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a b s t r a c t 

Bicycle delay is an important variable to assess the performance of the cycling transportation system, especially 

as an indicator of intersection efficiency. This article estimates a machine learning (ML)-based model for esti- 

mating average bicycle delays at signalized intersections. This study evaluates various ML models with regressor 

features, including random forest, k-nearest neighbor, support vector regression, extreme gradient boosting, and 

neural networks. Sparse GPS cycling data (as reference data) from the Talking Bikes program in the Netherlands 

and the local control signal and flow detection information from the VLOG data provided by a Dutch city are 

adopted to train the ML models. The findings illustrate the viability of estimating bicycle delays by consider- 

ing the interplay among weather conditions, temporal factors, junction topology, and local traffic conditions. 

The estimation model fit using the best-performing model - random forest - has doubled compared to the case 

without such additional traffic information, indicating its improved performance. Insights gained from the esti- 

mation model emphasize the potential of data-driven approaches to inform traffic management, bicycle policy, 

and infrastructure development. 
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. Introduction 

In modern urban mobility, bicycles have experienced a renaissance,

merging as a focal point for daily commutes and strategic urban pol-

cy. This revitalization in cycling has been spurred by the emergence

f e-bikes and the global behavioral shift prompted by the COVID-19

andemic, which has led to a surge in bicycle usage, as documented in

ecent studies ( Younes et al., 2023 ). Bicycles are now heralded in policy

ircles as an eco-friendly replacement for cars, especially for short to

edium-range urban trips. 

This policy shift is evidenced by a trend among metropolitan areas

orldwide to limit car traffic in city centers, aiming to reduce carbon

missions and reclaim space for pedestrians and cyclists. Bicycles are not

nly being integrated as a key component of urban transport networks

ut are also pivotal in bridging the gap in first/last mile connections to

ublic transportation. Fraser and Lock (2010) further suggests that the

ntegration of bicycles into the urban fabric extends beyond environ-

ental benefits, touching on public health and socioeconomic factors

 Fraser & Lock, 2010 ). 

Recognizing these multifaceted advantages, there has been a con-

erted push by governments, including incorporating advanced cycling
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nfrastructure, secure bike parking at transit nodes, and robust promo-

ional initiatives advocating for cycling. Such strategic investments and

ampaigns are increasingly recognized for their potential to significantly

levate cycling as a preferred mode of transportation, as exemplified by

he progressive policies and infrastructure in places like the Netherlands,

hich has become a global benchmark for cycling integration. Besides,

istorically car-oriented cities, like Washington D.C., the US, and Frank-

urt am Main, Germany, successfully increased bicycle trip shares from

he late 1990s to 2018 through strategic bike planning and policy imple-

entation, demonstrating that even car-centric urban areas can promote

ycling effectively ( Buehler et al., 2021 ). 

Bicycle-friendly cities are victims of their success. Unfortunately, our

nderstanding of bicycle flow remains in its infancy compared with the

even decades of research and data collection on car-centric networks,

hich hinders the smooth integration of cycling into urban spaces in a

afe and sustainable manner. Increasing cycling demand poses pressure

n entire city networks. Ensuring precise determination of average de-

ays, travel times, and stops for all road users, including vehicles, bikes,

nd pedestrians, is paramount in effectively managing signalized inter-

ections at local and network levels ( Bagdatli & Dokuz, 2021 ). Particu-

arly, understanding delays has tangible implications for cyclists’ daily
 Wang) . 
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Declarations 

List of abbreviations 

AI Artificial intelligence 

Det Detection 

KNMI Royal Netherlands Meteorological Institute 

LR Linear regression 

KNN K-nearest neighbor 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MSE Mean Square Error 

ML Machine learning 

NN Neural networks 

RF Random forest 

RMSE Root Mean Square Error 

SHAP Shapley Additive explanations 

SVR Support vector regression 

XGBOOST Extreme gradient boosting 

ives. Excessive or unpredictable delays can discourage cycling for com-

uting, increase the likelihood of red-light running ( Yang et al., 2012 ),

nd reduce overall travel time reliability. Such effects impact both com-

uters and recreational cyclists, influencing route choice, safety, and

ltimately the attractiveness of cycling as a sustainable mode of trans-

ort as when delays are perceived as too long, cycling becomes a less

ppealing choice ( Ton et al., 2017 ). Therefore, accurately quantifying

icycle delay is essential not only for traffic signal optimization but also

or supporting broader goals of cycling promotion, urban livability, and

ustainable mobility. 

While field studies are a conventional means to gather this infor-

ation, they can prove costly and time-consuming. Analytical meth-

ds, commonly employed for estimating delays, often struggle to gen-

rate accurate results, especially in scenarios of oversaturated traffic

ow ( Bagdatli & Dokuz, 2021 ). Alternative approaches are wanted that

an provide more dependable and efficient estimates with minimal ef-

ort. Recently, delay estimation models based on artificial intelligence

AI) have been introduced in the literature to estimate delay more accu-

ately and to simplify the relations amongst complex, influential factors

o infer this crucial quantity. However, these applications have primar-

ly focused on vehicular traffic ( Bagdatli & Dokuz, 2021 ; Cheng et al.,

016 ). Cyclist and car traffic behavior are quite different, hampering the

ransferability of traffic algorithms initially developed for road traffic

anagement. In addition, cyclist trips are underreported in most travel

urveys or monitoring systems, which makes estimating bicycle demand

nd delay even more challenging due to limited cycling data quantity

nd quality. 

Besides, the feed data for traffic state estimation models ranges from

amera reading (automatic image processing or manual counting) to

PS data (either from a smartphone GPS module or from on-bike track-

rs/Apps). The former data source might provide the ground truth in-

ormation, but the data extraction process is time-consuming and com-

lex; the latter one might only provide a subset of the total traveler

opulation ( Yang et al., 2016 ). As an example, the Talking Bikes pro-

ram ( Mobiliteits-Platform, 2020 ) has been operational in recent years

n the Netherlands, collecting GPS data and simultaneously integrat-

ng it with the broader “Talking Traffic ” initiative. The outcome of the

alking Bikes program is a comprehensive dataset of GPS cycling data

from Apps or bike trackers), with over one million bicycle trips per

ear geographically distributed across the Netherlands. While the over-

ll dataset size is substantial, it is worth noting that the distribution of

rips at specific intersections may be limited, next to its data scarcity

eatures regarding reporting frequency and duration. 

Moreover, analytical estimation models require site-specific traffic

ontrol factors and demand information. This data category from sig-
2

alized intersections is, for instance, in the Netherlands, available in

he form of the VLOG format ( Vialis, 2020 ). Note that this data is not

enerally available in a national database but might be available at a

ocal scale. The VLOG data contains data on the control phase of traf-

c lights for motorized vehicles, cyclists, pedestrians, buses, and trams.

urthermore, data from several detection sensors (such as inductive

oops/cables on vehicular roads, bicycle paths, and dedicated bus/tram

anes, request-green buttons for cyclists and pedestrians) near the in-

ersection is available. This information is deemed to possess a close

orrelation with bicycle delays. 

In this work, we develop and test a machine learning-based frame-

ork for identifying average bicycle delays at signalized intersections,

sing the relatively sparse GPS cycling data from the Talking Bikes pro-

ram, the local control signal and flow detection information from VLOG

ata provided by the municipality of Delft, the Netherlands, and other

ontextual variables such as weather and temporal features. The pro-

osed estimation model directly addresses the challenge of limited cy-

ling data quantity and quality, demonstrating that meaningful delay

atterns can still be captured under realistic data constraints. Its out-

omes provide actionable insights for both signal optimization, traffic

anagement and broader cycling policy. Compared with the authors’

revious work, this work enhances the capabilities and generalizabil-

ty of the bicycle delay estimation model by incorporating newly added

LOG traffic control data, thereby offering a more robust and transfer-

ble modeling approach. 

The remainder of this paper is organized into five sections.

ection 2 presents the related work for data-driven bicycle delay es-

imation methods for signalized intersections. Section 3 elaborates on

he research methodology, including the conceptual framework and an

ntroduction to the model approaches. This is followed by Section 4 ,

hich describes the case studies for estimating bicycle delays at signal-

zed intersections. Section 5 presents the modeling results and discusses

o what extent the case study validates the proposed concept. Finally,

ection 6 concludes the paper with a summary of the main findings and

ome recommendations. 

. Related work to capture traffic delays 

Many studies have investigated vehicle delays at signalized intersec-

ions ( Bagdatli & Dokuz, 2021 ; Cheng et al., 2016 ). Vehicles experience

hree types of delay at signalized intersections: control delay, stop delay,

nd approach delay. Control delay is expressed as the total delay caused

y the intersection control, including deceleration, stop, and accelera-

ion delay. Stop delay is defined as the duration in seconds that traffic

sers are forced to stop at an intersection. Approach delay occurs from

 predefined upstream point to the intersection stop line. This defini-

ion and concept are commonly employed in describing vehicle delays

 Cheng et al., 2016 ), and we posit that a similar framework applies to

icycle traffic. 

Only a limited number of studies have concentrated on cycling de-

ays at signalized intersections, whether wholly or partially. These stud-

es primarily depend on analytical methods to deduce observed delays

ased on bicycle trajectories. For instance, Velthuijsen (2020) directly

alculated and estimated bike delays from smartphone GPS data in

 Dutch city based on fundamental physics law ( Velthuijsen, 2020 ).

his study considers three scenarios of defining reference speed val-

es (as the ‘free-flow’ speed). Similarly, Rupi et al. (2020) and

oliziani et al. (2022) inferred bicycle waiting times (including delays)

ased on a predefined threshold speed, using relatively rich GPS traces

t a city scale in Italy ( Poliziani et al., 2022 ; Rupi et al., 2020 ). The

ovelty of these studies lies in a pre-processed map-matching operation

o enhance estimation accuracy. Gillis et al. (2020) measured bike de-

ays at signalized intersections by interpolation between GPS locations

efore and after the intersections ( Gillis et al., 2020 ), relying on data

rom the Bike Count Week in Belgium ( Lancering Nationale FietsTel-

eek 2015 , 2015 ). A similar approach to deriving delay times can be
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Fig. 1. Conceptual framework of bicycle delays at signalized intersections. The highlighted influential variables are included as the independent variables in this 

work. 
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ound in studies in Canada ( Strauss & Miranda-Moreno, 2017 ) and Swe-

en ( Kircher et al., 2018 ). However, these studies did not develop spe-

ific estimation models to capture and reproduce typical delay patterns.

Yuan et al. (2019) developed a linear regression model to esti-

ate the start-up lost time as part of approach delay (which is used to

alculate bicycle flow capacity at intersections) from empirical trajec-

ory data derived from cameras at a specific intersection in Amsterdam

 Yuan et al., 2019 ). Few attempts have been made to utilize ML models

or bicycle delay estimation and inference. Reggiani et al. (2020) suc-

essfully employed a neural network model to estimate individual cy-

list travel times, considering various scenarios, including approach

elay, stop delay, and/or control delay ( Reggiani et al., 2020 ). Their

tudy utilized data from cameras, loop detectors, and control signals

n a Dutch city-Utrecht. Previous work mainly applies a single model.

uan et al. (2023) have demonstrated the feasibility of estimating bicy-

le delays via multiple ML models using only sparse GPS cycling data

nd publicly accessible information, leveraging the burden of under-

tanding local traffic conditions ( Yuan et al., 2023 ). The work shows

hat understanding the role of temporal/ weather variables and turning

ypology can help in planning for expected/predicted delays during cer-

ain times/conditions and can inform strategies to manage and reduce

uch delays at specific intersections or on a national level. While ML

as shown considerable promise in improving traffic state estimation,

ts utilization for bicycle delay estimation is still rare, particularly in

ituations where sparse GPS data and traffic controller information are

oth involved. This study aims to address this research gap. 

. Methodology for bicycle delay estimation 

This section presents the research methodology that enables us to

stimate the bicycle delay at a signalized intersection. This section first

escribes the modeling conceptual framework. It is followed with a pre-

entation of the set of mathematical models used to capture the intersec-

ion delay, the training procedure and the performance. Accordingly, a

escription of the datasets is provided, including the definition of both

he dependent and independent variables. 

.1. Conceptual framework to capture bicycle delay 

We have developed a conceptual modeling framework of all the most

elevant factors based on findings in the literature and authors’ assump-

ions ( Yuan et al., 2023 ) to explain bicycle delays at intersections, as

hown in Fig. 1 . Four categories are identified: characteristics of indi-

idual travelers, intersection characteristics, traffic flow conditions, and
3

xternal factors. In the context of this work, the characteristics of inter-

ections are identified as an important attribute. The geometry design,

ayout, pavement, and visibility will influence how cyclists interact with

ther road users and the environment. The controller scheme (e.g., sig-

als, logic, priority rules) contributes the most to the stop and control

elays at signalized intersections. Besides, the local traffic conditions

eed to be considered, such as the demand and queue length of various

ransport modes, saturated or oversaturated, because the control signals

ay assign more green times to the mode with priorities. 

In this article, we extend our previous work ( Yuan et al., 2023 ) by ad-

itionally including local control signals and traffic count information to

nhance estimation capability. Local control signals provide detailed in-

ormation about signal timings and phase sequences specific to each in-

ersection. Count information includes the number of bicycles and other

oad users passing through the intersection. Incorporating this data is

ssumed to enhance the performance of delay estimations. Therefore,

he underlying datasets include sparse GPS cycling data, meteorologi-

al data, temporal information, intersection topology, turning typology,

nd newly added intersection control signal and count information. It

hould be emphasized that our primary goal is not to develop the most

recise estimation model for real-time monitoring of bicycle delays on

 per-movement basis at signalized intersections. Instead, our focus is

n optimizing the utilization of existing data sources, considering their

uality and capabilities, to extract valuable insights for traffic manage-

ent. 

.2. Mathematical model description 

This work will apply the same set of ML estimation models as in

uan et al. (2023) , ranging from simple linear regression (one of the

ost popular econometric models) to sophisticated machine-learning

pproaches. Based on the characteristics of the dataset variables, we ini-

ially selected five widely recognized machine learning models equipped

ith regression capabilities to address the problem at hand. These in-

lude random forest (RF), k-nearest neighbor (kNN), support vector re-

ression (SVR), extreme gradient boosting (XGBoost), and neural net-

orks (NN). Note that the five chosen ML models have indicated their

alidity for vehicle delay estimation to capture temporal trends and

hysical processes ( Bagdatli & Dokuz, 2021 ; Cheng et al., 2016 ). How-

ver, they have not yet been widely applied in the literature for bicycle

raffic state estimation at signalized intersections. 

• Random Forest (RF) 

Random Forest stands out as a multi-faceted machine learning tech-

ique adept at both regression and classification tasks ( Biau & Scor-
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et, 2016 ). This method harnesses the power of ensemble learning,

here a collection of simple models, or "weak learners," are united to

reate a strong, more predictive model. This approach is particularly

uitable for delay prediction due to its ability to handle many input

ariables and its robustness to outliers, which is typical in urban cycling

ata. It can effectively capture the non-linear and complex interactions

etween various factors influencing bicycle delays. 

• k-Nearest Neighbors (kNN) 

The k-Nearest Neighbors algorithm operates on a principle of prox-

mity, making it an intuitively simple yet effective method for classifi-

ation and regression ( Leif, 2009 ). It assigns outputs based on the pre-

ominant outcome or the mean of the ’k’ closest instances in the training

ata. This proximity is quantified using distance metrics such as the Eu-

lidean or Manhattan distance, providing a straightforward mechanism

or pattern recognition. This algorithm relying on proximity could be

elpful in modeling delays, which can be highly localized and influ-

nced by nearby traffic conditions. Its simplicity also allows for quick

djustments to the model as new data becomes available. 

• Support Vector Regression (SVR) 

Support Vector Regression, a regression-focused offshoot of Support

ector Machines (SVM), tackles both linear and nonlinear regression

asks ( Smola & Schölkopf, 2004 ). SVR operates by mapping data to a

igher-dimensional feature space and determining the optimal hyper-

lane that remains within a predefined error margin, effectively balanc-

ng the model’s complexity with its predictive prowess. The capacity to

nd a hyperplane that best fits the data makes it a good choice for de-

ay estimation, where the goal is to predict continuous delay times. It is

dept at managing the complexities of urban traffic data and can handle

on-linear patterns effectively. 

• Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting is renowned for being a potent and fast

achine learning algorithm, particularly in regression and classifica-

ion domains ( Chen & Carlos, 2016 ). It refines the concept of gradient

oosting by optimizing existing models and incrementally reducing er-

ors through its ’weak learners.’ This results in a highly performant and

calable model that is a favorite among data scientists for its efficacy.

GBoost is suitable due to its high performance and speed, which are es-

ential in processing and analyzing large volumes of cycling data in real

ime. Its ability to do feature engineering autonomously helps identify

he most significant factors affecting bicycle delays. 

• Neural Networks (NN) 

Neural Networks, inspired by the neural structures of the brain,

xcel in detecting patterns and processing complex sensory data

 Goodfellow et al., 2016 ). These networks adeptly categorize or cluster

nputs, undergoing training to discern complex patterns and output pre-

ictions or decisions that mimic human cognitive processes. They are

specially powerful in situations where the input variables are tightly

inked to the predicted outcomes, making them invaluable tools in the

achine learning field. Thanks to their deep learning capabilities, NNs

re well-suited for capturing the intricate relationships within cycling

ata. They can model the complex interactions of traffic dynamics that

raditional models might miss, thus providing a more accurate predic-

ion of bicycle delays. 

.3. Model training procedure 

The predictors (independent variables) are stored in ’X’, while the

arget dependent variable is stored in ’y’. To divide the data into training

80 %) and testing (20 %) subsets, we employed a stratified sampling

echnique, using intersection identifier (’Intersection_ID’ in Table 1 ) as
4

he stratification criterion to ensure a proportional representation of all

ntersections across both datasets. Consequently, each dataset reflects a

alanced cross-section of intersections. 

We developed a bicycle delay estimation model, employing multi-

ariate linear regression as the benchmark due to its simplicity and inter-

retability. The model was trained using a designated training dataset,

nd we investigated the relevance of various features to travel delays

y analyzing their respective P-values. The other five ML models were

uned and trained using a grid search strategy in combination with the

-fold cross-validation. Gird search can ensure clarity and transparency

n hyperparameter tuning, though this method can be computationally

xpensive. More advanced approaches such as ‘Hyperopt’ or random-

zed search could improve efficiency, and we intend to explore these

n future work with larger datasets. Cross-validation is a robust statis-

ical technique that helps prevent model overfitting by partitioning the

ata into subsets, training the model on a subset, and then validating

t on the remaining data (in this case – 5 folds are created, the method

rains and evaluates the model 5 times, picking a different fold (20 %)

or evaluation every time and training on the other 4 folds (80 %)).

-fold cross-validation is commonly used because it strikes a balance

etween providing a stable estimate of model performance and main-

aining computational efficiency, unlike lower values of folds that may

ield more variable results and higher values that require more compu-

ational resources ( Brownlee, 2020 ). This approach ensures the model’s

eneralization ability, enhancing its predictive performance on unseen

atasets, thus strengthening the reliability and credibility of the study

 Aurélien, 2019 ). Considering our dataset’s extensive temporal range (of

ver two years), we anticipate that the randomly constituted training

ets will encompass a comprehensive array of the characteristics (both

n space and time) in the overall sample population. 

This systematic exploration and evaluation of numerous hyperpa-

ameter combinations aimed to optimize the predictive performance of

he models. The best scores achieved from the grid search, a machine

earning technique that methodically works through multiple combina-

ions of parameter tunes, cross-validating as it goes to determine which

une gives the best performance, are reported in the subsequent sec-

ion corresponding to the lowest error rates. Note that all the estimation

odels were written and interpreted in Python using the ‘scikit-learning’

ackage. (see: https://scikit-learn.org/stable/user_guide.html , accessed

n 1 Jan, 2024). 

.4. Model performance indicators 

In the evaluation of the estimation models, two key performance in-

icators, R-squared (R2 ) and Root Mean Square Error (RMSE), are em-

loyed to assess the model’s predictive accuracy and reliability for both

raining and testing sets. The R-squared metric, also known as the co-

fficient of determination, quantifies the proportion of the variance in

he dependent variable (bicycle delay) that is predictable from the inde-

endent variables. This metric measures how well-observed outcomes

re replicated by the model based on the proportion of total variation of

utcomes explained by the model. A higher R2 indicates that the model’s

stimation aligns more closely with the observed data, signifying a more

ccurate model. 

RMSE, on the other hand, measures the average magnitude of the

rediction error, i.e., the differences between the predicted and ob-

erved values. It quantifies the model’s predictive error, which is di-

ectly linked to the concept of reliability. A smaller RMSE indicates a

odel that reliably produces less error, implying better reliability. Fur-

hermore, because RMSE penalizes larger errors more severely, models

hat minimize RMSE are especially desirable when large prediction er-

ors are particularly problematic. In contrast, metrics like MAE (Mean

bsolute Error) would provide less significant penalization for larger er-

ors; MSE (Mean Square Error) does not provide the intuitive scale as

MSE does; MAPE (Mean Absolute Percentage Error) can heavily pe-

alize minor deviations when the actual values are low, which is not

https://scikit-learn.org/stable/user_guide.html
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Table 1 

Overview of influential variables used in the machine learning models. 

Predictors Data type Details 

Example data 

entry 

Intersection identifier Intersection_ID Integer Intersection index 1 

Weather conditions Precipitation_Duration Integer Duration of precipitation in s over 10 min 600 

Precipitation_Intensity Decimal Precipitation intensity over 10 min (mm/h) 2.41 

Temperature Decimal Average air temperature in °C over 10 min 13.30 

Wind_Average_Speed Decimal Average wind speed in m/s over 10 min 8.47 

Wind_Maximum_Speed Decimal Max. actual wind speed in m/s over 10 min 12.43 

Temporal features Weekday_Number Integer Day of the week of the travel record (with 1 denoting Sunday, 2 

denoting Monday, and so forth until 7 [Saturday]) 

1 

Hour Integer Hour of the day of the travel record 13 

Peak_Dummy Dummy Peak hour indicator (1: peak for the period between 7:00 and 

19:00; 0: otherwise) 

1 

Control signal VLOG data Car detection Integer Summation of all car counts (signal pulses) for all detectable 

directions per interval (5 mins) 

20 

Bus/Tram detection Integer Summation of all bus/tram counts (signal pulses) for all detectable 

directions per interval (5 mins) 

10 

Bike detection (request-green 

button and loop detection) 

Integer Summation of all bike counts (push frequency, and signal pulses) 

for all detectable directions per interval (5 mins) 

10 

Pedestrian detection 

(request-green button) 

Integer Summation of all pedestrian counts (pulses) for all detectable 

directions per interval (5 mins) 

10 

Car signal duration Decimal Relative green time per interval (5 min = 300 s) 0.15 

Bus signal duration Decimal Relative green time per interval (5 min = 300 s) 0.15 

Bike signal duration Decimal Relative green time per interval (5 min = 300 s) 0.15 

Pedestrian signal duration Decimal Relative green time per interval (5 min = 300 s) 0.15 

Intersection 

characteristics 

Stream_No. Integer Standard index of bike flow movements at intersections (1, 2, 3, …, 

12) 

2 

Arms Integer Total No. of arms 4 

Car_Lanes Integer Total No. of car lanes 12 

Bike_Streams Integer Total No. of bike streams 12 

Tram_Dummy Dummy The presence of the tram line (1: presence) 1 

Bus_Dummy Dummy The presence of the bus lane (1: presence) 0 
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deal for our application. Therefore, they are not selected as error indi-

ators. This study applied a log transformation (the natural logarithm

f one plus the input array) to improve the model’s performance to the

elay outcome variable. This transformation serves to temper the influ-

nce of extremely high values, resulting in a more symmetrical distri-

ution and, thus, more amenable to modeling ( West, 2021 ). However,

ue to this transformation, interpreting the R-squared and RMSE val-

es should be cautiously approached as they now represent relation-

hips in the log scale ( West, 2021 ). Additionally, to assess the statisti-

al significance of performance improvements across scenarios, a paired

 -test was conducted on the prediction errors using the same training

r testing datasets. We tested the prediction errors across scenarios us-

ng the paired t -test, confirming the statistical significance of the differ-

nce/improvement. 

A comparative analysis of the distribution of the predicted and origi-

al delays was conducted using the testing set to assess the model perfor-

ance further. This involved visualizing the distributions of both data

ets to observe any differences or similarities. Given the significant right-

kewed distribution of the data, the median was chosen as a more robust

easure of central tendency compared to the mean. Therefore, the me-

ians were compared to provide a more accurate representation of the

entral location of the data. This approach helps to mitigate the influ-

nce of outliers and provides a more reliable comparison between the

redicted and actual values for average delays and specific delays per

ovement direction. 

.5. Description of the GPS dataset 

The collected GPS cycling data records changes in locations and

ime instances without differentiation based on individual transporta-

ion modes or motives which is in line with General Data Protection Reg-

lation (GDPR) in Europe. The trip samples encompass cyclists utilizing

ike Apps (such as Ring-Ring ( Mobiliteits-Platform, 2020 )), shared bike

sers, or company bike users (via bike trackers like Tracefy ( Mobiliteits-

latform, 2020 )), amounting to approximately 3 million bicycle rides
5

ithout sociodemographic detail across the country within a two-year

pan. While the dataset’s overall size is considerable, it is essential to

cknowledge that the distribution of trips at specific intersections over

wo years may be limited. On average, there are around 4000 collected

aily trips distributed across the country. The sampling rate varies by

rip and data record due to occasional connectivity loss, ranging from

 s to 30 s with a median data density of 7 reporting points and median

rip durations ranging from 407 s to 552 s, justifying this GPS dataset’s

nherently ’sparse’ and ’imperfect’ nature. Note that we use the ‘raw’

ataset from the Talking Bikes Program without additional refinement

r pre-processing using data augmentation and imputation strategies

e.g., map-matching techniques as applied in Gao et al. (2024) ). The cur-

ent dataset and its derived variables are used as the reference for this

nalysis. These data imperfections (i.e., scarcity, irregular sampling) re-

ect real-world data collection variability and partly explain the upper

ound in achievable model performance under real-world data condi-

ions. 

.6. Delay definition (dependent variable) 

In the conventional delay analytical approach, three delay types are

istinguished. The delay event contains processes distinct from each

ther and has a multidimensional and nonlinear nature. The current

sparse’ GPS data cannot capture all these details, such as when a cyclist

asses the stop line of a specific arm, which can be used to compute,

.g., stop delay and approach delay. The VLOG data can only partially

eflect control delay; besides, identifying accurate control delay expe-

ienced by individual travelers for specific movement directions is a

hallenging task. In our previous work, we have creatively developed

 method to define the travel time and, thus, the experienced bicycle

elay to compensate for the data incompetency ( Yuan et al., 2023 ). 

The experienced delay (as ’DelayTime’) is defined as the differ-

nce between the observed travel time (excluding activity travel time

 Hoogendoorn, 2005 ; Yuan et al., 2016 ) and the free-flow (or desired)

ravel time for a specific path that follows the trajectory from the up-



Y. Yuan, K. Wang, D. Duives et al. Artificial Intelligence for Transportation 3–4 (2025) 100037

s  

t  

s  

e

 

t  

a  

i  

t  

r

 

t  

d  

-  

2  

i  

v

 

t  

m  

i  

c  

1  

(  

c

3

 

t  

a  

f  

f  

i  

s

 

f  

m  

v  

p  

p  

o  

a

 

c  

n  

m  

h  

l  

i  

w  

i  

o  

i  

t

 

m  

m  

d  

t  

p

 

w  

p  

t  

a  

5

 

i  

d  

l  

c  

t  

t  

(  

R  

(  

a  

m  

v  

i  

e  

t  

r  

t  

c  

t  

p  

e  

p  

s  

a  

a

 

c  

c  

r  

a  

i  

w  

t  

e  

d  

M  

l  

c  

c  

d  

p

4

 

e

 

T  

o  

n  

(  

t  
tream arrival location to the downstream departure location at the in-

ersection (e.g., turn left/right or cross straight ahead). The central as-

umption is that this delay can cover all the delay components experi-

nced by cyclists passing an intersection. 

With GPS data’s longitude and latitude coordinates, we can derive

he elapsed time (duration) between a detectable upstream GPS location

nd a detectable downstream GPS location of the intersection, consider-

ng the observed travel time of individual rides. These observed travel

imes are considered the actual travel times experienced by cyclists for

eference (as the ground truth for estimation models). 

The free-flow travel time is calculated as the travel distance be-

ween the upstream and downstream GPS locations divided by a pre-

efined free-flow cycling speed (in this work, the value is set as 4 m/s

 obtained from the literature ( Balevski & Lyubenov, 2018 ; Guo et al.,

021 )). Note that this fixed value provides a standardized reference and

solates the effect of speed heterogeneity, and thus it may not reflect

ariations across different age groups or trip purposes. 

Besides, we distinguish these travel time/delay samples according to

heir movement directions at intersections (numbered 1 to 12 clockwise;

ovements of 1,2,3 are labeled at the right-handed (eastern) side of the

ntersection). Given the relatively sparse data samples, we categorize

ycling movements into three main groups: right turns - R (movements

, 4, 7, 10), through-going - T (movements 2, 5, 8, 11), and left turns - L

movements 3, 6, 9, 12), due to their specific movement features (e.g.,

yclists turning right do not have to stop). 

.7. Description of the independent variables 

The highlighted factors, as shown in Fig. 1 , will be included in our es-

imation models, including intersection characteristics (control signals

nd detection information per traffic mode from VLOG data (available

or this research), intersection layout, and external factors (weather in-

ormation from KNMI and temporal messages). The detailed information

s further elaborated in Table 1 . Specifically, the features are further de-

cribed as follows: 

• VLOG data 

The VLOG data contains data on the control phase of traffic lights

or motorized vehicles, cyclists, pedestrians, buses, and trams. Further-

ore, data from several detection sensors (such as inductive loops on

ehicular roads and bicycle lanes, request-green buttons for cyclists and

edestrians during red) near the intersection is available, see an exam-

le in Fig. 2 . This information is assumed to correlate strongly with

bserved delays experienced by cyclists (and our result will prove this

ssumption). 

In particular, concerning the count information, for a generic appli-

ation, we aggregate all counts (number of times the button was pushed,

umber of cable-occupied periods) per mode across all detectable move-

ent directions per output interval. This approach aims to isolate the

eterogeneity inherent in intersection detection configurations. Simi-

arly, we normalize control signal times per mode as model input, specif-

cally by averaging relative green time for all available streams per mode

ithin each output interval set at 300 s (the same as the default output

nterval in the VLOG data). Please note that the count information can

nly partially reflect the total traffic demand at intersections, as it may

nvolve instances of undercounting or double counting. Therefore, cau-

ion should be exercised when interpreting this absolute value. 

• Intersection characteristics 

Several intersection design features are considered during the ML

odel training, such as the number of arms, car lanes, available bike

ovement streams, and their corresponding stream numbers using stan-

ard directional codes. Additionally, dummy variables are incorporated

o indicate the presence of tram and bus lanes. For a detailed example,

lease refer to the next section. 
6

• Temporal features 

Temporal factors are also assumed to play a role in our analysis, and

e have included three features: weekday number, travel hour, and a

eak hour indicator. Note that the case study comprises a total of 504

rips ( Table 2 ), with the highest number observed on Tuesdays (90 trips)

nd the lowest on Saturdays (48 trips), averaging 72 trips per day, with

8 % occurring during peak hours. 

• Weather data 

We considered precipitation, temperature, and wind variables in our

nitial exploration of weather data as a potential determinant for bicycle

elays. We sourced public open weather data from the Royal Nether-

ands Meteorological Institute (KNMI) Data Platform, downloading and

ombining the ASCII data files. Upon reviewing the GPS coordinates of

he weather observatories, we selected to include data from several loca-

ions nearest to our specified intersections. These include Voorschoten

for intersections at The Hague), Schiphol Location 18Ct (Amsterdam),

otterdam Location 24t (Rotterdam and Delft), Eindhoven Location A

Eindhoven), and De Bilt Location A (Utrecht). Numerous weather vari-

bles were recorded in the merged dataset, from which we selected the

ost representative predictors potentially related to travel delay, as re-

ealed in Yuan et al. (2023) . These include precipitation duration and

ntensity, temperature, average, and maximum wind speed, as further

laborated in Table 1 . The weather data provided primarily represents

he real-time conditions observed at the weather stations. While these

eadings can be useful in predicting weather conditions at nearby in-

ersections, such interpretations must be cautiously made. This is be-

ause the physical distance between the weather station and a given in-

ersection can introduce discrepancies in the actual weather conditions

resent at the intersection. Within the total trips in the case study, gen-

ral descriptive statistics for the five selected predictors are as follows:

recipitation duration (mean = 67.6, std. = 178.8), precipitation inten-

ity (mean = 0.15, std. = 0.77), temperature (mean = 11.4, std. = 5.5),

nd average and maximum wind speed (mean = 4.7 and 7.0; std. = 2.9

nd 4.4, respectively). 

• Correlation analysis 

A correlation analysis was conducted to examine potential multi-

ollinearity among the independent variables (based on the data in the

ase study), see Fig. 3 . Overall, most predictors displayed modest cor-

elations, suggesting that they capture distinct aspects of the cycling

nd traffic environment. Via this analysis, it is noticed that there ex-

st high correlations between the average wind speed and max. actual

ind speed (corr. ≈ 0.99), as well as bus detection and bus signal dura-

ion – relative green time per interval (corr. ≈ 0.87). Both cases reflect

xpected operational dependencies in weather data and control signal

ata. We intentionally keep the information to avoid information loss.

ulticollinearity is a known issue in linear models, tree-based models

ike Random Forest are generally robust to multicollinearity and can ac-

ommodate interrelated predictors, as they do not rely on linear coeffi-

ients but instead use recursive binary splits. The observed correlations

eserve caution in result interpretation related to these two variable

airs. 

. Case study description 

This section describes the scenario setup, the configuration of the

stimation models, and the assessment criteria. 

Access to the datasets used in this study is highly constrained, as the

alking Bikes GPS data are available only through the Dutch Ministry

f Transportation, and the VLOG signal control data are not part of any

ational database but were obtained only at a local scale. The data from

only) two busy cycling intersections in Delft (namely, a 4-armed in-

ersection at Westlandseweg – Nieuwe Gracht – ID 1 and a T-junction
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Fig. 2. (a) A random VLOG sample visualized in CuteView software ( Interstyles, 2021 ); (b) Recorded information of a random VLOG sample. Note, control signal 

IDs: 02, 08, 26, and 36; detection sensor IDs: 21, 22, 23, 24, 81, 82, 83, 261, 262, 263, and 264. 

Table 2 

Intersection characteristics and the related data sample size. 

ID #Arm #Car lanes 

#Bike 

Streams 

Tram 

Dummy Bus Dummy 

#Trip 

Record 

1 4 12 12 1 1 332 

2 3 4 6 0 0 172 

Note: # denotes number. 
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t Jaffalaan – Mekelweg – ID 2) are adopted. See Fig. 4 for a general

mpression of the intersection, and Tables 2 and Table 3 for their char-

cteristics. These two intersections daily accommodate huge commuting

ycling flows to the train station and the university (Delft University of

echnology) of Delft, especially in peak hours before lectures start or

fter they end. 

Both intersections feature no directional restrictions. Consequently,

e can identify 12 movement directions for each of the two intersec-

ions. The municipality provided the corresponding information of traf-

c controllers at these two intersections as model input. 

.1. Scenario setup 

To validate the proposed approaches, two scenarios are designed. 

Scenario 1 considers using the data from one intersection (ID 1) (in-

luding control signals and detection information for cars, bikes, pedes-

rians, trams, and buses). Scenario 1 focuses on the standard 4-armed
7

ignalized intersection; we would like to test our assumption that incor-

orating the VLOG data can enhance the performance of delay estima-

ions. To this end, we need to compare it with the scenario excluding

he VLOG data. Therefore, there are two testing variants. 

Scenario 2 adopts the data from two intersections (ID 1 and ID

) with sacrificed data features to maintain consistency of input vari-

bles between the two intersections (excluding bus/tram signal, bus,

nd pedestrian detection). Scenario 2 extends the assessment of the

stimation models’ generalizability to additional intersections (ID2: T-

unction). 

.2. Model training procedure and parameter setup for the case study 

In this study, we first separated the dataset into predictors (X) and the

arget variable (y). The predictors, stored in ’X’, encompass all columns

f the data except for ’DelayTime’. Conversely, ’DelayTime’ was selected

s the target variable and stored in ’y’. 
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Fig. 3. Correlation heatmap for all indepen- 

dent variables adopted in estimation models 

(value range: − 1 ∼+ 1). 

Fig. 4. Snapshots (top) and top view 

plans (bottom) of the intersections at 

Westlandseweg-Nieuwe Gracht (a) and 

Jaffalaan-Mekelweg (b) in the city of Delft. 
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Several tests of parameter turning have been conducted in this study

fter considering the successful applications in the literature. As a result

f this fallacy process of a grid search, the most successful parameters

ere found in the models. This paper explicitly reports the optimized

arameters for Scenario 1 and Scenario 2, each incorporating weather,

emporal, and topology data, as well as the VLOG data, with the detailed

utcomes provided in Table 4 . 
8

. Results and discussion 

This section begins by providing an overview of the overall perfor-

ance of the two scenarios, followed by an examination of their re-

pective performance in terms of feature importance and comparison of

elay distributions. Specifically, in scenario 2 which benefits from its

nhanced representativeness, taking into account space limitations, we
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Table 3 

Overview of VLOG data characteristics for the two intersections. 

Int. ID 1 - Westlandseweg –

Nieuwe Gracht Int. ID2 - Jaffalaan – Mekelweg 

Availability # items Availability # items 

Car Det. Yes 8 Yes 7 

Bike Det. (loop + request) Yes 6 + 6 Yes 2 + 2 
Ped Det. (request) Yes 16 No 0 

Bus/Tram Det. Yes 4 No 0 

Car signal Yes 10 Yes 2 

Bike signal Yes 6 Yes 1 

Ped signal Yes 8 Yes 1 

Bus/Tram signal Yes 4 No 0 

Note: # denotes number; Det.: detection. 

Table 4 

Optimized parameters in the machine learning modeling process for Scenarios 1 and 2 with the VLOG data. 

Algorithm Scenario 1 Optimized parameters Scenario 2 Optimized parameters 

RF n_estimators: 84 (the number of trees in the forest) 

criterion: Poisson criterion 

max_depth: 9 (the maximum depth of the tree) 

min_sample_leaf: 2 (the minimum number of samples required to be 

at a leaf node) 

min_samples_split = 1 (the minimum number of samples required 

to split an internal node) 

n_estimators: 190 

criterion: Poisson criterion 

max_depth: 12 

min_sample_leaf: 6 

min_samples_split = 1 

XGBoost n_estimators = 50 (the number of boosting stages to perform) 

max_depth = 2 (maximum depth of the individual regression 

estimators) 

min_sample_leaf = 1 (the minimum number of samples required to 

be at a leaf node) 

min_samples_split = 2 (the minimum number of samples required 

to split an internal node) 

learning rate = 0.1 (the rate shrinks the contribution of each tree) 

n_estimators = 100 

max_depth = 5 
min_sample_leaf = 4 
min_samples_split = 2 
learning rate = 0.01 

kNN n_neighbors = 9 (number of neighbors to use by default for k 

neighbors queries) 

p_params: 2 (standard Euclidean distance) 

Weights: Uniform 

n_neighbors = 9 
p_params: 2 (standard Manhattan distance) 

Weights: Distance 

SVR Estimator__kernel = ‘rbf’ (the radial basis function) 

Estimator__gamma = ‘scale’ (kernel coefficient) 

C = 1 (a regularization parameter) 

epsilon = 0.1 (a parameter determines the width of the tube around 

the estimated function) 

Estimator__kernel = ‘rbf’ 

Estimator__gamma = ‘scale’ 

C = 1 
epsilon = 0.3 

NN hidden_layer_sizes: (50,50,50) (the number of neurons in the ith 

hidden layer) 

activation function = ‘tanh’ (the hyperbolic tan function) 

solver = ‘sgd’(stochastic gradient descent.) 

learning rate = ‘adaptive’ (adaptive learning rate schedule for 

weight updates) 

alpha = 0.05 (Strength of the L2 regularization term) 

hidden_layer_sizes: (50,50,50) 

activation function = ‘tanh’ 

solver = ‘sgd’ 

learning rate = ‘constant’ (constant learning rate schedule 

for weight updates) 

alpha = 0.0001 

Note: RF: random forest; XGBoost: extreme gradient boosting; kNN: K-Nearest Neighbors; SVR: support vector regression; NN: neural 

networks. 

c  

t  

g

 

s  

p  

m  

(  

1  

d  

d  

T  

e  

t  

t  

p  

p  

‘  

a

5

 

c  

T  

r  

u  

 

m  

s  

n  

t  

a  

s  

n  

a  

t  

m  

f  
onduct a detailed SHAP analysis to explore the influence of model fea-

ures. The section concludes with a reflection on the pertinent insights

leaned for traffic management. 

In the previous work ( Yuan et al., 2023 ) employing the same model

et and considering weather data, demographic, complexity, and tem-

oral information (no VLOG data), the R2 value of the best-performing

odel (the RF model) was approximately 10 % with a 1.092 RMSE score

log). This result was derived from training the model using data from

8 intersections from 6 representative Dutch cities. The RF model pre-

icted bicycle delays based on multiple features outperforms the others

ue to the advantage of being robust to outliers and non-linear data.

his finding is consistent with the previous application of vehicle delay

stimation in Bagdatli and Dokuz (2021) , where both RF and XGBoost

echniques present their superiority. The RF model indicates that the

emperature variable was the most influencing predictor in the training

rocess (see Fig. 5 ). Other important features include the turning ty-

ology (‘Stream_Number’), wind variables (‘Wind_Maximum_Speed’ and

Wind_Average_Speed’), and temporal features (such as ‘Hour’, ‘Day’,

nd ‘Weekday_Number’). 
9

.1. Overall performance of the two scenarios 

Aligned with earlier findings, the RF model is the most effective ma-

hine learning model in our training evaluations across both scenarios.

able 5 showcases a subset of these results, featuring a benchmark linear

egression model alongside various ML models from Scenario 1, which

tilize a combination of publicly accessible information and VLOG data.

The benchmark LR model performed significantly worse than the ML

odels, likely due to its limited capacity to capture non-linear relation-

hips and complex interactions present in the data, as reflected by its

egative testing R2 . Interestingly, we observe a case of overfitting for

he training set using the kNN model, which suggests this model is not

 favorite application. This is likely due to the model’s sensitivity to

parse and noisy GPS-derived features and its severe reliance on local

eighborhoods, which may be misleading in high-dimensional, sparse

nd unevenly distributed data. These limitations highlight the advan-

ages of ensemble methods like Random Forest, which demonstrated

ore robust generalization under these conditions. Based on these per-

ormance metrics, we have chosen the RF model as the best model for
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Table 5 

Training performances of estimation models: Scenario 1 - with VLOG data. 

Training (266 samples) Testing (66 samples) 

Estimation models R2 RMSE (log) R2 RMSE (log) 

Linear regression (LR) 0.045 1.141 − 0.037 1.775 

Random forest (RF) 0.777 0.899 0.159 1.599 

Gradient boosting trees (XGBoost) 0.428 2.073 0.098 2.742 

Support vector regression (SVR) 0.370 2.285 0.020 2.978 

K-nearest neighbors (kNN) 0.994 0.019 0.082 2.791 

Neural networks (NN) 0.369 2.287 0.017 2.989 

Table 6 

Random Forest model training and testing performances of two scenarios. 

Training Testing 

Scenario R2 RMSE (log) R2 RMSE (log) 

Scenario 1 No VLOG 0.730 0.989 0.131 1.625 

Scenario 1 VLOG data 0.777 0.899 0.159 1.599 

Scenario 2 No VLOG 0.746 0.940 0.239 1.737 

Scenario 2 VLOG data 0.741 0.949 0.242 1.734 

Fig. 5. Feature importance (Random Forest algorithm) from the previous work 

( Yuan et al., 2023 ). 
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urther analysis. RF is typically resilient to outliers and can process them

ffectively without requiring explicit detection and treatment. Given

he presence of extreme delay values in this dataset, it is plausible that

F outperforms other models in handling such anomalies. The current

esult demonstrates that by incorporating additional intersection con-

roller and detection information, the model performance has increased,

amely the R2 value of the RF model can be elevated obviously (com-

ared with a R2 value of the RF model of 10 %), even when utilizing

ata from just 1 or 2 intersections (compared with the previous case of

8 intersections). 

To provide specific scenarios, when using data from a single inter-

ection (the 4-armed intersection in Delft), which had relatively limited

otal data samples but more comprehensive signal control and demand

etection information for cars, bikes, pedestrians, buses, and trams, the

odel’s performance improved regarding model fit and estimation ac-

uracy of bike delay medians (as seen in Table 6 ). 

Similarly, when using data from the two concerned intersections (in

cenario 2), certain data features in intersection ID 1, such as bus/tram

ignals and pedestrian detection information, had to be sacrificed to

aintain data consistency. That means not all the influential features

an be included in the estimation models. However, the interpretabil-

ty of the machine learning model and the accuracy of delay estima-

ion remained consistent in both scenarios. Under realistic data con-

traints (limited sample sizes and inherent noise in the raw data), this

erformance provides meaningful approximations of typical delay mag-

itudes. Although the numerical improvements in RMSE and R2 appear

odest in absolute terms, these changes are consistent with typical ef-
10
ect sizes in travel behavioral modeling where behavioral variance is

igh. These findings suggest that applying this machine learning model

o a broader range of intersection data (with more samples and varying

onditions) can enhance model accuracy and broaden its applicability. 

In the comparative analysis of RF model performances across differ-

nt datasets, the study presents an intriguing evaluation of the model’s

bility to predict outcomes when trained with the original data variables

s used in Yuan et al. (2023) versus the case when supplemented with

he VLOG data (see Table 6 ). The best model results are observed in Sce-

ario 2 with the VLOG data, where it achieves the highest R2 (elevated

o 24.2 %) value compared to the other scenarios. 

In this study, we explored the efficacy of incorporating additional

LOG data alongside traditional weather and temporal parameters in

nhancing the predictive capabilities of the RF model. The results, while

uanced, offer valuable insights into model performance dynamics. Sce-

ario 2 ′ s model, trained with the original data, demonstrated an exem-

lary fit to the training data, achieving an R2 of 0.746, signifying a ro-

ust predictive alignment. When extended to the testing phase, although

he R2 showed a decrease, the model still maintained a respectable level

f predictive accuracy. Furthermore, including the VLOG data presents

 promising trend of improved (lower) RMSE values, albeit with slight

ariations. For instance, the RMSE (log) in Scenario 1 improved from

.625 to 1.599 with the addition of VLOG data, a statistically signifi-

ant improvement. The disparity between predicted and observed delay

alues across the two scenarios was found to be significantly different

ased on a paired t -test ( p = 0.0021). This enhancement, albeit modest,

nderscores the potential of the VLOG data to contribute to the refine-

ent and sophistication of predictive models, highlighting the value of

ntegrating diverse data streams to capture a more holistic picture of the

ariables in the real world and thus to enhance both explanatory power

nd interpretability across scenarios. In the following sections, we will

urther explore the performance of each scenario. 

.2. Individual performance of delay distribution 

To further study the differences in model fit between the two sce-

arios, we dive deeper into the model specification of the best-fitting

odels for Scenarios 1 and 2. In Section 5.2 , delay distribution of Sce-

ario 1 of one 4-armed intersection and Scenario 2 of combined two

ntersections are discussed in more depth. 

.2.1. Delay distribution of Scenario 1 

Fig. 6 presents the delay distribution graphs for scenario 1. This

gure illustrates a promising alignment between the predicted and ac-

ual bicycle delay times in Scenario 1. While the model demonstrates
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Fig. 6. Distribution of the predicted (in blue) and original (in red) delay time, 

Scenario 1. 
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 relatively good central tendency in predicting bicycle delay times,

ith training and test set median predictions at 63.89 and 75.32 s, re-

pectively, we must admit that it notably overestimates shorter delays.

his overestimation suggests a divergence from the actual median de-

ay times of 49.00 and 61.00 s, indicating a potential underestimation

f longer delay samples. 

A more balanced prediction across the entire range of delay times

s required to make the model applicable. To enhance its applicabil-

ty, we are considering multiple avenues: expanding the dataset to in-

lude more diverse intersection types, refining our delay calculation al-

orithms, incorporating a more comprehensive range of variables, ex-

loring advanced modeling techniques, and conducting a temporal and

rror analysis. These steps aim to develop a more nuanced understand-

ng of delay distributions and improve the accuracy of our predictions

cross the entire spectrum of delay durations. 

Fig. 7 further illustrates the performance of a predictive model in es-

imating delay times for bicycles, broken down by movement direction:

ight turn (R), straight through (T), and left turn (L). However, a loss

f variance exists, suggesting that our model may not capture the full

ange of delay times as disparity exists (to a certain extent) between the

ndividual predicted and original delays per direction. The comparison

etween the predicted and actual median delay times suggests that the

odel can generally reflect the delay ranges, with predictions closely

atching the actual medians across all movement directions. For right

urns, the model slightly overestimates the delay, with a predicted me-

ian of 61.82 s compared to an actual median of 45.00 s. 

When going straight through, the model’s overestimation is also ob-

erved, with predicted and actual medians at 54.51 and 41.00 s, re-

pectively. For left turns, the predicted median is 118.55 s, moderately

eviating from the actual median of 155.00 s. The test set results largely

irror the training set’s results, indicating the model’s consistency. The

lustering of predicted values around the medians confirms the model’s

apacity to capture the central tendency of delay times for different traf-

c movements. 

However, it becomes evident that the model underestimates the de-

ays for left-turn movements, which implies that the model is partic-

larly conservative when estimating delays for this movement. Specifi-

ally, the model prediction of 119.94 s is substantially lower than the ob-

erved delay of 244.00 s. This underestimation suggests that the model

ay not fully capture the efficiency with which cyclists are completing

eft turns, perhaps due to more favorable traffic conditions or quicker

dentification of safe gaps in traffic than the model anticipates. Adjust-

ents to the model’s assumptions about traffic interactions and cyclist

ehavior during left turns may be required to improve its predictive ac-
11
uracy. Besides, this can also be attributed to the small sample popula-

ion for this specific movement direction in the testing dataset (about 20

rip records for this 4-arm crossing), leading to this specific chance find-

ng in statistics. It should also be noted that left-turning cyclists typically

ace more conflicts with motorized traffic and need to wait for larger

r multiple safe gaps compared with through or right-turning move-

ents, which inherently contributes to higher delays. This behavioral

nd infrastructural characteristic, combined with the small sample size,

elps explain the observed underestimation. Further investigation into

he data and refinement of the model’s parameters could provide a more

recise representation of the delays experienced by cyclists, particularly

n the complex and variable scenarios that left turns often present. 

.2.2. Delay distribution of Scenario 2 

Fig. 8 presents the predicted and actual bicycle delay times distribu-

ion for Scenario 2, considering a combined dataset from intersections ID

 and 2. The graph reveals that the model maintains a commendable pre-

iction accuracy despite omitting certain variables like bus/tram signal

nd bus/pedestrian detection due to the combination of intersections.

hile moderately overestimated, the predicted median delay times are

elatively close to the actual medians across both intersections. For in-

tance, the training set for intersection ID 1 shows a predicted median

elay time of 59.90 s against an actual median of 53.00 s (13.02 %),

nd the test results indicate a predicted median of 78.55 s versus an

ctual median of 69.00 s (13.84 %). Intersection ID 2 ′ s training results

ave a predicted median of 28.86 s, which is a notable overestimation

ompared to the actual median of 22.50 s (28.27 % - note, a relatively

arge percentage might owe to a relatively small actual delay median).

he test results show a predicted median of 37.64 s against an actual

edian of 17.50 s. 

The findings indicate that the model captures the central trend of

elay times with a consistent pattern across various scenarios and inter-

ection conditions. While conservative, the model’s current estimations

rovide a robust framework for estimating delays, ensuring that traf-

c systems can accommodate fluctuations beyond average conditions.

owever, it’s acknowledged that the current level of overestimation may

ot be ideal for individual delay predictions. Improvements to the model

ould involve recalibrating the estimation process to align more closely

ith observed data, potentially integrating real-time traffic updates and

yclist feedback to refine predictions, particularly to capture the vari-

nce of delay distributions. 

To enhance the practical application, we propose a two-fold ap-

roach: short-term application in traffic management as a provisional

ool for planning, with a long-term strategy focusing on iterative model

efinement. The immediate use would be in a strategic capacity, guiding

he development of infrastructure and traffic signal adjustments, where

onservative delay estimates would assist in designing resilient systems.

oncurrently, we recommend an ongoing model improvement process,

ncorporating additional data sources (e.g., data from other intersec-

ions and other cities) and applying machine learning techniques to re-

uce prediction errors. This would improve individual delay estimations

nd enable the model to adapt to evolving urban landscapes and traffic

atterns. 

.2.3. Delay medians considering all movement directions in Scenario 2 

For intersection ID 1 using the testing set, the model estimation per-

ormance across all directions is marginally inferior compared to that in

he training set, with the most notable deviation occurring for left turns

here the predicted median (101.96 s) is significantly lower than the

ctual median (324.00 s) as shown in Table 7 . This suggests a partic-

lar challenge in accurately predicting delays for left-turn movements

t this intersection. Similar to Scenario 1, this can be attributed to the

mall sample population for this specific movement, and inherent be-

avioral and infrastructural characteristics for left turners, leading to

his specific chance finding. 
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Fig. 7. Distribution of the predicted (in blue) and original (in red) delay time, Scenario 1 by different moving directions (R: right turn (Training: 65 trips; Testing: 

16 trips), T: through going (Training: 110 trips; Testing: 28 trips), L: left turn (Training: 90 trips; Testing: 23 trips)). 

Table 7 

Delay medians for all movement directions of intersections 1&2 in Scenario 2. 

Right turn (R) Through going (T) Left turn (L) 

median (s) Predicted Original Sample Predicted Original Sample Predicted Original Sample 

ID1 Training 55.95 50.00 65 48.64 43.00 110 157.94 161.00 90 

Testing 72.38 45.00 16 60.54 30.00 28 101.96 324.00 23 

ID2 Training 21.28 17.00 38 54.11 84.00 37 28.08 22.00 62 

Testing 36.02 15.00 10 65.40 48.00 10 35.12 18.00 15 
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In contrast, for intersection ID 2 (T-junction) using the testing set,

he predicted medians are much closer to the actual values for the three

ovement directions compared to the results for intersection ID 1 (4-

rmed intersection). Note that we observe a higher delay in through-

oing traffic (around 60 s) than the right-/left-turners (around 30 s).

his is because traffic signals are primarily regulated through traffic

i.e., tidal commuting cycling flow between the university campus and

he station). The training set for intersection ID 2 shows a better per-

ormance for the three movements with estimation errors of 25.18 %,

5.58 %, and 27.64 %. 

.3. Interpretation of feature importance 

In Section 5.3 , the interpretation of the features (independent vari-

bles) for both scenarios (including a SHAP analysis for Scenario 2) are

iscussed in more depth. 
12
.3.1. Feature importance of Scenario 1 

In line with prior studies, our investigation assesses the impact of

arious factors on cycling delays ( Fig. 9(a) ). The temperature variable

merges as the foremost significant predictor within the RF model, cor-

oborating earlier findings ( Yuan et al., 2023 ). The average green light

uration for cars within five-minute intervals (’Car_signal_AVG’) ranks

s the second most pivotal factor influencing cycling delays. The green

ight times for trams, buses, bicycles, and bike detection (request-green

utton and loop) over the same interval significantly contribute to these

elays. This observation substantiates a close correlation between the

ontrol signal and various delay components, notably stop and control

elays. It is a clear indicator that control signals play a pivotal role in

nfluencing and reflecting the primary causes of delays at intersections.

Additionally, features such as intersection turning typology

’Stream_Number’) and temporal elements like ’Weekday_number’ and

Hour’ are also recognized among the top ten influential factors, consis-
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Fig. 8. Distribution of the predicted (in blue) and original (in red) delay time, Scenario 2 by intersection ID. 
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ent with previous research outcomes. Car appearance detected at the

ntersection during the 5-minute interval (’Car_det’) is also found to be

elated to the travel delay. Overall, the current study highlights the im-

act of traffic signals and detection information on bicycle travel delays.

ote that the detailed interpretation of various features will be discussed

or scenario 2 due to its enhanced representativeness. 

.3.2. Feature importance of Scenario 2 

In Scenario 2, the RF model’s feature importance graph ( Fig. 9(b) )

ighlights temperature as the most significant predictor in bicycle de-

ay times, reinforcing previous findings from Scenario 1 and emphasiz-

ng the critical impact of weather factors on cycling conditions. Detec-

ion indicators for bicycles (’Bike_det_loops’) and cars (’Car_det’) rank

s crucial variables, underscoring the importance of intersection dy-

amics on delay times. This diverges slightly from Scenario 1, where

Car_signal_AVG’ – the average green time for cars – was more promi-

ent. Temporal features, such as the time of day (’Hour’) and day of the

eek (’Weekday_Number’), remain consistently important across both

cenarios, reflecting the influence of traffic patterns on delays. Com-

ared with scenario 1, the bus signal feature is absent due to data sacri-

ce. Wind speed variables (mean and maximum speeds) fall in signifi-

ance, suggesting that while they affect cycling conditions, their impact

s secondary to temperature and intersection-related factors. The con-

istent prominence of ’Stream_Number’ across both scenarios indicates

he persistent effect of intersection-turning typology on delays. Overall,

his model illustrates the interplay between weather conditions, traffic

etection, and temporal factors in predicting bicycle delays at urban

ntersections. 

.3.3. Feature influence based on SHAP analysis 

To gain insights into how different factors affect bicycle delays, we

pplied the SHAP (SHapley Additive exPlanations) package. This tool
13
anks the importance of each factor and shows how much each one con-

ributes to the model’s predictions individually. The influence of each

actor is displayed in Fig. 10 . The horizontal axis measures the strength

f the impact, and the color signifies the value of the factor. The factors

re listed from the most to the least important, and the dots’ position

o the left or right of the center line indicates whether a factor tends to

ncrease or decrease the predicted bicycle delays. 

.3.4. Features with significant impact on delay estimation model 

• Temperature 

The SHAP analysis corroborates prior findings, highlighting temper-

ture as a significant factor influencing cycling delays. Temperature may

erve as a proxy for broader contextual conditions (e.g., weather-related

mpacts on riding conditions and cyclist behavior), which collectively

nfluence delay outcomes. Warmer conditions tend to decrease delays,

hereas colder temperatures, especially those falling below the annual

utch average of 11 °C, have been observed to increase this quantity.

his relationship is attributed to the adverse effects of cold weather on

iding conditions and the consequent necessity for cyclists to proceed

ith increased caution. The consistency of these findings across studies

mphasizes the critical role of temperature considerations in designing

nd managing cycling infrastructure. 

• Bicycle request-green button (Bike_det_push) 

The plot indicates that cyclists pressing the button to request a green

ignal usually experience a reduction in travel delay, as evidenced by a

luster of mixed-color dots on the left side showing negative SHAP val-

es. This suggests an adequate response from the traffic signal system to

he manual request, leading to shorter waiting times and, thus, delays.

onversely, isolated blue dots on the right with positive SHAP values

uggest increased delays when the button is less frequently pressed, pos-

ibly due to non-optimized default signal timings. In other words, if the
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Fig. 9. Feature importance of the Random For- 

est algorithm for Scenario 1 (a), and Scenario 

2 (b). 
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efault timing of the traffic lights does not adequately account for the

resence of bicycles, because it is primarily set up to manage vehicu-

ar flow, then cyclists may face longer delays unless they actively use

he button to request a change in the signal. This highlights the impor-

ance of having a traffic signal system that is responsive to the needs

f cyclists, both through manual input (the request-green button) and

hrough automatic detection and signal adjustment. 

• Bicycle loop detection (Bike_det_loops) 

The predominance of blue and red dots on the right side with positive

HAP values reveals that detecting many bicycles often correlates with

ncreased travel delays. This implies that detecting high bicycle traffic

olumes is often associated with increased delays. Sparse blue dots on

he left with negative SHAP values point to cases where detection with

ighter traffic conditions is related to decreased delays. 

• Car detection (Car_det) 
14
A majority of data points with positive SHAP values indicate that

igher frequencies of car detection are associated with increased bicycle

elays, highlighting a potential congestion issue. The clustering of these

alues, especially the red/pink dots, suggests a significant impact of ve-

icular traffic on cycling delays at intersections. A minority of points

ith negative SHAP values suggests that lower volumes of vehicular

raffic can decrease bicycle delays, emphasizing the need for adaptive

ignal systems that consider the flow of all commuters (e.g., car and bike

ravelers, as revealed by the model). 

.3.5. Features with mild impact on delay estimation model 

• Wind speed (Wind_Average_Speed and Wind_Maximum_Speed) 

The SHAP analysis from this study, with a smaller sample size,

uggests only a slight influence of wind speed on cycling delays, a

ontrast to previous research with larger datasets (18 intersections –
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Fig. 10. SHAP summary plot of feature impact. 
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uan et al. 2023 ) that identified wind as a significant factor in increas-

ng delays. This difference could be attributed to the reduced statistical

ower and variability inherent in a smaller dataset (as the two con-

erned intersections are located in the same city, and thus, the data is

rom the same weather station). Although our findings indicate a lesser

mpact, they do not negate the potential effects of wind conditions ob-

erved in larger-scale studies. Therefore, while wind speed’s contribu-

ion to delay times may appear modest in the current context, it is still an

mportant consideration in developing and managing cycling infrastruc-

ure, particularly in more comprehensive studies with larger datasets.

oreover, as we observed a high correlation between the average and

aximum wind speed, the results are interpreted as reflecting the over-

ll influence of wind conditions rather than emphasizing one specific

ariable. 

• Average signal duration (Car_signal_AVG, Bike_signal_AVG,

PED_signal_AVG): 

The SHAP summary plot reveals that the average green-time dura-

ions for cars, bikes, and pedestrians have a more centralized cluster

f SHAP values around the midpoint. This suggests a milder influence

f control signals on bicycle delays than variables like car detection,

anual bicycle green request, and bicycle loop detection, which exhibit

ore pronounced clusters away from the center. Hence, while signal

iming affects delay, its impact appears less substantial than the pres-

nce of traffic demand and direct bicycle signal requests. Longer aver-

ge green signal times for cars are generally linked to increased bicycle

elays, pointing to a vehicle-centric traffic signal approach. Increasing

icycle signal durations do not consistently show a decrease in delays,

hich could indicate complex dynamics at intersections affecting cy-

lists. The pedestrian signal averages display a mixed relationship with

icycle delays, suggesting a variable impact that could depend on the

articularities of each intersection’s design and signal timing coordina-

ion. 

This information holds value for cyclists, traffic planners, and poli-

ymakers alike. For instance, knowing that travel times are associated

ith increased delays under certain weather conditions can inform deci-

ions about infrastructure improvements or traffic management strate-
15
ies. Understanding the role of traffic demand detection (e.g., car and

icycle flows) and deploying control facilities smartly (e.g., the request-

reen buttons) can help in anticipating on-the-spot delays and formulate

trategies to manage and reduce such delays. 

.4. Discussion of the results 

In the complex landscape of intersection dynamics, a profound un-

erstanding of bicycle delays emerges as a key focal point. As bicycles

ncreasingly become a popular mode of transportation, especially in ur-

an areas, intersections serve as critical junctures where various modes

ntersect, necessitating a thorough comprehension of how bicycle de-

ays impact overall traffic flow and efficiency. While we do not aim

o develop the best accurate estimation model for monitoring individ-

al bicycle delays at signalized intersections (e.g., minimizing predic-

ion errors for individual delay samples) due to data scarcity and qual-

ty, instead, with the purpose of optimal utilization of the existing data

ources, we show that one of the ML models, the RF model, can estimate

nd predict the average magnitude (regarding the central tendency, me-

ian and its distribution) of this crucial variable to an adequate level.

nsights into various influential factors (reflecting weather, temporal

nformation, topology, and traffic conditions) on bicycle delays from

he estimation model pose great value to cyclists, urban planners, and

olicymakers. By closely examining turning maneuvers within intersec-

ions, we gain nuanced insights into the interplay of various traffic flows,

hich is especially crucial in a context where bicycle demand at inter-

ections is notably high. This detailed examination allows us to discern

he intricacies of each movement direction, understanding how different

urns contribute to the overall traffic dynamics and how experiencing

elays varies per movement direction. With this knowledge, prioritizing

icycle traffic becomes a possibility through strategies like introducing

n on-site traffic warning system (via variable message signages), allo-

ating more green time (via intersection controllers), or implementing

edicated cycle paths (via infrastructure design). However, such adap-

ations may impact other road users, potentially causing delays for cars,

uses, or trams. Policymakers must weigh these considerations against

quity concerns for all road users and align decisions with specific policy

bjectives and desired service quality. Our contribution to this decision-

aking process lies in unraveling information and key factors on bicy-

le delays. In addition, the model’s insights can inform the development

f dynamic route guidance tools that provide real-time information to

yclists based on historical analysis. For example, mobile applications

ould be developed to inform cyclists of expected delay times at intersec-

ions, allowing them to choose routes that minimize delays and improve

heir commuting experience. 

Notably, we admit that there exists observed bias (overestimating

hort delays and underestimating longer ones, particularly for left-

urning movements) in the estimation. This reflects a common trade-

ff in regression models trained on imbalanced data distributions. In

ur case, this is largely due to the under-representation of extreme de-

ay cases in the dataset given data sparsity, and the behavioral com-

lexity of left turns, which involve more conflict points and dynamic

ap-acceptance behaviors than through or right-turn movement. From

 strategic planning perspective, the model provides a reasonable ap-

roximation of average system performance and can identify relative

ifferences across intersections or time periods. This supports decisions

uch as prioritizing infrastructure upgrades or adjusting signal control

trategies at a network level. However, the same bias would be less ap-

ropriate for individual-level predictions, where accurate estimation of

xtreme values (e.g., very long delays) is critical. In such contexts, un-

erestimating high-delay conditions could lead to under-investment in

ocations with more severe issues, whereas overestimating minor delays

ay cause overallocation of resources to less critical points. Recognizing

his limitation, we suggest that future work incorporate more balanced

r targeted data collection to better capture the tails of the delay distri-

ution. 
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To mitigate and quantify these limitations, several methodological

xtensions can be considered. First, rebalancing techniques such as strat-

fied sampling or weighted training could help address data imbalance

cross movement types. Second, expanding the dataset to cover more

ntersections and longer observation periods would improve represen-

ation of rare, high-delay cases. Third, incorporating additional explana-

ory variables related to intersection geometry, signal phasing, real-time

raffic interactions, or conflicting vehicle flows may improve model sen-

itivity to left-turn-specific factors. Finally, diagnostic analyses such as

esidual error profiling and quantile-based error decomposition could

e applied to explicitly assess and visualize model bias across different

elay ranges and turning typologies. These analyses would allow for

 clearer identification of systematic under- or overestimation patterns

e.g., for extreme or movement-specific delays) and help guide targeted

odel refinement. Together, these efforts would not only strengthen the

redibility of movement-specific findings but also enhance the model’s

pplicability in understanding the diversity of cycling delays under real-

orld conditions. 

Expanding our analytical scope, the integration of the VLOG data

arks a notable advancement compared with our previous work

 Yuan et al., 2023 ). This additional dataset enriches our understand-

ng and contributes to the refinement of the ML estimation models. The

ynergy between the VLOG data (control signals and flow detection)

nd the existing information (weather, temporal, and topology data) fa-

ilitates a more comprehensive assessment of intersection (in)efficiency.

his holistic approach allows us to move beyond a generic analysis, con-

idering specific movements and their impacts on the overall intersec-

ion performance. 

One notable outcome of this enriched dataset is improving ML model

t. The details provided by VLOG data contribute to a more accurate

epresentation of the complex dynamics (the model fit has doubled in

cenario 2 (testing case, using two intersections) compared with the

ase (of 18 intersections) without harnessing traffic control and detec-

ion information, 24.2 % vs. 10 %). This refinement is particularly ev-

dent in the reduction of prediction errors, signifying a higher preci-

ion in estimating delay magnitudes at local intersections and with a

otential expansion to multiple intersections at a national level. As we

elve into the directional aspects of delays via turning typology, the

ata allows us to distinguish between different movement directions

ith a level of granularity that was previously challenging to achieve.

his serves as additional images for decision-making. Note that the fi-

al model fit of 24.2 % indicates that a substantial portion of variance

emains unexplained, such values are typical for urban mobility mod-

ls using inherently noisy and heterogeneous data sources such as GPS

races and signal data. This limitation largely reflects unobserved be-

avioral and contextual factors, including complex traffic interactions,

ntersection-specific geometries, and individual cyclist behavior. Note

hat the model should be applied cautiously in studies requiring detailed

ndividual-level behavioral inference. Nevertheless, the model remains

uitable for network-level planning and performance evaluation since

t captures systematic spatiotemporal patterns and relative differences

n bicycle delays across intersections - insights that are highly relevant

or network-level signal optimization, infrastructure prioritization, and

olicy formulation. 

. Conclusion 

The article enhances the capabilities and generalizability of the bicy-

le delay estimation model by incorporating control signals and detec-

ion information from signalized intersections. The findings illustrate

he viability of estimating bicycle delays by considering the interplay

mong weather conditions, temporal factors, junction topology, and lo-

al traffic conditions. In particular, we confirm the crucial significance

f temporal and weather variables, as well as turning typology, in an-

icipating and predicting delays under specific temporal and weather

onditions. Moreover, insights gained from the estimation model under-
16
core the impact of factors such as the frequency of request-green button

sage by cyclists, resulting in reduced bicycle delays. Conversely, the

xtended average green duration for various modes of transportation,

long with heightened demand for both cars and bicycles, is associated

ith increased bicycle delays. 

This estimation application and its result should provide sufficient

mages for policymakers and cooperating authorities on average bicy-

le delay at specific intersections, for instance, to determine priority

nd function maps for bicycle users (as well as for car users). With this

nowledge, prioritizing bicycle traffic becomes feasible through strate-

ies such as introducing on-site traffic warning systems, allocating ad-

itional green time, establishing dedicated cycle paths, or developing

ynamic route guidance tools (e.g., mobile apps) for cyclists. However,

t is also crucial for policymakers to consider the potential impact on

ther road users and balance these concerns with equity considerations

nd desired service quality objectives. 

With the availability of additional local traffic controller informa-

ion (more intersection types and thus more samples), expanding the

urrent estimation model holds the potential to enhance coverage re-

arding intersection types and traffic conditions. This expansion can

ead to improved generalizability and accuracy in application, allow-

ng traffic management measures to be tailored to specific and generic

ntersections. 

In addition, efforts are needed to achieve a more balanced predic-

ion across the entire range of delay times to enhance the model’s ap-

licability. This involves refining delay calculation algorithms (e.g., by

electing appropriate free-flow speed references, by improving trip ge-

location accuracy via map-matching), incorporating a more compre-

ensive range of variables, and exploring advanced AI modeling tech-

iques. Particular attention should be given to addressing model bias

n extreme and movement-specific cases, such as the underestimation

f longer delays and left-turn movements, by introducing rebalancing

trategies, expanding datasets, error diagnostic analyses, and incorpo-

ating additional explanatory factors reflecting intersection geometry

nd traffic interactions. Additionally, a two-fold approach is proposed:

hort-term application in traffic management for planning purposes and

 sustained, long-term strategy focusing on iterative model refinement.

his includes recalibrating the estimation process, integrating real-time

raffic updates and cyclist feedback, and incorporating additional data

ources and machine learning techniques to reduce prediction errors and

dapt to evolving urban landscapes and traffic patterns. 

This study’s implications underscore the importance of adaptive traf-

c systems that account for varied transportation needs and conditions,

ltimately facilitating more efficient urban mobility. Policymakers and

raffic engineers are encouraged to leverage these insights to optimize

raffic flow and enhance safety for all road users. 
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