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ABSTRACT
Static balancing is a useful concept to reduce operating ef-

fort in mechanisms. A statically balanced system which is de-
signed to counterbalance a mass, is referred to as a gravity equili-
brator. The potential energy in a gravity equilibrator is constant,
which is achieved by mechanical springs in most of the times.
Enabling spring parameter adjustment is desirable to make the
system suitable for different masses. Often helical springs are
used, which have the problem that they take a lot of space within
the workspace of the mechanism. The goal of this paper is to
develop an adjustable gravity equilibrator using torsion bars in-
stead of helical springs, which saves space in the working area.
Static balancing is achieved by a new Double-Cam Transmission
(DCT). Adjustability is achieved by changing the active length of
the torsion bars. A demonstrator was designed and it was shown
that the system is in theory perfectly balanced, for different ac-
tive lengths of the torsion bars. Our DCT design, and a general
method to calculate its design parameters, are presented. The
size of the DCT can be chosen arbitrarily. Adjustability is possi-
ble on a continues, self-selected range of masses and energy-free
when the torsion bars are not rotated.

INTRODUCTION
A gravity equilibrator is a statically balanced system which

is designed to counterbalance a mass [1]. The principle of
static balancing is that the system has a constant potential energy
within a certain range of motion, which means that any preferred
position is eliminated. Hardly no operating effort is needed to
move the mass to a different position within this range. An ex-
ternal force is only needed to accelerate or decelerate the mass.

Constant potential energy of a system can be achieved by
using counterweights or mechanical springs [2]. In many cases it
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 This chapter will focus on the spring-to-mass and the spring-to-spring 

balancers (figure 5.1). Although the previous chapters make clear that these 

systems are strongly related, they have been assigned separate sections. 

Section 5.2 will start with the conception of a number of gravity equilibrators, 

followed by spring-to-spring balancers of different kinds in section 5.3. It is 

shown that they can be conceived (and extended or simplified) in a precise and 

logical, yet convenient and lucid way by using the proposed framework. Whilst 

the previous sections are restricted to ideal springs, section 5.4 discusses special 

solutions with normal springs and yet perfect static balance. Finally, section 5.5 

demonstrates the surprisingly easy extendibility of the conception approach into 

the third dimension.  

5.2  Gravity equilibrators 

Die Anordnung von zwei Federn ergibt im Allgemeinen einen 

resultierenden Drehmomentenverlauf mit der gleichen Charakteristik 

wie bei einer Feder. Man kann aber die Belastung des Lagers [-] durch 

die zweite Feder und deren Aufhängung beeinflussen. 

The arrangement of two springs generally yields a torque similar to that 

of a single spring. However, the second spring and its attachement can 

affect the pivot load. 

Kurt Hain, 1952 

 

Static balancing of the weight of mechanisms is a well-known field of 

application of spring balancers. Many researchers have addressed the perfect 

equilibration of weight by means of springs [1.5, 1.6], and an impressive body of 

patent literature exists on this topic [1.6]. This section elucidates the conception 

of a number of gravity equilibrators. In specific cases, such as in adjustable 

desk lamps, a certain amount of friction may be desirable, but in many other 

cases, friction will have a negative influence on the proper functioning of the 
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Figure 5.1 Similar static balancing principles: (a) mass-to-mass, (b) spring-to-mass, and (c) 
spring-to-spring balancing. 
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FIGURE 1. Similar static balancing principles: (a) mass-to-mass, (b)
spring-to-mass and (c) spring-to-spring balancing [3]

is desirable to use mechanical springs instead of counterweights,
since then the total weight of the system is reduced. Three sim-
ilar static balancing principles may be distinguished: mass-to-
mass balancing, spring-to-mass balancing and spring-to-spring
balancing (see Fig. 1). This paper focuses on the principle of
spring-to-mass balancing.

A disadvantage of the existing spring-to-mass balancers, is
that the helical spring takes a lot of space within the workspace.
However, when a torsion spring is used at the pivot point, the
helical spring can be removed (see Fig. 2).

Several types of torsion springs exist. A type of torsion
spring that does not take up a lot of workspace and stores a rela-
tively large amount of potential energy, is the torsion bar [4].

An example of an existing product which counterbalances
a mass and makes use of torsion bars is the HCI Foldable Con-
tainer [5]. This container can be folded when it is empty, which
saves space when it is transported or stored. However, this sys-
tem is not perfectly statically balanced, since not every preferred
position is eliminated [6]. A statically balanced system would be
desirable though, to further reduce the operating effort.

A perfectly statically balanced system using torsion bars is
not known by the authors. In many applications it is desirable
to be able to adjust the gravity equilibrator for a different mass
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FIGURE 2. Spring-to-mass balancing with a torsion spring. The tor-
sion spring is located at the pivot point, which saves space within the
workspace of the mechanism.

as well [1]. An adjustable gravity equilibrator using torsion bars
will bring new fields of application into existence.

For example, a case for a new application could be a TV
dresser. Some TV dressers have the opportunity to hide the TV
in the dresser when it is not used. Such a dresser should be
higher than the height of the TV, which is seen as unaesthetic
and uncomfortable. A solution to this problem is the DYNTEQ
flatscreenlift [7]. The TV is stored in the dresser at an angle, so
the height of the dresser can be decreased. A disadvantage of this
design is that a lot of space is taken by the flatscreenlift and the
TV. When the flatscreenlift is replaced by an adjustable gravity
equilibrator with torsion bars, space in the dresser is saved. The
mass in Fig. 2 is then replaced by a flat screen TV. This TV can
be rotated from a vertical position to a horizontal position and
vice versa. Since the system is statically balanced, hardly no op-
erating effort is needed to rotate the TV. By making the system
adjustable, different TVs can be balanced with the same system.

The goal of this paper is to develop a new theoretical per-
fectly balanced system, for counterbalancing different masses
within a specified range, using torsion bars. This paper focuses
on purely mechanical solutions.

The paper is structured as follows: first the method, includ-
ing the design requirements, is explained. Subsequently the con-
ceptual design is presented, which is followed up by a chapter on
the final design. Finally the prototype and results are presented
and discussed.

METHOD
In the basic gravity equilibrator, the moment Mmass exerted

by the mass m on the pivot point (see Fig. 2), depending on the
angle of rotation α , is:

Mmass(α) = mgLsinα (1)

where g is the gravity constant and L is the length of the lever.

The moment Mbars exerted by torsion bars with a solid cir-
cular cross section, depending on the angle of rotation β , is
(adapted from [8, 9]):

Mbars(β ) =
π

32
G

nd4

l︸ ︷︷ ︸
kc

(β +β0) (2)

where G is the shear modulus, n is the number of torsion bars
placed in parallel, d is the diameter of the solid circular cross
section, l is the active length of a torsion bar, kc is the stiffness of
torsion bars with a solid circular cross section and β0 is the angle
of rotation of the torsion bar(s) at starting position.

We want to achieve that:

Mmass(α) =−Mbars(β )aforaαmin ≤ α ≤ αmax (3)

Then the mass has no preferred position and thus the system is
statically balanced within the range of α . For cases that can be
modelled as an inverted pendulum as shown in Fig. 2, it holds
that Mmass(0) = 0 and thus Mbars(0) = 0 Nm. This implies that
β0 = 0 rad, which simplifies Eqn. (2).

Design requirements
The design requirements are based on a specific case for

Mmass. For this specific case we take the TV dresser with a 40/42
inch flat screen TV, which can be modelled as an inverted pendu-
lum. The design requirements are summarized in Tab. 1.

• The first requirement involves the range of α . The TV is
rotated from horizontal to vertical position and vice versa,
thus 0≤ α ≤ π

2 rad.
• The second requirement involves the mass m to be balanced.

In an adjustable system m can take more than just one value.
The weight of a 40/42 inch flat screen TV is about 15 to 25
kg. The total mass of the system also includes the mass of
the lever and the cover of the dresser. Therefore, for m we
chose a range of 20≤ m≤ 30 kg.
• The third requirement involves the length L of the lever. The

height of a 40/42 inch flat screen TV is about 600 mm. The
centre of mass is assumed to be at a height of 300 mm. To
have some space left to build in the torsion bars, we take
L = 400 mm.
• The fourth requirement defines a parameter of Mbars(β ),

which is the active length l of the torsion bar(s). The width
of a 40/42 inch flat screen TV is about 1000 mm. Therefore
we decide to restrict l and chose l < 1000 mm.
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TABLE 1. Design requirements of the adjustable gravity equilibrator
with torsion bars applied to the case of the TV dresser

Parameter Symbol Requirement

Angle of rotation of mass α 0 < α < π

2 rad

Mass m 20 < m < 30 kg

Length of lever L L = 400 mm

Active length of torsion bar(s) l l < 1000 mm

CONCEPTUAL DESIGN
The development of the adjustable gravity equilibrator using

torsion bars is split up into two sub problems. The first problem
concerns the design of a perfectly statically balanced system and
the second one concerns the design of a mechanism for an ad-
justable system.

Statically balanced system
For a statically balanced system we are looking for a rela-

tion for β , which depends on α , in such a way that Eqn. (3)
holds. In other words, a specific transmission between α and β

is needed. A non-constant transmission provides the opportunity
to define a specific relation between two rotating axes [10–14].
A double-cam transmission (DCT) can be used, where two cams
are needed which are connected to each other. We have chosen
to connect the cams to each other with a cable, which is flexible
and can be easily attached. The length of the cable is fixed, thus
when one of the cams rotates, the other cam has to rotate as well.
When the shapes of the cams are different, they will not rotate
with the same angle of rotation and a specific relation between α

and β can be determined.

Adjustable system
For an adjustable system we are looking for a way to change

m and Mbars to the same extent, in such a way that Eqn. (3) holds.
One possibility is to look at the variable β and another possibility
is to look at the constant kc.

A continuous variable transmission (CVT) provides the pos-
sibility to vary the transmission constant between α and β . For
example, if we double the transmission constant, β rotates as
twice as much, and a mass twice as big can be balanced. How-
ever, most of the times CVTs are big and complex systems
[15–18]. Therefore, we first look at more convenient possibil-
ities to change Mbars by changing kc.

The parameters which concern kc are n, d, G and l. Thus for
a torsion bar of a specific material, we can either change n, d or
l. The torsion bar diameter d can not be changed anymore when
the system is in use. The only two parameters changeable when

r1(α) 
 

 

 

α

r2(β)

β
Mbars(β)Mmass(α)

x

A BC dβdα

dy

FIGURE 3. Schematic representation of a part of the circumference
of the two cams (thick lines). The distance x between the centres of the
cams is fixed by choosing A and B. The point of contact C of the two
cams is always on the dashed horizontal line.

the system is in use, are n and l.
Since n is an integer value, for every different mass which

is attached to the system, another torsion bar or combination of
torsion bars is required [19]. In this way many torsion bars are
needed, which should be activated or deactivated individually for
each specific mass. Because the value of l is a continuous value,
one can balance infinitely many different masses within a specific
range. Even when more torsion bars are placed in parallel, it
is possible to adapt l for all torsion bars at the same time [20].
To conclude, changing kc by adapting l is the most convenient
option.

FINAL DESIGN
The concept for a statically balanced system and the concept

for an adjustable system are worked out in detail separately. The
equations of both concepts can be merged together to gain the
total set of equations for the adjustable gravity equilibrator.

Double-cam transmission (DCT)
Figure 3 shows the parameters that were used to calculate the

shape of the cams. Cam 1 is fixed on an axis A and attached to the
mass of the system and cam 2 is fixed on an axis B and attached
to the torsion bar(s). Both axes A and B are placed at the same
height. The horizontal distance x between A and B can be chosen
arbitrarily. The radius of the first cam r1(α) and the radius of
second cam r2(β ) added together are always equal to x. Thus
the point of contact C between the two cams is always situated
somewhere on the horizontal line between A and B. Point C is
also the point where the cable moves over from cam 1 to cam 2.
The force F in the cable depends on the exerted moment on cam
1, Mmass, and the corresponding radius of cam 1. The same force
in the cable also depends on the exerted moment on cam 2, Mbars,
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and the corresponding radius of cam 2. Thus for F it holds:

F =
Mmass

r1
=

Mbars

r2
(4)

Since the length y of the cable is fixed, for small dα and dβ it
holds:

dy = r1(α)dα = r2(β )dβ (5)

When we combine Eqn. (4) and Eqn. (5) we get:

Mmassdα = Mbarsdβ (6)

When we fill in Mmass from Eqn. (1) and Mbars from Eqn. (2),
we can write:

mgLsinα︸ ︷︷ ︸
Mmass

dα = kβ︸︷︷︸
Mbars

dβ (7)

where k is the required stiffness of the torsion bar(s). This equa-
tion is only valid for small values of α and β . To get an equation
which is valid for all values of α and β we can integrate Eqn.
(7):

mgL
∫

sinαdα = k
∫

βdβ (8)

The solution to Eqn. (8) is:

mgL(C1− cosα) = k(
1
2

β
2 +C2) (9)

where C1 and C2 are the integration constants of the indefinite
integrals. Since the torsion bar(s) have no rotation at starting
position, no moments acts on the pivot point when α = 0 and
β = 0. Thus when we substitute α = 0 and β = 0 in Eqn. (9),
this equation has to be equal to zero:

mgL(C1−1) = kC2 = 0 (10)

Now it is clear that C1 = 1 and C2 = 0. Eqn. (9) can now be
written as:

mgL(1− cosα) = k
1
2

β
2 (11)

This equation provides us an equation for β which depends on α ,
in such a way that Eqn. (3) holds. We are now able to calculate
the angle of rotation of the torsion bars for every angle of rotation
of the mass:

β (α) =

√
2mgL(1− cosα)

k
(12)

The required angle of rotation β of the torsion bar(s), can be in-
fluenced by the stiffness k of the torsion bar(s). If k is increased,
the required angle of rotation β will decrease and vice versa.
We decided to add a transmission parameter T to the equations,
which makes it easy to determine a desired maximum value of
β . To introduce this parameter T , we consider the case where
α = π

2 . When we take into account Eqn. (3), we can write (and
introduce T at the left hand side):

T mgLsin
π

2
=−k

√
2mgL(1− cos π

2 )

k
(13)

Since T is introduced at the left hand side, the right hand side has
to change as well. The variable at the right hand side which is
still unknown, is the required stiffness k of the torsion bars. With
Eqn. (13) an equation for this new k can be determined, which
now depends on T:

k =
1
2

mgLT 2 (14)

With Eqn. (12) and Eqn. (14) a new equation for β , with the
extra constant T , can be defined:

β (α) =
2
T

√
1− cosα (15)

We are now able to choose a value for T in such a way that the
required maximum value of β is equal to a desired value. The
stiffness k is influenced by this value of T too, but in such a way
that the system keeps statically balanced. Theoretically T has no
limits. However, from Eqn. (19) and Eqn. (20) one can see that
when T >> 1 or T << 1, the difference in size of the cams will
be large, which is not desirable for practical reasons. Large cams
increase the total size of the system, whereas small cams require
high tolerances.

Since β with respect to α is now known, the shapes of cam
1 and cam 2 can be determined. For the shapes of the cams it
holds:

x = r1(α)+ r2(β ) (16)
r1(α) = x− r2(β ) (17)
r2(β ) = x− r1(α) (18)
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disc 1 disc 2

active length l

torsion bars

Mbars

cam 2

FIGURE 4. Schematic representation of two torsion bars (with solid
square cross section) placed in parallel. Disc 2 (which can rotate) is
connected to cam 2, and disc 1 (which can not rotate) can slide along
the torsion bars to adjust the active length l.

When we now fill in Eqn. (4), for r1(α) and r2(β ) we can write
respectively:

r1(α) =
xMmass

Mmass +Mbars
=

xsinα

sinα +T
√

1− cosα
(19)

r2(α) =
xMbars

Mmass +Mbars
=

xT
√

1− cosα

sinα +T
√

1− cosα
(20)

By using a software package like MATLAB, the centrode (i.e.
the contour of the shape) of each cam can be plotted on a graph.
When the maximum angle of α or β is < 2π rad, the centrode of
the cam will not be a closed line. The centrode can be closed ar-
bitrarily, as long as the functioning of the cams is not influenced.

Adjustable active length of torsion bar(s)
Figure 4 shows a schematic representation of two torsion

bars with adjustable active length l. In general, n torsion bars
are placed in parallel and fixed in disc 1 and disc 2. Disc 2 is
connected to cam 2 and disc 1 can slide along the torsion bars.
To easily clamp the torsion bars, a square cross section instead
of a circular cross section is used. Because disc 1 is able to slide,
the active length l can be changed and the system is adjustable
on a continues range. Adjusting l is energy-free only if the tor-
sion bars are not rotated, thus when β + β0 = 0 rad. In other
configurations, considerable effort may be required.

The required stiffness k of the gravity equilibrator, for a spe-
cific mass m, can be determined with Eqn. (14). For a statically
balanced system, this stiffness k should be equal to the stiffness
of the torsion bars. The relation in Eqn. (2) of the stiffness kc of
torsion bars with a circular cross section, does not hold anymore,
since now torsion bars with a square cross section are used. The

stiffness ks of torsion bars with a solid square cross section is [8]:

ks =0.1406G
nw4

l
(21)

where w is the width of one of the sides of the square cross sec-
tion. By adjusting l, ks is changed and thus a different mass can
be statically balanced. When a specific material is used for the
torsion bars (G is chosen), we still have to chose values for the
parameters n and w. w is restricted by the maximum shear stress
in the torsion bars. Therefore the following relation should be
taken into account [8]:

w <
1.482τmax

Gβmax
l (22)

where τmax is the maximum shear stress and βmax is the maxi-
mum angle of rotation of the torsion bar(s). With MATLAB, all
possible combinations of n, w and l, taking into account Eqn.
(22), can be listed.

We are able to influence the right hand side of Eqn. (22),
by determining βmax. We can choose a specific value of βmax,
by choosing a proper value of T in Eqn. (15). The amount of
possible combinations of n, w and l thus is influenced by the
value of T .

Once we have chosen n and w, the required active length
l of the torsion bars for a specific mass m is known. When a
range of mmin ≤ m ≤ mmax is chosen, a range of lmin ≤ l ≤ lmax
can be determined. This range of l indicates the minimum and
maximum required active length of the torsion bars, to reach a
certain range of adjustability for m.

RESULTS
A prototype was built to verify the working principle of our

design. A picture of the prototype can be seen in Fig. 5 and a
schematic overview of the prototype can be seen in Fig. 6. With
the aid of the schematic overview the prototype will be explained
in more detail. Disc 1 is a circular disc with square cut-outs to
hold the torsion bars (see Fig. 5(d)). Disc 1 can slide along the
torsion bars to adjust the active length l. At the other side, the
torsion bars are fixed in disc 2. Disc 2 is connected to cam 2
by a prismatic joint, which is made of two slide bearings which
slide along two pins (see Fig. 5(c)). This prismatic joint makes it
able that disc 2 has the same angle of rotation as cam 2, however
the distance between disc 2 and cam 2 can vary. This margin is
needed since the torsion bars are rotated on the longitudinal axis
of disc 1 and disc 2, and not on their own longitudinal axis. As
a result, the torsion bars are also bended when they are rotated
and disc 1 and disc 2 are moved towards one another. Since disc
2 is able to move, cam 2 can be fixed on the axis and connected
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FIGURE 5. Pictures of the prototype: (a) a general overview, (b) the
two cams in starting position, (c) the connection between cam 2 and disc
2 and (d) disc 1

disc 1 torsion bars disc 2 cam 2

cablecam 1tubemass and lever

FIGURE 6. Schematic overview of the prototype. One starts with
sliding disc 1 at the right position, which finally results in a statically
balanced system for the mass and lever.

to cam 1 by a cable (see Fig. 5(b)). Cam 1 is connected to
the lever and mass by a tube. Due to two mechanical stops, the
mass can only be rotated between 0≤ α ≤ π

2 rad. The width and
depth of the frame of the prototype are 1173 mm and 280 mm
respectively.

Dimensional design
With MATLAB we calculated the centrodes of the cams and

all possible combinations of n, w and l according to the design
requirements. The design parameters used for the calculations
are shown in Tab. 2. Most of the parameters follow from the
design requirements and material properties of the torsion bars.
However, x and T could be chosen arbitrarily. We chose x as

TABLE 2. Design parameters of the prototype, used to calculate the
centrodes of the cams and all possible combinations of n, w and l

Parameter Symbol Value

Angle of rotation of mass α 0 < α < π

2 rad

Mass m 20 < m < 30 kg

Gravity constant g 9.81 m/s2

Length of lever L 400 mm

Distance between A and B x 130 mm

Transmission parameter T 2

Shear modulus G 78 GPa

Maximum shear stress τmax 680 MPa

Active length of torsion bar(s) l l < 1000 mm

TABLE 3. Four possible combinations of n, w, lmin and lmax for the
prototype. Every row provides a possible combination, which is just
as good as the other ones. One can pick one solution using criteria
like smallest length, smallest difference between lmin and lmax, smallest
width, etc.

lmax [mm] lmin [mm] w [mm] n

724 483 6 8

815 543 6 9

839 559 7 5

906 604 6 10

small as possible, in such a way that the size of the cams did
meet the minimum required bending radius of the cable. T = 2
was chosen to decrease βmax, which results in an enlargement of
the amount of possible combinations of n, w and l.

MATLAB provided all suitable combinations of n, w and
l. For practical reasons we excluded all solutions where n >
10, since we did not want to use many torsion bars for the first
prototype. The four possible combinations of n, w and l left,
can be seen in Tab. 3. For building the prototype we picked the
solution which provided the smallest total length, which is the
first one of Tab 3.

Experimental results
Figure 7 shows the force-deflection diagram of the cable be-

tween the cams. The cable was placed in a universal testing ma-
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FIGURE 7. Three consecutive measurements with the stainless steel
cable between the cams. During each measurement, the cable was
stretched with a maximum force of 2280 N and released again.

chine M250-2.5 CT of Testometric and three consecutive mea-
surements were done. The force-deflection diagram shows that
the strain of the cable is relatively big at the beginning of the mea-
surements. The consequence is that the operation of the DCT is
influenced at the beginning of the rotation. Since the cable is rel-
atively elastic in this domain, cam 2 rotates less than expected.
However, when we pre-tension the cable, the cable already is
stretched at the beginning. In this situation we do not have to
deal with the relatively big strain and the operation of the DCT
is not influenced by this phenomenon anymore.

In our prototype it was not possible to tighten the cable,
since this would change the initial angle of both cams. How-
ever, since the two mechanical stops make sure that the mass can
only rotate between 0≤α ≤ π

2 rad, we are able to pre-tension the
torsion bars, without influencing the staring position of the cams.
In that situation β0 6= 0 rad and at the beginning of the rotation
a moment of M0 = kβ0 is exerted on cam 2. Because of M0, the
cable is pre-tensioned. After this the cams can be placed in their
initial position.

Since now β0 6= 0, Eqn. (3) does not hold anymore. When
α = 0 rad, Mmass(0) = 0. However, when β = 0 rad, Mbars(0) =
M0. In this situation the mass will not be perfectly statically bal-
anced. To be still able to verify the operation of our DCT, we
removed the mass and lever from the prototype and measured
the exerted moment on cam 1 with the universal testing machine.
A tube is fixed in between cam 1 and a testing disc. Around
the testing disc a cable is placed. This cable is moved up and
down by the universal testing machine and since the radius of
the testing disc is known and the force in the cable is measured,
the exerted moment on cam 1 can be calculated. The values of
these measurements will not start at zero, but at M0. Three con-
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FIGURE 8. Three consecutive measurements on cam 1 of Mbars, with
n = 2 and l = 710 mm. Mmass is the calculated theoretical value.
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FIGURE 9. Three consecutive measurements on cam 1 of Mbars, with
n = 2 and l = 554 mm. Mmass is the calculated theoretical value.

secutive measurements were done (see Fig. 8), with n = 2 and
l = 710 mm. According to Eqn. (3), the measured value of Mbars
summed up with the theoretical value of Mmass, should be equal
to zero. Mmass can be calculated with Eqn. (14) and Eqn. (21):

Mmass =
0.1406Gnw4

1
2 lT 2︸ ︷︷ ︸
mgL

sinα +M0 (23)

Figure 8 shows that the values of Mmass +Mbars indeed are lo-
cated around the x-axis.
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When Mmass of the system changes (m changes), Mbars
should change (adapt l) to make sure that Eqn. (3) still holds. We
did three consecutive measurements (see Fig. 9), with n = 2 and
l = 554 mm. This figure shows that the values of Mmass +Mbars
are located around the x-axis.

DISCUSSION
The measurements show that the DCT generates a per-

fectly statically balanced system which is adjustable for different
masses by changing l. However, the measurements were carried
out while β0 6= 0. The system should also work for β0 = 0 rad.
Otherwise it is not possible to adapt l in an energy-free man-
ner, since for β0 6= 0 rad the torsion bars will always be rotated,
even at the beginning. In the existing prototype it was not pos-
sible to pre-tension the cable without changing β0. For future
developments, several other ways to pre-tension the cable with-
out changing β0 are possible.

A solution could be to use two cables between the cams
instead of one, where both cables are placed in opposite direc-
tion. It is now possible to pre-tension both cables to the same
extent, through which the starting angle of the cams does not
change. Another option could be to make a mechanical stop on
both cams, through which they can only be rotated into one di-
rection. Then the cable can be pre-tensioned without affecting
the starting angle of rotation of the cams.

It is also possible to look for solutions where no cable is used
at all. Other possibilities for connecting both cams are using a
band or teeth profiles. A band has the advantage that its thickness
is small in comparison to the diameter of a cable. This means that
the error of the two radii of the cams will be smaller. The total
stress in the band is [21]:

σb =
Fb

tb
+

Et
D

(24)

where Fb is the force in the band, t is the band thickness, b is the
band width, E is the modulus of elasticity and D is the minimum
required diameter of the cams. Assumed is that no normal forces
are present in the band. With MATLAB all possible combina-
tions of t, b and D can be determined. In our prototype a band
with a thickness of 0.2 mm and a width of 30 mm could have
been used instead of the cable. Since the cable exists of many
thin elements, its area moment of inertia is smaller than that of
the band. This implies that for the band stiffness due to bending
is higher than for the cable, which may influence the results. This
extra stiffness should be compensated, thus the required stiffness
of the torsion bar(s) should be different when a band instead of a
cable is used.

When the cams are designed with teeth profiles, no con-
nection elements are needed at all. However, obtaining the cor-
rect teeth profiles requires difficult mathematical calculations on

which research is still going on [13]. High friction forces are
present between the teeth too [12]. To actually build the cams
with teeth profiles is still an issue as well.

The measurements showed that a certain amount of hystere-
sis is present in the system. It is assumed that the hysteresis is
mainly caused by the friction of the slide bearings used in the
prototype. When we look at Fig. 8 we see that 4.5 Nm hysteresis
is present in the system, when α = π

2 rad. Only the static friction
coefficient of the slide bearings is known, which is 0.11. The dy-
namic friction coefficient will probably be lower. However, since
the system was measured with a very low speed of 200 mm/min,
we use the static friction coefficient to make an estimation.

Slide bearings were used on the tube between cam 1 and the
mass, and on the pins of the prismatic joint. Figure 10 shows a
schematic overview of cam 1 and cam 2. The free body diagram
is split up in point C, to show the force F present in the cable.
The force equilibrium of cam 1 provides us the total force FA =
618 N on pivot point A of cam 1, which in the prototype is the
tube. The force equilibrium of cam 2 provides us the total force
on the pins, which is 2Fj = 2084 N. For the tube a maximum
(static) friction force of 618 · 0.11 = 68 N is calculated and for
the pins a maximum (static) friction force of 2084 · 0.11 = 229
N is calculated. To compare these values with the value of the
hysteresis, we have to determine the moments to counteract the
friction instead of the forces. The radius of the tube is 0.0175 m,
thus the extra moment needed to counteract the friction for the
tube is 68 ·0.0175 = 1.2 Nm.

The friction force of the pins is perpendicular to disc 2.
Since the torsion bars bend out of plane during rotation, the force
in the torsion bars can be resolved into a radial, a tangential and
a perpendicular force to disc 2. If this perpendicular force is big-
ger than the friction force of the pins, disc 2 starts to slide on the
bearings. The tangential force in the torsion bars, creates an extra
moment on point B. The relation between the tangential and per-
pendicular force in the torsion bars, is approximately the same as
the relation between the vertical distance and horizontal distance
between both ends of the rotated torsion bars. Since the vertical
distance is 710 mm and the horizontal distance is 50 mm, the
tangential force is 16 N. The radius of disc 2 is 50 mm, thus the
extra moment needed to counteract the friction is 16 ·0.05 = 0.8
Nm.

To conclude, 1.2+ 0.8 = 2.0 Nm is (static) friction caused
by the slide bearings when α = π

2 rad. This holds for the upper
and lower line of Mbars in Fig. 8. The other 0.5 Nm of the hys-
teresis is probably caused by the radial ball bearings, the cable,
deformation of parts and the cams, and measurement errors. A
certain amount of friction in the system is advisable, since in this
way small errors in the system can be set off.

In the calculations of the centrodes of the cams it is assumed
that the connection of the tube between the mass and cam 1 is
rigid. Actually the stiffness of the tube should be taken into ac-
count, since it affects the angle of rotation of cam 1. The maxi-
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FIGURE 10. Force equilibrium on point A and point B for α = π

2
rad (cams are split up in point C). The force Ft of the universal testing
machine is 167 N. With the moment equilibrium around point A the
force F in the cable can be calculated: F = 595. The total force FA on
point A is thus

√
5952 +1672 = 618 N. Since now F is known, the force

Fp on each pin can be calculated with the moment equilibrium around
point B.

mum moment exerted by the mass is:

Mmass(
π

2
) = 25 ·9.81 ·0.4 · sin(

π

2
) = 98.1aNm

The stiffness of the tube is equal to ktube = 11 ·103 Nm/rad. The
angle of rotation of the tube, due to Mmass, is:

α
∗ =

98.1
11 ·103 = 0.0089arad

Since this error is < 1 %, we think the assumption of the tube to
be rigid is acceptably.

For the prototype it holds that 0 ≤ α ≤ π

2 rad, L = 400 mm
and l < 1000 mm. The range of 20≤m≤ 30 kg was not reached,
since the system only worked for β0 = 0.5 rad. When β0 = 0.5
rad, the total angle of rotation βmax of the torsion bars is increased
with 0.5 rad. From Eqn. (22) one can then see that l should be
larger too, in case that w is still smaller than the right hand side of
the equation. When l increases, the stiffness of the torsion bars
decreases. With β0 = 0.5 rad, lmin is about 700 mm, which gives
mmax = 21 kg.

With the calculations of the centrodes of the cams, the ex-
erted moments Mmass and Mbars can be chosen arbitrarily. Thus
the calculations can be performed for other cases as well. In gen-
eral Mmass is the required output of the system and Mbars is the
moment exerted by a mechanism which supplies energy. An ex-
ample of another case for the new adjustable gravity equilibrator
is a hospital bed. The legs of the bed are crossed and the care
taker is able to adjust the height of the bed by changing the angle

of the legs. When the torsion bars and cams are placed in the
pivot point of the legs, the care taker can adjust the height with
hardly any operation effort. The stiffness of the torsion bars can
be adjusted to the weight of the patient.

CONCLUSION
• A theoretical perfectly balanced system using torsion bars is

achieved by a new DCT design.
• A general method to calculate the shape of the two cams of

the DCT is presented, which makes it possible to apply the
method to other applications as well.

• Scaling of the DCT is possible and the range of the angles
of rotation of both cams can be chosen.

• The gravity equilibrator is adjustable for a self-selected con-
tinues range of masses, by changing the active length of the
torsion bars.

• One is able to restrict the number and size of the torsion bars
if wanted.

• Adjustment of the active length is energy-free when the tor-
sion bars have no rotation.

• A prototype was built and it was shown that the system is
statically balanced for different active lengths of the torsion
bars.

• Technical improvements on the prototype are still possible.
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NOMENCLATURE
b band width [m]
d diameter of torsion bar with circular cross section [m]
D minimum required diameter of cams [m]
E modulus of elasticity [Pa]
F cable force [N]
Fb band force [N]
Fp force on prismatic joint [N]
Ft force of tensile testing machine [N]
FA force on point A
FB force on point B
g gravity constant [m/s2]
G shear modulus [Pa]
k required stiffness of torsion bar(s) [Nm/rad]
kc stiffness of torsion bar(s) with circular cross section [Nm/rad]
ks stiffness of torsion bar(s) with square cross section [Nm/rad]
ktube stiffness of tube [Nm/rad]
l active length of torsion bar(s) [m]
lmin minimum active length of torsion bar(s) [m]
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lmax maximum active length of torsion bar(s) [m]
L length of lever [m]
m mass [kg]
mmin minimum mass [kg]
mmax maximum mass [kg]
M1 exerted moment on cam 1 [Nm]
M2 exerted moment on cam 2 [Nm]
Mbars exerted moment by torsion bar(s) [Nm]
Mmass exerted moment by mass [Nm]
n number of torsion bars [-]
r1 radius of cam 1 [m]
r2 radius of cam 2 [m]
t band thickness [m]
T transmission parameter [-]
w width of torsion bar(s) with square cross section [m]
x horizontal distance between axis of cam 1 and cam 2 [m]
y cable length [m]
α angle of rotation of torsion bar(s) [rad]
α∗ angle of rotation of tube relative to α [rad]
β angle of rotation of mass [rad]
β0 initial angle of rotation of torsion bar(s) [rad]
βmax maximum angle of rotation of torsion bar(s) [rad]
σb total stress in band [Pa]
τmax maximum shear stress [Pa]
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Appendix A

Material properties of high-class
spring steel

To calculate the active length l, the width w and the number n of torsion bars required for the prototype,
the values of the shear modulus G and the maximum shear stress τmax of high-class spring steel are
needed. A torsion test and tensile test were carried out to define the shear modulus G and the shear
strength τy respectively. In the calculations the shear strength is taken as the maximum shear stress.
The tests were performed with a torsion bar of high-class spring steel with l = 0.5 m and a solid round
circular cross section with a diameter of d = 3 mm.

With the torsion test the stiffness of the torsion bar was measured as kc = 1.235 Nm/rad (see Fig.
A.1(a)). With the formula for the stiffness of a torsion bar with a solid circular cross section the shear
modulus can now be calculated, since all other variables of this formula are known [8]:

kc =
πd4G

32l
(A.1)

Thus the shear modulus is:

G =
32kcl

πd4
=

32 · 1.235 · 0.5
π · 0.0034

= 78aGPa

With the tensile test the yield strength σy could be estimated from the stress-strain curve (see Figure
A.1(b)). The value of the yield strength was selected as 1.4 GPa. For the shear strength it holds:

τy ≈ 0.6σy (A.2)

For the calculations the shear strength is taken as:

τy ≈ 0.6σy ≈ 0.6 · 1.4 · 109 ≈ 850aMPa

For the prototype a safety factor was introduced, therefore we actually used:

τy = 0.8 · 850 = 680aMPa

The grippers of the tensile testing machine are based on friction. Since high-class spring steel is hardened
steel, it is difficult to fasten the ends of the torsion bar. The peaks in the graph are likely to be the cause
of slip in the grippers during the measurement.
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Figure A.1: Measurement data of a torsion bar with a solid circular cross section with l = 0.5 m and
d = 3 mm: (a) torsion test and (b) tensile test
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Appendix B

Stiffness properties of torsion bars

B.1 Compound torsion bars

Compound torsion bars have a common axis of rotation, which can be seen in Fig. B.1. In this configura-
tion a torsion bar is not only subjected to pure torsion when it is rotated, since there is an offset between
the common axis of rotation and the torsion bar itself. This means that the stiffness properties of the
compound torsion bars are influenced by this offset. The relation between the offset and the exerted
moment by a torsion bar can be determined with the software package ANSYS. The variables used for
the simulation are shown in Tab. B.1.

The exerted moment of a torsion bar was simulated for different values of the offset (see Fig. B.2).
For the exerted moment of a torsion bar with a solid circular cross section it holds [8]:

M = kcβ =
πd4G

32l
β (B.1)

where kc is the the stiffness of one torsion bar, β is the angle of rotation, d is the diameter of the circular
cross section, l is the (active) length and G is the shear modulus of the material. When one fills in Eqn.
(B.1) with the values used in the simulation and G = 78 GPa, one gets:

M =
π · 0.0064 · 78e9

32 · 0.483

π

2
= 32.3aNm

From the graph of Fig. B.2 it is seen that the exerted moment of the torsion bars increases rapidly when
the offset is bigger than 0.05 m.

Table B.1: ANSYS model variables

Material properties
Poisson’s ratio ν 0.3

Density ρ 7850 kg
m3

Modulus of elasticity E 210 GPa
Torsion bars

Number n 6
Active length l 483 mm
Diameter d 6 mm
Angle of rotation β π

2 rad
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Simulaties van het torsiestaafcluster in ANSYS 
Hoe beïnvloedt de samenstelling van het cluster de output van het systeem? 

In het bestand Analyse berekeningen.doc wordt een uitgebreide analyse van alle variabelen 
van het torsiestaafcluster gegeven. Hierin wordt ook aangegeven dat van enkele van 
deze variabelen, met betrekking tot de samenstelling van het cluster, nog niet bekend is 
wat hun precieze invloed is op de output van het (huidige) systeem. Hieronder zijn deze 
variabelen nog eens puntsgewijs weergegeven: 

• afstand tussen torsiestaven en lengteas cluster (zie Figuur 1, r) 
• afstand tussen torsiestaven onderling (zie Figuur 1, α) 
• translatie van torsiestaven t.o.v. lengteas cluster (zie Figuur 2) 
• externe krachten op het systeem 

Figuur 1: Doorsnede torsiestaafcluster

Figuur 2: Torsiestaafcluster na een hoekverdraaiing van 67°. Het is duidelijk te zien dat de staven 
niet alleen om de eigen lengteas draaien, maar ook een translatie ondergaan ten opzichte van de 
lengteas van het gehele cluster. 

r 

α

torsiestaaf 

Figure B.1: Rotated compound torsion bars (solid lines) with common axis of rotation (dashed line)
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Figure B.2: Relation between offset and exerted moment for compound torsion bars
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B.2 Axial forces

The change in stiffness kP of a torsion bar with a solid circular cross section subjected to an axial force
P is equal to [9]:

kP =
d2P

8l
(B.2)

where P is taken positive when a tensile force is applied and P is taken negative when a compressive
force is applied. When a compressive force is applied, one should also take into account buckling theory.
The total stiffness ktot of a torsion bar with a solid circular cross section subjected to twist and an axial
force can be now be defined as:

ktot =
πd4G+ 4d2P

32l
(B.3)

The nominal stress σn due to an axial force in a torsion bar with a solid circular cross section is defined
as [9]:

σn =
4P

πd2
(B.4)

According to Eqn. B.4 for P one can now write:

P <
πd2σmax

4
(B.5)

where σmax is the maximum nominal stress in the torsion bar. For Eqn. B.5 one can also write:

4Pd2 < πd4σmax (B.6)

The maximum total stiffness of a the torsion bar with a solid circular cross section subjected to twist
and an axial force can now be defined as:

kmax =
πd4G+ πd4σmax

32l
(B.7)

When taking G = 78 · 109 and σmax = 1.4 · 109, it is clear to see that πd4G >> πd4σmax. Thus the
stiffness of a torsion bar due to twist is hardly influenced by axial forces.
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Appendix C

Proof of concept

A proof of concept was build to show the working principle of the system (see Fig. C.1). The two cams
were made by a rapid prototyping technique. The centrodes of the cams were calculated with T = 1 and
x = 100 mm. Two torsion bars with a circular round cross section with d = 3 mm and l = 705 mm
were used. The stiffness of the system could be halved by removing one of the torsion bars. The system
should be able to balance a mass of 1.0 kg (one torsion bar) and 2.0 kg (two torsion bars) respectively,
with L = 180 mm. In practice the system was able to balance a mass of 1.1 kg and 2.2 kg. Some small
errors were introduced since the mass was placed at one side of the lever and not in the middle. During
rotation the mass swung a little and the lever was not perfectly vertical in its initial position. Also the
stiffness of the model will always be higher than the expected stiffness, since one always have to deal with
friction in the system.

Torsion bars

Cams

Mass

Lever

Figure C.1: Proof of concept
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Appendix D

Prototype

D.1 Calculations

D.1.1 Cable

The stainless steel cable is equipped with screw thread at both ends, which makes it possible to tighten
the cable around the cams with nuts. Screw thread can not be placed at every type of cable, a selection
had to be made from cables with a 7 x 19 construction (see Fig. D.1). For the cables a minimum diameter
dmin of the cams is required, which is defined as 25 times the diameter dcable of the cable. When the
minimum required diameter of the cams is known, the maximum force Fmax in the cable can be calculated
with:

Fmax =
mmaxgL

dmin/2
(D.1)

This maximum force may not exceed the breaking load Fbreak of the cable. Experience has shown that
the maximum force in the cable should be at least as twice as small as the breaking load. From Tab.
D.1 one can see that than a cable with a diameter of 3.5 mm is the smallest cable which is suitable for
the prototype. Since the cams are not perfectly round and the force in the cable varies during the entire
range of motion, the next cable in row, which has a diameter of 4 mm, is chosen for the prototype.

When the diameter of the cable is 4 mm, the minimum required diameter of the cams is 100 mm.
The size of the cams depends on the distance x between the two centres of the cams, which can be
calculated with the software package MATLAB. From Tab. D.2 it can be seen that the distance between
the centres of both cams should be between 150 and 160 mm. However, since a cable with a higher
breaking load than required was selected, the minimum required radius can be a little smaller, because
the forces in the cable are relatively small. Suppose the maximum forces in the cable are as thrice as
small as the breaking load, than the maximum forces in the cable still can be 8.34

3 = 2.8 kN. From Tab.
D.2 one can see that when x = 130 mm, the maximum forces in the cable are 2.8 kN. To conclude, if
x = 130 mm, the maximum forces in the cable are still three times smaller than the breaking load. To
reduce the dimensions of the prototype, x = 130 mm was chosen instead of a value between 150 and 160
mm.

Table D.1: Cable properties

dcable [mm] dmin [mm] Fbreak [kN] Fmax [kN]
1.5 38 1.25 6.3
2.0 50 2.08 4.7
2.5 63 3.26 3.8
3.0 75 4.69 3.1
3.5 88 6.39 2.7
4.0 100 8.34 2.4
5.0 125 13.00 1.9

Table D.2: Cam properties

x [mm] dmin [mm] Fmax [kN]
100 64 3.7
110 70 3.4
120 78 3.0
130 84 2.8
140 90 2.6
150 98 2.4
160 104 2.3
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10

Stainless Steel Wire Rope (AISI 316)

minimum breaking load

ø

in mm 

3,0

4,0

5,0

6,0

7,0

8,0

kN 

4,34

7,71

12,00

17,40

23,60

30,80

kg

443

786

1220

1770

2410

3140

minimum breaking load Ref. No.

0060.10.30

0060.10.40

0060.10.50

0060.10.60

0060.10.70

0060.10.80

weight

in kg/100 m

3,1

5,5

8,6

12,4

16,9

22,0

Construction 6 x 19 + pp core

Construction 7 x 7

ø

in mm 

1,0

1,2

1,5

1,8

2,0

2,5

3,0

4,0

5,0

6,0

7,0

8,0

10,0

12,0

14,0

16,0

18,0

kN 

0,56

1,13

1,26

1,82

2,24

3,49

5,03

8,94

14,00

20,10

27,40

35,80

55,90

81,10

109,84

144,16

182,40

kg

57

115

128

186

228

356

513

912

1430

2050

2790

3650

5700

8270

11200

14700

18600

weight

in kg/100 m

0,38

0,50

0,86

1,30

1,54

2,40

3,46

6,14

9,60

13,80

18,80

24,60

38,40

55,30

82,32

107,52

131,32

Ref. No.

0155.10.10

0155.10.12

0155.10.15

0155.10.18

0155.10.20

0155.10.25

0155.10.30

0155.10.40

0155.10.50

0155.10.60

0155.10.70

0155.10.80

0155.11.00

0155.11.20

0155..11.40

0155.11.60

0155.11.80

ø

in mm 

1,5

2,0

2,5

3,0

3,5

4,0

5,0

6,0

7,0

8,0

10,0

12,0

14,0

16,0

kN 

1,25

2,08

3,26

4,69

6,39

8,34

13,00

18,80

25,50

33,40

52,10

75,10

102,00

133,00

kg

128

212

332

478

652

850

1330

1920

2600

3410

5310

7660

10100

13600

minimum breaking load Ref. No.

0160.10.15

0160.10.20

0160.10.25

0160.10.30

0160.10.35

0160.10.40

0160.10.50

0160.10.60

0160.10.70

0160.10.80

0160.11.00

0160.11.20

0160.11.40

0160.11.60

weight

in kg/100 m

0,90

1,49

2,33

3,35

4,56

5,95

9,30

13,40

18,20

23,80

37,20

53,60

72,90

95,50

Construction 7 x 19

Figure D.1: Available stainless steel cables with construction 7 x 19

D.1.2 Transmission parameter T

For the prototype T = 2 was chosen, since then β = 1 radial. In this way it was possible to place the eight
torsion bars symmetrically around the point of rotation, while some space was left to place a support in
between (see Fig. D.2). The radius of the disc is chosen 0.05 m.

1 rad

support

disc

point of rotation

Figure D.2: Disc with square cut-outs for the torsion bars and the support which is fixed to the frame.
When the disc is rotated 1 rad, the torsion bars just do not touch the support.

D.1.3 Shortening of compound torsion bars

When the compound torsion bars are rotated, they are subjected to twist and an axial displacement. This
axial displacement is caused by the fact that the torsion bars are not rotated about their longitudinal
axis, but around a common axis. Therefore the connection between the torsion bars and the cam in the
prototype is not rigid and the torsion bars can move freely in axial direction. When no axial displacement
is allowed, the torsion bars will be stretched and extra stress will appear in the torsion bars and the frame
of the prototype. In the prototype the torsion bars are able to slide along two pins in slide bearings. The
required length of the pins can be determined with a simple sketch of the configuration of the compound
torsion bars (see Fig. D.3). The difference between the new length l∗ and the nominal length l of the
torsion bar is the required length of the pins. When we make two right triangles, 4rrs and 4sll∗, l∗ can
be calculated with:

l∗ =
√
l2 + 2r2 (D.2)
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The axial displacement of the torsion bars is biggest for the smallest length, which is l = 483 mm in our
prototype. We have r = 50 mm, so l∗ is equal to:

l∗ =
√

4832 + 2 · 502 = 488amm

The compound torsion bars shorten 5 mm when they are rotated π
2 radians. However, in our prototype

they will just rotate 1 radial and shortening will be smaller. Though, to make sure, the free length of the
pins is chosen twice the required length, which is 5 · 2 = 10 mm.

r

l

l*

s

π/2 rad

Figure D.3: Torsion bar (thick line) with nominal length l which is rotated π
2 rad. Since there is a

distance r to the point of rotation, the length of the torsion bar will change to l∗ after rotation.

D.1.4 Stiffness of rotating axes

The stiffness ktube of a tube with a circular cross section is equal to [8]:

ktube =
π(d4out − d4in)G

32l
(D.3)

where dout is the outer diameter of the tube and din is the inner diameter of the tube. In the prototype
the mass and cam 1 are connected by a tube. For this tube dout = 0.035 m, din = 0.031 m and l = 0.46
m. Thus the stiffness of this tube is equal to:

kt =
π(0.0354 − 0.0314)80 · 109

32 · 0.43
= 11 · 103aNm/rad

For the tube between the cam and the measurement setup it holds:

kt =
π(0.0184 − 0.0154)80 · 109

32 · 0.16
= 2.7 · 103aNm/rad

In Tab. D.3 the results for both tubes are shown.

Table D.3: Stiffness of rotating axes

Axis Stiffness [Nm/rad]
Tube between mass and cam 1 11 · 103

Tube between cam 1 and measurement setup 2.7 · 103
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Figure D.4: Drawings of general parts of the prototype

D.2.2 Laser cutting
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Figure D.5: Drawings of laser cutting parts of the prototype

D.3 List of suppliers

All ordered materials and their suppliers are listed in Tab. D.4 below.

Table D.4: List of suppliers

Part(s) Supplier
Torsion bars United Springs (http://www.united-springs.nl)
Cams (rapid prototyping) Materialise (http://www.materialise.com/online-rapid-prototyping)
Cable Carl Stahl Benelux B.V. (http://www.carlstahl.nl)
Sheetmetal (laser cutting) 247Tailorsteel (http://www.247tailorsteel.com)
Radial ball bearings Conrad (http://www.conrad.nl)
Slide bearings Skiffy (http://www.skiffy.com)

D.4 Specifications of slide bearings

26



GLIJLAGER
SERIE 008-2

Gemaakt van speciale nylon-66 (PA-66) compound met carbonvezel en
PTFE

Beschikbare kleuren: zwart

Zeer lage wrijving en goede warmteafvoer

Maximale glijsnelheid roterend 0,9 m/s

Wrijfingscoëfficiënt t.o.v. staal 0,11 (statisch)

Lagerhuis H7 tolerantie, as h6

 

Prijzen in Euro

Maten in mm

Maten in inches

A rt. nummer Kleur A B C D E F P rijs P er P rijs P er P rijs P er

008  7050 114 42 6 .0 8 .0 12 .0 4.0 1.0  240 .78 1000  149.89  500 39 .13 100  

008  7070 114 42 6 .0 8 .0 12 .0 6.0 1.0  245 .80 1000  153.01  500 39 .94 100  

008  7090 114 42 6 .0 8 .0 12 .0 8.0 1.0  250 .81 1000  156.13  500 40 .76 100  

008  7110 114 42 6 .0 8 .0 12 .0 10.0 1.0  255 .83 1000  159.26  500 41 .57 100  

008  7130 114 42 8 .0 10 .0 15 .0 5.5 1.0  270 .88 1000  168.62  500 44 .02 100  

008  7150 114 42 8 .0 10 .0 15 .0 7.5 1.0  275 .90 1000  164.85  500 43 .45 100  

008  7170 114 42 8 .0 10 .0 15 .0 10.0 1.0  285 .93 1000  170.84  500 45 .03 100 

008  7190 114 42 8 .0 10 .0 15 .0 15.0 1.0  300 .98 1000  179.83  500 47 .40 100 

Gebruiks-

voorbeelden

Maten

26-11-2010 serie 008-2: Glijlager

www.skiffy.com/docs/infoblad.cfm?taal… 1/2



Appendix E

Measurement setup

The measurements were carried out with a M250-2.5 CT universal testing machine of Testometric (see
Fig. E.1). The specifications of this machine are shown in Tab. E.1.

Figure E.1: M250-2.5 CT universal testing machine of Testometric

Table E.1: Specifications of the M250-2.5 CT universal testing machine of Testometric

Description Specification

Machine capacity 2.5 kN
Speed range 0.001 to 1000 mm/min (in steps of 0.001 mm/min)
Crosshead travel (excluding grips) 1000 mm
Throat 200 mm
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Figure E.2: Measurement setup for the cable of the DCT in the universal testing machine

The first measurements were done with the stainless steel cable of the DCT. The cable was fixed in between
the two grippers of the universal testing machine (see Fig. E.2). Three consecutive measurements were
done, of which the results are shown in the paper.

Next, several measurements on the prototype were done. A schematic overview of the measurement setup
is shown in Fig. E.3. The axes of the testing disc (point D), is connected to the axes of cam 1 of the
prototype, with a tube. The tube is fixed on both axis and therefore the rotation of the testing disc is
the same as the rotation of cam 1. Since the force in the testing cable is measured and the radius of the
testing disc is known, the exerted moment on cam 1 can be calculated. A picture of the measurement
setup with the prototype is shown in Fig. E.4.
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5 kg
extra mass

testing disc

testing cable

pulley

gripper of universal 
testing machine

D

Figure E.3: Schematic representation of the measurement setup for the prototype

cam 1cam 2

testing tube

testsing disc pulley

testing cable

universal 
testing machine

Figure E.4: The measurement setup for the prototype with the universal testing machine
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Figure E.5: Three consecutive measurements of the testing cable with the universal testing machine

An extra mass of 5 kg was attached to the testing disc. In this way the testing cable was already stretched
at the beginning of the measurements, which avoids the relatively high strain of the cable at the beginning
(see Fig. E.5). The measurements shown in the paper are compensated already for this extra mass.

The connection between the testing disc and cam 1, the testing tube, is assumed to be rigid. However,
actually the stiffness of the testing tube should be taken into account too. The moments on the system are
maximal when α = π

2 rad. The maximum moment measured can be seen from Fig. 9 of the paper and is
30.7 Nm. The extra mass of 5 kg, attached to the testing disc, adds an extra moment of 5∗9.81∗0.15 = 7.4
Nm (the radius of the testing disc is 150 mm). The maximum total moment on the system is:

Mmass(
π

2
) = 30.7 + 7.4 = 38aNm

The stiffness of the testing tube is equal to 2.7 · 103 Nm/rad. The angle of rotation α∗ of the tube, due
to Mmass, is:

α∗ =
38

2.7 · 103
= 0.014arad

Since this error is < 1 %, it is assumed that the connection between the testing disc and cam 1 is rigid.

The measurements in the paper were carried out with β0 = 0.5 rad. The same measurements can be done
with β0 = 0 rad, as originally intended (see Fig. E.6). It is clear to see that in this case the operation of
the DCT is different at the beginning of the measurements.

31



0 0.5 1 1.5
-30

-20

-10

0

10

20

30

Angle of rotation of cam 1 [rad]

M
om

en
t o

n 
ca

m
 1

 [
N

m
]

Figure E.6: Three consecutive measurements on cam 1 of Mbars, with n = 2 and l = 710 mm. Mmass is
the calculated theoretical value.
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Appendix F

MATLAB code

F.1 Prototype: centrodes of cams and number, length and width
of torsion bars

1 % Deze mfile berekent de vorm van beide rolling links. De curve wordt in
2 % X,Y,Z coordinaten opgeslagen in twee .txt bestanden genaamd schijf1.txt
3 % en schijf2.txt. Vervolgens wordt een matrix T weergegeven waarin de
4 % mogelijkheden voor het torsiestaafcluster staan.
5

6 close all
7 clear
8 clc
9

10 %%%%%%%%%%%%%
11 %%% Input %%%
12 %%%%%%%%%%%%%
13

14 m min = 20; % Minimale massa [kg]
15 m max = 30; % Maximale massa [kg]
16 d out = 4.00; % Buitendiameter kabel [mm]
17 AB = 130; % Afstand tussen de assen van beide schijven [mm]
18 g = 9.81; % Zwaartekrachtversnelling [m/sˆ2]
19 L = 0.4; % Afstand tussen draaipunt en massamiddelpunt [m]
20 T = 2; % Transmissie tussen beide schijven [−]
21 b min = 1; % Minimale breedte torsiestaven [mm]
22 b max = 10; % Maximale breedte torsiestaven [mm]
23 n max = 10; % Maximaal aantal torsiestaven [−]
24 l max = 1; % Maximale lengte torsiestaven [m]
25 G = 78e9; % Schuifmodulus [Pa]
26 tau max = 850e6*0.8;% Maximale schuifspanning (met veiligheidsfactor) [Pa]
27 StepSize = 0.001; % Precisie van de berekening [rad]
28

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 %%% Berekeningen rollings links %%%
31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32

33 % Ruimte voor de rolling links [mm]
34 X = AB−d out;
35 % Hoekverdraaiing van de schijf aan de massa [rad]
36 alpha = 0:StepSize:pi/2;
37 % Hoekverdraaiing van de schijf aan de torsiestaven [rad]
38 beta = 2/T*sqrt(1−cos(alpha));
39 % Straal van de schijf aan de massa [mm]
40 r1 = X*sin(alpha)./(sin(alpha)+T*sqrt(1−cos(alpha)));
41 % Straal van de schijf aan de torsiestaven [mm]
42 r2 = 0.5*X*Tˆ2*beta./(0.5*Tˆ2*beta+sin(acos(1−Tˆ2*beta.ˆ2/4)));
43 % Minimale schijfheid van het torsiestaafcluster [Nm/rad]
44 k min = 0.5*m min*g*L*Tˆ2;
45 % Maximale schijfheid van het torsiestaafcluster [Nm/rad]
46 k max = 0.5*m max*g*L*Tˆ2;
47

48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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49 %%% Berekeningen torsiestaafcluster %%%
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51

52 j = 0; % aantal mogelijke oplossingen
53 S = 0; % matrix met alle mogelijke oplossingen
54

55 for i = 1 : (b max−b min)+1 % aantal mogelijke breedtes van de torsiestaven [−]
56 b = (b min + (i−1)) / 1000; % elke mogelijke breedte van de torsiestaven
57 for n = 1 : n max % aantal mogelijkheden voor de hoeveelheid staven [−]
58 l 1 = 0.1406*G*bˆ4/(k min/n); % lengte torsiestaven bij minimale massa [m]
59 l 2 = 0.1406*G*bˆ4/(k max/n); % lengte torsiestaven bij maximale massa [m]
60 b max = 1.482*tau max*l 2/(max(beta)*G); % breedte bepaald door kortste lengte [m]
61 % De lengte van de torsiestaven moet korter zijn de de maximale
62 % opgegeven lengte door de gebruiker. Tevens mag de breedte niet
63 % groter zijn dan de berekende maximaal toelaatbare breedte.
64 if l 1 < l max & b < b max
65 % Het aantal mogelijke oplossingen neemt met 1 toe.
66 j = j+1;
67 % De eerste kolom van de oplossingsmatrix bevat de lengte van
68 % de torsiestaven.
69 S(j,1) = l 1;
70 % De tweede kolom van de oplossingsmatrix bevat de breedte van
71 % de vierkante torsiestaven.
72 S(j,2) = b;
73 % De derde kolom van de oplossingsmatrix bevat het aantal
74 % staven in het torsiestaafcluster.
75 S(j,3) = n;
76 end
77 end
78 end
79

80 % Laat alle mogelijke oplossingen voor het cluster zien.
81 disp(' LENGTE BREEDTE AANTAL')
82 disp(S)
83

84 %%%%%%%%%%%%%
85 %%% Plots %%%
86 %%%%%%%%%%%%%
87

88 polar(alpha,r1,'r');
89 title('Schijf aan massa')
90 figure
91 polar(beta,r2,'r');
92 title('Schijf aan torsiestaven')
93

94 %%%%%%%%%%%%%%
95 %%% Output %%%
96 %%%%%%%%%%%%%%
97

98 [X1,Y1] = pol2cart(alpha,r1); % vectoren met cartesische cordinaten voor schijf 1
99 [X2,Y2] = pol2cart(beta,r2); % vectoren met cartesische cordinaten voor schijf 2

100

101 % Sla de vectoren met cartesische cordinaten op in textfiles genaamd
102 % schijf1.txt en schijf2.txt.
103 fid1 = fopen('schijf1.txt','wt');
104 fid2 = fopen('schijf2.txt','wt');
105 for j = 1:length(X1)
106 fprintf(fid1,'%f \t %f \t %d \n',X1(j),Y1(j),0);
107 fprintf(fid2,'%f \t %f \t %d \n',X2(j),Y2(j),0);
108 end
109 fclose(fid1);
110 fclose(fid2);
111

112 % Bereken de booglengte y van de curves
113 y = 0;
114 for i = 2:1570
115 afstand = (beta(i+1)−beta(i))*r2(i+1);
116 y = y + afstand;
117 end
118 y
119 y = 0;
120 for i = 2:1570
121 afstand = (alpha(i+1)−alpha(i))*r1(i+1);
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122 y = y + afstand;
123 end
124 y

F.2 Band: thickness, width and minimum required radius

1 % Deze mfile geeft voor verschillende bandbreedtes de bijbehorende minimale
2 % straal en banddikte.
3

4 close all
5 clear
6 clc
7

8 %%%%%%%%%%%%%%%%%%%%%%%%
9 %%% Gegevens Systeem %%%

10 %%%%%%%%%%%%%%%%%%%%%%%%
11

12 m max = 40; % Maximale massa [kg]
13 g = 9.81; % Zwaartekrachtversnelling [m/sˆ2]
14 L = 0.4; % Afstand tussen draaipunt en massamiddelpunt [m]
15 M = m max*g*L; % Maximaal moment op de eeste schijf bij 90 graden [Nm]
16

17 %%%%%%%%%%%%%%%%%%%%%
18 %%% Gegevens Band %%%
19 %%%%%%%%%%%%%%%%%%%%%
20

21 b = 0.01:0.001:0.2; % Bandbreedte [m]
22 t = 0.1e−3:0.1e−3:1e−3; % Banddikte [m]
23

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%
25 %%% Materiaalconstanten %%%
26 %%%%%%%%%%%%%%%%%%%%%%%%%%%
27

28 sigma y = 0.8*1400e6; % Vloeigrens [Pa]
29 E = 210e9; % Elasticiteitsmodulus [Pa]
30

31 %%%%%%%%%%%%%%%%%%%%
32 %%% Berekeningen %%%
33 %%%%%%%%%%%%%%%%%%%%
34

35 % Voor verschillende waardes van de brandbreedte wordt de bijbehorende
36 % minimale straal en de daarbijhorende banddikte berekend. Deze oplossingen
37 % worden opgeslagen in de matrix S.
38 for i = 1:length(b) % Voor iedere opgegeven waarde van de bandbreedte uitvoeren.
39 r = (0.5*E*t+M./(t*b(i)))/sigma y; % De straal wordt berekend vanuit banddikte.
40 r min = min(r); % De minimale straal is de kleinste waarde uit de vector r.
41 [I,J] = find(r == r min); % Vindt de plaats van r min in de vector r.
42 S(i,1) = b(i); % Plaats de bandbreedte in de eerste kolom van matrix S.
43 S(i,2) = t(J); % Plaats de banddikte (behorende bij r min) in de tweede kolom.
44 S(i,3) = r min; % Plaats de minimale straal in de derde kolom.
45 end
46

47 %%%%%%%%%%%%%%
48 %%% Output %%%
49 %%%%%%%%%%%%%%
50

51 disp(' Breedte Dikte Straal')
52 disp(S)
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