
A fully integrated development
environment for GOAL in Eclipse
The design and development of a mature and professional
Integrated Development Environment for the multi-agent

programming language GOAL

THESIS

submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

V.J. Koeman

Interactive Intelligence Group
Department of Intelligent Systems

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

A fully integrated development
environment for GOAL in Eclipse
Author: V.J. Koeman
Student id: 4008790
Email: vj.koeman@quicknet.nl

Abstract

For the GOAL agent programming platform, a new, full-fledged IDE was created
that provides support for all phases in the agent program development process, with
the concepts of integration and adaptation at its base. Using the DLTK framework,
a plug-in for the Eclipse platform was created in multiple iterations, continuously
evaluating the usability during this process using SUS evaluations. Besides an edit-
ing framework, based on newly developed ANTLRv4 grammars, a fully integrated
debugging environment was designed and developed. As agent programming lan-
guages are based on very different concepts than the more widely supported and
documented programming languages like Java and C, this process was not straight-
forward. The mapping of popular existing concepts and the creation of new AOP-
specific standards has been documented in this work. Besides improving the de-
velopment support for all different kinds of GOAL developers, this thesis aims to
set a new standard in the field of multi-agent programming. Care has been taken
to explain all steps in detail, and this work has been made as generally applicable
within the multi-agent programming field as possible. Therefore, this thesis is also
a full guide to the design and development of a mature and professional IDE for
multi-agent programming. The full process of the creation of this IDE is presented
in this thesis, with an evaluation of the state-of-the-art through literature and ex-
isting IDEs at its foundation. Additionally, a prototype was developed to increase
the understanding of the requirements for such an environment.

Thesis Committee
Chair: Prof. Dr. C.M. Jonker
Supervisor: Dr. K.V. Hindriks
Committee Member: Dr. M.B. van Riemsdijk
Committee Member: Prof. Dr. E. Visser

Contents

Preface 5

1. Introduction 7
1.1. Problem Statement . 8
1.2. Approach . 12
1.3. Outline . 15

2. Related Work 17
2.1. Literature . 17
2.2. State of the art APL IDEs . 21
2.3. Prototype . 24

3. Plug-in Development Framework 29
3.1. Foundation . 29
3.2. Language support framework . 30

4. Grammars for Agent Programming 35
4.1. Overview . 35
4.2. Implementation . 37
4.3. Error reporting . 40

5. Editing Framework 43
5.1. Registering the plug-in . 43
5.2. The interface . 49
5.3. Editing files . 49
5.4. Extra features . 54

6. Debugging Environment 63
6.1. Framework . 63
6.2. Running a MAS . 64
6.3. Integrated debugging . 70

7. User Evaluation 85
7.1. Method . 85
7.2. Results . 86
7.3. Discussion . 86

i

Contents Contents

8. Conclusions and Future Work 89
8.1. Contributions . 89
8.2. Future Work . 90
8.3. Conclusions . 92

Bibliography 95

A. ANTLR Grammars 99
A.1. MAS grammar . 99
A.2. GOAL grammar . 102

B. Evaluation Results 109
B.1. Exploration . 110
B.2. Reliability . 112

ii

List of Figures

1.1. Framework for an Integrated Development Environment 8
1.2. An example of a MAS file . 9
1.3. An example of a GOAL agent file . 10

2.1. The interface of the plug-in prototype created in NetBeans 27

3.1. An overview of the Eclipse Platform 30

4.1. Part of a parse tree . 36

5.1. The general structure of an IDE . 44
5.2. The ‘New’ dialog in Eclipse showing the GOAL Agent Programming

category . 47
5.3. The GOAL perspective . 50
5.4. An example of auto-completion on Ctlr-Space 56
5.5. An example of code documentation when hovering a predicate 57
5.6. An example of code folding . 57
5.7. The Templates category of the GOAL preferences 59
5.8. Contents of the GOAL Help page . 60

6.1. The GOAL runtime preferences, showing the available code stepping
points . 74

6.2. An editor showing a regular (red) and conditional (yellow) breakpoint 80
6.3. The GOAL debug perspective . 82

7.1. The results from the four SUS surveys 87

1

List of Tables

1.1. The functional requirements for the GOAL IDE 14

2.1. An overview of the features of the state of the art APL IDEs 23

3.1. A comparison of the available language support frameworks 33

5.1. An overview of all classes discussed in this section 48
5.2. An overview of all classes discussed in this section 54
5.3. An overview of all classes discussed in this section 61

6.1. An overview of all classes discussed in this section 69
6.2. An overview of all classes discussed in this section 83

3

Preface

This thesis has been written for my masters program in Computer Science, within
the Interactive Intelligence group at the EEMCS department of the TU Delft. After
being a teaching assistant in the multi-agent programming courses for several years,
I am glad I got the chance to improve the environment that a large group of students
uses for developing their assignments. Directly improving their experiences has been
a very fulfilling task, and even though there were some bumps in the road, there
were always students willing to help me out. Therefore, I would like to extend my
gratitude to all of the first year computer science students that have helped me in
this process, and sincerely hope the upcoming students will benefit from this work
even more. Additionally, I would like to thank all fellow teaching assistants and
teachers who assisted me throughout this work.
Of course, all of this would not have been possible without the unconditional support
of my supervisor, Koen Hindriks. His extensive and valuable feedback lifted this
work to a higher level, and his high level of involvement with my work made working
together on this project an unforgettable experience.
Finally, I would like to thank my girlfriend and family for providing the necessary
support, even when working all day (or all night) long.

V.J. Koeman
Delft, the Netherlands
August 20, 2014

5

1. Introduction

The goal of this thesis is to design and develop a mature and professional Inte-
grated Development Environment (IDE) for the multi-agent programming language
GOAL. But what is a mature and professional IDE? In order to determine this,
some definitions are needed first.
An IDE is a software application that provides comprehensive facilities to computer
programmers for software development, consisting of a source code editor, a com-
piler or interpreter (or both), build automation tools, and a debugger[4]. The most
used IDEs are Eclipse, NetBeans, and Visual Studio. Agent-oriented programming
(AOP) is a programming paradigm centered on the concept of software agents, as op-
posed to e.g. objects for the object-oriented programming paradigm[1]. An agent is
anything that can be viewed as perceiving its environment through sensors and act-
ing upon that environment through effectors[2]. Multi-agent programming facilitates
the use of multiple agents, adding messaging capabilities for example. Multiple AOP
frameworks exist, like JADE, Jason, and GOAL. GOAL is a framework for program-
ming rational agents. GOAL agents are based on the belief-desire-intention (BDI)
model: they derive their choice of action from their beliefs and goals. The GOAL
language is a domain specific language for autonomous decision-making, providing
the basic building blocks to design and implement such agents by facilitating the
manipulation of an agent’s beliefs and goals and structuring its decision-making[3].
Modern software engineering cannot be accomplished without integrated tool sup-
port; the use of an IDE should result in greater productivity compared with the use
of multiple single-purpose tools for program development, such as a text editor and
a separate compiler. When not provided with the support of proper development
and maintenance tools, programmers are more likely to waste time and produce low-
quality software[6]. The tools that an IDE integrates can be split in horizontal and
vertical tools: tools used throughout the development process and tools used in spe-
cific phases of the development process, respectively[5]. This structure is illustrated
in Fig. 1.1.
A mature and professional IDE provides the required tools in an integrated way,
but allows those tools to be easily adapted for use in new contexts as well. Thus,
integration and adaptation are key capabilities[7]. Providing those capabilities is no
easy undertaking, especially considering the fact that the field of AOP is relatively
small in comparison with e.g. object-oriented programming (OOP), operating in a
significantly different domain. In this thesis, the design and implementation of an
integrated tool set for GOAL will be discussed. Moreover, following the aforemen-

7

Chapter 1 Introduction

Figure 1.1.: Framework for an Integrated Development Environment

tioned principle of adaptation, this thesis has been constructed as an implementation
guide for future AOP IDE developers as well. Through providing a careful analysis
of related work in multiple domains, clear requirements, the technical implementa-
tion details, and an evaluation afterward, this thesis aims to set the standard for
the whole field.

1.1. Problem Statement

GOAL is, among others, used by first-year students at the Technical University of
Delft (TU Delft) for a full semester. Although the related courses are generally con-
sidered as fun and instructive, the feedback that is given is often of the form: "Nice
course, but GOAL feels like a band-aid solution." or "Why is there no stable and
complete version of the software yet?". Even though there have been some issues
with the GOAL language itself, that have been resolved since, the main ‘annoyance’
of the students has always been with the accompanying development environment.
Probably, this is mainly due to the fact that students compare the GOAL environ-
ment with popular IDEs they use in other courses like Eclipse; GOAL is not up to
those standards yet, even though it works reasonably well on its own.

8

1.1 Problem Statement

A GOAL agent program is a set of modules which consist of various sections in-
cluding knowledge, beliefs, goals, a program section that contains action rules, and
action specifications. Almost all sections are optional, and are represented in a
knowledge representation (KR) language such as Prolog, answer set programming,
SQL, or the Planning Domain Definition Language (PDDL). The pieces of code in
a specific KR language are referred to as ‘KR sections’. Currently, GOAL is mainly
used with SWI-Prolog as the KR language. SWI-Prolog is a thoroughly developed
(since 1987) open source implementation of the Prolog language, and has a very
rich set of features[9]. Though GOAL is a Java project, and thus multi-platform
by nature, SWI-Prolog only has specific implementations for versions of the Win-
dows, Macintosh, and Linux operating systems. GOAL is actively maintained and
developed by the Interactive Intelligence group at the TU Delft since 20061.
GOAL agents are executed based on a Multi-Agent System (MAS) file. In such a
file, as shown in Fig. 1.2, the optional environment, the relevant agent files, and their
launch policies are defined.

Figure 1.2.: An example of a MAS file

In an agent file, different sections can exist within different modules. The init,
main, and event modules are built-in modules, but users can also specify their own
modules, optionally in an external file. Moreover, knowledge bases (e.g. KR rules)
can also be imported from external files. The example agent in Fig. 1.3 prints the
text "Hello, world!" ten times using the coupled environment’s ‘printText’ action and
‘printText’ percept. Actions and percepts are an agent’s output and input to and
from an environment, and communication amongst agents is also possible. Thus,
actions and percepts are effectively an agent’s effectors and sensors, defining the
agent-environment interaction[10]. Agents are executed by using cycles. Every cycle,
the percepts from the environment and messages from other agents are retrieved.
Next, the event module’s program section is executed, in which the mental state of
an agent should be updated using this new information. Next, the main module’s
program section is executed, or any other user-defined module the agent is currently
in (stack). The execution of a module and its program section can be adjusted. The
main module’s program section, for example, is finished after an action has been
executed by default. The event module’s program section, in contrast, is always

1http://ii.tudelft.nl/trac/goal

9

Chapter 1 Introduction

fully executed by default. These settings can be changed and used on user-defined
modules. The init module is executed before all other modules (when it contains a
program section), and is used to define the agent’s initial mental state as well. In
addition, pre- and post conditions to the actions available in an agent’s environment
can be provided there: is it possible to execute the action, and how should we update
our mental state after the action has been executed.

Figure 1.3.: An example of a GOAL agent file

A first release of the GOAL platform was provided in 2009. The platform includes
the GOAL core, an embedded SWI-Prolog build, some example projects and ac-
companying environments, and a custom-build IDE based on JEdit2: a Java-based
text editor that was originally released in 1998. Using these tools, one can develop,
execute and debug a multi-agent system (MAS), which optionally interacts with
an external environment. As mentioned before, the main issues that users face are
related to this IDE. Having taken the courses myself, and being a teaching assistant
for them in the years after, I have experienced these issues not only from hear-say,
but from my own work with the platform. Some often encountered problems are,
for example:

• Inconvenient text editing: besides not responding to external edits, possibly
leading to vanishing code, the text editor itself uses a separate mechanism for

2http://www.jedit.org

10

1.1 Problem Statement

the syntax coloring that is not always correct. Moreover, the look-and-feel of
the editor is not in correspondence with well-known editors (to students), with
for example different icons and action-shortcuts being used.

• Insufficient error detection or recovery: syntax errors or other possible mis-
takes in the code are only presented in a single console at the bottom of the
screen, for all files together, and only when a file is saved. In special circum-
stances, Java stack-traces might even be seen there. Moreover, the explana-
tions about the errors are usually not clear to users, often requiring technical
assistance for simple syntactic mistakes.

• Unreliable debugging: when running an agent, its mental state can be in-
spected through the so called ‘introspector’. However, this is done using basic
scroll panes that are completely refreshed every time an update arrives, which
results in the view changing multiple times per second. These panes cannot
be searched or ordered. Moreover, the relation between the agent’s actions,
of which logs are available in plain-text consoles, and the written code is not
made clear to users. This results in the number one frustration of students
being figuring out why their agent is not doing what they think it should do.

These problems give a strong indication of the need for improvement of the GOAL
development environment. This environment is already a few years old, and has
regularly been updated since. Looking at the repetitive feedback, improving the user
experience for a multi-agent programming platform is not a trivial task. Moreover,
GOAL and Prolog are examples of rule-based languages: a programming language
that works by instantiating rules when activated by conditions in a database. They
are also based on logic programming, as the programs are composed of a set of
sentences in logical form, expressing facts and rules about some domain. Both of
these facts indicate fundamental differences with other, more popular (procedural)
programming languages like Java or C, on which most modern IDEs are based, and
students have experience with from other courses. There are multiple other factors
that add complexity to the tooling that is needed for an agent platform:

• Embedded KR technology: making use of a plug-in KR language requires dy-
namic support for editing, executing and debugging those sections.

• External environments: the client/server-like set-up of multi-agent systems
and environments adds an additional layer of communication and external
dependency.

• Rule-based evaluation: providing insight in rule instantiation by conditions
in a database is different from providing insight in a procedural execution,
requiring different debugging and testing mechanisms.

• Agent reasoning cycle: slightly similar to expert systems, the control flow of a
GOAL program is based on a reasoning cycle that processes events, evaluates
rules, and performs actions, which requires mechanisms different from other
languages that use a flow dictated by the code itself.

11

Chapter 1 Introduction

In this thesis, we will try to identify what is necessary to create a full-fledged agent
programming development environment. As an IDE currently exists for GOAL,
which is not considered very user friendly, our focus will be the design of an IDE
with the aim of improving usability. All steps of the agent program development
process will be evaluated using the identified requirements and design guidelines,
and supported in a new development environment. Moreover, in an attempt to
improve the standards in the whole agent programming field, this will be done in
such a way that the whole field can benefit from it by explaining all steps in this
process as generally applicable as possible. Considering the formulated problems
and their complexity, the research question of this thesis is:

What tooling support is needed to support agent program development
and what is an adequate design of a development environment for
agent-oriented programming?

Several more specific sub-questions originate from this research question:
• How can we integrate KR technology in an IDE in such a way that one em-

bedded language can easily be exchanged with another?
• What kind of support is needed in an IDE when working with an external

environment during execution?
• Which debugging mechanisms are needed when debugging a rule-based lan-

guage?
• What kind of debugging support should be provided for debugging agent pro-

grams that execute reasoning cycles?
In the next section, the approach that was used to answer these questions will be
discussed.

1.2. Approach

As a first step, scientific literature on IDEs in general and for agent programming
specifically has to be evaluated, together with existing development environments
for agent programming. This literature study should be focused on identifying the
needs of a developer in all areas of the software development process, in order to ob-
tain requirements for developing a full-fledged development environment. As GOAL
is mainly used by students, but by more experienced programmers as well, the differ-
ences between these user groups have to be taken into account as well. Furthermore,
the state-of-the-art in the field of rule-based languages should be identified, espe-
cially by the evaluation of IDEs that follows the literature survey. In this evaluation,
IDEs that are either popular in the field or for languages similar to GOAL should be
selected and tested in order to obtain more insights into the latest designs. More-
over, the areas in the field that are suitable for improvement are to be identified
through this study.

12

1.2 Approach

After this research, as an initial case study, a prototype of a modern GOAL IDE
should be developed. As the body of literature on agent-programming IDEs specif-
ically is relatively small, this prototype should provide more insight into the func-
tional and design requirements for such an IDE. Multiple potential issues and ad-
ditional requirements can be identified using this prototype, allowing for a much
better design to be made for the actual implementation.

For the final implementation, a set of requirements was identified. These are split
in three different steps, reflecting three different phases in the development process:

1. Create a state-of-the-art parsing structure that supports embedded languages
properly, e.g. in such a way that any KR language can be supported.

2. Create a framework that will allow user-friendly editing of the different GOAL
file types.

3. Create a debugging environment that supports the specific needs of agent
programming developers.

For all steps, several required functionalities can be identified. Based on the MoSCoW
model[8], the priority of each functionality will be indicated, as listed in Tab. 1.1.

These requirements are part of the evaluation criteria; their fulfillment will be eval-
uated in the conclusion of this work. In addition to these functional requirements,
there are several non-functional requirements as well that will be used to ensure
their quality. These requirements are:

1. Extensibility: similar programming languages in the field should be able to
benefit from the work done in this thesis.

2. Maintainability: we should be able to stay up-to-date with the latest develop-
ments in the field.

3. Performance: the performance should be monitored to avoid a substantial
decrease of the platform’s power in comparison to the current situation.

4. Robustness: the system should be able to deal with errors or mistakes in a
user-friendly way, especially considering the large student user base.

5. Usability: as increasing the usability of the IDE is the main motivation behind
this work, the perceived usability should be monitored constantly.

Using these requirements, the next step is to choose a framework to create our
development environment with. Using a proper framework will allow us to benefit
from the state-of-the-art without reinventing the wheel ourselves. However, the
selection of such a framework should be done carefully, as it should not prevent
us from achieving any of the functional requirements, whilst supporting the non-
functional requirements in the best possible way. Moreover, the total effort required
to create full-fledged IDE will depend heavily on the level of support this framework
provides, strengthening the need of careful selection even further.

13

Chapter 1 Introduction

Parsing structure
1 M A parsing structure for all file types (.goal, .mod2g, .mas2g, .pl)
2 M Dynamic support for embedded KR languages

Editing framework
3 M Managing projects composed of the supported file types
4 M A code editor with proper syntax highlighting and error reporting
5 M The ability to run a system whilst inspecting or logging its output
6 M Customization to a user’s preferences
7 S An importer for existing (old) projects
8 S Increased programming support through file templates,

auto-completion, automatic indentation, bracket highlighting, and
code folding

9 S Improved support for program comprehension through a source
outline and the generation of API documentation

10 S Improved language learning support through (help)
documentation

11 S The ability to execute a unit-test whilst inspecting or logging its
results

12 C Fully automatic and customizable source code formatting
13 C Automatic suggestions/fixes for common mistakes
14 C Advanced refactoring features such as renaming a predicate and

all its occurrences in one action
Debugging environment

15 M Show the state of all agents in a system and allow running,
pausing, or killing an agent.

16 M Support stepping through the code of an agent
17 M Allow convenient inspection of an agent’s mental state
18 M Support posing queries to an agent
19 M Support adding or removing breakpoints during or before

execution
20 S Allow for a continuous inspection of certain aspects of an agent’s

mental state through watch expressions
21 C Inspection of an agent’s behavior after execution through a

navigable history of its decisions and mental states
Table 1.1.: The functional requirements for the GOAL IDE

Based on the selected framework, we will try to fulfill the requirements in the differ-
ent areas based on their priority. This process has been split into the aforementioned
three steps. In the first phase, a parsing structure will be created that supports em-
bedded KR technology in an extendable fashion, e.g. facilitating the support of any
KR language as conveniently as possible. In the second phase, the selected frame-
work will be used to create an editing framework. Again, care should be taken to

14

1.3 Outline

allow for any embedded KR language to be facilitated easily. Finally, a debugging
environment will be created, addressing the different challenges as posed above. As
GOAL is a rule-based language based on execution cycles, implementing function-
alities such as code stepping is no clear-cut process, requiring careful design.
During and after the implementation, multiple evaluations amongst the users will
be done in order to monitor the usability of the platform. After the second and
during the third phase, public releases of the IDE will be made, allowing us to
continuously collect and integrate user feedback. Finally, using the requirements
and the user feedback, the accomplishments of this work will be evaluated, and
recommendations for future work will be made.

1.3. Outline

First, a survey of the literature on IDEs and an evaluation of existing multi-agent
platforms is presented in sections 2.1 and 2.2. Moreover, because of the relatively
small body of work on agent-programming environments specifically, a ‘quick-and-
dirty’ prototype was developed, from which the learned lessons are stated in section
2.3.
Using a bottom-up approach to develop a completely new integrated development
environment, frameworks that could be used as a starting point for the development
of an IDE for GOAL are evaluated in chapter 3. The next thing to attend to is
the GOAL language itself, and thus, in chapter 4, the design and implementation
of the language parsing structure is discussed. Next, the implementation of the
editing framework is discussed in chapter 5. In chapter 6, the implementation of the
debugging environment is discussed. In chapter 7, the development environments
for GOAL are evaluated using established approaches for assessing system usability.
Finally, in chapter 8, a conclusion is formulated, and recommendations for future
work are made.

15

2. Related Work

In this chapter, first, literature on IDEs in general and for agent programming
specifically is evaluated to identify the needs of an agent program developer in all
phases of development. Besides this literature, the IDEs of state-of-the-art APL
platforms that are either very popular or similar to GOAL are evaluated to obtain
more insight into the latest designs. Finally, the prototype that was developed will
be discussed, identifying additional requirements or design criteria for the eventual
implementation.

2.1. Literature

Early research on development environments by Apple[11] already tries to study
the usability of a development environment as a whole. Several development cycles
are identified and evaluated for different programming languages. The basics of the
‘flexible pane windows’ that are used very commonly now-a-days is evaluated here.
A main conclusion of this work is that it is difficult to change the way people do their
work, and thus development environments should adapt to their users as much as
possible. However, many different kinds of users exist, which poses significant issues.
Later research on this topic[4] identifies some very noticeable distinctions between
novice and experienced users in several development environments for different pro-
gramming languages. It is noted that there is often a lack in the application of
Human Computer Interaction (HCI) principles in the design of IDEs. Applying
these principles is hard, because IDEs are abstract and complex systems that have a
large amount of very different functionalities bound together in one place. In order
to apply HCI principles to an IDE properly, the differences between novice and ex-
perienced users that were also found have to be taken into account. For beginners,
typical errors are usually not made clear, hierarchical structures are hard to identify,
and cognitive overload is often a problem. On the other hand, a lack of relevant
and understandable on-screen information is a main problem for more experienced
users. The research concludes with the notion that "developers should be provided
with IDEs that offer functionalities in more rational, less visually complex formats
that reinforce the relation between a specific functionality and the software artifacts
on which that functionality acts". IDEs should be made human-centric instead of
functionality-centric. Research on this topic does exist, for instance in the field of
IDEs for the pedagogic (educational) use of them, but these concepts have not been

17

Chapter 2 Related Work

widely adapted into industry-standard IDEs[13, 14, 15]. The requirements elicited
in these studies can be used to improve this adaptation in our plug-in.
An example of a rule-based language that tries to integrate the differences be-
tween users of different experience is DrScheme, a programming environment for
the Scheme language[19]. This environment focuses on students and provides four
different ‘language levels’ that all add some more advanced features to the language
itself. Other notable features are interactive expression evaluation, clear error re-
porting, visually enhanced code stepping, and static debugging (evaluation without
full execution).
Another topic of interest is the actual use of IDEs by developers. Research has
been done on the Eclipse platform in order to determine what views, commands
and plug-ins are used the most[16]. Some results of this research include the fact
that renaming is done a lot in Java refactoring, followed by moving and extracting
functions, and that the current variable instantiations are very important whilst
debugging. Finally, key-binds are frequently used by most developers, whilst context
menu’s in the editor itself are not.
There are some IDEs for rule based languages specifically. For instance, SystemT
is a rule-based information extraction system for which a custom IDE has been
created[17]. For this IDE, care has been taken to support all three repeating phases
of development (develop, test, and analyze) properly. Besides editing, several cus-
tom tools have been created in order to support the developer possible, especially
by different kinds of visualizations. Similar work exists in the field of answer set
programming. In ASPIDE[18], besides the default editing features such as code col-
oring, auto-completion, refactoring, outline views, (on-line) error highlighting, fix
suggestions and code templates, a dependency visualizer, visual code editor, and
custom execution result visualizations have been created. In addition, debugging,
profiling, and (automated) testing is fully supported, all embedded in one graphical
interface. Noticeable is the extensive use of existing libraries for all kinds of purposes
(JGraph, Spock, etcetera). In addition, the research that lead to the creation of this
IDE involved an extensive study of other rule based development environments,
which resulted in the identification of many features logic-based IDEs have. Ad-
ditional research on development environments for logic programming specifically
confirm these requirements, and group them into three categories: development,
analysis, and debugging[6]. Combining these works allow us to list the requirements
for our IDE in each of those categories.

Development
• A code editor, including:

– syntax coloring
– parenthesis or other token pair highlighting
– undo/redo

18

2.1 Literature

– find/replace

– quick fixes

– auto completion

– code templates (with dynamic definition of them)

– code annotations

– automatic code indentation

– text hover for quick info of variables/predicates

• Management of files on a per-project basis, including:

– multiple projects

– multiple files and (sub)folders per project

• Refactoring of variables/predicates.

The research also indicates that it was very evident that Eclipse-based systems had
much more ease in the development of text editing and project management features,
resulting in a higher usability.

Analysis

• Syntactic or semantic error/warning highlighting (in-code).

• A global error console.

• A content outline for the current file.

• Code documentation.

• A command line interface (for running a system).

• Textual, user friendly result visualization (e.g. system output).

• A profiler.

Program analysis is not restricted to the (static) analysis of source code only; spec-
ifications and executions are also interesting sources of data. Moreover, a profiler
can give insight into where a program consumes most of its time or space.

Debugging

• A debugger.

• A test suite.

• Configuration/customization of an execution.

19

Chapter 2 Related Work

Tree main strategies for debugging are identified: verification with respect to spec-
ification, checking with respect to language knowledge, and filtering with respect
to the error symptom. The verification strategy compares the actual program with
some specification of the intended program, the checking strategy looks for suspi-
cious places which do not comply with some explicit knowledge of the programming
language, and the filtering strategy filters out parts of the code which cannot be re-
sponsible for the error symptom. A manual or automatic (e.g. unit tests) debugging
tool needs to support these three strategies.

More general research on the usage of some of the mentioned features in practice
exists as well[20]. First, the used development methodologies in the field of logic
programming were evaluated. It turned out that most did not use any methodology
at all, followed by agile or waterfall/specification methods. Half of the respondents
use a full-fledged IDE, but simple text or (graphical) rule editors are also used a lot.
Verification, validation, and tool support turned out be the most important hin-
drances. In addition, whilst comparing rule-based development with ‘conventional’
development, ease of debugging and tool support were also mentioned as negative
factors. On the positive side, rule based systems were judged to be better in almost
all other questioned areas. It is also identified that the main difficulty in debugging
might be due to either a lack of refined tools or the intrinsic language properties.
Moreover, moving to more standardization could lead to better tool support, as the
resources and the potential market would grow. Finally, in this light, IDEs should
also take care in supporting agile methodologies properly.

As mentioned before, debugging is especially important but also especially hard in
rule-based settings. Specific research in this area exists[21]. First, some important
intrinsic language issues are identified, mainly related to terminology, opacity, in-
terconnection, error-reporting, procedural debugging, and tool support. Next, four
related core principles are derived: interactivity, visibility, declarativity, and modu-
larization. An ideal scheme of integrated test, debug and rule creation is presented,
which is different from traditional development because test data is used through-
out editing for immediate feedback, and debugging is always available to support
rule creation and editing, even in the absence of test queries. In addition, anomaly
detection heuristics, rule base visualizations, and explorative debugging support are
suggested features. An explorative debugger is a rule browser that shows the in-
ferences as a rule enables, visualizes the logical/semantic connections between rules
and how rules work together, supports navigation along connections, allows to fur-
ther explore the inference a rule enables by digging down into the rule parts, and
is integrated into the development environment so it can be started quickly to try
out a rule as it is formulated. All these notions should allow rule based systems to
reach their full potential.

20

2.2 State of the art APL IDEs

2.2. State of the art APL IDEs

In the following list, existing IDEs for (multi) agent programming will be evaluated
in order to identify the current state of this field. Next, issues of these environments
will be discussed in order to learn what to do (and what not) in the IDE that is to
be created for the GOAL agent programming language.

2APL[22] uses an Eclipse plug-in created with Xtext: an Eclipse framework that
aids in the development of support for domain specific languages. However, this is
for editing only, as a separate execution platform exists. Supported editing features
include syntax coloring, project management, and auto-completion. Prolog is used
as an embedded knowledge representation language, and coloring for this does not
seem to be supported. Launching an agent directly from Eclipse is not possible.
Simple action logs and mental state tracing functionality (full textual history of
each step) are provided in the separate runtime platform. Plain text fields are used
to display state information there, for which sorting or filtering is not supported.

AgentFactory[23] is created as a platform with an accompanying Eclipse plug-in
that is capable of syntax coloring and simple project management. Again, a separate
execution platform is provided, which is very similar to the platform 2APL provides.
Around ten separate tabs exist from which plain text status information can be
obtained for a single agent at a time. Back-stepping through an agent’s mental
state history is possible. The debugging tool has been created in an extensible way,
allowing it to be customized to support different agent architectures, but the whole
debugger is stated to be in an ‘embryonic state’.

Jason[24] has plug-ins for Eclipse and JEdit for editing, supporting syntax high-
lighting and project management. A separate runtime environment (‘mind inspec-
tor’) is available. Most output of this environment uses a plain console, which can
be logged as well, but somewhat more advanced visualizations for each round the
agent has performed (cycle history) also exist. For example, the communication
between agents can be examined through a presentation that is similar to a (UML)
sequence diagram.

Jack[25] is a Java-based framework that provides a custom-made IDE. A separate
agent run-time is provided, but in addition, graphical tools for debugging such as
the tracing of execution plans and inter-agent message passing are also present in
the custom IDE. Creating designs and plans using an advanced graphical interface
in an UML-like fashion is possible as well. In addition, an Eclipse plug-in with basic
editing capabilities for the Plan Language has been created. Unlike most other
platforms which are open source, this is a commercial product.

21

Chapter 2 Related Work

Jadex[26] is an XML-based agent programming language. Existing XML-editing
platforms (such as Eclipse) are re-used, with a separate execution and debugging
platform. Breakpoints and a textual state history are provided in a basic manner, in
addition to a basic agent state inspector that lists the goals, plans and communica-
tion and such, without any extended capabilities like sorting or filtering. A flowchart
of the communication between the agents can be generated. Debugging can be done
whilst stepping through an agent’s cycles by using a view that shows a hierarchical
display of the currently processed actions.

JIAC[27] is a multi-agent architecture that aims at improving the ease of devel-
opment and the operation of large-scale, distributed applications. All of this is
based on the Eclipse platform. Java and XML are used for this architecture, thus
editing comes ‘for free’. Next to this platform, the ‘Graphical Monitoring Tool for
Distributed Agent Infrastructures’ (ASGARD) is provided. The ASGARD website
states that common methods such as log files, debug outputs and step-by-step exe-
cution are not appropriate for most (distributed) multi-agent systems. To this end, a
graphical method for monitoring and demonstrating these systems is provided using
live 3D visualizations in which the agents from the different systems and their com-
munications and migrations are shown. Specialized views for e.g. system load can
be created using plug-ins as well. Moreover, agent states can be visualized and ma-
nipulated in the same interface. Their research gives indications that a developer’s
overview at runtime is vastly improved by this tool.

Jess[28] is an expert system programming that is advertised as having an ad-
vanced graphical rule development environment based on Eclipse. Although not an
agent programming language, Jess is rule-based and has a mature IDE that is worth
evaluating. Its editing features include syntax highlighting, content assist, quick fix
assistance, in-code error checking and highlighting, automatic code formatting, an
outline view, parenthesis matching, online help through code-hovering, and coupling
with the Jess run-time platform for execution. In addition, a custom graphical de-
bugger is provided. In this debugger, stepping through the code is possible with
displays of the current call stack and stack frame variables. Setting breakpoints on
specific lines of code are supported as well.

Evaluation In Tab. 2.1, an overview of the features the above platforms provide can
be seen. For each platform, its development method (Open Source or commercial)
is noted. Next, the framework the IDE is based on, if any, is stated. In the editor
column, a difference is made between providing just syntax highlighting or more
advanced features like auto-completion, a source outline, etcetera. The next two
columns highlight the features of mental state inspection. The final column displays
the debugging features the platform offers to a developer. All platforms’ agents

22

2.2 State of the art APL IDEs

are based on reasoning cycles, and thus the stepping is as well; none of the AOP
platforms provide a code-based stepping mechanism.

Name IDE Editor State
inspec-
tion

State history Debugging

2APL Xtext
(Eclipse)

Advanced, but
without

KR-highlighting

Textual Per step Pausing and
stepping agents,

logging
deliberation

steps
Agent
Factory

Eclipse Basic
highlighting

Textual Per step Pausing and
stepping agents

Jason Eclipse
or JEdit

Basic
highlighting

Textual Per step,
including com-
munication
visualization

Pausing and
stepping agents,
logging states

Jack Custom-
made or
Eclipse

Advanced,
including a

graphical editor

Textual Per step,
including com-
munication
and plan

visualization

Pausing and
stepping agents,
dumping states

Jadex None
(XML
editor
of

choice)

- Textual Per step,
including com-
munication
and action
visualization

Pausing and
stepping agents

JIAC Eclipse Default
Java/XML
capabilities

Visual None 3D visualization
of agents and

their
communication,

including a
mental state

editor
Jess Eclipse Advanced N/A N/A Code stepping

integrated in
the IDE

Table 2.1.: An overview of the features of the state of the art APL IDEs

The current state of the field in relation to the guidelines discussed earlier does not
seem to be that well. For instance, as aforementioned, none of the AOP platforms
provide any way of debugging programs in relation to the actual code. Moreover,
with the exception of JIAC, mental states are only presented through plain text

23

Chapter 2 Related Work

fields that have no advanced features, making them especially hard to use when
large numbers of objects are present in a state. In many cases, the code editor is
not up-to-date either, with features such as auto-completion missing. In addition,
the execution platform or state inspection is usually separated from the editing
environment. This does not only mean that a different interface is created every
time, but a large amount of windows will have to be used simultaneously by a
debugging developer. Significant room for improvement thus exists. Additional
research on this subject[29], which was also used for checking the evaluations in the
previous paragraph, identifies issues in this field as well. However, as no common
ground with respect to the agent programming languages and/or architectures exists,
the IDEs are all specific to a certain framework. This scattering does not improve
the usability of the agent programming platform as a whole; a user has to use a
different environment for each language.

A similar development has taken place in the field of Prolog programming, in which
many different styles and thus IDEs exist. Some of these IDEs are noticeably more
evolved, with for instance ProClipse[30] and ASPIDE standing out. Although dif-
ferent ‘Prolog flavors’ exist, they still have their common grounds, which can be
said for agent programming as well. Thus, the diversity of the languages should not
be impairing. Instead, it motivates this and future work even more, as improve-
ments in one language in the field will almost certainly motivate and inspire others
to improve as well. In addition, taking the existence of these common ground into
account in advance, steps can be taken in order to allow the whole field to benefit
from improvements in a specific language. No one in the field has fully covered all
aspects of a modern IDE yet, and the whole field might improve by the creation of
a mature agent programming IDE.

2.3. Prototype

As there is insufficient previous work on the development of an agent programming
IDE available, a prototype of a GOAL plug-in was created for NetBeans in order
to increase the understanding of the requirements for such a plug-in. NetBeans was
chosen as the target platform here because of personal experience with it. In this
section, its implementation will be explained shortly, after which the learned lessons
will be discussed. It has to be noted that nearly no changes to the GOAL core itself
were made for this prototype, in the sense that the existing classes before making
the plug-in were not modified.

Implementation To register the plug-in, NetBeans uses a module manifest. This
file determines the plug-in’s identification (including a version number) and links
to the ‘layer file’: an XML file that registers the different functionalities of the
plug-in. For instance, for each supported file type, a node in the layer file exists,

24

2.3 Prototype

providing an image and linking to a specific Java class. This Java class, in turn, can
contain a variety of annotations that specify additional options, for instance which
file to use as a template when creating a new file of that type. NetBeans facilitates
many functionalities automatically by providing classes to extend to. For instance,
the class that provides an editor for MAS files just contains two functions: one
that returns the class responsible for transforming code parts of a specific type to a
category NetBeans can understand (for coloring) and one that sets a human-readable
name for the file type.
To provide syntax highlighting automatically, NetBeans requires a lexer. A lexer is
a class that translates the raw code input to tokens of a specific type, which can
then be used by a parser to recognize their structure. This process will be explained
in more detail in chapter 4. NetBeans only passes the actual content of the agent’s
program code to the lexer. However, the GOAL lexer requires the actual file as
its input in order to resolve all dependencies properly. Thus, a system was put in
place that created temporary files for the input that was to be lexed. In addition,
more custom code was required to force NetBeans to re-color a file entirely at all
times, as the default is to only re-color the currently edited line. However, due to
the KR-sections (see sec. 1.1), this is impossible; one cannot know if we are in a
KR-section at the current line or not.
At this early and initial prototypical stage of development, we did not modify the
GOAL platform. Therefore, the GOAL lexer could not be used on its own, as re-
quired by NetBeans, because the GOAL parser decided which lexer to use at what
time in order to use a different lexer for the KR sections. As different KR languages
can be used within GOAL, the parsing infrastructure for these sections is separated
from the GOAL constructs themselves. This process had to be imitated in the Net-
Beans plug-in by creating a new lexer that deferred its tasks to the specific KR lexer
at the right moments itself. However, as a lexer does not know the structure of the
tokens it recognizes, this had to be done on a low level by manually recognizing
the keywords that initiate such a section, and then counting brackets in order to
determine when to end the section. In addition, as the lexers partially contained
the same type of tokens (e.g. single characters like brackets and arithmetic opera-
tors) but with different numeric identifiers, even more manual implementation was
required in order to separate those numeric identifiers properly. However, after all
of this was done, support for the basic editing of all related file types in NetBeans
was created.
Advanced features like copying the indentation of the previous line when going to
the next, folding blocks of code delimited by curly brackets, highlighting matching
bracket pairs, and highlighting occurrences of the currently selected word in the rest
of the code were quickly implemented by using default NetBeans features as well.
However, showing possible syntactic or semantic errors and warnings to the user was
more challenging. First of all, the GOAL core would only output those messages
as plain text, requiring the plug-in to parse that text into the required objects
by NetBeans manually. Moreover, NetBeans required a start and end position for

25

Chapter 2 Related Work

these messages that is based on the position of the related code in the file, starting
from the beginning. However, as GOAL error messages just provide a line number
and a character position on that line, this had to be translated into the character
position relative to the entire document in the plug-in. External files like modules
and knowledge bases were a problem within this structure. A single module or base
can be used by multiple agents, but its semantic validity depends on the context
provided by a specific agent. When editing such an external file, NetBeans requests
the feedback for that file individually. However, the GOAL core did not support
either semantic or syntactic validations of such files separately, as this was integrated
in the feedback for a specific agent. To support this, more manual code was added
that embedded the external module in an empty agent file in order to provide basic
parsing. Moreover, an action was added that could use a specific agent file for this
process, e.g. selecting a custom agent file instead of the default empty agent file,
distilling the relevant feedback for the specific external file.
Auto-completion was added as well by storing the content of all tokens a lexer
encountered in a set, whilst manually checking if the type of the token is relevant
for the auto-completion (brackets are not, for example). The default tokens (e.g.
keywords) present in the lexer were added to this set as well, together with the KR
keywords (encoded manually within the plug-in for Prolog). This provided context-
insensitive auto-completion for individual files that was refreshed completely on each
edit of the relevant file.
Finally, support for running a system was added as well. In NetBeans, the run action
is specific to an entire project by default. To create an implementation quickly, a
GOAL project was restricted to having a single MAS file with the same name as
the project, which would allow the file to be located easily based on the project.
As a console is provided by default by NetBeans, the run action only started a
new Java process that executed the command-line runner from the GOAL core.
In a similar fashion, an action that launched the ‘current’ GOAL IDE was also
provided, which would automatically run the specified file. Specifying breakpoints
was made possible as well by implementing custom annotations within NetBeans.
Implementing a custom annotation can be done within a few lines of code, but
the same mapping problem from a character index to a line number and character
position as mentioned before had to be solved here as well. When a project was
debugged, all annotations in all files within the projects were serialized in a single
string that was passed on to the GOAL core, to be decoded there into the relevant
breakpoint objects again. Support for manually executing external SWI Prolog files
was added as well by adding a field in NetBeans’ preferences in order to obtain the
path to a SWI Prolog executable, which could then be used in a similar fashion to
creating a GOAL (Java) process.
Thus, in summary, the prototype allows a user to edit GOAL files within the Net-
Beans project structure, allowing a single MAS file within one project, but support-
ing all other file types (including SWI Prolog) as well. Advanced editing features like
automatic indentation, code folding, bracket matching, occurrence highlighting, and

26

2.3 Prototype

in-code errors/warnings were added as well. Finally, facilities for running a MAS
through a command-line interface or the already existing GOAL IDE were added,
including support for breakpoints. An example of the prototype’s interface is shown
in Fig. 2.1. The navigator is empty as support for a content outline was not added.

Figure 2.1.: The interface of the plug-in prototype created in NetBeans

Lessons learned The development of this prototype was a dynamic process, mainly
tested by myself and a few fellow master students. First of all, it became clear that
implementing such a plug-in in a maintainable way without changing any of the
existing GOAL functionalities is not possible. Quite a few ad hoc solutions like the
creation of temporary files for syntax highlighting, the manual switching between
lexers, embedding module files, and linking the project to a single MAS file were
used. This resulted in many assumptions about GOAL itself being hard-coded in the

27

Chapter 2 Related Work

plug-in, like which keywords indicate the start of a KR section. Thus, changes in the
GOAL core are required for all of the mentioned issues. These required changes only
became evident during the development of the prototype, which highlights one of
the benefits of this effort. Thus, careful design of the plug-in itself and the resulting
changes to GOAL is needed in order to create a reliable system.
Moreover, due to the design of the syntax highlighting and accompanying auto-
completion, the editor’s performance was not that good, especially for large files.
On each edit, the event NetBeans generates for the current line was redirected to
an event for the entire content, which had to be saved to a file first. On each of
these events, all encountered tokens and default keywords were saved to a set for the
auto-completion, and the plain text output from the GOAL core about the errors
and warnings had to be parsed into objects, continuously translating string indexes
based on the whole document into line numbers and column positions (or the other
way around). As this process was too slow to be executed after each edit, it was
continuously deferred by a third of a second between all edits, resulting in an update
only when the user had not done anything for that amount of time, which could still
possibly freeze the editor for a short amount of time at that moment. This does not
result in a very convenient editing environment.
Another issue that quickly became evident was the large amount of windows that
could be open when running a system. For instance, NetBeans, the GOAL IDE
(runtime), and the interface for an environment could be running all together, re-
sulting in tedious toggling between three large windows. In NetBeans, multiple files
can be open as well, which together with multiple tabs per agent in the GOAL IDE
result in a very large amount of graphical interfaces for a user.
However, some solid foundations were created, like the passing of breakpoints to
the GOAL core. In addition, important lessons about the parsing structure of an
IDE and its performance were learned, allowing a proper design to be made in the
future. Moreover, it became clear that it is not very difficult to implement editing
features in a platform like NetBeans. However, it is difficult to do this in a reliable
and maintainable way.

28

3. Plug-in Development Framework

The two major IDEs for Java development are Eclipse and NetBeans. As GOAL
itself is written in Java, these IDEs are logical options, as opposed to a Visual Studio
plug-in for example. A quick prototype of the plug-in was developed with NetBeans
as well, although most other agent platforms are based on Eclipse. Moreover, several
scientific papers based on Eclipse and plug-ins for it can be found, whilst nearly none
exist for NetBeans. Additionally, students use Eclipse in the start of their first year
for the Java programming course, and other agent tools have plug-ins for Eclipse
as well, which makes future integration with such tools more easy. Thus, based
on experiences with NetBeans, the scientific foundation of Eclipse, Eclipse’s usage
within the university, and its use by other agent tools, the choice was made to use
Eclipse as the platform for our plug-in. The internals of Eclipse will be discussed in
the next section, after which a framework for our plug-in will be defined.

3.1. Foundation

The structure of the Eclipse platform is illustrated in Fig. 3.1. The platform is
based on an open architecture in which each plug-in can focus on a specific area,
adding new functionalities without impact to other tools. A common workbench
is used to integrate the tools from the end user’s point of view. Tools can be
plugged into this workbench by using predefined hooks called extension points. The
Eclipse platform itself defines some of these hooks, but each plug-in can define their
own hooks for other plug-ins to use as well, creating a layered system of plug-ins.
This structure provides users with a common way to work with the tools, whilst
keeping developers away from integration issues. The use of these extension points
is discovered dynamically through use of the OSGi framework: a widely used Java
service platform that implements a complete and dynamic component model. This
framework allows different Java components to be installed, started, stopped, and
uninstalled without requiring a restart of the program, e.g. life cycle management.

The Eclipse workspace also defines a common way for managing resources like
projects, files, and folders. Moreover, for building user interfaces, the workbench
makes use of the SWT and JFace toolkits. SWT is a widget toolkit that forms an
alternative to Java’s AWT or Swing toolkits by using a system’s native GUI libraries,
creating a largely unique implementation for each platform. SWT was originally cre-
ated by IBM, but is currently maintained by Eclipse, although it is used in several

29

Chapter 3 Plug-in Development Framework

Figure 3.1.: An overview of the Eclipse Platform

other projects as well. JFace is a toolkit within the Eclipse project that provides
helper classes for development with SWT based on the model-view-controller archi-
tecture. Finally, separate foundations for a help system, team support (managing
and versioning resources), and debug support are embedded.

3.2. Language support framework

Several frameworks that provide support for implementing a language-supporting
plug-in for Eclipse exist, all having their own advantages and disadvantages. These
frameworks are all aimed at reducing the effort needed to implement such a plug-
in by abstracting and thus standardizing parts of the Eclipse core. Four of these
frameworks are currently available: IMP, Xtext, Spoofax, and DLTK. Based on our
requirements, one of these will be selected, as the framework will need to support the
implementation of all desired features. Moreover, proper developer documentation
and example projects must be available, in order to actually reduce the required
effort and increase the robustness of our implementation. First, these frameworks
will be discussed shortly. Next, they will be compared with each other in order to
select the framework that is to be used for our plug-in.

IMP1 is a framework intended to "radically simplify the creation of an IDE". Many
templates (‘meta tools’) are provided in which only a few customizations have to be

1http://www.eclipse.org/imp/

30

3.2 Language support framework

applied in order to get basic editing features working with any kind of parser. IMP
has been around since early 2009, but the latest version was from early 2010; a lot
of the mentioned features are not (fully) implemented yet. For example, only the
LPG grammar language is actively supported, which is not a widely used language.
There is nearly no documentation available. Moreover, at the time of writing this
thesis, the project has even been archived, resulting in very few recent users of this
framework.

Xtext2 is a framework designed for domain-specific languages. Only a grammar
in their own grammar language is required in order to create a full-fledged editing
environment in Eclipse. This grammar is used to automatically generate ANTLR
parsers and Java classes for the plug-in to use. ANTLR is a very powerful, versatile,
and widely used parser generator. Xtext has been around since 2009, and is being
actively developed. Xtext has quite a large amount of very specific languages that
have been developed with it, usually Java extensions. Extensive documentation is
available on their website.

Spoofax3 is similar to Xtext, as it is also designed to create a full-fledged editor
for domain-specific languages based on a grammar in their own grammar language.
The Spoofax framework is based on the IMP framework, and developed at the TU
Delft. Its first version was released at the end of 2011, and its latest version is
from early 2013. Compared to other frameworks, the user base of Spoofax is small.
A Wiki is available that contains a highlight of the features of Spoofax and some
example projects.

DLTK4 is somewhat similar to IMP, as this Dynamic Languages Toolkit platform
is also an Eclipse framework intended to simplify extending the Eclipse IDE with
new languages. However, instead of working with any parser, DLTK focuses on
dynamic languages specifically, such as PHP, Perl, etcetera. DLTK has been around
since 2007, and is still being actively developed and used. For instance, the de
facto Eclipse PHP, Perl and Ruby on Rails plug-ins are all based on DLTK. A
Wiki containing several tutorials is available, providing an example project based
on supporting Python that makes use of ANTLR parsers as well.

Comparison Xtext and Spoofax are both designed for domain-specific languages.
For both frameworks, a specific grammar language must be used, of which there are
no examples for languages like Java or Prolog available. In addition, neither actively
support embedded languages (the KR sections in GOAL files). Both frameworks,

2http://www.eclipse.org/Xtext/
3http://strategoxt.org/Spoofax/
4http://www.eclipse.org/dltk/

31

Chapter 3 Plug-in Development Framework

although Xtext especially, are focused on languages that are an abstraction of Java
code, as many options to for example automatically compile with Java exist, and
the examples are based on these kinds of languages as well. Finally, neither frame-
works contain an explicit debugging infrastructure, although this is listed as a future
feature for Spoofax, and Xtext contains support for breakpoints.
IMP is advertised as a framework for any kind of language. However, although not
explicitly forcing a certain parser to be used, only the LPG grammar language is
currently supported, which is not an industry standard, and there is no prospect of
any future development. Moreover, the lack of documentation and example projects
is an issue. Finally, IMP might be targeted at a too general set of programming
languages, and not the framework that will yield the most efficient development
process in our case. In other words, we might benefit from a framework that contains
more abstraction or standardization than IMP does.
Finally, the DLTK framework is catered to dynamic programming languages. Sim-
ilar to the idea behind IMP, no specific grammar language is required, allowing
the generation of a full-fledged editor quickly. In addition, being catered to dy-
namic languages, process like compilation, interpretation, and even debugging are
inherently supported as well. However, in order to fully use all of these features,
a mapping of an existing grammar into a specific structure must be provided. It
is not strictly required to use this structure, but features like the content outline
and auto-completion depend on it. This project is around for the longest, and is
still actively developed and used by some large projects. DLTK is also included by
default in some Eclipse builds. In addition, DLTK provides a debugging framework
that is based on the widely-used DBGP protocol.
An overview of the evaluation of each framework is presented in Tab. 3.1.
In conclusion, the DLTK framework seems the most suitable candidate for the de-
velopment of a GOAL plug-in for Eclipse. It is catered to programming languages
similar to GOAL, and is mature, widely used, actively developed, and properly
documented. In addition, a large debugging framework is provided.

32

3.2 Language support framework

Framework IMP Xtext Spoofax DLTK
Target
group

Any
language

DSLs DSLs Dynamic
languages

Public
development

2009-2010 2009-
current

2011-2013 2007-
current

Grammar
language

Any (LPG
actively

supported)

Xtext SDF Any
(ANTLR
examples)

Editor
framework

Yes Yes Yes Yes

Debugger
framework

No Basic
(break-
points)

No (in de-
velopment)

Yes

User base Average Large
(DSLs)

Small Large

Documents Poor (nearly
none)

Very good Good (no
tutorials)

Very good

Table 3.1.: A comparison of the available language support frameworks

33

4. Grammars for Agent
Programming

In this section, a short introduction of the process of converting a programing lan-
guage into a form that is useable for execution is given. Next, the actual imple-
mentation that has been created will be presented. Finally, the error reporting is
discussed.

4.1. Overview

When implementing a programming language, an application is required that can
read the language and identify the elements in the language. Broadly speaking,
a language is a set of sentences that are made up of phrases, that are in turn
made up of phrases existing of either sub-phrases or vocabulary symbols. To react
appropriately, an interpreter (an application computing or executing sentences) has
to identify and differentiate between these components, which is generally called
‘recognition’.

Programs that do this are called ‘parsers’ or ‘syntax analyzers’. To specify the rules
of a language, or the syntax, a grammar is required. A grammar is a set of rules
expressing the language’s structure. Parsing is usually broken down into two distinct
stages. The first task consists of grouping characters into words or symbols (tokens),
which is called ‘lexical analysis’, ‘tokenizing’, or simply ‘lexing’. The tokens that are
generated by a lexer are composed of a token type identifying the lexical structure
and the matching text. These tokens are used for the second parsing stage, which
mainly consists of building a ‘syntax tree’ (or ‘parse tree’) that records how the
structure of the input was recognized. In such a tree, the leaves are always the
input tokens, identified by phrase names in the elements above, increasing in the
level of abstraction towards the root node. An example of such a tree is shown in
Fig. 4.1 (for a .mas2g file in this case).

We use a parser that is based on ‘recursive descent’: a collection of recursive rules
that starts at the root of a parse tree, proceeding towards the leaves (left to right).
In general, this is also called ‘top-down parsing’. Bottom-up parsing also exists,
which involves locating the most basic elements, then the elements containing those
elements, etcetera, which is also known as ‘shift-reduce parsing’.

35

Chapter 4 Grammars for Agent Programming

Figure 4.1.: Part of a parse tree

When facing alternatives in this process, ‘parsing decisions’ or even ‘parsing predic-
tions’ will have to be made. This is typically done by using ‘lookahead’: looking
at one or more subsequent tokens to decide which alternative will succeed, which
is more efficient than simply backtracking at every mistake. However, ambiguities
(like the famous ‘you cannot put too much water into a nuclear reactor’) can still
cause problems. Syntax should be designed to be unambiguous, but when ambigu-
ities occur usually the first valid alternative is chosen as the intended one, which
relates to the derivation issues that exist in context-free grammars in general.
When a valid syntax tree has been built, it is up to the application to use it.
For GOAL, for example, Java classes will have to be created that correspond with
the given data, like the IfThenRule class (and its children). This usually involves
‘walking’ the tree, for which two main mechanisms exist. The first one is the ‘listener
pattern’, in which the tree is visited in a depth-first pattern, firing an event that is
to be handled by the program when visiting a node. However, when control over the
walk itself is required, the ‘visitor pattern’ can be used. When using this pattern,
instead of firing events, stepping to another node has to be done manually. This has
the advantage of being able to use properties of children in the parent node (like
multiplying two numbers in a multiplication for example).
Error reporting and recovery (e.g. dealing with ungrammatical sentences) is very
important in all steps of this entire parsing process. Simple examples of this are
single-token deletion: pretending an extraneous token is not there and single-token
insertion: pretending a required but missing token is there. Even ‘guessing’ the

36

4.2 Implementation

appropriate token type when a type could not be defined is possible. Much more
advanced error recovery algorithms exist, but these will not be discussed here.
To simplify the implementation of languages, so called ‘parser generators’ exist.
Parser generators are tools that create a parser (and optionally a lexer) from a
grammar. Many of these tools exist, all having different lexing and parsing algo-
rithms, input notations, output languages, categorizations, IDEs, licenses, etcetera.
For GOAL, grammars were already written in ANTLRv3. Only recently, in Jan-
uary 2014, the next version of ANTLR has been released: ANTLRv4. ANTLRv4
introduces a new parsing technology (ALL(*)) that performs grammar analysis dy-
namically at runtime, which in practice decouples the grammars from the underlying
parsing strategy. Tree construction and walking has been automated as well, decou-
pling the grammar itself from the processing of the eventual syntax tree, resulting
in a more powerful and easier to learn platform that comes with a dedicated IDE
(ANTLRWorks) and book[34]. Because of the existing grammars, experience with
ANTLR, and the many improvements ANTLRv4 provides, it was quickly decided
to use ANTLRv4 for the construction of the whole ‘parser stack’: a lexer, parser,
and visitor interface in order to eventually use a custom-made visitor class that will
translate source code into the Java objects that are used in the GOAL core.

4.2. Implementation

The GOAL language is constructed in such a way that it contains so called ‘language
islands’: pieces of code (regions) in another (third-party) programming language
that are embedded in sections of the GOAL code, which makes GOAL an ‘islands
language’. A GOAL file can theoretically use any valid knowledge representation
language (KR-language), which is usually SWI-Prolog, in these specific sections.
Another example of this is JavaDoc inside Java programs.
Modern IDEs like NetBeans and Eclipse, exclusively use a lexer (tokenizer) in order
to do syntax highlighting. This is logical, as the (much more) expensive tree-building
and tree-walking processes of a parser do not have to be performed to simply identify
what kind of tokens are present. Lexing can be done very swiftly even when the user
is still typing, whilst parsing might be done only when the user is finished (or at
some predefined interval). Moreover, in the current GOAL IDE, a separate grammar
(for JEdit) is used to facilitate the token highlighting, but such a duplicate solution
is not maintainable; it was not uncommon that highlighting errors were present even
though the parsing process went fine. Using the lexer itself ensures the correctness
of the highlighting.
The decision of which tree walking method to use was relatively easy to make,
as the way in which GOAL is structured is very inherent with the visitor pat-
tern. For instance, ‘listening’ to the event of visiting a pre-condition would be
useless without knowing to which action-specification object that condition actu-
ally belongs. This would be very hard in the listener-pattern, as in that case a

37

Chapter 4 Grammars for Agent Programming

local ActionSpecification object would have to be stored for a child (e.g. a pre-
condition) to ‘add to’ later on. By using a visitor pattern, these children can be
‘retrieved’ instantly by visiting the required children in the required order directly,
thus avoiding the necessity of temporarily storing many ‘parent objects’ in the class.
In the GOAL ANTLRv3 grammars, there is a tight coupling between the GOAL
and KR (Prolog) parser. The parser makes explicit decisions about which lexer to
use in specific situations. However, this breaks the whole idea of separating this pro-
cess into two independent steps. ANTLRv4 provides explicit support for language
islands through lexical modes, which allow a lexer to switch between the differ-
ent languages itself, as required for proper syntax highlighting. In addition, in the
ANTLRv3 grammars, all the tree-building and tree-walking code was incorporated
in the grammar definitions themselves, resulting in very illegible and highly coupled
grammars. Thus, to improve the maintainability of the grammar, that code will
have to be moved into the ANTLRv4 visitor structure.
Besides a grammar for the GOAL language itself, which includes goal and mod2g
files, grammars for a MAS file (mas2g) and unit test file (test2g) exist. In the
next part, the created grammars will be discussed briefly. However, this does not
contain the grammar for the unit tests, as these were created in another project
after the other grammars were finished; they were thus based on these grammars.
The corresponding full ANTLRv4 grammars can be found in Appendix B.

MAS2G These files define a multi-agent system, and are composed of three sec-
tions:

• which environment to (possibly) use
• which agent (.goal) files to use
• when to launch agents and optionally connect them to the environment.

Redesigning this grammar was straight forward, as the original ANTLRv3 grammar
did not need to be changed significantly. However, as mentioned before, the appli-
cation specific code needed to be removed from that grammar. When all lexer and
parser rules were recreated in a single g4 file, ANTLRv4 was used to generate Java
classes for both the lexer and the parser. Moreover, as mentioned in the previous
section, a visitor interface was created. Implementing this visitor is also a very im-
portant step, as the actual translation to useable objects by the GOAL core and the
corresponding error handling has to be implemented there. In such a visitor, a func-
tion can (or has to) be implemented for each of the parser rules. Traversing these
functions, eventually, the actual lexer tokens will be reached, ‘closing’ that branch
of the tree. Creating the visitor is a tedious process requiring much understanding
of both the grammar itself and the definitions and requirements of the Java objects
that need to be created, whilst also having to take possible errors made by the user
into account. However, the split of lexing, parsing, and object creation into three
different steps helps a lot in successfully completing this process.

38

4.2 Implementation

GOAL The process for .goal files is nearly identical, with the exception of the afore-
mentioned ‘KR-sections’ (language islands). For this, a special feature of ANTRLv4
was put to use: lexing modes. These modes makes sure that within the limits of
the initial left and matching final right curly brackets, indicating these embedded
sections, all contents are matched to a single collection of characters by entering
a special lexing mode. This needed some extra Java code though, because unlike
other island languages, the curly brackets may also occur within the block itself.
Thus, the curly brackets are counted in order to determine when a closing bracket
matching the opening bracket is encountered, after which the special lexing mode
is dropped. Similar rules are applied for statements that use KR sections within
regular brackets. Of course, when a bracket is missing, the lexer mode will not be
correct at a certain point. However, in all circumstances, a lexer encountering tokens
it does not recognize will generate recognition errors, allowing the user to fix the
problem. In the corresponding visitor for GOAL files, these sections are put into a
stream that is passed onto any corresponding parser that is registered for the KR
language in GOAL, which is properly arranged through Java interfaces, allowing
any KR implementation to be supported easily.

Due to the experience in creating the grammar and visitor for MAS2G files, im-
plementing these for GOAL files, although having a much larger grammar, was
doable after dealing with the challenges because of the language islands. However,
a backwards incompatible change had to be made anyway, as the syntax of the
send predicate was incompatible with the new ‘bracket-matching process’. In the
old syntax, a send-action could look like this: send(allother,hello,me(agent)).
However, the ‘all other’ indicator is part of the GOAL grammar, and not a KR-
specific predicate, but is within the brackets of the send predicate. In the new
grammar, those brackets directly correspond to the KR section, forcing a change to:
allother.send(hello,me(agent)). Although creating a backward incompatibil-
ity, this change was not completely undesirable, as a similar syntax already existed
for working with mental models of other agents (e.g. agent.bel(...)), creating
more consistency in the grammar as a whole.

KR As mentioned before, GOAL files have KR sections that contain code in an-
other programming language like SWI Prolog. GOAL even uses a customized subset
of SWI Prolog for compatibility reasons, written in ANTLRv3. This complicated
grammar was not ported to ANTLRv4 for several reasons. First of all, an external
plug-in that is based on DLTK as well, ProDT1, is installed together with our plug-
in by default. The syntax coloring of this plug-in is used within our own plug-in,
but the GOAL parser uses the mentioned ANTLRv3 grammar, and is thus also
responsible for generating any syntactic or semantic feedback. Moreover, ProDT
provides convenient functionalities that allow a user to execute an (external) Prolog
file for example. However, in order to not highlight any non-supported predicates,

1http://prodevtools.sourceforge.net/

39

Chapter 4 Grammars for Agent Programming

and to not an extra dependency for a user to download as ProDT was based on a
previous version of ProDT, a custom build of the plug-in was created. In general,
support for any other KR language can be added quickly when an Eclipse plug-in
for that language exists. The syntax coloring process is not specific to DLTK, and
thus, the link of the syntax coloring with ProDT for example can be recreated for
any other Eclipse-based language plug-in easily. Additional features like running an
external KR file separately are not required, but do have an added value to the user
when present of course, and the parsing itself is eventually still based on the GOAL
parser. Another reason for not upgrading the Prolog grammar is the fact that it will
not make use of any of the new features in ANTLRv4, like language islands, which
the required effort not worthwhile.

Requirement: A parsing structure for all file types (1)
Requirement: Dynamic support for embedded KR languages (2)

4.3. Error reporting

When creating new grammars, first of all, one has to make sure not to break the
compatibility with the existing specifications. To this end, a set of files known to
be error-free was used in order to test the grammars. However, this approach also
had a downside. For instance, unchecked nullpointers in the visitors could occur
more easily than expected when making mistakes in to-be-parsed files. Handling
all of these properly without making an editor crash is of course a necessity for a
proper user experience. Other small issues, like only allowing a .jar extension for
environment files whilst other extensions should be allowed as well, indicated that
the current set of test files was insufficient. More examples of more different code
files should be available, including files which deliberately contain errors.
The error messages given are also vital for allowing a user to identify the actual
error. However, these messages can be generated at multiple levels. First of all,
both the lexer and parser generated by ANTLR have their own error reporting.
Next, the aforementioned visitors can cause exceptions that need to be handled as
well. Finally, on a semantic instead of syntactic level, so-called validators exist in
the GOAL core that check if a used predicate has been defined for example. In
order to create a uniform system, the WalkerInterface was created. This interface
in turn extends the ANTLRErrorListener interface. All created visitors implement
this interface, which ensures that all errors and warnings can be obtained from two
corresponding functions. These functions require a list of ValidatorError and
ValidatorWarning objects to be returned, which are classes with general support
for creating messages based on strings (error messages) that are defined in an ex-
ternal (text) file. In addition, the WalkerHelper class was created to aid in this
process, resulting in the following example of a function call in the GOAL visitor:
walkerhelper.report(new ValidatorError(GOALError.MODULE_MISSING_NAME,

40

4.3 Error reporting

walkerhelper.getPosition())). This piece of code reports an error about a mod-
ule not having a name, together with the corresponding position in the source
code. The GOALError constants correspond with a defined error message, as do
GOALWarning constants. The same message classes are used within the validators,
for which an abstract Validator class similar to the WalkerInterface exists, en-
suring a consistent system of error and warning messages, of which the content has
all been defined in one place. Currently, only the messages from ANTLR are taken
as-is, as customizing them would involve a large amount of work, whilst those error
messages are already well structured and informative.

41

5. Editing Framework
In this chapter, using the Eclipse plug-in framework and DLTK, the implementation
of the skeleton for the GOAL plug-in itself and the editor will be discussed. To-
gether with the next chapter, which discusses running and debugging a multi-agent
system: the core of the implementation. The parts are ordered in such a way that
one could follow these steps in order to create an Eclipse plug-in for another (agent)
programming language. This is also one of the main contributions of these chapters;
although some small and mostly object-oriented sources are available online, there
is very little precedence for creating such a full-fledged plug-in. Online sources like
the DLTK wiki1, IBM developer works2, and a few other websites exist, but are out-
dated, incomplete, or not focused on supporting a programming language. There
is especially little documentation available for constructing a debugger. Existing
open-source projects using DLTK do exist, ProDT3 and Freemarker4 for example,
but these large code bases are not well documented by either external or in-code doc-
umentation, requiring a reverse engineering effort, the possible differences between
requirements aside. Here, we try to discuss all aspects of creating a full-fledged IDE
completely, using small parts of the mentioned sources and experience by trial-and-
error in order to set the standard for future IDE developers. Thus, these chapters
can be read as an implementation guide. And although focused on GOAL, nearly
everything is generally applicable, especially for other agent or logic-based program-
ming languages.
In Fig. 5.1, the general structure of an IDE is illustrated[12]. In this chapter, the
implementation of the ‘left half’ of the development environment will be discussed:
editing files in a structured way with optional customization and other user interface
tools. In the next chapter, the ‘right half’ of the development environment and the
accompanying adaption part of the run-time environment will be discussed. The
existing GOAL core forms the run-time application.

5.1. Registering the plug-in

In this section, the first step is to create the plug-in itself will be discussed. First,
we have to make sure Eclipse recognizes our plug-in, and loads the necessary com-

1http://wiki.eclipse.org/DLTK
2http://www.ibm.com/developerworks/library/os-ecplug
3http://prodevtools.sourceforge.net/
4https://github.com/angelozerr/Freemarker-Eclipse-DLTK

43

Chapter 5 Editing Framework

Figure 5.1.: The general structure of an IDE

ponents. Next, we ensure that files of types relevant to GOAL are processed by our
plug-in, and allow a user to create new files as well.

Nature An Eclipse plug-in is loaded through a single XML file: the manifest. This
file contains definitions of so called extension points, which are links to the imple-
mentation of specific functionality. All extension points Eclipse defines and their cor-
responding elements are available in a central database online5. The first extension
point any Eclipse plug-in must define is org.eclipse.core.resources.natures,
which defines the so called nature of the plug-in. A nature uniquely identifies a
certain plug-in, and is often used to bind different kinds of functionalities within
one plug-in. For example, a default icon-image can be provided through the
org.eclipse.ui.ide.projectNatureImages by giving the path to the image and
the nature to link to. More importantly, projects within Eclipse are assigned a cer-
tain nature, specifying the plug-in that should handle everything within the project.
A nature is actually a Java class: GoalNature. This class allows DLTK to hook
directly into the project. Besides this class, there is also the Activator class, which
acts as the main class of the plug-in, being initialized when the plug-in is loaded by
Eclipse. This class automatically allows a plug-in to save its own preferences and log
files, and provides different functionalities such as logging and string externalization.

5 http://help.eclipse.org/kepler/nav/2_1

44

. 5.1 Registering the plug-in

Update center After giving the plug-in a unique identifier, the user needs to be
able to install and update the plug-in. For this, first, a so-called ‘feature’ must
be created: a collection of plug-ins. This is needed because functionalities can be
spread over different plug-ins; a feature combines these into a single package for an
end-user to use. Again, this is done by using a single XML file. Such a feature can
then be integrated into an ‘update site’, which is again a single XML file. This file
has to be available somewhere on the internet, and with the link to that file, the
user will be able to download the feature, and thus the related plug-in(s). Because
the site’s XML also contains a version number for a feature, Eclipse will also be
able to detect when the feature has been updated. The version number is updated
automatically when building the update site, a process that also makes sure the
required files are available (compressed into JAR files). For GOAL, the part of the
SVN repository on which the update site’s project resides has been made public,
allowing updates to be pushed by simply doing an SVN commit.

Content type As we want to provide a plug-in that is capable of editing files,
the next step to take is linking certain file extensions to the plug-in. This can be
done using the org.eclipse.core.contenttype.contentTypes extension point. It
should be noted that only one extension point of the same type can be provided per
plug-in; we cannot split the different extensions (i.e. mas2g and goal) into different
extension points and thus different IDs. Optionally, a content describer can be used
in order to match files that do not have a certain extension to the plug-in anyway
by their content. For GOAL files, however, this is difficult, as a file can have a
lot of different formats; no convenient header (as with Python) or anything exists.
In addition, the required effort of implementing such a feature is not in balance
with respect to the size of the problem; files without extensions are rarely used, and
giving them a valid extension is simple. Thus, for GOAL files, this feature was not
implemented.

Language toolkit After these initializations of the Eclipse plug-in basics, we move
on to the initialization of some of the DLTK basics. The first required extension
point is org.eclipse.dltk.core.language, which specifies a so called language
toolkit to use: the GoalLanguageToolkit. This class links the plug-in’s nature to
the specified content-type extension point, identifying files of the given content-type
automatically and allowing our plug-in to handle them. Similarly, a toolkit for
the UI is specified through the org.eclipse.dltk.ui.language extension point
and the GoalUILanguageToolkit class. This class contains a link for the UI to
the previously specified GoalLanguageToolkit, ensuring that files identified by the
toolkit are shown in an editor that is managed by DLTK, allowing other parts of
the plug-ins to easily customize the appearance.

45

Chapter 5 Editing Framework

Wizards and files The last basic initialization is that of a project wizard, able to
create projects for users to work with. Multiple wizards can be registered through
the org.eclipse.ui.newWizards extension point. For these wizards, four abstract
classes were defined: NewGoalProject(File)Wizard and
NewGoalProject(File)WizardPage. The NewElementWizard classes are the main
entry points for registration in the extension point. They can contain multiple pages,
and provide the actual creation of a certain element (e.g. finishing the wizard). In
our case, only a single page per wizard was used. These pages provide the actual
layout of the wizards by using elements from either JFace (the Eclipse UI elements)
or the DLTK UI core (based on JFace). DLTK provides convenient elements like
StringDialogField and ComboDialogField. The titles and optional texts in the di-
alogs are abstracted in a so called message bundle using the Eclipse NLS framework,
in order to keep all custom user interface text in a central file (messages.properties).
All wizard pages contain their own validators, based on an embedded abstract class
in our abstract class, which checks the validity of the input provided by a user in
each input field. For example, the new project wizard checks if the name provided
for the project is not empty and does not yet exist.
The ‘Existing GOAL Project’ wizard is defined through the
org.eclipse.ui.importWizards, and uses the same classes as the previously men-
tioned wizards. However, this wizard is special, as it is listed under the import
option of Eclipse. This is because it facilitates importing existing GOAL projects
into Eclipse by selecting the corresponding mas2g file. The selected file is parsed, al-
lowing that file and all referenced (sub)files to be used in or copied to the workspace.
Fig. 5.2 shows a short overview of the available wizards for the GOAL plug-in.

Requirement: Managing projects composed of the supported file types (3)
Requirement: An importer for existing (old) projects (7)

Templates Templates are an additional functionality of the wizards for new files.
When creating a new file, some default code can be provided within this file. This
works through the org.eclipse.ui.editors.templates extension point, which
needs a so-called template context. This is provided through the
GoalUniversalTemplateContextType class, which contains a unique identifier for
the templates within our plug-in and a factory method to create the actual
GoalTemplateContexts. All templates are provided within an extension point in
the plug-in’s manifest, linking to our context’s identifier and providing some de-
fault content. These templates can then be used by our wizards by using the
GoalTemplateAccess class, which provides an interface to the linked template con-
text. When creating a new file, a template with a certain identifier is requested and
used to fill the contents of that file by default. It is possible for users to edit these
templates via the preference menu, which is described later in this chapter.
Of course, a design is required for these templates. Ideally, all elements provided in
the template should actually be used in the eventually complete file. Otherwise, a

46

. 5.1 Registering the plug-in

Figure 5.2.: The ‘New’ dialog in Eclipse showing the GOAL Agent Programming
category

user is forced to delete parts of a new file every time. Moreover, a new file should not
cause any errors, potentially confusing a new user. This might even need changes in
other parts, like the grammar. For example, the template for a MAS file consists of
an empty agentfiles and an empty launchpolicy section. Both are needed to run
a MAS, as one always needs to register an agent file and specify when that agent
needs to be launched. The optional environment section is not included by default;
a separate template that does include that section is used when an environment is
indicated in the dialog for a new MAS file. However, in order to not immediately
generate errors, agentfiles and launchpolicies sections are allowed to be empty
by the parser. Moreover, creating a launch policy without an according agent file or
specifying an agent file without an according launch policy does generate an error
or warning. This ensures a proper work flow for both beginning and experienced
users, not immediately scaring them off with errors or large (possibly unnecessary)
code sections, but preventing mistakes as well.

Requirement: Increased programming support through file templates ... (8
partially)

47

Chapter 5 Editing Framework

Class overview An overview of the classes that were discussed in this section is
given in Tab. 5.1. The main package for the classes in this and all other overviews
is org.eclipse.gdt. In the following section, the user interface of the plug-in will
be discussed.

Class Package Extends/Implements
GoalNature org.eclipse.dltk.core.ScriptNature
Activator org.eclipse.ui.plugin.

AbstractUIPlugin
GoalLanguageToolkit org.eclipse.dltk.core.

AbstractLanguageToolkit
GoalUILanguageToolkit ui org.eclipse.dltk.ui.

AbstractDLTKUILanguageToolkit
GoalWizardPage ui.wizard org.eclipse.jface.wizard.

WizardPage
NewProjectWizard ui.wizard org.eclipse.dltk.ui.wizards.

NewElementWizard
NewProjectWizardPage ui.wizard GoalWizardPage
ExampleProjectWizard ui.wizard org.eclipse.dltk.ui.wizards.

NewElementWizard
ExampleProjectWizardPage ui.wizard GoalWizardPage

ImportProjectWizard ui.wizard org.eclipse.dltk.ui.wizards.
NewElementWizard

ImportProjectWizardPage ui.wizard GoalWizardPage
NewGoalProjectFileWizard ui.wizard org.eclipse.dltk.ui.wizards.

NewElementWizard
NewGoalProjectFileWizardPage ui.wizard GoalWizardPage

NewAgentFileWizard ui.wizard NewGoalProjectFileWizard
NewMASFileWizard ui.wizard NewGoalProjectFileWizard

NewModuleFileWizard ui.wizard NewGoalProjectFileWizard
NewPrologFileWizard ui.wizard NewGoalProjectFileWizard
NewTestFileWizard ui.wizard NewGoalProjectFileWizard

GoalUniversalTemplate
ContextType

completion org.eclipse.dltk.ui.templates.
ScriptTemplateContextType

GoalTemplateContext completion org.eclipse.dltk.ui.templates.
ScriptTemplateContext

GoalTemplateAccess completion org.eclipse.dltk.ui.templates.
ScriptTemplateAccess

Messages org.eclipse.osgi.util.NLS
Table 5.1.: An overview of all classes discussed in this section

48

. 5.2 The interface

5.2. The interface

The interface of the Eclipse development environment is based on so called per-
spectives. A perspective defines a group of visual elements and their corresponding
positions and sizes in the Eclipse window. Perspectives also define the menus: which
actions are available in what category. In general, a perspective includes a Pack-
age Explorer, Task List, Code Outline, Problems Overview, and a large space in the
center of the screen to edit files in. Moreover, for Java for example, the File >
New menu contains options like Class, Interface, Enum, etcetera. There is also a
separate debug perspective that includes different windows and menus. All of these
perspectives are user-customizable.
Our plug-in defines a GOAL perspective, which will be discussed in the remnants
of this section.

GOAL perspective The basics of the GOAL perspective, its name and icon, are
defined through the org.eclipse.ui.perspectives extension point. One could
use the corresponding GoalPerspectiveFactory class for building the perspec-
tive in code, but through the org.eclipse.ui.perspectiveExtensions extension
point, this can more easily be done in the manifest itself. In here, the elements like
newWizardShortcut (opening the aforementioned wizards for new projects/files)
and views (content outline, console, etcetera) and their positions can be defined.
As a side note, the wizards for GOAL projects/files also include a reference to our
perspective, as the perspective will then be opened automatically after creating a
GOAL project for example. Users can also manually open the perspective first, in
order to get easy access to all of the GOAL project and file options.
The lay-out of this perspective requires careful design. Currently, it does not deviate
much from other widely used perspectives like the Java perspective, or from that of
other agent-programming plug-ins based on Eclipse. Fig. 5.3 shows what the current
GOAL perspective looks like.

5.3. Editing files

Nearly all features discussed above were implemented through the plug-in’s manifest
or classes that extend some framework class and/or link other classes together.
However, editing all possible GOAL file types need to be supported by the plug-in,
and this requires more customized code, which will be discussed in this section.

Abstract Syntax Tree In order for many DLTK specific features to work, an Ab-
stract Syntax Tree (AST) is needed. The ANTLR parser can also generate ASTs.
The ASTs that DLTK expects are different from the ASTs ANTLR generates, how-
ever, and a translation is needed from the ANTLR nodes (classes) to DLTK nodes

49

Chapter 5 Editing Framework

Figure 5.3.: The GOAL perspective

(classes). DLTK requires a tree that uses a fixed set of generic, higher-level nodes,
found in the org.eclipse.dltk.ast packages. DLTK distinguishes the following
node types:

• Declarations: arguments, field declarations, method declarations, type dec-
larations, and module declarations (used as the top-level node for a source
file).

• Literals: numerics, booleans, call arguments, call expressions, and strings.

• References: constants, types, and variables; holders of literals.

• Statements: a single statement or a block of statements.

These nodes only need to know their type, position, length, and children in order
to be used properly. All of these classes require the specification of their position
and name, and can have specific child nodes depending on their own type. It is also
possible to set some properties on these nodes, like a method being static, a variable
being a constant, etcetera. The ANTLR visitor pattern discussed earlier allows
creating a tree like this, and therefore this mechanism was used, and a new visitor
class was created, GoalSourceWalker, which visits all nodes defined in the grammar
in the same way as the GoalWalker in the GOAL core. However, instead of creating
objects from the GOAL core, classes from the DLTK AST package are created. For
example, a single GOAL file starts with a ModuleDeclaration as its main node. For
all modules in the file, a MethodDeclaration is added to that ModuleDeclaration.
As modules can have arguments, these might be added to them using the Argument
class from DLTK. This mapping process is applied to all other nodes of a GOAL file
as well, and visitors have been provided for MAS and test files. Using this pattern

50

. 5.3 Editing files

is good for the maintainability of these classes; the GOAL core itself does not need
to take any DLTK aspects into account, but changes in any of the grammars will
require the related visitor to be updated as well.

It is obvious that a mapping problem might exist here, as one might for example
argue that a module is not a method. For .goal files, the mapping looks like this:

• MethodDeclaration: fixed language constructs like modules and their sections
(e.g. goals, beliefs, etcetera).

• TypeDeclaration: single rules (e.g. if-then, forall-do, etcetera) and their sub-
parts.

Specific literals or references are also used for names and arguments. Although this
mapping is quite basic, it is sufficient for the purposes of the DLTK AST: providing
an internal structure to represent syntax information in such a way that it can
interface to convenient but non-vital features such as the source outline, search,
documentation, auto-completion, etcetera. These features do not need very detailed
information, but they do need to know the rough structure of the file, e.g. where
sections of a general type are. However, mainly because of the inherent bias to
object-oriented or imperative languages, many of the discussed node types remain
unused in this case. Prolog, for example, consists of atoms, variables, and terms,
which do not properly fit into this model.

The content outline for a file is an example of how a DLTK AST makes the
implementation of certain features much easier. To create such an outline, the
org.eclipse.dltk.core.sourceElementParsers extension point can be used, link-
ing to the GoalSourceElementParser class. This class, in turn, only links our plug-
in’s nature and the GoalSourceElementRequestor class, which only links to the
already created tree to provide all necessary functionality.

Parsing With a valid DLTK AST, by using the
org.eclipse.dltk.core.sourceParsers extension point, a ‘source parser factory’
can be defined for our nature: the GoalSourceParserFactory. This factory creates
parsers for the file types we have defined for our nature earlier, which are instances
of the GoalSourceParser class. Only one function has to be implemented in this
class: parse a source, and return the ModuleDeclaration for it (e.g. the root node
of a DLTK AST). First of all, because a plug-in can only support one set of file type,
the function looks up the file that has to be parsed, and checks its extension. For any
supported extension, .goal for example, the corresponding lexer and parser from the
GOAL core are created first. Next, using the corresponding visitor, the GOALProgram
is fetched, and then passed through the GOALProgramValidator from the GOAL
core for semantic analysis. This is done in order to get any errors/warnings from the
parser and/or the validator; they are shown in the files by using so called ‘markers’:
objects that implement Eclipse’s org.eclipse.core.resources.IMarker. These
markers are annotations of a file: for a certain line number and character range

51

Chapter 5 Editing Framework

in that line a message (of a certain severity) can be provided. Eclipse will show
these markers in the correct line in the editor, and underline the corresponding
source code according to the severity (e.g. yellow for warning, red for error). More-
over, all markers from all files are gathered in the Problems tab; an Eclipse default
overview of all markers in all files. After this error/warning gathering process, the
GoalSourceWalker is used to provide the requested DLTK ModuleDeclaration, on
which various functionalities such as auto-completion, the source outline, folding,
and more are based. For mas2g and test2g files, this process is virtually identical.

Syntax highlighting A file is colored instantly, e.g. whilst the user is typing, while
the parsing is not necessarily done directly. This is because parsing is a heavier
process than just lexing the file; a large part of the interface depends on the fact
that generating the presentation itself is lightweight and of low cost. In order to
do this, a custom editor has to be defined in the plug-in’s manifest through the
org.eclipse.ui.editors extension point. This point links to our GoalEditor
class. This class links the DLTK language toolkit to the GoalTextTools class. This
class, in turn, of which one instance is managed within the plug-in’s activator, links
to the GoalSourceViewerConfiguration class. Finally, this class contains multiple
settings for viewing a source, and is responsible for creating a GoalSourceScanner.
An instantiation of this class is used in a DLTK DefaultDamageRepairer, which is
in turn passed to a DLTK (Script)PresentationReconciler, which the
GoalSourceViewerConfiguration requests for a certain source. To the
GoalSourceScanner, a ColorManager, PreferenceStore, and TextEditor are passed.
The PreferenceStore is a map of preferences that exists per plug-in (through the
Activator). Initializing these preferences is done through the
org.eclipse.core.runtime.preferences extension point, which links to the
GoalPreferenceInitializer class. In this class, the colors for certain token types
are initialized. These token types, in turn, are defined in the IGoalColorConstants
class, that contains a set of ‘public static final’ Strings like GOAL_COMMENT,
GOAL_STRING, GOAL_KEYWORD, etcetera. In the GoalPreferenceInitializer, for
each of these constants, a default value (using Eclipse’s RGB class) is defined. More-
over, using suffixes to the named constants, preferences like ‘should the section be
bold or italic’ are also defined there.
Back to the GoalSourceScanner: in this class, first, the setRange method is called.
This passes a Document and an offset/length; a range in the document’s content
to do the syntax coloring for. However, because GOAL files contain embedded
sections that use a different lexer, parsing only a certain range of text is not pos-
sible. Thus, in the GoalSourceScanner, the whole Document is passed into a new
lexer, depending on the extension of the file that is to be lexed. Next, three other
functions have to be defined that do the actual work: nextToken (returning an
IToken: the next element in the document), getTokenOffset (the offset of the last
read token), and getTokenLength (the length of the last read token). For GOAL
files, a GOAL lexer is created in the setRange function. In the nextToken func-

52

. 5.3 Editing files

tion, the next ANTLR token is requested from the lexer. In case this token is an
embedded section (KR_BLOCK or KR_STATEMENT), that whole embedded section is
passed to the PrologCodeScanner from the ProDT extension. Whilst End-Of-File
(EOF) is not encountered by this embedded CodeScanner, calls to nextToken of the
GoalCodeScanner are forwarded to the PrologCodeScanner. When a regular GOAL
token is found, a new IToken is created, based on the lexed token from ANTLR. An
IToken has functions like isWhitespace, isEOF, and most importantly: getData.
This function requires a TextAttribute: a class from the Eclipse SWT core that
indicates if that token should be of a certain color, bold, italic, etcetera. Next, the
ANTLR token type is checked, and converted into an IGoalColorConstant. For
such a constant, the PreferenceStore is consulted to get the correct settings. Here,
the ColorManager also comes in to convert the RGB setting from the Preferences
into a Color class that is required by Eclipse’s interface. In this way, the syntax
highlighting for GOAL files has been implemented in a reliable and lightweight man-
ner. For mas2g and test2g files, the process is easier, only having to convert the
ANTLR CommonToken into an Eclipse IToken, and thus not having to deal with em-
bedded sections. Delimiting tokens such as brackets and quotes are automatically
recognized by Eclipse, and thus the code editor supports the highlighting of pairs of
such tokens by default.
This approach forces correspondence with the real grammar, and thus also the cor-
rectness of the highlighting, as only the actual lexers and their tokens are used, as
opposed to for example implementing a separate mechanism for syntax highlight-
ing, as was the case in the ‘old’ GOAL IDE. If a token is modified or removed, the
scanner will have to be edited to work again, instead of silently failing. A new token
will result in it not being highlighted, but this can easily be added when required.
A small thing that is done outside of this structure is the separation of comments
from actual code, which is required by some advanced DLTK features as discussed
in the next section. This is done by using the GoalPartitionScanner together with
the IGoalPartitions class (which contains the possible partitions). This class is
linked to the source in the aforementioned GoalTextTools class. It requires a set of
IPredicateRules: a set of rules that indicate blocks of code. In our case, these are:
EndOfLineRule (on %) and MultiLineRule (on /* .. */), which indicate that
from a percent character until the end of the line a comment is present, or every-
thing between the block comment separators. These classes originate from Eclipse’s
JFace package, and allow us to implement the separation in a few lines of code. The
comment characters are the same in all our file types, and are unlikely to change,
so this additional feature should not cause any maintenance issues.

Requirement: A code editor with proper syntax highlighting and error reporting
(4)

Requirement: Increased programming support through ... bracket highlighting ...
(8 partially)

Requirement: Improved support for program comprehension through a source
outline ... (9 partially)

53

Chapter 5 Editing Framework

Class overview An overview of the classes that were discussed in this section is
given in Tab. 5.2. The next section will discuss additional user interface features
that have been implemented in our plug-in.

Class Package Extends/Implements
GoalSourceWalker parser goal.parser.goal.

GOALParserBaseVisitor
GoalSourceParserFactory parser org.eclipse.dltk.ast.parser.

ISourceParserFactory
GoalSourceParser parser org.eclipse.dltk.ast.parser.

AbstractSourceParser
GoalSourceElementParser parser org.eclipse.dltk.core.

AbstractSourceElementParser
GoalSourceElementRequestor parser org.eclipse.dltk.compiler.

SourceElementRequestVisitor
GoalEditor editor org.eclipse.dltk.internal.ui.

editor.ScriptEditor
GoalTextTools editor org.eclipse.dltk.ui.text.

ScriptTextTools
GoalSourceViewer
Configuration

editor org.eclipse.dltk.ui.text.
ScriptSourceViewer

Configuration
GoalSourceScanner parser org.eclipse.jface.text.

rules.ITokenScanner
GoalPreferenceInitializer prefs org.eclipse.core.

runtime.preferences.
AbstractPreferenceInitializer

IGoalColorConstants editor
GoalPartitionScanner editor org.eclipse.jface.text.rules.

RuleBasedPartitionScanner
IGoalPartitions editor
Table 5.2.: An overview of all classes discussed in this section

5.4. Extra features

By using a DLTK AST, convenient features can be provided in an easy way. All of
these features, like auto-completion, code folding, and more will be discussed in this
section.

Auto-completion Eclipse provides users the possibility (with Ctrl-Space) to com-
plete or suggest pieces of code. To provide this, the

54

. 5.4 Extra features

org.eclipse.dltk.core.completionEngine extension point from the DLTK core
can be used, which specifies a certain completion engine for a nature; the
GoalCompletionEngine in our case. This class first uses the corresponding lexer to
load all known keywords into a set. The only function to implement is complete,
which passes a DLTK IModuleSource and a position and offset, for which the local
createProposal function can be called any amount of times in order to generate the
suggestions for the user. Such a proposal is a class of the type CompletionProposal,
which contains information on how to display and/or insert the completion itself. In
the createProposal function, the first thing determined is the ‘prefix’: a possible
set of characters the user wants us to complete. Next, the whole current document
is traversed (using its AST) in order to fetch all other user-created elements.

Some other classes are needed to complete this system for DLTK. First, the
org.eclipse.dltk.ui.scriptCompletionProposalComputer extension point must
be used to the GoalCompletionProposalComputer. This uses some other util-
ity classes: GoalCompletionProposalCollector, GoalCompletionProposal, and
GoalOverrideCompletionProposal. Finally, the GoalSourceViewerConfiguration
was edited in order to link to the GoalCompletionProcessor; a class that extends
override Eclipse’s default auto-completion functionality with that of DLTK.

Another type of auto-completion is automatically inserting characters, like an as-
terisk in the next line of a comment block, completing a quote, or even com-
pleting blocks of code (with regular or curly brackets). This can be done by
providing an ‘auto-edit strategy’ to the GoalSourceViewerConfiguration: the
GoalAutoEditStrategy. This class also deals with automatic indentation of code,
e.g. setting the amount of tabs correctly after a newline, which is very comfort-
able for the user. This quite complicated class deals with many situations: should
something happen after a bracket is typed, or a quote, or a newline, etcetera,
and what and where should we insert something automatically. All of this can
be fine-tuned by a user through the preferences, which are also registered in the
GoalSourceViewerConfiguration by linking to the GoalContentAssistPreference
class. Fig. 5.4 shows an example of how the auto-completion might look to a user.

Requirement: Increased programming support through ... auto-completion,
automatic indentation ... (8 partially)

Documentation When giving suggestions to the user on how to complete a certain
piece of code, it is useful to display information with each of the suggestions. For
user-created elements, this can be done by using the user’s own code comments (if
any). DLTK has built-in functionality to transfer code comments into documen-
tation, which besides from showing in auto-completion also works when hovering
certain pieces of code. In order to implement this, the
org.eclipse.dltk.ui.scriptDocumentationProviders extension point is used to
link to the GoalDocumentationProvider class. In this class, the only function we

55

Chapter 5 Editing Framework

Figure 5.4.: An example of auto-completion on Ctlr-Space

need to implement is getInfo, which expects a HTML document for a certain AST
element. For every occurrence of the given AST element, the line above is checked for
a comment. If there is any, it is added to a set, which is then translated into a set of
HTML-formatted suggestions. Fig. 5.5 shows an example of how the documentation
might look to a user.
However, mainly because there is no fixed structure for API comments in GOAL,
like e.g. JavaDoc for Java, this documentation can get cluttered. If, for example,
multiple predicates are used on one line, and a single comment is written above that
line, the comment will be applied to all of those predicates, whilst that might not
be desired. Designing such a commenting structure that generates proper documen-
tation that is perhaps even fit for exporting is out of the scope of this thesis, but
would certainly increase the usability significantly.

Requirement: Improved support for program comprehension through ... and the
generation of API documentation (9 partially)

Folding Collapsing certain sections of code or blocks of comments can be useful
at times. It allows the user to focus on the parts of code that are relevant at that
moment. DLTK provides functionalities to do this, again using the AST, through
the org.eclipse.dltk.ui.folding extension point. Here, blockProviders and
structureProviders can be set in order to determine what pieces of codes are

56

. 5.4 Extra features

Figure 5.5.: An example of code documentation when hovering a predicate

blocks that can be folded. In our case, the blockProviders are
GoalFoldingBlockProvider and GoalFoldingCommentProvider. The block-comment
folding is based on the aforementioned code partitioning, and indicates that blocks
of comments found by the aforementioned GoalPartitionScanner can be folded en-
tirely. Multiple lines of single-line comments are automatically merged. The actual
code-block folding uses a ModelElementVisitor to traverse the AST, and based on
the type of a node that is encountered, it is determined if that node can be folded
or not. This is mainly done on pieces of code that are real blocks, usually indicated
by a { ... } delimitation. It is useful to note that creating a DLTK-based AST
has saved us a lot of trouble on many subjects already. An example of how folded
code can look like in the GOAL editor is shown in Fig. 5.6.

Figure 5.6.: An example of code folding

57

Chapter 5 Editing Framework

Requirement: Increased programming support through ... and code folding (8
partially)

Preferences Some parts of the plug-in are customizable. To this end, an ex-
tension to the Eclipse preferences must be made, linked to the preferences in the
GOAL core. As the GOAL preferences are based on a single file, the path to
such a file will have to be set. To prevent permission issues, this path is set to
the current Eclipse workspace (e.g. the path in which the projects also reside) at
the initialization of the plug-in. The registration and initialization of the prefer-
ence store within Eclipse has been discussed at the end of the previous section,
but their coupling to the preferences editor within Eclipse itself has not been dis-
cussed yet. This is done through the org.eclipse.ui.preferencePages exten-
sion point, which lists a main GOAL preference category and three pages within
that category: GoalRuntimePreferencePage, GoalLoggingPreferencePage, and
GoalTemplatePreferencePage. The runtime and logging preferences pages are
both linked to settings from the GOAL core; a key-value pair there is tied to a key-
value pair within the Eclipse preference store, and synced automatically through
functions in the abstract class. Eclipse also provides a ‘restore defaults’ functional-
ity, which that abstract class also provides. Both pages make use of classes from the
org.eclipse.jface.preference package, like BooleanFieldEditor,
ComboFieldEditor, and FileFieldEditor. These classes automatically provide a
graphical interface of the type linked to the corresponding preference key and a
certain description. However, this package has no default functionality to group
these fields into (visible) categories. An implementation for this could be found on-
line, which explains the existence of the GroupFieldEditor class in our code. The
template preference page is generated automatically by DLTK.
An example of the resulting interface is illustrated in Fig. 5.7.

Requirement: Customization to a user’s preferences (6)

Help Eclipse also provides a native help function, to which a plug-in can make
an extension through the org.eclipse.help.toc extension point. This extension
point requires references to Table of Content (TOC) files, which are XML files
included in the plug-in. These index files, in turn, link to HTML pages that compose
the actual help content. The GOAL help currently contains some pointers to the
available online documentation, as illustrated in Fig. 5.8.

Requirement: Improved language learning support through (help) documentation
(10)

58

. 5.4 Extra features

Figure 5.7.: The Templates category of the GOAL preferences

Class overview An overview of the classes that were discussed in this section is
given in Tab. 5.3.
With the classes discussed in this chapter, multiple requirements related to the
framework for the plug-in and its editor are fulfilled. In the next chapter, the
requirements related to running and debugging a system will be handled.

59

Chapter 5 Editing Framework

Figure 5.8.: Contents of the GOAL Help page

60

. 5.4 Extra features

Class Package Extends/Implements
GoalCompletionEngine completion org.eclipse.dltk.codeassist.

ScriptCompletionEngine
GoalCompletion

ProposalComputer
completion org.eclipse.dltk.ui.

text.completion.
ScriptCompletion
ProposalComputer

GoalCompletion
ProposalCollector

completion org.eclipse.dltk.ui.
text.completion.
ScriptCompletion
ProposalCollector

GoalCompletionProposal completion org.eclipse.dltk.ui.
text.completion.

ScriptTypeCompletionProposal
GoalOverride

CompletionProposal
completion org.eclipse.dltk.ui.

text.completion.
ScriptTypeCompletionProposal

GoalCompletionProcessor completion org.eclipse.dltk.ui.
text.completion.

ScriptCompletionProcessor
GoalAutoEditStrategy editor org.eclipse.jface.text.

DefaultIndentLine
AutoEditStrategy

GoalContentAssistPreference editor org.eclipse.dltk.ui.
text.completion.

ContentAssistPreference
GoalDocumentationProvider search org.eclipse.dltk.ui.documentation.

IScriptDocumentationProvider
GoalFoldingBlockProvider prefs org.eclipse.dltk.

ui.text.folding.
IFoldingBlockProvider

GoalFoldingCommentProvider editor org.eclipse.dltk.
ui.text.folding.

PartitioningFoldingBlockProvider
GoalPreferencePage prefs org.eclipse.jface.preference.

FieldEditorPreferencePage
GoalLoggingPreferencePage prefs GoalPreferencePage
GoalRuntimePreferencePage prefs GoalPreferencePage
GoalTemplatePreferencePage prefs org.eclipse.dltk.ui.templates.

ScriptTemplatePreferencePage
GroupFieldEditor prefs org.eclipse.jface.

preference.FieldEditor
Table 5.3.: An overview of all classes discussed in this section

61

6. Debugging Environment
Designing a debugger for a rule-based language like GOAL is not the same as de-
signing a debugger for i.e. an object-oriented language like Java, on which most
examples that do exist are based. Even just stepping through the code cannot be
done in the same way, as the unification process works very differently compared
to the more linear code evaluation of other programming languages. Users want to
see different, specific information for which custom solutions will have to be built.
Moreover, in the previous chapter, problems with the documentation for Eclipse and
DLTK were identified, as this documentation is often incomplete or outdated. How-
ever, for debugging, this problem is even worse. There is only one document related
to implementing a debugger available, but this is an IBM guide from 20041 that con-
tains many outdated examples. DLTK contains a substantial debugger framework
as well, but there is no documentation for it available at all. There is a big need to
provide documentation and guidance for implementing a debugger using the DLTK
framework; this documentation will be valuable to others who want to implement a
debugger using the DLTK framework.

6.1. Framework

The debugging environment is composed of many sub-systems. Before explaining
the actual implementation, an overview of the structure of the implementation will
be given in this section.
In order to create an interface for a user to running or debugging a system, a launch
configuration is needed. A launch configuration is a set of values that are needed
to run a specific system, e.g. containing the path to the file that is to be executed.
These configurations are created by such a launch shortcut, and automatically saved
by Eclipse, allowing users to re-use such a configuration to launch a system in the
same way. These saved configurations are accessible through a drop-down menu
next to the run or debug button in Eclipse; the buttons themselves execute the
most recently saved launch configuration, or the launch shortcut of the currently
selected file or project. These launch shortcuts are also available when right-clicking
on a file or project (through the ‘Run As’ and ‘Debug As’ menus).
When a user runs a system, an ‘execution engine’ process is created that provides
an interface between Eclipse and yet another process that is actually executing the

1https://www.eclipse.org/articles/Article-Debugger/how-to.html

63

Chapter 6 Debugging Environment

file: the interpreter. An interpreter is a program that executes instructions written
in a programming language without previously compiling them into machine code.
GOAL fits this description, as it is run through Java, using the source code directly.
The separation of concerns between the execution engine and the interpreter does
not only allow a great amount of code re-use, it also decouples the user interface,
the communication, and the actual execution from each other, allowing all parts to
continue working even when i.e. the execution has crashed or is processing for a
long time and improving maintainability. Moreover, the debugger engine, providing
the interface between the IDE and the interpreter or debugger, depends on DLTK
and DBGP, and thus the whole Eclipse framework. An interpreter is part of a
programming language itself; GOAL can, for example, be used through a command
line interface as well. Making a programming language depend on Eclipse packages
is far from ideal; this bloats the command-line version of GOAL for example, and
creates a circular dependency structure.
For debugging a system, instead of an interpreter, a debugging engine is required.
Such an engine has to provide support for many more functionalities than only
executing a file. In other words, it uses an interpreter to execute the code, but has
to provide specific debugging functionalities as well. In our case, these functionalities
that are required originate from DBGP. The DLTK debugging framework is based on
DBGP: a common debugger protocol for languages and debugger UI communication,
created in 20032. This protocol is intended to communicate between a debugger
engine and an IDE. It is meant to be extendable for language specific features, and
supports both dynamic and compiled languages, possibly with multiple processes
or threads. As we did not want to ‘reinvent the wheel’, some other projects that
use DLTK were evaluated, as explained in the previous chapter. Amongst these
projects is Freemarker3: a tool for combining Java and HTML using template code.
This project is partly open-source, and this open-source part contains a framework
for running and debugging projects using DLTK and DBGP, which is used by our
implementation, both for running and debugging a system, as it provides almost the
entire execution engine.
In the following sections, the implementation of the mentioned elements will be
discussed.

6.2. Running a MAS

The DLTK framework does not know how to execute a multi-agent system, and needs
to be able to delegate this task to the GOAL core. In this section, the connection of
the support for running a MAS to the DLTK framework will be discussed, and the
realization of this functionality for running and terminating a MAS within Eclipse
will be explained.

2http://xdebug.org/docs-dbgp.php
3http://freemarker.org

64

. 6.2 Running a MAS

Launch configuration A launch shortcut has to be defined through the
org.eclipse.debug.ui.launchShortcuts extension point. This class specifies the
possible run modes (run and debug) and ties our plug-in’s nature to the
GoalLaunchShortcut class, which in turn links the nature to the relevant launch
configuration type, which is defined through the
org.eclipse.debug.core.launchConfigurationTypes extension point. This ex-
tension point requires specifying a ‘source locator’ and a ‘source path computer’.
These classes deal with file and project management, and are provided by DLTK
itself. We need to provide specific implementations for our project, and thus the
org.eclipse.debug.core.sourceLocators and
org.eclipse.debug.core.sourcePathComputers extension points are used to de-
fine these implementations, directly linking to classes from DLTK. Finally, a ‘dele-
gate’ has to be defined that is responsible for the actual launching: the
GoalLaunchConfigurationDelegate in our case. This class ensures that the inter-
preter registered for our plug-in will be used to run the file.

A launch configuration can also be edited once it has been created. To this end,
an interface that allows changing relevant settings has to be provided through the
org.eclipse.debug.ui.launchConfigurationTabGroups extension point, linking
our launch configuration type to the GoalLaunchConfigurationTabGroup class.
This class provides one or more tabs for the configuration editor to use. In our
case, these are two tabs. The first tab is the GoalLaunchConfigurationTab. This
tab contains a selector for the project to use and the actual file to execute within
that project. Our specific implementation only has to specify which files are valid
for execution, as this can be selected in a dialog. The second tab is DLTK’s
ScriptCommonTab, containing general settings like where the launch configuration is
saved, whether a console should be used, whether the output of that console should
be logged to a file, etcetera. Together with the existing general preference panes
as discussed in the previous chapter, the launch configuration forms the full set of
parameters that are user-customizable.

Interpreter To register an interpreter with DLTK, the
org.eclipse.dltk.launching.interpreterInstalls extension point can be used
to define a collection of InterpreterInstallTypes, which are in turn defined
through the org.eclipse.dltk.launching.interpreterInstallTypes extension
point. In our case, this links to the GoalInterpreterInstallType class. This in-
stall type, in turn, links our plug-in nature to the GoalInterpreterInstall class,
This class is intended to run a file through an executable defined in the install type.
However, because GOAL is Java based, there is no specific executable that can do
this. Therefore, the getInterpreterRunner method is overridden in order to imple-
ment our own ‘interpreter runner’ (execution engine) that does something different
from this default behavior: the GoalInterpreterRunner.

65

Chapter 6 Debugging Environment

Execution engine The sole task of the aforementioned GoalInterpreterRunner
is to create a GoalRunnableProcess using the information passed from DLTK: an
IInterpreterInstall, an ILaunch, and an InterpreterConfig. The interpreter
install is of course our own GoalInterpreterInstall, and the interpreter configu-
ration contains parameters specific to the launch the user requested, like the path
to the file that is to be launched. The ILaunch object is used by Eclipse and
DLTK internally as a store for specific objects created in the debugging process.
The GoalRunnableProcess class is responsible for creating a specific thread for the
engine, managing its life-cycle and handling the interface that thread has to an ex-
ternal process (e.g. the input and output). Thus, creating and stopping a process
and displaying its output is handled here. This external process has to be created
by the actual implementing class, so our GoalRunnableProcess is responsible for
creating the aforementioned GOAL Java process.

In order to do this, first, the path to the GOAL jar file has to be determined. This
file has been included as a dependency in the plug-in, as it relies on multiple classes
from the GOAL core. Therefore, the path to this file can be found using Eclipse’s
FileLocator class. Using this path and Java’s ProcessBuilder class, we can launch
the jar, passing it specific parameters and setting the correct environment variables
for SWI Prolog to use. However, some class within the jar file needs to be executed.
To this end, in the GOAL core, a goal.tools.eclipse package has been created
that contains several classes responsible for interfacing between the GOAL core and
Eclipse. For running a MAS (or a unit test), only the RunTool class in this package
is needed. This class has only one main method in which a few simple steps are
taken:

1. Load the preferences through a file that is indicated by the first passed argu-
ment.

2. Parse the mas2g or test2g file that is indicated by the second argument.

3. If valid, run the MAS or unit tests, forward all output from the GOAL core
whilst waiting for it to complete, and terminate the process afterward.

The output of this process is captured and processed by the classes, which allows
the user to view it in a native Eclipse console. This console also allows the user to
forcefully terminate the process, which can be done using the created Java Process
object.

Finally, for the sake of user convenience, the GoalRunnableProcess class contains
some code that determines which file to actually execute. This is because a user
can select the run-action on any file within a GOAL project, or even on the project
itself, but only mas2g and test2g files are actually executable. Thus, if the file is
not of such an extension, the project that file is in is searched for files of those
extensions. If just one matching file is found, it is directly used. Otherwise, a dialog
is presented to the user that lists the matching files, allowing the user to select the
one to actually execute.

66

. 6.2 Running a MAS

Requirement: The ability to run a system whilst inspecting or logging its output
(5)

Requirement: The ability to execute a unit-test whilst inspecting or logging its
results (11)

Embedded language As mentioned before, GOAL contains an embedded KR lan-
guage, SWI Prolog by default. However, SWI Prolog is platform-dependent, and
using this from Java is not trivial. GOAL is originally delivered with custom builds
of SWI Prolog 6.0.2 for different platforms: Windows (32 and 64 bits), Mac OS X
(64 bits), and Linux (64 bits). All of these platforms require specific SWI Prolog
libraries: DLL files for Windows, DYLIB and JNILIB files for Mac, and SO files for
Linux. In addition, for each platform, there is a different set of files that SWI Prolog
uses for its native functionalities, like calculations, reading and writing files, etcetera.
The standalone version of GOAL uses its installer to detect a set of specific plat-
forms, and installs only the correct files into the program. Of course, the standalone
version of GOAL is a Java program too, and loading these libraries is again not
trivial, mostly because the different libraries have dependencies on each other. On
Windows, for example, the BAT or EXE file that starts GOAL adds the folder with
the required DLLs to the system’s PATH variable and Java’s java.library.path
variable, which allows Java (and Windows) to find and load the libraries. Moreover,
the SWI_HOME_DIR environment variable is set, which in turn allows SWI Prolog to
find its native libraries. On Linux, a similar SH file is used to add the path of the
required SO files using the LD_LIBRARY_PATH environment variable, and the same
Java library path is set. Mac is nearly identical to Linux, but the environment vari-
able is named DYLD_LIBRARY_PATH. However, for our plug-in, it is impossible to do
this. Eclipse is a Java application that uses its own environment variables to begin
with, and our (Java) plug-in is loaded into its (Java) environment; we cannot use
any script file to set environment variables!
All required SWI Prolog files for all platforms were included in the plug-in, split
into different folders for the different platforms. From Java, it is possible to deter-
mine the operating system and its so called arch (32 or 64 bits) in a very general
way. Eclipse even provides a more accessible interface to these native Java features
through the org.eclipse.core.runtime package. A new class called KRtools was
created within the plug-in, and its initialize function is called on start-up of the plug-
in. The main goal of the class is to load the Java Prolog Link (JPL) library and
initialize it, which allows Java to communicate with the native SWI Prolog library.
The JPL library has a dependency on a SWIPL library, which in turn has some
more (platform-dependent) dependencies. The initialization of JPL mainly consists
of setting the directory for SWI Prolog to use, which as mentioned before can be
done through a SWI_HOME_DIR environment variable. However, it is also possible to
pass this manually by changing the initialization arguments of JPL, and adding a
--home=path option in there. In order to correctly load all of the required libraries,
the initialization function first determines the operating system in a general way, e.g.

67

Chapter 6 Debugging Environment

detecting if the platform string contains the words "win" or "mac", and defaulting to
Linux otherwise. This is a very flexible way that works for a wide range of platforms
without having to explicitly specify each and every one of them like in the original
installer.
After the correct platform has been determined, the directory of the specific native
libraries to that platform is added to the java.library.path property, which is not
that difficult using the Java Reflection API. However, loading the right libraries into
the system itself is a bit more difficult, and different per platform. On Windows,
this is relatively easy: when using the full path to a required DLL, and loading
the libraries in the right order of dependencies, the system is automatically able to
resolve the dependencies between the libraries. Thus, on Windows, only four ordered
calls to System.load are required in order for everything to work. On Linux and
Mac, although loading libraries through their full path is possible, the dependencies
are not automatically resolved like this, unfortunately. Multiple solutions for this
problem exist.
On Mac, each user has a folder that is automatically searched to resolve dependen-
cies: user.home/lib, where user.home is a system property indicating the home
folder of the current user. As this folder is always writable by the current user,
it is sufficient to copy-paste the required libraries into this folder in order to let
the operating system find them. On Linux, however, no such folder exists, but it
is possible to add a folder to the search path for dependencies through adding a
file with that path as its content in the /etc/ld.so.conf.d folder. However, this
folder is not writable by default, and the system function ldconfig has to be called
afterward in order to refresh the search path of the system. Both steps thus require
administration right, and forces Eclipse to be run as root on Linux.
Aside from the required admin rights on Linux, these solutions are also lacking for
another reason, as the SWI Prolog library depends on two very common libraries on
Linux and Mac: readline and ncurses. These dependencies only work with specific
versions of the libraries, and thus those are included. However, when the version
that another program or the OS itself requires is different from that, problems arise.
Especially when using the ld.so.conf.d directory in Linux, it is possible to over-
write any original library links, and potentially cause the whole OS to malfunction.
Another solution for finding the dependencies of a specific library works on a low
level, and involves the Executable and Linkable Format (ELF): the file format used
for libraries on Unix-based systems. A library in the ELF format contains a section
called ‘dynamic’, where the dependencies on other libraries are defined. Here, the
aforementioned LIBRARY_PATH variables play a role, as when a dependency cannot
be found through the entries in the ‘dynamic’ section, the paths in those environ-
ment variables are automatically searched to resolve the dependency, which never
includes the folder the library itself is in by default. However, it is possible to change
this using a tool called patchelf (on Linux) or install_name_tool (on Mac). Us-
ing these tools, it is possible to set the default look-up path of a dependency, the
run-time search path (rpath), to the folder of the library itself by including the

68

. 6.2 Running a MAS

variable $ORIGIN (on Linux) or @loader_path (on Mac) in that path. These vari-
ables are automatically translated into the library’s current path when it is loaded.
These settings can also be used when linking the libraries (at compile time), but
recompiling the libraries takes a lot more effort than using these tools. This solu-
tion does not require copy-pasting any file or set any environment variables, as all
dynamic links are now automatically and locally resolved. which in turn prevents
any possible conflict with other applications.

Class overview An overview of the classes that were discussed in this section is
given in Tab. 6.1. The org.eclipse.gdt.launching and
org.eclipse.dltk.dbgp.debugger packages are both based on the Freemarker
framework.

Class Package Extends/Implements
GoalLaunchShortcut launch org.eclipse.dltk.internal.

debug.ui.launcher.
AbstractScriptLaunchShortcut

GoalLaunchConfiguration
Delegate

launch org.eclipse.dltk.launching.
AbstractScriptLaunch
ConfigurationDelegate

GoalLaunchConfiguration
TabGroup

launch org.eclipse.debug.ui.
AbstractLaunchConfiguration

TabGroup
GoalLaunchConfigurationTab launch org.eclipse.dltk.debug.

ui.launchConfigurations.
MainLaunchConfigurationTab

GoalInterpreterInstallType launch org.eclipse.dltk.
internal.launching.

AbstractInterpreterInstallType
GoalInterpreterInstall launch org.eclipse.dltk.launching.

AbstractInterpreterInstall
GoalInterpreterRunner launch org.eclipse.gdt.launching.

AbstractRunnable
InterpreterRunner

GoalRunnableProcess launch org.eclipse.gdt.launching.
DLTKRunnableProcess

FileTool
Table 6.1.: An overview of all classes discussed in this section

69

Chapter 6 Debugging Environment

6.3. Integrated debugging

In this section, first, an overview of the DBGP specification will be given, according
to the official documentation. Next, as the link between DBGP concepts and GOAL
is not always clear, the debugging process for GOAL specifically will be discussed.
Finally, the details for the actual implementation will be given.

DBGP Debugger The protocol defines five states a debugger engine can be in:
1. Starting: the state prior to the execution of any code.
2. Stopping: the state after the code execution has completed, which allows the

IDE to further interact with the debugger engine to, for example, collect per-
formance data.

3. Stopped: the IDE is detached from the debugger process, no further interaction
is possible.

4. Running: code is currently executing.
5. Break: the code execution is paused and the IDE/debugger can pass informa-

tion back and forth.
For passing information back and forth in all of these states, a communication
scheme has been defined. The IDE sends simple ASCII (plain text) commands to
the debugger engine, but the debugger engine is required to respond with XML data.
This difference has been made to avoid the debugger engine having to parse XML,
for which additional libraries would be required. Moreover, the communication is
usually in the form of command (from the IDE) and response (from the debugger),
often with larger and more structured information in such a response. Java sockets
are used to perform the actual communication, optionally even allowing a debugger
engine to run on a different machine from the IDE.
In the starting state, the debugger engine is supposed to send an initialization packet
to the IDE, passing its identification and a unique session identifier along. The IDE
should then respond with any of the available commands. Usually, the IDE should
first respond by sending so called ‘feature packets’. This is done in order to determine
which features the debugger engine supports, which can range from the used string
encoding to the breakpoint types that exist and more. Additionally, a debugger
can indicate if it supports asynchronous operation or not. If a debugger does not,
the IDE will not be able to send a break command to the debugger engine; only
the debugger engine will determine when the execution is running or not. As we
want to allow a user to pause the execution from Eclipse, our debugger will support
asynchronous operation.
After the feature negotiation, either the running state or the break state can be used
as the first state, e.g. automatically running the system or requiring the user to do
this. Whilst an asynchronous engine is in the running state, the IDE can send a

70

. 6.3 Integrated debugging

break (e.g. pause) command only, requesting the engine to go into the break state.
In this state, multiple ‘continuation commands’ are available:

1. Run: starts or resumes the script until a new breakpoint is reached, or the
end of the script is reached.

2. Step into: steps to the next statement; if there is a function call involved it
will break on the first statement in that function.

3. Step over : steps to the next statement; if there is a function call on the
line from which the command is issued, the debugger engine will stop at the
statement after the function call in the same scope as from where the command
was issued.

4. Step out: steps out of the current scope and breaks on the statement after
returning from the current function.

5. Stop: ends execution of the script immediately; the engine may be terminated
right away, followed by a disconnection of the network connection from the
IDE.

Of course, the debugger can change its state on its own as well, e.g. responding to
a breakpoint (which will be discussed later on) or the end of an execution.

When the IDE detects the debugger is in a break state, it can request specific
information about the code execution state the debugger has halted upon. First of
all, the current call stack can be requested. A call stack indicates which subroutine
(e.g. part of the code) is about to be executed, and optionally the ‘route of function
calls’ towards that point. This information points directly to the code the user has
written, and thus includes file names, line numbers, etcetera. The other information
that can be requested is related to the subroutine that is about to be executed: the
current context. A context indicates which data will be available to the subroutine
at what level: e.g. local variables, global variables, etcetera (this name is up to the
debugger engine itself). These variables can have a certain type, other variables as
its children (for i.e. an array), and additional parameters like its memory address
and size, if it is a constant or not, etcetera. Languages may have different names or
meanings for data types, but an IDE may want to be able to handle similar data
types as the same type. For this reason, a minimal set of standard data types is
defined by DLTK, and a method for specifying more explicit facets on those types. A
mapping is required from the engine in order to map the language data types to these
common types. The objects from DLTK that should be returned for a certain input
string correspond to these common data types and language data types respectively.
The explicit facets are additional plain strings that can be passed along with the
variable data, like public or private.

A final relevant command that a debugger engine should support is ‘eval’. This
command allows the IDE to send a string to the debugger engine for evaluation
within the current context, like an expression or a code segment to be executed.

71

Chapter 6 Debugging Environment

The debugger engine should reply to this indicating if the evaluation was successful
and an optional response for it.

The entire communication process, including the state management, parsing com-
mands from the IDE, creating XML replies, etcetera, is done by the Freemarker
framework. We have to provide the settings for the supported features and an
implementation of an AbstractDebugger. Such a class will need to have an imple-
mentation of the functions doRun, doStop, resume, suspend, collectVariables,
createBreakpoint, and removeBreakpoint, which correspond with the different
commands an IDE can give to the debugger.

Debugging GOAL As mentioned several times before in this section, it is not
instantly clear how the features that DLTK and DBGP provide are related to de-
bugging a rule-based language like GOAL. The actual meaning of terms used in
the previous part like function call, scope, call stack, and more are not clear in this
context. However, based on the composed requirements for our debugger and these
features, a mapping can be created. In some instances, this can be done one-to-one,
but in others, the IDE will have to be extended with custom implementations.

Requirement: Show the state of all agents in a system and allow run-
ning, pausing, or killing an agent (15)

As DBGP supports debugging multiple threads in a single program, each agent can
be represented by a thread, which it also is within the GOAL environment. In
this way, run, pause (break), and kill (stop) actions are automatically provided for
each individual thread, and thus each individual agent. A ‘debug model’ can be
provided in order to customize the presentation of these threads, in order to display
the agent’s state for example.

Requirement: Allow convenient inspection of an agent’s mental state
(17)

When a thread is in a paused state, Eclipse requests the current position in the code
(call stack) from the debugger engine, to be displayed within the relevant source file
itself. In addition, the current context is requested, e.g. the data that is currently
available on different levels. Both of these requests are described by DBGP, but
it is unclear how the proposed context levels like local and global correspond to
the data that is available for a GOAL agent (goals, beliefs, etcetera). In addition,
the applicability of constructs like data type or additional facets is not evident, as
terms and atoms are very different concepts than booleans and integers. The current
GOAL IDE shows an agents state by using multiple tabs for the different kinds of
data: beliefs, goals, mails, and percepts. The presentation of the content in each of
the tabs is the same. Other related APL IDEs use a similar presentation. These
data level are significantly different from e.g. global or local variables, as not only
their scope is different, but their functionality as well. Therefore, the presentation
in different tabs seems very suited, and well need to be incorporated into Eclipse.

72

. 6.3 Integrated debugging

However, in addition to an agent’s mental state, variables can be used as well. The
current IDE does not show any of those ‘local’ variables at any time. However,
in order to understand what a certain part of code is doing, information about the
instantiation (unification) of those variables is vital. Thus, an additional mechanism
similar to the mental state inspection is required.
The default interface of a context provides several features, like allowing a user to
search the data. When adapting these mechanisms for the use as discussed above,
the existing features will have to be migrated as well whenever possible.

Requirement: Support stepping through the code of an agent (16)
Eclipse automatically enables step-actions for a paused thread: step into, over, and
out. However, again, the DLTK documentation discusses function calls, whilst such
a concept does not exist within GOAL. However, it is possible to translate the basic
ideas behind these different step actions into mechanisms specific to GOAL. The step
into action, for example, is intended to follow the execution order of the program.
The execution process will never be changed by the stepping process; the different
step actions only determine which parts the user gets to see (e.g. are halted upon).
In the case of GOAL, we need to carefully determine what parts the user wants to
halt upon, as there is no linear code evaluation. It would be possible, for example,
to step on each step in the unification process, similar to the trace functionality of
Prolog. However, this would require an enormous amount of stepping actions, with
little benefit to the user. Instead, the stepping process should follow the way in which
a user has written his program, displaying a relevant set of variable instantiations for
each step. To this end, a fixed set of code stepping points have been made available,
as shown Fig. 6.1. By default, they are not all enabled; this can be changed in
the plug-in’s preferences. The default setting ensures that the stepping will follow
the code order as much as possible, without jumping around a file or halting on
‘basic’ mechanisms like unification or inserting/deleting a belief. Other options are
available to support specific situations. An example of such as situation occurs
when using a synchronous environment: an environment that does not change (i.e.
continue) without the agent interacting with it. In such a setting, it might be useful
to break after an action has been executed, in order to inspect the new state of the
environment.
Thus, using these code stepping points, the results of the different step actions can
be defined. Logically, step into follows the enabled code stepping points. The step
over action is intended to skip the current piece of code and continue to the next in
the same scope (module). For GOAL, this can be translated to skipping the action
part of a rule (on ‘evaluation of rule conditions’), the entry of a module (on ‘call
to a module’), or a whole module (on ‘entry of ...’). The step out action is similar,
but should break out of the current scope (module). Thus, when in a module, or
about to execute it, the whole (remainder of the) module will be executed, breaking
when the previous module on the stack is reached. When there is no other module
on the stack (being in the main module for example), the debugger will break when

73

Chapter 6 Debugging Environment

re-entering that module, as there is no other module to return to. Thus, the step
out mechanism can be used to make an agent perform one entire cycle, similar to
the stepping mechanism in the old IDE.

Figure 6.1.: The GOAL runtime preferences, showing the available code stepping
points

74

. 6.3 Integrated debugging

Requirement: Support posing queries to an agent (18)

Eclipse provides an evaluation interface by default, and DBGP contains an eval-
uation command as well. This interface consists of a console where the user can
enter a query, after which the response from the debugger engine is shown. The
current GOAL IDE contains a very similar interface, but with different buttons for
an informative query or an action command. However, recognizing when the user’s
input is an action or a query is possible, and thus the default interface can be used
without significant alteration.

Requirement: Support adding or removing breakpoints during or before
execution (19)

Setting breakpoints is a functionality offered by Eclipse by default, but the different
types will need to be registered with the plug-in and made available to the user
properly. In the current IDE, breakpoints are specific to rules. Setting a breakpoint
at a certain line will make the execution halt at the rule at that line or the closest
line after it. A conditional breakpoint does the same, but only when the rule actu-
ally applies. Although it might be more logical to make the available breakpoints
correspond with the available code stepping points, setting breakpoints is only avail-
able on a line-based fashion in Eclipse. A large amount of breakpoint types would
be required in such an interface to support all code stepping points, and all with
their own image for identification by the user. As this is impractical, the current
breakpoint system was used. However, more research might have to be done in order
to perfect this system.
To finalize the support for breakpoints, the breakpoints created in Eclipse will need
to be passed to the GOAL core at its initialization, and a mechanism to update
them in the GOAL core when a change is made in the IDE will have to be put in
place.

Implementation foundation Through the
org.eclipse.dltk.debug.scriptDebugModel extension point, a unique identifica-
tion for our ‘debug model’ is created. Such a model is used to set and store some
preferences related to the debugging process that DLTK supports. The next exten-
sion point of the debugging foundation is
org.eclipse.debug.ui.debugModelPresentations, which links the debug model
to the GoalDebugModelPresentation class. This class is responsible for generating
the text and images shown to a user whilst debugging, based on objects that are
used internally by DLTK. Besides this presentation, a ‘UI toolkit’ has to be defined
through the org.eclipse.dltk.debug.ui.language extension point. For this ex-
tension, we use the GoalDebugUILanguageToolkit class, providing default DLTK
functionality and linking to our debug model. The final extension point of the de-
bugging foundation is org.eclipse.dltk.launching.debuggingEngine. First of
all, an identification for our engine is defined by the GoalDebuggingEngineSelector
class, which has a single function that returns the identifier. Next, a class responsible

75

Chapter 6 Debugging Environment

for creating the debugging engine is defined, which is GoalDebuggerRunnerFactory.
This class has a single function that creates an instantiation of the
GoalDebuggerRunner, which is a similar class to the GoalInterpreterRunner as
described in the previous section. This class also relies on functionality from the
Freemarker debugging framework, and thus, besides linking to debugging engine by
its identifier, its only task is to create a GoalDebuggerRunnableProcess, which is
again similar to the aforementioned GoalRunnableProcess class. The Freemarker
class deals with the management of that process, whilst the specifics of what that
process does are determined within our class. The GoalDebuggerRunnableProcess
is responsible for creating a DbgpDebugger, which is also based on a class from the
Freemarker extension. Those two classes together form the actual debugger engine
that is required.

Communication with the GOAL core In order to facilitate the actual imple-
mentation of the several debugging commands that exist, our AbstractDebugger
implementation needs to be able to start and stop a GOAL process in a similar
fashion to the regular run mode. However, it also needs to be able to directly
communicate with this process in a bidirectional way. First of all, as each agent
is represented by a separate thread, and each thread is assigned a separate debug-
ger by DLTK and DBGP, two AbstractDebugger implementations exist within the
plug-in: LocalDebugger and ThreadDebugger. The ThreadDebugger is a holder
that registers the agent it is assigned to, and then passes all commands on to the
LocalDebugger. Thus, only one LocalDebugger exists, with a ThreadDebugger for
each additional agent. This organization is managed in the DebuggerCollection
class, which registers the different threads, agents, and debuggers that exist, fa-
cilitating e.g. the relevant debugger to be obtained for a certain thread, or the
corresponding agent for a certain debugger, etcetera.

The onRun function of the LocalDebugger, after registration in the aforementioned
DebuggerCollection, behaves in nearly the same way as the previously discussed
GoalRunnableProcess class; it even uses the same code (through static function
calls) to determine or request a file of the correct file type for the actual debugging
and for creating the actual Process itself. However, after this, a StreamWriter and
StreamReader are created using the processes output and input streams respectively.
The StreamWriter facilitates sending a (string) message to the GOAL core, and the
StreamReader responds to (string) messages from the GOAL core. The DebugTool
class in the GOAL core, similar to the RunTool of the run-mode, is the main entry
point of our debugging process, and contains a similar mechanism. Upon execution
(e.g. calling its main method), it takes these steps::

1. Load the preferences through a file that is indicated by the first passed argu-
ment.

2. Parse the mas2g file that is indicated by the second argument.

76

. 6.3 Integrated debugging

3. Load the breakpoints as indicated by the third argument (using the aforemen-
tioned GoalBreakpointManager class).

4. If valid, create a runtime for the MAS with debugging enabled, attaching an
EclipseEventObserver to it (both will be discussed later).

5. Create an InputReaderWriter using the default in- and output streams (sim-
ilar to the StreamReader and StreamWriter classes in the Eclipse part).

6. Execute the runtime, wait for it to complete, and terminate the process after-
ward.

All communication classes make use of another class in the goal.tools.eclipse
package: DebugCommand. This class represents a message that is send between
the debugger and the IDE, and thus standardizes this communication process. It
contains a command type (from a fixed list), the relevant agent, and an optional
array of data (varying on the command type). The class also contains code that
allows for a safe translation to string and back of itself, in order to be used on the
raw stream communication between the IDE and the debugger. Using serialization
was considered and tested, but the performance of that process was significantly
lower than using plain strings. Moreover, the class is structured in such a way
that the whole translation process is encoded in about thirty lines of code. A
fixed delimiter is used to separate the different parameters, whilst any occurrence
of that delimiter within the data is properly escaped. Moreover, a fixed prefix is
used in order to identify a debug command; any other output from either side is
interpreted as output to show in the general IDE console, which is required as GOAL
or any environment can display certain messages to the user. The command itself
is delimited by a newline, as for performance reasons, all communication is buffered
until the occurrence of a newline, after which the whole line is sent.

The commands that the DebugTool in the GOAL core should be able to process
correspond with the different functions in the LocalDebugger class, which in turn
correspond with the different actions a user can take whilst debugging. These are:

• Run: resume a paused agent, or restart a killed agent.

• Pause: halt the agent before executing the next code part.

• Step: execute the current code part, and halt before executing the next.

• Eval: evaluate the passed query or action and return a result.

• Breaks: update the set of breakpoints using the passed information (which in
turn uses the GoalBreakpointManager again).

Thus, the StreamWriter class the LocalDebugger uses can send these
DebugCommands to the GOAL debugging process, to be processed by the
InputReaderWriter there, which in turn executes the relevant action. However,
the GOAL core itself generates many more messages for the debugger to process in
the EclipseDebugObserver class. This class is created for a certain agent when it

77

Chapter 6 Debugging Environment

is initialized, as observed in the aforementioned EclipseEventObserver, of which
only a single instance exists for a debugging execution. The EclipseDebugObserver
listens to breakpoint events (of a certain agent) that are present in the GOAL core
itself. These events result in messages that are sent to the debugger:

• Run mode: a change to the current state of the agent, e.g. when it got killed
or when it hit a breakpoint.

• Mental state: the insertion or deletion of beliefs, percepts, mails, and goals.
• Rule evaluation: the set of assigned variables (substitutions) for the current

rule.
• Action call: the set of parameters for the action that is about to be executed,

including the evaluation for the action’s preconditions when applicable.
• Module call: the set of parameters for the module that is about to be entered.
• Module entry/exit: the entry or exit of a module, either built-in or user-defined.
• Action executed: the successful execution of an action.
• Log: depending on the settings in the preferences, a message to be shown in

an agent’s console.
These messages indicate another important mechanism that is in place. As men-
tioned before, the user needs to be able to inspect an agent’s mental state. However,
it is infeasible to send the complete mental state of an agent to the debugger every
time it is requested, like in the current GOAL IDE. Therefore, all changes to the
mental state are sent to the debugger, which thus has its own database on the state
of each agent: the AgentState class. Instead of the relevant KR objects, like in the
GOAL core, this class only contains collections of strings: the actual representations
of the variables in the different bases, e.g. as they are shown to the user. Moreover,
an agent’s module stack is saved here, as is its current state. Although performance
increases significantly in this way, there is an inherent chance of synchronization
errors. The messages and their handling needs to be designed carefully in order to
prevent the agent state in Eclipse from being inconsistent with the actual mental
state of the agent in GOAL. However, when this is done, this mechanism can provide
the foundation for saving and displaying an agent’s state history, which is outside
of the scope of this thesis.

Breakpoints Registering breakpoints of a certain type can be done through
the org.eclipse.debug.core.breakpoints extension point. For each type, a
unique identification and a reference to a marker is needed. These markers have
been discussed before when dealing with errors and/or warnings in the code (see
sec. 5.3); breakpoints are markers as well. Again, markers are simply indications
of a certain code location with a certain meaning. This can be an error on that
line, a breakpoint of a certain type, etcetera. The only difference is that for the
GOAL breakpoints, custom markers need to be implemented. This is done by the

78

. 6.3 Integrated debugging

GoalLineBreakpointMarker and GoalConditionalBreakpointMarker classes, reg-
istered in the
org.eclipse.core.resources.markers extension point. A custom image is de-
fined for each marker using the org.eclipse.ui.ide.markerImageProviders ex-
tension point; a red stop sign for a line breakpoint, and a yellow stop sign for a
conditional breakpoint. These classes are initialized when the user creates a break-
point, and thus they are passed the relevant file and line-number, for which a marker
with a certain description has to be created. The same goes for deleting break-
points. In order to also store these breakpoints in a fashion compatible with the
goal core, the GoalBreakpointManager class has been created in the aforementioned
goal.tools.eclipse package in the GOAL core. Here, the creation or deletion of
a breakpoint of a certain type at a certain line in a certain file has to be regis-
tered. This class is responsible for transferring and optionally even updating this
information from the Eclipse process to the GOAL debugging process.
In order to allow the user to toggle between the different breakpoint types, or
plainly adding or removing them, the org.eclipse.core.runtime.adapters ex-
tension point can be used. This is a very general extension point, that depending
on the passed adaptableType and adapter is able to generate handlers for certain
actions of a user. In our case, org.eclipse.ui.texteditor.ITextEditor is used
as the adaptableType with
org.eclipse.debug.ui.actions.IToggleBreakpointsTarget as its adapter, for-
warding the action of toggling breakpoints in a text editor to the
GoalBreakpointAdapterFactory class. This class creates a
GoalBreakpointAdapter for each event, which in turn creates or deletes the break-
point for the given file and line number.
By default, changing the type of a breakpoint is only possible through the de-
bugging interface. Additionally, creating a breakpoint takes several actions of the
user. However, in order to provide the user with a more intuitive way to do
this in the GoalEditor class (representing the actual code editor), a listener is
added to the ITextEditorActionConstants.RULER_DOUBLE_CLICK action: double-
clicking in the vertical bar on the left of the code that shows all markers (the
VerticalRuler). Upon this event, three possible results are possible:

1. When no breakpoint is present at the current line yet, a regular breakpoint is
created.

2. When a regular breakpoint is present at the current line, it is deleted, and a
conditional breakpoint is created.

3. When a conditional breakpoint is present at the current line, it is deleted
(resulting in no breakpoint at all at that line).

This is possible by using Eclipse’s BreakpointManager, which automatically uses
the correct classes as discussed above.
As by default, custom markers are not prioritized, markers for error messages are
displayed on top of markers for breakpoints. This is not desired, as breakpoints are

79

Chapter 6 Debugging Environment

only indicated through such a marker, whilst errors and warnings are also displayed
by underlined code. Moreover, breakpoints have a large impact on the debugging
process, whilst a warning might not be relevant at all. In order to do this, the
annotation type that corresponds to the marker type needs to be customized, e.g.
the presentation of the marker needs to be changed from the default. This can
be done through the org.eclipse.ui.editors.annotationTypes extension point,
which can specify a custom annotation type for a certain marker type. These custom
annotation types can be defined in the
org.eclipse.ui.editors.markerAnnotationSpecification extension point. Such
a custom annotation contains preferences like if it should be included in the list of
all markers, if it should be shown in the vertical ruler, if it should underline the cor-
responding piece of code, and most importantly for us: on what ‘presentation layer’
it should be shown. Setting this to a value of ‘1’ will ensure that his marker is always
shown at the highest priority. In this way, all required breakpoint functionality is
implemented in the most convenient way for the user.

Figure 6.2.: An editor showing a regular (red) and conditional (yellow) breakpoint

Debugger interface The GOAL plug-in defines a custom debug perspective, which
is opened when debugging a MAS automatically through our launch configuration.
The GOAL debug perspective is registered in the org.eclipse.ui.perspectives
extension point and organized in the accompanying GoalDebugPerspectiveFactory
class. In this class, the different user interface elements are created and positioned.
Some of these elements are provided by Eclipse or DLTK; others are custom imple-
mentations based on Eclipse or DLTK elements. The current organization of this
perspective is based on the Java debug perspective and the current GOAL IDE’s
debug view.

80

. 6.3 Integrated debugging

At the top, an overview of the currently running agents is provided. This overview
is provided by Eclipse’s debug view, and customized by the aforementioned
GoalDebugModel class in order to show the agent’s state, based on the corresponding
AgentState. In this overview, there is also a tab available where all currently
set breakpoints are listed, optionally allowing a user to delete them. Again, this
breakpoint view is provided by Eclipse itself. Another ‘automatic’ view is the one
below for the source code. This script view is provided automatically by DLTK, as
it is the same as the ‘regular’ code editor. The currently evaluated line of code is
shown by a green marker; the right file is automatically opened at the right location
to match this position. This is dependent on the currently selected agent in the
overview at the top, as all other views around it are as well. The final view that
is provided without customization is the interactive console at the right bottom.
Though this view does not change depending on the selecting agent, allowing a
user to view the history of posed queries or executed actions, the entered query or
command is forwarded to the currently selected agent only. Thus, that agent is also
mentioned in the response.

Different, custom consoles exist at the bottom of the screen. By default, Eclipse
only has one general console that provides the output for a running program. The
GOAL run mode makes use of this console as well, and the debug mode does as well.
However, as determined by the set logging preferences, each individual agent can log
messages as well. Possibly having many agents, it is infeasible to log these messages
to one general console. Therefore, a separate console for each agent is created. To
this end, a custom view is registered through the org.eclipse.ui.views extension
point: the GoalAgentConsoleView. For each agent, such a view is constructed when
launching the debugging engine for a multi-agent system. This is different to all
other views, as this happens during execution, whilst all other views are fixed. This
requires these views need to be removed at the end as well. The GoalAgentConsole
class is used to provide a convenient interface to a console for the debugger; each
agent has an corresponding GoalAgentConsole registered for it, similar to each
agent having an AgentState. Next to these agent-specific consoles, a general action
history console is also created. In this console, the actions executed by all agents are
logged, allowing one to get a quick overview of what all agents are doing within the
environment. It is possible to disable all of these consoles in the plug-in’s preferences.

As mentioned before, a separate area of the screen has been reserved for inspec-
tion of the mental state of an agent. Thus, different tabs for each category have
been created. The evaluation of the current line that is shown below is nearly
identical to these tabs. Therefore, the abstract GoalVariablesView class has been
created, with specific implementations for each of the tabs, which are registered
in the org.eclipse.ui.views extension point as well. This abstract class copies
many functionalities from the source of the default Eclipse console class, but has
been extensively customized. This was mainly necessary to remove features like the
display of a variable’s type or scope, but also to allow for the right data to be shown
in the tab. As all variables are usually shown in one view, Eclipse and DLTK cre-

81

Chapter 6 Debugging Environment

ate a single ‘stack frame’ when execution is halted. However, as the variable views
are based on such a stack frame, this frame will have to be customized in order
to filter the data for the view. To this end, the GoalScriptStackFrame class has
been created, taking a regular ScriptStackFrame and a GoalVariableType as its
input. All variables in the frame have been given a type from that class, which al-
lows the right variables to be taken from the frame for the view. Thus, for example,
the GoalVariablesViewBeliefs takes the ScriptStackFrame provided by Eclipse,
and translates it into a GoalScriptStackFrame with the BELIEFS type to be used
for that view. When the variables for the view are requested, only the ones of the
BELIEFS type will be returned, resulting in the correct view for each tab.

Figure 6.3.: The GOAL debug perspective

Class overview An overview of the classes that were discussed in this section is
given in Tab. 6.2.

82

. 6.3 Integrated debugging

Class Package Extends/Implements
GoalDebugModelPresentation debug.ui org.eclipse.dltk.debug.ui.

ScriptDebugModelPresentation
GoalDebugUILanguageToolkit debug.ui org.eclipse.dltk.debug.ui.

AbstractDebugUILanguageToolkit
GoalDebuggingEngineSelector launch org.eclipse.dltk.core.

DLTKIdContributionSelector
GoalDebuggerRunnerFactory debug org.eclipse.dltk.launching.

IInterpreterRunnerFactory
GoalDebuggerRunner debug org.eclipse.gdt.launching.

RunnableDebuggingEngineRunner
GoalDebuggerRunnableProcess debug org.eclipse.gdt.launching.

DLTKRunnableDebuggingProcess
GoalRunnableProcess launch org.eclipse.gdt.launching.

DLTKRunnableProcess
AgentState debug.dbgp

DbgpDebugger debug.dbgp org.eclipse.dltk.dbgp.debugger.
AbstractDbgpDebuggerEngine

LocalDebugger debug.dbgp org.eclipse.dltk.dbgp.debugger.
debugger.AbstractDebugger

ThreadDebugger debug.dbgp org.eclipse.dltk.dbgp.debugger.
debugger.AbstractDebugger

DebuggerCollection debug.dbgp
StreamReader debug.dbgp Thread
StreamWriter debug.dbgp

GoalLineBreakpoint debug org.eclipse.debug.core.
model.LineBreakpoint

GoalConditionalBreakpoint debug GoalLineBreakpoint
GoalBreakpointAdapterFactory debug org.eclipse.core.runtime.

IAdapterFactory
GoalBreakpointAdapter debug org.eclipse.debug.ui.actions.

IToggleBreakpointsTarget
GoalDebugPerspectiveFactory debug.ui org.eclipse.ui.IPerspectiveFactory

GoalAgentConsoleView debug.ui org.eclipse.ui.internal.
console.ConsoleView

GoalScriptStackFrame debug.ui org.eclipse.dltk.internal.
debug.core.model.
ScriptStackFrame

GoalVariableType debug.ui Enum
GoalVariablesView debug.ui org.eclipse.debug.ui.

AbstractDebugView
GoalVariablesViewBeliefs debug.ui GoalVariablesView
GoalVariablesViewGoals debug.ui GoalVariablesView
GoalVariablesViewMails debug.ui GoalVariablesView

GoalVariablesViewPercepts debug.ui GoalVariablesView
GoalVariablesViewEvaluation debug.ui GoalVariablesView

Table 6.2.: An overview of all classes discussed in this section 83

7. User Evaluation

In order to monitor the perceived improvement of the GOAL platform by our efforts,
several evaluations amongst its users were performed. In this chapter, the used
evaluation method will be discussed first. Next, the actual results will be shown,
and their implications will be discussed afterward, The full statistical results can be
found in Appendix B.

7.1. Method

The System Usability Scale (SUS) is a widely used scale developed in 1996 to quickly
and easily assess the usability of a given product or service. This scale has several
attributes that make it a good choice for a usability evaluation[35]: the survey is
flexible enough to assess a wide range of interface technologies, relatively quick and
easy to use by both study participants and administrators, provides a single score
on a scale that is easily understood, and free.
A SUS survey is composed of ten fixed statements that are scored on a five-point
scale of strength of agreement. Final scores for the SUS can range from 0 to 100,
where a higher score indicates better usability. The statements alternate between the
positive and negative. The answers to the individual questions are not meaningful
on their own; only the emergent score is relevant. This has been confirmed by
extensive empirical research[36]. Due to this fact, SUS surveys are often used to
compare the usability of different, possibly even dissimilar systems. Products which
are at least passable should score above 70, with better products scoring in the high
70s to upper 80s. Truly superior products score better than 90, whilst products
with scores of less than 70 should be considered candidates for increased scrutiny
and continued improvement. The range of scores is essentially half of the nominal
value.
For this thesis, four distinct iterative evaluations have been done. First, the current
GOAL IDE was evaluated using first year computer science students from the TU
Delft and Leiden University. Next, an evaluation on only the first year computer
science students from the TU Delft was done on the first version of the GOAL
plug-in for Eclipse. This version contained the complete editing framework, but
no custom debugger. Instead, it launched the ‘old’ debugger interface. After the
new debugging framework was implemented, a final evaluation was done on the
same group of students. Finally, shortly after the first-year students were finished,

85

Chapter 7 User Evaluation

a small group of PhD students used and evaluated the plug-in, resulting in the final
evaluation results. All surveys could be anonymously filled in online, with the option
to add an additional comment.

7.2. Results

The reliability of the test scores was measured using the Cronbach’s Alpha statistic.
Being 0.84, the consistency of our survey is suited for low-stakes testing[37].
The first survey on the ‘old’ IDE had 53 respondents. The 95% confidence interval
for the mean score is 43 to 52. The student’s comments were about missing auto-
completion, differences with modern IDE’s, and poor debugging.
The second survey on the first version of the Eclipse plug-in had 64 respondents.
The 95% confidence interval for the mean score is 49 to 58. The comments were
about the output of unit-tests, missing documentation, and poor debugging again.
Unfortunately, some students also used the survey to express discontent with parts
of the course they were taking in which they used the IDE, resulting in comments
about resits for example.
The third survey on the second version of the Eclipse plug-in had 56 respondents.
The 95% confidence interval for the mean score is 39 to 47. The students commented
on performance issues, the lack of mental state inspection during execution, and
some inconveniences resulting from the use of external module files.
The fourth and final survey on the second version of the Eclipse plug-in had only
6 respondents. Though this is a low number, a trend might be distilled from these
evaluations. The 95% confidence interval for the mean score is 64 to 83. The
comments were approving of the immediate reporting of errors and warnings and
the stepping debugger.
Fig. 7.1 shows the results of all surveys in a single chart. Each survey was roughly
five weeks apart, with the exception of the final survey, being taken shortly after
the third survey, on a different group of users.

7.3. Discussion

As expected, the initial usability scores for the ‘old’ IDE, mainly provided by stu-
dents from Leiden, are not very high. The first version of the plug-in, mainly eval-
uated by students from Delft, shows a small improvement of this score. However,
as the group of participants changed, this small difference is only a slight indication
of a positive trend. The second version of the plug-in, including the new debugger
framework, dropped slightly below the mean of the first evaluation, even having
negative outliers.

86

. 7.3 Discussion

Figure 7.1.: The results from the four SUS surveys

Of course, these results were not foreseen. After all, the plug-in was developed to
enhance the user experience. A few possible reasons exist for this drop of the scores:

1. Out of the 150 students taking the multi-agent programming courses, on aver-
age just 60 students responded to the surveys. As this is less than half of the
user base, the possibility of a significant non-response bias exists. This bias is
potentially negative, as the comments have for example shown that students
tend to use the survey to comment on unrelated matters they are discontent
with, such as exams or lab partners. The negative outliers support this theory,
as these correspond with the less IDE-oriented reactions.

2. The addition of the debugger environment was done during the courses. Re-
search suggests that resistance to change can occur when no clear incentive is
provided for giving up practices one is accustomed to[38]. Evidence has to be
provided to prove the benefits of the new version to prevent this inertia. As
the stepping mechanism and the overall visualization changed dramatically,
the students needed such evidence, but this was not clearly provided to every-
one. The comments on the survey support this theory, as many commented

87

Chapter 7 User Evaluation

about the inability to inspect a mental state whilst an agent was running (e.g.
not paused). Indeed, this was possible in the old IDE, although those views
could be very full, could not be searched or filtered, and refresh faster than
one can see. However, people got used to this way of debugging, and thus
responded negatively to the removal of this feature. Discussing the new solu-
tions with a user often helped to let them understand the improvements that
were made.

3. The IDE is regarded as ‘the whole thing’. For example, comments were made
about the functionalities of the testing framework. Strictly speaking, this is
not an IDE issue. Similarly, comments were made about language constructs.
Being the interface to GOAL, the students view the IDE as the whole platform.
However, there is still a clear separation between this interface and the GOAL
internals. Moreover, because multi-agent systems can make use of external
environments, even more factors can influence the user’s experience. When
there are performance issues, for example, these can be caused by the IDE,
the GOAL core, or the environment. However, users quickly regards the IDE
as the culprit, being the only accessible part of the software for them, whilst
the cause could be in the environment, much further down the pipeline.

4. Some bugs in the new debugger environment were found shortly after its re-
lease. Although this is to be expected in a new product, and these bugs
were solved quickly, they have influenced the user experience negatively. More
extensive testing on different machines could prevent this in the future. More-
over, frequent updates are inconvenient to users, and might even be missed.

The final evaluation, taken on a different set of students, shows a very positive trend.
Although based on just a few users, the scores are significantly higher, stimulating
further evaluation of the usability of the IDE.

88

8. Conclusions and Future Work

This thesis discussed the design and implementation of a mature and professional
IDE for GOAL. In this chapter, an overview of the contributions of this thesis will
be provided. Next, recommendations for future work will be discussed. Finally, a
reflection of the results and accompanying conclusions will be given.

8.1. Contributions

A fully functional development environment was developed for the GOAL agent
programming language. Through the evaluation of literature and other work in the
field, a set of requirements for an agent programming IDE was developed. Based
on these requirements and additional evaluation, Eclipse and DLTK were chosen as
the framework for our work.
New ANTLRv4 grammars were developed for all relevant file types. This work
created a separation of concerns that was not present in the previous grammars, as
the code for processing a syntax tree was moved outside of the grammar by using a
visitor mechanism, increasing the maintainability and understandability of both the
grammar and the processing code. Moreover, by using the new lexical modes, the
KR-sections (language islands) are now recognized by the lexer itself, instead of the
parser determining what lexer to use. This allows a lexer to be used individually,
as required in a modern IDE for performance reasons, and ensures a linear parsing
process. In other words, all steps in the pipeline of lexing, parsing, and visiting can
be executed independently from each other, only based on the result of the previous
step, allowing for improved testability and maintainability. The send construct in
the GOAL language was modified in order to facilitate this new process, and the
error reporting mechanisms were all unified in a single system.
Next, an editing framework for GOAL was created, providing as many industry
standard features as possible, adapted to the context of logic programming where
required. Moreover, a debugging framework was created. To this end, the map-
ping of well-defined debugging processes in other programming paradigms to that
of agent programming was evaluated. A key example of this mapping can be found
in the stepping process that has been defined, as this is significantly different to the
usual linear stepping process for other programming languages, and unique to agent
programming. Other AOP-specific features such as mental state inspection and sev-
eral consoles were designed and implemented as well. Support for breakpoints that

89

Chapter 8 Conclusions and Future Work

can be updated during debugging was added, together with a fixed communication
structure between the different processes. Finally, a reliable method for loading
platform dependent libraries from within Java was created.

All of these chapters were also created as an implementation guide for other AOP
IDE developers. This works aims to increase the standard of the whole field by
providing a complete and adaptable example together with the technical details.
Throughout this process, the user experience was evaluated using SUS surveys.

8.2. Future Work

The formulated could-have requirements already indicate opportunities to improve
specific tools that are currently offered to a user in the IDE. The support for refac-
toring, for instance, could be enhanced to include automatic updating of a variable’s
occurrences when its name is edited, automatic updating of file references, etcetera.
In addition, the auto-completion could be made context sensitive: to take into ac-
count which suggestions are actually possible in the current context. Defining a
section within another section is not possible for instance, but even only suggest-
ing existing beliefs in a bel(...) statement should be possible (e.g. not showing
goals in the auto-completion there). The automatic formatting could be improved
as well, possibly even allowing a user to customize this, as is possible with Java code
for example.

Besides improved editing features, there are other areas in which work is required
as well. For example, there is currently no documentation format like JavaDoc
available for GOAL. Designing and implementing such a documentation structure
would not only improve the auto-completion, but also allow for code documentation
to be generated, again similar to JavaDoc. Users often create manual documents
for this end now, supporting the need for such a framework. A documentation
standard might be set for the whole AOP field. Moreover, the testing framework
could be improved as well. Although this framework was only finished even during
the creation of this thesis, and also outside of its scope, users often commented on
this framework in the IDE evaluation. Users regard the IDE as the full platform,
and thus every part of it should be as user friendly as possible. The unit test output
(e.g. results), for example, is not clear to all users.

More work is also needed in the debugging environment. Another comment that
was often given in the evaluation highlighted the inability to properly inspect an
agent’s state whilst it is running. Pausing an agent is not always ideal, especially
in combination with asynchronous environments that keep on going whilst an agent
is paused. Although the constantly refreshing panes of the old IDE are not a so-
lution to this problem, more work on this issue is required. A system of watch
expressions could be put in place, for instance. This would allow a user to enter
specific queries of which the result would be updated continuously. This is not a

90

. 8.2 Future Work

trivial task, however, and might not even solve the problem completely, indicat-
ing the need for more research on this topic. In addition, the current breakpoint
mechanism should be reevaluated as well. The two types of breakpoints that cur-
rently exist do not match the new stepping mechanism that is in place, which could
confuse a user. Moreover, some potentially useful breakpoints, like after an action
has been successfully executed, cannot be set in the current situation. It may be
possible to create a mechanism that would allow someone to set breakpoints on
specific stepping points. However, more careful evaluation of a user’s requirements
for breakpoints will be necessary. In addition, mechanisms could be added that
allow a user to understand the reasoning of their agents even better. For instance,
a navigable history of an agent’s states could be created, allowing a user to inspect
the conditions under which a certain decision was made, tracing the steps taken to
reach that decision at that specific moment. More insight in the unification process
of a rule might be provided as well, especially when a rule has failed. It may be
possible to show a user exactly why a rule does not apply, or allow a user to request
this somehow, instead of only displaying the fact that it does not, like is currently
done[39]. However, again, this would require more careful research, possibly even
specific to the KR language that is used. This work could also benefit other agent
programming languages. Finally, the interaction amongst agents, or even between
an agent and an environment, might require more visual support to be made clear
to a user. Other APL IDEs already have some mechanisms for this in place, on
which a future implementation for GOAL could be based.

A final area of interest for the IDE itself is the dependency system that is currently in
place. A module file can be used by multiple agent files, but the semantic validation
of such a file depends on its parent. In other words, using an external module file in
combination with one agent could cause errors, whilst a combination with another
agent would work fine. However, as these errors are shown at their exact position
in the code, in the module file in this case, it can be unclear to a user where that
error originated from. Improvements to this error system and perhaps a redesign of
the dependency model of GOAL agents would be required to solve this problem.

Besides the IDE itself, there are more areas that need improvement. For instance,
the evaluation clearly showed the effects of the resistance to change. A more care-
ful release procedure could be determined, perhaps even specific to different user
groups. Moreover, as bugs were present in a few released versions of the plug-ins, a
more careful test procedure is required. However, Eclipse itself does not provide a
framework to test a plug-in conveniently. Nearly all classes in the plug-in depend on
the work of others (DLTK, Freemarker, JFace, DBGP, etc.), and thus their specific,
local (unit) functionality does not directly correspond to the functionality offered
to a user. Some bugs were even specific to certain Eclipse or Java version, which
indicates the need for testing in multiple environments as well. A well designed
testing procedure, and perhaps even a framework for testing Eclipse plug-ins them-
selves could help in preventing these bugs, both for our work and that of others.
Moreover, the user experience should be continuously monitored as well, again for

91

Chapter 8 Conclusions and Future Work

different user groups. Although this thesis made a start on these evaluations, they
should be performed on larger and less specific user base. In this way, the effect of
changes to the IDE can be monitored carefully, allowing for factual improvement in
the user experience.

8.3. Conclusions

In an iterative fashion, an IDE for GOAL was created that successfully provides full-
fledged editing and debugging capabilities to an agent programmer. The required
tooling support for agent program development was determined, and an adequate
design of the development environment was created. All must-have and should-have
requirements listed in sec. 1.2 have been implemented, although as discussed in the
previous section, there is room for improvement on some aspects. All could-have
requirements, of which some have been discussed in the previous section as well, are
still open for implementation.

Based on the fulfilled requirements, all research questions have been answered in
this thesis as well. The specific sub-questions were:

• How can we integrate KR technology in an IDE in such a way that one em-
bedded language can easily be exchanged with another?

• What kind of support is needed in an IDE when working with an external
environment during execution?

• Which debugging mechanisms are needed when debugging a rule-based lan-
guage?

• What kind of debugging support should be provided for debugging agent pro-
grams that execute reasoning cycles?

First of all, care has been taken to embed KR technology in the platform in an
exchangeable manner. Examples of this are the use of ANTLRv4 language islands
and the external ProDT plug-in. Furthermore, to allow a developer to debug an
agent program using an external environment conveniently, the execution and de-
bugging environment has been fully integrated within the IDE. Moreover, using
DBGP’s asynchronous operation mode, all different processes have been carefully
separated from each other, ensuring the continuation of one process when another
fails. For this debugging environment, the debugging mechanisms applicable to
agent programming have been identified and implemented. In the previous sections,
suggestions have been given for the development of more advanced mechanisms
that may improve the debugging process for an agent program developer even more.
Finally, a code stepping mechanism for GOAL, being a rule-based language, has
been successfully implemented by using predefined and customizable code-stepping
points, and custom implementations for the available step actions in Eclipse.

92

. 8.3 Conclusions

Care was taken to meet the non-functional requirements in all these steps. For
example, the performance of the runtime and debugging environment was constantly
evaluated, mostly in comparison to the current situation (in the ‘old’ IDE). This lead
to several refraction processes. For example, the first version of the communication
between the GOAL core and the debugger that is composed out of DebugMessage
objects used the Java serialization framework. However, this object serialization
had a considerable performance impact, leading to a redesign to use strings for the
communication instead. Lessons learned from the NetBeans prototype also ensured
proper performance of the editing framework. Moreover, besides extensive functional
testing by myself, the robustness of the implementation was ensured by the direct use
of the plug-in by over 150 students and teaching assistants, who helped to identify
issues and give suggestions for new features.
The usability of the plug-in was continuously monitored through multiple SUS eval-
uations. Although the evaluation results were not unanimously positive, possible
reasons for this fact were given, and a positive trend was detected. Moreover, even
though the adaptation of this work in the field cannot be foreseen, it certainly set a
new standard for GOAL by providing it with a mature and professional IDE, cur-
rently in use at the TU Delft and several other universities like the TU Denmark and
Leiden University by both students and researchers. Several suggestions to improve
the user experience and thus the potential adaptation as well are given.
Finally, this thesis contributes to the maintainability of the implementation by pro-
viding an extensive guide on its implementation. As extensive care has been taken
to allow for other AOP platforms to benefit from this work, a high level of maintain-
ability and extensibility were key factors in the design of the plug-in. For example,
the editing framework and debugging environment have been separated in both this
thesis and in actual code packages. This separation hopefully allows others in the
field to ‘cherry pick’ the improvements that are relevant to them.

93

Bibliography

[1] Shoham, Yoav. "Agent-oriented programming." Artificial intelligence 60.1
(1993): 51-92.

[2] Russell, Stuart, and Peter Norvig. "Artificial Intelligence: A Modern Approach."
(2009).

[3] Hindriks, Koen V. "Programming rational agents in goal." Multi-Agent Pro-
gramming: Springer US, 2009. 119-157.

[4] Rex Bryan Kline, Ahmed Seffah, Evaluation of integrated software develop-
ment environments: Challenges and results from three empirical studies, Inter-
national Journal of Human-Computer Studies, Volume 63, Issue 6, December
2005, 607-627.

[5] Wasserman, Anthony I. "Tool integration in software engineering environ-
ments." Software Engineering Environments. Springer Berlin Heidelberg, 1990.

[6] Ducassé, Mireille, and Jacques Noyé. "Logic programming environments: Dy-
namic program analysis and debugging." The Journal of Logic Programming
19 (1994): 351-384.

[7] Ossher, Harold, William Harrison, and Peri Tarr. "Software engineering tools
and environments: a roadmap." Proceedings of the Conference on the Future
of Software Engineering. ACM, 2000.

[8] Waters, Kelly. "Prioritization using MoSCoW." Agile Planning (2009).
[9] Wielemaker, Jan, et al. "Swi-prolog." Theory and Practice of Logic Program-

ming 12.1-2 (2012): 67-96.
[10] Behrens, Tristan, et al. "An interface for agent-environment interaction." Pro-

gramming multi-agent systems. Springer Berlin Heidelberg, 2012. 139-158.
[11] Joseph Dumas and Paige Parsons. 1995. Discovering the way programmers

think about new programming environments. Commun. ACM 38, 6 (June 1995),
45-56.

[12] Tajalli, Hossein, and Nenad Medvidovic. "A reference architecture for inte-
grated development and run-time environments." Developing Tools as Plug-ins
(TOPI), 2012 2nd Workshop on. IEEE, 2012.

[13] Eric Allen, Robert Cartwright, and Brian Stoler. 2002. DrJava: a lightweight
pedagogic environment for Java. In Proceedings of the 33rd SIGCSE technical

95

Bibliography

symposium on Computer science education (SIGCSE ’02). ACM, New York,
NY, USA, 137-141.

[14] Kris Powers, Paul Gross, Steve Cooper, Myles McNally, Kenneth J. Goldman,
Viera Proulx, and Martin Carlisle. 2006. Tools for teaching introductory pro-
gramming: what works?. In Proceedings of the 37th SIGCSE technical sym-
posium on Computer science education (SIGCSE ’06). ACM, New York, NY,
USA, 560-561.

[15] Storey, Margaret-Anne, et al. "Improving the usability of Eclipse for novice pro-
grammers." Proceedings of the 2003 OOPSLA workshop on eclipse technology
eXchange. ACM, 2003.

[16] Murphy, G.C.; Kersten, M.; Findlater, L., "How are Java software developers
using the Eclipse IDE?," Software, IEEE , vol.23, no.4, pp.76,83, July-Aug.
2006.

[17] Laura Chiticariu, Vivian Chu, Sajib Dasgupta, Thilo W. Goetz, Howard Ho,
Rajasekar Krishnamurthy, Alexander Lang, Yunyao Li, Bin Liu, Sriram Ragha-
van, Frederick R. Reiss, Shivakumar Vaithyanathan, and Huaiyu Zhu. 2011. The
SystemT IDE: an integrated development environment for information extrac-
tion rules. In Proceedings of the 2011 ACM SIGMOD International Conference
on Management of data (SIGMOD ’11). ACM, New York, NY, USA, 1291-1294.

[18] Febbraro, Onofrio, Kristian Reale, and Francesco Ricca. "ASPIDE: Integrated
development environment for answer set programming." Logic Programming
and Nonmonotonic Reasoning. Springer Berlin Heidelberg, 2011. 317-330.

[19] Findler, Robert Bruce, et al. "DrScheme: A programming environment for
Scheme." Journal of functional programming 12.2 (2002): 159-182.

[20] Zacharias, Valentin. "Development and verification of rule based systems—a
survey of developers." Rule Representation, Interchange and Reasoning on the
Web. Springer Berlin Heidelberg, 2008. 6-16.

[21] Zacharias, Valentin. "Tackling the debugging challenge of rule based systems."
Enterprise Information Systems. Springer Berlin Heidelberg, 2009. 144-154.

[22] Dastani, Mehdi. "2APL: a practical agent programming language." Autonomous
agents and multi-agent systems 16.3 (2008): 214-248.

[23] Collier, Rem William. Agent factory: A framework for the engineering of agent-
oriented applications. Diss. University College Dublin, 2002.

[24] Bordini, Rafael H., Jomi Fred Hübner, and Michael Wooldridge. Programming
multi-agent systems in AgentSpeak using Jason. Vol. 8. Wiley-Interscience,
2007.

[25] Howden, Nick, et al. "JACK intelligent agents-summary of an agent infrastruc-
ture." 5th International conference on autonomous agents. 2001.

96

Bibliography

[26] Pokahr, Alexander, Lars Braubach, and Winfried Lamersdorf. "Jadex: A BDI
reasoning engine." Multi-agent programming. Springer US, 2005. 149-174.

[27] Hirsch, Benjamin, Thomas Konnerth, and Axel Heßler. "Merging agents and
services—the JIAC agent platform." Multi-Agent Programming:. Springer US,
2009. 159-185.

[28] Friedman-Hill, Ernest. "Jess, the rule engine for the java platform." (2008).
[29] Bordini, Rafael H., et al. "A survey of programming languages and platforms

for multi-agent systems." INFORMATICA-LJUBLJANA- 30.1 (2006): 33.
[30] Bendisposto, Jens, et al. "A semantics-aware editing environment for Prolog in

Eclipse." arXiv preprint arXiv:0903.2252 (2009).
[31] Gomanyuk, S. V. "An approach to creating development environments for a

wide class of programming languages." Programming and Computer Software
34.4 (2008): 225-236.

[32] Luck, Michael, Peter McBurney, and Jorge Gonzalez-Palacios. "Agent-based
computing and programming of agent systems." Programming Multi-Agent Sys-
tems. Springer Berlin Heidelberg, 2006. 23-37.

[33] J. Tonn and S. Kaiser. ASGARD – A Graphical Monitoring Tool for Distributed
Agent Infrastructures. In Advances in Practical Applications of Agents and
Multiagent Systems: 8th International Conference on Practical Applications of
Agents and Multiagent Systems (AISC Vol. 70, Springer 2010), April 2010.

[34] Parr, Terence. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[35] Brooke, John. "SUS-A quick and dirty usability scale." Usability evaluation in

industry 189 (1996): 194.
[36] Bangor, Aaron, Philip T. Kortum, and James T. Miller. "An empirical evalua-

tion of the system usability scale." Intl. Journal of Human–Computer Interac-
tion 24.6 (2008): 574-594.

[37] Santos, J. Reynaldo A. "Cronbach’s alpha: A tool for assessing the reliability
of scales." Journal of extension 37.2 (1999): 1-5.

[38] Baddoo, Nathan, and Tracy Hall. "De-motivators for software process improve-
ment: an analysis of practitioners’ views." Journal of Systems and Software
66.1 (2003): 23-33.

[39] Hindriks, Koen V. "Debugging is explaining." PRIMA 2012: Principles and
Practice of Multi-Agent Systems. Springer Berlin Heidelberg, 2012. 31-45.

97

A. ANTLR Grammars

A.1. MAS grammar

grammar MAS;

mas:
environment?
agentFiles
launchPolicy
EOF

;
// ENVIRONMENT
environment:

ENVSECTION CLBR
environmentFile
(INIT EQUALS SLBR initParams SRBR DOT)?

CRBR
;

environmentFile:
ENV EQUALS DOUBLESTRING DOT

;
initParams:

initParam (COMMA initParam)*
;

initParam:
ID EQUALS initValue

;
initValues:

initValue (COMMA initValue)*
;

initValue:
simpleInitValue | functionInitValue | listInitValue

;
simpleInitValue:

ID | INT | FLOAT | SINGLESTRING | DOUBLESTRING
;

99

Chapter A ANTLR Grammars

functionInitValue:
ID LBR initValues RBR

;
listInitValue:

SLBR initValues SRBR
;

// AGENTFILES
agentFiles:

AGENTSECTION CLBR
agentFile*

CRBR
;

agentFile:
DOUBLESTRING (SLBR agentFileParameters SRBR)? DOT

;
agentFileParameters:

agentFileParameter (COMMA agentFileParameter)*
;

agentFileParameter:
(NAME | LANGUAGE) EQUALS ID

;
// LAUNCHPOLICY
launchPolicy:

LAUNCHSECTION CLBR
launchRule*

CRBR
;

launchRule:
simpleLaunchRule | conditionalLaunchRule

;
simpleLaunchRule:

LAUNCH launchRuleComponents DOT
;

launchRuleComponents:
launchRuleComponent (COMMA launchRuleComponent)*

;
launchRuleComponent:

(((WILDCARD | ID) AGENTFILENAME) | ID) (SLBR INT SRBR)?
;

conditionalLaunchRule:
WHEN entityDescription ATENV DO simpleLaunchRule

;
entityDescription:

ENTITY | (SLBR entityConstraints SRBR)

100

A.1 MAS grammar

;
entityConstraints:

entityConstraint (COMMA entityConstraint)*
;

entityConstraint:
((NAME | TYPE) EQUALS ID) | (MAX EQUALS INT)

;

// ENVIRONMENT TOKENS
ENVSECTION: ’environment’;
ENV: ’env’;
INIT: ’init’;
// AGENT TOKENS
AGENTSECTION: ’agentfiles’ ;
NAME: ’name’; // used in launch-section as well
LANGUAGE: ’language’;
// LAUNCH TOKENS
LAUNCHSECTION: ’launchpolicy’;
WHEN: ’when’;
ENTITY: ’entity’;
ATENV: ’@env’;
DO: ’do’;
LAUNCH: ’launch’;
TYPE: ’type’;
MAX: ’max’;
WILDCARD: ’*’;
AGENTFILENAME: ’:’[\t]*~[\t\f\r\n?%*:|<>.,]+;
// GENERAL TOKENS
ID: (ALPHA | SCORE) (ALPHA | DIGIT | SCORE)*;
fragment ALPHA: [a-zA-Z];
fragment SCORE: ’_’;
FLOAT: (PLUS | MINUS)? (DIGITS DOT DIGITS*) | (DOT DIGITS);
INT: (PLUS | MINUS)? DIGITS;
fragment DIGITS:DIGIT+;
fragment DIGIT: [0-9];
PLUS: ’+’;
MINUS: ’-’;
EQUALS: ’=’;
DOT: ’.’;
COMMA: ’,’;
LBR: ’(’;
RBR: ’)’;
CLBR: ’{’;
CRBR: ’}’;

101

Chapter A ANTLR Grammars

SLBR: ’[’;
SRBR: ’]’;
SINGLESTRING: (’\’’ (’\\\’’ | .)*? ’\’’);
DOUBLESTRING: (’"’ (’\\"’ | .)*? ’"’);
// SPECIAL TOKENS
LINE_COMMENT: ’%’ ~[\r\n]* ’\r’? ’\n’ -> channel(HIDDEN);
BLOCK_COMMENT: ’/*’ .*? ’*/’ -> channel(HIDDEN);
WS: [\t\f\r\n]+ -> channel(HIDDEN);

A.2. GOAL grammar

parser grammar GOALParser;
options{tokenVocab=GOALLexer;}

modules: (moduleImport | module)+ EOF
;

// MAIN
moduleImport: IMPORT MODULEFILE DOT

;

module: moduleDef (SLBR moduleOptions SRBR)? CLBR
knowledge?
beliefs?
goals?
program?
actionSpecs?

CRBR
;

moduleDef: (MODULE function) | (INIT MODULE) |
(MAIN MODULE) | (EVENT MODULE)

;

moduleOptions: moduleOption (COMMA moduleOption)*
;

moduleOption: exitOption | focusOption
;

exitOption: EXIT EQUALS (ALWAYS | NEVER | NOGOALS | NOACTION)
;

102

A.2 GOAL grammar

focusOption: FOCUS EQUALS (NONE | NEW | SELECT | FILTER)
;

// KNOWLEDGE, BELIEFS, GOALS
knowledge: KNOWLEDGE CLBR

KR_BLOCK*
CRBR

;

beliefs: BELIEFS CLBR
KR_BLOCK*

CRBR
;

goals: GOALS CLBR
KR_BLOCK*

CRBR
;

// ACTIONSPECS
actionSpecs: ACTIONSPEC CLBR

actionSpec*
CRBR

;

actionSpec: function (INTERNAL | ENVIRONMENTAL)? CLBR
actionPre
actionPost

CRBR
;

actionPre: PRE CLBR KR_BLOCK* CRBR
;

actionPost: POST CLBR KR_BLOCK* CRBR
;

function: ID (LBR KR_STATEMENT+ RBR)?
;

// PROGRAM
program: PROGRAM (SLBR orderOption SRBR)? CLBR

macro*

103

Chapter A ANTLR Grammars

programRule*
CRBR

;

macro: DEFINE function conditions DOT
;

orderOption: ORDER EQUALS
(LINEAR | LINEARALL | RANDOM | RANDOMALL | ADAPTIVE)

;

programRule: ifRule | forallRule | listallRule
;

ifRule: IF conditions THEN ((actions DOT)|anonModule)
;

forallRule: FORALL conditions DO ((actions DOT)|anonModule)
;

listallRule: LISTALL ((ID RTLARROW conditions) |
(conditions LTRARROW ID)) DO ((actions DOT)|anonModule)

;

conditions: condition (COMMA condition)*
;

condition: TRUE | mentalRule | (NOT LBR mentalRule RBR)
;

mentalRule: mentalAction | function
;

mentalAction: (selector DOT)? mentalAtom LBR KR_STATEMENT+ RBR
;

mentalAtom: BELIEF | GOAL | AGOAL | GOALA
;

actions: action (PLUS action)*
;

action: (actionAtom LBR KR_STATEMENT+ RBR) | function |
EXITMODULE | INIT | MAIN | EVENT

104

A.2 GOAL grammar

;

actionAtom: (selector DOT)? (ADOPT | DROP | INSERT | DELETE |
SEND | SENDONCE | LOG | PRINT)

;

selector: selectExp | (SLBR selectExp (COMMA selectExp)? SRBR)
;

selectExp: SELF | ALL | ALLOTHER | SOME | SOMEOTHER | THIS | ID
;

anonModule: CLBR programRule+ CRBR
;

lexer grammar GOALLexer;
@members{int bmatch=0,smatch=0;}

// MAIN TOKENS
IMPORT: ’#import’;
MODULEFILE: ’"’ ~[\t\f\r\n?%*:|<>]+ ’.mod2g"’;
MODULE: ’module’;
INIT: ’init’;
MAIN: ’main’;
EVENT: ’event’;
FOCUS: ’focus’;
NONE: ’none’;
NEW: ’new’;
FILTER: ’filter’;
SELECT: ’select’;
EXITMODULE: ’exit-module’; // up here because of the next token
EXIT: ’exit’;
ALWAYS: ’always’;
NEVER: ’never’;
NOGOALS: ’nogoals’;
NOACTION: ’noaction’;
KNOWLEDGE: ’knowledge’ -> pushMode(KRBLOCK);
BELIEFS: ’beliefs’ -> pushMode(KRBLOCK);
GOALS: ’goals’ -> pushMode(KRBLOCK);
// PROGRAM TOKENS
PROGRAM: ’program’;
ORDER: ’order’;
LINEARALL: ’linearall’;
LINEAR: ’linear’;

105

Chapter A ANTLR Grammars

RANDOMALL: ’randomall’;
RANDOM: ’random’;
ADAPTIVE: ’adaptive’;
DEFINE: ’#define’;
IF: ’if’;
FORALL: ’forall’;
LISTALL: ’listall’;
RTLARROW: ’<-’;
LTRARROW: ’->’;
THEN: ’then’;
DO: ’do’;
NOT: ’not’;
TRUE: ’true’;
BELIEF: ’bel’ -> pushMode(KRSTATEMENT);
AGOAL: ’a-goal’ -> pushMode(KRSTATEMENT);
GOALA: ’goal-a’ -> pushMode(KRSTATEMENT);
GOAL: ’goal’ -> pushMode(KRSTATEMENT);
ADOPT: ’adopt’ -> pushMode(KRSTATEMENT);
DROP: ’drop’ -> pushMode(KRSTATEMENT);
INSERT: ’insert’ -> pushMode(KRSTATEMENT);
DELETE: ’delete’ -> pushMode(KRSTATEMENT);
LOG: ’log’ -> pushMode(KRSTATEMENT);
PRINT: ’print’ -> pushMode(KRSTATEMENT);
SENDONCE: ’sendonce’ -> pushMode(KRSTATEMENT);
SEND: ’send’ -> pushMode(KRSTATEMENT);
ALLOTHER: ’allother’;
ALL: ’all’;
SOMEOTHER: ’someother’;
SOME: ’some’;
SELF: ’self’;
THIS: ’this’;
// ACTIONSPEC TOKENS
ACTIONSPEC: ’actionspec’;
ENVIRONMENTAL: ’@env’;
INTERNAL: ’@int’;
PRE: ’pre’ -> pushMode(KRBLOCK);
POST: ’post’ -> pushMode(KRBLOCK);
// GENERAL TOKENS
ID: (ALPHA | SCORE) (ALPHA | DIGIT | SCORE)*

{ int IDi=1; // ’hack’ for KR parameters
while(true){

final char next = (char)_input.LA(IDi);
if(!java.lang.Character.isWhitespace(next)){

if(next==’(’) pushMode(KRSTATEMENT);

106

A.2 GOAL grammar

break;
}
IDi++;

}
};

fragment ALPHA: [a-zA-Z];
fragment SCORE: ’_’;
fragment DIGITS:DIGIT+;
fragment DIGIT: [0-9];
PLUS: ’+’;
MINUS: ’-’;
EQUALS: ’=’;
DOT: ’.’;
COMMA: ’,’;
LBR: ’(’;
RBR: ’)’;
CLBR: ’{’;
CRBR: ’}’;
SLBR: ’[’;
SRBR: ’]’;
// SPECIAL TOKENS
LINE_COMMENT: ’%’ ~[\r\n]* ’\r’? ’\n’ -> channel(HIDDEN);
BLOCK_COMMENT: ’/*’ .*? ’*/’ -> channel(HIDDEN);
WS: [\t\f\r\n]+ -> channel(HIDDEN);

mode KRBLOCK;
KR_CLBR: WS? CLBR

{ setType(CLBR);
bmatch++;
if(bmatch>1) more();

};
KR_CRBR: CRBR WS?

{ setType(CRBR);
bmatch--;
if(bmatch==0) popMode();
else more();

};
KR_BLOCK: .;

mode KRSTATEMENT;
KR_LBR: WS? LBR

{ setType(LBR);
smatch++;

107

Chapter A ANTLR Grammars

if(smatch>1) more();
};

KR_RBR: RBR WS?
{ setType(RBR);

smatch--;
if(smatch==0) popMode();
else more();

};
KR_STATEMENT: .;

108

109

Chapter B Evaluation Results

B. Evaluation Results

B.1. Exploration

110

B.1 Exploration

111

Chapter B Evaluation Results

B.2. Reliability

112

B.2 Reliability

113

	Contents
	Preface
	1 Introduction
	1.1 Problem Statement
	1.2 Approach
	1.3 Outline

	2 Related Work
	2.1 Literature
	2.2 State of the art APL IDEs
	2.3 Prototype

	3 Plug-in Development Framework
	3.1 Foundation
	3.2 Language support framework

	4 Grammars for Agent Programming
	4.1 Overview
	4.2 Implementation
	4.3 Error reporting

	5 Editing Framework
	5.1 Registering the plug-in
	5.2 The interface
	5.3 Editing files
	5.4 Extra features

	6 Debugging Environment
	6.1 Framework
	6.2 Running a MAS
	6.3 Integrated debugging

	7 User Evaluation
	7.1 Method
	7.2 Results
	7.3 Discussion

	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Future Work
	8.3 Conclusions

	Bibliography
	A ANTLR Grammars
	A.1 MAS grammar
	A.2 GOAL grammar

	B Evaluation Results
	B.1 Exploration
	B.2 Reliability

	Blank Page

