions can be considered. First, rebalancing techniques such as strat-
ified sampling or weighted training could help address data imbalance
across movement types. Second, expanding the dataset to cover more
intersections and longer observation periods would improve represen-
tation of rare, high-delay cases. Third, incorporating additional explana-
tory variables related to intersection geometry, signal phasing, real-time
traffic interactions, or conflicting vehicle flows may improve model sen-
sitivity to left-turn-specific factors. Finally, diagnostic analyses such as
residual error profiling and quantile-based error decomposition could
be applied to explicitly assess and visualize model bias across different
delay ranges and turning typologies. These analyses would allow for
a clearer identification of systematic under- or overestimation patterns
(e.g., for extreme or movement-specific delays) and help guide targeted
model refinement. Together, these efforts would not only strengthen the
credibility of movement-specific findings but also enhance the model’s
applicability in understanding the diversity of cycling delays under real-
world conditions.

Expanding our analytical scope, the integration of the VLOG data
marks a notable advancement compared with our previous work
(Yuan et al., 2023). This additional dataset enriches our understand-
ing and contributes to the refinement of the ML estimation models. The
synergy between the VLOG data (control signals and flow detection)
and the existing information (weather, temporal, and topology data) fa-
cilitates a more comprehensive assessment of intersection (in)efficiency.
This holistic approach allows us to move beyond a generic analysis, con-
sidering specific movements and their impacts on the overall intersec-
tion performance.

One notable outcome of this enriched dataset is improving ML model
fit. The details provided by VLOG data contribute to a more accurate
representation of the complex dynamics (the model fit has doubled in
Scenario 2 (testing case, using two intersections) compared with the
case (of 18 intersections) without harnessing traffic control and detec-
tion information, 24.2 % vs. 10 %). This refinement is particularly ev-
ident in the reduction of prediction errors, signifying a higher preci-
sion in estimating delay magnitudes at local intersections and with a
potential expansion to multiple intersections at a national level. As we
delve into the directional aspects of delays via turning typology, the
data allows us to distinguish between different movement directions
with a level of granularity that was previously challenging to achieve.
This serves as additional images for decision-making. Note that the fi-
nal model fit of 24.2 % indicates that a substantial portion of variance
remains unexplained, such values are typical for urban mobility mod-
els using inherently noisy and heterogeneous data sources such as GPS
traces and signal data. This limitation largely reflects unobserved be-
havioral and contextual factors, including complex traffic interactions,
intersection-specific geometries, and individual cyclist behavior. Note
that the model should be applied cautiously in studies requiring detailed
individual-level behavioral inference. Nevertheless, the model remains
suitable for network-level planning and performance evaluation since
it captures systematic spatiotemporal patterns and relative differences
in bicycle delays across intersections - insights that are highly relevant
for network-level signal optimization, infrastructure prioritization, and
policy formulation.

6. Conclusion

The article enhances the capabilities and generalizability of the bicy-
cle delay estimation model by incorporating control signals and detec-
tion information from signalized intersections. The findings illustrate
the viability of estimating bicycle delays by considering the interplay
among weather conditions, temporal factors, junction topology, and lo-
cal traffic conditions. In particular, we confirm the crucial significance
of temporal and weather variables, as well as turning typology, in an-
ticipating and predicting delays under specific temporal and weather
conditions. Moreover, insights gained from the estimation model under-
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score the impact of factors such as the frequency of request-green button
usage by cyclists, resulting in reduced bicycle delays. Conversely, the
extended average green duration for various modes of transportation,
along with heightened demand for both cars and bicycles, is associated
with increased bicycle delays.

This estimation application and its result should provide sufficient
images for policymakers and cooperating authorities on average bicy-
cle delay at specific intersections, for instance, to determine priority
and function maps for bicycle users (as well as for car users). With this
knowledge, prioritizing bicycle traffic becomes feasible through strate-
gies such as introducing on-site traffic warning systems, allocating ad-
ditional green time, establishing dedicated cycle paths, or developing
dynamic route guidance tools (e.g., mobile apps) for cyclists. However,
it is also crucial for policymakers to consider the potential impact on
other road users and balance these concerns with equity considerations
and desired service quality objectives.

With the availability of additional local traffic controller informa-
tion (more intersection types and thus more samples), expanding the
current estimation model holds the potential to enhance coverage re-
garding intersection types and traffic conditions. This expansion can
lead to improved generalizability and accuracy in application, allow-
ing traffic management measures to be tailored to specific and generic
intersections.

In addition, efforts are needed to achieve a more balanced predic-
tion across the entire range of delay times to enhance the model’s ap-
plicability. This involves refining delay calculation algorithms (e.g., by
selecting appropriate free-flow speed references, by improving trip ge-
olocation accuracy via map-matching), incorporating a more compre-
hensive range of variables, and exploring advanced Al modeling tech-
niques. Particular attention should be given to addressing model bias
in extreme and movement-specific cases, such as the underestimation
of longer delays and left-turn movements, by introducing rebalancing
strategies, expanding datasets, error diagnostic analyses, and incorpo-
rating additional explanatory factors reflecting intersection geometry
and traffic interactions. Additionally, a two-fold approach is proposed:
short-term application in traffic management for planning purposes and
a sustained, long-term strategy focusing on iterative model refinement.
This includes recalibrating the estimation process, integrating real-time
traffic updates and cyclist feedback, and incorporating additional data
sources and machine learning techniques to reduce prediction errors and
adapt to evolving urban landscapes and traffic patterns.

This study’s implications underscore the importance of adaptive traf-
fic systems that account for varied transportation needs and conditions,
ultimately facilitating more efficient urban mobility. Policymakers and
traffic engineers are encouraged to leverage these insights to optimize
traffic flow and enhance safety for all road users.
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