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Propositions

accompanying the dissertation

COMPUTATIONAL ANALYSIS OF BRAIN TRANSCRIPTOME ATLASES
UNDERSTANDING MOLECULAR MECHANISMS

by

Ahmed Mohamed Essam Taha Ahmed MAHFOUZ

1. A high resolution spatially-mapped transcriptome of a single sample is more valu-
able than low-resolution data from more samples. (This thesis)

2. Co-expression networks must be spatially and temporally specific to capture brain
complexity. (This thesis)

3. “Good” low-dimensional representations are more informative than high-
dimensional representations of the same data. (This thesis)

4. Studying orchestrated activity of genes in the brains of healthy individuals is es-
sential to understand molecular mechanisms of brain disorders. (This thesis)

5. Scooping clearly demonstrates the conflict between a scientist’s interest in scien-
tific progress and his/her interest in an academic career.

6. Neuroscience research is doomed by averaging across unknown subpopulations
of patient groups as well as cell populations.

7. Machine learning algorithms have a greater potential than models to increase our
understanding of the brain.

8. Methods aimed at making predictions based on biological data should focus more
on out-of-sample generalization rather than in-sample accuracy.

9. In neuropsychiatric disorders, genotyping should come first.

10. Our lack of statistical intuition further supports the notion that human evolution
is an ongoing process.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotors prof. dr. ir. M.J.T. Reinders and prof. dr. ir. B.P.F. Lelieveldt.



COMPUTATIONAL ANALYSIS OF BRAIN
TRANSCRIPTOME ATLASES

UNDERSTANDING MOLECULAR MECHANISMS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op donderdag 23 juni 2016 om 12:30 uur

door

Ahmed Mohamed Essam Taha Ahmed MAHFOUZ

Master of Science in Communication & Information Technology,
Nile University (Egypt),

geboren te Gizeh, Egypte.



This dissertation has been approved by the
promotors: Prof. dr. ir. M.J.T. Reinders and Prof. dr. ir. B.P.F. Lelieveldt

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. ir. M.J.T. Reinders, Delft University of Technology
Prof. dr. ir. B.P.F. Lelieveldt, Delft University of Technology

Leiden University Medical Center

Independent members:
Prof. dr. D. Posthuma Vrije Universiteit Amsterdam
Prof. dr. L. Wessels Delft University of Technology

Netherlands Cancer Institute, NKI
Prof. dr. J.J. Goeman Leiden University Medical Center
Dr. J. Bohland Boston University, USA
Dr. M. Creyghton Hubrecht Institute

Prof. dr. R.C.H.J. van Ham, Delft University of Technology, reserve member

This work was carried out in graduate school ASCI.

ASCI dissertation series number 352.

Parts of this thesis have received funding from The Netherlands Technology Foundation (STW),

as part of STW Project 12721 (“Genes in Space”) under the IMAGENE perspective program.

Cover. Elements of the human genome projected onto a model at the ”Genome: Unlocking Life’s

Code” exhibition at the Smithsonian’s Natural History Museum (Washington, D.C., USA). Photo

copyright A. Mahfouz.

ISBN 978-94-6186-678-3
Published by Uitgeverij BOXPress ∥ Proefschriftmaken.nl

© 2016 A. Mahfouz
All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system or transmitted in any

other form by any means, without the permission of the author, or when appropriate of the publisher of the

represented published articles.

An electronic version of this dissertation is available at: http://repository.tudelft.nl/

http://repository.tudelft.nl/


To my parents, Ola and Essam





CONTENTS

1 Introduction 1

2 Brain Transcriptome Atlases: A Computational Perspective 9

3 Visualizing the Spatial Gene Expression Organization in the Brain through
Non-Linear Similarity Embeddings 33

4 Comprehensive isoform analysis characterizes dystrophin function in hu-
man brain development 51

5 Shared Pathways among Autism Candidate Genes determined by Co-expression
Network Analysis of the Developing Human Brain Transcriptome 67

6 Genome-wide co-expression of steroid receptors in the mouse brain: identi-
fying signaling pathways and functionally coordinated regions 85

7 Hi-C Chromatin Interaction Networks Predict Co-expression in the Mouse
Cortex 103

8 Discussion 121

Bibliography 129

Summary 147

Samenvatting 149

Acknowledgements 151

Curriculum Vitæ 155

List of Publications 157

v





CHAPTER 1
INTRODUCTION

If our brains were simple enough for us to understand them,
we’d be so simple that we couldn’t.

Ian Stewart

1
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1.1. A BRIEF HISTORY OF BRAIN SCIENCE
The human brain is the complex system responsible for our consciousness, perception,
learning and actions. Understanding the biological basis of the human brain and these
mental processes is one of the ultimate challenges faced by scientists. Fueled by philo-
sophical and medical questions, the quest to understand the human brain dates back to
the early days of human history. The Edwin Smith Surgical Papyrus (Middle Kingdom
in Ancient Egypt, ca. 1700 BC) contains the earliest written reference to the brain [1]
(Figure 1.1). Likely a practical handbook for a battlefield surgeon, the text notes the pul-
sations of the cerebral cortex, describes the influence of brain injuries on parts of the
body (such as paralysis), as well as the effect of crushing injuries of vertebrae on im-
paired motor and sensory functions [2, 3]. Hippocrates (460–377 BC) was arguably the
first physician to assert that the center of intelligence is the brain and not the heart as
others, including Aristotle, believed [4]. Describing the symptoms of epilepsy in chil-
dren in his book On the Sacred Disease he wrote: “It is thus with regard to the disease
called Sacred: it appears to me to be nowise more divine nor more sacred than other
diseases, but has a natural cause like other affections.” With this he states that epilepsy
is a brain disorder rather than a curse or a prophetic power, as was previously believed.
[5] The roots of modern neuroscience can be traced back to the latter part of the nine-
teenth century when new tools and techniques boosted our ability to study the struc-
ture and function of the mammalian nervous system [6]. The development of a method
to stain neurons with silver salts to reveal their entire structure under the microscope
by the Italian physician and scientist Camillo Golgi (1843–1926) paved the way for the
Spanish anatomist Santiago Ramón y Cajal (1852–1934) to stain individual cells, show-
ing that nervous tissue is not one continuous web but a network of discrete cells [7]. This
lead to the formation of the neuron doctrine — the principle that individual neurons are
the elementary signaling elements of the nervous system. The Nobel Prize in Physiology
or Medicine 1906 was awarded jointly to Camillo Golgi and Santiago Ramón y Cajal “in
recognition of their work on the structure of the nervous system” [8].

Despite this long history of studying the mammalian brain, fundamental questions,
such as the actual number of cell types in the central nervous system (CNS), remain
unanswered to date [9]. This is mainly due to the high complexity of the brain which
consists of billions of neuronal and glia cells, organized through brain development into
distinct functional populations [10]. In humans and other species, deviations from the
normal trajectories of development and aging of the CNS can lead to brain disorders,
such as autism spectrum disorders (ASD) and Alzheimer’s disease [11].

Rapid developments in neuroimaging and electro/magnetoencelphalography (EEG
/ MEG) have greatly enhanced our understanding of the human brain function. Mag-
netic resonance imaging (MRI) is widely used to characterize the structural and func-
tional organization of the human brain. Methods such as diffusion MRI and functional
MRI (fMRI) are used to map structural and functional connections in the human brain,
providing a crucial foundation for understanding how networks of neurons function and
dysfunction in the brain [12–14]. Despite the clinical value of these methods they pro-
vide little information on the underlying neurobiological mechanisms.
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Figure 1.1: The Edwin Smith Surgical Papyrus (Middle Kingdom in Ancient Egypt, ca. 1700 BC) [1].

1.2. UNDERSTANDING THE BRAIN THROUGH MOLECULAR

MECHANISMS
The high complexity of the brain is largely reflected in the underlying molecular
neurobiology of neurons that determine their morphological and electrophysiological
properties as well as their connectivity patterns. Variations in the genotype of neurons
affect the cognitive and behavioral tasks carried out by the brain through several
molecular levels; transcriptomic, proteomic, and epigenomic. Nowadays, several
methods are used to study the brain at different levels, including the molecular, cellular,
circuit and network levels. At the molecular level, high-throughput technologies such as
Next-generation sequencing (NGS) tremendously increases our ability to measure the
neuronal molecular profile. This includes various assays such as profiling DNA
variations (using exome- and whole genome-sequencing), messenger (mRNA) and
micro (miRNA) expression (using microarrays and RNA sequencing – RNA-seq),
methylation levels (using bisulfite sequencing), accessible chromatin (using DNase I
hypersensitive sites sequencing – DNase-seq), protein-DNA binding and histone
modifications (using Chromatin Immunoprecipitation Sequencing – ChIP-seq),
long-range interactions (using chromatin conformation capture techniques: 3C, 4C and
Hi-C and Chromatin Interaction Analysis by Paired-End Tag Sequencing – ChIA-PET).
Proteomic profiling methods have lagged behind due to our inability to amplify amino
acids compared to nucleic acids [10]. Despite these limitations, efforts have been made
to achieve high-throughput profiling of the human proteome [15, 16] and the brain
proteome [17].

Genetic association studies have established a substantial role for genetic etiolo-
gies in brain disorders. Evidence for association of generic risk factors to neurologi-
cal and psychiatric disorders can be revealed through patient-control studies and twin
studies in case of heritable risk assessment. Using genome-wide association studies
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(GWAS), exome sequencing, and whole genome sequencing, hundreds of variants have
been linked to complex neurological disorders, such as autism, schizophrenia, Migraine,
and Alzheimer’s. Despite these efforts, the identified common and rare variants ex-
plain only a small portion of the genetic contribution to brain disorders. Meanwhile,
genomic screening in imaging studies including large cohorts of patients have increased
the power to detect the influence of genetic variants on brain structure and volume. For
example, the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) con-
sortium [18] analyzed the association of single nucleotide variants (SNVs) with the vol-
ume of subcortical structures in 30,000 individuals. Yet, linking imaging phenotypes
in patient cohorts to the underlying genetic causes remains challenging. A key factor is
that genetic variants are identified from blood samples and it is not clear how these vari-
ants affect gene regulation in the tissue of interest (brain), due to the scarcity of tissue
samples especially from living subjects.

Given the high complexity of the brain, it is important to characterize the different
cell types and their distinct molecular profiles across different parts of the brain as well
as different developmental stages. This can greatly enhance our ability to identify the
mechanisms by which genetic variants affect the brain. Despite recent efforts to se-
quence the DNA of individual neurons using single-cell sequencing technology [19], it
remains yet unfeasible to sequence billions of single cells from the human brain at dif-
ferent stages of development. Alternatively, characterizing the transcriptome of neurons
across different brain regions and ages can help us identify the distinct cell populations
constituting functional units of the brain. Whole-brain maps of genome-wide gene ex-
pression provide an invaluable resource to both neuroscientists and geneticists to study
the spatially-localized functional role of genes in normal brain function. Despite not
holding information on how diseases and disorders affect gene expression, these atlases
provide a rich resource that can be used to study the function of genes in normal con-
ditions. This can offer new insights on how deviations from normal can lead to a CNS
disorders and ultimately on how to develop therapies for neurological disorders.

1.3. BRAIN TRANSCRIPTOME ATLASES
Several efforts have been made to build a genome-wide gene expression map of the
mammalian brain [20–22]. Yet the most successful of those are made by the Allen In-
stitute for Brain Science. They provide the most comprehensive maps of gene expres-
sion in the mouse, macaque, and human brains in terms of the number of genes, the
spatial-resolution, and the developmental stages covered [23]. Several atlases have been
released that map gene expression in the adult and developing mouse [24, 25] and hu-
man [26, 27] brains.

Gene expression (the amount of mRNA) can be measured using a wide range of tech-
nologies. Both the adult and the developing Allen Mouse Brain Atlases [24, 25] rely on
colorimetric in situ hybridization (ISH) to comprehensively map genome-wide expres-
sion throughout the mouse brain. Compared to other high-throughput techniques to
measure gene expression, such as microarrays and serial analysis of gene expression
(SAGE), ISH can capture the expression of genes at a near cellular level. This is par-
ticularly important in a complex structure like the brain with its ultra-high cellular di-
versity such that neighboring neurons can have different expression profiles. Despite
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the power of using ISH to map gene-expression at a cellular resolution, it is not suitable
to create a comprehensive map of gene expression across the entire human brain for
several reasons. Following the pipeline used to generate the mouse brain atlases, thou-
sands of brains are needed. Moreover, several mouse brain sections can be fit on a single
microscope slide, while a single human brain section has to be dissected into multiple
subsection before scanning. For these reasons, the Allen Human Brain Atlas [26] and
the BrainSpan Atlas [27] rely on high-throughput technologies such as DNA microarrays
and RNA-seq of targeted brain regions. These technologies allow quantitative profiling
of gene- and exon-level transcriptomes of postmortem tissues extracted from a small
number of clinically unremarkable human brains.

Despite these substantial efforts, understanding the role of genetic variation on cog-
nitive and behavioral phenotypes remains challenging due to several factors. These in-
clude the complexity of the underlying molecular neurobiology and the poor clinical
definition of neurological disorders. In addition, the heterogeneity and high dimension-
ality of the collected data at different molecular and phenotypic levels requires complex
computational models to analyze. Spatial and temporal brain transcriptomes provide an
opportunity to solve some of these challenges. They allow associations of genetic vari-
ants to specific brain regions and/or or developmental stages. This localization can be
used for instance as an intermediate step in linking genetic variables to imaging phe-
notypes. Instead of analyzing individual genes, spatio-temporal co-expression networks
can be used to study the gene regulatory network underlying the structural and func-
tional organization of the brain. Biological networks provide an attractive framework
to model interactions between several biomolecules inside the cell. Networks have also
been widely used to integrate genetics with transcriptomics, epigenetics and proteomics
[28, 29]. However, one fundamental issue is the scale at which to construct a network.
Multiple evidence suggests a multi-scale analysis approach for network-based integra-
tion of omics data is crucial [30, 31].

1.4. THESIS CONTRIBUTIONS
In this thesis, we study the relationship between gene expression on one hand and the
anatomical and functional organization of the mouse and human brains on the other
hand in order to gain new insights into the genetic etiology of brain processes and dis-
orders. A better understanding of this relationship in normal and diseased brains can
elucidate mechanisms of neurological disorders and is key to develop treatments. We
achieve this goal be developing computational methods to analyze brain gene expres-
sion atlases in order to answer different biological questions about the brain.

In Chapter 2, we start with a review of the computational challenges presented by
brain gene expression atlases and discuss the different methodologies developed to ad-
dress them. We classify these methods into two main categories. First, a class of meth-
ods used to analyze the expression profiles of genes across different brain regions, cell
types and developmental stages. Second, methods focusing on the molecular organiza-
tion and the genetic signature of the brain. In addition, we discuss future perspectives
of these methods in terms of potential new approaches to integrate multiple sources of
neuro-omics data.

Given the high dimensionality of the brain transcriptomes, there is need for dimen-
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sionality reduction methods that can summarize both local and global relationships
in the data to allow informative visualizations. In Chapter 3, we quantitatively assess
the superiority of t-distributed Stochastic Neighbor Embedding (t-SNE) [32] to classical
Multi-Dimensional Scaling (cMDS) and principle component analysis (PCA) in separat-
ing neuroanatomical regions in low-dimensional (2D) embeddings of the mouse and
human brains. We show the consistency of the low dimensional embedding across 6 hu-
man brains of the Allen Human Brain Atlas [26] as well as between the sagittal and coro-
nal sections of the Allen Mouse Brain Atlas [24]. Finally, we used the low-dimensional
embeddings to analyze the contribution of different cell-type markers in determining
the structural organization of the mammalian brain.

Duchenne and Becker Muscular Dystrophies are X-linked genetic neuromuscular
disorders caused by mutations in the DMD gene and characterized by severe and pro-
gressive muscle weakness. In addition to the muscle pathology, there is high incidence
of learning and behavioral problems accompanying both diseases. Yet, the pathophysi-
ology of brain involvement in these disorders remains elusive with a handful of studies
analyzing the role of the DMD gene in the brain. In Chapter 4, we provide a detailed
description of the localization and function of the different isoforms of the DMD gene
throughout the development of the human brain. Our results provide a first detailed
description of the DMD gene expression in different regions of the human brain at dif-
ferent stages of development. Moreover, we use co-expression analysis to provide the
first genetic link that might explain the comorbidity of neurodevelopmental disorders.

Genetic studies have implicated hundreds of genes in autism spectrum disorder
(ASD). However, understanding how these functionally diverse genes can all be
associated to ASD has proved challenging. In Chapter 5, we used the Brain Span atlas of
gene expression in the developing human brain to identify convergent biological
processes between a heterogeneous set of autism-related genes. Using differential
co-expression networks of autism-related genes, we show that autism-related genes can
be grouped in three modules associated to distinct biological functions during human
brain development including synaptogenesis, apoptosis, and GABA-ergic neurons. By
building a genome-wide co-expression network from the entire transcriptome, we
found that autism-related genes were enriched in modules related to mitochondrial
function, protein translation, and ubiquitination. These findings can help our
understanding of the disease etiology along with translational work for drug discovery.

In Chapter 6, we tested whether we can identify signaling pathways of steroid recep-
tors through spatial correlation of steroid receptors with genome-wide mRNA expres-
sion across different regions in the mouse brain. The ISH-based Allen Mouse Brain Atlas
provides us with enough resolution (i.e. enough samples per brain region) to analyze
the region-specific co-expression relationships of six nuclear steroid receptors. Using
known targets of steroid receptors, we observed high co-expression within brain regions
of steroid action. We were able to functionally validate two genes identified as targets
of estrogen receptor alpha (Esr1) in the hypothalamus; namely Irs4 and Magel2. While
the former is a known target of Esr1, Magel2 was previously unknown, highlighting the
power of using genome-wide spatial co-expression to identify steroid receptor targets.
Furthermore, we provide a method to identify concurrent co-expression between steroid
receptors and potential co-regulators in more than one brain region.
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The final contribution in the thesis is a chapter on biological data integration. In
Chapter 7, we studied the functional role of three dimensional conformation of the
genome in the cell nucleus on gene expression regulation. Long-range chromatin
interactions arise as a result of the three-dimensional (3D) conformation of
chromosomes in the cell nucleus and can result in the co-localization of co-regulated
genes. To assess the influence of 3D conformation on gene co-expression, we used
chromatin conformation capture (Hi-C) data from the mouse cortex to build a
chromatin interaction network (CIN) of genes. We show that by characterizing the
topology of the CIN at different scales it is possible to accurately predict spatial
co-expression between genes in the mouse cortex.

We conclude the thesis with a discussion of our contributions and potential exten-
sions to our work together with a brief discussion on the future of brain transcriptomes.
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T HE immense complexity of the mammalian brain is largely reflected in the under-
lying molecular signatures of billions of cells. Brain transcriptome atlases provide a

valuable insight into the gene expression patterns across different brain areas through-
out development. Such atlases allow researchers to probe the molecular mechanisms
which define neuronal identities, neuroanatomy, and patterns of connectivity. Despite
the immense effort put into generating such atlases, an even greater effort is needed
to develop methods to probe the resulting high dimensional multivariate data in or-
der to answer fundamental questions in neuroscience. We provide a comprehensive
overview of the various computational methods used to analyze brain transcriptome at-
lases. These methods can be grouped into two categories: (1) methods analyzing spatial
and temporal expression patterns of gene(s) in the brain and (2) methods analyzing the
genetic signatures of anatomical and functional brain regions. We discuss the various
methodologies adopted as well the mechanistic insights they provide into neurological
processes and disorders. We conclude with a discussion of the contribution of such com-
putational methods as well as directions to improve them, with a focus on integrating
data types and how that can further our understanding of the brain at different scales,
ranging from molecular to behavioral.

2.1. MAPPING GENE EXPRESSION IN THE BRAIN
The mammalian brain is a complex system consisting of billions of neuronal and glia
cells that can be categorized into hundreds of different subtypes. Understanding the or-
ganization of these cells, throughout development, into functional circuits carrying out
sophisticated cognitive tasks can help us better characterize disease-associated changes.
Advances in technology and automation of laboratory procedures have facilitated high-
throughput characterization of functional neuronal circuits and connections at different
scales [23]. For example, the Human Connectome Project maps the complete wiring of
the brain using magnetic resonance imaging [33]. Despite the importance of these imag-
ing modalities in characterizing brain pathologies and development, it is imperative to
analyze the molecular structure to gain a better mechanistic understanding of how the
brain works. The high complexity of the brain, due to the unknown large number of
cell types [9], yields the study of the molecular mechanisms very challenging. Invasive
methods such as viral [34] and optogenetic techniques [35] allow functional manipula-
tion of specific cell populations and can potentially lead to the development of cell-type
targeted therapeutics.

Characterizing the molecular profile of all the cells across the brain can greatly en-
hance our understanding of brain function and disease. Ultimately, sequencing all the
brain cells and mapping their gene, protein and metabolic expression levels will allow in
depth investigation of the role of genomic variation on cell function. The complexity of
the brain is largely reflected in the underlying patterns of gene expression that defines
neuronal identities, neuroanatomy, and patterns of connectivity. Several experimental
approaches have been used to characterize gene expression of different neuronal cell
types in the brain including: microarrays [36], RNA-sequencing [37], serial analysis of
gene expression (SAGE) [38], bacterial artificial chromosome (BAC) transgenesis [20], In
situ hybridization (ISH) [24], and most recently single cell sequencing [39]. With 80%
of the 20,000 genes in the mammalian genome expressed in the brain [24], characteriz-
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ing spatial and temporal gene expression patterns can provide valuable insights into the
relationship between genes and brain function and their role throughout neurodevelop-
ment.

Following earlier progress in other model organisms [40–42], several projects have
assessed gene expression in the mouse brain with various degrees of coverage for genes,
anatomical regions, and developmental time points [9, 23]. In rodents, the Gene Expres-
sion Nervous System Atlas (GENSAT) [20, 21] and GenePaint [43] mapped gene expres-
sion in both the adult and developing mouse brain, while the e-Mouse Atlas of Gene
Expression (EMAGE) [22] and EurExpress [44] focused on the developing mouse brain.
Comparable atlases of gene expression in the human brain are far less abundant due to
the challenges posed by difference in size between the human and mouse brain as well
as the scarcity of post-mortem tissue. However, several studies have profiled the human
brain transcriptome to analyze expression variation across the brain [45], expression de-
velopmental dynamics [46–48] and differential expression in the autistic brain [49], al-
beit in a limited number of coarse brain regions. The Allen Institute for Brain Science
provides the most comprehensive maps of gene expression in the mouse and human
brain in terms of the number of genes, the spatial-resolution, and the developmental
stages covered [23]. Several atlases have been released which map gene expression in
the adult and developing mouse brain [24, 25], the adult and developing human brain
[26, 27], and the developing non-Human Primate (NHP) brain; Figure 2.1. Sunkin et al ..
provides a complete review of the Allen Brain Atlas resources [50].

The availability of genome-wide spatially-mapped gene expression data provides a
great opportunity to understand the complexity of the mammalian brain. It provides the
necessary data to decode the molecular functions of different cell populations and brain
nuclei. However, the diversity of cell types and their molecular signatures and the ef-
fect of mutations on the brain remain poorly understood. For example, de novo loss-of-
function mutations in autistic children have been shown to converge on three distinct
pathways: synapse, Wnt signaling and chromatin remodeling [51, 52]. Except for the
synaptic role of autism-related genes, it is not clear how alternations in basic cell func-
tions such as Wnt signaling and chromatin remodeling can result is the complex phe-
notype of autism spectrum disorders (ASD). A recent effort to map somatic mutations
in cortical neurons using single-cell sequencing has shown that neurons have on aver-
age 1,500 transcription-associated mutations [19]. The significant association of these
single-neuron mutations and genes with cortical expression indicates the vulnerability
of genes active in human neurons to somatic mutations, even in normal individuals.
Efforts to understand genotype-phenotype relationships in the brain face several chal-
lenges including the complexity of the underlying molecular mechanisms and the poor
definition of clinically-based neurological disorders. In addition, the high dimension-
ality of the data yields most studies underpowered to detect any associations. This is
especially true in the case of testing genetic associations with phenotype markers, such
as imaging measurements [53]. A combination of efforts to map the genomic landscape
of the brain, and data-driven approaches can add to our understanding of the underly-
ing genetic etiology of neurological processes and how they are altered in neurological
disorders.

Several review articles provide extensive insights into the gene expression maps of
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Figure 2.1: Spatially-mapped gene expression in the mammalian brain. To map gene expression across the
human and mouse brains, the Allen Institute for Brain Sciences followed two different strategies. In the hu-
man brain, samples covering all brain regions are extracted (A) and gene expression is measured using either
microarray or RNA-sequencing (B). Accompanying histology sections and MRI scans are acquired to localize
samples. Manual delineation of anatomical regions on the histology sections allowed for accurate sample an-
notation (C). In the mouse brain, gene expression is measured in coronal and sagittal sections using in situ
hybridization (D). Several slices covering the mouse brain are extracted per gene. Image registration meth-
ods are used to align the set of sections acquired for each gene to a common reference atlas (E). Anatomical
regions are delineated on the reference atlas allowing for sample annotation (F). Data from the mouse and
human atlases can be represented in a data matrix of three dimensions representing: genes, brain regions and
developmental stages (in case of the developmental atlases) (G).

the brain. French and Pavlidis [54] provide a global overview of neuroinformatics in-
cluding ontology, semantics, databases, connectivity, electrophysiology, and computa-
tional neuroscience. Jones et al . gave an overview on developing the mouse atlas, the
challenges faced, the community reaction, limitations, and atlas usage examples, as well
as the data mining tools provided by the Allen institute [55]. Pollock et al . provide a
detailed review of the technology and tools which are currently advancing the field of
molecular neuroanatomy [23]. Recently, Parikshak et al . illustrated the power of using
network approaches to leverage our understanding of the genetic etiology of neurolog-
ical disorders [11]. Yet, a global overview of the computational methodologies applied
to brain transcriptome atlases to increase our understanding of neurological processes
and disorders remains missing.
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In this review, we provide an overview of the computational approaches used to ex-
pand our understanding of the relationship between gene expression on one hand and
the anatomical and functional organization of the mammalian brain on the other hand.
We focus our discussion on spatial and temporal brain transcriptomes mapped by the
Allen Institute for Brain Sciences. Nevertheless, we also discuss how the methods can
be extended to epigenomes and proteomes of the brain and other human tissues. We
describe the different computational approaches taken to analyze the high-dimensional
data and how they have contributed to our understanding of the functional role of genes
in the brain, molecular neuroanatomy, and genetic etiology of neurological disorders.
Finally, we discuss how these methods can help solve some of the data-specific chal-
lenges, and how the integration of several data types can further our understanding of
the brain at different scales, ranging from molecular to behavioral.

2.2. COMPUTATIONAL ANALYSIS OF SPATIAL AND TEMPORAL

GENE EXPRESSION DATA IN THE BRAIN
Spatio-temporal transcriptomes of the brain pose several challenges due to their high-
dimensionality. In this section we identify the different types of approaches taken to
analyze the spatially-mapped gene expression data. We show the strengths of each ap-
proach and demonstrate how it enriched neuroscience research. We divide the different
methods into two categories. First, we describe a class of methods used to analyze the
expression profile of gene(s) across different brain regions, cell types and developmen-
tal stages. Second we discuss methods focusing on the molecular organization and the
genetic signature of the brain.

ANALYZING THE EXPRESSION PATTERNS OF GENE(S) IN THE BRAIN
Mapping gene expression across the brain is very helpful in determining the neural func-
tion of a gene of interest by associating it to a specific brain region and/or developmental
stage or in identifying genetic markers of those brain regions and developmental stages.
Brain transcriptome atlases, such as the Allen Brain Atlases, provides useful informa-
tion about the expression of a gene under “normal” conditions. Such information can
be used to further direct in depth studies about a specific gene in biologically/clinically
relevant cohorts. With the increasing number of genes implicated in neurological dis-
eases as well as the realization that complex phenotypes of the brain likely result from
the combined activity of several genes, several studies analyze gene sets rather than in-
dividual candidate-genes. By studying the expression of a gene set rather than a single
gene, neuroscientists are faced with a challenge on how to summarize this data in order
to understand the relationship between genes and neuronal phenotypes.

GENE EXPRESSION VISUALIZATION

High throughput data visualization approaches can facilitate the exploration of complex
patterns in multivariate high-dimensional gene expression data sets [56]. For example,
heatmaps are commonly used to visualize gene expression levels across a set of sam-
ples using a two-dimensional false-color image (Figure 2.2F). However, techniques like
heatmaps are not ideal to represent brain transcriptomes because they fail to capture
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the multivariate nature of the data (genes, samples, and time-points) and to represent
the inherent spatial and temporal relationships between different brain regions and de-
velopmental stages, respectively. In order to acquire high resolution gene expression
maps, the Allen atlases of the developing and adult mouse brain rely of ISH images (Fig-
ure 2.2A). The Brain Explorer 3D viewer [57] is an interactive desktop application that
allows the visualization of the 3D expression of one or more genes with the possibil-
ity to link them back to the high resolution ISH images [50] (Figure 2.2B). ISH images
can be synchronized between different genes and also with the anatomical atlas of the
mouse brain (Figure 2.2C), facilitating the analysis of a group of genes. For the adult and
developing human atlases, the gene expression data (microarray or RNA-seq) is mainly
visualized using heatmaps (Figure 2.2D). In the adult human atlas, the expression data
can also be visualized on top of the magnetic resonance images (Figure 2.2E). The Brain
Explorer 3D viewer [57] can be used to visualize gene expression from cortical samples
using an inflated cortical surface, a surface-based representation of the cortex that al-
lows better representation of the relative locations of laminar, columnar, and areal fea-
tures (Figure 2.2F). In addition, gene expression can be mapped to an anatomical repre-
sentation of the brain to facilitate interpretation (Figure 2.2G). French et al . developed a
pipeline to map the expression of any gene from the Allen Human brain atlas to the corti-
cal atlas built into the FreeSurfer software, which shall facilitate integration with medical
imaging studies [58]. Similarly, Ng et al . developed a method to construct surface-based
flatmaps of the mouse cortex that enables mapping of gene expression data from the
Allen Mouse Brain Atlas [59].

SUMMARY STATISTICS AND VISUALIZATION-BASED METHODS

Early studies employing the Allen Brain Atlases used a variety of visualization and quali-
tative measurements to analyze the expression of gene sets associated with consumma-
tory behavior in the mouse brain [60], changes in locomotor activity in the mouse brain
[61], midbrain dopaminergic neurons [62], and dopamine neurotransmission [63]. Kon-
dapalli et al . used a similar qualitative approach to analyze the expression of Na+/H+
exchangers (NHE6 and NHE9), which are linked to several neuropsychiatric disorders,
in the adult and developing mouse brain atlases [64].

In order to provide better quantitative representations of the expression of gene sets,
several studies relied on basic summary statistics, such as the mean, standard devia-
tion and summation. Zaldivar et al . used summations to summarize the expression of
cholinergic, dopaminergic, noradrenergic, and serotonergic receptors in the amygdala,
and in neuromodulatory areas [65]. By plotting the average expression of genes harbor-
ing de novo loss-of-function mutations identified by means of exome sequencing across
human brain development, Ben-David and Shifman identified two clusters with antag-
onistic expression patterns across development [66]. Dahlin et al . developed their cus-
tom score (expression factor) of gene expression in the mouse brain based on the ISH
images of the Allen Mouse Brain Atlas [67]. They computed the mean and the standard
deviation of the expression factor to assess the global expression and heterogeneity of
solute carrier genes, respectively. To deal with the qualitative ISH-based expression data
from the Allen Mouse Brain Atlas, Roth et al . used a non-parametric representation of
the data (using ranks instead of raw expression values) to study the relationship between
genes associated with grooming behavior in mice and 12 major brain structures [68].
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Figure 2.2: Gene expression visualization. Gene expression of spatially-mapped samples can be visualized
using several approaches. (A) The mouse gene expression data of the gene Man1a can be investigated using
the original ISH sections. (B) The BrainExplorer software allows visualization of the 3D expression volume
with an overlay of the anatomical atlas and the ability to go back to the original high-resolution ISH section.
(C) Simultaneously viewing the ISH section and the corresponding atlas section helps in localizing gene ex-
pression to brain regions. (D) Heat-maps are commonly used to visualize gene expression. Expression of the
two exons of the NEUROD6 gene from the BrainSpan Atlas are visualized using a heat-map in which samples
are ordered according to the age of the donor. (E) Samples from the Allen Human Brain Atlas are associated
with coordinates of their location in the corresponding brain MRI. (F) Using the BrainExplorer, expression val-
ues of MECP2 can be mapped to an inflated white matter surface for better visualization of the cortex. (G)
Alternatively, expression values can be mapped on an anatomical atlas of the human brain.

Most of the studies analyzing gene expression in the brain focused mainly on scores
describing the expression of a gene or a gene set within each brain region of interest.
Liu et al . [69] proposed a characterization of the stratified expression pattern of sonic
hedgehog (Shh), a classical signal molecule required for pattern formation along the
dorsal-ventral axis, and its receptor Ptch1. Using a combination of differential
expression, transcription factor motif analysis and ChIP-seq, they identified the role of
Gata3, Fox2, and their downstream targets in pattern formation in the early mouse
brain. These results illustrate the power of characterizing complex expression patterns
across the brain rather than the solely summarizing the expression of each gene within
individual brain regions.
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Box 1 | Gene Sets

Complex biological functions and disorders usually involve several rather than a single
gene. Gene sets are groups of genes that share common biological functions that can be
defined either based on prior knowledge (e.g. about biochemical pathways or diseases)
or experimental data (e.g. transcription factor targets identified using CHIP-seq). Gene
set databases organize existing knowledge about these groups of genes by arranging
related genes in a set where each set is associated with a functional term, such as a
pathway name or a transcription factor that regulates the genes. Gene set databases
can be classified into five types of sets:
Gene Ontology (GO)
The Gene Ontology project [70] developed three hierarchically structured vocabularies
(ontologies) that describe gene products in terms of their associated biological pro-
cesses, cellular components and molecular functions. Genes annotated with the same
GO term(s) constitute a gene set.
Biological Pathways
Biological pathways are networks of molecular interactions underlying biological pro-
cesses. Pathway databases, such as Kyoto Encyclopedia of Genes and Genomes
(KEGG) [71] and REACTOME [72], catalog physical entities (proteins and other macro-
molecules, small molecules, complexes of these entities and post-translationally mod-
ified forms of them), their subcellular locations and the transformations they can un-
dergo (biochemical reaction, association to form a complex and translocation from one
cellular compartment to another).
Transcription
Transcription databases include information on transcription regulation of genes by
transcription factors (TFs) binding to the DNA or post-transcriptional regulation by
microRNA binding to the mRNA. Determining these physical interactions can be done
either in silico using computational inference (motif enrichment analysis) or using ex-
perimental data such as (ChIP-seq and microRNA binding data). For the motif en-
richment analysis, position weight matrices (PWMs) from databases TRANSFAC [73]
and JASPER [74] can be used to scan the promoters of genes in the region around
the transcription factor start site (TSS). ChIP-seq data, such as the large collection of
experiments from the Encyclopedia of DNA Elements (ENCODE) project [35] and the
Roadmap Epigenomics consortium [75], is used to identify genes targeted by the TFs.
Similarly, microRNA targets can be extracted from databases such as TargetScan [76].
Cell-type markers
Cell type-specific transcriptional data provide a very rich source of cell type marker
genes. Genes are identified as a cell type marker if they are up-regulated in one cell
population compared to other cell populations. Several studies have used microarrays
and RNA-seq to profile the transcriptome of several neuronal cell types [36, 37]. Re-
cently, studies are using single-cell sequencing to precisely capture the transcriptome
of individual neuronal cells [39, 77].
Disease
Genes can be grouped into sets based on their association to the same diseases. Pub-
lic databases, such as OMIM [78] and DisGeNet [79], contain curated information
from literature and public sources on gene-disease association. Another source to ob-
tain disease-related gene sets is by identifying genes harboring variants identified using
GWAS [80, 81], exome-sequencing [82], or whole-genome sequencing.
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IDENTIFYING GENES WITH LOCALIZED EXPRESSION PATTERN

The complexity of the brain implies that genes are involved in more than one function
and that their function is region- or cell-type-specific. Neuronal cell types have been
classically defined using cell morphology, electrophysiological and connectivity proper-
ties. Similarly, classical neuroanatomy identifies regions based on their cyto-, myelo-,
or chemo-architecture. Genomic transcriptome measurements provide an alternative
route to define functional cell types and brain regions based on their genetic makeup.

Several studies have analyzed the ISH-based gene expression data of the Allen Mouse
Brain Atlas in order to identify cell-type specific genes and genes with localized gene ex-
pression. Li et al . identified cell-type-specific genes using scale-invariant feature trans-
form (SIFT) features of the ISH images [83]. They further classified genes, using a su-
pervised learning approach (regularized learning), based on their expression in different
brain cell-types. Similarly, Kirsch et al . [84] described an approach to identify genes
with a localized expression pattern in a specific layer of the mouse cerebellum. They
represented each ISH image (gene) by using a histogram of local binary patterns (LBP) at
multiple-scales. Predicting the localization of genes to each of the four cerebellar layers
is done using two-level classification. First they used a support vector machine (SVM)
classifier to assign a cerebellar layer to each image and then used multiple-instance
learning (MIL) to combine the resulting image classification into gene classification.
At the brain regions level, David and Eddy developed ALLENMINER [85], a tool that
searches the Allen Mouse Brain Atlas for genes with a specific expression pattern in a
user-defined brain region. More application specific methods include the identification
of genetic markers of the ventromedial hypothalamus [86] and the localization of human
age-related gene expression changes in different neuronal cell types [87].

More recently, Ramsden et al . [88] studied the molecular components underlying
the neural circuits encoding spatial positioning and orientation in the medial entorhinal
cortex (MEC). They developed a computational pipeline for automated registration and
analysis of ISH images of the Allen Mouse Brain Atlas at laminar resolution. They showed
that while very few genes are uniquely expressed in the MEC, differential gene expression
defines its borders with neighboring brain structures, and its laminar and dorsoventral
organization. Their analysis identifies ion channel-, cell adhesion- and synapse- related
genes as candidates for functional differentiation of MEC layers and for encoding of spa-
tial information at different scales along the dorsoventral axis of the MEC. Finally, they
reveal laminar organization of genes related to disease pathology and suggest that a high
metabolic demand predisposes layer II to neurodegenerative pathology.

SPATIAL AND TEMPORAL GENE CO-EXPRESSION

Genes with similar expression patterns over a set of samples are said to be co-expressed
and are more likely to be involved in the same biological processes (guilt by association)
[89]. Applying the same approach to brain transcriptomes can identify co-expressed
genes based on their spatial and/or temporal expression across the brain. This can serve
as a powerful tool to characterize genes with respect to their context-specific functions.
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Box 2 | Dimensionality Reduction

The high dimensionality of transcriptomes, and other biological data (e.g. proteomes,
epigenomes, etc.), provides a challenge for visualization as well as for selecting informa-
tive features for clustering and classification. Dimensionality-reduction approaches aim
at finding a smaller number of features that can adequately represent the original high
dimensional data in a lower dimensional space. The conventional principal component
analysis (PCA) is the most commonly used dimensionality reduction method. Despite
its utility, PCA can only capture linear rather than non-linear relationships, which are
inherent in many biological applications. Several non-linear dimensionality reduction
techniques have been proposed (e.g. Isomap [90]), see Lee and Verleysen [91] for an
extensive review. The t-distributed stochastic neighbor embedding (t- SNE) method
[32] has been widely used to visualize biological data in two dimensions by preserving
both the global and local relationships between the data points in the high-dimensional
space [92].

Several similarity/distance measurements have been used to characterize the
similarity in spatial/temporal expression patterns between a pair of genes. Of these,
correlation-based measures are mostly used to assess gene co-expression patterns
across the brain. NeuroBlast [93] is a search tool developed by the Allen Institute for
Brain Sciences to identify genes with a similar 3D spatial expression to that of a gene of
interest in a given anatomical region, based on Spearman’s correlation. Figure 2.3A
shows an example of the obtained correlations of estrogen receptor alpha (Esr1) in the
mouse hypothalamus. The ISH sections in Figure 2.3B shows that correlation can
effectively be used to identify genes functional association with Esr1. For example, the
top correlated gene to Esr1 in the hypothalamus is insulin receptor substrate 4 (Irs4), a
target gene of Esr1 associated with sex specific behavior [94]. NeuroBlast was used to
identify genes with a similar expression profile to Wnt3a, a ligand in the Wnt signaling
pathway, in the developing mouse brain and identified eight Wnt signaling genes
among the top correlated genes [25]. Using Spearman’s correlation coefficient, French
et al . [95] analyzed gene-pairs with positive and negative co-expression in the mouse
brain. By focusing on genes with a strong negative correlation, they showed that
variation in gene expression in the adult normal mouse brain can be explained as
reflecting regional variation in glia to neuron ratios, and is correlated with degree of
connectivity and location in the brain along the anterior-posterior axis. Tan et al . [96]
extended the analysis to the adult human brain and identified conserved co-expression
patterns between the mouse and the human brain. In order to characterize the role of
SNCA, a gene harboring a causative mutation for Parkinson’s disease, Liscovitch and
French [97] analyzed the co-expression relationships of SNCA in the adult and
developing human brain. They identified a negative spatial co-expression between
SNCA and interferon-c (IFN-c) signaling genes in the normal brain and a positive
co-expression in postmortem samples from Parkinson’s patients, suggesting an
immune-modulatory role of SNCA that may provide insight into neurodegeneration.
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Box 3 | Clustering

Clustering is the unsupervised learning process of identifying distinct groups of objects
(clusters) in a dataset [98]. There are two main types of clustering: hierarchical
and partitional. Hierarchical clustering algorithms start by calculating all the pair-wise
similarities between samples and then building a dendrogram by iteratively grouping the
most similar sample pairs. By cutting the tree at an appropriate height, the samples are
grouped into clusters. On the other hand, partitional clustering optimizes the number
of simple models to fit the data. Examples of partitional clustering include k-means,
Gaussian mixture models (GMMs), density-based clustering, and graph-based methods.

In order to cluster the samples hierarchically, all the pair-wise similarities between
sample Si and Sj are calculated. Samples are then grouped iteratively based on the
calculated similarities (grouping the most similar first). Once the full dendrogram is
built, a cut-off (dashed line) is used to group samples into two groups. For k-means
we set the number of clusters to two based on the data heatmap. K-means groups
samples by minimizing the within-cluster sum of square distances between each point
in the cluster to the cluster center.

Gene co-expression can serve as a very powerful tool for in silico prediction and
prioritization of disease genes, by identifying genes with similar expression pattern to
known disease genes. Piro et al . [99] described a candidate gene prioritization method
using the Allen Mouse Brain Atlas. They showed that the spatial gene-expression pat-
terns can be successfully exploited for the prediction of gene–phenotype associations by
applying their method to the case of X-linked mental retardation. By extending their
methods to the human brain atlas, they showed that spatially mapped gene expres-
sion data from the human brain can be employed to predict candidate genes for Febrile
seizures (FEB) and genetic epilepsy with febrile seizures plus (GEFS+) [100]. Both exam-
ples illustrate the power of using computational approaches to prioritize disease genes
before carrying out empirical analysis in the lab.

In measuring gene co-expression, correlation-based methods are not specific to
spatially-mapped expression data and hence do not fully model the complexity of the
brain transcriptomes. In order to identify gene-pairs with similar expression patterns in
the adult mouse brain based on the ISH images, Liu et al . [101] compared three image
similarity metrics: a naïve pixel-wise metric, an adjusted pixel-wise metric, and a
histogram- row-column (HRC) metric. They showed that HRC performs better than
voxel-based methods, indicating the superiority of methods that capture the local
structure in spatially-mapped data. Miazaki and Costa [102] used Voronoi diagrams to
measure the similarity of the density distribution between gene expressions in the adult
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Box 4 | Classification

Classification is a supervised learning process of labeling unseen objects (test set) given
a set of labeled objects (training set) [98]. Classification approaches can be divided
into Bayesian methods and prediction error minimization methods. The former group
is based on Bayesian decision theory and uses statistical inference to find the best class
for a given object. Bayesian methods can be further divided into parametric classifiers
(e.g nearest-mean classifier and Hidden Markov Models) and non-parametric classifiers
(e.g. Parzen window or k-nearest neighbor classifier). Alternatively, classifiers can
be designed to minimize a measure of the prediction error. Famous classifiers in this
category include: regression classifiers (e.g. Lasso regression), support vector machines,
decision trees and artificial neural networks. Neural networks (Deep Learning), have
become very successful in solving problems in a wide range of applications, including
bioinformatics [104–106].

A low dimensional embedding of the samples is generated using two features (genes).
Baysian Classifiers assigns each sample to one of the two classes (Diseases or Healthy)
based on statistical inference. Prediction error-minimization classifiers updates the
classification boundary (dashed line) based on the prediction error and terminates when
a certain criteria is met.

mouse brain. Inspired by computer vision algorithms, Liscovitch et al . [103] used the
similarity of scale-invariant feature transform (SIFT) descriptors of the ISH images of
the mouse brain to predict the gene ontology (GO) labels of genes.

GENE CO-EXPRESSION NETWORKS

As we have shown, the guilt by association paradigm has been successfully employed to
identify pairs of spatially co-expressed genes sharing the same function, based on
various similarity measures. To extend this notion beyond gene pairs, clustering and
network-based approaches are used to identify molecular interaction networks of a
group of genes that signal through similar pathways, share common regulatory
elements, or are involved in the same biological process. Co-expression networks avoid
the problem of relying on prior knowledge, such as protein-protein interactions and
pathway information, which are valuable but incomplete. Co-expression networks are
widely used to identify disrupted molecular mechanisms in cancer and aging [107–109].
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Figure 2.3: Spatial gene co-expression in the mouse brain. (A) Expression energy profiles of voxels in the
hypothalamus region of the mouse brain using the same linear ordering. The estrogen receptor alpha (Esr1)
gene shows high expression in the hypothalamus. The expression patterns of Irs4 and Ngb are highly correlated
with that of Esr1 (R = 0.79 and R = 0.64, respectively). On the other hand, the expression pattern of Ltb is not
correlated with that of Esr1 (R = 8.01×10−4). Correlation is calculated using Pearson’s correlation. (B) Esr1
and its highly correlated genes (Irs4 and Ngb) are highly expressed in the hypothalamus (red arrow) while Ltb
is not.

Hierarchical clustering is a widely used unsupervised approach to identify groups of
co-expressed genes across a set of samples. Using hierarchical clustering, Gofflot et al .
[110] identified the functional networks of nuclear receptors based on their global ex-
pression across different regions of the mouse brain. By focusing on subsets of brain
structures involved in specialized behavioral functions, such as feeding and memory,
they elucidated links between nuclear receptors and these specialized brain functions
that were initially undetected in a global analysis. Dahlin et al . [67] used hierarchi-
cal clustering to explore potential functional relatedness of the solute carrier genes and
anatomic association with brain microstructures.

Another approach to unsupervised clustering is to use gene co-expression relation-
ships to construct a co-expression network where nodes are genes and edges represent
the similarity of the expression profile of those genes. Weighted gene co-expression
network analysis (WGCNA) [111] is a commonly used method to construct modules of
co-regulated genes based on the topological overlap between genes in a weighted co-
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Box 5 | Co-expression Measurements

Gene co-expression is widely used for functional annotation, pathway analysis, and the
reconstruction of gene regulatory networks. Co-expression measurements assess the
similarity between a pair of gene expression profiles by detecting bivariate associations
between them. These co-expression measurements can be summarized in five cate-
gories [114, 116–118]:
Correlation The most widely used co-expression measure is Pearson correlation, due
to its straightforward conceptual interpretation and computational efficiency. However,
Pearson correlation can only capture linear relationships between variables. Alterna-
tively, Spearman correlation is a measure of non-linear monotonic associations. Other
correlation-based methods include Renyi correlation, Kendall’s rank correlation, and
Bi-weight mid-correlation [119].
Partial correlation Partial correlation is used to measure direct relationships between
a pair of variables, excluding indirect relationships. These conditional dependencies are
used in Gaussian graphical models, and can be calculated using the precision matrix
(the inverse of the covariance matrix). Note that partial correlations can only be cal-
culated with more samples than variables unless a regularized estimate is used, such as
the graphical lasso [120].
Mutual-Information Mutual information-based methods measure general statistical
dependence between two variables rather than a specific type of bivariate association.
Based on information theory, mutual information does not assume monotonic relation-
ships and hence can capture non-linear dependencies. Recently, Maximal Information
Coefficient has been proposed as non-parametric way of estimating MI.
Other measures Other geometric measures of co-expression are Euclidean distance,
cosine similarity, and distance covariance. The Kullback-Leibler divergence and Hoeffd-
ing’s D are probabilistic measures, just like mutual information. In Bayesian networks,
relationships between genes are modelled as causal, directed links.

expression network. WGCNA has been widely used to identify transcription networks
in the mammalian brain. Oldham et al . [112] demonstrated the first application of
WGCNA to examine the conservation of co-expression networks between the human
and chimpanzee brains. They found that module conservation in cerebral cortex is sig-
nificantly weaker than module conservation in sub-cortical brain regions, which is in
line with evolutionary hierarchies. WGCNA has been applied to identify modules of co-
regulated genes in the developing human brain transcriptome [47], the developing rhe-
sus monkey brain [113], the developing mouse brain [25], the prenatal human cortex
[27] and the adult human brain [26], see Figure 2.3B. The identified modules provide a
valuable insight into the molecular organization of the brain by identifying modules re-
flecting primary neural cell types and molecular functions. For example, modules con-
structed based on the prenatal human cortex correspond to cortical layers and age while
no areal patterning was observed [27]. There are numerous technical considerations to
take into account while constructing co-expression networks that go beyond the scope
of this review [114, 115].
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CO-EXPRESSION OF DISEASE RELATED GENES

Complex neuropsychiatric and neurological disorders involve dysregulation of multi-
ple genes, each conferring small but incremental risk, which potentially converging in
deregulated biological pathways or cellular functions. Using genome-wide association
studies (GWAS), exome sequencing, and whole genome sequencing (WGS), hundreds of
variants have been linked to complex neurological disorders, such as autism [52, 121–
125], schizophrenia [126, 127], Migraine [128], and Alzheimer’s [129, 130]. With the in-
creasing numbers of samples included in these studies, the number of variants asso-
ciated to each disease is set to increase [51]. Gene co-expression networks provide a
framework to identify the underlying molecular mechanisms on which these variants
converge. Ben-David and Shifman [66] analyzed co-expression networks of genes af-
fected by common and rare variants in autism using WGCNA. Menashe et al . [131] used
the cosine similarity of expression profiles to build a co-expression network of autism-
related genes in the mouse brain. Both studies provide an important link between gene
networks associated with autism and specific brain regions. However, for neurodevel-
opmental disorders such as autism and schizophrenia, it is more beneficial to study
when and where autism genes are expressed during brain development. Gulsuner et al .
[132] studied the transcriptional co-expression of genes harboring de novo mutations in
schizophrenia patients using the BrainSpan atlas of the Developing Human Brain. Parik-
shak et al . [133] used WGCNA to identify modules of co-expressed genes during human
brain development using the BrainSpan atlas. They identified modules with significant
enrichment in autism-related genes (Figure 2.4). Willsey et al . [134] used the BrainSpan
atlas to generate co-expression networks around nine genes harboring recurrent de novo
loss-of-function mutations in autism probands. Mahfouz et al . [135] used a combina-
tion of differential and genome-wide co-expression analysis to identify shared pathways
among autism-related genes.

Using gene co-expression networks to study relationships between disease-related
genes is a valuable approach to understand disease mechanisms. In addition, using net-
works facilitates the integration of different types of interactions between genes, includ-
ing but not limited to: co-expression, protein-protein interactions, and literature-based
interactions. This can be very useful to our understanding of the etiologies of complex
neurological diseases at different levels. In a recent study, Hormozdiari et al . [29] inte-
grated gene co-expression based on the BrainSpan atlas and protein-protein interaction
(PPI) networks to identify networks of genes related to autism and intellectual disability.
For a review on using gene networks to investigate the molecular mechanisms underly-
ing neurological disorders we refer to Gaiteri et al . [136] and Parikshak et al . [11].

ANALYZING GENETIC SIGNATURE OF BRAIN REGIONS
Spatially-mapped gene expression data allows the exploration of neuroanatomy from a
molecular point of view. Individual genes with spatially differential expression have long
been used to define the structural organization of the brain and to break it down into
regions and sub-regions. Genes have also been used to identify different classes of neu-
ronal cell types. Studying the “genetic signature” of different brain regions can be useful
for a multitude of applications. Spatially-mapped gene expression data allows the anal-
ysis of the similarity between brain regions in terms of their expression profiles. Regions
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Figure 2.4: Gene co-expression networks. (A) Module M13 of co-expressed genes from Parikshak et al . [133]1.
The shown module is significantly enriched in autism-related genes. The shown network comprises the top
200 connected genes (highest correlation) and their top 1,000 connections in the subnetwork (also ordered
on correlation). Genes are labeled if they are members of relevant gene sets. (B) The pattern of gene expres-
sion of genes in the shown module is summarized using the first principal component (eigengene). The red
line indicates birth. (C) Gene Ontology terms enriched in the shown module. The blue bars indicate relative
enrichment compared to all cortex-expressed genes in terms of Z-score. The red line indicates Z = 2.

sharing an expression profile are likely to be involved in the same neuronal functions
or be part of the same neuronal circuit. Moreover, studying the expression profiles of
functionally and anatomically connected structures provides valuable insights into the
molecular basis of brain connectivity.

VOXEL-BASED SIMILARITY AND SPATIAL CLUSTERING

Each of the Allen Brain Atlases assigns a spatial location to each sample, allowing the ex-
ploration of the structural organization of the brain based on spatial similarity between
different brain regions across the expression of thousands of genes. The Anatomic Gene
Expression Atlas (AGEA) [137] is a web-based tool to calculate voxel-wise correlations
based on gene expression in the adult and developing mouse brain atlases. To show the

1Reprinted from Cell, 155/5, Neelroop N. Parikshak, Rui Luo, Alice Zhang, Hyejung Won, Jennifer K. Lowe,
Vijayendran Chandran, Steve Horvath, Daniel H. Geschwind, Integrative Functional Genomic Analyses Im-
plicate Specific Molecular Pathways and Circuits in Autism, 1008-1021, Copyright (2016), with permission
from Elsevier.
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value of using gene expression patterns to study anatomical organization, Dong et al .
[138] used AGEA to identify three distinct functional domains in the CA1 region of the
mouse hippocampus. Hawrylycz et al . [139] used AGEA to show that a consistent ex-
pression based organization of areal patterning in the mouse cortex exists when clus-
tered on a laminar basis.

Voxel correlation maps, such as those obtained by AGEA, can be used to cluster the
mouse brain voxels into regions with similar gene expression profile. To analyze whether
anatomically delineated regions, as defined classically, can also be distinguished based
on their expression profile, Bohland et al . [140] clustered the adult mouse brain vox-
els based on the similarity of their expression profiles. Using k-means clustering, they
showed that their parcellations are quantitatively similar to the classically-defined neu-
roanatomical atlas. These results show that the spatially-mapped gene expression data
can be very valuable in identifying the molecular basis of brain organization.

In order to identify which genes are responsible for brain organization, Ko et al . [141]
used a similar approach to cluster brain voxels based on their expression of gene markers
of different cell types. Their results show that the neuroanatomical boundaries within a
mouse brain can be defined by the clustering of only 170 neuron-specific genes. To iden-
tify the driving mechanism of spatial co-expression of genes in the brain, Grange et al .
[142] modeled co-expression patterns based on the spatial distribution of underlying cell
types. Their model can be used to estimate cell-type specific maps of the mouse brain
and to identify brain regions based on their genetic signatures. The model proposed in
[142] was used to estimate the similarity between the expression profiles of two cliques
of co-expressed autism genes [131] and the spatial distribution of cell types [143].

GENE EXPRESSION AND BRAIN CONNECTIVITY

Another way to study brain organization and function is to study brain connectivity.
Brain connectivity has been linked to many neurological disorders, such as ischemic
stroke, autism and schizophrenia. The relationship between gene expression and neu-
ronal connectivity has long been studied in model organisms, such as Caenorhabditis
elegans, to identify genes involved in synaptogenesis and axon guidance [144–146].

Zaldivar et al . [65] used the Allen mouse brain atlas to study the expression pat-
terns of neurotransmitters in the brain. Since the expression of a transmitter must be
coupled with expression of appropriate receptors in the postsynaptic target, they have
also analyzed the expression of receptors in target regions. This study shows that known
neurobiological concepts can be seen back in the Allen brain atlas. In order to take it
one step further, French and Pavlidis [147] and Wolf et al . [148] analyzed the relation-
ship between gene expression similarity of brain regions and their connectivity. Both
studies used the Allen mouse brain atlas to calculate the similarity in gene expression
between different regions and the neural connectivity data of the rat brain from the
Brain Architecture Management System (BAMS) [149]. Genes involved in brain devel-
opment and neurodevelopmental disorders, such as autism, showed strong correlations
with anatomical connectivity patterns.

With the recent availability of the Allen mouse connectivity atlas, it has become pos-
sible to study the relationship between gene expression and brain connectivity within
the same species. Rather than assessing the correlation between the gene expression
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similarity and connectivity, Ji et al . [150] and Fakhry et al . [151] set to predict con-
nectivity based on gene expression patterns. Recently, Richardi et al . [152] analyzed
the relationship between gene expression similarity and synchronized activity as mea-
sured by fMRI in the human brain. By analyzing the relationship between genes with
consistent expression patterns across individuals and resting-state functional connec-
tivity data from the Human Connectome Project, Hawrylycz et al . [153] suggested that
functional circuits are linked to conserved gene expression patterns across the cortex.
Another study by Mahfouz et al . [154] analyzed the similarity between gene expres-
sion patterns of brain regions during human development. Using a network-based ap-
proach they characterized the topology of the connectivity network of autism-related
genes across development.

STUDYING BRAIN ORGANIZATION USING DIMENSIONALITY REDUCTION METHODS

An alternative approach to analyze the relationship between gene expression and neu-
roanatomy is dimensionality reduction (Box 2). Mapping high dimensional data in two
dimensions allows the exploration of how gene expression patterns relate to brain or-
ganization. Ji [155] used t-distributed stochastic neighborhood embedding (t-SNE) to
map the Allen developing mouse brain atlas and showed that t-SNE clearly outperforms
PCA. Their results show that clustering voxels in the low dimensional space is more
consistent with neuroanatomy than those in the original space. Mahfouz et al . [156]
used a computationally-efficient implementation of t-SNE, named Barnes-Hut-SNE, to
map the sagittal and coronal adult mouse atlas and the brain transcriptome of the 6 hu-
man donors (Figure 2.5). They quantitatively showed that BH-SNE maps are superior in
their separation of neuroanatomical regions in comparison to PCA and MDS. Similarly,
dimensionality-reduction approaches can be used to analyze the gene-gene relation-
ships. A low dimensional embedding of genes in which distances represent similarity
of the spatial and/or temporal expression profile of genes across the brain can be very
informative.

Box 6 | Co-expression Networks

Gene co-expression networks provide a framework to uncover the molecular mechanisms
underlying biological processes based on gene expression data. A co-expression network
consists of nodes to represent genes and edges to encode the co-expression between
two genes. A weighted network is a network in which the edges have continuous values
to indicate the strength of co-expression. Networks with binary edges (an edge either
exists or not) are termed binary networks. Construction of co-expression networks can
be summarized in three main steps.
Network Construction The first step in building a co-expression network is to con-
struct a similarity matrix, by quantifying the similarity between the expression profiles
of each pair of genes (i.e. co-expression). Several methods to measure gene co-
expression are discussed in Box 5. For non-regularized estimations of co-expression,
all off-diagonal elements of this similarity matrix will be non-zero. We can take these
similarities as edge weights in the network, but that will give a fully connected network
(each gene is connected to each gene). An additional step can be to threshold the
similarity matrix, either to prune edges, or to binarize (absent/present) the similarities
to obtain an adjacency matrix. In the latter case, pairs of genes with co-expression
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values above a threshold will be connected in a binary network. In the weighted gene
co-expression network analysis (WGCNA) framework the similarity matrix undergoes a
power transformation and a weight diffusion step, to optimize the topological proper-
ties and stability of the network [111].
Network Characterization The obtained networks can be analyzed in a number of
ways. Topological measures characterize the structure of the network, and quantify
the importance of genes in their network context. These measures have been extended
to weighted networks [111], and can capture topology on different levels of scale [30].
Sets of networks can also be aligned and compared [157–159]. Network comparison
can be used either to assess changes between different conditions, or to replicate a
network in an independent dataset for validity assessment.
Module Identification To interpret a network, it can be divided into sub-networks,
or gene modules. To do this, the network edges are often treated as similarities in a
clustering approach (see Box 3). Alternatively, graph properties, such as topological
overlap or modularity, can be used to divide a network into modules [160].
Module Characterization Finally, modules can be characterized using a wide range of
approaches. The expression profile of genes within the same module can be summa-
rized using the average or the first principle component (also called eigengene [112]).
Alternatively, one can characterize a module according to its hub genes: genes with the
largest number of connections within the module. Another option is to assess the as-
sociation of a module to external data by testing statistical enrichment in various gene
sets (see Box 1 for different types of gene sets). In addition, modules can be character-
ized based on changes between conditions (e.g. health and disease) in their summary
statistics (average expression profile), their topological measures (inter-connectivity),
or the number of differentially-expressed genes they include.

2.3. PERSPECTIVE ON THE FUTURE OF COMPUTATIONAL

ANALYSIS OF BRAIN TRANSCRIPTOMES

CELL-TYPE SPECIFICITY
The identification of the molecular profile of the different cell types in the brain, their
connectivity patterns, and their electrophysiological properties are crucial to our un-
derstanding of the functional organization of the brain. Despite the undoubtedly valu-
able information provided by the brain transcriptomes, these resources remain limited
in their ability to quantify cell-type-specific expression of genes. New technologies tar-
geting specific cell populations, such as viral, optogenetic and single-cell sequencing
approaches, will allow us to better characterize cell types and their role in brain func-
tion. So far these techniques are limited in their scalability and computational methods
still provide a feasible alternative approach. Using spatial clustering of gene expression
patterns of cell type-specific genes in the adult mouse, Ko et al . [141] showed that as-
trocytes and oligodendrocytes differ between brain regions, but that these regional dif-
ferences in expression are less pronounced than differences in neuronal composition.
Similarly, Grange et al . [142] proposed a model to estimate cell-type specific maps of the
mouse brain. Kuhn et al . [161] developed a method to analyze brain samples of vary-
ing cellular composition. Their method detected myelin-related abnormalities in brain
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Figure 2.5: Dimensionality reduction of brain transcriptomes. Samples from brain transcriptomes can be
embedded in a low dimensional space by means of dimensionality reduction methods. (A) 2D embedding of
60,000 voxels from the Allen Mouse Brain Atlas. (B) 2D embedding of 3,700 samples from the 6 donors in
the Allen Human Brain Atlas. Both embeddings were generated using Barnes-Hut t-SNE. In both maps, colors
correspond to anatomical regions of the mouse and human brain. Data from Mahfouz et al . [156].

samples from Huntington’s disease patients, which was not detected using standard dif-
ferential expression. These examples illustrate the power of computational models in
untangling the complex composition of the different cell types in the brain.

With the recent advances in single-cell mRNA sequencing, it has become feasible
to measure the expression of thousands of genes and their variability between different
cell types [162]. Single-cell sequencing has indicated that neurons from small cortical
regions come from different clones with distinct somatic mutations [19]. Understand-
ing how these different clones of neurons contribute to the aggregated gene expression
from a specific brain region will be of great interest to understand the role of mutations
in neurological disorders. The vast amount of data generated by these projects yields
computational methods that can identify distinct groups of cells with a common func-
tional role highly valuable [163, 164].

SPATIAL RESOLUTION MATTERS
There are several limitations associated with the current spatial and temporal brain tran-
scriptomes. Despite their unprecedented spatial and temporal resolution, human brain
transcriptomes are still of low resolution with 1000 samples per brain. This relatively low
resolution presents a fundamental limitation specially when integration with imaging-
based data (e.g. MRI or PET) is considered. The ISH-based mouse transcriptomes offer
a much higher resolution. Although the original ISH data provides a near-cellular reso-
lution ( 1µm), the genome-wide data registered to the common 3D space offers a much
lower resolution ( 200µm). Several studies used re-registration of a limited set of the
high-resolution ISH images from the Allen Mouse Brain atlas to acquire genome-wide
data at a higher resolution. The aforementioned study by Ko et al . [141] found more
transcriptionally distinct brain regions than a previous study [140], mainly due to the us-
age of cell-type specific genes. However, Ko et al . have also realigned the ISH images of
the mouse brain atlas and performed their analysis on a higher-resolution grid (100µm).
Ramsden et al . [88] used non-linear registration to realign the ISH data of the mouse.
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By analyzing genome-wide data at a resolution of 10µm, they were able to identify genes
whose expression pattern delineates the borders and layers of the medial entorhinal cor-
tex.

There is still need for more generic approaches to map spatially-mapped gene ex-
pression data (from ISH experiments) generated at different labs to the standard 3D
space of the Allen Reference Atlas. Tools such as BrainAligner [165] are available for an-
alyzing Drosophila melanogaster neural expression patterns. The availability of similar
tools for the mouse and human brain could enormously enhance our understanding
of disease molecular mechanisms by allowing researchers to map their own data to the
same space.

BEYOND PROTEIN-CODING MRNA
Most of the atlases profiling the mammalian brain transcriptome and its relationship to
brain development and function have mainly focused on profiling the expression of
protein-coding mRNA. These atlases mostly provided limited or no information about
other RNA species such as non-coding RNA (ncRNA) and microRNA (miRNA) despite
their recognized role in brain development and neurological disorders [166, 167]. Long
ncRNAs show regionally enriched expression patterns, such as those observed for
protein-coding mRNAs [168], further supporting their functional role in the brain. By
profiling the developmental transcriptome of the neocortex using deep sequencing,
Fertuzinhos et al . [169] characterized the dynamics of mRNA, miRNA, and ncRNA
across the different layers of the mouse cortex. The BrainSpan atlas provides the most
comprehensive map of miRNA expression in the developing human brain. Ziats and
Rennert [170] used the BrainSpan miRNA data to define a pattern of increased
inter-regional expression differences of miRNA through development potentially
driving regional specialization. Moreover, targets of differentially expressed miRNA
were mostly related to transcriptional regulation and neurodevelopmental disorders,
highlighting the importance of studying miRNA as potential biomarkers. Additional
measurement of ncRNAs and miRNAs as well as a detailed analysis of their role in gene
regulatory networks can help our understanding of their relationship to genes related to
neurodevelopmental disorders.

INTEGRATING BRAIN TRANSCRIPTOME ATLASES WITH OTHER

NEURO-OMICS DATA
Advances in high-throughput molecular profiling have facilitated acquiring various
omics data sets spanning a wide spectrum of cellular processes. For instance, the rapid
developments in next-generation sequencing (NGS) technology allowed for
genome-wide measurement of genomic, transcriptomic, and epigenomic data of brain
tissues. While transcriptomes provide detailed information of the abundance of RNA,
epigenomic features, such as histone modifications, methylation and chromatin
interactions, describe the underlying mechanisms of distinct cell-specific
transcriptomes. Moreover, most disease-related variants are in the non-coding
regulatory regions of the genome, yielding epigenomic studies crucial to uncover a
larger proportion of the genetic contribution to complex traits than that explained by
coding variants only. Increasingly, studies are gathering data across different platforms
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from a wide range of tissues and cell types to uncover mechanisms underlying complex
phenotypes and disease. The Encyclopedia of DNA Elements (ENCODE) [171] and the
Roadmap Epigenome project [75] have profiled the epigenome of several tissues and
cell-types, while the Genotype Tissue Expression project (GTEx) [45] is generating
genotype and gene expression data from many human tissues. In contrast, The Cancer
Genome Atlas project (TCGA) [172] and the International Cancer Genome Consortium
(ICGC) [173] provide comprehensive genomic and transcriptomic and epigenomic data
from multiple cancer types. However, most of these projects have profiled samples
from cancer cell lines or normal cells from non-brain tissues due to limitations specific
to the brain, such as the requirement of large amount of genomic material and the high
heterogeneity of cell types within the same sample [174]. Currently, the isolation of
more homogeneous samples from the brain as well as developments in single-cell
analysis are greatly advancing the field of neuro-epigenomics [174, 175]. For example,
efforts have been made to map the brain methylome [176] and to identify cis-regulatory
elements across brain regions [177]. The PsychENCODE consortium [178] is an ongoing
project to profile the neurobiological epigenetic landscape of the healthy and diseased
developing and adult human brains. Systems genomics approaches which integrates
different genome-wide data types can minimize false positive discoveries as well as
unravel the complete molecular mechanism underlying the phenotype or disease of
interest. Several approaches have been developed to integrate multi-omics data [179],
clearly illustrating the added value of collecting multiple omics measurements from a
large number of samples.

INTEGRATING BRAIN TRANSCRIPTOME ATLASES WITH IMAGING MASS

SPECTROSCOPY
Over the past few years imaging mass spectrometry (IMS) [180] has emerged as a power-
ful technique to capture the spatial distribution of large biomolecules such as proteins,
peptides and lipids in biological samples. Similar to ISH, imaging mass spectroscopy
hold great potential in studying the chemical organization of complex samples from the
brain [181]. Methods have been developed to align IMS-based sections of the mouse
brain to histology-based sections from the Allen Mouse Brain Atlas to anatomically lo-
calize biomolecules within the brain [182, 183]. But recently, these methods have been
extended to link protein expression to the expression of the encoding genes as well as
their co-expressed genes based on the Allen Mouse Brain Atlas [184]. There is a great
potential for applications based on the integration of ISH-based gene expression and
IMS-based protein expression measurements to help our understanding of translational
mechanisms in the brain. Yet, more complex modeling of the two data types is needed.
Methods developed to integrate spatially-mapped gene and protein expression data can
also be used to study spatial localization within the cell using data from the Human Pro-
tein Atlas [185].

INTEGRATING BRAIN TRANSCRIPTOME ATLASES WITH IMAGING DATA

(IMAGING-GENETICS)
In an attempt to better understand gene-disease associations, researchers are searching
for genes that affect intermediate disease biomarkers. Brain imaging studies can be
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used to reveal genetic effects on brain structure, function and circuitry, providing
valuable mechanistic insights. Imaging genetics have emerged as a field concerned
with finding associations between genetic variants (typically SNPs) and imaging-based
measurements [186]. Due to the millions of statistical tests that need to be performed,
stringent statistical thresholds are required to limit the false discovery rate [53].
Recently, the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA)
consortium [18] analyzed SNPs’ associations with the volume of subcortical structures
in 30,000 individuals, providing the first large scale analysis of the genetic causes of
human brain variability. Several methods have been developed to limit the number of
statistical tests performed in genome-wide, brain-wide analysis by either exploiting the
dependency between brain voxels and/or testing for associations with genes or
pathways instead of individual variants [187]. In addition, efforts have been made to
jointly model imaging and genetic observations from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data (adni.loni.ucla.edu), using multivariate statistical
methods [188, 189]. These methods remain computationally very expensive, limiting
the number of variables analyzed. Brain transcriptomes can play an important role in
imaging genetics by providing region-specific information about gene expression that
can be used to prioritize genes and variants for testing. For example, incorporating
spatial gene co-expression of amyloid-related candidate genes from the Allen Human
Brain Atlas as prior knowledge to their statistical model significantly improved the
prediction of associations between SNPs in the APOE gene and amyloid deposition
measures among cortical regions [190]. Rizzo et al . [191] tested the predictive power of
mRNA transcription maps extracted from the Allen Human Brain Atlas and in vivo
protein distributions acquired using positron emission tomography (PET). By analyzing
genes involved in two neurotransmission systems with different regulatory
mechanisms, their results show the possibility to predict in vivo protein distributions
using mRNA transcription maps when translational mechanisms rather than
posttranscriptional regulation determine expression. There is need for more advanced
methods to link genomic measurements which is usually collected from blood samples
to intermediate disease phenotypes observed in brain images.

UNEXPLORED COMPUTATIONAL AVENUES
The multiple dimensions of the brain transcriptomes (genes, regions, and time) provides
a framework to explore spatio-temporal regulation of gene expression during develop-
ment. Clustering the data along one dimension only yields global patterns of similarity,
while in a complex system such as the brain it is always more useful to identify more lo-
calized patterns of correlation. For example, the effect of steroid hormones on the brain
is highly region-specific, depending on the availability of target genes and co-regulators
affecting the steroid receptors at the site of action. Analyzing the region-specific co-
expression relationships of steroid receptors and their coactivators can be used to pre-
dict steroid responsiveness and selective activation of particular circuits with synthetic
ligands [192].

Biclustering is a type of technique to simultaneously identify a subset of genes associ-
ated with a subset of conditions (this can be brain regions and/or time points), allowing
the identification of local spatial or temporal patterns of co-expression. Biclustering was
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shown to be particularly effective in analyzing time-series expression data [193]. Simi-
larly, applying bi-clustering to expression data from the Allen Mouse Brain Atlas resulted
in more GO-enriched clusters than those obtained by independently clustering genes
or regions [194]. Ji and Zhang [195] described a co-clustering method based on graph
approximation to explore the spatiotemporal regulation of gene expression during the
mouse brain development. Yet, they apply biclustering to each developmental stage in-
dependently and do not consider the time-varying nature of the developing mouse brain
data, due to the lack of correspondence between the voxels across different stages. In
order to fully exploit the multi-dimensionality of the developing brain transcriptomes,
triclustering methods provide an interesting approach to identify groups of genes that
show spatial and temporal co-expression [196]. Recently, Jung et al . [197] used three-
component analysis to identify genes associated with aging by analyzing longitudinal
gene expression, methylation and histone modification data of human skin fibroblasts.
Their three-component analysis is an integrative approach to jointly model temporal
changes in different data types. An extension of their methods to incorporate spatial
information available in brain transcriptomes can lead to a complete approach of mod-
eling spatial and temporal changes of different omics data from the brain.

Graphical models (e.g. conditional random fields) are commonly used for data
segmentation using local features, especially in computer vision applications. The
Roadmap Epigenome project has used a Hidden Markov Model to classify the human
genome into chromatin states based on epigenetic markers [75]. These models can be
used to model the spatial and/or temporal relationships between genes in brain
transcriptome atlases.

A greater challenge lies in identifying causal relationships rather than associations in
gene-gene interactions and the brain is no exception. Systems biology approaches pro-
vide an interesting avenue to explore causal relationships between genes by means of
quantitative modeling. The resulting mathematical models enable formal analysis and
simulation of complex biological processes [198]. However, inferring causal relation-
ships between the different variables requires a vast amount of data, limiting the appli-
cation to a small number of genes [199]. Hwang et al . presented a system approach to
analyze genes differentially expressed in the mouse brain across time in Prion disease
[200]. An extension of such a model to include spatial information on gene expression
can help refine the model as well as associate disease-related changes to specific brain
areas.
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T HE Allen Brain Atlases enable the study of spatially resolved, genome-wide gene ex-
pression patterns across the mammalian brain. Several explorative studies have ap-

plied linear dimensionality reduction methods such as Principal Component Analysis
(PCA) and classical Multi-Dimensional Scaling (cMDS) to gain insight into the spatial
organization of these expression patterns. In this paper, we describe a non-linear em-
bedding technique called Barnes-Hut Stochastic Neighbor Embedding (BH-SNE) that
emphasizes the local similarity structure of high-dimensional data points. By applying
BH-SNE to the gene expression data from the Allen Brain Atlases, we demonstrate the
consistency of the 2D, non-linear embedding of the sagittal and coronal mouse brain at-
lases, and across 6 human brains. In addition, we quantitatively show that BH-SNE maps
are superior in their separation of neuroanatomical regions in comparison to PCA and
cMDS. Finally, we assess the effect of higher-order principal components on the global
structure of the BH-SNE similarity maps. Based on our observations, we conclude that
BH-SNE maps with or without prior dimensionality reduction (based on PCA) provide
comprehensive and intuitive insights in both the local and global spatial transcriptome
structure of the human and mouse Allen Brain Atlases.

3.1. INTRODUCTION
The mammalian brain is a complex system governing all high-level cognitive tasks. The
complexity of this system is reflected in the large number of cell types, organized into
hundreds of distinct structures [201]. A major challenge facing the neuroscience com-
munity is to collect, integrate and analyze data across different levels and scales to pro-
duce new insights about the brain’s anatomical and functional organization [93]. At the
molecular level, each brain structure has a specific cellular composition with a distinct
gene expression signature that dictates its functional role [137]. Therefore, to under-
stand the basic anatomical and functional organization of the brain in relation to gene
functions, it is crucial to study the spatial localization of genome-wide gene expressions
in the brain.

Given the high cellular diversity in the brain, mapping genes at a sufficient spatial
resolution is essential to analyze the transcriptome architecture of the brain. Several
studies have previously mapped the expression of genes across the mammalian brain,
but they have all been limited either in terms of the number of genes analyzed and/or
the number of brain structures assessed [20–22]. The Allen Institute for Brain Sciences
provides comprehensive genome-wide maps of gene expression across the mouse and
human brain, providing a unique opportunity to study the transcriptome architecture of
the mammalian brain. In the Mouse Brain Atlas [24] the expression of ∼20,000 genes at
a cellular resolution using in situ hybridization (ISH) is mapped on an anatomical atlas
of the mouse brain. Comparably, the Human Brain Atlas [26] employed microarrays to
produce a genome-wide map of gene expression distribution across the entire human
brain. These two resources allow the unprecedented study of how the transcriptome
architecture of different brain regions instructs their functional role.

The high diversity of spatially-mapped gene expression patterns in the brain, ranging
from globally-expressed genes to highly-specialized regional markers, poses great chal-
lenges for computational approaches. Univariate approaches involving the analysis of
the expression profiles of few genes of interest using prior knowledge of their site of ac-
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tion in the brain are not suitable to capture the full complexity of the data. In order to
capture the complex patterns of expression of thousands of genes across the entire brain
(thousands of samples), multivariate approaches should be employed to accommodate
the high-dimensionality of the data. However, visualizing high-dimensional data for in-
tuitive interpretation is challenging.

Several studies have used Principal Component Analysis (PCA) or classical Multidi-
mensional Scaling (cMDS) to reduce the dimensionality of the voxel level genome-wide
gene expression data of the mouse brain [26, 140, 141]. These low-dimensional maps
are then used either to enable visual exploration of the gene expression patterns or as
an input to a clustering algorithm where the resulting clusters are compared to the clas-
sical neuroanatomy. Classical methods such as PCA and cMDS focus on appropriately
modeling large pairwise distances between gene expression profiles [202]. The focus on
modelling large pairwise distances comes at the price of substantial errors in modelling
small pairwise distances. However, it is exactly this local similarity structure that is es-
sential in clustering and visual exploration: the goal of clustering is to find groups of
nearby data points and, similarly, the goal of visual exploration is to determine which
parts of the data are similar to a reference data point [203]. Therefore, we advocate to
employ embedding techniques that focus on preserving local similarity structure, as is
done by techniques such as t-distributed stochastic neighbor embedding (t-SNE) [32].
Since its introduction in 2008, t-SNE has been proven to outperform linear dimension-
ality reduction methods, but also non-linear embedding methods such as ISOMAP [90],
in several research fields including machine-learning benchmark datasets and hyper-
spectral remote sensing data [204].

Recently, t-SNE has been employed to analyze high dimensional proteomic and ge-
nomic data. Shekhar et al . [205] used t-SNE to differentiate between cellular pheno-
types of the immune system based on mass cytometry data. Ji [155] used t-SNE to an-
alyze the relationship between gene expressions and neuroanatomy in the developing
mouse brain showing that t-SNE is able to capture the local similarities in the high-
dimensional space. Fonville et al . [206] have shown that t-SNE outperforms PCA and
self-organizing maps when used for modeling of mass spectrometry imaging data, where
each pixel represents a molecular mass spectrum. All the previously mentioned applica-
tions demonstrate the high potential of t-SNE in the visual analysis of high-dimensional
molecular data.

The goal of this work is to explore the effectiveness and limitations of t-SNE for spa-
tial mapping of gene expression patterns in both the mouse and the human Allen Brain
Atlases. By applying Barnes-Hut-SNE (BH-SNE) [207], a recently developed optimiza-
tion algorithm for t-SNE, we show the consistency of the low dimensional embedding
across the 6 human brains as well as between the sagittal and coronal experiments of
the mouse brain. In addition, we quantitatively show the superiority of BH-SNE over
PCA and cMDS in separating neuroanatomical regions in the low-dimensional 2D em-
beddings. Finally, we assess the effect of higher-order principal components on the local
and global structure of the spatial transcriptome similarity maps.
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3.2. MATERIAL AND METHODS

MOUSE BRAIN GENE EXPRESSION
The Allen Mouse Brain Atlas [24, 208] provides genome-wide cellular-resolution in situ
hybridization (ISH) gene expression data for approximately 20,000 genes of the 8-week
old adult C57BL/6J male mouse brain. For each gene, sagittal ISH sections were sam-
pled at 25µm intervals across the entire brain and the high-resolution 2D image series
from each experiment were reconstructed in 3D and registered to the Nissl stain-based
reference atlas (Allen Reference Atlas). The data were then aggregated into isotropic vox-
els defined by a uniform 200µm grid in the reference space by averaging the expression
levels and densities of all pixels (in the high-resolution ISH sections) within each voxel.
The ontology of the reference atlas is used to label individual voxels with their anatom-
ical nomenclature. In addition, coronal sections are available for a set of approximately
4,000 genes that showed marked regional expression patterns in the sagittal plane [137].
More information about the ISH sections alignment and registration to the Allen Refer-
ence Atlas can be found in [209].

We retrieved all expression energy volumes from [208] using the Allen Brain Atlas ap-
plication programming interface (API). Expression energy is a measurement combining
the expression level (the integrated amount of signal within each voxel) and the expres-
sion density (the amount of expressing cells within each voxel) [57].

We focused our analysis on a subset of high confidence genes for which coronal and
sagittal experiments are available, as in [140]. For each gene, we computed the Spear-
man’s rank correlation between the corresponding coronal and sagittal experiments and
selected genes in the top-three quartiles of correlation (3,241 genes). The coronal and
sagittal experiments corresponding to those 3,241 genes were retained for further anal-
ysis (Supplementary Table 1). For genes with more than one sagittal experiment, the
maximum correlation value was used. A mask was applied to exclude all non-brain vox-
els, resulting in a 61,164 × 3,241 (voxels × genes) matrix for the coronal experiments and
a 27,365 × 3,241 matrix for the sagittal experiments.

HUMAN BRAIN GENE EXPRESSION
The Allen Human Brain Atlas [26, 210] includes RNA microarray data collected from the
postmortem brains of six donors, with no known neuropsychiatric or neuropathological
history; see Table 3.1 for detailed information about the donors. Magnetic resonance
(MR) T1-weighted (T1W), T2-weighted (T2W) and Diffusion Tensor (DT) images were
collected in-cranio, prior to dissection for anatomic visualization of each brain.

Approximately 1,000 samples were dissected using manual macrodissection for large
regions and laser captured microdissection for smaller regions from two donor brains
(H0351.2001 and H0351.2002), representing all structures across the whole brain. For the
other four donor brains, approximately 500 samples were taken from one hemisphere
only. Each sample is associated with a 3D (x, y, z) coordinate on its corresponding donor’s
MRI volume. Moreover, the MNI coordinates of each sample is reported (registration to
the MNI reference space was done using FreeSurfer software). The dataset contained ex-
pression profiles of 29,191 genes represented by 58,692 probes, with 93% of known genes
represented by at least 2 probes. The data was already normalized across samples and
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across different brains using the procedure explained in [211]. Probes with no Entrez ID
or gene symbol were excluded and the expression profiles of all the probes representing
one gene were averaged, resulting in 20,737 genes (Supplementary Table 2).

Table 3.1: Human Donors Information.

Donor ID Number of Samples Sex Age (years) Race/Ethnicity
H0351.2001 946 Male 24 African American
H0351.2002 893 Male 39 African American
H0351.1009 363 Male 57 Caucasian
H0351.1012 529 Male 31 Caucasian
H0351.1015 470 Female 49 Hispanic
H0351.1016 501 Male 55 Caucasian

CELL TYPE MARKERS
Lists of cell-type specific genes were extracted from a previously published work by Ca-
hoy et al . [36] who profiled gene expression patterns in purified populations of neu-
rons, astrocytes, and oligodendrocytes using microarrays. We selected genes enriched
by at least 10-folds in one cell type, compared to the two other cell types, out of the
3,241 high-confidence genes included in our analysis, resulting in 195 neuron-specific,
60 astrocyte-specific, and 43 oligodendrocyte-specific genes in the mouse data (Sup-
plementary Table 3). Using the same 10-fold enrichment threshold for the human data
resulted in 247 neuron-specific, 151 astrocyte-specific, and 92 oligodendrocyte-specific
human orthologous genes (Supplementary Table 4).

NON-LINEAR DIMENSIONALITY REDUCTION
Three different multivariate data analysis methods were used to visualize the high di-
mensional expression data, namely: Barnes-Hut-SNE (see Theory), principle compo-
nent analysis (PCA) and classical multi-dimensional scaling (cMDS). For the mouse data,
the expression profile of each gene, i.e. column of the voxel × gene expression matrix,
was Z-score normalized across all voxels. The human brain expression data was already
Z-score normalized [211]. PCA was applied to the expression matrices (voxel × gene
for the mouse data and sample × gene for the human data). The human data was also
analyzed with cMDS. The first two components of PCA and the first two dimensions
of cMDS were used to visualize the data in each case. The goodness-of-fit criterion for
cMDS was the stress, normalized by the sum of squares of the inter-point distances [212].
Distances within cMDS between two samples s1 and s2 were computed as genetic dis-

tances: d(s1, s2) = (1−ρ(s1, s2)2)
1
2 , where ρ(s1, s2) denotes the correlation between gene

expression levels.
For the non-linear dimensionality reduction using Barnes-Hut-SNE (BH-SNE), we

used the full data dimensionality and mapped it to a 2D BH-SNE plot. In addition, we
assessed the effect of prior dimensionality reduction using PCA in order to reduce noise
in the final maps. The data was first mapped either to the first 2, 3, 5, 10, or 20 compo-
nents and then embedded into 2D BH-SNE maps.
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REGIONAL GENE EXPRESSION VISUALIZATION
For both the mouse and the human data, the mapped data points (voxels or samples)
were colored in the low-dimensional 2D map according to their associated reference at-
las ontology colors, as obtained from the mouse and human atlases [24, 26] (Supplemen-
tary Table 5 and 6). This ontology was colorized so that each brain structure has a unique
color and anatomically related structures (e.g., substructures of the hypothalamus) are
coded with similar colors.

To visually analyze the ability of the different methods (BH-SNE, PCA, and MDS) to
segment different regions of the mouse brain, the data points (voxels) were colored by
spanning an “L*a*b*” color map [213], that maps the a* and b* colormap axes to the
horizontal and vertical axes of the PCA, cMDS and BH-SNE maps. The L*a*b* color space
was selected because it spans all perceivable colors and the a* and b* axes span a two-
dimensional space with all perceivable colors at a constant perceived “lightness” L* that
is perceptually linear. L* was fixed at 50 for all plots providing a good color contrast in
the 2D maps.

Using the MNI152 coordinates associated with each of the human brain samples, we
mapped each sample back to the Automated Anatomical Labeling (AAL) human brain
atlas [214]. Direct visualization of these samples is, however, hampered by the spatial
sparsity of the data, i.e. there are very few samples per anatomical regions. Therefore, we
colored each voxel in the brain where there is no sample available (no gene expression
data) according to the closest sampled voxel based on the Euclidean distance between
the unsampled voxels and the sampled voxel.

EVALUATION OF THE MAPPED DATA
To evaluate the capability of each of the dimensionality reduction methods to separate
different brain regions, we analyzed the separation between different brain-region
clusters in the low-dimensional 2D maps produced by these methods. The separation
between two brain structures can be characterized by the similarity of the distributions
of the data points belonging to each region in the low-dimensional space. In this work
we use the Jensen-Shannon divergence [215] to compute this similarity. Briefly, for each
brain structure, a 2D histogram is computed by calculating the density of the data
points belonging to that structure in the 2D map. This is achieved by overlaying a
40×40 rectangular grid that covers all the samples in the low dimensional space. The
divergence between the two histograms (distributions) of two brain structures P
and Q is then calculated as: JSD(P ∥Q) = 1

2 K L(P ∥ M)+ 1
2 K L(Q ∥ M), where

K L(P ∥Q) =∑
i 6= j pi j log

pi j

qi j
is the Kullback-Leibler divergence between P and Q, and

M = 1
2 (P +Q). By using the same grid size (the same number of bins), divergences

between brain regions are comparable between the different dimensionality reduction
methods regardless of their scaling factor. For the mouse data, divergence scores were
calculated between: cortex (Isocortex), olfactory areas (OLF), hippocampal formation
(HPF), cortical subplate (CTXsp), striatum (STR), palladium (PAL), cerebellum (CB),
thalamus (TH), hypothalamus (HY), midbrain (MB), pons (P), and medulla (MY). In the
human atlas, divergences were calculated between: frontal lobe (FL), parietal lobe (PL),
temporal lobe (TL), occipital lobe (OL), hippocampal formation (HiF), striatum (Str),
Globus pallidus (Gp), amygdala (Amg), thalamus (TH), hypothalamus (Hy),
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mesencephalon (MES), Pons, myelencephalon (MY), cerebellum (Cb), and white
matter (WM).

3.3. THEORY
t-Distributed Stochastic Neighbor Embedding (t-SNE) [32] constructs a
two-dimensional scatter plot in which each point represents a gene expression profile.
In such a t-SNE map, nearby points correspond to similar profiles, whereas distant
points correspond to dissimilar profiles. The map is constructed by (1) measuring
similarities between gene expression profiles and (2) moving points around in the map
in such a way as to minimize some difference measure between similarities of points in
the map and the corresponding gene-expression profile similarities.

Mathematically, t-SNE operates by converting the gene expression profiles into a
probability distribution over pairs of profiles in such a way, that similar pairs have a high
probability of being picked. The distribution is defined as a standard Gaussian kernel
(with a particular choice forσ2) that is normalized to sum to one. Next, t-SNE constructs
a map in which each point corresponds to an expression profile by: (1) defining a sim-
ilar distribution over the pairs of points in the map, and (2) minimizing the divergence
between the two distributions with respect to the coordinates of the points in the map
using gradient descent. Mathematically, for a given sample pair t-SNE defines pairwise
similarities between gene expression profiles x ∈RD (with D the number of genes) as:

pi j =
exp

(
−‖xi−x j ‖2

2σ2

)
∑
k 6=l

exp

(−‖xk −xl‖2

2σ2

) (3.1)

where pi j is the similarity between the expression profiles xi and x j in the high
dimensional space RD . Likewise, the similarity between the corresponding
low-dimensional models of these samples y ∈Rd (with d the dimensionality of the
t-SNE map) is defined as:

qi j =
(
1+‖yi − y j ‖2

)−1∑
k 6=l

(
1+‖yk − yl‖2)−1 (3.2)

where qi j is the similarity between the expression profiles yi and y j in the low di-
mensional space Rd . In the definition of map similarity, a heavy-tailed Student-t dis-
tribution is used to measure similarity in the map to account for the large difference in
volume between the high-dimensional gene expression space and the low-dimensional
map. The low-dimensional map y1, . . . , yN , with N the number of gene expression pro-
files, is learned by minimizing the Kullback-Leibler divergence between both distribu-
tions:

K L (P ∥Q) =
∑
i 6= j

pi j log
pi j

qi j
(3.3)
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The asymmetry of the Kullback-Leibler divergence encourages modeling large
P − values (similar expression profile) by large Q − values (nearby points). As a result,
in contrast to techniques like PCA, t-SNE focuses on appropriately modeling the local
gene expression profile structure in the map.

The gradient that is used for learning a t-SNE map can be interpreted as an N-body
system [207]: each point in the map exerts a force onto all other points, and the gra-
dient for each point is the resultant force on that point (i.e. the sum of all incoming
forces). Specifically, the gradient on point yi comprises springs between yi and all other
points, where the force in a spring depends on the difference between the corresponding
P − values and Q − values. The gradient computes the resultant force on map point yi

in this spring system:

∂K L

∂yi
= 4

∑
i 6= j

(
pi j −qi j

)(
1+‖yi − y j ‖2)−1 (

yi − y j
)

(3.4)

The interpretation of t-SNE as an N-body simulation facilitates the use of approxima-
tion techniques that were originally developed in astronomy to simulate large galaxies
of stars, such as the Barnes-Hut approximation [216] or fast multipole approximations
[217]. We focus on the Barnes-Hut approximation [207]1, which exploits the fact that
a group of nearby map points exerts very similar forces on another point that is rela-
tively far away. Therefore, the (resultant) force exerted on the latter point can be approx-
imated by the force between the center-of-mass of the group of points and the point
under consideration, multiplied by the number of points in the group. In practice, this is
implemented by storing all points in a quadtree (for 2D maps) or octtree (for 3D maps)
and performing a depth-first tree search on this tree, pruning away nodes for which the
aforementioned approximation can be used. The resulting algorithm has an average-
case complexity of O(N l og N ). For more details, we refer to [207].

3.4. RESULTS AND DISCUSSION

GENETIC SIMILARITY WITHIN THE MOUSE BRAIN
We used BH-SNE to embed the mouse coronal expression data in a 2D space, see Fig-
ure 3.1A. In order to reduce the noise in the data, we first reduced the data dimensional-
ity by mapping the data on the first 10 principal components and then used the reduced
data as an input to BH-SNE. The BH-SNE mapped data show that anatomical regions
are in many cases in disjoint and visually distinct clusters. By comparison, Figure 3.1D
plots the reduced data when only PCA is being used, showing that then samples of the
same anatomical region are close but no clear clustering and regional separation is vis-
ible. This difference between BH-SNE and PCA is also reflected in Figure 3.1B and E,
where the borders between anatomical regions seem sharper with coloring based on BH-
SNE. In Figure 3.1B for example the hippocampal formation (in red) and cerebral nuclei
(in light blue) can be easily distinguished. More strikingly, the transversal views in Fig-
ure 3.1B shows that within the deeper brain structures there is a clear difference between
medial gene expression (green) and posterior gene expression (pink). The first 2 princi-
pal components do not pick up on this variation and suggest a strong similarity (Fig-

1A variant of t-SNE based on fast multipole methods is presented in [218].
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Figure 3.1: Coronal mouse brain transcriptome similarities. (a) BH-SNE map of the mouse coronal data ini-
tialized with 10 principal components and colored by anatomical region labels from the Allen Reference Atlas:
cortex (Isocortex), olfactory areas (OLF), hippocampal formation (HPF), cortical subplate (CTXsp), striatum
(STR), palladium (PAL), cerebellum (CB), thalamus (TH), hypothalamus (HY), midbrain (MB), pons (P), and
medulla (MY). (b) The mouse coronal data mapped back to the 3D volume of the mouse atlas (3 views) and
colored by the L*a*b* colormap of the BH-SNE mapping at a constant L* value. (c) Divergence plot for BH-SNE
showing the similarity between pairs of neuroanatomical regions. A higher divergence value (lighter colors)
indicates better separation between a pair of neuroanatomical regions in the 2D BH-SNE map. (d) The first
two PCA components of the mouse coronal data colored by anatomical region labels from the Allen reference
Atlas. (e) The mouse coronal data mapped back to the 3D volume of the mouse atlas (3 views) and colored by
the L*a*b* colormap of the PCA mapping. (f) Divergence plot for PCA showing the similarity between pairs of
neuroanatomical regions. A higher divergence value (lighter colors) indicates better separation between a pair
of neuroanatomical regions in the 2D PCA map.

ure 3.1E). To quantify these observations, Figure 3.1F shows the Jensen-Shannon diver-
gence between classical anatomical regions in both the first two principal components
and the two-dimensional BH-SNE. A lower divergence value indicates that the map sug-
gests higher similarity between the corresponding brain regions in the 2D map. In gen-
eral, BH-SNE yields much higher divergence values between pairs of anatomical regions
compared to PCA. Particularly, the cortex (Isocortex) and the hippocampus (HPF) are
not separable in the PCA map, that is why they both retain the same color (pink) in Fig-
ure 3.1E. This high similarity between the cortex and hippocampus is also reflected with
a low divergence value in Figure 3.1F. On the other hand, BH-SNE can clearly separate
the cortex and the hippocampus giving them different colors in Figure 3.1B and resulting
in a high divergence value in Figure 3.1C.

Adding more PCA components in the BH-SNE preprocessing step increases the in-
formation available to the BH-SNE algorithm and thereby influences the separation of
neuroanatomical regions in the embedded map. To study the effect of PCA preprocess-
ing step on the BH-SNE mapping we varied the number of principal components. Fig-
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Figure 3.2: BH-SNE maps the mouse coronal data using different initializations. BH-SNA mappings of the
mouse coronal data using (a) 2, (b) 3, (c) 5, (d) 10 and (e) 20 principal components to reduce the dimension-
ality of the data before applying BH-SNE. (f) BH-SNE mapping of the mouse coronal data without any prior
dimensionality reduction. BH-SNE maps are colored by anatomical region labels from the Allen reference At-
las. Axial sections of the mouse 3D atlas space are colored with the corresponding L*a*b colors of each voxel in
the BH-SNE maps. (g) BH-SNE mapping of the mouse coronal data without any prior dimensionality reduc-
tion, colored by the corresponding coronal plane.

ure 3.2 shows the BH-SNE plots and the L*a*b* mappings to the mouse brain (transversal
sections) using a range of components to reduce the dimensionality of the data before
applying BH-SNE. When using a small number of components (5 or less), insufficient in-
formation is retained to achieve good separation between different brain regions. This is
visible from the mixing of samples from the same anatomical region in the BH-SNE maps
and in the axial brain slices by ragged edges (Figure 3.2A and B, e.g., yellow, blue and
green clusters). By increasing the number of components to 5 or 10, BH-SNE produces
much better results as seen by clear separation between voxels belonging to different
brain structures (Figure 3.2C and D). When we further increased the number of compo-
nents (20 or more), the clusters of voxels belonging to one brain structure started to break
into smaller sub-clusters. This is particularly clear in Figure 3.2F (BH-SNE without prior
dimension reduction). These sub-clusters seem to be formed by voxels belonging to dif-
ferent coronal planes, visible when the points in the BH-SNE map are projected back to
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Figure 3.3: BH-SNE embeddings of cell-type specific genes in the mouse coronal data. (a) neuron-specific, (b)
astrocyte-specific, and (c) oligodendrocyte-specific gene sets based BH-SNE embeddings, colored by anatom-
ical region labels from the Allen reference Atlas. (d)-(f) Divergence plots of the BH-SNE embeddings using (d)
neuron-specific, (e) astrocyte-specific, and (f) oligodendrocyte-specific gene sets. A higher divergence value
(lighter colors) indicates better separation between a pair of neuroanatomical regions in the 2D BH-SNE map.

the mouse brain (Figure 3.2F, lower panel). When the BH-SNE map is colored accord-
ing to the coronal plane from which the data was extracted, the observed sub-clusters
could indeed be attributed to the different coronal planes (Figure 3.2G). Since the gene
expression data was generated using ISH if coronal section of the mouse brain, we can
reason that by including more components BH-SNE starts to pick up inter-slice differ-
ences. Neighboring voxels within the same brain structure and within the same slice
have a more similar expression profile than neighboring voxels within the same brain
structure but in different coronal slices. This leads to the fragmentation of brain region
clusters into smaller, within-slice clusters, and hence the visible color gradient over the
coronal brain slices (Figure 3.2F).

Ko et al . [141] demonstrated that k-means clustering on cell-type specific genes
reveals that neuron-specific genes show the most neuroanatomically similar pattern
across the mouse brain. To explore if cell type composition gives rise to the expression
differences that separate anatomical regions, we performed BH-SNE on cell type
marking genes only. Figure 3.3 shows the BH-SNE mappings for three disjoint sets
of genes. The neuron-specific genes yield the highest separation between
neuroanatomical regions (Figure 3.3A). In order to quantify the ability of different gene
sets to partition neuroantomy we use the Jensen-Shannon divergence plot. The
neuron-specific gene set leads to stronger separation of the cortex (Isocortex), olfactory
area (OLF), hippocampus (HPF), and the cortical subpalate (CTXsp) as well as between
the thalamus (TH) and the hypothalamus (HY), indicated by higher divergence values
(lighter color) in Figure 3.3D–F. Overall oligodendrocyte-specific genes show the
weakest separation between classical anatomical regions, although all gene sets give
clear distinctions between cortex and non-cortex areas. This confirms the observations
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Figure 3.4: BH-SNE maps of the mouse sagittal data. (a) BH-SNE map of the mouse sagittal data using 10
principal components for the initial dimensionality reduction and colored by anatomical region labels from
the Allen reference Atlas. (b) Mapping of the BH-SNE embedding back to the 3D volume of the mouse atlas
(3 views), colored by the L*a*b* colormap of the BH-SNE embedding. (c) Mapping of the BH-SNE embedding
using the high dimensional sagittal data without prior dimensionality reduction.

reported in [141] on k-means clustering based on expression of cell-type specific genes.
The BH-SNE analysis was also performed on the sagittal data, which spans a smaller

volume of interest than the coronal data (27,365 voxels compared to 61,164). This map
(in Figure 3.4A and B) is highly comparable to that of the coronal experiments, with espe-
cially clear distinctions between cerebral nuclei (medium blue) and cerebral cortex (or-
ange). In this case, selecting fewer principal components for the BH-SNE initialization
does not lead to slicing effects as observed in the coronal samples, but it does emphasise
within-slice similarities which are visible by a smoother color transitions in Figure 3.4C.

GENOME-WIDE GENE EXPRESSION SIMILARITY WITHIN THE HUMAN

BRAIN
In the human brain atlas platform paper, Hawrylycz et al . [26] used PCA and cMDS
mappings to show that the transcriptional relationships between cortical samples mimic
the spatial topography of the cortex. To visualize the anatomical organization of the
high-dimensional expression data through the entire adult human brain, we mapped
the data to a 2D map using BH-SNE without prior dimensionality reduction. By map-
ping the expression data of each of the six brains separately, we observed that BH-SNE is
able to map the samples with clear clustering of samples belonging to the same anatom-
ical region, see Figure 3.5. Particularly, the cortex (red, yellow and brown samples) and
the cerebellum (light blue) are clearly separated from all other brain regions across the
six brains, indicating that both regions have distinct expression profiles from the rest of
the brain. Moreover, the thalamus (light green), hippocampus (ochre) and the caudate
nucleus and putamen (purple) are consistently close to each other in the low dimen-
sional space, indicating that the expression profiles of these regions are more similar
to each other than to other regions of the brain. Remarkably, the caudate nucleus and
putamen are clustered, while the third organ of the basal ganglia, the globus pallidus,
has a separate cluster. The relationships between samples in the low-dimensional space
are very consistent across the six brains, suggesting a global organization of the human
brain transcriptome across individuals. It is worth noting that BH-SNE optimizes the
pair-wise distances between pairs of data points, but not the absolute location of each
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Figure 3.5: Genome-wide gene expression similarity within six human brains. BH-SNE maps of the expres-
sion data for each of the six human brain donors individually without prior dimensionality reduction by PCA.
(1) Donor H0351.2001. (b) Donor H0351.2002. (c) Donor H0351.2009. (d) Donor H0351.2012. (e) Donor
H0351.2015. (f) Donor H0351.2016. BH-SNE maps are colored by anatomical region labels from the Allen
reference Atlas: frontal lobe (FL), parietal lobe (PL), temporal lobe (TL), occipital lobe (OL), hippocampal for-
mation (HiF), striatum (Str), Globus pallidus (Gp), amygdala (Amg), thalamus (TH), hypothalamus (Hy), mes-
encephalon (MES), Pons, myelencephalon (MY), cerebellum (Cb), and white matter (WM). Note the higher
density in (a) and (b) is due to the larger number of samples.

data point in the 2D map. Therefore, when analyzing the maps in Figure 3.5, one should
consider the relative distances between samples from different neuroanatomical regions
rather than the absolute geometric location within the map.

To compare the similarity of the expression profiles of different brain regions to the
classical neuroanatomy, we compared the L*a*b* colors of the BH-SNE mapping to the
original structural labels on the MNI152 atlas for Donor H0351.2001 and Donor
H0351.2002, from whom both hemispheres were sampled in the ABA. In Figure 3.6, the
differences between cortical, cerebellar, and brain stem samples are clearly visible.
However, we could not identify differences between the frontal, medial, and anterior
regions of the cortex in the t-SNE map. On the other hand, regions surrounding the
ventricles clearly differ from the adjacent brain regions and there are no clear
differences within the brainstem. These maps reveal the global symmetry between
hemispheres in regional gene expression that was also reported in [26].

To gain insight into the effect of cell-type specific genes on the mapping, we in-
spected embeddings of human brain samples when creating the maps using only the
expression profiles of cell-type specific genes. Similar to our observation from the mouse
data, neuron-specific genes encode better separability between anatomical regions (Fig-
ure 3.7A) with a BH-SNE map very similar to the BH-SNE map obtained using the entire
set of genes. Furthermore, astrocyte-specific genes resulted in a more separable map
compared to oligodendrocyte-specific genes (Figure 3.7B and C). In all three mappings,
there is a strong overlap between the frontal lobe (FL), temporal lobe (TL), occipital lobe
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Figure 3.6: Anatomical view on the genome-wide gene expression similarity within two human brains. BH-
SNE maps of the expression data without prior dimensionality reduction by PCA, (a) colored by anatomical
region labels from the Allen reference Atlas (see legend) and (b) colored by the L*a*b* colormap. (c) Transverse,
(d) sagittal, and (e) coronal views of the brain colored according to the L*a*b* colors of the samples in the BH-
SNE maps. Top Row: Anatomical labels from the ABA projected on the full brain. Middle Row: the brain of
H0351.2001. Bottom Row: the brain of H0351.2002. Note the clear separation of the cerebellum and brain stem
in (b) as well as that the global preservation of the symmetry in regional gene expression between hemispheres
in (c,e).

(OL), and parietal lobe (PL) (Figure 3.7D–F), which was also visible in the brain maps
in Figure 3.6. It is also worth noting that the overall differences between the cell-type
specific maps are much smaller in the human data that the corresponding maps in the
mouse data (Figure 3.3).

We then pooled all the samples from the six brains and mapped them to the low-
dimensional 2D space using BH-SNE (with prior dimensionality reduction to 10 princi-
pal components), PCA, and cMDS. The BH-SNE map of the concatenated data resem-
bled those of the individual donors to a large extent, with samples from the cortex and
the cerebellum clearly separated from samples in the rest of the brain, see Figure 3.8.
Again, BH-SNE (Figure 3.8A) retains a better separation between samples belonging to
different anatomical regions as compared to PCA (Figure 3.8B) and cMDS (Figure 3.8C).
For PCA, the overlap between the cerebellum (light blue) and the cortex (red, yellow and
brown) can be resolved when the 3rd component is taken into account. Within the cere-
bellum, none of the three methods could separate frontal (FL), temporal (TL), occipital
(OL) and parietal lobes (PL), consistent with our findings from individual brains (Fig-
ure 3.7). This further supports the superiority of BH-SNE to retain variations in higher
components in the 2D space. Separation between donors becomes apparent in BH-SNE
(Figure 3.8D), which is much less apparent in PCA and cMDS. In order to quantify the



VISUALIZING BRAIN GENE EXPRESSION ORGANIZATION

3

47

Figure 3.7: BH-SNE mappings of the human brain based on cell-type specific genes. BH-SNE embeddings of
samples from donor H0351.2002 using (a) neuron-specific, (b) astrocyte-specific, and (c) oligodendrocyte-
specific gene sets, colored by anatomical region labels from the Allen Reference Atlas. (d)-(f) Divergence
plots of the BH-SNE embeddings using (d) neuron-specific, (e) astrocyte-specific, and (f) oligodendrocyte-
specific gene sets. A higher divergence value (lighter colors) indicates better separation between a pair of
neuroanatomical regions in the 2D BH-SNE map.

separation between different anatomical structures in the low dimensional space, we
computed the Jensen-Shannon divergences between the regions; see Figure 3.8G–I. The
divergence plots show clearly that the BH-SNE map has higher divergence values, hence
retaining a better separation between all neuroanatomical regions followed by PCA and
subsequently cMDS. The sensitivity of BH-SNE is also demonstrated by its ability to dis-
tinguish samples from different donors. Figure 3.8A and D show different clusters per
brain region and per donor. In the PCA and cMDS mappings, samples from different
donors are fully mixed.

In Figure 3.2F, we have shown that by retaining more PCA components, one can sep-
arate the mouse expression data based on inter-slice differences. To analyze the effect of
retaining more PCA components prior to the BH-SNE embedding in the human brain,
we gradually increased the number of principal components used to initialize the BH-
SNE mapping. Figure 3.9 (top row) shows that by increasing the number of principal
components, i.e. increasing the data dimensionality, before applying BH-SNE, samples
belonging to the same anatomical structure, but to different donors, start to deviate from
each other. When colored according to the source brain, Figure 3.9 (bottom row), de-
viations in the BH-SNE maps appear to reflect differences between brains only when
more components are used in the prior dimensionality reduction. At 5 components
(Figure 3.9C) we start to observe a separation of the samples from H0351.2001 brain re-
gions (red) and H0351.2002 brain regions (yellow) from the other samples, especially
in the cortical and cerebellar regions. The other four brains (H0351.2009, H0351.2012,
H0351.2015, and H0351.2016) become clearly separated when much higher components
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Figure 3.8: Linear and non-linear embeddings of the human brain transcriptome. (a) BH-SNE using 10
principal components for prior dimensionality reduction, (b) PCA, and (c) cMDS embeddings of the aggre-
gated gene expression data of the six human brains. Maps a-c are colored by anatomical region labels from
the Allen reference Atlas, maps d-f are colored by donor . (g – i) Jensen-Shannon divergence plots between
neuroanatomical regions for BH-SNE, PCA and cMDS, respectively.

are included (20 components, Figure 3.9E). However, BH-SNE is still able to maintain the
separation between different anatomical structures even when higher components are
added, but at the costs that each brain region in each donor then forms its own clus-
ter. The clustering in anatomy related clusters for a low number of retained components
shows that the variations in normalized gene expression levels between brain regions are
dominant over the variations between donors.

3.5. CONCLUSIONS
We have explored the effectiveness of using t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) to assess the spatial organization of genome-wide expression data across
the mammalian brain. We have used Barnes-Hut-SNE (BH-SNE), a recently developed,
computationally efficient t-SNE optimization algorithm, to map the large volumes of
data in the mouse and human Allen Brain Atlases. Our results show that the mapped
gene-expression data is highly consistent between the coronal and sagittal mouse at-
lases as well as between the six human brain datasets, with the cortex and cerebellum
always being the most distinct from other brain regions. Additionally, the BH-SNE maps
of the human brain show clear expression symmetry between hemispheres. The separa-
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Figure 3.9: BH-SNE maps of the human data when using different PCA initializations. BH-SNE embeddings
of the aggregated data from six human brains when using (a) 2, (b) 3, (c) 5, (d) 10 and (e) 20 principal com-
ponents before applying BH-SNE. (f) BH-SNE mapping of the human data without any prior dimensionality
reduction. (Top row) BH-SNE maps colored by anatomical region labels from the Allen reference Atlas. (Bot-
tom row) BH-SNE maps colored by donor brain.

tion of neuroanatomical regions in the BH-SNE embedding is better than the separation
in the PCA and MDS embeddings, further supporting the need for non-linear embed-
ding methods to capture the complex organization of the Allen Brain Atlas data. We
have employed the Jensen-Shannon divergence to quantify the ability of different gene
sets and different embedding methods to map brain samples in 2D while preserving the
known neuroanatomy. Additionally, we studied the effect of keeping more PCA compo-
nents prior to the BH-SNE mapping. Due to its emphasis on local structures, BH-SNE
is sensitive to having more PCA components as input, even when they may encode for
non-anatomical information such as inter-slice differences in the coronal mouse data
and different donor brains in the human data. These results suggest that to map high-
dimensional spatial transcriptome data to a two dimensional space, a combination of a
linear PCA mapping followed by a non-linear BH-SNE mapping gives the best tradeoff
between preserving local and global structure in one 2D map.

3.6. SUPPLEMENTARY MATERIAL
The online version of this article contains supplementary material2.

2http://www.sciencedirect.com/science/article/pii/S1046202314003211

http://www.sciencedirect.com/science/article/pii/S1046202314003211
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D YSTROPHINOPATHIES are muscular dystrophies with a high incidence of learning
and behavioural problems and comorbidity with neurodevelopmental disorders.

However, the pathophysiology of central nervous system involvement remains elusive.
We provide a detailed analysis of the expression profiles of the dystrophin isoforms in
the human brain across development. Contrary to expectation, we found that the purk-
inje dystrophin isoform was virtually absent from the human brain, which we validated
using additional data of promoter activity and epigenomic markers as well as ex vivo ex-
periments. Furthermore, a co-expression analysis suggests a strong association between
dystrophin transcripts and genes implicated in neurodevelopmental disorders, provid-
ing an underlying genetic basis to the co-morbidity of these disorders in dystropinopa-
thy patients.

4.1. INTRODUCTION
Duchenne (DMD) and Becker (BMD) muscular dystrophies are X-linked genetic neu-
romuscular disorders characterized by severe and progressive muscle weakness. Mu-
tations in the DMD gene result in absent/non-functional muscle dystrophin protein in
DMD and shortened/partially functional protein in BMD.

In addition to skeletal muscle pathology, DMD is characterized by cognitive and
behavioural problems with 30% of boys with DMD showing cognitive impairment (IQ
below 70) [219] and 40% having reading deficits similar to those observed in patients
with phonological dyslexia [220–222]. Moreover, there is a higher incidence of attention-
deficit/hyperactivity disorder (ADHD) (32%), anxiety disorder (27%), autism spectrum
disorders (ASD) (15%), epilepsy (6.3%), and obsessive-compulsive disorder (OCD) (4.8%)
in patients with DMD [223–225]. In BMD patients, frequencies of learning difficulties or
comorbidity with neurodevelopmental disorders have not been systematically reviewed.
However, one report of 24 patients does indicate spelling (32%), arithmetic (26%), and
reading (21%) difficulties, as well as behavioral problems and occurrence of epilepsy de-
spite absent deviations from full scale IQ (FSIQ) distributions [226, 227]. A case report
of four patients may suggest the possibility of BMD presenting with central nervous sys-
tem (CNS) symptoms in the absence of muscle weakness [228]. Caution is warranted,
however, when projecting these percentages to the general BMD population as selection
bias cannot be excluded.

The DMD gene contains at least seven independent, tissue-specific promoters and
two polyA-addition sites, producing several isoforms that are named to reflect their
length and splice-variants (Figure 4.1). The localization and function of the full-length
muscle isoform Dp427m is well characterized both in humans and animal models. It is
a crucial component of the dystrophin-glycoprotein complex (DGC), which bridges the
inner cytoskeleton and the extracellular matrix providing structural stability to muscle
fibers [229, 230]. However, information on brain dystrophin is almost solely derived
from animal models and cell culture studies, with only a few case studies in man [231].
It is believed that the cortical isoform Dp427c is predominantly expressed in neurons of
the cortex and the CA regions of the hippocampus [232, 233]. The Purkinje isoform
Dp427p has two variants which are reported to be expressed in cerebellar Purkinje cells
[234]. The shorter Dp260 and Dp116 isoforms are expressed primarily in the retina and
the peripheral nerve, respectively [235, 236]. There is very limited information on the
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sites of expression of the Dp140 isoform and its splice variants. A study of one 3.5
month old fetus and one 60 year old brain suggested that the Dp140 isoform is
predominantly expressed during fetal life stages [237]. Finally, the Dp71 isoform is
ubiquitously expressed, with higher levels in the CNS [238, 239].

The risk of cognitive impairment in DMD has been associated to the location of mu-
tations within the DMD gene which results in the absence of specific dystrophin iso-
forms. FSIQ scores correlate with the number of isoforms missing. Patients missing all
isoforms due to mutations in the distal part of the gene have the lowest scores, whereas
patients missing only the full-length isoform have the highest scores [240]. Moreover, pa-
tients lacking Dp140 isoforms performed worse on all neuropsychological tests (general
cognitive abilities, verbal memory, attention and executive functions) compared to those
with preserved Dp140 [241]. The relationship between the isoforms that are affected
and the cognitive profile is further supported by the higher incidence of neurodevelop-
mental disorders in patients missing Dp140 compared to patients missing only Dp427
[223, 242]. This group distinction was already detectable below the age of four, as as-
sessed with developmental quotients [243]. Finally, imaging studies has shown reduced
grey matter volume and altered white matter microstructure compared to age-matched
healthy controls, which also was more profound in patients also missing Dp140 [244].

Despite this mounting evidence on the association between the absence of shorter
dystrophin isoforms and higher incidence of learning and behavioral disabilities, the
etiology of the CNS pathology in DMD and BMD remains elusive. In this study, we pro-
vide detailed analysis of the spatial and temporal expression patterns of the dystrophin
isoforms in the pathology-free adult and developing human brain. Using co-expression
analysis, we characterize the functional role of the dystrophin isoforms as well as their
relationships to other neurological disorders across brain development.

4.2. RESULTS

DIFFERENTIAL DYSTROPHIN ISOFORM EXPRESSION DURING

DEVELOPMENT
We used the BrainSpan atlas of the developing human brain transcriptome [27] to assess
the dystrophin isoforms expression throughout development. The BrainSpan atlas pro-
vides RNA-sequencing expression profiling of 16 brain structures from 42 donor brains
spanning early pre-natal development (8 weeks post-conception) to adulthood (40 years
of age). In order to assess the expression of the different dystrophin isoforms, we used
the expression of the unique first exons of Dp427p Dp427c, Dp427m, Dp260, Dp140,
Dp116 and the shared first exon of Dp71 and Dp40 (Figure 4.2). We grouped the donors
into 10 developmental stages (Supplementary Table 1). Figure 4.2 shows the expression
of all exons within the DMD gene, across different brain regions and through develop-
ment. The expression of Dp427c, and Dp427m is low during fetal development, shows
a slight increase around the age of two, and is low throughout middle adulthood. This
pattern is consistent across the different brain regions, though more prominent in the
cerebral cortex when assessing Dp427 exon two (Figure 4.2B-D).

In contrast to previous reports [234, 245, 246], the Purkinje isoform Dp427p was vir-
tually absent in the brain throughout development, with expression levels even lower
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Figure 4.1: Human dystrophin isoforms. Dystrophin transcripts located on the X chromosome (GRCh37.p13,
RefSeq Release 74: NG_012232.1). The vertical green dashes indicate individual exons. The full length dys-
trophins (Dp427) have 79 exons, with isoforms starting at unique first exons. For some isoforms multiple
splice variants have been identified (indicated on the right hand side). The shorter isoforms (relative to the full
length isoforms Dp427) have unique first exons (i.e. not included in any other isoform), with the exception of
Dp71 and Dp40 which share a first exon but use alternative polyadenylation sites. The red boxes indicate the
position of the promoter region of each isoform. The second exon of Dp427c,m,p was used to represent the full
length dystrophin as a group (indicated by a purple box). This figure was generated using the NCBI Sequence
Viewer.

than muscle dystrophin Dp427m. To verify that Dp427p is indeed expressed in mouse,
but not in human brain, we analyzed the expression of Dp427p in cerebellum and cere-
bral cortex samples from control adult human brain (provided by the Netherlands Brain
Bank) using quantitative polymerase chain reaction (qPCR). Indeed, we did not observe
Dp427p expression in the human cerebral cortex and also not in the cerebellum, where
the Purkinje neurons are located (Figure 4.3A). Yet in line with previous studies [245, 246],
Dp427p was expressed in the mouse cerebellum and not in the mouse cerebral cortex.
This sharp contrast in Dp427p expression in the cerebellum suggests a different role for
Dp427p in human than in mouse.

As expected, the samples representing retinal Dp260 and peripheral nerve Dp116
have virtually no expression in the brain (their unique first exons are not expressed). By
contrast, Dp140 is clearly expressed in the fetal brain, with high expression in the early
to mid-fetal stages, but very low expression from the late fetal stage onwards. Never-
theless, Dp140 is still expressed in the cerebellum and cerebral cortex at middle adult-
hood, which has never been reported before (Figure 4.2E). To verify that Dp140 is indeed
expressed in the adult cerebral cortex and cerebellum, we analyzed the expression of
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Figure 4.2: Dystrophin isoforms expression across brain development. (A) Dystrophin exons expression
throughout brain development. The isoform unique first exons are indicated on top of the heatmap. The
developmental stages are indicated on the left in post-conceptual weeks and months or years after birth. The
BrainSpan atlas exon number is indicated below the heatmap together with the Dp427m exon numbering for
reference. Bars below the heatmap indicate the different isoform groups. The grey bars corresponding to
Dp427c,m,p are grouped together using exon 2 in further analysis (dark blue). The grey bars corresponding
to Dp260 and Dp116 are expressed in the retina and peripheral nerves and are excluded from further analysis.
The first exon of Dp140 (dark green) and Dp71+Dp40 (dark orange) is used for further analysis. Boxes with
a red ‘X’ indicate exons that are not part of the transcript. Expression values are presented as log2(RPK M).
Brain region specific expression across development is shown for the cerebral cortex (B), hippocampus (C),
amygdala (D) and cerebellum (E) of Dp427 (second exon), Dp140 (first exon) and Dp71+Dp40 (first exon).

Dp140 as described above for Dp427p. Results confirm expression on Dp140 in the adult
human cerebral cortex, as well as much higher expression in the adult human cerebel-
lum (Figure 4.3B). The Dp71+Dp40 expression is high during fetal stages and remains
high after birth and later in life showing little regional specificity, in line with earlier re-
ports indicating ubiquitous expression [231, 247]. This is further supported by qPCR re-
sults showing comparable expression levels of Dp71 between the cortex and cerebellum
(Figure 4.3B).

DMD EXPRESSION IN THE ADULT HUMAN BRAIN IS HIGH IN THE

HIPPOCAMPUS AND AMYGDALA BUT LOW IN THE CEREBELLUM RELATIVE

TO THE BRAIN AVERAGE EXPRESSION
To analyze the spatial distribution of DMD gene expression across the adult brain, we
used the Allen Human Brain Atlas (AHBA) [26], which has a much higher spatial resolu-
tion than the BrainSpan atlas but lacks the temporal dimension. The AHBA provides mi-
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Figure 4.3: Ex vivo dystrophin isoforms expression in the mouse and human cerebral cortex and cerebellum.
(A) The expression of the Purkinje isoform Dp427p was measured using qPCR in samples from the cortex and
cerebellum of human and wild type mouse brains. (B) Expression levels of Dp427c, Dp427p, Dp140, and Dp71
in the human cortex and cerebellum. Expression levels are shown relative to the housekeeping gene RPL22.

croarray gene expression data from hundreds of samples extracted from six adult human
brains, allowing detailed analysis of the regional expression of genes across the human
brain. However, as oligo-dT primers were used for sample preparation, which capture
the distal part of the gene, it is not possible to distinguish between different isoforms,
nor is exon specific data available.

Relative to the average expression levels across the six donors, the highest expres-
sion levels of DMD were found in the hippocampus and amygdala (Figure 4.4). Within
the hippocampus, expression was highest in the CA4 region, and lowest in the CA2 re-
gion (Figure 4.4A, Supplementary Table 2). The expression of DMD in the amygdala was
highest in the basolateral complex, the input side of the amygdala that receives informa-
tion from the prefrontal cortex, which is implicated in complex behaviour. Relatively low
DMD expression was found on the output side with the central nucleus which connects
with the brainstem and pons. Of the basolateral complex, highest DMD expression was
found in the lateral nucleus which receives information from the neocortex, thalamus
and hippocampus.

Animal studies have thus far consistently shown high dystrophin expression in the
cerebellum [248, 249]. Surprisingly, the lowest levels of DMD expression in the human
brain were found in the cerebellum and the pons (Figure 4.4B). Within the cerebellum,
DMD expression was lowest in the globose (GL), fastigial (Fas) and dentate nuclei (DN)
which receive inhibitory (GABAergic) input from Purkinje cells and excitatory (gluta-
matergic) inputs from mossy fibres and climbing fibre pathways. Second lowest expres-
sion was located in the regions associated with working memory, in the biventral lobule
(Bl). The regions implicated in timing and coordination as well as attention through the
prefrontal cortex, in the tonsilla (TO) and semilunal lobule (SL) were third lowest.

TRANSCRIPTION START SITES IN THE DMD GENE
Gene expression is regulated by multiple factors that integrate at transcription start sites
(TSSs) to control the transcription of target genes in a cell-specific manner [250]. To
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Figure 4.4: DMD gene expression across the adult human brain. DMD expression in the adult human brain
at high spatial resolution averaged from six adult donors (five males and one female; mean age 42 years). Data
is shown relative to the average expression across the whole brain (z-score normalization). (A) The spatial
distribution is highlighted in three cross-section of the brain showing the high sub-structural expression in
the amygdala and hippocampus in contrast to the low expression throughout the cerebellum. (B) The brain
was subdivided into 22 non-overlapping anatomical regions. For each region, the average expression in each
of the donors was calculated separately (after z-score normalization) and all six average values are shown in
a boxplot. The number of samples from which these samples were derived are indicated to the right. Sig-
nificantly higher expression was found in the subthalamus, amygdala, parahippocampus and hippocampal
formation. Significantly lower expression was found in the cerebellum and pons (Mann-Whitnney U-test;
∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001). Full structure names for the indicated acronyms can be found in the
Materials and Methods.

better characterize the activity of the dystrophin transcripts across different tissues and
cell-types, we analyzed TSS usage within the DMD gene across different brain regions.
Genome-wide TSS usage has been detected across many human cell-types in the FAN-
TOM5 consortium data set (using cap analysis of gene expression; CAGE) [251, 252] and
by the Roadmap Epigenomic Consortium using chromatin markers specific to TSSs [75].

Using the FANTOM5 data, we mapped the usage of TSSs from tissue samples of the
amygdala, hippocampus, cerebellum and cerebral cortex based on the TSS expression in
the adult human brain (Figure 4.5). In total, there were 25 TSSs within a window of 1kb
of the first exons of Dp427c, Dp427m, Dp427p, Dp260, Dp140, Dp116, and Dp70+Dp41
(Supplementary Table 3). Consistent with our findings from the BrainSpan data and the
qPCR experiment (Figure 4.2 and Figure 4.3), the TSSs of the Purkinje isoform were not
expressed in any of the samples analyzed. Similarly, we did not observe expression of
the TSSs of Dp260 and Dp116. In addition, the expression of the TSSs of Dp427c was
highest in the amygdala and hippocampus, in line with the observations from the AHBA
analysis (Figure 4.4). The short isoforms Dp71+Dp40 were consistently expressed across
the brain with lower expression in the cerebellum, in line with results from the BrainSpan
analysis (Figure 4.2A). The TSSs of Dp140 were expressed throughout the adult brain
with higher expression in the cerebellum compared to the rest of the brain. The higher
expression in the cerebellum is in line with the BrainSpan data (Figure 4.2E). In contrast
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Figure 4.5: DMDtranscription start sites. Genome browser view of the different TSSs within the DMD gene.
Active TSS state based on histone markers within the DMD gene are shown for 23 samples including fetal
and adult brain, muscle, heart, liver and kidney. See Materials and Methods for detailed sample information.
Red bars indicate an active TSS state as defined by the Roadmap Epigenomic Consortium [75]. The bottom
eight tracks show the TSS activity (blue bars) within the first exons of the different isoforms captured by CAGE
sequencing from the FANTOM5 project [251, 252]. All the active TSSs have been highlighted by zooming in
on the first exons of the different isoform groups, from left to right: Dp71+Dp40, Dp140, and Dp427. Note the
absence of any TSS activity or epigenetic markers for Dp427p. Data is aligned to the human reference genome
(GRCh37) and RefSeq transcripts are shown at the top. Data is plotted using the WashU Epigenome Browser
[253].

to the low expression levels observed after birth in the BrainSpan data, the expression
levels of Dp140 TSSs were high in the cerebral cortex, hippocampus and amygdala of
the adult brain. However, this matches our results from the qPCR analysis of the adult
cerebral cortex and cerebellum (Figure 4.3B). Finally, the expression of the TSSs of the
muscle isoform (Dp427m) was low across the brain except in the cerebellum.

To further investigate TSS usage within the DMD gene, we used the data from the
Roadmap Epigenomic Consortium [75] to identify TSSs based on their chromatin sig-
natures. We analyzed the chromatin signatures (i.e. chromatin states) across the DMD
gene, focusing on active TSS, in adult and fetal brain samples as well as samples from the
muscle, heart, liver, aorta, and kidney (see Materials and Methods for a full list of sam-
ples). In general, brain samples showed high TSS activity for the Dp140 and Dp71+Dp40
isoform groups (Figure 4.5B), while the muscle and heart samples showed high TSS ac-
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tivity for the Dp427 isoforms group. The fetal brain samples showed active TSS at the
first exon of the Dp140 isoform but no active TSS for the Dp71+Dp40 isoform, support-
ing the expression patterns shown in Figure 4.2B. The Dp140 isoform contained active
TSS markers in the Neurospheres Cortex Derived, Angular Gyrus, Germinal Matrix and
Mid Frontal Lobe samples and no active TSS in the Substania Nigra, Anterior Caudate,
Cingulate Gyrus, and Inferior Temporal Lobe samples.

DYSTROPHIN ISOFORMS ARE SIGNIFICANTLY CO-EXPRESSED WITH GENES

IMPLICATED IN NEURODEVELOPMENTAL DISORDERS
To get more insight into the functional role of dystrophin throughout human brain de-
velopment and its association to other neurodevelopmental disorders, we analyzed the
spatial and temporal co-expression relationships of the DMD gene and the different dys-
trophin isoforms. Co-expression analysis is a well-established approach to infer func-
tional associations of genes using high-throughput expression data based on the ‘guilt
by association’ principle [89]. First, we ranked all genes based on the correlation of their
expression pattern to the DMD gene in the AHBA and to the three dystrophin isoform
groups (Dp427, Dp140 and Dp71+Dp40) in the BrainSpan atlas, resulting in four ranked
gene lists (Supplementary Table 4). Next, we tested whether genes related to five dis-
orders with high incidence in DMD patients (ASD, intellectual disability (ID), ADHD,
OCD, and dyslexia; Supplementary Table 5) are overrepresented among genes which are
strongly co-expressed with DMD and the three isoforms (Figure 4.6).

Genes associated with ASD and ID were significantly co-expressed with dystrophin
expression patterns for both the full-length and smaller isoforms, especially Dp140
(FDR-corrected P < 5.66×10−4; one-sided Mann-Whitney U-Test; Figure 4.6). In
addition, ADD- and OCD-related genes were significantly co-expressed with Dp427
(FDR-corrected P < 4.3×10−4; one-sided Mann-Whitney U-Test), and dyslexia-related
genes with the adult dystrophin expression, as well as Dp427 and Dp71+Dp40
expression in the developing brain (FDR-corrected P < 2.98×10−3; one-sided
Mann-Whitney U-Test).

We mapped the top 25 genes based on their co-expression with Dp427, Dp140 and
Dp71+Dp40 in the developing human brain to a co-expression network, together with
their disease associations from DisGeNET [79] (Figure 4.7). The Dp140 network shows a
higher co-expression between genes compared to the networks of Dp427 and
Dp71+Dp40. The overlaid disease annotations show strong co-expression between
dystrophin isoforms and other relevant diseases such as epilepsy, mental retardation,
obesity, nervous system malformation, neurodevelopmental disorders and
cardiovascular problems. These co-expression relationships point toward a functional
association between DMD and genes related to these disorders.

To get an insight into the functional role of dystrophin throughout brain develop-
ment, we assessed genes with strong co-expression to the three different dystrophin iso-
form groups for enrichment in gene ontology (GO) terms (Figure 4.7, Supplementary
Table 6). GO-terms associated to Dp427 mainly relate to signal transduction by reg-
ulating membrane transport of ions, cations, synaptic transmission or membrane po-
tential regulation. Genes co-expressed with Dp140 were enriched in GO-terms related
to early neurodevelopment via regulation of neuron differentiation and neuron projec-
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Figure 4.6: Genes co-expressed with dystrophin isoforms are enriched in disease-related genes Genes co-
expressed with DMD gene across the adult human brain as well as the dystrophin isoforms across brain devel-
opment (rows) are analyzed for enrichment in genes harboring rare de novo variants in ASD and ID probands,
a curated set of ASD risk genes (SFARI ASD), ADD-, OCD-, and dyslexia-related genes. Heatmap colors corre-
spond to –l og10(F DR − cor r ectedP value). All enrichment values for the lists enriched at P < 0.05 (one-sided
Mann-Whitney U-test; FDR-corrected) are shown.

tion morphogenesis as well as chromatin modification. Finally, genes co-expressed with
Dp71+Dp40 are enriched in terms related to signal transduction again with transmem-
brane receptor binding, but in relation to growth factors.

4.3. DISCUSSION
Despite the evidence supporting brain abnormalities in DMD patients, the mechanisms
underlying the CNS involvement in this disorder is largely unknown. We provide a com-
prehensive study of the expression of dystrophin isoforms in the healthy human brain
across anatomical regions and developmental stages. The detailed analysis of the ex-
pression patterns of the dystrophin isoforms and their co-expression relationships pro-
vides a better understanding of the role of dystrophin role in human brain function and
the association between dystrophin and brain abnormalities .

The full length isoforms Dp427c and Dp427m show very low yet detectable expres-
sion throughout human development, confirming earlier reports [233, 254]. However,
the Purkinje isoform (Dp427p) showed almost no expression in the developing human
brain data which is in contrast an earlier study by Gorecki et al . [255] in which they
established the Purkinje specificity of Dp427p by showing its expression in the mouse
cerebellum . A later report by Holder et al . [234] showed expression of Dp427p in one
adult cortical sample and no expression signal in a 20-week old fetal brain sample using
PCR. To further confirm our findings from the BrainSpan atlas, we validated the absence
of Dp427p expression from adult human cerebral cortex and cerebellar samples using
qPCR and by interrogating TSS usage information from the FANTOM5 and Roadmap
Epigenomic projects. As previously reported, we could detect Dp427p expression in
mouse brain by qPCR. These results illustrate discrepancies in dystrophin isoforms ex-
pression between human and mouse brains and highlight the importance of compre-
hensive maps of expression in mouse and human brains for better translation between
animal experiments to human conditions in which the DMD gene is implicated.

The virtual lack of Dp260 and Dp116 expression confirms earlier hypotheses on the
exclusive expression of these isoforms in the retina and peripheral nerves, respectively,
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Figure 4.7: Dystrophin isoforms co-expression networks and their associated GO-terms. Co-expression
networks showing the top 25 positive correlating genes to the dystrophin isoforms Dp427, Dp140 and
Dp71+Dp40 across development. Edges between nodes represent correlation strength (the thicker the line
the more correlated the genes). Correlations to dystrophin isoforms are shown in red (not weighted).
Genes are color-coded according to their disease associations from DisGeNet. The bar plot shows the top
terms enriched within the top 200 correlated genes. The vertical red line indicates the significance level
(F DR − cor r ectedP value < 0.05).

despite a recent report indicating that Dp260 may be expressed in brain as well [256].
Based on the BrainSpan data, Dp140 is expressed mainly during the fetal stages of life
across the brain and at middle adulthood in few samples from the cerebellum and cor-
tex. These results are in line with earlier results from fetal and adult human brain sam-
ples, where western-blot analysis showed Dp140 in the fetal brain but not in the adult
brain [237, 247, 248]. Interestingly, the AHBA data indicates that DMD expression is low
in the cerebellum relative to the rest of the brain. Based on our validation we observed
high expression of Dp140 in the adult human cerebellum and much lower expression
in the cortex, in contrast to the earlier observation from AHBA. Further analysis of the
expression of the Dp140 TSS from the FANTOM5 data indicates that in deed Dp140 is
expressed in the adult human cerebellum.

The Dp71 and Dp40 isoforms showed consistent expression throughout brain devel-
opment. Although we could not differentiate between Dp71 and Dp40 isoforms because
they share a first exon, the high expression level of the last exon (belonging to Dp71 and
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not Dp40) suggests some specificity for the high signal to Dp71.
Cerebellar dysfunction has been suggested to underlie deficits in reading and verbal

working memory, an important component of the DMD cognitive deficit [257]. How-
ever, our finding of low DMD expression in the healthy adult human cerebellum does
not support this notion. Our results rather emphasize the amygdala, involved in emotion
regulation, and the hippocampus, involved in memory, based on their high expression
of DMD and the supporting evidence of memory and emotion deficits in DMD from
animal and neuropsychological studies in humans [223, 242, 258, 259]. Moreover, we
show a relatively even distribution of DMD expression throughout the cortex, involved
in higher-order cognitive functioning. This is well in line with magnetic resonance imag-
ing (MRI) studies demonstrating reduced grey matter volume, altered white matter mi-
crostructure and reduced cerebral blood flow in DMD patients compared to healthy age-
matched controls [244]. This correspondence between the imaging and gene expression
analysis implies that the alterations observed in MRI are due to the lack of one or more
dystrophin isoforms in brain rather than secondary effects of muscle weakness, limited
mobility, and corticosteroid treatment or cardiac medication.

Co-expression analysis indicates a strong association between the dystrophin iso-
forms and genes implicated in ASD and ID, suggesting a common genetic mechanism
which might explain the high incidence of these disorders in DMD and BMD patients.
Functional enrichment analysis of strongly co-expressed genes advocates a functional
distinction between Dp427 and Dp71+Dp40 isoforms, involved signal transduction, and
Dp140 which is related to early neurodevelopment. The association of Dp427 and sig-
nal transduction further supports the proposed dystrophin-glycoprotein complex-like
structure positioned in post-synaptic densities of GABA-ergic neurons in the brain [231].
The association of Dp71+Dp40 signal transduction plus transmembrane receptor bind-
ing in relation to growth factors implies that the structural alterations thus far observed
in the brains of patients missing Dp427 and Dp140 [244] may be further aggravated in
patients missing Dp71 and Dp40. Future studies on cerebral structural integrity in the
absence of Dp71 and Dp40 can test this hypothesis.

Genes with strong co-expression to dystrophin isoforms across brain development
may provide novel insights into the molecular mechanisms in DMD. For instance, Dp427
and Dp140 are strongly co-expressed with genes associated Emery-Dreifuss muscular
dystrophy (SYNE1 and SYNE2, respectively). Cerebral thromboembolism is one of the
risk factors in Emery-Dreifuss muscular dystrophy and a link to DMD might explain
the reduced cerebral blood flow seen in DMD patients. Similarly, Dp427 is strongly co-
expressed with NALCN, the gene mutated in infantile hypotonia with psychomotor re-
tardation and characteristic facies (IHPRF; OMIM: 615419) [260, 261]. Both DMD and
IHPRF patients suffer from speech delay in early in development, suggesting a com-
mon mechanistic pathway involving DMD and NALCN [262]. Even more interestingly,
Dp140 is strongly co-expressed with FAT4, the gene responsible for the Van Maldergem
Syndrome 2 (VMLDS2; OMIM: 615546) which is characterized by mental retardation,
deafness and skeletal and limb malformation and involves neuronal migrational abnor-
malities [263]. This association together with the higher incidence of mental retarda-
tion in DMD patients missing Dp140 [223, 241] as well as the expression of Dp140 in
early developmental stages strongly suggests a role for Dp140 in neuronal migration. It
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has long been thought that Dp260, the dystrophin isoform expressed in the retina, is
responsible for the high incidence of color blindness and abnormal retinal neurotrans-
mission [256, 264]. However, the strong co-expression of Dp71+Dp40 with TIMP3 and
ADAM9, which are associated with Sorsby fundus dystrophy [265] and cone-rod dys-
trophy 9 [264], respectively, points toward a brain role in retinal abnormalities in DMD
patients.

Based on the expression profiles and the co-expression relationships of the
dystrophin isoforms across brain regions and developmental stages, we have found a
strong association between dystrophin and neurodevelopmental processes and
disorders. Our results indicate a necessity to profile the expression of the dystrophin
isoforms in DMD brains in order to elucidate the transcriptional mechanisms
underlying the behavioral and learning problems in DMD. This can greatly facilitate
risk assessments of comorbid disorders and guide screening for early detection and
targeted treatment.

4.4. MATERIALS AND METHODS

BRAINSPAN DEVELOPING HUMAN BRAIN TRANSCRIPTOME
RNA-sequencing-derived exon-level expression data of the different isoforms of DMD
was downloaded from the BrainSpan atlas of the developing human brain transcriptome
[27](http://brainspan.org). RNA sequencing (RNA-seq) data generated from 524 tis-
sue samples collected from 42 post-mortem brains collected from neurologically unre-
markable individuals spanning early pre-natal development (8 post-conception weeks,
PCW) to late adulthood (40 years of age). Samples were extracted using macro dissec-
tion from 8–16 regions per brain. Details of tissue acquisition and data processing can
be found at (http://brainspan.org). Gene annotation of the RNA-seq data was de-
rived from Gencode version 10 (GRCh37 – Ensembl 65; http://www.gencodegenes.
org/releases/10.html). The expression level of the exons was measured in RPKM
(reads per kilobase of exon model per million mapped reads).

The DMD gene (Chromosome X: 31,115,794-33,357,558) data included 94 exons.
There are only 79 exons in the well-known muscle dystrophin Dp427m (NM_004006.2).
We therefore mapped the exon locations to the Dp427m exon annotation (Figure 4.2).
In this process, we found values specific to the isoform first exons (which are not exons
in Dp427m) and we found genomic coordinates that mapped to an isoform called
Dp427l. This isoform is no longer included in the latest release of the human genome
(GRCh38), due to lack of evidence [266]. As such, we excluded these exon coordinates
from further analyses.

ADULT HUMAN BRAIN EXPRESSION DATA
Spatial gene expression data from six adult human brains was obtained from the Allen
Human Brain Atlas database (AHBA) [26] (http://human.brain-map.org/). Samples
were collected from postmortem brains from 5 males and one female between 24 and
57 years of age (mean age 42), with no known psychopathologies, by either manual
macrodissection (cortical and some subcortical structures) or by laser-based microdis-
section (subcortical and brainstem areas). For each brain, RNA was extracted from 363

http://brainspan.org
http://brainspan.org
http://www.gencodegenes.org/releases/10.html
http://www.gencodegenes.org/releases/10.html
http://human.brain-map.org/
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to 946 different samples per brain (3,702 samples in total) and measured on custom Ag-
ilent microarrays containing the 4 × 44K Agilent Whole Human Genome probes as well
as an additional 16,000 custom probes. For genes with 2 probes, the one with the highest
variance was selected. For genes with at least 3 probes, the connectivity of each probe
was calculated (sum of the Pearson correlations to all other probes, measured per brain
and then averaged) and the one with the highest connectivity was selected. Expression
data of the 19,991 genes was z-score normalized per brain. The expression of the DMD
gene was measured using six probes, of which A_24_P185854 (NM_004023.1) has the
highest connectivity and hence was used for further analysis. This probe is located at
the distal part of the gene and captures the Dp71, Dp116, Dp140, Dp260, and Dp427 iso-
forms (all except Dp40). For visualization, z-score values of the DMD gene expression
were mapped to anatomical atlas images acquired from the Allen Human Brain Atlas
[26]. The following acronyms are indicated in Figure 4.4A; BG: Basal ganglia, BL: Basolat-
eral nucleus, BM: Basomedial nucleus, BL: Biventral lobule, CA1: CA1 region of the hip-
pocampus, CA2: CA2 region of the hippocampus, CA3: CA3 region of the hippocampus,
Cig: Caudal granular insular cortex, CE: Central nuclear group, DG: Dentate gyrus, DN:
Dentate nucleus, Fas: Fastigial nucleus, Glo: Globose, Icx: Insular neocortex, LEC: Lat-
eral entorhinal cortex, La: Lateral nucleus, MEC: Medial lateral entorhinal cortex, MCC:
Midcingulate gyrus, MTC: Midlateral temporal cortex, Ocx: Occipital neocortex, PCx:
Parietal neocortex, PCC: Posterior cingulate cortex, CoP: Posterior cortical nucleus, IPC:
Posteroventral parietal cortex, IPC: Posteroventral parietal cortex, PMC: Premotor cor-
tex, A1C: Primary auditory cortex, M1C: Primary motor cortex, S1C: Primary somatosen-
sory cortex, SL: semilunal lobule, SsC: Subcentral cortex, Sub: Subicular cortex, SLTC:
Superolateral temporalcortex, TO: Tonsilla, VLTC: Ventrolateral temporal neocortex.

CO-EXPRESSION ANALYSIS
To characterize the functional association of the DMD gene in the adult human brain,
we calculated the spatial correlation (Pearson’s) between each gene in the AHBA (19,991
genes) and the DMD gene using all samples concatenated from the six donors (3,702
samples). Genes were ranked based on the correlations in a descending order. To assess
the functional association of the different dystrophin isoforms across development, we
calculated the spatial-temporal correlation (Pearson’s) between each exon in the
BrainSpan dataset (241,690 exons) and the exons that are specific to each of the three
dystrophin isoforms groups: exon 2 for full length Dp427, isoform specific exons
located in intron 44 for Dp140 and intron 62 for Dp71+Dp40, with respect to Dp427m
nomenclature. These isoforms were selected because virtually all DMD patients have
mutations affecting Dp427c, Dp427m and Dp427p. A proportion of patients
additionally cannot produce Dp140. And a small number of patients cannot produce
any isoforms, including the shortest Dp71 and Dp40. For each isoform group, we
ranked all exons in a descending order based on correlation. To get a ranked gene list,
each gene was assigned the rank of its most correlated exon. For each gene set,
functional enrichment analysis was performed on the top 1% (most positively
correlated) using ToppGene [267]. We returned all terms enriched at an FDR-corrected
q − value < 0.05 from the categories: GO Molecular Function, GO Biological Process,
GO Cellular Component, Human Phenotype, Mouse Phenotype, and Pathway.
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DISEASE GENE SETS OVER-REPRESENTATION
Enrichment analysis of disease-related gene sets was performed using a two-sided
Wilcoxon rank sum test (Mann-Whitney U-test). For each list of all genes ranked based
on their co-expression with dystrophin expression we used the rank sum test to assess
the significance of the ranks of each disease gene set. To control the false discovery rate,
we corrected for multiple testing using the Benjamini-Hochberg method [268]. In case
of the Adult Human Brain we tested the set of 19,991 genes, ranked based on their
correlation to the DMD gene across all samples (Pearson’s correlation). Similarly, for the
BrainSpan developing human brain transcriptome we tested three sets of 21,164 genes
ranked based on their co-expression with the exons corresponding to the three
dystrophin isoforms: Dp71+Dp40, Dp140 and Dp427.

We tested for the enrichment of five disease-related gene sets. The ASD-ID list con-
tained 827 genes harboring de novo mutations from four ASD [122–125] and two ID
[269, 270] exome sequencing studies. The ASD-ID was retrieved from [29]. The SFARI
ASD list contained 706 genes associated to ASD using manual curation of published sci-
entific literature from the Simons Foundation Autism Research Initiative (SFARI) AutDB
database [271]. The list includes candidate genes implicated by common variant associ-
ation, candidate gene studies, genes within ASD-associated CNV, and genes implicated
in syndromic forms of ASD. Lists of genes related to ADD, OCD and dyslexia were re-
trieved from DisGeNet v3.0, a database that integrates human gene-disease associations
from various expert curated sources and text-mining of literature [79].

FANTOM5 DATA
We used the FANTOM5 samples ontology and the linked data version of FANTOM5 data,
which was exposed as nanopublications [251, 252]. We queried the FANTOM5 data to
get all transcription start sites which are overlapping with the first exons of Dp427c,
Dp427m, Dp427p, Dp260, Dp140, Dp116, and Dp70+Dp41. We selected only samples
belonging to the cerebral cortex, hippocampus, amygdala and cerebellum brain regions.
Further, we removed samples pooled from multiple donors since they spanned a wide
age range, which could dilute the expression of a TSS varied through development. Our
analysis resulted in 25 TSSs across 8 samples (Supplementary Table 6).

EPIGENETIC DATA
Data from the Roadmap Epigenomics Consortium [75] was visualized using the WashU
EpiGenome Browser v40.0.0 [253]. We visualized only the track corresponding to Active
transcription start site (TSS) chromatin state. Details of the 23 selected samples are in
Supplementary Table 7.

VALIDATION USING EX VIVO QPCR
Frozen tissue samples from a 51 years old male non-demented control brain of the ante-
rior orbital gyrus and cerebellum were obtained (post-mortem delay: 07:45 hr; pH 7.05,
stored in cryovial at -80º). For total RNA isolation, tissue was disrupted in tubes with
MagNA Lyser Green Beads (Roche Diagnostics) with TriPure Isolation Reagent (Roche
Diagnostics). Isolation was performed with chloroform, and RNA was precipitated with
isopropanol. The NucleoSpin RNA II kit including DNase digestion (Bioke, Leiden, The
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Netherlands) was used for RNA purification. RNA was used for cDNA synthesis with
random hexamer primers. Expression of Dp427c, Dp427p, Dp140 and Dp71 (primer se-
quences available on request) was determined by SYBR Green-based real-time quanti-
tative PCR (95◦C for 10s, 60◦C for 30s, and 72◦C for 20s, 45 cycles followed by melting
curve analysis) on the Roche LightCycler 480 (Roche Diagnostics). Housekeeping gene
RPL22 was used as a reference gene. Primer efficiencies were determined and analysis
was performed with LinREgPCR66.
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A UTISM spectrum disorder (ASD) is a neurodevelopmental syndrome known to have
a significant but complex genetic etiology. Hundreds of diverse genes have been

implicated in ASD; yet understanding how many genes, each with disparate function,
can all be linked to a single clinical phenotype remains unclear. We hypothesized that
understanding functional relationships between autism candidate genes during normal
human brain development may provide convergent mechanistic insight into the
genetic heterogeneity of ASD. We analyzed the co-expression relationships of 455 genes
previously implicated in autism using the BrainSpan human transcriptome database,
across sixteen anatomical brain regions spanning prenatal life through adulthood. We
discovered modules of ASD candidate genes with biologically relevant temporal
co-expression dynamics, which were enriched for functional ontologies related to
synaptogenesis, apoptosis, and GABA-ergic neurons. Furthermore, we also constructed
co-expression networks from the entire transcriptome and found that ASD candidate
genes were enriched in modules related to mitochondrial function, protein translation,
and ubiquitination. Hub genes central to these ASD-enriched modules were further
identified, and their functions supported these ontological findings. Overall, our
multi-dimensional co-expression analysis of ASD candidate genes in the normal
developing human brain suggests the heterogeneous set of ASD candidates share
transcriptional networks related to synapse formation and elimination, protein
turnover, and mitochondrial function.

5.1. INTRODUCTION
Autism Spectrum Disorder (ASD) is a neurodevelopmental syndrome characterized clin-
ically by impairments in verbal and non-verbal communication, deficits in social inter-
action, and repetitive and/or restrictive patterns of behavior [272]. Despite an estimated
prevalence of 1 in 88 newborns [273], and an exponential increase in recent efforts to
elucidate autism neurobiology, a clear understanding of the molecular mechanisms un-
derlying the development of ASD remains elusive. However, recent studies have firmly
established a substantial role for genetic etiologies in the development of ASD. Evidence
for a strong heritable risk of ASD was initially described in twin and sibling epidemio-
logical studies of autism [274–278], and has since been firmly established through mul-
tiple genetic approaches [51, 279, 280]. For instance, genome-wide association studies
(GWAS) [281–283], copy number variation (CNV) analysis [284–289], and whole-exome
sequencing projects [52, 122–125, 290] have implicated hundreds of genes in ASD. Yet
understanding how this diverse set of genes relates to the underlying molecular mecha-
nisms and subsequent neuropathology of ASD is still unclear.

Mechanistic understanding of how ASD candidate genes relate to the neurobiology
of autism is a difficult task, since genes encode multiple highly complex functions at dif-
ferent stages of development and across different regions of the brain. Moreover, the
set of genes implicated in ASD is highly heterogeneous, and many of their functions are
completely unknown. Furthermore, understanding how disruption in different genes
with disparate functions still results in a common clinical phenotype makes developing
common targeted biomarkers and treatments for ASD challenging. Therefore, in addi-
tion to attempts to identify genes that are causative for ASD, it is important to understand
how ASD candidate genes may relate to each other during human neurodevelopment in
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order to identify potential shared molecular pathways.
One validated approach to integrate heterogeneous gene sets, in order to uncover

shared molecular mechanisms, is through the analysis of gene co-expression patterns,
which invokes the guilt-by-association heuristic that is pervasive in genomics research
[89, 291]. Several studies have demonstrated that genes with similar brain co-expression
patterns are likely to function together in common cellular pathways [46, 292]. These
transcriptional co-expression relationships are particularly relevant to neurodevelop-
ment, as the precise regulation of gene expression across brain regions at different ages
instructs the exquisite specialization and connectivity within the brain. Since neurode-
velopmental disorders such as autism are believed to result from functional aberrations
within brain regions and/or disruption of inter-regional connectivity between regions
[279], investigating the gene expression profiles of autism candidate genes across brain
regions and throughout normal human neurodevelopment may provide insight into the
complex functional genomics of this neurodevelopmental disorder.

A global survey of ASD gene co-expression patterns across normal human neurode-
velopment could therefore facilitate our translation of ASD candidate genes to ASD can-
didate pathways, but this has not yet been undertaken. A recent study that assessed
autism gene co-expression patterns in two adult human brains is an important step to-
ward this goal [293], but as autism is a neurodevelopmental disorder it is imperative to
understand the relationship of autism candidate genes in a developmental context. Con-
versely, other studies have explored the expression profiles of individual ASD candidates
in human brain development [47], but lack an assessment of the relationships among
these ASD candidates and how they relate to global transcriptional pathways important
in brain development.

Transcriptome-based studies of the developing human brain have previously been
limited in the sample size, number of brain structures analyzed, and developmental
time points assessed, hampering the ability to evaluate the genetic contributors to
neurodevelopmental disease comprehensively [294–298]. However, the recent
availability of broad developmental surveys of gene expression, which cover many
brain regions over multiple developmental stages, can greatly facilitate such analysis
[47]. The BrainSpan transcriptional atlas of the developing human brain is a repository
of RNA-seq expression profiling of 16 brain structures spanning early pre-natal
development (8 weeks post-conception) to adulthood (40 years of age). This publicly
available atlas presents a unique opportunity to understand the spatial and temporal
specificity of ASD candidate genes.

A few studies have recently assessed for co-expression relationships between sub-
sets of autism-related genes and/or certain developmental windows using human brain
gene expression relationships. For instance, Parikshak et al . analyzed the co-expression
of autism and intellectual disability risk genes in the neocortex and among cortical lam-
inae from samples representing early development using Weighted Gene Co-Expression
Network Analysis (WCGNA). They demonstrated that ASD risk genes were enriched in
modules expressed in superficial cortical layers and glutamatergic projection neuron
and functionally related to transcription and synaptic development [133]. Willsey et al .
studied co-expression networks derived from nine genes harboring recurrent de novo
loss-of function mutations in autism patients, and showed principally that the autism
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risk gene expression is most prominent in layer 5/6 cortical projection neurons during
mid-fetal gestation [134]. Finally, using a different computational approach, Hormozdi-
ari et al . integrated co-expression networks and protein-protein interaction networks of
autism and intellectual disability risk genes identified in a recent cohort of 116 patients,
and also showed that the autism genes enrich into networks related to transcription and
synaptogenesis [29]. Despite the importance of these results and their largely overlap-
ping findings, no study has yet assessed very broad sets of autism risk genes across all
brain regions and development time points to gain insight into potentially shared molec-
ular pathways or affected brain regions among the incredibly heterogeneous autism ge-
netic subtypes.

Here we present an analysis of the spatial-temporal co-expression of ASD candidate
genes across the normal developing human brain using the BrainSpan atlas. We devel-
oped a biologically driven computational approach to deduce functional relationships
among this diverse set of genes. We first discovered modules of ASD candidates with
biologically relevant temporal co-expression dynamics. These modules were related to
the processes of synaptogenesis, apoptosis, and the neurotransmitter γ-aminobutyric
acid (GABA). Then, we created a transcriptome-wide co-expression network from all
genes expressed in the brain, to discover significant ‘Molecular Interaction Modules,’
and demonstrated that ASD candidate genes are enriched only in modules related to the
processes of synaptogenesis, mitochondrial function, protein translation, and ubiquiti-
nation. Lastly, we identified hub genes within the ASD-enriched Molecular Interaction
Modules, whose functions supported our ontological results, and which may serve as
additional ASD candidate genes. Our analysis of this multi-dimensional expression data
suggests pathways previously independently implicated in autism are related to each
other through shared neurodevelopmental transcriptional networks.

5.2. RESULTS

SPATIO-TEMPORAL GENE CO-EXPRESSION ANALYSIS OF ASD CANDIDATE

GENES
In order to identify functional relationships between ASD candidate genes, we investi-
gated patterns of gene co-expression change across developmental stages between each
pair of genes from the ASD list. First, the correlation between each pair of ASD genes was
calculated separately within each developmental stage based on the Spearman’s rank
correlation between the two genes across all brain regions. For each gene-pair, this re-
sulted in a correlation value for each of the seven developmental stages, representing
the brain-wide transcriptional similarity between the genes at each developmental stage
(Figure 5.1C and D). Gene-pairs were retained only if they had an absolute correlation
value greater than 0.8 in at least one developmental stage. We have used the Spearman’s
Rank Correlation as it focuses more on the similarity in the change of gene expression; as
opposed to similarity in the absolute values of gene expression (See the Supplementary
Information for more details).

Second, the surviving gene-pairs were hierarchically clustered into distinct modules
based on the similarity of their correlation profiles over time (using the Euclidean
distance between the profiles and a complete linkage to merge clusters). Finally, the
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correlation pattern for each module was summarized by averaging all the gene-pair
correlation patterns included in the respective module. It is worth noting that the
patterns within the modules represent changes in co-expression across development
(which should not be confused with actual expression levels of genes).

ASD GENE MODULES DISPLAY DISTINCT TEMPORAL DYNAMICS AROUND BIRTH

Figure 5.2A shows the hierarchical clustering of the retained ASD gene-pairs. In total
there were 103,285 pair-wise correlations between the 455 ASD candidate genes in the
ASD list, of which 1,168 remained after applying the stringent threshold of an abso-
lute correlation greater than 0.8. The surviving gene-pairs clustered into three distinct
modules. Two of these modules, the “Green” module and the “Blue” module, displayed
distinct correlation patterns relative to pre- versus post-natal development. The Green
module (Figure 5.2B) consisted of gene-pairs that lose correlation in the middle stages of
development (infancy and childhood); that is, each pair of genes within the Green mod-
ule has highly correlated spatial expression profiles at prenatal developmental stages
but this correlation is lost at birth. In contrast, the Blue module (Figure 5.2C) consisted
of gene-pairs that gain correlation during development. These genes do not show corre-
lation at prenatal stages but progressively increase correlation throughout postnatal de-
velopment. The “Red” module did not show any coordinated pattern of expression over
developmental time (Figure S1). Genes forming gene-pairs in each of the three modules
are listed in Table S1.

To further characterize these modules, we used the gene ontology (GO) enrichment
analysis tool DAVID v6.7 [299] to discover whether genes in these modules relate to spe-
cific molecular mechanisms, cellular pathways or disease annotation terms. The top
significantly enriched terms (Benjamini-Hochberg corrected P < 0.01) are summarized
in Figure 5.2D. All the three modules were enriched for annotation terms related to neu-
ron projection, synapse, synaptic transmission and behavior. The three modules were
also enriched for disease terms including mental retardation and epilepsy. The Green
and Blue modules were significantly enriched for neuron differentiation, cell morpho-
genesis, and learning/memory. The Green module was specifically enriched in func-
tional terms related to regulation of apoptosis and regulation of cell death, while the
Blue module was specifically enriched in terms related to ion channel, neurotransmitter
receptor activity and GABA receptor activity. Table S2 includes the full list of enriched
gene-annotation terms for these two modules.

None of the GO terms that were significantly enriched in the three ASD modules
showed any significant enrichment in modules from 10 randomly created sets (see Ta-
ble S3). We also assessed how many gene-pairs remained after thresholding them on
co-expression (absolute correlation > 0.8 at any developmental stage) in 10,000 random
gene sets of 455 genes. The results are summarized in Figure S2, where we show that
the number of gene-pairs remaining after thresholding the ASD list (1,168 gene-pairs) is
highly significant (P < 10−4).

MODULES OF ASD CANDIDATE GENES ARE ENRICHED IN NEURONS

We then assessed if these modules were enriched in specific brain cell types. Lists of
cell-type specific genes were obtained from previously published work [36]. These lists
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included 1,465 neuron-, 1,529 oligodendrocyte-, and 1,829 astrocyte-specific genes (Ta-
ble S4). ASD candidate gene modules were assessed for enrichment of these cell types
using the hypergeometric probability test (see Methods). Both the Green and Blue mod-
ules were significantly enriched in neurons, whereas the Red module demonstrated no
significant enrichment, as shown in Figure 5.2E.

ENRICHMENT OF ASD CANDIDATE GENES IN TRANSCRIPTOME-WIDE

MOLECULAR INTERACTION MODULES
Given the marked genetic heterogeneity of ASD and the large number of genes involved,
it is also important to understand the role of ASD candidate genes in normal brain de-
velopment within the context of the whole transcriptome, as sub-networks of the en-
tire brain transcriptome may be perturbed by the ASD candidates. An analysis of these
sub-networks could reveal ASD-related pathways that would be missed by analyzing the
ASD candidates alone, as it is unlikely that all ASD candidate genes have been identi-
fied to date [125]. Moreover, this top-down approach allows the identification of other
genes that might also relate to ASD. Therefore, we performed a transcriptome-wide co-
expression network analysis to identify functionally related gene modules throughout
the normal developing brain transcriptome (Molecular Interaction Modules). Then, we
assessed whether these modules were specific to distinct brain regions or developmental
stages, and if they were related to specific pathways, cellular processes, or disease anno-
tation terms. Finally, we determined if ASD candidate genes were enriched in any of the
resultant Molecular Interaction Modules.

NO EVIDENCE FOR REGION-SPECIFIC MODULES

The transcriptome-wide co-expression network was constructed from all genes
expressed in the brain (13,563 genes), based on their expression profile across all
samples (480 samples, i.e. all brain structures and developmental stages). Genes were
hierarchically clustered based on Spearman’s rank correlation and complete linkage

Figure 5.1 (preceding page): Analyzing ASD candidate genes in the BrainSpan Atlas. (A) Temporal description
(i.e. age points) of the number and sex of the assessed brains. The data were grouped into seven developmental
stages based on age. Black-colored brains indicate male donors and red-colored brains indicate female donors.
(B) A representation of the 16 structures sampled in the BrainSpan Atlas. (C) Each heat-map shows the expres-
sion of all genes across six representative brain regions (AMY, HIP, STR, MD, CBC and NCX) in three represen-
tative developmental stages. The ASD list was created by combining lists of ASD candidate genes from three
sources (AutDB, AGD, and AutKB-484). (D) A co-expression network of ASD candidate genes was generated for
each developmental stage by correlating the expression vectors across brain regions. The correlation between
each gene-pair was tracked over the developmental stages. The blue gene-pair represents two genes that are
moderately correlated at early developmental stages, but gain correlation through development. Stronger cor-
relation is represented by a thicker edge between the two nodes. By contrast, the red gene-pair represents two
genes that lose correlation over development. The lower panel shows the correlation patterns of all gene-pairs
in the network (grey) across development. Correlation patterns of the blue and red pairs are shown in respec-
tive colors. Birth and the average age of ASD diagnosis are indicated. (E) The transcriptome-wide Molecular
Interaction Network was constructed based on the pairwise correlation between each pair of genes expressed
in the BrainSpan atlas (13,563 genes). Each node in the network represents a gene while the weighted edges
represent correlations between genes based on their expression across all samples. Nodes were clustered into
modules (dashed circles). Genes from the ASD list are highlighted within each module (blue nodes). Blue
circles indicate modules that are significantly enriched in genes from the ASD list.
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Figure 5.2: Spatio-temporal Gene Co-expression Analysis of ASD candidate genes. (A) Heat-map of the tem-
poral correlation patterns of ASD gene-pairs (rows) through different developmental stages (columns). The
dendrogram to the right shows the clustering of ASD gene-pairs into three modules (Red, Green and Blue). (B)
The average correlation pattern of gene-pairs in the Green module shows loss of correlation at childhood. Ver-
tical lines indicate birth and average age of ASD diagnosis. (C) The average correlation pattern of gene-pairs in
the Blue module shows progressive gain of correlation across development. (D) Gene Ontology terms enriched
in each of the three modules (represented in –log10(P ), Benjamini-Hochberg corrected). Bars are colored ac-
cording to the module’s name. (E) Enrichment scores for each of the ASD modules in neurons, astrocytes and
oligodendrocytes (represented in –log10(P ), FDR-corrected).

between pairs of genes. The resulting network consisted of 32 modules of varying size
(from 36 to 1,386 genes), as shown in Figure 5.3A. Visual analysis of the heat-map and
average expression patterns of member genes from each of the 32 modules
demonstrated that none were specific to particular anatomical regions. This
observation is consistent with the results from a similar dataset of human brain
development assessed by microarray [293]. We did not observe any pre/post natal
specific expression patters in any of the 32 modules (Figure S3). The genes comprising
each of the 32 modules are listed in Table S5.
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MODULES ENRICHED FOR ASD GENES RELATE TO SYNAPTOGENESIS, PROTEIN

TURNOVER, AND MITOCHONDRIA

The resulting transcriptome-wide co-expression modules were then assessed for en-
richment of genes belonging to the ASD list using the hypergeometric probability test.
Four modules—Magenta, Brown, Orange, and Purple—were significantly enriched for
ASD candidate genes (FDR-corrected P < 0.001), as shown in Figure 5.3B. The Magenta
module (Figure 5.4A) contained highly co-expressed genes during early childhood. The
Brown module (Figure 5.4B) included genes with weak co-expression during childhood
and differential spatial co-expression at late developmental stages. The Orange Mod-
ule (Figure 5.4C) contained genes with progressively increasing co-expression during
development. Finally, the Purple module (Figure 5.4D) included genes with varied co-
expression during development and high differential spatial co-expression in adoles-
cence and adulthood.

Then, these ASD-enriched modules were tested for enrichment of gene ontology
terms, as shown in Figure 5.4 (see Table S6 for full list). The Magenta and Orange
modules were significantly enriched for mitochondrial processes. Additional GO terms
that were significantly enriched in the modules included ribosome and protein
translation, transit peptide, ubiquitination, and alternative splicing. Significant
enrichment for synapse was also found in the Brown module and the Purple module.
Enrichment of ASD candidate genes into transcriptome-wide synapse modules further
supports our previous finding of ASD modules (Green and Blue modules), above, which
were also related to synaptogenesis. Neurological disease terms were also significant in
the ASD-enriched modules: epilepsy (Brown module), Parkinson’s (Magenta and
Orange modules), Alzheimer’s (Magenta and Orange modules) and Huntington’s
(Magenta and Orange modules).

ASD-ENRICHED MOLECULAR INTERACTION MODULES ARE MAINLY NEURONAL

Each module was also tested for enrichment of specific neural cell populations (i.e. neu-
rons, oligodendrocytes, and astrocytes), as described earlier. Three out of the four ASD-
enriched modules were enriched for neurons (Magenta, Brown and Purple modules),
as shown in Figure 5.5. The Orange module, which was related to mitochondrial func-
tioning, was highly enriched in astrocytes but not neurons. This finding is of relevance,
as multiple recent studies have implicated glia, and specifically astrocytes, in the brain
pathology of autistic subjects [300, 301].

ASD-ENRICHED MOLECULAR INTERACTION MODULE HUB GENES PROVIDE

MOLECULAR TARGETS

An alternative approach to annotate the function of each ASD-enriched module is to an-
alyze the genes with the strongest correlations within each module. It has been shown
that within an interaction network, genes with the most connections to other genes,
termed hub genes, are informative for the network as a whole, and are potential high
yield therapeutic targets [302]. The strongest correlations within a module were explored
using Cytoscape v2.8 [303]. First, each ASD-enriched module (Magenta, Brown, Orange
and Purple) was imported as a graph with genes acting as nodes and pair-wise correla-
tions between genes representing edges between the nodes. Figure 5.6 shows a subset of
the connected nodes within each graph.
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Figure 5.3: Transcriptome-wide Molecular Interaction Network. (A) A heat-map of the expression of 13,563
genes (rows) across all 480 samples (columns). Samples are ordered first by brain region (color-code at the
top) and then by age. The dendrogram to the right shows the clustering of all the genes into 32 modules.
Modules with significant enrichment (P < 10−3) of genes from the ASD list are colored while other modules
are shown in gray. (B) Enrichment of ASD candidate genes in each of the modules showing high significance
in the Magenta, Brown, Orange and Purple modules (represented by –l og10(P ), FDR-corrected).

The 10 most highly connected nodes (genes) within each graph were extracted and
their putative functions determined by manual curation of the literature. Among these
most highly connected hub genes, a number were of note. The most striking observation
was that most of the highly connected hub genes in the Magenta and Brown modules are
known to function in the processes of chromatin remodeling, transcription, or transla-
tion (HMGN3, EIF3K, ZFAND6, DNAJC1, C6orf130, ERCC1, LCMBT2, MBTPS2, KIAA1191,
C14orf138, GDA, and NCOA7). This result is in line with the gene ontology enrichment
for these modules (Figure 5.4). A number of other central hub genes are involved in intra-
cellular signaling pathways (PROCA1, TBC1D22B, PPP2R2D, and HACE1), and a few are
known to function as membrane ion channels (PRRT1, KCTD4, SLC26A1, and KCNA4).
In addition, a number of hub genes function in apoptosis or myeloid/microglia cell pro-
cesses (such as: RNF11, CD200, and FAF1). These hub gene functions largely recapitu-
late the ontologies of their respective networks, supporting our enrichment results and
highlighting potential critical regulatory molecules of these networks.
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Figure 5.4: ASD Modules. (A) Left: Average expression pattern of the Magenta module genes across different
brain regions (different plot colors). Right: Top GO terms enriched in the Magenta module. (B) Left: Average
expression pattern of the Brown module genes. Right: Top GO terms enriched in the Brown module. (C) Left:
Average expression pattern of the Orange Module genes. Right: Top GO terms enriched in the Orange module.
(D) Left: Average expression pattern of the Purple module genes. Right: Top GO terms enriched in the Purple
module. All enrichment values are represented by –log10(P ), Benjamini-Hochberg corrected.

5.3. DISCUSSION
In order to gain insight into the molecular pathogenesis of ASD, we present a
biologically-driven computational approach to analyze a heterogeneous set of genes
previously independently implicated in ASD, to understand if they may relate to each
other through shared functional genomic mechanisms. The main goal of this work is to
understand if ASD candidate genes relate to common cellular/molecular pathways
when considered in the context of transcription during normal human brain
development. Identifying such pathways has profound implications for understanding
the pathophysiology of ASD, especially since the majority of ASD patients do not have
an identifiable genetic mutation [304]. Yet those patients are still likely to have
alterations in the same pathways that are affected as those ASD patients with genetic
mutations, although the alterations may be caused by environmental, epigenetic, or
other non-genetic factors.

We intentionally analyzed a very broad collection of genes associated with ASD, in
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Figure 5.5: Enrichment of the ASD Modules in Cell-type Specific Genes. Enrichment of ASD-enriched mod-
ules in: neurons, oligodendrocytes and astrocytes (represented in –log10(P ), FDR-corrected).

an attempt to understand if there are cellular or molecular pathways that may represent
common mechanisms across all patients. Despite the fact that some of the genes in our
ASD list are essentially causative for ASD (for instance, single gene mutation syndromes
such as Fragile X), while others are not as strongly associated, we have weighted all genes
equally to avoid bias toward more severely-affected patient cases. Future work could
attempt to weight genes differently within the co-expression networks to study different
genetic subtypes of autism.

We discovered subsets of ASD candidate gene modules that displayed
biologically-relevant co-expression dynamics, which were enriched for the processes of
synaptogenesis, apoptosis, and GABA-ergic signaling. In addition, we assessed for
functional genomic relationships between ASD candidate genes and the entire
developing human brain transcriptome. This analysis revealed that ASD candidate
genes are enriched within transcriptome-wide modules related to synaptogenesis,
mitochondrial function, alternative splicing, protein translation, and ubiquitination. By
identifying gene modules that have similar expression patterns in the brain (regardless
of time period), we were able to infer that they are likely functioning in similar
pathways. This allowed us to infer which cellular and molecular mechanisms are likely
to be disrupted in autism. We also demonstrated the cell-type specific enrichment of
these modules being mostly neurons, further supporting the biological relevance of our
computational approach, as the broad ASD phenotype is generally consider to
ultimately result from neuronal/synaptic abnormalities [305]. Although several brain
regions have been highlighted in neuroimaging and connectivity studies of autistic
brains (namely cortical regions and the cerebellum) [306, 307], interestingly, none of the
transcriptome-wide modules were specific to particular anatomical regions, which
supports previous reports of the BrainSpan dataset via microarray [47]. Finally, by
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assessing genes with the highest connectivity within the transcriptome-wide Molecular
Interaction Modules that were enriched for ASD candidates, we identified hub genes
that may represent critical regulatory molecules in these networks, and their functions
further supported our enrichment findings.

The number of strongly connected gene-pairs from the ASD list were found to be
highly significant (P = 10−4), indicating that – based on their significantly strong
co-expression across development – those ASD-associated genes are likely to be
functionally related. We discovered three subsets of ASD–associated genes with distinct
co-expression profiles around birth, even though the co-expression network for each
developmental stage was calculated separately to avoid any bias towards pre/post natal
expression changes. All three of these modules were significantly enriched for the
processes of synaptogenesis and behavior, in addition to the disease annotations of
mental retardation and epilepsy. Two of the modules (the Green and Blue modules)
were also significantly associated with cell morphogenesis, neuron differentiation, and
learning. Moreover, the Green module, which had highly correlated spatial expression
at prenatal developmental stages with a dramatic loss of correlation at birth, was
uniquely enriched for the process of apoptosis. Conversely, the Blue module displayed
an opposite co-expression trajectory —poor correlation in expression prior to birth, but
strong co-expression beginning in infancy and increasing through adulthood— and
was uniquely related to GABA-ergic signaling and ion channels. The distinct,
biologically relevant expression patterns of these two modules around birth, a
developmental period with the greatest shifts in gene expression [47], suggests a key
role of these networks in brain development and autism.

ASD-associated genes were highly co-expressed later in development in some of the
identified modules (childhood and adulthood), whereas autism symptoms are generally
apparent by the age of two. Our results suggest that a heterogenous set of genes which
were independently associated to ASD converge into few functional pathways late in
normal development. However, our findings do not preclude the possibility that the
pathways implicated by these modules are involved in ASD pathogenesis, as our analy-
sis was on co-expression patterns, not absolute gene expression levels. It is possible that
the genes in these modules are still expressed in early neurodevelopment, but that they
are most strongly co-expressed with other genes in the same module later in life. Conse-
quently, disruption of the integrity of these genes (through inherited mutations, de novo
mutations, mis-expression, etc.) early in development is likely to disrupt the functions
of those modules later in life.

The functional ontologies of these networks are all pathways previously implicated
ASD. Disrupted synaptogenesis has been one of the most replicated findings in ASD re-
search [308], and autism is largely considered to be a disorder that results from a con-
vergence of factors into synaptic dysfunction [305]. Our finding of multiple ASD gene
co-expression networks enriched for the function of synaptogenesis is in line with these
previous studies. Additionally, our analysis shows these same transcriptional networks
are related to the processes of GABA-ergic signaling and apoptosis, which have been in-
dependently associated with ASD through various approaches. GABA-ergic neurons are
the main inhibitory cell of the brain, and much research has suggested that an imbal-
ance in the ratio of inhibitory to excitatory neurons may underlie autism at the cellular
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Figure 5.6: Hub Genes of ASD Modules. Each of the four ASD-enriched modules is presented with the Degree
Sorted Circle layout of Cytoscape, with the nodes’ size and color reflect the level of connectivity within the
network. The bigger the node, the more connections it has. For clarity, edges with correlation values smaller
than 0.9 are removed. (A) Top connected genes of the Magenta module. (B) Top connected genes of the Brown
module. (C) Top connected genes of the Orange module. (D) Top connected genes of the Purple module.

circuit level [309]. Furthermore, a number of clinical trials are currently ongoing to test
GABA-ergic modulators for the treatment of ASD [310]. Likewise, apoptosis —and more
specifically the pruning of overabundant neural connections in early development— has
recently been shown to be a critical process in the developing mammalian brain [311],
and a number of studies have suggested this process may be aberrant in ASD [312, 313].
A delicate balance between formation of needed synaptic connections and pruning of
overabundant connectivity (and their excitatory/inhibitor ratio) is a main component
of early experience-dependent brain development, and both human and animal studies
have previously shown deficiencies in these processes in ASD [307]. Our results suggest
these processes may relate to each other and to ASD candidate genes through shared
transcriptional networks.

ASD candidate gene modules with distinct temporal co-expression profiles around
birth, which are highly related to synaptogenesis, support the notion that the patho-
genesis of ASD is strongly related to this process. Additionally, the demonstration that
the same transcriptional networks are also related to GABA-ergic signaling and apopto-
sis—both also suggested to be aberrant in autism—suggests that these disparate path-
ways may relate to each other through underlying shared transcriptional networks, pro-
viding a potential mechanism for functional convergence of ASD candidate genes into
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common pathways underlying autism.
By incorporating the ASD candidate genes into the context of the entire brain tran-

scriptome, our results suggest that the disruption of synaptogenesis in autism may also
relate to underlying basic cellular processes —alternative splicing, protein translation,
and ubiquitination— which have previously been implicated in ASD [314–317]. Defects
in protein translation in particular have recently been shown to be a prominent feature
in multiple animal models of ASD [318–320].

Two transcriptome-wide modules that were enriched for ASD candidate genes were
both related to mitochondrial function, and one was specifically enriched in glia but not
neurons. A large body of evidence has associated mitochondria dysfunction with rare
syndromic forms of autism [321] and recent evidence suggests that altered mitochon-
drial gene expression may contribute to non-syndromic autism as well [322, 323]. Fur-
thermore, these modules were also related to Huntington’s and Alzheimer’s disease, both
known to have mitochondrial defects associated with their pathogenesis [324]. While
the ASD-only gene modules in the first part of this study did not implicate mitochon-
drial function, significant enrichment of ASD genes in two different transcriptome-wide
networks related to mitochondria suggests that additional ASD genes related to mito-
chondria may remain to be discovered, and our hub gene analysis provides potential
high confidence candidates.

While the phenotype of autism may ultimately result from dysfunctional synaptoge-
nesis, it is possible that such fundamental cellular processes as protein translation, ubiq-
uitination, alternative splicing, and mitochondrial function may underlie the synaptic
dysfunction. Furthermore, this may help explain the incredibly variable clinical spec-
trum of autism, and account for the increased prevalence of other complex medical
problems in both the brain and other systems that ASD patients experience [5]. More-
over, a recent meta-analysis of de novo mutations in autism demonstrated enrichment
for genes related to transcriptional regulation, and showed they have similar neurode-
velopmental expression patterns to the Green and Blue modules of ASD candidates we
identified [66]. Multiple recent whole-exome sequencing studies of individuals and fam-
ily trios have continued to support the role of transcription-related and synaptogenesis-
related genes in ASD [52, 290, 325]. Furthermore, a similar network analysis approach
that assessed specifically for enrichment of de novo variants implicated in ASD and in-
tellectual disability found similar shared transcriptional networks [29]. By integrating
co-expression and protein-protein interaction networks they demonstrated that ASD-
related genes converge into two modules related to basic intracellular processes includ-
ing transcriptional regulation and synaptogenesis, and that the former process was more
operant in prenatal time periods and the later in post-natal development [29]. These re-
sults are in line with earlier findings using either co-expression networks only [133, 134]
or protein-protein interaction networks only [326]. Our results, despite assessing a much
broader set of ASD candidate genes, are largely in agreement with these recent results.
Whether and how defects in these basic cellular mechanisms result in altered synapto-
genesis, are a reaction to altered synaptogenesis, or are mutually- exclusive from synap-
togenesis is unclear. However, our results in addition to these previous studies suggest
that a complex interplay between these processes and synaptogenesis are related to each
other through overlapping co-expression networks.
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A number of studies have assessed for changes in gene expression in post-mortem
autistic brain directly (for a review see [327] and [328]. These studies have repeatedly
shown that the autistic transcriptome is abnormally expressed compared to control
brains across many different brain regions. The genes that are mis-expressed in autistic
brains have been consistently demonstrated to be involved in pathways related to the
synapse [49, 329], immune response/apoptosis [49, 329, 330], neurotransmitter
receptors [331], RNA splicing [49, 170, 329], and mitochondrial function [323, 332].
These findings in autistic brain complement our results by showing that the ASD
co-expression modules we discovered in the normal developing brain are functioning
in the same pathways that are consistently disrupted in autistic brains.

Finally, the identified hub genes of ASD-enriched modules recapitulate the gene on-
tology analysis of these modules, strengthening the observation that basic cellular func-
tions related to genome processing and mitochondrial function may represent a nexus
in the genomic pathology of ASD. In addition, a number of hub genes relate to myeloid
cells and apoptosis. There is a growing body of evidence implicating cytokine signal-
ing, microglia-mediated synaptic pruning, and other immune-related processes in ASD
[313], and this finding suggests the autism candidate genes may indirectly relate to pro-
cesses that interact with these pathways through the transcriptional machinery. Fur-
thermore, this supports our finding that the Green module of autism candidate genes re-
lates to apoptotic pathways. However, because comprehensive lists of microglia-specific
marker genes are not available, we were unable to assess for enrichment of ASD candi-
date genes into this cell type in this study. By highlighting individual genes that are most
central in the identified molecular interaction networks, the hub gene analysis may pro-
vide potential additional high-yield ASD candidates for their respective transcriptional
networks.

In summary, we have profiled the transcriptional co-expression networks of autism
candidate genes throughout normal human brain development to identify modules of
ASD candidate genes with biologically-relevant expression patterns. We have shown that
these ASD modules are enriched for synaptogenesis, apoptosis, and GABA-ergic signal-
ing, suggesting that pathways previously independently implicated in autism are related
to each other through shared neurodevelopmental transcriptional networks. In addi-
tion, we expanded the analysis of ASD candidates to consider their relationship with the
entire brain transcriptome. We demonstrated that ASD-enriched transcriptome-wide
Molecular Interaction Modules are related to mitochondrial function, splicing, and pro-
tein turnover, which suggests further ASD candidates related to these functions may re-
main to be discovered.

Our comprehensive analysis of the global co-expression relationships between ASD
candidates demonstrates that the various pathways implicated in autism separately may
relate to one another when considered in a broader functional genomics framework.
Furthermore, our Molecular Interaction Module analysis represents a valuable strategy
to identify and prioritize other potential ASD candidate genes. Moreover, this approach
can be used to assess genes from other complex neurodevelopmental and psychiatric
disorders like schizophrenia, to uncover potential overlapping transcriptional pathways
in the developing human brain among other gene sets.
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5.4. MATERIALS AND METHODS

DEVELOPING HUMAN BRAIN TRANSCRIPTOME DATA
We downloaded the BrainSpan transcriptional atlas from http://www.brainspan.org.
Details of tissue acquisition and data processing can be found in the BrainSpan docu-
mentation. The atlas contains next-generation RNA sequencing (RNA-seq) data gener-
ated from 579 tissue samples. These samples were collected from 41 developing and
adult post-mortem brains of neurologically unremarkable donors spanning early pre-
natal development (8 post-conception weeks, PCW) to late adulthood (40 years of age).
Some donor brains in the BrainSpan Atlas have missing data from certain brain regions.
We excluded donors that had more than six regions missing. For donors with six or less
missing regions, we imputed the data for the missing brain regions using a nearest neigh-
bor approach. A full mathematical description of this is provided in the Supplementary
Information. The resulting dataset contained 30 donor brains. From these donor brains,
only the sixteen brain regions that were present in all 30 donor datasets were analyzed.
This filtration resulted in a final dataset derived from 30 donor brains across 16 brain
regions, or 480 brain samples in total.

The 30 donor brains used in our analysis were further grouped into seven develop-
mental stages according to the BrainSpan classification system (Figure 5.1A). The tran-
scriptomes of the cerebellar cortex (CBC), medial-dorsal nucleus of the thalamus (MD),
striatum (STR), amygdala (AMY), hippocampus (HIP), and 11 areas of the neocortex
(NCX) were assessed (Figure 5.1B).

The resultant dataset contained RNA-seq expression values aligned to composite
gene models, and given in units of reads per kilobase of exon model per million mapped
reads (RPKM) [333]. Genes whose RPKM values were likely to represent noise rather than
actual sequenced reads were discarded by removing any gene that did not have at least
one expression value greater than or equal to five RPKM in any of the 480 tissue sam-
ples. The remaining set consisted of 13,563 genes expressed in the 30 donor samples
assessed. The expression data was then normalized across all samples using quantile
normalization. Finally, the data was log2-transformed for further analysis.

ASD GENE LIST
A comprehensive yet high confidence list of common ASD susceptibility genes (herein
named “ASD list”) was created by combining (taking the union) lists from three main
ASD genes databases: AutDB [271], Autism Genetics Database (AGD) [334], and AutKB-
484 [335] (a subset of AutKB determined by the Xu et al . through ranking and scoring
algorithm to be the most high confidence ASD candidates). These databases each inde-
pendently collected genes that have previously been associated with autism through a
number of different experimental studies using various methods (namely GWAS, single-
gene deletion syndromes that have autism as a component, genome-wide expression
profiling, and genome-wide sequencing/CNV/linkage studies). ASD genes that were
not present in the 13,563 genes we considered from the BrainSpan Atlas (for instance,
mitochondrially-encoded genes) were discarded. The final ASD list consisted of 455 ASD
susceptibility genes (Table S7).

http://www.brainspan.org
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CO-EXPRESSION OF ASD CANDIDATE GENES
We calculated the Spearman’s rank correlation between each pair of ASD candidate
genes within each of the seven developmental stages separately. For each donor, the
correlation between each gene-pair is calculated across all 16 brain regions. The
correlation between a gene-pair in each developmental stage is the average of their
correlation across all donors within the developmental stage. We focused our analysis
on gene-pairs with an absolute correlation value greater than 0.8 in at least one
developmental stage (1,168 out of 103,285 gene-pairs). We used hierarchical clustering
to cluster gene-pairs using the Euclidean distance between the profiles and a complete
linkage to merge clusters. Based on the heatmap of gene-pair correlations across
development, we cut the dendrogram to produce three clusters. The correlation pattern
for each module was summarized by averaging all the gene-pair correlation patterns
included in the respective module.

TRANSCRIPTOME-WIDE CO-EXPRESSION NETWORK
We constructed a transcriptome-wide co-expression from all genes expressed in the
brain (13,563 genes), based on the similarity of their expression profile across all
samples (480 samples). We used hierarchical clustering to cluster gene-pairs using
Spearman’s rank correlation between the profiles and a complete linkage to merge
clusters. We cut the dendrogam to produce 32 modules of varying size (from 36 to 1,386
genes).

GENE SET ENRICHMENT AND GENE ONTOLOGY ENRICHMENT ANALYSIS
Enrichment of transcriptome-wide Molecular Interaction Modules in ASD candidate
genes and cell-type specific genes was assessed using the hypergeometric probability
density function (hygepdf) in MATLAB R2011a (The MathWorks, Inc.). The resulting P
values were corrected for multiple testing by controling the false discovery rate (FDR)
using the Storey method [336]. All results reported are the –log10 of FDR-corrected P
values, and only P < 0.001 were considered significant. Gene list were assessed for
shared biological pathways by testing for enrichment of gene ontology terms (GO)
using DAVID Bioinformatics Resources v6.7 [299]. The complete list of expressed genes
in this study’s dataset (13,563 genes) was used as the background. Only gene ontology
terms with a Benjamini-Hochberg corrected P < 0.01 are presented as significant.

5.5. SUPPLEMENTARY MATERIAL
The online version of this article contains supplementary material1.

1http://link.springer.com/article/10.1007/s12031-015-0641-3

http://link.springer.com/article/10.1007/s12031-015-0641-3
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S TEROID receptors are pleiotropic transcription factors that coordinate adaptation to
different physiological states. An important target organ is the brain, but even though

their effects are well studied in specific regions, brain-wide steroid receptor targets and
mediators remain largely unknown due to the complexity of the brain. Here, we tested
the idea that novel aspects of steroid action can be identified through spatial correlation
of steroid receptors with genome-wide mRNA expression across different regions in the
mouse brain. First, we observed significant co-expression of six nuclear receptors (NRs)
[androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2),
glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone recep-
tor (Pgr)] with sets of steroid target genes that were identified in single brain regions.
These co-expression relationships were also present in distinct other brain regions, sug-
gestive of as yet unidentified coordinate regulation of brain regions by, for example, glu-
cocorticoids and estrogens. Second, co-expression of a set of 62 known NR coregula-
tors and the six steroid receptors in 12 nonoverlapping mouse brain regions revealed
selective downstream pathways, such as Pak6 as a mediator for the effects of Ar and
Gr on dopaminergic transmission. Third, Magel2 and Irs4 were identified and validated
as strongly responsive targets to the estrogen diethylstilbestrol in the mouse hypothala-
mus. The brain- and genome-wide correlations of mRNA expression levels of six steroid
receptors that we provide constitute a rich resource for further predictions and under-
standing of brain modulation by steroid hormones.

6.1. INTRODUCTION
Steroid receptors are part of the superfamily of nuclear receptors (NRs), which act as
transcription factors regulating expression of numerous biologically important target
genes [337]. Their transcriptional activity is induced by steroid hormones, which re-
spond to changed demands in terms of reproductive status, mineral balance, or stressful
physical and psychological challenges. A crucial site of action is the brain, where these
hormones have strong modulatory effects on physiological regulation, cognitive func-
tion, mood and behavior. They do so by changing cellular responsiveness to a variety of
neurotransmitters and peptides, and by inducing morphological changes [338, 339].

Understanding the effects of steroid hormones on the brain faces the challenge to
identify in as many as 900 different brain nuclei [24] both the highly cell specific target
genes that mediate the hormone effects [340, 341], as well as the signaling factors that
mediate or influence steroid receptor signaling. The latter include proteins affecting pre-
receptor metabolism, interacting transcription factors [342], and downstream nuclear
receptor co-regulator proteins [337]. Even if steroid hormones effects are well-studied
in specific regions [337, 343], overall the brain steroid receptor targets and mediators
remain largely unknown.

In situ hybridization (ISH) has been used to identify the functional roles of the 49
NR genes in adult mouse brain based on the clustering of the NR expression patterns
in anatomical and regulatory networks [110]. In this study, we substantially extended
this approach to identify targets and signaling partners of the steroid receptors, and re-
lationships between different regions of the mouse brain, based on genome wide co-
expression with steroid receptors. The Allen Brain Atlas (ABA) [24] is the most compre-
hensive repository of ISH-based gene expression in the adult mouse brain. We used the
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ABA to identify genes that have three dimensional (3D) spatial gene expression profiles
similar to steroid receptors.

To validate the functional relevance of this approach, we analyzed the co-expression
relationship of the glucocorticoid receptor (Gr) and estrogen receptor alpha (Esr1) and
their known transcriptional targets in specific brain regions. We then exploited these
associations to derive new hypotheses about the functional role of receptors in brain
regions with no previously known effects of steroids. Furthermore, we studied the
region-specific co-expression of nuclear receptors and their downstream mediators
(co-regulators) to identify specific partners mediating the hormonal effects on
dopaminergic transmission. Finally, to illustrate the potential of using spatial
co-expression to predict region-specific steroid receptor targets in the brain, we
identified and validated genes which responded to changes in estrogen in the mouse
hypothalamus.

6.2. RESULTS

SPATIAL EXPRESSION REVEALS KNOWN SITES OF ACTION OF STEROID

RECEPTORS IN THE MOUSE BRAIN
We first analyzed the mRNA expression of six nuclear steroid receptors (Estrogen Re-
ceptor alpha, Esr1; and beta, Esr2; Androgen Receptor, Ar; Progesterone Receptor, Pgr;
Glucocorticoid Receptor, Gr; and Mineralocorticoid Receptor, Mr) across the brain using
the 3D spatial gene expression data from the ABA [24]. We generated a general overview
of the expression of each receptor across 12 non-overlapping brain structures covering
the entire brain: Isocortex; olfactory areas (OLF), hippocampal formation (HPF), corti-
cal subplate (CTXsp), striatum (STR), pallidum (PAL), cerebellum (CB), thalamus (TH),
hypothalamus (HY), midbrain (MB); pons (P), and medulla (MY) (Figure 6.1A). The ex-
pression profiles generally correspond to the known distribution and sites of actions of
different receptors [110], and provide comprehensive information at the higher aggre-
gation level of brain regions described here. For example, Esr1 is highly expressed in
the hypothalamus, olfactory and the cortical sub-palate. Within the hypothalamus, Esr1
shows high expression in the arcuate nucleus (ARH), and medial preoptic nucleus (MPO)
(Figure 6.1B). Gr is highly expressed in the CA1 and dentate gyrus (DG) areas of the hip-
pocampus, cortex and the thalamus, while Mr is predominantly expressed in the hip-
pocampus (Figure 6.1A). These expression patterns are well in line with the known sites
of action of the different receptors across the brain [344, 345].

GENES SPATIALLY CO-EXPRESSED WITH STEROID RECEPTORS INDICATE

REGIONAL FUNCTIONAL SPECIFICITY
To go beyond the expression profiles of steroid receptors as reported in the literature,
we identified genes with similar expression profiles to each of the receptors. Based on
the principle of ‘guilt by association’, these co-expressed genes are likely to be enriched
in receptor target genes and receptor signaling partners such as co-regulators. For each
steroid receptor, we ranked genes based on their spatial co-expression across the whole
brain as well as in each of the aforementioned 12 brain structures separately, resulting
in 13 ranked lists per receptor (Dataset S1)1. For each steroid receptor, strongly co-



6

88 CHAPTER6

A 

B 

+3 

-3 

0 

Lo
g 2

(n
o

rm
al

iz
ed

 e
xp

re
ss

io
n

) 

Ar 

Pgr 

Esr1 

Esr2 

Mr 

Gr 

G
r 

Es
r1

 

ISH Expression Atlas 

DG 

CA1 

DG 

CA1 

MPO 

ARH 

MPO 

ARH 

Figure 6.1: Expression of steroid receptors in the mouse brain. (A) Expression of six steroid receptors (Andro-
gen Receptor, Ar; Glucocorticoid Receptor, Gr; Mineralocorticoid Receptor, Mr; Progesterone Receptor, Pgr;
Estrogen Receptor alpha, Esr1; and beta, Esr2) across the 12 brain regions. Reported values are the average
expression energy per region normalized to the average expression across the whole brain and then l og2-
transformed. (B) Example sagittal sections from the Allen Brain Atlas showing the ISH (left), expression mask
(middle), and the corresponding atlas section (right) of Esr1 in the hypothalamus (top) and the expression of Gr
in the hippocampus. Red arrows indicated the medial preoptic area (MPO) and arcuate hypothalamic nucleus
(ARH), Cornu Ammonis subdivision 1 (CA1), and the dentate gyrus (DG).

expressed genes within a brain region are likely related to the localized functional role
of the receptor. For example, out of the top 10 genes co-expressed with Esr1 across the
whole brain, 4 were previously shown to be regulated by Esr1 and/or estrogens in various
tissues (Gpr101, Calcr, Ngb, and Gpx3) [346–349]. These genes were also co-expressed
with Esr1 in hypothalamus, in line with their functional relationship to Esr1 in mediating
reproductive and metabolic processes. However, whole brain correlation of these genes
with Esr1 were also driven by thalamus, midbrain and pallidum, demonstrating less ob-
vious relationships between Esr1 and these target genes. Strikingly, among the top 10
genes co-expressed with Gr across the whole brain none are strongly co-expressed with
Gr in the hypothalamus, indicating that Gr signaling in hypothalamus is rather distinct
from that in cortex, striatum, thalamus and midbrain.

1Datasets S1–S6 are available at:
data.3tu.nl/Q:11repository/uuid:ecc3b182-d312-4216-9053-a824d0e04d5e.

data.3tu.nl/Q:11 repository/uuid:ecc3b182-d312-4216-9053-a824d0e04d5e
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In addition, we analyzed the functional enrichment of genes co-expressed with Gr
and Esr1 in the 12 brain regions (Table S1). Esr1-co-expressed genes were enriched for
neuropeptide regulation in the hypothalamus as well as cerebellum. A number of Gr as-
sociated genes in hypothalamus were related to glia and oligodendrocyte development,
supporting the known effects of Gr on these processes in the hypothalamus [350].

GLUCOCORTICOID-RESPONSIVE GENES ARE HIGHLY EXPRESSED WITH Gr
IN HIP, P, MB AND WHOLE BRAIN
To test the validity of our hypothesis that co-expressed genes constitute candidate
targets of steroid receptors, we assessed the extent of co-expression between Gr and
known GR target genes. Since Gr has an important role in mediating transcription of
genes involved in coping with stress within the hippocampus [338], we analyzed the
co-expression of glucocorticoid (GC)-responsive genes (i.e. likely GR targets) with Gr in
the whole brain, the hippocampus and its substructures the dentate gyrus (DG) and the
different subregions of the cornu ammonis (CA) (Dataset S2; Figure 6.2A). The set of
GC-responsive genes we considered originates from experiments where male rats were
exposed to glucocorticoid treatment in chronic restraint stress (CRS) condition as well
as in a control situation [351]. These experiments resulted in three sets of genes
differentially expressed in dentate gyrus neurons: 1) GC-responsive genes in CRS rats,
2) GC-responsive genes in control rats, and 3) genes that show differential expression in
GC treatment for both conditions (common GC-responsive genes).

As expected, GC-responsive genes are significantly co-expressed with Gr in the DG
(where they were identified), but interestingly also in the whole brain and in the CA3
region (FDR-corrected P < 1.8×10−3; Mann-Whitney U-Test). The significant
co-expression of GC-responsive genes in the CA3 area indicates that those cells in CA3
that do express Gr [344] may be functionally linked to DG granule cell in terms of their
response to GCs. Of note, only those genes that responded to GC treatment in stressed
and control rats (common GC-responsive genes) showed a significant co-expression
with Gr in DG, CA1, and (very substantially) CA3 regions of the hippocampus. The data
reveal that only the subset of invariant, context-independent GR target genes is related
to constitutive co-expression with Gr, even if the correlation data come from ‘control’
conditions

The co-expression of the GC-responsive gene sets with Gr was not significant for ar-
eas such as the hypothalamus and the cortex. We initially considered these negative
control regions, given that the target genes were identified in micro-dissected DG gran-
ule neurons [351], and the presumed high degree of cell-specificity. However, the co-
expression of Gr with GC-responsive genes in CA3 prompted us to test whether this co-
expression also occurs in other brain areas. Figure 6.2B shows that the set of common
GC-responsive genes is not only co-expressed with Gr in the hippocampus (DG, CA1,
and CA3) but also in the cortical subplate, pallidum and midbrain. These associations in-
dicate a potential, as yet unknown relationship between these three brain areas in terms
of endocrine regulation, in accordance with the notion that the cellular responses to glu-
cocorticoids can be similar in distributed parts of brain networks [352]. Taken together,
these results show that GR targets are co-expressed with Gr in the DG, the region where
responsiveness was measured, as well as point to other brain regions that might share
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Figure 6.2: Co-expression of glucocorticoid (GC)-responsive genes and Gr in the hippocampus. Co-
expression of four glucocorticoid (GC)-responsive gene sets with Gr in: whole brain, hippocampus, dentate
gyrus, Cornu Ammonis subfields CA1, CA2 and CA3. (B) Co-expression of four glucocorticoid-responsive gene
sets with Gr across the whole brain as well as the 12 major brain structures. All bars indicate the –l og10(P ) of
the Wilcoxon ranksum test and the dashed line indicates the significance level at P = 0.05.

the same regulation mechanism.

SEXUALLY DIMORPHIC GENES ARE HIGHLY CO-EXPRESSED WITH Esr1 IN

THE HYPOTHALAMUS
To illustrate the generalizability of our approach to other receptors and brain regions,
we followed the same approach to analyze the co-expression of Esr1 and its putative
targets. Xu et al . [94] showed that a set of 16 genes, including Esr1, has sexual dimorphic
expression in the adult mouse hypothalamus. In addition, they showed that these 16
genes are sensitive to gonadal steroids (also in the male mouse brain) and that some
are necessary for effects of estrogens on sexually dimorphic behavior [94], making this a
valuable set of Esr1 targets in the hypothalamus.

Table S2 shows the correlation values for each of the 15 sexually dimorphic genes
with Esr1 in whole brain, as well as in the hypothalamus, based on data from the ABA.
The set of 15 genes is significantly correlated to Esr1 based on whole brain analysis (FDR-
corrected P = 8.69×10−14; Mann-Whitney U-Test), as well as the hypothalamic expres-
sion pattern (FDR-corrected P = 3.85×10−10; Mann-Whitney U-Test). In order to test
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Figure 6.3: Co-expression of sexually dimorphic genes and Esr1 in the hypothalamus. (A) Co-expression of
15 sexually dimorphic genes with Esr1 across the mouse brain. (B) Co-expression of the 15 sexually dimorphic
genes with the 6 steroid receptors across the whole brain as well as the hypothalamus. All bars indicate the
–l og10(P ) of the Wilcoxon ranksum test and the dashed line indicates the significance level at P = 0.05.

whether the correlation between the 15 genes and Esr1 is hypothalamus-specific, we re-
peated the analysis for all 12 brain structures. Figure 6.3A shows that sexually dimorphic
genes are mostly correlated to Esr1 in the hypothalamus (HY), pallidum (PAL), thalamus
(TH), and the striatum (STR) (P < 10−6). Similar to the results obtained for GR target
genes, we observed high co-expression outside the main region of action (e.g. in the pal-
lidum) suggesting that these brain regions share aspects of their transcriptional response
to estrogen receptor activation. Furthermore, sex steroid receptors (Esr1, Esr2, and Pgr)
showed higher co-expression levels with the sexually dimorphic genes with respect to
the stress-steroid related Mr and Gr in the hypothalamus (Figure 6.3B). The strongest
co-expression was with Esr1, indicating that the hypothalamic sexual dimorphism genes
are mainly - but probably not exclusively - related to Esr1. Taken together, these results
show that spatial co-expression can pinpoint context-specific actions of steroid recep-
tors (in this case Gr and Esr1) and yields region-specific co-expressed genes, a very rich
resource to generate hypothesis about steroid receptor targets.
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REGION SPECIFIC CO-REGULATOR ANALYSIS POINTS TO DOPAMINERGIC

TRANSMISSION VIA Pak6
So far, we have analyzed the potential of genes co-expressed with receptors to include
region-specific targets. However, since correlation only indicates association rather than
causation, co-expressed genes can also include co-regulators of steroid receptors. Pre-
vious studies have shown the signaling pathways of steroid receptors to differ across
brain regions in a gene-specific manner [337, 353]. In order to identify putative region-
dependent co-regulators of steroid receptors, we analyzed the co-expression relation-
ships of each steroid receptor and a set of 62 nuclear receptor co-regulators as present
on a peptide array [354] (complete data in Dataset S3). Figure 6.4A shows that the ex-
pression of co-regulators varies greatly across the different brain regions. For example,
while Ncoa1 is expressed in a fairly homogeneous manner, conforming with earlier re-
sults [353], Ncoa4 is substantially enriched in the caudal brain regions.

The co-expressions of co-regulators with the Ar, Gr and Mr differ greatly across dif-
ferent brain regions, indicating selective co-regulation (Figure 6.4B–D). For example, the
Ar/Gr coactivators Pias2 [355] and Ncoa4 [356] are highly co-expressed with Gr in the
midbrain and hypothalamus, respectively (Figure 6.4C). However, both coactivators are
not co-expressed with Ar within the same regions even though the relative abundance
of Ar in the midbrain and the hypothalamus is higher than Gr (Figure 6.1A). Mr is pre-
dominantly expressed in the hippocampus where it is highly co-expressed with Ncoa1,
Txnrd1, Tref1, Ncor1, Wipi1 and Ncor2 (Figure 6.4D). While Ncoa1 is a known MR co-
regulator [357], little is known about the effect of the other co-regulators on MR function
in the hippocampus and they might be good candidates for further functional analysis.

Because there still is substantial heterogeneity across the 12 brain regions that we
initially analyzed, we narrowed down our analysis to well-established target regions of
steroid hormone action. We analyzed the co-expression of the 62 co-regulators with
the steroid receptors in dopaminergic regions in the Ventral Tegmental Area (VTA) and
Substantia Nigra (SN), known targets of steroid actions (Figures S1 and S2) [358, 359].
We found three significantly co-expressed co-regulators with Ar in VTA/SN: Pnrc2, Pak6
and Trerf1 (Dataset S4 and Figure 6.4E), suggesting that these may be involved in me-
diating AR effects on dopaminergic transmission. Furthermore, only Pak6 was strongly
co-expressed with Gr in the dopaminergic regions (P < 0.01). Thus, AR and GR may share
some but not all co-regulators, much like the fact that AR binding sites may overlap in
part with GR binding sites [360]. These results indicate that not only can we use genome-
wide spatial co-expression to analyze the relationship between the receptors and their
targets, but also to identify region-specific co-regulators.

PREDICTIVE VALUE OF CO-EXPRESSION FOR HORMONE

RESPONSIVENESS: Magel2 IS LIKELY A TARGET OF ESR1
Finally, we set out to test the predictive value of high co-expression with a steroid re-
ceptor to identify transcriptional targets. We measured the response of genes that are
highly co-expressed with Esr1 in the hypothalamus to estrogen diethylstilbesterol (DES)
in castrated male mice using quantitative polymerase chain reaction (qPCR) (Materials
and Methods). In the male brain, testosterone can be metabolized to estrogen or act
directly via the androgen receptor. To avoid interpretation difficulties, we decided to di-
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Figure 6.4: Co-expression of co-regulators and steroid receptors. (A) Expression of 62 co-regulators in 12
brain regions. Reported values are the average expression energy per region normalized to the average expres-
sion across the whole brain and then log2-transformed. Co-expression ranks of the 62 co-regulators with (B)
Ar, (C) Gr, and (D) Mr. Dark red corresponds to high rank (i.e. strong co-expression). (E) Rank sum of the co-
expression rank of each co-regulator with five steroid receptors (Ar, Esr1, Esr2, Gr, and Mr) in the dopaminergic
regions (Ventral Tegmental Area; VTA and Substantia Nigra; SN).

rectly activate brain estrogen receptors with the selective ligand DES. We selected the top
10 most strongly co-expressed genes with Esr1 in the hypothalamus. As a negative con-
trol we used the set of genes that are not co-expressed with Esr1 in the hypothalamus.
Figure 6.5A shows examples, from the ISH experiments of the ABA, of Irs4 and Magel2,
two of the strongly co-expressed genes selected for validation. Since Esr1 is not homoge-
nously expressed across the hypothalamus (Figure 6.1B), we analyzed the responsive-
ness of the set of top 10 genes to DES in the anterior (MPO) and posterior (ARH) parts of
the hypothalamus separately. Fold-change upregulation was modest, which may be due
to non-responsiveness, a modest transcriptional response of brain targets, or to dilution
of the signal in the hypothalamic homogenates (Table S3).

To further confirm co-localization, we performed quantitative double in situ
hybridization (dISH) for Esr1 and the six mRNAs (Irs4, Magel2, Adck4, Unc5, Ngb, and
Gdpd2) that showed more than 1.3 fold enrichment in qPCR. Esr1 mRNA was
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consistently down-regulated more than 2-fold upon DES treatment, validating the
treatment (Figure S3). Irs4 and Magel2 mRNA were both significantly upregulated by
DES treatment in MPO (1.9 and 2.4-fold, respectively) while only Magel2 was
upregulated in ARH (2.6-fold) (Figure 6.5B and D). A 1.3-fold induction of Ngb mRNA in
ARH did not reach statistical significance, while Gdpd2, Unc5d, and Adck4 mRNA levels
showed no trend of regulation after DES treatment (Figure S4).

The data indicate that additional criteria are necessary for reliable target prediction.
As Irs4 and Magel2 are among the top genes expressed in the hypothalamus (ranked 1
and 11, respectively) compared to a ranking of 141 for Adck4 and 284 for Unc5d, these
may include a combination of expression, co-expression filters and other criteria.

IDENTIFYING GR-RELATED CORTICOSTERONE TARGETS IN THE

HIPPOCAMPUS
Using gene expression measurements (qPCR and double ISH) we validated the respon-
siveness of Irs4 and Magel2 as predicted ESR1 targets to DES treatment. Despite its im-
portance especially in detecting co-localization, gene expression remains an indirect
measurement of interaction. Therefore we set out to directly detect genomic binding
of steroid receptors using chromatin immunoprecipitation followed by next-generation
sequencing (ChIP-seq). Previously, we used ChIP-seq to identify genomic binding sites
of GR in the rat hippocampus [361]. Reanalyzing this data, we identified 694 corticos-
terone target genes with GR binding sites out of which 16 were within the top 200 genes
co-expressed with Gr in the hippocampus (16/200; P = 9.97×10−5; one-sided Fisher’s
Exact Test), Table S4. Figure 6.6 shows examples of the GR binding sites we identified
in genes strongly co-expressed with Gr. We did not observe any significant enrichment
of corticosterone target genes in the 200 genes with the lowest correlation to Gr in the
hippocampus (5/200; P = 0.62; one-sided Fisher’s Exact Test) nor in the set of 200 genes
with the highest correlation to Esr1 in the hippocampus (1/200; P = 1; one-sided Fisher’s
Exact Test).

6.3. DISCUSSION
Since nuclear steroid receptors act as transcription factors, they may a priori be expected
to co-express with their target genes and signaling partners. In the brain, the effects of
steroid receptors are region-specific and by analyzing their spatial co-expression rela-
tionships across different brain regions, we can define potential targets and partners, as
well as parallels between brain areas. The complexity and large variability in gene ex-
pression across the brain has forced many studies to analyze either brain-wide expres-
sion of a small set of genes or genome-wide expression in a few regions. The availability
of high-resolution ISH-based expression maps of the mouse brain in the ABA allows the
identification of all genes with a similar expression pattern across many brain regions
that might indicate functional similarity between the gene products [138]. We provide a
comprehensive description of the co-expression of genes with six receptors of gonadal
and adrenal steroid hormones in the male mouse brain. Our results demonstrate that
genes that are spatially co-expressed with receptors in a region-specific manner can en-
hance our understanding of brain modulation by steroid hormones.
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Figure 6.5: Highly co-expressed genes are potential steroid targets. (A) Coronal ISH sections showing the
expression of: Esr1, Irs4, and Magel2 (Scale bars, 600µm). Data taken from the Allen Brain Atlas. Response of
(B) Irs4 and (C) Magel2 to DES treatment in castrated mice in the anterior (medial preoptic area; MPO) and
posterior hypothalamus (arcuate hypothalamic nucleus; ARH) using double ISH. (D) Double ISH of Esr1 (Red)
and Irs4 (Green) in the anterior and posterior hypothalamus. (E) Double ISH of Esr1 (Red) and Magel2 (Green)
in the anterior and posterior hypothalamus. (Scale bars, 10µm. Magnification, 100×). mRNA expression in ISH
was quantified as the percentage of the image surface with positive signal. Reported P values are calculated
with a one-sided two-sample t-test with significant level at P < 0.05.
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Using genome-wide spatial co-expression analysis, we observed strong
co-expression of known GR transcriptional targets in the hippocampus and known
ESR1 transcriptional targets in the hypothalamus. These observations support our
hypothesis that genes showing strong co-expression with a steroid receptor are
enriched in transcriptional targets and/or co-regulators of that receptor. In addition,
the unanticipated co-expression of genes with these receptors outside their known sites
of action may extend our understanding of the coordinated steroid response of the
brain. For example, the high co-expression between Gr and its GC-responsive target
genes (originally derived from the DG) in CA3, midbrain and pallidum is in line with a
network that has been referred to as the neurocircuitry of stress [362]. Likewise,
dendritic complexity of neurons and excitability are modulated by glucocorticoids and
stress across different brain regions simultaneously [352]. Such similar responses of
distinct brain regions suggest similar cellular machinery and thus similarly correlated
gene expression with the responsible receptor.

For the genes that are expressed in a sex-specific manner, we confirmed their co-
expression with Esr1, Esr2, and Pgr which is in accordance with their regulation by go-
nadal steroids [94]. Lack of co-expression with Ar may reflect the fact that many testos-
terone effects on hypothalamus are mediated by estrogen receptors after aromatization
of testosterone into estradiol. It is as yet unclear whether the significant co-expression
with Pgr reflects simply co-expression of Esr1 and Pgr, or also points to progesterone
regulation of these genes. Regardless, we extended the co-expression between sexually
dimorphic genes to extra-hypothalamic sites, pointing to a parallel regulation in at least
the pallidum, a region that includes the bed nucleus of the stria terminalis where regu-
lation by (non-specified) gonadal hormones has been observed [94].

Our analysis of the co-expression of co-regulators and steroid receptors identified
known relationships, such as the high co-expression between Ncoa1 and Mr in the hip-
pocampus [353]. More importantly, this brain-wide analysis provides an overview of po-
tentially unknown relationships between steroid receptors and co-regulators. By focus-
ing on dopaminergic regions (VTA and SN), we identified strongly co-expression of Pak6
with Ar as well as Gr. Of interest, Pak6 is a known AR co-regulator [363] and Pak6 knock-
out mice show several locomotion and behavioral deficits which are likely related to dis-
turbed dopaminergic transmission [364]. Thus, this example of Pak6 co-expression un-
derscores the feasibility of our methodology to find potential partners of nuclear steroid
receptors. Of note, steroid receptor-coactivator interactions may be induced with a cer-
tain degree of specificity by selective modulator types of steroid receptor ligands [357,
365]. The co-expression of steroid receptors with their coactivators may not only predict
steroid responsiveness, but also point to selective activation of particular circuits with
synthetic ligands [357].

To test whether spatial co-expression can be used to predict transcriptional targets of
steroid receptors in the brain, we used qPCR and double ISH to assess if genes strongly
co-expressed with Esr1 in the hypothalamus include any ESR1-targets. Among the tested
genes, we identified two estrogen-regulated genes, one previously known (Irs4) [94] and
a new target (Magel2). Loss of Magel2 leads to impaired reproduction, providing an
immediate link to estrogen regulation [366]. This gene is deleted in Prader-Willi syn-
drome, that is associated with hypogonadotropic hypogonadism, obesity and hyperpha-
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Figure 6.6: Validating GR targets in hippocampus using ChIP-Seq. Examples of GR binding sites to genes
strongly co-expressed with Gr in the hippocampus: Itpr1 (A), Ttyh1 (B), Ptn (C), and Hecw2 (D). For each gene,
a genomic region of 32 kb centered around the identified peak is shown using the Integrative Genomics Viewer
(IGV) [371]. Black arrows indicate the intergenic peaks identified within the gene.

gia [367]. Likewise, Irs4 has a role in hypothalamic leptin signaling and regulation of
metabolism [368]. Therefore, hypothalamic estrogen responsiveness of Magel2 and Irs4
may be related to estrogen-effects on metabolism [369]. The presently modest predictive
power may be improved by incorporating the effect size (i.e. the absolute expression of a
gene), given the values for true positives Irs4 and Magel2. Also the presence of conserved
steroid response elements on the DNA could be a useful additional filter [370].

The enrichment of known targets and co-regulators of a certain nuclear receptor
within the same brain regions where the nuclear receptor is expressed confirms the va-
lidity of our analysis. Our approach is even strengthened by the notion that the receptor
and its targets and/or co-regulators are significantly co-expressed despite the genome-
wide and brain-wide qualitative approach of measuring mRNA levels using ISH. How-
ever, there are some intrinsic limitations to the analysis. First, while the quality of ISH is
overall high, it is insufficient for some genes. Of the three datasets covering expression
of Gr, only one was of sufficient quality. Also, Ncoa1 which codes for an important co-
regulator for Esr1 and Gr [337, 353] is expressed at low levels and not significantly asso-
ciated with the two receptors. Consequently, there is the risk for increased false negative
results associated with a genome-wide approach using this data. Second, the ABA maps
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the expression of all genes under the same normal conditions. This dataset, while unique
in its brain-wide and genome-wide coverage, does not include variations between indi-
viduals as well as context-specific expression patterns (Materials and Methods).

Our approach relies on Pearson’s correlation as a measure of similarity between 3D
expression patterns of genes, summarized to 200µm isotropic voxels. While using the ex-
pression volumes instead of the original ISH slices simplifies computations and reduces
noise effects, the lower resolution yields the analysis of small brain nuclei unreliable. For
example, the very small number of voxels representing dorsal raphe nucleus in the 3D
atlas hampered analysis of the serotonergic dorsal raphe nucleus. By using correlation
as a measure of co-expression we detect both direct and indirect statistical associations
between genes rather than causal relationships, yielding functional validation using ex-
pression measurements (qPCR and/or double ISH) and ChIP analysis crucial to confirm
predicted associations as well as causality.

Concluding, we have shown that nuclear steroid hormone receptors co-express with
genes not known to associate, and in brain regions where steroids were not known to
be active. These findings point towards brain region specific signaling machinery of the
steroid receptors.

6.4. MATERIALS AND METHODS

ALLEN MOUSE BRAIN ATLAS
The Allen Brain Atlas of the Mouse Brain [24] (http://mouse.brain-map.org) is a
spatially-mapped in situ hybridization gene expression atlas of the 8 week old adult
C57BL/6J male mouse brain. The genome-wide atlas contains expression data for
∼20,000 genes. For each gene, ISH brain sections were sampled at 25µm intervals
across the entire brain. The high (in-plane) resolution primary data from each
experiment were reconstructed in 3D and registered to the Nissl stain-based reference
atlas (Allen Mouse Reference Atlas; ARA), created specifically for this project. For each
gene, the data were then aggregated into isotropic voxels defined by a uniform 200µm
grid in the reference space. Resulting data consists of a spatially aligned 67 × 41 × 58
(rostral-caudal, dorsal-ventral, left-right) volume for each gene. The ontology of the
ARA is used to label individual voxels with their anatomical nomenclature. Some genes
were assayed more than once, using a different probe or plane of sectioning (sagittal or
coronal). Generally, ∼20,000 genes were assayed using sagittal-sectioning experiments,
while the coronal-sectioning experiments were carried out for ∼4,000 genes.

The Allen Mouse Brain Atlas provides expression of genes under normal conditions.
Brain sections were collected from thousands of animals and hence do not represent
a single individual. In brief, each brain sectioned either in sagittal or coronal planes
was used to generate 8 series (each series contain 5 slides, each slide contains four sec-
tions) [24]. Each of these series was hybridized to a single gene with each physical brain
used to survey several independent genes [209]. For many genes in the dataset several
experiments were conducted, resulting in multiple measurements of those genes from
different animals. Moreover, for genes assayed using both sagittal and coronal section-
ing experiments, sections are collected from different animals. A visual analysis of the
expression pattern of the Man1a gene which is measured using 19 different experiments

http://mouse.brain-map.org
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(18 sagittal and 1 coronal) shows a high consistency of expression patterns, although
these come from different animals.

DATA PREPROCESSING
We downloaded the 26,069 expression energy volumes corresponding to all experiments
(21,722 sagittal and 4,347 coronal) through the Application Programming Interface (API)
of the ABA on the 12th of February 2013. Expression energy E(S) is a measurement com-
bining the expression level I (v) (the integrated amount of signal within each voxel) and
the expression density (the amount of expressing cells within each voxel). The average
expression energy of gene g in region S is calculated as:

Eg (S) =

∑
v∈S

M(v)× I (V )

|S| (6.1)

where v is a voxel in region S, |S| is the total number of voxels representing S, M(v)
is a binary expression mask with 1′s and 0′s representing expressing and non-expressing
voxel, respectively.

In sagittal-sectioning experiments, data was generated from the left hemisphere of
the brain only while in coronal-sectioning experiments; data was generated from both
hemispheres. Voxels with more than 20% missing data (no gene expression value) were
removed from further analysis, resulting in 27,365 voxels in the sagittal datasets and
61,164 voxels in the coronal datasets.

SPATIAL CO-EXPRESSION
We used Pearson’s correlation coefficient as a measure of similarity between 3D spatial
expression profiles. Given a steroid receptor of interest (seed gene), we calculate the
Pearson’s correlation between the spatial expression profile of that seed gene and every
other gene in the ABA based on the expression values within any structure of interest
(e.g. for the whole brain correlations were calculated based on the expression across
27,365 voxels in the sagittal datasets and 61,164 voxels in the coronal dataset).

Together with the co-expression calculations we also calculated the average expres-
sion energy of gene g in structure S, Eg (S), as well as the normalized average expression
Kg (S):

Kg (S) = Eg (S)

Eg (Br ai n)
(6.2)

where Eg (Br ai n) is the average expression of gene g in the whole mouse brain.

ENRICHMENT ANALYSIS
To characterize the functional associations of nuclear receptors in each of the 12 brain
regions, we performed functional enrichment analysis on the top 200 spatially
co-expressed genes. Functional enrichment analysis was performed using Enrichr
[372]. For each region we report the top ten enriched Gene Ontology (GO) Biological
Process and Molecular Function.
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GENE SET ANALYSIS
In order to assess the co-expression between a set of genes and a steroid receptor of in-
terest, a Mann-Whitney U-test is used. The test assesses the null hypothesis that the
correlations of the set of targets or mediators on one hand and the correlations of all
other genes on the other hand are independent samples from identical continuous dis-
tributions with equal medians, against the alternative that they do not have equal medi-
ans. The returned P values from different experiments are corrected for multiple testing
by controlling the false discovery rate using Benjamini-Hochberg method [268] (FDR-
corected).

SELECTING TARGETS FOR VALIDATION
In order to select genes for validation, we generated a list of genes ranked by the strength
of their co-expression with Esr1 in the hypothalamus. We restricted our analysis to the
list of genes with a coronal experiment in the ABA (4,345 genes), Dataset S5. In order to
improve our predictions of co-expressed genes, we filtered out genes with an normalized
average expression < THY in the hypothalamus. In our experiments, we used THY = 0.5
since the average expression of our receptor of interest, Esr1, in the hypothalamus was
0.44. After filtering, we selected the top ten co-expressed genes as Esr1-related genes
for validation using quantitative polymerase chain reaction (qPCR). In contrast, we se-
lected the 10 genes showing the weakest co-expression with Esr1 (correlation ≈ 0) as a
background set.

SUM OF RANKS ANALYSIS
In order to assess a set of co-expressed genes for a seed gene in a set of
functionally-related brain structures, such as the dopaminergic system composed of
the ventral tegmental area (VTA) and substantia nigra SN (Figure S1), we used a
ranksum analysis. We ranked all genes based on their correlation to the seed gene
within the structure of interest. Since the number of samples (voxels) used in the
correlation calculation varies between different brain structures (i.e. brain structures
have different numbers of voxels), comparisons of co-expression across different
structures are carried out based on the rank of the gene in a specific list rather than
comparing correlation values. Given a set of structures S, we calculate the sum of ranks
RS such that: RSS

i , j =
∑

s∈S R s
i , j , where R s

i , j is the rank of the correlation between gene i

and gene j in structure s. The rank of the correlation is calculated as the rank of the
correlation value between seed gene i and target gene j among the list of correlations of
all genes with the seed gene i .

We assessed the significance of the sum of ranks value based on permutations. Given
a set of n functionally-related brain structures, we randomly draw n random integers
from a discrete uniform distribution ranging from 1 to the total number of genes (26,022
in case of all genes and 4,345 in case of genes with coronal only experiment). We repeated
the experiment 10,000 times and calculated the sum of the randomly drawn numbers to
obtain a probability distribution function (PDF) of obtaining a certain sum of ranks.
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VALIDATION USING QPCR AND DOUBLE IN SITU HYBRIDIZATION
C57Bl/6J mice were obtained from Charles River Laboratories (Maastricht, The Nether-
lands) at the indicated age and were kept one week under standard housing conditions
before they were enrolled in an experimental set-up. Nine-week-old male mice under-
went gonadectomy or a sham operation under isoflurane anesthesia. Gonadectomy in-
volved a small incision in the skin after which the testes were removed. After one week
of recovery, these mice received daily subcutaneous injections with 100µg /kg diethyl-
stilbesterol (DES) (Steraloids Inc., Newport, RI) dissolved in olive oil or the olive oil vehi-
cle alone for one week before they were terminated by cardiac puncture under isoflu-
rane anesthesia. Brains were rapidly dissected and frozen on powdered dry ice, and
stored at −80 C. All animal experiments were performed with the Approval of the Animal
Ethics Committee at Erasmus MC, Rotterdam, The Netherlands. To collect mRNA, frozen
brains were cut sagitally over the midline and 60µm sections containing hypothalamus
from one hemisphere were collected on uncoated glass slides (Menzel-Gläser, Braun-
schweig, Germany). Hypothalamic tissue was punched out using appropriate Harris
Uni-core punching needles (Tedpella, Redding, CA, USA) and pooled per anterior (+0.26
to −1.22mm relative to Bregma) or posterior (−1.22 to −2.7mm relative to Bregma) di-
vision. RNA isolation and cDNA synthesis have been performed as described in [373].
Quantitative polymerase chain reaction (qPCR) was performed on a IQ5 PCR platform
(Bio-Rad) as described in [374], using 36b4 as housekeeping gene. Primer sequences are
listed in Dataset S6.

For Non-isotopic double label semi-quantitative in situ hybidrization we used the
Panomics View-RNA method (Affymetrix, Santa Clara, CA, USA). Probe sets were
designed by, and are available from the manufacturer. 12µm thick cryosections on
Superforst plus microscope slides (Menzel Gläser, Braunschweig, Germany) were
postfixed in 4% (vol/vol) formaldehyde (Sigma-Aldrich). Pre-incubation was performed
following manufacturer’s instructions (https://www.panomics.com/products/
rna-in-situ-analysis/viewrna-ish-tissue-assay/how-it-works). Probes
were hybridized for 4 hours in a Startspin thermobrite stove (Iris sample processing,
Westwood, MA, USA). Linear amplification and visualization steps were performed
following manufacturer’s instructions. Slides were lightly counterstained with Mayer’s
hematoxylin, and DAPI (1 minute incubation at 3µg /ml ), and embedded in Innovex
mounting medium (Innovex Biosciences, USA).

VALIDATION USING CHIP-SEQ
We remapped the ChIP-seq data from Polman et al . [361] to the rattus norvegicus
genome version 5 (rn5) using Burrow-Wheeler Aligner [375] on default settings. GR
peaks were called using Model-based Analysis of ChIP-Seq (MACS) [376] – version 2.14,
with the IgG antibody binding dataset as the background using the following settings: P
value cut-off = 0.05; model fold = [10,40]; λ = 1000/10000; effective genome size =
2.5×109. In total, we identified 694 genes with intergenic GR binding peaks. Data were
visualised by uploading bigwig files to Integrative Genomics Viewer (IGV) [371].

https://www.panomics.com/products/rna-in-situ-analysis/viewrna-ish-tissue-assay/how-it-works
https://www.panomics.com/products/rna-in-situ-analysis/viewrna-ish-tissue-assay/how-it-works
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6.5. SUPPLEMENTARY MATERIAL
The online version of this article contains supplementary material2.

2www.pnas.org/lookup/suppl/doi:10.1073/pnas.1520376113/-/DCSupplemental

www.pnas.org/lookup/suppl/doi:10.1073/pnas.1520376113/-/DCSupplemental


CHAPTER 7
HI-C CHROMATIN INTERACTION

NETWORKS PREDICT

CO-EXPRESSION IN THE MOUSE

CORTEX

Sepideh Babaei∗
Ahmed Mahfouz∗

Marc Hulsman
Boudewijn PF Lelieveldt

Jeroen de Ridder
Marcel JT Reinders

This Chapter is published as: PLoS Comput Biol (2015) 11(5):e1004221, doi:10.1371/journal.pcbi.1004221.
∗Equal contribution.

103



7

104 CHAPTER7

T HE three dimensional conformation of the genome in the cell nucleus influences im-
portant biological processes such as gene expression regulation. Recent studies have

shown a strong correlation between chromatin interactions and gene co-expression.
However, predicting gene co-expression from frequent long-range chromatin interac-
tions remains challenging. We address this by characterizing the topology of the corti-
cal chromatin interaction network using scale-aware topological measures. We demon-
strate that based on these characterizations it is possible to accurately predict spatial
co-expression between genes in the mouse cortex. Consistent with previous findings,
we find that the chromatin interaction profile of a gene-pair is a good predictor of their
spatial co-expression. However, the accuracy of the prediction can be substantially im-
proved when chromatin interactions are described using scale-aware topological mea-
sures of the multi-resolution chromatin interaction network. We conclude that, for co-
expression prediction, it is necessary to take into account different levels of chromatin
interactions ranging from direct interaction between genes (i.e. small-scale) to chro-
matin compartment interactions (i.e. large-scale).

7.1. INTRODUCTION
The three dimensional (3D) conformation of chromosomes in the cell nucleus plays an
important role in determining which genes are expressed in a cell [377–382]. In partic-
ular, it has been shown that genes are often regulated by elements that are located far
away in terms of the linear genome sequence [383, 384]. In fact, transcribed genes tend
to spatially associate with their regulatory elements which results in 3D clustering of
co-regulated genes [383, 385]. Moreover, there is increasing evidence that transcription
occurs at specific nuclear sites, sometimes called transcription factories [383, 386].

Chromosome conformation capture techniques, such as 3C, 4C, 5C, and Hi-C, allow
direct measurement of chromatin interactions and thereby the study of the role of these
interactions in gene regulation [387–389]. Using 4C, for instance, it was demonstrated
that the 3D structure of the yeast genome correlates with gene co-expression [379]. Dong
et al . used Hi-C data from two human cell lines to demonstrate that chromatin interac-
tions associate with co-expression [378]. Both studies, however, have shown that it is
difficult to explain the relationship between co-expression and the 3D structure of the
genome by considering direct chromatin interactions only. Thus, while a clear relation
between chromatin interaction and co-expression exists [378–380], this relation may be
better understood if more comprehensive characterizations of long-range chromatin in-
teractions, i.e. those involving also indirect interactions, are taken into account [390].

A more comprehensive characterization of long-range chromatin interactions can
be obtained by considering the chromatin conformation data as a network [391, 392]. In
such network, termed Chromatin Interaction Network (CIN), a genomic locus is repre-
sented by a node while links between the nodes denote chromatin interactions. Inves-
tigation of the CIN topology may reveal properties of the 3D genome organization that
are important for understanding its function, such as co-expression of genes.

Characterizing the topology in biological networks has been extensively explored,
for instance to gain insight into the functional relationships encoded in such networks
[393, 394]. Standard network topological measures, such as shortest path, between-
ness centrality and clustering coefficient, have been used to capture either the topology
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around a single node or the global topology of the whole network [395, 396]. As a result,
these measures of network topology operate at a fixed zoom-level. Recently, scale-aware
topological measures have been shown to superiorly predict gene function and interac-
tions by characterizing the topology of protein interaction networks at different scales
[30, 394]. In this work, we explore the use of scale-aware topological measures (STMs),
proposed in [30], to describe the CIN topology. Analyzing the CIN topology enables us
to study the relation between long-range chromatin interactions and co-expression.

The CIN constructed in this study is based on Hi-C measurements from the mouse
cortical cells [384]. In the brain, genes with a common expression pattern across the
brain may have a common role in influencing the function of the brain region in which
they are co-expressed [101]. In order to study spatial co-expression in the mouse brain,
and mammals in general, it is necessary to map the expression at sufficient resolution
to decode the high complexity [131]. The Allen Mouse Brain Atlas (ABA) [24], a genome-
wide map of gene expression across the brain, provides sampled cellular-resolution in
situ hybridization sections at a 25µm interval across the entire brain. We use this high-
resolution dataset to obtain spatial co-expression relationships between genes at the cel-
lular level (Figure 7.1), i.e. two genes will be co-expressed if they are expressed in the
same set of cells across the brain.

To test the hypothesis that co-expression in the cortex is encoded in the CIN, we em-
ploy a supervised learning procedure. More specifically, we aim to predict the spatial co-
expression between gene-pairs based on a set of features that describe the topology of
the connection between the two genes in the CIN. We show that the resolution at which
the chromatin interactions are captured affects the prediction of co-expression from ge-
nomic organization. In particular, our results reveal that the accuracy of the prediction
is increased when measures from different Hi-C resolutions are integrated. Finally, we
clearly demonstrate the importance of using descriptions of the CIN topology at differ-
ent scales, ranging from specific interactions between transcription start sites of genes
(small-scale) through interactions between whole genes (medium-scale) and interaction
between chromatin compartments (large-scale).

7.2. RESULTS

INTRA-CHROMOSOMAL HI-C DATA
We collected the intra-chromosomal Hi-C data from Shen et al . [384]. They obtained
Hi-C measurements in the mouse cortex following the methods proposed in Lieberman-
Aiden et al . [388]. About 20-30 million cortex cells from 8-week old male C57Bl/6 mice
were used to generate Hi-C contact matrices [384]. The resulting Hi-C matrices con-
tain pair-wise chromatin contact frequencies between pairs of 40kb genomic segments
(i.e. bins). Experimental biases, such as GC content of trimmed ligation junctions and
distance between restriction sites, were eliminated by an integrated probabilistic back-
ground model as described by Yaffe et al . [397]. Hi-C technology measures only steady-
state chromosome conformations across a population of cells. So, the resulting genome-
wide interactions are averaged across the cells and are not exactly the same in any given
cell [384, 398]. Yet, the variability of chromatin interactions is mostly confined to local
interactions, while long-range interactions are relatively well conserved and stable [399].
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Figure 7.1: Association between chromatin interaction and co-expression of gene-pairs. (A) Co-regulated
genes are co-localized in 3D structure of the genome through frequent chromatin interactions. Chromatin
interactions can be at different levels from direct interaction between genes (interaction between Gene A and
Gene B) to chromatin compartment interactions (interaction between Gene D and Gene B). Chromatin in-
teractions between gene-pairs can be characterized by a network, termed Chromatin Interaction Network
(CIN). (B) Co-expression between gene-pairs based on their spatial expression pattern across the mouse cor-
tex. Gene A, Gene B and Gene D are expressed in the mid layers of the mouse cortex and are hence highly
co-expressed. Gene C, on the other hand, is expressed in the superficial cortical layers and therefore is not co-
expressed with the other three genes. The chromatin interaction profile of a gene-pair, encoded by the topo-
logical structure of the CIN, can be used to predict the co-expression status as captured by the co-expression
network.

This demonstrates that different cell types share a common global architecture of their
chromosomes which can be well described by the chromatin contact matrix.

Two regions that are close-by in the linear genome are expected to have higher
chromatin interaction frequency, irrespective of the actual 3D organization of the
genome (S1_Fig). To account for this, several studies have defined normalized Hi-C
contact matrices assuming that the Hi-C interactions are normally distributed
[388, 400] or independent [401]. Alternatively, we used a non-parametric rank based
normalization method [402] to describe the Hi-C score distributions for a certain
distance, which we found to be more powerful for detecting variations across the
genomic distance.

MULTI-RESOLUTION HI-C DATA
Since we are interested in predicting co-expression patterns of genes, each bin-based
Hi-C matrix is converted to a gene-based Hi-C matrix based on the Hi-C interaction be-
tween the corresponding bins in which the genes reside (see Materials and Methods).
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While assigning Hi-C interactions between genes, the bin size of the Hi-C data controls
the genomic neighborhood considered around genes. In order to capture interactions
between genes at variable linear genomic distances we varied the resolution of the Hi-C
data matrices, before constructing gene-based matrices. This was achieved by consid-
ering different bin sizes between 40kb (high-resolution) and 1Mb (low-resolution). The
lower resolution matrices were obtained by summing the contact frequencies of consec-
utive bins in the higher resolution matrices.

CHROMATIN INTERACTION NETWORK (CIN)
To determine the Hi-C interactions between each gene-pair we take the Hi-C interaction
between the corresponding bins in which the genes reside. However, some genes might
span multiple bins, depending on gene size and bin size. In this case, we determine the
Hi-C interaction for a gene-pair (x, y) by one of two approaches. In the first approach,
referred to as MAX-mapping, we define a link as the maximum Hi-C value among all
possible interactions, i.e. ĥx y = maxi∈x, j∈y (ĥi j ). In the second approach, referred to as
TSS-mapping, we define a link as the Hi-C score between the bin-pair which contains
the transcription start sites (TSS) of the two genes, i.e. ĥx y = ĥi j ; where: T SS(x) ∈ i and
T SS(y) ∈ j . We applied a threshold to convert the weighted gene-based Hi-C matrix to
an un-weighted matrix by retaining only interactions that exceed the 90th-percentile of
all Hi-C score across all chromosomes at the corresponding bin size.

We constructed one CIN per chromosome per resolution because the employed Hi-
C data contains only intra-chromosomal interactions. For each CIN H R

chr = (G , IH ), G
represents the set of nodes corresponding to genes and IH represents the set of links
corresponding to Hi-C interactions between genes that exceed the 90th-percentile of all
Hi-C scores across all chromosomes at a resolution R.

CIN TOPOLOGY
There are several topological measures which capture graph structure for nodes and/or
links in a network [393, 395]. In this work, we calculated five graph-topological measures
of the chromatin interaction network: shortest path length, Jaccard index, degree (and
closeness) centrality, betweenness centrality, and clustering coefficient (Table 7.1). Since
our goal is to predict co-expression between gene-pairs, all features used by the classifier
should be link-based. Therefore, we converted all the node-based topological measures
(degree-closeness centrality, betweenness centrality and clustering coefficient) to link-
based measures by taking the average and the difference between the values of the gene-
based measure for each gene-pair. For example, for a gene-pair (x, y), the clustering co-
efficient of the link between x and y is described by {

∣∣(cc(x)− cc(y)
∣∣ , 1

2 (cc(x)+ cc(y))}.
As a result, each link in the interaction network is represented by eight link-based topo-
logical features.

In addition to the standard topological measures, we used the scale-aware topolog-
ical measures (STMs) described by Hulsman et al . [30] to capture the network charac-
teristics across different scales. STMs are based on diffusion kernels [403], a network
smoothing process in which the diffusion strength β parameter determines the scale
at which the network is considered [404]. By varying the scale at which we consider the
CIN, different types of interactions are taken into account. For example, specific interac-
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Table 7.1: Topological Measures.

Measure Description Scale-aware version

Shortest Path The minimum number of ver-
tices connecting node x and y ,
s(x, y)

sβ(x, y) =− log(K
β
x,y )

Jaccard Index The proportion of shared
nodes between x and y rel-
ative to the total number of
nodes connected to x or y ,

J (x, y) = n(x)∩n(y)
n(x)∪n(y)

Jβ(x, y) =
∑

i mi n(K
β
x,i ,K

β
i ,y )∑

i max(K
β
x,i ,K

β
i ,y )

Degree & closeness Centrality The degree centrality reflects
the connectivity of a node in
terms of the number of edges
connected to it, deg (x) and
closeness centrality reflects
the farness of a node x, by
summing the shortest path
distances to all other nodes,
c(x) = 1∑

i \x s(x,i )

cβ(x) = 1−K
β
x,x

Betweenness Centrality The number of shortest paths
that pass through a node,

b(x) =∑
i , j \x

qi j (x)
qi j

where qi j

is the number of shortest paths
between nodes i and j , and
qi j (x) the number of those
paths that pass through x

bβ(z) = 1

N 2

∑
x,y(

sβ(x, y)− (sβ(x, z)+ sβ(z, y))
)

Clustering Coefficient The number of edges between
its direct neighbors including
itself, divided by the maximum
number of possible edges,

cc(x) = 2|ex |
deg (x)(deg (x)−1)

ccβ(x) =∑
i \x K

β
x,i Jβ(x, i )

N is the set of all nodes in the network, and n is the number of nodes. (x, y) is a link between nodes x and
y , (x, y ∈ N ). a(x, y) is the connection status between x and y : a(x, y) = 1 when link (x, y) exists; a(x, y) = 0
otherwise. Scale-aware versions are base on diffusion kernel where Kβ = eβ(A−D), A is the adjacency matrix
and D is the degree matrix of the network. The diffusion level β determines the scale. Kβ(x, y) is the diffusion
strength between node x and y .

tions between transcription start sites of genes are more pronounced at the small-scale
while interactions between chromatin compartments are more pronounced at the large-
scale.

CO-EXPRESSION NETWORK
The Allen Mouse Brain Atlas (ABA) [24]; (http://mouse.brain-map.org/) provides a
genome-wide cellular-resolution, in situ hybridization (ISH)-based, gene expression
map of the 8−week old adult C 57BL/6J male mouse brain. A spatial co-expression map
was constructed based on the similarity of the spatial expression profiles of each pair of
genes across the cortex (see Materials and Methods).

The employed Hi-C data contains only intra-chromosomal interactions. Therefore,
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one co-expression network was constructed per chromosome and is denoted by
Echr = (G , IE ), where G indicates a set of nodes representing genes and IE indicates set
of links representing intra-chromosomal co-expressions between gene-pairs. The
largest and smallest networks E2 and E18 (S2_Fig) consisted of 338 and 119 genes (i.e.
nodes), respectively. To focus our predictions on reliable interactions, we included only
strongly co-expressed genes and gene-pairs without strong co-expression (see
Materials and Methods).

HIGHLY CO-EXPRESSED GENES ARE SPATIALLY CO-LOCALIZED
To examine whether gene-pairs with high spatial co-expression frequently interact in
the 3D conformation of chromosomes, we defined two sets of gene-pairs: strongly co-
expressed genes and gene-pairs without strong co-expression (see Methods). We used a
Wilcoxon rank-sum test to determine if strongly co-expressed gene-pairs have stronger
Hi-C interactions, and hence are closer to each other in the 3D conformation of the chro-
mosome, compared to gene-pairs without strong co-expression.

Figure 7.2A (and S3_Fig) shows that co-expressed genes are significantly co-localized
in the nucleus in most of the chromosomes and most CIN-resolutions (Wilcoxon rank-
sum test; P < 0.0002, Bonferroni corrected for 260 tests: 20 chromosomes × 13 resolu-
tions). Strikingly, we observe that the resolution for which the strongest co-localization
is attained is different for different chromosomes (Figure 7.2B). This observation under-
scores the importance of a multi-resolution approach to characterize chromatin inter-
actions which apparently can occur between loci in the direct vicinity of genes as well as
between broader regions (domains) in which these genes reside.

CHROMATIN INTERACTION PROFILES AS CO-EXPRESSION PREDICTORS
To determine whether strong co-expression can be predicted from chromatin
interactions, we calculated the correlation between the Hi-C matrix and the
co-expression matrix for each chromosome at different resolutions. S4_Fig shows that
the correlation is very low across different chromosomes and Hi-C resolutions (−0.4 to
+0.1). Additionally, training a classifier on the presence or absence of links in the CIN
results in a poor classification performance (0.55 median AUC across chromosomes at
40kb resolution). S5_Fig shows that only 2% (average across all chromosomes) of all
gene-pairs are co-expressed and connected in the CIN of each chromosome. This
observation further highlights the importance of indirect chromatin interactions in
explaining co-expression. Taken together, these results indicate that chromatin
interaction and co-expression do not have an injective (one-to-one) relation. The
relation between chromatin interaction and co-expression would be better described
by a more comprehensive characterization of long-range interactions, i.e. indirect
interactions.

A compelling example is given in Figure 7.3A. In Chromosome 16, Synj1 and Dyrk1a
genes are co-expressed (dashed red line) while their corresponding genomic loci do not
frequently interact, i.e. there is no link (solid blue line) between them in the CIN at
200kb resolution. A classifier only taking direct chromatin interactions into account will
mistakenly predict that the two genes are not co-expressed. However, both Synj1 and
Dyrk1a genes have strong chromatin interactions with Pam16, Fstl1, Hmox2, Sidt1 and
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Figure 7.2: Co-expressed genes are co-localized in 3D structure of the genome. (A) Assessment of the en-
richment of Hi-C interactions between strongly co-expressed gene-pairs compared to gene-pairs with no co-
expression across different Hi-C resolutions. The y-axis indicates −log10(P ) of the one-tailed Wilcoxon rank-
sum test used for the enrichment analysis. Hi-C interactions were mapped to genes using the MAX-mapping
method. In each box, the horizontal line represents the median. The thick vertical line represents the interval
of q1 = 25th and q3 = 75th percentiles. The thin vertical line represents the interval of q3 +1.5(q3 − q1) and
q1 −1.5(q3 −q1).

(B) Overview of the Hi-C resolution at which Hi-C interactions are most significantly
associated with co-expressed gene-pairs for each chromosome.

their strong co-expression can be correctly predicted if these indirect interactions are
considered. For this particular example, the indirect interactions between the two genes
can be characterized by the Jaccard index which captures to what extent the two genes
have common direct neighbors.

Another example is the interaction between Kcnc4 and Tspan5 in Chromosome 3
(Figure 7.3B). Kcnc4 and Tspan5 directly interact in the 200kb-CIN (solid blue line) but
they are not strongly co-expressed (no dashed red line). Nevertheless, this direct chro-
matin interaction may explain the strong co-expression between gene-pairs in the CIN
neighborhood that lack a direct chromatin interaction themselves. For example, Wdr47
and Lphn2 are co-expressed although they are not directly connected in the CIN (no
solid blue line) but their co-expression can be explained by the chromatin interaction
path through the Lhfp, Kcnc4 and Tspan5 genes. Similarly, the co-expression of Wdr47
and Rap1gds1 can be explained by the chromatin interaction path through Lhfp and
Kcnc4. For this example, the importance of the Hi-C link between Kcnc4 and Tspan5
to describe strong co-expression between their neighboring genes in the CIN can be
captured using the betweenness centrality of both genes. Both examples illustrate that
strong co-expression between gene-pairs can be better explained by their chromatin in-
teraction profile, defined as the path connecting two genes in the context of the CIN.

TOPOLOGICAL DESCRIPTIONS OF MULTI-RESOLUTION INTERACTION

NETWORKS INCREASE THE PREDICTION PERFORMANCE
For each CIN of a certain resolution, we calculated the standard graph-topological mea-
sures and trained a random neural network (RNN) classifier using the resulting topolog-
ical features (see Materials and Methods). The classification results are summarized in
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Figure 7.3: Chromatin interactions of gene-pairs in the CIN at 200kb resolution. (A) Synj1-Dykr1a (yellow
nodes) in Chromosome 16 are co-expressed (dashed red link) but their corresponding genomic loci do not in-
teract frequently (no blue link). Both genes have strong chromatin interactions with 4 other genes (grey nodes)
resulting a high Jaccard index between them. (B) Kcnc4-Tapan5 (yellow nodes) in Chromosome 3 directly
interact (solid blue line) but they are not strongly co-expressed (no dashed red line). This direct chromatin in-
teraction explains the strong co-expression between other gene-pairs in their neighbourhood, such as Wdr47-
Lphn2 and Wdr47-Rap1gds1, which are not directly connected in the CIN themselves (no solid blue line). The
betweenness centrality measure of the link between Kcnc4-Tapan5 can describe the strong co-expression be-
tween their neighbouring genes. Chromatin interaction and co-expression are shown by solid blue and dashed
red links, respectively.

Figure 7.4 (Box 1-4 and 7). The figure shows that an increased - yet moderate - classifica-
tion performance is obtained when standard topological measures of the CIN at a single
resolution (median AUC of 0.72 for 200kb and 0.73 for 40kb, Figure 7.4 (Box 1, 2)) are
used as features (compared to 0.55 AUC when using only direct interactions).

To evaluate the effect of Hi-C resolution on co-expression prediction, we applied the
RNN classifier to a concatenated set of standard topological measures obtained from
CINs at different Hi-C resolutions (40,80,120,160, and 200kb), i.e. the topological
descriptions of each resolution are concatenated in one feature representation. At a
high Hi-C resolution (40kb) we mainly focus on chromatin interactions between pairs
of genes. On the other hand, at a low Hi-C resolution (200kb) we consider interactions
between larger genomic domains. Our multi-resolution approach increased the power
of the interaction data to predict co-expression (Figure 7.4, Box 3, 4, 7), supporting our
earlier observation that gene regulation occurs at different regional scales of chromatin
interaction, such as the gene-level or the level of broad regions. So far, the best
prediction performance is obtained by concatenating standard topological measures of
CINs built using both TSS- and MAX-mapping methods (0.77 median AUC, Figure 7.4,
Box 7).

STMS IMPROVE THE PREDICTION PERFORMANCE
To examine the effect of indirect chromatin interactions on the prediction of
co-expression, we described the CIN topology at multiple topological scales using STMs
(see Methods). We calculated STMs of the CIN at each Hi-C resolution separately and
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Figure 7.4: Classification performance for the co-expression prediction based on intra-chromosomal chro-
matin interaction networks. Each box encompasses the classifier performance in terms of AUC for all mouse
chromosomes. Boxes are sorted based on their medians. The method that was used for computing the input
feature set is given under each box. TSS or MAX refers to the mapping method for assigning Hi-C interaction
between gene-pairs when the CIN is built. TSS+MAX refers to concatenated feature set of topological measures
of CINs built using both TSS- and MAX-mapping methods. Multi-resolution refers to concatenated feature set
of topological measures obtained from CINs at Hi-C resolutions of 40,80,120,160, and 200kb. In each box, the
horizontal line represents the median. The thick vertical line represents the interval of q1 = 25th and q3 = 75th

percentiles. The thin vertical line represents the interval of q3+1.5(q3−q1) and q1−1.5(q3−q1). All the values
shown in the figure are also available in S6_Table

then concatenated all STMs, resulting in 800 features; 8 STMs at 10 scales applied to 10
CINs; 5 different resolutions and two mapping methods (see Methods for more details).
We then followed the same procedure as before and trained a RNN classifier on this
combined feature set.

Figure 7.4 (Box 5-6 and 8-10) summarizes the results obtained when using STMs
rather than the standard topological measures. The performance obtained using STMs
calculated at a single resolution CIN (Figure 7.4, Box 5,6) is comparable to the
performance obtained by concatenating standard topological measures from
multi-resolution networks (Figure 7.4, Box 7). However, by combining features from
STMs applied to multi-resolution CINs, the power to predict co-expression improves
significantly (Wilcoxon rank-sum test; P < 0.00001) (0.82 AUC, Figure 7.4, Box 10). The
best performances are obtained for Chromosome 16 (0.86 AUC) and Chromosome X
(0.85 AUC). The observed performance improvement demonstrates that it is important
to use a scale-aware topological description of the CIN to capture the complex 3D
organizational features of the genome that determine gene co-expression.

In order to analyze the effect of considering only strongly co-expressed genes on the
classification performance, we assessed the performance when all co-expression links
are included. In this analysis, a gene-pair is labeled co-expressed (i.e. positive class) or
not co-expressed (i.e. negative class) if their correlation is above or below the median
(i.e. 50th-percentile) of all correlations across all chromosomes, respectively. The result-
ing AUCs across all chromosomes show that STMs performs better than standard mea-
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sures to distinguish between co-expressed and non co-expressed gene-pairs (S7_Fig). As
expected, the classification performance is lower with respect to the case where we ex-
cluded weakly co-expressed gene-pairs (i.e. gene-pairs that have a co-expression that
is in between the 50th and 90th-percentile of all correlations across all chromosomes)
(Figure 7.4). Most likely this is caused by a noisy class assignment for weakly correlated
gene-pairs which confuses the classifier during training.

We also performed the classification procedure by including Hi-C scores above the
median of all Hi-C scores across all chromosomes. The resulting AUCs across all chro-
mosomes show that STMs perform better than standard measures to distinguish be-
tween co-expressed and non-co-expressed gene-pairs (S7_Fig). The classification per-
formance is, however, less than the AUC when we defined strong Hi-C interactions as
Hi-C scores above the 90th-percentile of all Hi-C scores across all chromosomes (Fig-
ure 7.4).

To compare the rank-based normalization method [402] with the average-based
method proposed by Lieberman et al . [388], we trained the classifier on the standard
and scale-aware topological measures of the CIN that was built using the average-based
normalized Hi-C matrices. The performance of these classifiers is lower than when
constructing the CIN on using the rank-based normalized Hi-C data (S8_Fig),
underscoring the usefulness of the rank-based normalization for predicting
co-expression from chromatin interaction data. Nevertheless, STMs perform better
than standard measures for both normalization methods, indicating that the classifier
is not biased towards the normalization method.

To investigate the effect of chromatin interactions between non-genic and genic re-
gions on the co-expression prediction we built a bin-based CIN (instead of a gene-based
CIN). In the bin-based CIN, nodes represent non-overlapping bins with size of 200kb
and links represent Hi-C interactions between bins that exceed the 90th-percentile of
all Hi-C scores across all chromosomes at a 200kb resolution. We calculated standard
and scale-aware topological measures (8 measures) for all links in the bin-based CIN.
The classifier was trained on topological measures of the portion of links that connect
two gene-loci. In this strategy, the interaction profile between two gene-loci is charac-
terized by chromatin interactions of all genomic regions across the scales. The resulting
AUCs across all chromosomes show that STMs performs better than standard measures
to distinguish between co-expressed and non-co-expressed gene-pairs (S9_Fig). It is in-
teresting to observe that the classification performance is approximately similar to that
obtained when gene-based CINs were used. This suggests that the STMs can capture all
the necessary information from the genic Hi-C links.

CIN TOPOLOGY DIFFERS PER CHROMOSOME
To investigate the variation in topological properties of the CIN of different chromo-
somes, we performed a leave-one-chromosome-out experiment. If the CINs of all 20
mouse chromosomes share the same topological properties, then it would be possible
for a classifier trained on all but one chromosome to accurately predict the co-expression
labels of the left-out chromosome. To test this hypothesis, we trained the RNN classifier
on the STMs (800 features) extracted from 19 chromosomes and then tested the perfor-
mance on the left-out chromosome. We repeated the procedure 20 times and each time,
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a different chromosome was left out of training and used for testing. The maximum
AUC obtained was 0.54, which indicates that the CIN of each chromosome has a unique
topology, to which the high-scale STM feature values are sensitive.

The variation in topological properties of CINs across chromosomes is also
observed when we trained an RNN classifier on individual topological measures. The
classification performance using individual standard measures (S10_Fig) and
individual STMs (S11_Fig) is highly variable across chromosomes, which explains the
poor performance obtained in the leave-one-chromosome-out experiment. For
instance, the clustering coefficient STM is a good descriptor of the CIN of Chromosome
3 at medium-resolution and low-scale, while it is a good descriptor of the CIN of
Chromosome 10 at high-resolution across the scales (S11_Fig).

TOPOLOGICAL SIGNATURES OF CINS
To analyze the topological properties that are most predictive we trained the classifier on
individual topological measures. The classification performance using individual stan-
dard measures (S10_Fig) and individual STMs (S11_Fig) shows that none of the topo-
logical measures has dominant power to predict co-expression. Therefore, the classifier
requires more than a single topological descriptor to describe chromatin interaction pro-
file between two gene-loci. In order to determine the set of STMs that characterizes the
CIN of each chromosome the best, we performed forward feature selection in combina-
tion with the RNN classifier. To facilitate this computationally, we reduced the number
of nodes in the hidden layer to 100 and applied 5-fold cross validation. To ease interpre-
tation, we used the STMs derived from multi-resolution CINs using the MAX-mapping
method only (400 STMs, 8 measures × 5 resolutions × 10 scales). S12_Fig shows that the
classification performance achieved using feature selection (0.8 AUC) is higher than the
performance achieved using all features (0.72 AUC). For most chromosomes, the top 5
selected features in all 5 folds are clustering coefficient (at small-scale, β < 0.5), close-
ness centrality (at medium-scale (0.5 < β < 3) and Jaccard index (at large-scale, β > 3)
STMs (S13_Table).

The clustering coefficient measures to what extent a gene is embedded in a well-
connected component of the CIN. Selecting the small-scale clustering coefficient im-
plies that co-expressed genes are usually embedded in a locally well-connected compo-
nent in the CIN (e.g. chromatin compartment). The Jaccard index determines the frac-
tion of common interacting genes between gene-pairs in the CIN. At a large scale it takes
more indirect neighboring nodes (e.g. genes located in different chromatin compart-
ments) into account. The closeness centrality reflects the farness of a gene by summing
the shortest path distances to all other genes and at a medium scale it thus takes some-
what longer paths into account. Both Jaccard index and closeness centrality explain that
common indirect interacting genes (e.g. interaction between chromatin compartments)
are important to describe the co-expression pattern of a pair of genes.

Additionally, we observed that all scale-levels (small, medium and large) were se-
lected reflecting the importance of characterizing CINs at different scales. The selec-
tion of various scale-levels could be explained by the hierarchical structure of the chro-
matin folding in the cell nucleus ranging from looping between the promoter regions of
genes to larger chromatin compartments [387, 391]. This is corroborated in the work by
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Sandhu et al . [391] who have shown that genomic regions are organized into a hierar-
chical chromatin interaction network.

STMS EFFECTIVELY CHARACTERIZE THE CIN OF CHROMOSOME 16 TO

PREDICT CO-EXPRESSION
We analyzed the top selected STMs of the 200kb-CIN of Chromosome 16, for which the
highest prediction performance is achieved, to gain insight into the topological mea-
sures and scales that best describe the network. The best classification performance
(AUC = 0.84) is obtained using 206 of the 400 STMs (S13_Table) which are selected by for-
ward feature selection. We mapped these 206 features to a 2D space using t-Distributed
Stochastic Neighbor Embedding (t-SNE) [32, 207] (see Materials and Methods).

The 2D map of all gene pairs in Chromosome 16 (Figure 7.5) shows that there are few
distinct clusters of co-expressed and not co-expressed gene-pairs, i.e. clustering of red
and blue dots in Figure 7.5B respectively. However, it is difficult to discriminate between
the majority of gene-pairs (big cluster in the middle of Figure 7.5B), further support-
ing our observation of complex organization of chromatin interactions. Coloring the
t-SNE with two of the top selected features, the clustering coefficient at small-scale (Fig-
ure 7.5A) and the Jaccard index at the medium-scale (Figure 7.5C), shows that gene pairs
are characterized by different values of those two features, indicating their importance
for the classification performance.

Since the clustering coefficient at small-scale is one of the top selected features for
Chromosome 16, we used the t-SNE map to select a co-expressed gene-pair with a high
clustering coefficient at a small-scale (Figure 7.5A). We constructed a sub-network of the
selected gene-pair by retrieving all the Hi-C and co-expression interactions surrounding
the gene-pair (Figure 7.5D). B3galt5 and Carhsp1 are co-expressed (dashed red link in
Figure 7.5D and red dot in Figure 7.5B) although there is no direct Hi-C interaction be-
tween them (no blue link). However, it is possible to predict their co-expression because
they are both part of a very well connected cluster, which is captured by a high average
clustering coefficient at small scale.

Similarly, we select a co-expressed gene-pair with a high Jaccard index at the
medium-scale, another top selected STM of the CIN of Chromosome 16 (Figure 7.5C).
The sub-network including the selected gene-pair Masp1 and Abat (Figure 7.5E), shows
that they are co-expressed although no direct Hi-C interaction exists between them (no
blue link in Figure 7.5E). The two genes also do not share many direct neighbors. At a
medium scale, however, the Jaccard STM takes indirect neighbors into account,
resulting in a high Jaccard index based on the Hi-C links between the neighbors of
Masp1 and Abat.

7.3. DISCUSSION
We proposed a network-based approach to better understand the 3D structure of the
genome based on scale-aware topological measures of the chromatin interaction
network. Previous studies have shown a strong correlation between co-expression and
chromatin interaction, for example in model organisms (e.g. yeast) [379] or cell lines
(human gm06990 and K562 cells) [378]. Our results demonstrate that the co-expression
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Figure 7.5: Topological signature of Chromosome 16 CIN. t-SNE maps of the 200kb-CIN of Chromosome 16.
Each point in the map corresponds to a link between a gene-pair which is colored according to (A) Clustering
coefficient at small-scale, (B) Co-expression label, and (C) Jaccard index at the medium-scale. (D) and (E) show
sub-networks of the CIN surrounding selected gene-pairs (indicated in the 2D maps): (D) B3galt5-Carhsp1
(yellow nodes) with the high clustering coefficient average; and (E) Masp1 and Abat (yellow nodes) with the
high Jaccard index. Chromatin interaction and co-expression are shown by solid blue and dashed red links,
respectively.

relationship between a pair of genes in the mouse cortex could be accurately predicted
from their chromatin interaction profile, extending previous observations in [378, 379].
Furthermore, the predictive power of our model depends greatly on the resolution at
which the interactions are observed as well as the scale at which the topological
properties on the interaction network are calculated. By integrating scale-aware
topological measures at multiple Hi-C resolutions, we were able to predict spatial
co-expression between gene-pairs with an AUC performance of 0.82. To our knowledge,
this is the first attempt to predict co-expression based on genome-wide chromatin
interactions.

The results also showed a general trend of the prediction performance (Figure 7.4)
suggesting that STMs across multiple Hi-C resolutions are necessary to accurately cap-
ture the 3D structural features in the genome that determine spatial co-expression be-
tween genes in the mouse cortex. While the multi-resolution approach captures direct
chromatin interactions between genes at variable linear genomic distances, standard
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topological measures extracted from a single-resolution CIN fail to represent the com-
plex 3D structure of genome. By using STMs [30] to describe each single-resolution CIN,
we were able to capture both direct and indirect interactions between genes, and hence
correctly predict their co-expression status.

The 2D t-SNE maps of the CINs using 80 standard topological measures (S14_Fig)
and 800 STMs (S15_Fig) reveal a complex organization of chromatin interactions,
indicating that the discrimination between co-expression labels (blue and red points in
S14_Fig and S15_Fig) is a difficult task. These observations may also explain the poor
classification performance obtained using a simple classifier such as nearest mean
(NM). The RNN classifier, however, is able to capture the complex chromatin
interaction profile of a gene-pair and their co-expression status.

Comparing the t-SNE map of standard topological measures and STMs of
Chromosome 16’s CIN shows that STMs are indeed more powerful in discriminating
co-expression labels (S16_Fig). For example, the t-SNE map of standard topological
measures shows that most of the interactions in the CIN of Chromosome 16 are
characterized by a low Jaccard index value and consequently, the contribution of the
Jaccard index to the classification performance is very low (S16_Fig). The scale-aware
Jaccard index, however, captures indirect neighbors between a gene-pair which
improves the classification performance.

Furthermore, we showed that each STM characterizes the CIN differently across
scales and resolutions. For instance, the t-SNE map of STMs shows that the chromatin
interaction profiles between gene-pairs in a well-connected component, indicated by a
high clustering coefficient, are better captured at low resolution, whereas other
well-connected components are better characterized at the high-resolution (different
color pattern in S16_Fig). Additionally, some interactions are well discriminated using
the clustering coefficient (a node-based STM) while other interactions are better
discriminated using the Jaccard index (a link-based STM) (S16_Fig). This highlights the
importance of both link- and node-based STMs in characterizing the topology of
connectivity and neighborhood, respectively, of gene-pairs in the CIN to predict
co-expression.

Our observations are in line with the two complementary models of how regulatory
elements, such as enhancers and insulators, act to regulate the expression of distant
genes [405]. The looping model assumes that loops along the genome are formed to
bring distal regulatory sequences in direct contact with the promoters of target genes.
Alternatively, genes undergoing transcription might co-localize in the nucleus in tran-
scription factories, and enhancers facilitate the movement of genes into or out of these
factories. Our finding that a multi-resolution scale-aware encoding of the CIN topology
better predicts co-expression indeed shows that chromatin interactions occur at differ-
ent levels, ranging from direct interactions between the transcription start sites of genes
(small-scale) through interactions between genes (medium-scale) up to interaction be-
tween chromatin compartments (large-scale).

The topology of different chromosomes might be radically different, due to both
chromosome length and different fractions of chromatin types. High-scale STM values
are in particular sensitive to such a change in topology, and are likely to be one of the
causes for the differences in performance. Indeed, a classifier, such as the one proposed
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here, might also be used to characterize chromatin conformation.
In the current study, we used only intra-chromosomal interactions. Nevertheless,

our proposed methods could principally be applied to inter-chromosomal interactions
given that the data is normalized properly across chromosomes [397, 406]. Furthermore,
the method is not tissue- or organism-specific and can be generalized to predict any
functional relationships (not only co-expression) between genomic loci (bins or genes)
based on the characterization of the CIN.

The brain is a very complex structure with large variability in gene expression pat-
terns across different regions. Using the high-resolution maps of the ABA, this vari-
ability could be used to identify distinct groups of genes with a similar expression pat-
tern indicating their functional similarity [138, 142]. For example, several studies an-
alyzed the relationship between spatial-co-expression and connectivity in the mouse
brain [147, 148, 150, 151]. Menashe et al . [131] used a spatial co-expression network
of the mouse brain to identify common neuro-functional properties of autism-related
genes. We expect that within the brain, and especially the cortex, many genes vary and
that their biologically meaningful spatial correlation patterns are reflected by long-range
chromatin interactions.

With the recent association of dozens of mutations in chromatin regulators to neu-
ropsychiatric disorders [407], our method provides a promising approach to investigate
the effect of those regulators on the cortical regulatory network. A good characteriza-
tion of interactions in the CIN and their relationship to co-expression can add to our
understanding of the genetic etiology of these diseases.

7.4. MATERIALS AND METHODS

RANK-BASED NORMALIZATION OF HI-C CONTACT MATRICES
In order to eliminate genomic distance bias in a Hi-C matrix, each Hi-C contact value is
replaced by its relative rank compared to Hi-C contacts between bins with a similar ge-
nomic distance, measured in base-pairs [402]. The normalized Hi-C score ĉi j is defined
as the rank of ci j in the vector C d , where ci j is the Hi-C contact between bin i and j with
genomic distance of d base pairs (bp). The vector C d is the mth super-diagonal of the
Hi-C contact matrix with m = d

bi nsi ze which contains Hi-C scores between all bin pairs
that have the same genomic distance d . Ranks are adjusted for ties by using the average
rank whenever values in C d are tied.

Note that by increasing the genomic distance, the length of C d decreases. Therefore,
C d s are extended to have an equal length L. The extension is done by adding elements
from n neighboring super-diagonals around mth super-diagonal to reach the constant
length L. As we move further from the main diagonal, the number of elements on the
mth super-diagonal becomes very small. Therefore, a substantial number of elements
from neighboring super-diagonals are included. This is acceptable since the distribu-
tions of C d are more similar for large d , and can thus be pooled. We set L equal for
all chromosomes to determine a genome-wide threshold of strong Hi-C scores between
gene-loci. So, the normalized Hi-C scores (i.e. ranks) are set to be in the same range
across all chromosomes. We set L to be equal to twice the number of bins on Chromo-
some 1, the largest chromosome in the mouse genome.
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SCALE-AWARE TOPOLOGICAL MEASURES
STMs were acquired by calculating the five topological measures described in Table 7.1
on a diffused network, across a range of scales (β). We empirically choose 10 values for
beta in range of [0,10] according to:

β= 26b −1

26 −1
× (10−0.0001)+0.0001 (7.1)

with b = 0.0, ...,1.0 in 10 steps resulting β : [0.0001,0.09,0.24,0.47, 0.8,1.4,2.3,3.8,6.2,10].
As a result, for the scale-aware classification, 80 features (8 measures × 10 scales) were
extracted from the chromatin interaction network.

SPATIALLY-MAPPED GENE EXPRESSION DATA
We downloaded all the expression energy volumes of the 4,345 genes with coronal ex-
periments from (http://mouse.brain-map.org/) [24], using the ABA Application Pro-
gramming Interface (API). Expression energy is a measurement combining the expres-
sion level, defined as the integrated amount of signal within each voxel, and the expres-
sion density, defined as the amount of expressing cells within each voxel. We selected all
voxels belonging to the cortex, defined as Isocortex in the ABA, and all the RefSeq genes,
resulting in an expression matrix of 15,410 rows (voxels) and 4,230 columns (genes). We
used Spearman’s Rank correlation as a measure of similarity between the spatial expres-
sion profiles of each pair of genes, resulting in a 4,230 × 4,230 spatial co-expression
matrix. Gene entries from the spatial co-expression matrix were mapped to their ge-
nomic locations to determine the Hi-C contact frequency between gene-pairs based on
the mouse reference genome (mm9: NCBI m37, GC A000001635.18).

We considered a gene-pair to be strongly co-expressed (i.e. positive label) if their
correlation exceeds the 90th-percentile of all correlations across all chromosomes. Con-
versely, gene-pairs are considered to be without strong co-expression (i.e. negative label)
when their correlation falls below the median of all correlations across all chromosomes.

SUPERVISED LEARNING PROCEDURE
We used a random neural network (RNN) classifier from the PRTools toolbox [408] (Mat-
lab 2012b) to predict the co-expression label of gene pairs using the topological mea-
sures of the link connecting them in the CIN as features. RNN is a feed-forward neural
network with one hidden layer. We set the number of hidden nodes to 800, the maximum
number of input features (8 STMs at 10 scales applied to 10 CINs; 5 different resolutions
and two mapping methods).

The performance of the classifier was determined using 10-fold cross validation and
reported in terms of the area under the ROC (receiver operating characteristic) curve
(AUC). The ROC curve represents the true positive rate (sensitivity) as a function of the
false positive rate (1 - specificity) for different discrimination thresholds of the classifier
(S17_Fig). An AUC of 1 represents a perfect classification and 0.5 represent a random
classification.

http://mouse.brain-map.org/
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T-SNE MAP
t-Distributed Stochastic Neighbor Embedding (t-SNE) [32, 207] was used to map the
links of each chromosome’s CIN to a 2D space by reducing the dimensionality of the
N ×M data, where N is the number of gene-pairs in each chromosome and M is the
number of topological features. In the resulting map, each Hi-C link is represented by a
point in the 2D space where the distance between points reflect the similarity between
their corresponding topological profiles. We applied t-SNE with perplexity of 30 and ini-
tial dimensionality reduction using 50 principal components.

7.5. SUPPLEMENTARY MATERIAL
The online version of this article contains supplementary material1.

1http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004221#sec022

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004221#sec022
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A TLASES of spatial and temporal gene expression in the mammalian brain are essen-
tial to understand how genetic variation affects structural and functional organiza-

tion of the brain. Nevertheless, the growing number of genetic variants implicated in
neurobiological processes and the high dimensionality of these atlases poses several
computational challenges. This thesis described a set of computational methods de-
veloped to address some of these challenges. In the following sections, we discuss our
conclusions and potential extensions to this work. We briefly discuss our perspective on
the future of brain transcriptomes in terms of the availability of additional data sources
and the need for data integration methods to enhance our understanding of the brain.

8.1. DIMENSIONALITY REDUCTION
In Chapter 3, we have analyzed the relationship between gene expression and
neuroanatomy using nonlinear dimensionality reduction. We have shown that t-SNE
provides a better representation of both local and global relationships between
anatomical regions in the mouse and human brain transcriptomes, compared to PCA
and classical MDS. The resulting low dimensional embeddings were consistent
between the sagittal and coronal mouse brain atlases and across the six human brains.
We showed that such low dimensional maps can be used to assess the contribution of
cell-type markers towards the structural organization of the brain.

We can use the same approach to analyze similarities between the spatial and tem-
poral expression of genes by creating a low dimensional gene map using t-SNE. A simul-
taneous view of both maps (gene and sample maps) can provide valuable information
about the spatial or temporal localization of groups of co-expressed genes. This can en-
hance our understanding of the genetic influence on brain connectivity. An interactive
platform which allows visualization of the dual t-SNE map with real-time data brushing
and map recalculation will be crucial. Such a platform will allow online hypothesis test-
ing on the contribution of genes to the anatomical organization of the brain, as well as
identifying regions driving co-expression relationships between genes. However, this re-
quires a computationally efficient implementation of t-SNE that allows online mapping
of large amounts of data.

One of the greatest challenges is how to integrate multiple types of data to study the
relationships between samples representing different brain regions and time points. For
example, for a subset of the samples in the BrainSpan Atlas of the developing human
brain, gene expression, methylation and microRNA measurements are available. 2D rep-
resentations generated using dimensionality reduction methods can be used to explore
similarities between samples based on each of these data types separately. However,
integrating different types of genomic data as features before dimensionality reduction
can be challenging and methods that jointly model such data are highly needed.

8.2. SPATIAL AND TEMPORAL CO-EXPRESSION
In this thesis, we used co-expression analysis to identify common biological processes
between groups of genes. Using the BrainSpan Atlas and the Allen Human Brain Atlas we
analyzed the spatial and temporal expression of the DMD gene and its isoforms in the
human brain (Chapter 4). This analysis provides the first comprehensive overview of the
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DMD expression in the human brain in contrast to earlier studies including small sample
sizes (i.e. few subjects, few anatomical regions, and few time points). Our analysis of
the co-expression relationships of the dystrophin isoforms indicates a strong association
with genes implicated in neurodevelopmental disorders such as autism and intellectual
disability. These results might explain the high incidence of learning and behavioural
problems in DMD patients.

Similarly, we employed co-expression analysis to identify signaling pathways of
steroid receptors of nuclear steroid receptors in different regions of the mouse brain
(Chapter 6). We showed that known targets and co-regulators of steroid receptors are
highly co-expressed with the receptor in brain regions where they were identified. For
example, genes that are sensitive to sex steroids (such as estrogen) are strongly
co-expressed with the estrogen receptor alpha gene in the hypothalamus, the brain
region responsible for sexual behavior in animals. In addition, we also observed strong
co-expression of genes with steroid receptors outside their known sites of action. This
unanticipated co-expression may extend our understanding of the coordinated steroid
response of the brain.

In order to build a predictor of brain region-specific targets of steroid receptor, or
transcription factors in general, additional features, other than co-expression, can be in-
corporated. Our experiments showed that the effect size (i.e. the absolute expression of
a gene) is a good indicator of responsiveness. In addition, the presence of (conserved)
binding motif in the promoter region could be a useful additional predictor [370, 409].
Epigenetic features such as methylation and histone modifications from the ENCODE
project can also be incorporated. However, the ENCODE data does not cover all neu-
ronal cell-types and brain regions and the computationally-predicted binding motifs are
not cell-type specific.

8.3. CO-EXPRESSION NETWORKS OF DISEASE-RELATED

GENES
In Chapters 4 and 6, we were interested in the co-expression of a certain gene of inter-
est (DMD or nuclear steroid receptors) with other genes, based on the spatial and tem-
poral expression patterns, in order to identify (neural) functional relationships. Using
the BrainSpan Atlas of gene expression across different brain regions and developmental
stages of the normal human brain, we studied the co-expression relationships of genes
associated with autism spectrum disorders (Chapter 5). A co-expression network anal-
ysis of autism-related genes identified three groups with distinct co-expression profiles
across development and distinct functional enrichment. Moreover, we constructed a
genome-wide co-expression network of the developing human brain transcriptome and
we found that autism-related genes were enriched in modules related to mitochondrial
function, protein translation, and ubiquitination.

In comparison to methods that address one gene at a time, such as differential gene
expression analysis, networks can model the relationships of each gene in the context
of its molecular system. By modeling these relationships, network analysis usually re-
sults in more coherent sets of genes which facilitates biological interpretation of the re-
sults. In addition to similarity of molecular profiles, networks can be used to model other
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types of interactions between genes; i.e. edges in a network can represent physical in-
teractions (e.g. protein-protein interaction networks) or computational predictions (e.g.
motif enrichment analysis to infer transcription factor binding). Protein-protein inter-
action (PPI) data is not complete [410], biased towards published literature [411], and
not tissue- and species-specific. On the other hand, gene co-expression networks may
contain spurious gene–gene correlations due to small study sizes and low signal-to-noise
ratio [89]. A major advantage of networks is that they facilitate the integration of multi-
ple data sources as well as information on the functional relationships between genes. A
simultaneous integration of PPIs and gene co-expression based on the BrainSpan Atlas
identified modules containing functionally related genes enriched for deleterious mu-
tations in ASD and ID [29]. These results emphasize the power of using networks to
integrate data. Despite the significant role of networks to improve our understanding
of the genetic mechanisms underlying neuropsychiatric and neurodevelopmental dis-
orders [11], the increasing availability of public resources of molecular profiling data
requires efficient methods to model complex interactions at multiple molecular levels
[28]. There is need for network methods to model multiple types of interactions be-
tween genes in order to provide a global overview of the different molecular changes
(transcriptomic, epigenomic, and proteomic) associated with neurological processes.

While networks provide an attractive approach to identify common molecular mech-
anisms between the hundreds of genetic loci implicated in neurological disorders, there
is great interest in identifying disease risk genes. Exome- and whole-genome sequenc-
ing studies of autism families showed that de novo loss-of-function (LoF) mutations oc-
curred twofold more often in children with ASD compared to their unaffected siblings
[51]. Genes harboring recurrent de novo LoF mutations in multiple independent sam-
ples have been implicated in ASD risk. Several methods have been developed to prior-
itize mutations based on their prior probabilities of conferring risk of disease [412] and
their deleteriousness (CADD [413]). Despite the power of these methods to prioritize dis-
ease risk genes, they don’t incorporate relationships between genes which are efficiently
encoded in networks. The Detecting Association With Networks (DAWN) method [414]
combines TADA scores [415] and co-expression networks and uses a hidden Markov ran-
dom field to identify ASD risk genes based on TADA scores. Developing more methods to
incorporate disease risk scores and network information will be crucial. Machine learn-
ing methods provide a promising approach to predict neurological disease risk genes by
incorporating different types of features including gene network information.

8.4. CHROMATIN INTERACTIONS AND GENE CO-EXPRESSION
In Chapter 7, we showed that spatial gene co-expression in the mouse cortex can be
predicted from long-range chromatin interactions based on Hi-C data. We showed the
usefulness of encoding chromatin interactions as a network and using topological mea-
surements to describe it. Moreover, our results illustrate the power of using a multi-scale,
multi-resolution scheme to capture different ranges of chromatin interactions; i.e. from
direct interaction between genes (i.e. small-scale) to chromatin compartment interac-
tions (i.e. large-scale).

Dozens of mutations in chromatin modifiers, such as CHD8, have been implicated
in ASD [52, 407]. ASD risk genes converge into co-expression modules through brain
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development [29, 133–135]. These observations yield the study of chromatin interac-
tions and gene co-expression in the cortex crucial to our understanding of how ASD
variants affects transcription early during development. For instance, we can identify
co-expression relationships which are uniquely predictable from chromatin interactions
in the cortex compared to other brain regions. This can enrich our understanding of how
genomic variants targeting such a basic cellular function can result in a complex neuro-
logical disorder such as ASD by altering transcription in the cortex in contrast to other
brain regions.

In our work, we have used chromatin interactions to predict gene co-expression
based on the hypothesis that the 3D chromatin structure of the genome has a functional
regulatory role. Alternatively, we can test the hypothesis whether we can predict chro-
matin interactions from gene co-expression. If possible, this can give new insight into
the role of transcriptional dysregulation in neurological disorders. In addition, acquir-
ing gene expression data is much easier than Hi-C data. A good predictor of chromatin
interactions from gene expression data can provide a simpler computational overview
of the 3D structure of the genome. Such a model can be used to guide targeted mea-
surement of chromatin interactions (e.g. 4C) of specific genomic regions based on their
effect on transcription regulation.

8.5. PERSPECTIVE ON THE FUTURE OF BRAIN

TRANSCRIPTOMES
In Chapter 2, we have discussed our perspective on how to enrich our understanding of
the brain by means of computational analysis of brain transcriptome atlases. Here, we
provide a brief summarization.

While brain transcriptome atlases provide detailed information about gene
expression across brain regions and developmental stages, epigenomic and proteomic
measurements from the brain can provide invaluable information about regulatory and
translational alternations. There is an increasing availability of epigenetic data from
different neuronal cell types, brain regions, and time points and from large consortia
(ENCODE project [171], Roadmap Epigenomics Mapping Consortium [75], and the
ongoing efforts of PsychENCODE consortium [178]). Similarly, imaging mass
spectroscopy allows capturing the spatial distribution of large biomolecules, such as
proteins, to study the chemical organization of the brain. In addition, single-cell
sequencing is a rapidly developing field allowing genetic, epigenetic, and
transcriptional measurements from homogenous cell populations. Creative
computational methods are desperately needed to integrate data across these different
molecular levels [28, 416]. In addition, methods that can integrate cell-type-specific
data with tissue-specific data can provide an insight into the dynamics of cell
populations. Finally, computational approaches which can integrate tissue- and
cell-type-specific gene expression data with data that is not tissue- or species-specific
but yet valuable, such as PPIs, will be crucial to benefit from the large body of data
generated pre single-cell era.

Imaging is important to diagnose and trace neurological disease progression in a
highly inaccessible organ like the human brain. On the other hand, we have discussed in
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details the impact of studying the molecular mechanisms underlying neurological disor-
ders to help develop disease markers and identify treatment strategies. Combined imag-
ing and genomic screening can elucidate genetic variations that influence brain struc-
ture, function and circuitry. However, the large number of statistical tests performed
to detect associations pose a great challenge for small-sized studies and variants with
small effect. Information about where and when a gene is expressed in the brain can be
leveraged to prioritize genes and variants for testing, allowing imaging-genetic studies of
smaller cohorts. For instance, integrating this information as a prior in existing graphical
models of imaging and genetic data [190, 417, 418] can be beneficial.

The spatial and temporal resolution of the current brain transcriptomes poses sev-
eral challenges to methods aiming to integrate these atlases with imaging and in-house
gene expression measurements. For instance, the spatial resolution of the human brain
transcriptome (∼ 1000 samples per brain) is very low in contrast to imaging-based data
(e.g. MRI), yielding data integration very challenging. On the other hand, the mouse
brain transcriptome has a very high resolution since the ISH images can have a near-
cellular resolution (∼ 1µm). However, the genome-wide data registered to the common
3D space offers a much lower resolution (∼ 200µm) in order to avoid the high computa-
tional cost associated with high-resolution genome- and brain-wide data. Hybrid meth-
ods which can analyze brain transcriptomes at multiple resolutions can be crucial. Such
methods can employ a discovery approach to analyze the low resolution data and subse-
quently a more rigorous analysis of the high resolution data after converging to a specific
brain region, developmental stage, or a small set of genes.

8.6. CONCLUDING REMARKS
In this thesis we have described several computational approaches to analyze brain
transcriptome atlases in order to understand the genetic etiology of brain organization.
Several methods have been used, including dimensionality reduction and gene
co-expression networks, to associate groups of genes that share a common function to
a specific anatomical region or developmental stage. Multi-scale network analysis has
been used to integrate gene expression and the 3D chromatin structure of the genome
in the mouse cortex. These methods have enriched our understanding of the
underlying genetic etiology of DMD and ASD, but are generally applicable to other
neurological disorders. Furthermore, we have shown that a genome-wide analysis of
the co-expression of steroid receptors in the brain can be used to identify
region-specific targets and co-regulators, which can be very valuable for selective drug
targeting. This work illustrates the value of brain transcriptome atlases as well as the
complex structure of the data. The increasing availability of data covering multiple
molecular levels (transcriptomic, epigenomic, proteomic) as well as multiple
organizational levels of the brain (single-cell, cell types, circuits, and networks) yields
computational methods that can handle multi-scale data very crucial.

Over the past decade, brain transcriptome atlases have greatly facilitated our under-
standing of the functional elements in the brain. At the same time, the number of genetic
variants implicated in neurological disorders as well as the amount of in vivo brain imag-
ing data is rapidly increasing. These developments have been widely driven by signifi-
cant advances in gene expression measurement, sequencing and imaging technologies
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allowing high-throughput genomic and imaging measurements from large cohorts. The
current challenge lies in interconnecting these various data sources for a better under-
standing of how cell-type specific mechanisms spanning several molecular levels con-
tribute to different levels of cellular organization in the brain. A better understanding
of brain region- and function- specific genetic mechanisms, can facilitate drug targets
identification in a spatial and temporal specific manner.
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SUMMARY

Atlases of gene expression across the mammalian brain provide invaluable information
to unravel the complex role of genetic variation in the structural and functional organi-
zation of the brain. Information about where in the brain and at which developmental
stage a certain gene is expressed can help identifying the functional role of that gene
in the brain. Nevertheless, neurodevelopmental processes as well as neurological dis-
orders are complex processes governed by hundreds of genes. Given the cellular diver-
sity of the brain, the high spatial resolution of these atlases allows the identification of
region-specific interactions between genes by means of co-expression analysis.

Brain transcriptome atlases are, however, multivariate datasets with a high number
of dimensions across genes, brain regions, and developmental stages. To derive intuition
on the relationships between pairs of variables (either genes, brain regions, or develop-
mental stages), it is beneficial to explore the data in two-dimensional (2D) maps. Co-
expression networks that encode the similarity between the spatial and temporal expres-
sion patterns of genes can be used to identify groups of genes that signal through similar
pathways, share common regulatory elements, or are involved in the same biological
process. The brain is hierarchically organized both at the molecular level (transcrip-
tomic, proteomic, and epigenomic) as well as the neurobiological level (cells, circuits,
and functional networks). This hierarchical organization requires a multi-scale network
analysis in order to integrate data across multiple levels, which is necessary to acquire
a full understanding of the mechanisms underlying complex biological processes in the
brain.

This thesis introduces data-driven computational algorithms to analyze brain
transcriptome atlases to get insight into the role of genetics in the structural and
functional organization of the brain. Our methods have enhanced our understanding of
the shared pathways among hundreds of genes related to autism and the role of
dystrophin in the brain that might explain the high incidence of learning and
behavioral problems in Duchene muscular dystrophy. In addition, we have contributed
new insights into brain modulation by steroid hormones. These insights can help
identify therapeutic targets for selective activation of brain circuits in research and
clinical settings.
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SAMENVATTING

Gen-expressie-atlassen van de hersenen bevatten waardevolle informatie voor het be-
grijpen van de rol van genetische variatie in de functie en structuur van het brein. Waar
en wanneer (in de ontwikkeling) een gen tot expressie komt geeft informatie over de
functie van dat gen in het brein. De ontwikkeling van de hersenen en het ontstaan van
hersenziektes zijn echter zeer complexe processen, die worden gestuurd door honder-
den genen tegelijkertijd. Vanwege de cellulaire diversiteit van het brein, is een hoge spa-
tiële resolutie van deze atlassen noodzakelijk om inzicht te geven in regio-specifieke in-
teracties tussen genen.

Deze gen-expressie-atlassen zijn echter complexe datasets met vele variabelen en
een groot aantal dimensies in zowel genen, hersenregio’s, als ontwikkelingsstadia. Om
intuïtief begrip te krijgen van de relaties tussen sets van variabelen (genen, regio’s of
stadia), kan het helpen om de data te verkennen in tweedimensionale diagrammen. Co-
expressienetwerken beschrijven daarnaast de gelijkenis tussen genen met betrekking tot
ruimtelijke en temporele patronen van expressie, en kunnen gebruikt worden om groe-
pen genen te identificeren met gedeelde biologische functies of regulerende elementen.
De hersenen zijn hiërarchisch georganiseerd, zowel op moleculair niveau (van expres-
sie, eiwitten en epigenetica) als op neurobiologisch niveau (cellen en functionele net-
werken). Deze hiërarchische organisatie vereist een aanpak waarbij data op meerdere
schalen wordt bekeken. Op deze wijze kunnen we inzicht krijgen in de mechanismen
die ten grondslag liggen aan de complexe biologische processen in het brein.

Dit proefschrift introduceert data-gedreven algoritmen voor het analyseren van gen-
expressie-atlassen van het brein, om de rol van genetica in de structurele en functionele
organisatie van de hersenen te doorgronden. Onze methoden hebben geholpen bij het
begrijpen van de gedeelde pathways onder de honderden genen die betrokken zijn bij
autisme, en bij het begrijpen van de rol van dystrofine in de leer- en gedragsproblemen
die gepaard gaan met de ziekte van Duchenne. Ten slotte hebben we nieuwe inzich-
ten geboden in de effecten van steroïdhormonen op de hersenen. De lessen die wij ge-
leerd hebben kunnen van pas komen bij de zoektocht naar nieuwe medicatie voor het
activeren van hersennetwerken, zowel in wetenschappelijk onderzoek als de medische
praktijk.
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