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Glossary

Abbreviations
A-OCBE Adaptive Optimal Control Based Estimator.
BL-OCBE Ballistic Linear Optimal Control Based Estimator.
DMC Dynamic Model Compensation.
GEO Geostationary Earth Orbit.
GL-OCBE Generalized Linear Optimal Control Based Estimator.
KS Kustaanheimo-Stiefel.
MEO Medium Earth Orbit.
OCBE Optimal Control Based Estimator.
RK Runge-Kutta.
R-OCBE Regularized Optimal Control Based Estimator.
SNC State Noise Compensation.
SRP Solar Radiation Pressure.
SSA Space Situational Awareness.
STM State Transition Matrix.
Tudat TU Delft Astrodynamics Toolbox.
U-OCBE Unscented Optimal Control Based Estimator.

OCBE Symbols
tk Time of measurement with index k.
x⃗ State vector.
x̂i | j Estimate of state at time ti , using information at time t j .
δx̂i | j Estimate of state deviation from reference (propagated) trajectory at time ti , using in-

formation at time t j .
x̄i | j Predicted (propagated) state at time ti , using information at time t j .
P̂i | j Estimate of covariance at time ti , using information at time t j .
P̄i | j Predicted (propagated) covariance at time ti , using information at time t j .
Rk Covariance of measurement with index k.
p⃗ State adjoint vector.
p̂i | j Estimate of state adjoint at time ti , using information at time t j .
δp̂i | j Estimate of state adjoint deviation from reference (propagated) trajectory at time ti ,

using information at time t j .

f⃗n State derivative vector due to natural (non-control) dynamics.
Φ State transition matrix.
B Control input scaling matrix.
Q̃ Dynamic Uncertainty Matrix.
σQ Dynamic Uncertainty.
Y⃗k System measurement vector with index k.
h System measurement function (mapping state to measurement vector).
H̃k Linearized, matrix representation of the system measurement function, evaluated at

time corresponding to measurement with index k.
u Control input vector.
δûi | j Estimate of control input deviation from reference (propagated) trajectory at time ti ,

using information at time t j .
Dz Mis-modelled dynamics detection control distance metric.
µz Mean of mis-modelled dynamics detection control distance metric.
χ̄i | j Sigma points corresponding to state estimate at time ti , using information at time t j .
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γ̄i | j Measurements of sigma points corresponding to state estimate at time ti , using infor-
mation at time t j .

x(k)
i | j k-th sigma point corresponding to state estimate at time ti , using information at time

t j .
Wk Weight corresponding to k-th sigma point.
PC hol Cholesky decomposition of covariance.
Px y Cross covariance.
Py y Innovation covariance.

EDromo Regularization Symbols
t Dimensionless Time.
λ⃗ Regularized state vector.
ϕ Angle-like independent variable.
h⃗ Angular momentum vector.
k⃗ Normalized angular momentum vector.
r⃗ Position vector.
i⃗ Normalized Position vector.
U Dimensionless (central body) perturbing potential.
ε Dimensionless total energy.
θ Generalized true anomaly.
ν Orbital longitude.
g⃗ Generalized eccentricity vector.
G Generalized eccentric anomaly.
F Total (dimensionless) perturbing acceleration.
P Total non-potential (dimensionless) perturbing acceleration.
R Total (dimensionless) perturbing radial acceleration.
Rp Total non-potential (dimensionless) perturbing radial acceleration.
N Total (dimensionless) perturbing cross-track acceleration.
Tp Total non-potential (dimensionless) perturbing along-track acceleration.
DU Distance factor for non-dimensionalization.
TU Frequency factor for non-dimensionalization.
R0 Initial orbital radius magnitude.
µ Central body gravitational parameter.

Other Symbols
U Spherical Harmonic Gravity Potential.
φ Body-fixed latitude.
θ Body-fixed longitude.
R Central body reference radius.
P̄lm Normalized Legendre polynomial of degree l, order m.
C̄lm Normalized cosine harmonic coefficient of degree l, order m.
S̄lm Normalized sine harmonic coefficient of degree l, order m.
a⃗ Acceleration vector.
m Mass.
Φ Solar Flux.
A (Reference) surface area.
c Speed of Light.
Cr Reflectivity coefficient.
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α Surface absorption coefficient.
δ Diffuse reflectivity coefficient.
ρ Specular reflectivity coefficient.
ê⊙ Unit vector in direction of solar radiation source.
ên Surface normal unit vector.
u⃗ Control input acceleration.
Px Covariance matrix corresponding to Cartesian state representation.
Pλ Covariance matrix corresponding to EDromo state representation.
Pr em Remediated covariance matrix.
V Covariance eigenvector matrix.
Λ Covariance eigenvalue matrix (diagonal).
Γ Clipped covariance eigenvalue matrix (diagonal).
d t Integration time step.
εabs Absolute Tolerance.
εr el Relative Tolerance.
a Measurement error scaling factor.
σR Radial measurement standard deviation.
σAz Azimuth measurement standard deviation.
σEl Elevation measurement standard deviation.



1
Introduction

As of 2023 there were over 40,000 trackable objects in orbit around Earth, in form of both spacecraft
and space debris[1]. As of late, many projects, including satellite constellations such as Starlink are
contributing to a further increase in tracked objects around our home planet. With the International
Space Station approaching the end of its lifespan[2], commercial replacements are also expected. It
does not stop at low orbits, however. Missions the likes of Artemis from NASA are reaching for the
Moon and beyond. Investigations into cis-lunar orbits for staging systems such as the Gateway con-
cept have found NRO (Near Rectilinear Orbits) to be a particularly attractive family[3],[4].

Tracking as many of these objects as possible is crucial to successful operations and safety of both
astronauts and active spacecraft and is part of SSA (Space Situational Awareness) initiatives led by
the likes of NASA and ESA. Systems such as altimetry satellites make use of precisely estimated
spacecraft states to yield meaningful scientific data. The importance of tracking is not limited to
cooperative spacecraft, however. Autonomous spacecraft perform stationkeeping maneuvers that
are likely unknown to ground systems prior to execution [5]. Malfunctions may result in unexpected
changes in the behaviour of a spacecraft. Debris or out of service spacecraft create risk of collision
as well. Knowledge of any such object is crucial to conjunction assessment and any following colli-
sion avoidance [5].

The variety of object sizes and trajectories results in varying tracking difficulties. In addition to com-
plications due to severe distances, MEO (Medium Earth Orbit) and GEO (Geostationary Earth Orbit)
regions often contain large spacecraft or debris with high area-to-mass ratios. Due to the significant
effect of solar radiation pressure on these objects, their orbits periodically vary in both inclination
and eccentricity [6]. Given that solar radiation pressure is generally difficult to model accurately, this
introduces significant dynamics mis-modelling in the tracking algorithms, hindering their perfor-
mance. These algorithms must output state estimates sufficiently accurate to ensure ground station
sensors may locate their target given a time gap between measurements, hence techniques to ac-
count for the effect of mis-modelling in such orbits are crucial.

While these considerations are relevant for the already populated geostationary and graveyard or-
bits, another region of interest to SSA is the family of Tundra orbits. The reduced stability [7] and
notable eccentricity of a Tundra orbit, compared to graveyard orbits, allows for re-entry of spacecraft
using natural mechanisms within 25–100 years [8]. Should these properties, beneficial to disposal
of spacecraft be exploited, the need for tracking and collision avoidance in the Tundra region will
increase, despite the currently low traffic.

With more and more objects to be observed in various orbits and crowded observation infrastruc-
ture, the importance of computationally efficient state estimation algorithms, capable of working
with sparse observations will continue to grow. Given long gaps between measurements, effects of
mis-modelled dynamics (such as those due to solar radiation pressure) are significant and methods
to compensate for these effects in an estimator are necessary. The first examples of such meth-
ods are the SNC (State Noise Compensation) and DMC (Dynamic Model Compensation) which are
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2 1. Introduction

commonly applied in sequential estimators. SNC is a method that introduces a stochastic process
noise term in the dynamics to prevent filter saturation and divergence [9]. A similar method is the
DMC, which introduces a deterministic component to the process noise. This component of noise
may be estimated to produce a prediction of mis-modelled accelerations which can in turn be used
for maneuver detection. A notable drawback of these methods is the need for tuning of the intro-
duced process noise. While the DMC method is less sensitive, it may still provide limitations when
applying these methods in an automated manner, especially in cases where truth data is not avail-
able [9].

When it comes to the more complex estimation techniques, among the most widely applied are the
Multiple Model Estimators [10]. The principle revolves around applying multiple filters with dif-
ferent underlying models. These are used to estimate states concurrently and to determine which
model is best suited for the available measurements. While this makes the method well suited to
low observability problems, the tendency to converge to a model may limit the performance should
the characteristics of the problem change. To capture more varied conditions, the Interacting Mul-
tiple Model Estimator may be employed. This method extends the functionality of Multiple Model
Estimator to ensure the ability to transition between models is retained. This may result in slightly
worse performance in cases of fixed characteristics, though the method remains among the best
compromises of complexity and performance [11] and lends itself to varying conditions in the pres-
ence of maneuvers [12].

Another such family of algorithms is the OCBE (Optimal Control Based Estimator), first introduced
by Daniel P. Lubey[13] based on the work of Marcus J. Holzinger and Daniel J. Scheeres [14]. The
OCBE allows for estimation of mis-modeled dynamics and maneuver detection using a set of ob-
servations and an assumed dynamics model. Unlike the previously discussed methods, the OCBE
employs a user-defined cost function which is minimized using optimal control theory to obtain
state estimates at both the a priori and measurement epochs. The original work in [13] introduces
multiple variations of the OCBE, the simplest being the BL-OCBE (Ballistic Linear Optimal Con-
trol Based Estimator), a more computationally intensive Generalized Linear OCBE which can be
used iteratively to solve non-linear problems as well as an automated adaptive OCBE. Similar to
methods employing DMC, the OCBE outputs control estimates that represent the severity of the
mis-modelled dynamics in addition to the estimated states and corresponding covariances. This is
particularly convenient for maneuver detection, reconstruction and even environment model up-
dates.

Other authors have since further developed the OCBE, including methods to reduce numerical in-
stability in cis-lunar problems [15], or adjustments to the control distance metrics to reduce com-
putational complexity and algorithm consistency for anomaly detection [16]. Greaves and Scheeres
[17], [18] explored autonomous navigation of spacecraft using relative measurements and the OCBE,
having updated it using the Unscented Transformation to account for strongly non-linear dynam-
ics. However, regardless of the improvements made, the benefits of the estimator come at the cost
of computational efficiency which suffers compared to other methods. This is of particular interest,
especially when considering applications such as onboard autonomous navigation systems.

Computationally efficient algorithms for numerical integration are already of interest in the field of
orbit propagation. A common approach that has been explored in the field of astrodynamics since
the 1970s involves averaging perturbing terms [19], [20], [21]. The general approach to averaging
starts with variation of parameters applied to a known solution of an unperturbed problem. Upon
substitution, this is followed by a Fourier expansion of the full problem. Given that the perturbation
is small, the chosen parameters vary slowly in time. It is thus stated that all terms of the Fourier



3

expansion bar the average have a net-zero contribution to the solution over a period 2π. This yields
a simplified set of equations ‘averaged’ over a period that can be solved to determine an approxi-
mation of the perturbed problem [22]. The main advantage of these methods is the computational
performance over large time scales, with bounded error. However, due to the closed-form nature of
the methods, the applicable environment models and accuracy are limited. In more recent studies,
the semi-analytical averaging methods have been expanded to incorporate a larger variety of envi-
ronments such as non-conservative drag forces[23]. Averaging methods have even been applied to
optimal control problems, though in the context of optimal transfers[24] rather than the OCBE.

The Poincaré-Lindstedt method is another well known semi-analytical procedure to construct asymp-
totic approximations of solutions for non-linear systems. Sometimes also referred to as the contin-
uation method[22], it requires the solution to be periodic and a forcing term to be in order ε. The
method revolves around use of a time-like variable that scales the problem to be 2π periodic. Then,
a series expansion is used to construct the approximation, the coefficients of which are determined
by separating terms of the transformed system based on the powers of ε. The applications of the
method are limited due to the need for a periodic solution and the limited timescale over which it
remains accurate[22].

A more general version of the Poincaré-Lindstedt method is referred to as the method of multiple
(time) scales. Unlike the Poincaré-Lindstedt method, this allows the construction of aperiodic so-
lutions. The result is achieved by introducing a number of additional time scales as independent
variables, related by factors εn and constructing approximations based on the resulting partial dif-
ferential equation [25]. Unfortunately, this method may be cumbersome and depending on appli-
cation, it is not guaranteed to yield a closed form solution. Furthermore, when using a large number
of time scales, consistency constraints on the structure of the solution are introduced. This is easily
violated should the free terms be chosen arbitrarily, and may result in failure of the analysis [26].

An alternative to traditional semi-analytical methods is regularization of the equations of motion.
A number of regularization methods have been developed to improve performance of numerical
integrators[27]. The equations of motion of the perturbed two-body problem have two issues. First
of all, they contain a singularity as the orbital radius approaches zero. Secondly, they are unsta-
ble in the sense of Lyapunov. This results growth of truncation error during numerical integration
processes. These issues are also present in the N-body problem. Thus, the primary objectives of
regularization involve removing singularities and reducing the effect of the instability of the equa-
tions. With the process complete, the resulting system is also reduced to a linear form, at least for
unperturbed trajectories. This may also provide benefits when applying a linear estimation method,
such as the BL-OCBE.

Generally, to tackle the aforementioned problems, regularization methods involve two distinct as-
pects. The first, involves a change of independent variable to a fictitious time by means of a Sund-
man transform. This reduces the order of the singularity and introduces a form of analytical control
of the integrator timestep [27]. In order to complete the regularization, a second step to further sta-
bilize the equations of motion is necessary. This is done in one of two ways. An option is to embed
the energy equation into the system and to linearize the equations to the form of a linear oscilla-
tor. A common alternative revolves around integrating sets of elements rather than the coordinates
themselves.

A number of regularization methods with different Sundman transforms and formulations of the
equations of motion are available in literature, many of which have been thoroughly tested for nu-
merical performance [28] and compared to averaging methods [29]. It is generally found that reg-
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ularization is more computationally intensive than averaging methods, however it is not naturally
limited in its accuracy or environment models.

An example of a well-performing regularization for the two body problem are variants of the Dromo
formulation [27], [28]. This formulation relies on propagation of elements including projections of
the eccentricity vector on an intermediate frame, orientation of said frame, the total energy, as well
as an element used to reconstruct the physical time.

While the previously discussed findings stand for the perturbed two-body problem, for cis-lunar
missions, the dynamics can be modelled as the CR3B (circular restricted three body) problem. In
this case, many of the previously discussed methods fail, especially so when considering averaging.
As an alternative, [30] has shown that closed form solutions can still be obtained for the restricted
three body problem, though in this case the problem is also confined to a single plane.

When it comes to regularization, variants of the KS (Kustaanheimo-Stiefel) formulation [27] can act
as suitable alternatives, as also shown in [29]. Unlike the Dromo formulation which integrates el-
ements, KS defines the state of the particle as a four-dimensional position, and its derivative with
respect to the fictitious time. In order to reconstruct the Cartesian state, similar to Dromo, the to-
tal energy as well as an element to reconstruct the physical time are necessary. This results in a
10-dimensional system of differential equations representing the equations of motion. It should be
noted that as a result of the dimensionality, the KS formulation requires a choice of a free parameter.
While in general it can be fixed arbitrarily, strong perturbations may destabilize the system and lead
to different solutions for different choices, hence it should be treated with sufficient caution [27].

State estimation in terms of a regularized representation of the state has also already been tackled
to a degree. J. H. Ayuso [31] [32] implemented a least-squares batch estimator and a conventional
Kalman filter in terms of ‘Dromo’ [33] regularized elements. This approach allowed for taking ad-
vantage of the linear form of the dynamics equations with linear filters, at the cost of additional
non-linear transformations to, and from the estimated elements. For the KS regularization authors
have also developed variational equations [34] and analytical covariance transformations [35] to
and from Cartesian coordinates. Both of which are necessary pieces for an estimator implementa-
tion. However, none of these developments have been applied in the context of the OCBE. Given the
potential benefits of the regularization methods and the generally computationally intensive OCBE
it seems desirable to pursue performance gains by integrating the two methods. The research objec-
tive of this Master’s thesis is thus defined to: investigate performance of the OCBE with incorporated
regularized dynamics.

Considering the weakness of the traditional OCBE lies in the computational effort, any changes to
computational efficiency and floating point operations are of great interest. Naturally, knowledge
of performance over a range of applications rather than a particular case is preferred. As previ-
ously discussed, growth of spacecraft in various non-low Earth orbits, such as the Tundra orbit, is
expected. These cases are sensitive to disturbing potential, where the regularization is expected to
perform well. Evaluation of the flexibility of the modified OCBE for such cases may provide valu-
able insight in both direct application and prospect of gains in conditions less favourable for the
algorithm. As a result, performance dependencies on severity of dynamics mis-modelling are of in-
terest. Finally, given that treated orbits are relatively difficult to observe, effects of variation in the
observation frequency and uncertainty are also considered crucial to the problem.
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The research questions corresponding to the objective are thus summarised as follows:

• How does dynamics regularization affect the computational efficiency of the OCBE?

• How does the performance of the regularized OCBE depend on the severity of dynamics mis-
modelling?

• How does the performance of the regularized OCBE depend on measurement frequency and
uncertainty?

This report contains the findings of the thesis and is structured as follows. Chapter 2 elaborates on
the background of the methods used in the thesis directly. This includes the equations of the BL-
OCBE and its variants, selection and discussion of regularization method, and key aspects of the
dynamics models. Then, Chapter 3 provides an overview of the methodology used to answer the
research questions, as well as the architecture of the algorithms implemented in pursuit of numer-
ical results. This is followed by Chapter 4, which discusses the main developments of this thesis
in, form of the changes made to the OCBE in order to facilitate estimation of regularized elements.
Chapters 5 and 6 start the discussion of numerical results of the thesis, covering the selected test
cases and corresponding implications on numerical integration accuracy respectively. Finally, the
performance of all implemented algorithms is discussed in Chapter 7, and Chapter 8 provides the
conclusions as well as summarises the recommendations for future work to build on the results of
this thesis.



2
Background Methods

While contextual information and some literature findings are already presented in the introduc-
tion, there are a number of works that provide the basis for this Master’s thesis. This chapter focuses
on the literature findings that are directly implemented or otherwise used throughout the thesis.
Section 2.1 summarizes the equations of the implemented OCBE algorithm. Then, Section 2.2 dis-
cusses the choice of the semi-analytical method to be integrated with the OCBE. Finally, a few im-
portant aspects of dynamics modelling are presented in Section 2.3.

2.1. OCBE
The first key algorithm to be discussed is the Optimal Control Based Estimator [13], [36]. The Op-
timal Control Based Estimator in general, is an algorithm performing state estimation by means of
optimal control on an arbitrary system of the form shown in Equation 2.1, in which f⃗n is the state
derivative purely due to natural dynamics, x⃗ is the state vector and t is the time. u⃗ is a fictitious
control input (to be found by the estimator), while B is a control input scaling matrix, mapping the
control input to a contribution to the state derivative.

˙⃗x = f⃗ (⃗x(t ), t , u⃗(t )) = f⃗n (⃗x(t ), t )+B(t )u⃗(t ) (2.1)

In order to obtain a solution by optimal control theory, a Bolza-type cost function may be defined
which takes the form in Equation 2.2 [13], [36].

J = Kk−1
(⃗
xk−1, x̄k−1|k−1, P̂k−1|k−1

)
+Kk

(⃗
xk , Y⃗k ,Rk , tk

)
+

∫ tk

tk−1

L
(
u⃗(τ), û(τ),Q̃(τ)

)
dτ

(2.2)

The first and second terms, Kk−1 (Equation 2.3) and Kk (Equation 2.4) correspond to a least squares
boundary costs for the a priori state and measurement information respectively [13]. These terms
encourage the selection of state estimates close to the corresponding available information, given
an uncertainty. The final term, (in which L is given by Equation 2.5) represents the mis-modelling
of the system by means of a fictitious control input, which is used to connect the state estimates at
the a priori and measurement epochs.

Kk−1 =
1

2

(
x̂k−1|k−1 − x⃗k−1

)T P̂−1
k−1|k−1

(
x̂k−1|k−1 − x⃗k−1

)
(2.3)

Kk = 1

2

(
Y⃗k −h(tk , x⃗k )

)T
R−1

k

(
Y⃗k −h(tk , x⃗k )

)
(2.4)

L = 1

2
(u⃗(t )− ū(t ))T Q̃−1 (u⃗(t )− ū(t )) (2.5)

In these equations, x⃗k−1 and x⃗k are the state vectors that the estimator aims to select by introduc-
ing an appropriate control policy u⃗(t ). x̂k−1|k−1 represents the state estimate at (a priori) time tk−1,

6



2.1. OCBE 7

which was obtained using information available at time tk−1 while P̂k−1|k−1 is the corresponding
covariance. Y⃗k is the measurement obtained at time tk with covariance Rk and h is a function map-
ping a state to a corresponding measurement vector. The vector ū(t ) is the assumed control vector
(generally set to zero given that dynamics are well-modelled) with the matrix Q̃ representing the
dynamic uncertainty.

The priori state estimate and measurement covariances P̂k−1|k−1 and Rk as well as the dynamics
uncertainty Q̃ in the cost function allow for weighing the importance of the deviations from initial
state, measurement and expected control effort. The solution of the optimal control problem for the
aforementioned cost function, thus leads to state estimates at both the a priori and measurement
epochs as well as a fictitious control vector.

While the process of deriving a solution to the optimal control problem is not covered in this thesis,
it is important to note that in order to obtain a control input minimizing the cost function, a state
adjoint p⃗ (which is later related to the control input itself) defined in Equation 2.6 is necessary.

˙⃗p =−
(
∂L

∂x⃗

)T

−
(
∂ f

∂x⃗

)T

p⃗(t ) (2.6)

Lubey and Scheeres [13], [36], [37] used the results of the optimal control problem to develop multi-
ple variants of the OCBE estimator. One of which is the BL-OCBE, which was implemented as part of
this thesis based on the aforementioned literature. The BL-OCBE is a variant of the OCBE algorithm,
which hinges on the assumption of linearized dynamics around a ballistic nominal trajectory. This
leads to a significantly simplified implementation and a more computationally efficient process to
obtain results. The equations relevant for it’s implementation are thus summarized in this section.

2.1.1. BL-OCBE Estimation
The equations of the BL-OCBE are applied for sequential estimation, which due to the nature of the
cost function results in solving a two-point boundary value problem for each measurement epoch.
Unlike a Kalman filter, this results in a state estimate for both the prior and current states when
processing a new measurement (effectively acting as a one step smoother). This section briefly
elaborates on the estimation process and provides the notation used in the equations below.

Before moving on to the method in detail, a few comments on the notation should be made. First
of all, a number of parameters with subscript notation of the form k | k −1 are present. This implies
‘value corresponding to time tk , using information from time tk−1’ (or equivalent given different
indices). Furthermore, a number of symbols include a hat (i.e. x̂k|k ) or bar (i.e. x̄k|k−1). The first,
implies the variable is an estimate, which is an output of the BL-OCBE. The bar on the other hand,
implies a predicted (propagated) value rather than an estimate. Finally, a number of steps in the
estimation are performed in terms of linearized deviations evaluated with respect to the reference
(propagated) trajectory [36]. Such deviations are indicated with δ, for example the OCBE may out-
put an estimated state deviation δx̂k|k , which must be added to the corresponding reference trajec-
tory state in order to obtain the estimate x̂k|k itself.

To provide a top level overview of the approach, Figure 2.1 was created. Here the method is com-
pared to a Kalman filter, in terms of the actions taken as part of the time and measurement update
steps. While all steps performed in the Kalman filter are also present in the BL-OCBE (though with
different mathematical formulations), the coloured blocks indicate steps part of the OCBE which



8 2. Background Methods

are not present in the Kalman filter.

Measurement Update StepTime Update Step

Propagate 

Propagate 

Propagate
State

Propagate
Covariance

Priori
Information

Compute gain
matrix

Estimate state
at measurement

epoch

Estimate state
at a priori epoch

Estimate
adjoint

Output

Estimate
Control Input

Measurement
Information

Figure 2.1: Top-level overview of steps in a Kalman Filter and BL-OCBE. Coloured blocks indicate a step that is present in
the BL-OCBE but absent in the Kalman filter. Remaining blocks indicate steps present in both algorithms.

.

Similar to a Kalman filter, the approach as presented in [13] begins with a time update step. The state
estimate x̂k−1|k−1 at time tk−1 is propagated to, x̄k|k−1. Then the propagated covariance is given by
Equation 2.7.

P̄k|k−1 = P̄k −ΦxpΦ
T
xx (2.7) P̄k =Φxx P̂k−1|k−1Φ

T
xx (2.8)

Notice how the state transition matrixΦ is referenced with subscripts with xx and xp. This is due to
the first major difference between the BL-OCBE and the Kalman filter. The OCBE solves an optimal
control problem, and does so by obtaining the aforementioned adjoint of the state p. This adjoint
may be propagated along the state with Equation 2.9, with a⃗n as the natural dynamics acceleration
(last 3 rows of f⃗n), r⃗ and v⃗ as the position and velocity respectively, while p⃗r and p⃗v are the vectors
of the first and last 3 elements of the adjoint (in the case of Cartesian position/velocity state).

˙⃗p =
 −

(
∂a⃗n
∂⃗r

)T
p⃗v

−p⃗r −
(
∂a⃗n
∂v⃗

)T
p⃗v

 (2.9)

While propagation of the adjoint is not strictly necessary to perform state estimation, as was seen
from Equation 2.7, the covariance propagation does require components of the state transition ma-
trix corresponding to the adjoint (particularlyΦxp ). This, extended STM (State Transition Matrix) is
given by Equations 2.10 - 2.12:

Φ̇(t ,τ) = A(t )Φ(t ,τ) (2.10) Φ(tk , tk−1) =
[
Φxx Φxp

Φpx Φpp

]
(2.11)

A(t ) =
[

∂ ˙⃗x
∂x⃗ −B(t )Q̃(t )B(t )T

− ∂2

∂x⃗2 ( ˙⃗xT p⃗) −∂ ˙⃗x
∂x⃗

T

]
(2.12)

In which we once again observe the control gain matrix B and the assumed dynamic uncertainty
matrix Q̃ (acting as a user input) from the original cost function. Fortunately in the simplified case
of the BL-OCBE,Φpx is reduced to the zero matrix andΦpp can be computed using Equation 2.13.
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Φpp = (Φ−1
xx )T (2.13)

This reduces the necessary function evaluations and leaves only the Φxx and Φxp quadrants to be
integrated numerically with Equations 2.14 and 2.15

Φ̇xx = ∂ ˙⃗x

∂x⃗
Φxx (2.14)

Φ̇xp = ∂ ˙⃗x

∂x⃗
Φxp −B(t )Q̃(t )B(t )TΦpp (2.15)

Once the state, covariance and the extended STM are propagated in the time update step, the mea-
surement update may be performed which is also shown in Figure 2.1. The state estimate at the
measurement epoch with the corresponding covariance is found using Equations 2.16 and 2.17 for
the BL-OCBE. Here Lk is the BL-OCBE equivalent of a Kalman gain, given by Equation 2.18. With
any auxiliary values necessary provided by Equations 2.19 to 2.21. Here, Y⃗k is the system measure-
ment at time tk , Rk is the corresponding covariance and h is the function mapping a state to a
measurement.

δx̂k|k = δx̄k|k−1 +Lk (δy⃗k − H̃kδx̄k|k−1) (2.16)

P̂k|k = (I −Lk H̃k )P̄k|k−1(I −Lk H̃k )T +Lk Rk LT
k (2.17)

Lk = P̄k|k−1Ψk (2.18) Ψk = H̃ T
k (Rk + H̃k P̄k|k−1H̃ T

k ) (2.19)

δy⃗k = Y⃗k −h(tk , x̄(tk )) (2.20) H̃k = ∂h

∂x⃗

∣∣∣
tk

(2.21)

As unlike the Kalman filter, the OCBE solves a two-point boundary value problem it may also be
used to obtain an updated estimate of the state and covariance at the priori epoch:

δx̂k−1|k = δx̂k−1|k−1 +ΦT
pp P̄kΨk (δy⃗k − H̃kδx̄k|k−1) (2.22)

P̂k−1|k = P̂k−1|k−1 − P̂k−1|k−1Φ
T
xxΨk H̃kΦxx P̂k−1|k−1 (2.23)

The final benefit of the OCBE is that the solution of the optimal control problem can be used to
reconstruct maneuvers or mis-modelled dynamics. Parallel to the state estimates, the system’s op-
timal control policy can be obtained in terms of the adjoint estimates in Equations 2.24 and 2.25.
While this process is not strictly necessary to perform the state estimation, the adjoint estimates
may be applied to obtain the estimate of the fictitious control input itself (given by Equation 2.26),
which can in turn be used in as part of distance metrics for maneuver detection and reconstruction
as well as estimation of natural dynamics mis-modelling [36].

δp̂k−1|k =−ΦT
xxΨk (δy⃗k − H̃kδx̄k|k−1) (2.24)

δp̂k|k =−Ψk (δy⃗k − H̃kδx̄k|k−1) (2.25)

δû(t ) =−Q̃
∂ẋ

∂u

T

Φpp (t , tk−1)δp̂k−1|k (2.26)

As with a Kalman filter, this process may of course be repeated until the full series of measurements
are used to obtain state estimates.
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2.1.2. Smoothing
Following the evaluation of state estimates, Lubey and Scheeres[13] also provide equations to achieve
smoothing for the OCBE state estimates. The goal of the smoothing algorithm is to update all es-
timates at times tk with additional information obtained with later measurements. For each previ-
ously generated estimate, a new smoothed version is computed using Equations 2.27 and 2.28.

In these equations, l indicates the total number of measurements. Hence, for example, δx̂k|l refers
to the smoothed estimated state correction for time tk using information at the end of the estima-
tion, at time tl . To apply these equations, a recursive algorithm is necessary, starting at the final
measurement epoch where k = l . In this case the smoothed estimate is equal to the estimate com-
puted using Equation 2.16. This provides all necessary components to compute δx̂k−1|l , which then
can be used to compute δx̂k−2|l and so on, until smoothing is achieved for all times.

δx̂k−1|l = δx̂k−1|k−1 +Sk−1[δx̂k|l − (Φxxδx̂k−1|k−1)] (2.27)

δP̂k−1|l = P̂k−1|k−1 +Sk−1[P̂k|l − P̄k|k−1]ST
k−1 (2.28)

Using:
Sk−1 = P̂k−1|k−1Φ

T
xx P̄−1

k|k−1 (2.29)

A direct expression of the smoothed control estimate can also be computed using Equations 2.30
and 2.31

δp̂k−1|l =−P̂−1
k−1|k−1Sk−1[δx̂k|l − (Φxxδx̂k−1|k−1)] (2.30)

δût |tl =−Q̃(t )B(t )TΦpp P̂−1
k−1|k−1[δx̂k−1|k−1 −δx̂k−1|l ] (2.31)

2.1.3. Adaptive OCBE
While the equations presented in the previous subsections provide the means to obtain and smooth
state estimates, the effectiveness of the method still significantly depends on the user specified as-
sumed dynamic uncertainty matrix Q̃. To alleviate the need for trial and error in choice of this
parameter, and a means to update it throughout the estimation process Lubey[13] also introduced
the A-OCBE (Adaptive Optimal Control Based Estimator).

A simplified overview of the steps to update the dynamic uncertainty in the A-OCBE is shown in
Figure 2.2. First, a dynamic uncertainty matrix that is constant over a measurement gap is defined
as shown in Equation 2.32, with an initial σQ equal to a low value representing a noise floor, below
which dynamic mis-modelling can not be detected. This allows one to perform the state estimation
process, based on the BL-OCBE equations discussed earlier in this chapter.

Q̃ = (tk − tk−1)σ2
Q I (2.32)

Then a control distance metric Dz with mean µz is introduced. In the case of a BL-OCBE, a suitable
distance metric was also developed by Lubey[13] and it is given by Equations 2.33 through 2.35.

Dz = (d y⃗)T M J (d y⃗) (2.33) d y⃗ = δy⃗k − H̃kδx̄k|k−1 (2.34)

M J = 1

2

(
Rk + H̃P̄k|k−1H̃ T )−1 −

(
σQ

σQ,N F

)2 [
Φxp (σQ,N F )ΦT

xx

]
(2.35)
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Figure 2.2: Process used for adaptively modifying the assumed dynamic uncertainty during the state estimation process
with the OCBE

.

If the ratio of the control distance metric Dz and its mean µz is lower than a user specified threshold
Θ, the dynamic uncertainty does not need to be adjusted and the estimation may proceed. If instead
the ratio exceeds the threshold, it implies dynamics mis-modelling, above the expected magnitude
has been detected and the dynamic uncertainty should be adjusted.

To do so, the σQ should be updated to enforce Equation 2.36. Effectively this implies that if the
OCBE detects mis-modelled dynamics, it should adjust the dynamic uncertainty such that the in-
stantaneous value of the distance metric is equal to its mean, and thus mis-modelling is no longer
detected.

Dz (σQ ) =µz (σQ ) (2.36)

In practice, this is solved numerically by applying a root finding method, though it is convenient to
first rewrite the problem in the logarithmic space and solve Equation 2.37 in terms of the indepen-
dent variable v , defined in Equation 2.38:

g (v) = log10

[
Dz (v)

µz (v)

]
= 0 (2.37) σQ = 10v (2.38)

With a suitable value of v obtained, it may be used to obtain an updated value of σQ from Equa-
tion 2.38. The estimation process may then be repeated with a more-appropriate dynamic uncer-
tainty, which ought to lead to no detection of (larger than expected) mis-modelled dynamics.

It should be noted that in order to ensure the method does not significantly adjust the dynamic
uncertainty if a measurement outlier results in a false positive dynamics mis-modelling detection,
the correction to σQ should only be applied after a number of successive measurements resulting
in distance metric ratios above the threshold. A more detailed discussion on the architecture of an
implemented version of the A-OCBE algorithm, including this detail and more follows in Section 3.2.

2.1.4. Unscented Transformation
While intuitively it may seem that developing a modified OCBE algorithm would be easiest if starting
from the most simple version in the BL-OCBE, there are a few aspects that may suggest otherwise.
First of all, the BL-OCBE relies on linear propagation of states via the state transition matrix.
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While for many applications this is not inherently a complication, there are consequences for a
number of methods that should be considered. For example, a number of regularization methods
discussed in the introduction boast an increased dimensionality of the state. In the case of the KS
method, the state is represented as a 10 dimensional vector. This implies that an STM that also in-
cludes the quadrants for the adjoint is size 20× 20, rather than 12× 12 as it is in the case of state
estimation in terms of Cartesian coordinates. This may introduce significant computational load,
both when evaluating the matrix as part of the reference propagation and in cases where inverse
of the STM is required. Additionally, other methods such as the EDromo method selected for this
thesis (which is discussed in more detail in the next section), contain state elements subject to ad-
ditional constraints such as quaternions. Linear propagation of such elements may violate their
constraints and thus introduce error into the estimation process.

This issue in particular has been relevant in the discussion of attitude state estimation since the
1980s and solutions involving alternate definitions of error vectors have been found [38], though
the approach may not be suitable to the BL-OCBE without significant modification. A more recent
approach, also stemming from attitude estimation resolves this issue by applying the Unscented
Transformation[39] on a filter, in which case the state is no longer propagated linearly using the state
transition matrix. Instead a number of sigma points are obtained and each propagated through the
full dynamics model, resolving a number of the aforementioned issues. As mentioned in the intro-
duction, this approach has also been developed for the OCBE by Greaves and Scheeres[18], using
the basis of the Unscented Kalman filter [40].

The differences of the unscented formulation of the OCBE compared to the traditional formulation
begin with a new first step in the estimation process, the computation of 2n+1 sigma points χ̄k−1|k−1

using equations 2.39 - 2.44. Where x(i ) is the i -th sigma point, n is the length of the state vector,
x̄k−1|k−1 is the mean state and (PC hol ) j is the j -th column of the Cholesky decomposition of the
corresponding covariance Pk−1|k−1:

x(i )
k−1|k−1 = x̄k−1|k−1 + x̃(i ) (2.39) x(0)

k−1|k−1 = x̄k−1|k−1 (2.40)

x̃(2 j−1) =
√

n

1−W0
(PC hol ) j (2.41) x̃(2 j ) =−

√
n

1−W0
(PC hol ) j (2.42)

W0 = 1− n

3
(2.43) j = 1,2, . . . ,n (2.44)

Now, for the time update step instead of propagating the mean state with an STM, each of the sigma
points may be propagated through the full dynamics individually to obtain χ̄k|k−1 and a new mean
and covariance may be approximated using Equation 2.45 and Equation 2.46 respectively (where ⊗
indicates the vector outer product).

x̄k|k−1 =
2n∑

i=0
Wi x(i )

k|k−1 Wi =
{

1− n
3 i = 0

1−W0
2n i = 1,2. . .

(2.45)

Pk|k−1 =
(

2n∑
i=0

Wi

[
x(i )

k|k−1 − x̄k|k−1

]
⊗

[
x(i )

k|k−1 − x̄k|k−1

])
−ΦxpΦ

T
xx (2.46)

It should be noted that unfortunately for an application in the OCBE integration of the state tran-
sition matrix of the central sigma point is still necessary in order to obtain the control noise term
needed for the covariance Pk|k−1. This does imply the costs of propagating the central sigma point
will remain high, though the transform does still resolve the issue of violating state constraints via
linear propagation.
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Then, during the measurement update step, the sigma points are measured, the cross covariance
Px y and innovation covariance Py y are found:

γ̄k|k−1 = h(χ̄k|k−1) (2.47)

Px y =
2n∑

i=0
Wi

[
x(i )

k|k−1 − x̄k|k−1

]
⊗

[
y (i )

k|k−1 − ȳk

]
(2.48)

Py y =
2n∑

i=0
Wi

[
y (i )

k|k−1 − ȳk

]
⊗

[
y (i )

k|k−1 − ȳk

]
(2.49)

ȳk =
2n∑

i=0
Wi ȳ (i )

k|k−1 (2.50)

Finally, the state update itself and its covariance for tk|k is given by Equation 2.51 and Equation 2.52
respectively, with Y⃗k as the measurement.

x̂k|k = x̄k|k−1 +Px y P−1
y y (Y⃗k − ȳk ) (2.51)

P̂k|k = Pk|k−1 − (Px y P−1
y y )Py y (Px y P−1

y y )T (2.52)

The state estimate for tk−1|k is equivalent to that of the BL-OCBE and while Greaves and Scheeres[18]
also provide adjoint and control estimate formulations, they are not reported here as they were not
implemented during this thesis.

It is also important to note that while the unscented modification itself is limited to the updates
summarized in this section, an algorithm implemented in this thesis and referred to as the U-OCBE
(Unscented Optimal Control Based Estimator) includes the modifications in this section in addition
to the adaptive dynamic uncertainty modification discussed in Subsection 2.1.3. Further details on
the architecture and implementation of the full algorithms can be found in Section 3.2.

2.2. Regularization
As discussed in the introduction, a key aspect of this thesis is to investigate the effects of semi-
analytical solutions or regularization on the OCBE. Unfortunately, covering multiple methods is not
feasible considering time constraints. Instead, one regularization method was selected to be imple-
mented and tested.

Introduced by Baù et. al.[28] is a regularization intended for the perturbed two body problem re-
ferred to as ‘EDromo’. It has shown fantastic numerical performance [28] [29], even when compared
to other regularization methods such as KS discussed in [27]. The primary drawback is that the per-
formance is limited to the perturbed two-body problem.

That being said, if this regularization does not show significant improvement over traditional nu-
merical solutions (when incorporated in the OCBE), it is likely that similar (if not worse) results
could be expected from methods designed for broader applications. While such conclusions may
be considered for various other regularization methods, the same can not be said about averaging
methods. However, as discussed in the introduction, averaging remains limited in its versatility, and
it has a fundamental limitations on accuracy. As a result, this thesis focuses on the regularization
introduced in [28], the summary of which is presented in this section.

The regularization provided involves an 8 dimensional state [λ0,λ1, ...,λ7], with a Sundman trans-
formation of time into angle ϕ as the independent variable. A conceptual overview of the orbital
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elements and the corresponding differential equations is presented here. However, the equations to
reconstruct the inertial state from the orbital elements and vice versa are omitted from this report
due to the relatively lengthy formulation. The full equations can still be found in the original work
[28] using notation matching this thesis.

Returning to the meaning of the new state variables, the first corresponds to a choice of the time
element. While the regularized dynamics equations can be applied with physical time as the in-
dependent variable, the best performance is achieved using an angle-like independent variable ϕ
obtained by a Sundman transform. In order to reconstruct the physical time from the state variables
(Equation 2.53), a ‘linear’ time element (λ0,l ) is necessary. It is possible to obtain this variable by in-
tegration directly, or instead to solve for a ‘constant’ time elementλ0,c and then apply Equation 2.54.
For the purposes of this thesis, λ0,l is used as the state variable throughout as it has shown to gen-
erally have a lower computational cost for the same accuracy compared to the alternatives [28]. λ3

also appears in these equations and is the element representing the total energy, which must remain
negative.

t =λ0,l +λ3/2
3 (λ2 cosϕ−λ1 sinϕ) (2.53)

λ0,l =λ0,c +λ3/2
3 ϕ (2.54)

Defining the remaining elements requires a definition of an orbital frame and an ‘intermediate’ ref-
erence frame. The orbital frame is simply represented by the position r⃗ and angular momentum h⃗
vectors normalized (to i⃗ and k⃗) with the final axis j⃗ selected to complete the orthonormal frame.
The intermediate frame is defined with respect to a generalized eccentricity vector given in Equa-
tion 2.55 as well as a generalized eccentric anomaly given in Equations 2.56 and 2.57 (where U is the
dimensionless perturbing potential and ε is the dimensionless total energy). The orientation of the
intermediate frame with respect to these parameters is shown in Figure 2.3.

Figure 2.3: The intermediate frame {F ;x,y,k}, as viewed from the k axis. The propagated object P occupies one point of the
instantaneous osculating ellipse with a focus F and center C. e is the osculating eccentricity vector. Angles θ and ν are

referred to as the generalized true anomaly and orbital longitude respectively, both of which are defined in terms of the
geometry in this figure.[28]

.
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g⃗ = −⃗i +
(

dr

d t
i⃗ + c

r
j⃗

)
× (ck⃗) (2.55)

g sinG =−2ε
dr

dϕ
(2.56) g cosG = 1+2εr (2.57)

with:

i⃗ = r⃗

r
(2.58) k⃗ = h⃗

h
(2.59) c =

√
h2 +2r 2U (2.60)

Based on this definition of the intermediate frame, elements λ1, λ2 are selected as first integrals
of unperturbed motion, obtained using variation of parameters. They represent projections of the
generalized eccentricity vector g⃗ onto two of the axes of the intermediate frame (x and y).
The remaining four state variables λ4 - λ7 are Euler parameters defining the attitude of the inter-
mediate frame with respect to the orbital frame. This is sufficient to fully define the state of the
propagated object, given the differential equations below.

The first of the differential equations of the regularization depends on the choice of time element.
For traditional time, constant and linear time elements, the corresponding differential equations
are given in 2.61, 2.62 and 2.63 respectively.

d t

dϕ
=λ3/2

3 ϱ (2.61)

dλ0,c

dϕ
=λ3/2

3

[
(Rr −2U )r + 1

λ3

(
ζ− 3

2
ϕ

)
dλ3

dϕ

]
(2.62)

dλ0,l

dϕ
=λ3/2

3 [1+ (Rr −2U )r +2Λ3ζ] (2.63)

The remaining equations to be integrated that follow are:

dλ1

dϕ
= (Rr −2U )r sinϕ+Λ3[(1+ϱ)cosϕ−λ1] (2.64)

dλ2

dϕ
= (2U −Rr )r cosϕ+Λ3[(1+ϱ)sinϕ−λ2] (2.65)

dλ3

dϕ
= 2λ3

3

(
Rpζ+Tp n + ∂U

∂t

√
λ3ϱ

)
(2.66)

d

dϕ


λ4

λ5

λ6

λ7

= N
r 2

2n


λ7cν−λ6sν
λ6cν+λ7sν
−λ5cν+λ4sν
−λ4cν−λ5sν

+ ωz

2


λ5

−λ4

λ7

−λ6

 (2.67)

Majority of the parameters given in these equations are functions of the independent variable ϕ or
some combination of λ1, λ2 and λ3. Notable exceptions are:

R = F⃗ · i⃗

N = F⃗ · k⃗

Rp = P⃗ · i⃗

Tp = P⃗ · j⃗

(2.68)
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Where F⃗ is the total dimensionless perturbing acceleration vector and P⃗ is the component of F⃗ not
caused by a perturbing potential. The means to obtain the intermediate parameters found in previ-
ous equations are given in Equations 2.69 to 2.77:

Λ3 = 1

2λ3

dλ3

dϕ
(2.69) r =λ3ϱ (2.70)

n =
√

m2 −2λ3ϱ2U (2.71) m =
√

1−λ2
1 −λ2

2) (2.72)

ϱ= 1−λ1 cosϕ−λ2 sinϕ (2.73) ζ=λ1 sinϕ−λ2 cosϕ (2.74)

cνϱ= cosϕ−λ1 + ζλ2

m +1
(2.75) sνϱ= sinϕ−λ2 − ζλ1

m +1
(2.76)

ωz = n −m

ϱ
+ (2U −Rr )

(
2−ϱ+m

)
r +Λ3ζ

(
ϱ−m

)
m (1+m)

(2.77)

One may notice that two perturbing force projections (P⃗ · k⃗ and F⃗ · j⃗ ) are not directly present in
the dynamics. The cross-track contribution of non-potential forces (P⃗ · k⃗) is taken into account in
Equation 2.67 as part of N , without separation from their counter part caused by a perturbing po-
tential. On the other hand, the contributions of along-track potential forces are captured by the
time derivative of the potential found in Equation 2.66, which then re-appears in multiple differen-
tial equations as part of theΛ3 term.

It should also be noted that time, force and potential in these equations is non-dimensionalized.
Converting to and from such a formulation requires distance and frequency factors DU (Equa-
tion 2.78) and TU (Equation 2.79) [29] obtained from the initial orbital radius R0 and central body
gravitational parameter µ.

DU =
√

R0 ·R0 (2.78)

TU =
√
µ/DU 3 (2.79)

2.3. Acceleration Modelling
The final aspect of the problem yet to be covered, is the mathematical representations of the various
physical elements in the environment. As mentioned in the introduction, the focus of the thesis lies
on high Earth orbits such as GEO. As a result, some common aspects of dynamics modelling such
as atmospheric drag are not relevant. Instead, the focus lies on modelling gravity and SRP (Solar
Radiation Pressure), both of which are discussed in this section.

One of the objectives of this thesis is to evaluate performance of the OCBE given imperfect knowl-
edge of the environment. As a result, the literature survey was carried out considering two separate
environment models shall be necessary. The first and more complex - to represent the solution
closer to reality, considered the ‘true’ environment. This environment model may be used for the
purposes of simulating measurements and performing error calculations. The second and slightly
simpler model - to simulate an imperfect, ‘known’ representation of the environment. This model
is directly incorporated in the OCBE estimation procedure, used to propagate estimated states be-
tween measurement epochs.

Any numerical solution parameters or models not discussed in this section or Chapters 5 and 6 such
as body ephemerides can be considered the default options in the tudat astrodynamics library 1. In

1https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/environment_setup/

default_env_models.html

https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/environment_setup/default_env_models.html
https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/environment_setup/default_env_models.html
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most cases, this simply implies NASA’s SPICE toolkit [41].

2.3.1. Gravity
When it comes to celestial body gravity models, two were considered excluding the traditional point-
mass representation, primarily due to their availability in the tudat astrodynamics library. This in-
cludes the GOCO05c spherical harmonic gravity model introduced by Fecher et. al. [42] as well as
the model discussed by Werner and Scheeres representing a body as a homogeneous mass distribu-
tion polyhedral [43].

The former was deemed much more suitable to the problem at hand as it allows for easy tuning
of fidelity and is based on readily available data and coefficients, whereas the polyhedron model is
much more suited to modelling smaller bodies like asteroids which are not considered in this the-
sis. Hence, any non-point-mass gravity representation discussed in this report is computed using
the gravitational potential given in Equation 2.80 as a function of co-rotating spherical coordinates
[φ,θ,r ].

U (φ,θ,r ) =
lmax∑
l=0

l∑
m=0

µ
R l

r l+1
P̄l m

(
sinφ

) · [C̄lm cos(mθ)+ S̄lm sin(mθ)
]

(2.80)

where l and m are the degree and order of the spherical harmonic term, P̄lm is the corresponding
normalized Legendre polynomial [44], C̄l m and S̄l m are the GOCO05c determined normalized har-
monic coefficients, and µ and R are the gravitational parameter and reference radius of the central
body.

2.3.2. Solar Radiation Pressure
When it comes to solar radiation pressure, two models for the target are also available in tudat.
However, instead of selecting one of the two like was done in the case of gravity, both models are to
be used. One for the true environment and one for the imperfect, known version. For the latter, the
commonly known cannonball model given in Equation 2.81 shall be used.

a⃗SRP =−ΦCr A

mc
ê⊙ (2.81)

On the other hand, for a representation closer to real conditions, the spacecraft can be modelled
as a cuboid with attached rectangular solar panels. The specular-diffuse model that determines
acceleration contributions of each individual surface element is given by Equation 2.82[45].

a⃗SRP =− Φ

mc
A cosθ⊙n

[
(α+δ)

(
ê⊙+ 2

3
ên

)
+2ρ cosθ⊙n ên

]
(2.82)

For both models Φ, m, A and c represent the solar flux, mass, (effective) surface area and speed
of light respectively. Cr is the reflectivity coefficient. α, δ and ρ are the surface absorption coeffi-
cient, diffuse reflectivity and specular reflectivity respectively. ê⊙ represents the unit vector in the
direction of the radiation source. ên is the surface normal unit vector. And finally, θ⊙n is the angle
between the two aforementioned vectors.
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Methods

The primary objective of the thesis is to evaluate the benefits and drawbacks of the regularized for-
mulation OCBE algorithm. As a result, it is crucial to define a method that will not only allow for im-
plementation of the updates, but also a fair comparison with variants of the OCBE from literature.
This chapter introduces the overarching method used to perform this comparison in Section 3.1
and describes the general architecture of the implemented algorithms in Section 3.2.

3.1. Thesis Approach
As previously mentioned, the main goal of the thesis is to quantify the effects of the regularization
applied to the OCBE. Here a short summary of the approach to answer the research questions de-
fined in Chapter 1 is provided.

First of all, in order to ensure the comparison of the algorithms is meaningful and easily repro-
ducible, the results should be obtained in well documented, life-like test cases. Thus, the first step
of the thesis primarily involves defining the orbit initial states and selecting the parameters of the
observed object or spacecraft. Based on the findings in the Introduction, three distinct cases in the
GEO region were chosen (and are described in more detail in Chapter 5, prior to the discussion of
numerical results of the thesis).

With the test cases defined, the second step was to implement the numerical propagators necessary
for the estimation algorithm. As per the research questions, the EDromo propagator discussed in
Section 2.2 was implemented and tested, in addition to a Cowell formulation to act as a reference.
Numerical propagation errors are generally rather sensitive to the choice of orbit and environment
model. If not investigated and handled appropriately, these errors could affect the results of the
OCBE and potentially even be wrongly attributed as a property of one of the estimator variants
when drawing conclusions. To avoid this, in the third step, error sources such as truncation and
floating point error were quantified to appropriately select numerical integration tolerances. Ad-
ditionally, in order to further improve computational speed of the methods, the effects of various
aspects of the environment (such as fidelity of the Earth’s gravity model) were quantified, and suf-
ficiently small contributions were neglected. This process is discussed in further detail in Chapter 6.

With preparatory work complete, the fourth step was implementing reference cases of the OCBE
which perform state estimation in terms of Cartesian position and velocity, using dynamics in terms
of a Cowell formulation. These were the A-OCBE and U-OCBE methods discussed in more detail
in Subsection 3.2.2, both of which are based on the literature findings summarized earlier in Sec-
tion 2.1. When applied to the selected test cases, they may act as a control group, providing a com-
parison point for the new (regularized) variant of the OCBE.

Then, the prototype of the regularized version of the algorithm was developed. This involved a few
steps. First of all, as the R-OCBE is based around estimation of regularized elements rather than the
Cartesian state, a number of modifications to the OCBE were made to facilitate these changes. This
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involves the derivation of a new control input scaling matrix, conversions of covariance matrices to
the EDromo elements, et cetera. As the U-OCBE lends itself better to the necessary modifications
than the A-OCBE, the implementation of this variant of the estimation algorithm was used as the
baseline for the R-OCBE. An overview of this algorithm is provided in Subsection 3.2.3, while the
individual modifications developed as part of this thesis are discussed in more detail in Chapter 4.
Finally, with the algorithm changes applied and the method validated, its performance could be
evaluated when applying it to the previously selected test cases while varying the input parameters.

With all the aforementioned steps completed, the results could be used to compare all three of the
implemented versions of the OCBE based on a number of performance metrics to answer the re-
search questions. Any potential benefits or drawbacks of the R-OCBE may thus be discussed, and
all conclusions may be documented.

The thesis approach is thus summarized as follows:

1. Define test cases
2. Implement reference and regularized propagators
3. Quantify error sources
4. Implement ‘Control Group’ OCBE variants
5. Implement R-OCBE
6. Post-Process, Compare Algorithms, Analyze Results and Draw Conclusions

3.2. Algorithm Architecture
This section provides an overview of the algorithms implemented to answer the research questions.
As all implemented algorithms were eventually incorporated in a single system, a full overview of
the structure of the implementation is first provided in Subsection 3.2.1. Then, the most important
components are discussed in more detail in the following subsections. This involves the dynamics
propagation methods (Subsection 3.2.2), the estimation methods (Subsection 3.2.3) as well as the
interface used to handle user inputs (Subsection 3.2.4).

3.2.1. Overview
As mentioned in the section introduction, all implemented algorithms are incorporated in a single
system. This was done in order to facilitate bulk state estimation result generation, based on vary-
ing input parameters, in order to allow for convenient comparison of the implemented variants of
the OCBE. An overview of this implementation is provided in form a block diagram in Figure 3.1,
which is divided in four modules: The interface, the estimator and two dynamics solvers. The first
of which being the ‘Reference Dynamics Solver’, used to generate truth data. The second being the
‘Primary Dynamics Solver’, which is used as part of the estimation process to propagate dynamics
between measurement epochs.

As shown in Figure 3.1, the interface module acts as the bridge between the user input, primary
dynamics solver and estimator. It is first used to store any input parameters ranging from measure-
ment uncertainty and spacecraft initial state to choice of estimator and Earth’s gravity model.

These inputs are then used to select propagator settings, which are then passed to the primary dy-
namics solver, such that relevant functions of the dynamics model can be defined. This includes
methods to compute necessary perturbing accelerations, numerical integration with chosen toler-
ances, etc. These defined functions may then be combined to create a single propagation function,
which is passed back to the interface, such that the estimator can request propagation of a trajectory
between measurement epochs. Furthermore, the primary dynamics solver initializes storage of ad-
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Figure 3.1: Overview of the implemented estimation system

ditional results that may be of interest for the investigation of performance for the full system. This
includes values such as the total number of state derivative function evaluations over all requested
propagations.

Another set of input parameters are used to configure the estimator module. This involves selec-
tion of the estimation method (between A-OCBE, U-OCBE and R-OCBE) as well as initialization of a
ground station with appropriate location and measurement errors, which is in turn used to simulate
a number of noisy measurements based on provided truth data. With the measurements obtained,
the estimator selected and dynamics propagation functions available, the state estimation for the
trajectory is performed. The results are then (usually) smoothed, and output with appropriate aux-
iliary information to identify the inputs used to generate the result.

It should be noted that the truth data is generated prior to the rest of the estimation procedure by
the reference dynamics solver. This is done for two reasons. Firstly, this allows for a significantly
sped up estimation process when testing different variants or settings of the OCBE on the same tra-
jectory as the high fidelity truth data is not re-propagated multiple times.

In addition, state estimation with the OCBE enforces certain requirements on the propagator im-
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plementation such as propagating a 12×12 state transition matrix for the state and the adjoint. This
information is not necessary for the truth data, where only the state as a function of time is neces-
sary. Hence, using an alternate dynamics solver (completely decoupled from the rest of the system),
for the truth data generation relaxes the implementation requirements and allows for higher fidelity
models that may be too cumbersome to implement for an early version of the OCBE. For example,
use of environment models and integration schemes from Tudat (TU Delft Astrodynamics Toolbox)1

is accommodated by this implementation choice.

3.2.2. Dynamics Solver Modules
Primary Dynamics Solver
As previously discussed, the state estimation process with the OCBE requires the propagation of
trajectories and corresponding state transition matrices. To obtain these results a dynamics solver
(referred to as the "Primary" dynamics solver) was implemented. As it was deemed that the module
will be used for a relatively limited number of short duration numerical propagations and thus com-
putational speed will not be a particularly limiting factor (in the context of this thesis), the dynamics
solver was implemented entirely in Python 3.10.

The goal of this module is to configure the functions necessary to perform state propagation, whereas
the state propagation itself is called by the estimator module as required. In consequence, the steps
discussed in this subsection are performed only once per set of measurements used in estimation
and the initialization does not have to be repeated, regardless of number of propagations.

The architecture of the module is given in Figure 3.2. As the module was developed with the intent
to incorporate it in the larger estimation process via an interface, it is initialized based on inputs
received. This involves a few core aspects:

1. The definition of the propagated body. This includes various necessary parameters such as
mass or reference area for solar radiation pressure.

2. The definition of the environment bodies. This involves setting gravitational parameters,
ephemerides, et cetera.

3. Initialization of result storage. While not strictly necessary for a propagation, this process
allows to track performance metrics that may be of interest over multiple propagations, such
as the total number of state derivative evaluations.

Following the definitions of the bodies in the dynamics system, the perturbing acceleration func-
tions of time and state are defined. As the EDromo propagator (used for the R-OCBE) requires pri-
mary body perturbing potential, the relevant equations are also defined if necessary.

The rest of the process depends on the selected propagator and the choice whether the state tran-
sition matrix should be propagated. For the Cowell propagator, the 6-dimensional state derivative
function is defined by simply taking the sum of the perturbing acceleration functions in addition
to the point mass of the central body. If the STM is also requested, a function to obtain the 12×12
matrix derivative is defined.

In order to ensure the output is compatible with the numerical integrator, regardless of the selec-
tion, an ‘extended’ state derivative function is defined. If the STM is not propagated, this function
is identical to the previously defined state derivative. Otherwise, it handles reshaping of the STM
matrix derivative into a vector combined with the state derivative.

1https://docs.tudat.space/en/latest/

https://docs.tudat.space/en/latest/
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Figure 3.2: Overview of the Dynamics Solver Module

In the case of the EDromo propagator, the process is analogous, except the 8-dimensional state λ⃗
derivative is defined in terms of the equations given in Section 2.2. Similarly, a larger state transi-
tion matrix is necessary with a different formulation necessary to defineΦxp (compared to Cowell),
which is further discussed in Chapter 4. Regardless, a creation of an ‘extended’ state derivative func-
tion is also performed.

Finally, the integrator tolerances, initial and maximum step are set for the implemented RKF7(8)
scheme [46], which is used to create the final output of the module, a state propagation function.
However, in case of a regularized propagation, the independent variable is not time, and the value of
the independent variable corresponding to a precise final time is not known before the start of the
propagation. This provides a slight complication as for state estimation, a propagated state value
precisely at the time of a measurement is necessary. To handle this, the following modification to
the numerical integrator was made.

As part of the numerical integration process, to ensure the propagation terminates appropriately,
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the time is reconstructed from the independent variable ϕ after every integration step. If it exceeds
the time of the measurement (tm), a root finding algorithm is initialized solving Equation 3.1 for dϕ:

0 = tm − t (dϕ) = tm − (
λ0,l +λ3/2

3 (λ2 cosϕ−λ1 sinϕ)
)

(3.1)

In which t (dϕ) is expanded using Equation 2.53. In this case, λ0,l , λ1, λ2, λ3 and ϕ are all functions
of the step dϕ, and for each iteration of the root finder, an integration step must be performed. This
causes some performance losses, though the impact is treated in more detail in future chapters.

The solution is found using the classic Brent’s method [47]. While other root-finding schemes were
investigated, Brent’s method was chosen as it is guaranteed to converge to a solution given a sign
changing interval for the independent variable. As Equation 3.1 is by definition positive before the
end of the propagation and negative if the integration step exceeds the final time, this condition is
always satisfied. Other methods such as bisection [48] also provide such properties though Brent’s
method was found to converge in fewer iterations despite retaining the same accuracy. Being a 0th
order method, it was also chosen over n-th order methods as they would require the evaluation of
additional derivatives of the state vector, or a finite difference approach which is also computation-
ally cumbersome.

With the integration method treated, the state propagation function can be fully defined and output
to the interface module for use in state estimation. In the case of R-OCBE, the dynamics module also
outputs functions mapping Cartesian state x⃗ to λ⃗ (and vice versa) as well as equivalent conversions
for the Covariance matrix (which are discussed in Section 4.3). These methods are not strictly part
of the propagation process, though including them in the dynamics solver module allows for minor
computational performance gains due to re-occurring variables.

Reference Dynamics Solver
In addition to the dynamics solver discussed earlier in this section, a reference dynamics solver im-
plemented using the Tudat library was also used for two purposes: generation of truth data (as seen
earlier in Figure 3.1) and validation of the primary dynamics solver.

The structure of the reference dynamics solver is relatively similar to the one discussed in the previ-
ous section, though a few key differences are present. The reference solver:

• does not support propagation in regularized elements
• only supports propagation of 6×6 state transition matrices
• supports higher fidelity dynamics models
• supports additional numerical integration schemes

The lack of support for regularized elements and state transition matrices with adjoint components
implied it was not easy to use in state estimation with the OCBE. However, those properties are
not necessary for the truth data generation and the advantages provided by Tudat also implied it
could be used to perform a dynamics model selection and error analysis, in addition to validation
for the custom implemented primary dynamics solver, which is then incorporated into the OCBE
estimation process. This selection procedure and error analysis follows in Chapter 6.

3.2.3. Estimator Module
Measurement Simulation
As discussed at the start of this section, the estimator module contains three methods: The A-OCBE,
U-OCBE and R-OCBE. While each implementation is discussed below, all three methods share the
same process for generation of measurements of a given trajectory. Each measurement is a vector
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of the range, azimuth and elevation of the spacecraft with respect to the ground station. The ap-
proach to obtain a series of measurements over a trajectory is shown on the left side of Figure 3.3,
and involves two key steps.

First, given inputs from the interface, a ground station is defined. This involves the location (defined
in terms of latitude and longitude), the standard deviations of the measurement (in terms of range,
azimuth and elevation) and the time gap d t between each measurement.

Then, the measurements themselves are simulated using the defined ground station and a ‘true’ tra-
jectory provided by the Reference Dynamics Solver. In order to ensure a value of the true trajectory
is available regardless of the integration step and/or measurement gap, it is interpolated using a
7th order Lagrange interpolation scheme [49]. Furthermore, a transparent Earth is assumed, hence
the single ground station is sufficient to provide measurements regardless of the relative location
of the spacecraft. This assumption was made considering that the goal of the system is to evaluate
the estimator performance in various conditions. A transparent Earth allows to easily obtain dense
measurements with only one ground station initialized, while sparse measurements resembling the
effect of occlusion by the Earth can still be simulated by specifying large measurement gaps. The
definition of the ground station thus allows for evaluation of the true range, azimuth and elevation
of the spacecraft every d t seconds. Following which, error vectors sampled from Gaussian distribu-
tions, with the aforementioned standard deviations are added to simulate measurement noise.

Adaptive Ballistic-Linear OCBE
The first of the implemented variants of the OCBE is the adaptive ballistic linear optimal control
based estimator. For purposes of brevity, it is also referred to as the adaptive OCBE or A-OCBE in
this report. This method’s integration in the estimator module is also shown in Figure 3.3. As dis-
cussed in Chapter 2, the method begins with the time update step of the BL-OCBE, given initial
conditions and a dynamics propagation function. This allows for the second step, the evaluation of
the control distance metric defined in Subsection 2.1.3, which, if larger than a specified threshold,
indicates mis-modelled dynamics above the expected dynamic uncertainty have been detected.

Generally, the detection of such mis-modelled dynamics in the A-OCBE implies the dynamic un-
certainty should be adjusted using the method in Subsection 2.1.3 to improve the accuracy of the
estimator. However, in order to ensure a single measurement outlier does not result in a false pos-
itive, mis-modelled dynamics detection in three consecutive time steps is necessary to trigger the
process. Should this be the case, it is beneficial to adjust the dynamic uncertainty before the first of
the consecutive detections, hence the estimation process for the three most recent measurements
is performed again, given an updated dynamic uncertainty.

Otherwise, the BL-OCBE measurement update step (from Section 2.1) is used to obtain new state
estimates, until a state estimate is available for every measurement epoch. As a final step, before the
output is produced, the BL-OCBE smoothing algorithm (also discussed in Section 2.1) is applied.

Unscented Adaptive Ballistic-Linear OCBE
The second implemented variant of the OCBE is the Unscented Adaptive Ballistic-Linear OCBE, also
simply referred to as the Unscented OCBE or U-OCBE in this report. The Unscented version of the
algorithm in terms of structure is quite similar to the Adaptive, and is shown on the right hand side
of Figure 3.3, though it does contain some significant differences in the time and measurement up-
date steps.

Unlike the A-OCBE, the Unscented method begins with the evaluation of sigma points as part of the
unscented transform as discussed in Subsection 2.1.4. In the time update step, each of these sigma
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Figure 3.3: Architecture of the implemented A-OCBE and U-OCBE algorithms in the Estimator Module

points is propagated individually (hence reducing the speed of the algorithm), and a new predicted
mean state and covariance at the time of the measurement is obtained.

In the same fashion as the Adaptive algorithm, at this stage, the control distance metric is com-
puted and may be used to update the dynamic uncertainty given three consecutive mis-modelled
dynamics detections. If this is not necessary, the Unscented version of the measurement update
step discussed in Subsection 2.1.4 is applied until all measurements are treated and smoothing may
be applied.

Regularized OCBE
Finally, the regularized optimal control estimator may be introduced. In order to pursue perfor-
mance gains, two distinct aspects of the OCBE are adjusted. First of all, the dynamics are propa-
gated using the EDromo elements introduced in Section 2.2 in hopes of reducing the costs of prop-
agation between measurement epochs. Second, the time and measurement update equations are
used to obtain state estimates in terms of the EDromo state vector λ⃗, rather than the Cartesian state
x⃗. This modification allows for the application of a linear estimator, on underlying linear-perturbed
dynamics (rather than the fully non-linear Cartesian equivalent). This was done with the hopes of
improving the range of measurement gaps over which the linear estimator produces accurate re-
sults.

While there is no inherent reason as to why these modifications can not be made to the A-OCBE,
the prototype R-OCBE implemented as part of this thesis is based on the time and measurement
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update steps of the unscented version of the algorithm. This was done primarily for the following
reasons:

1. The U-OCBE is very computationally intensive, and incorporation of regularized dynamics
may compensate for this weakness.

2. The U-OCBE is expected to perform better than A-OCBE (in terms of accuracy) under condi-
tions of non-linear dynamics with long measurement gaps. These are conditions under which
the EDromo propagator is expected to perform best.

3. The U-OCBE lends itself easier to modification, as terms such as H̃k (linearization of the mea-
surement function), which are not readily available for regularized elements are not necessary
for implementation.

Additionally, the smoothing and adaptive steps of the OCBE are omitted from this implementa-
tion due to limited time for the validation of the results given these modifications. While this is
expected to diminish the performance to a degree, and generally it is recommended to investigate
the incorporation of these steps in the future, their absence may allow for easier interpretation of
the behaviour of the method. Regardless, Figure 3.4, summarizes the method, with the same inputs
and an identical measurement generation process as the other implemented OCBE variants, on the
left hand side of the figure.
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Figure 3.4: Architecture of the implemented R-OCBE algorithms in the Estimator Module

As the estimation in the R-OCBE is performed in terms of the regularized elements, the first step in
the process is the transformation of the initial state. While this process for a state vector is discussed
in [28], the covariance transformation is not treated. Hence, prior to the implementation of the R-
OCBE, two methods for a covariance transformation were compared and the details of the selection
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process are discussed in Section 4.3.

With the regularized elements available, the unscented approach is followed in order obtain state
estimates, starting with evaluation of sigma points, followed by the time and measurement update
steps. However, unlike the Cartesian state, the regularized elements must adhere to constraints.
This implies that any time when a state is modified outside propagation, it must be ensured it ad-
heres to the constraints. This process is necessary:

1. Each time a sigma point is found using Equation 2.39.
2. When mean of the propagated sigma points is evaluated in the time update step using Equa-

tion 2.45.
3. When the state vector is updated using a correction obtained with Equation 2.51 for the mea-

surement epoch or Equation 2.22 for the priori epoch.

The exact procedure that was developed and is performed at each of these steps is introduced in
Section 4.1.

Finally, the OCBE equations require the propagation of an extended state transition matrix. The
formulation for an appropriate control input scaling matrix B , used to obtain, the Φxp quadrant is
not available from literature, hence it was developed and introduced in Section 4.2.
As with the other variants of the OCBE, the process is repeated until an estimate is available for every
measurement epoch, at which point the results are saved for post-processing.

3.2.4. Interface Module
The final module yet to be discussed in detail is the interface, which handles the user input and
incorporates appropriate dynamics into the OCBE. Fortunately, given the context of the previously
discussed modules, its functionality is quite simple and the four blocks seen in Figure 3.1 are a
largely sufficient representation.

The interface’s functionality begins with storing of the input parameters, the format of which is de-
fined for easy automated iteration. For the sake of completion, the list of possible input parameters
is as follows:

• Run Identifier (for output documentation)

• OCBE variant to use

• Truth data source

• Orbit Initial State

• Known Dynamics Model Fidelity

• Initial State Covariance P0

• Known satellite properties (i.e. mass)

• Time gap between measurements

• Location of ground station

With the inputs stored, the relevant parameters are passed to the dynamics module, which returns
a state propagation function. In cases where the R-OCBE is used, the functions to convert to/from
Cartesian state and EDromo elements and covariances (introduced in Section 4.3) are also obtained.

The remaining inputs in addition with these functions are used to run the selected OCBE variant
(between A-OCBE, U-OCBE and R-OCBE). All results are written to files organized based on an iden-
tifier passed as one of the inputs to the interface module. Any post-processing of results can then
be handled externally.
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OCBE Regularization

As discussed in the previous chapter, a number of modifications to the U-OCBE were made in order
to facilitate state estimation in terms of EDromo elements. This chapter summarizes the modifi-
cations made, starting with Section 4.1 which discusses the method used to update the state given
an estimated correction. Then, Section 4.2 shows the derivation of the control input scaling ma-
trix necessary for components of the STM. Finally, Section 4.3 covers the covariance transformation
between a Cartesian representation and one corresponding to the regularized elements.

4.1. State Correction Method
Firstly, as the OCBE provides a state correction as part of the estimation process, a means to apply
this to the state is necessary. For a state representation in terms of Cartesian coordinates, this is
simply handled with a summation:

x̂ = x⃗ +δx⃗ (4.1)

However, when treating the EDromo λ elements, complications arise if this approach is taken. First
of all, the last four components of the state vector contain a quaternion. An addition of an arbitrary
correction vector δλ⃗ may violate the unit norm constraint (Equation 4.2), which can in turn lead to
complications when converting the state back to a Cartesian representation.

1 =λ2
4 +λ2

5 +λ2
6 +λ2

7 (4.2)

This can be remedied by simply normalizing the relevant components using Equation 4.3.

λ⃗4−7,nor m = λ⃗4−7

∥λ4−7∥
(4.3)

Furthermore, as given in Equation 2.53, the physical time is reconstructed given not only the in-
dependent variable ϕ, but also λ0,l , λ1, λ2 and λ3, all of which may be adjusted in an estimation
process. If this effect is not handled, a state obtained with a correction would correspond to a time
different to that of the measurement used in the estimation process.

Fortunately, as the time of the measurement is known (and fixed) and the state elements are ob-
tained from the estimator, the constraint may be applied in terms of the independent variableϕ, an
updated value of which can be solved for numerically. This is done by rewriting Equation 2.53 as
follows and applying a numerical root finding method:

0 =−t +λ0,l +λ3/2
3 (λ2 cosϕ−λ1 sinϕ) (4.4)

Note that a similar process to obtain ϕ is necessary to terminate a propagation at a precisely se-
lected final time, which was discussed earlier, in Subsection 3.2.2. In said discussion, the Brent’s
root finding method was selected to obtain a solution. However, this method requires specification
of an interval ofϕ, which results in a sign changing right hand side of Equation 4.4. Such an interval
is not possible to guarantee given an arbitrary update to the state vector λ⃗, hence a different root-
finding method is necessary for this application. Instead, a first order method (Newton-Raphson)

28
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was chosen as it only requires an initial guess of ϕ instead of a full interval, while still resulting in
quick convergence.

With an updated value of the independent variable obtained, it may be stored next to the state es-
timate, which can then be used to obtain a Cartesian representation of the state at the appropriate
epoch for post-processing and result analysis.

Hence, the three step process shown in Figure 4.1 is applied in the R-OCBE when a state correction
δλ⃗ is applied. However, it should be noted that Equation 4.4 is not guaranteed to converge for all
state corrections. This is further discussed in Section 7.1.
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Estimated
Correction

Final State
Estimate

Update 

Reference State

Figure 4.1: Steps taken to update a reference state with an estimated correction

4.2. Control Input Scaling
An important aspect of the regularized dynamics that differs from the Cartesian formulation is the
handling of accelerations. While in a Cowell propagation any acceleration is a direct contribution
to the velocity derivative, the effect on EDromo variables is more complicated.

This is key for the OCBE as if control inputs found in the estimation are defined as accelerations,
they can be used to reconstruct the magnitude of maneuvers or environment mis-modelling. In
order to ensure such a definition, an appropriate control input scaling matrix B is necessary when
finding the state transition matrix quadrant relating the state to the adjoint (Φxp in Equation 2.15).

Hence, the control input scaling matrix B , mapping the control input in Cartesian coordinates, in
the inertial reference frame to the derivative of the regularized elements is necessary. This is done
in two steps, first a matrix B1 is obtained, mapping the Cartesian control vector to a vector of pro-
jections used in the EDromo element derivative equations. Then a matrix B2 is found by collecting
relevant terms in the differential equations, to map the aforementioned vector to a state derivative
contribution. The desired matrix is then given by B = B2B1.

The introduction of the B matrix revolves around splitting the natural dynamics and the contribu-

tion of the control as shown in Equation 4.5, where d λ⃗
dϕ is given by Equation 2.63 through Equa-

tion 2.67

d λ⃗

dϕ
= f (⃗λ, u⃗) =

(
d λ⃗

dϕ

)
n

+
(

d λ⃗

dϕ

)
u

=
(

d λ⃗

dϕ

)
n

+B · u⃗ (4.5)

In the equations, the control input appears as part of the total dimensionless perturbing acceler-
ation F⃗ as well as it’s non-potential component P⃗ . Both of these appear as projected components
R, N ,Rp ,Tp which were also introduced in Equation 2.68. To obtain the the B matrix, the contri-
butions of natural perturbations and the control are separated as follows: (taking advantage of the
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control input not being caused by a potential and thus P⃗u = F⃗u):

F⃗ = F⃗n + F⃗u =−∂U

∂⃗r
+ P⃗n + P⃗u (4.6)

P⃗u = F⃗u also implies Ru = Rp,u , hence the control input can be represented by a vector as given
by Equation 4.7. To ensure the control acceleration is dimensionless factors DU and TU given by
Equations 2.78 and 2.79 are also included.

u⃗EDr omo =
 Ru

Tp,u

Nu

= B1 · u⃗ = 1

DU ·TU 2

 i1 i2 i3

j1 j2 j3

k1 k2 k3

 · u⃗ (4.7)

With u⃗EDr omo obtained, if another matrix B2 mapping this 3x1 vector to the 8x1 state derivative can
be obtained, the full B matrix is determined. This is achieved by splitting the perturbing acceler-
ation (R, N ,Rp ,Tp ) terms in equations Equation 2.63 through Equation 2.67. into purely natural
components, and ones dependent on control (i.e. R = Rn +Ru)

As the contribution of u⃗ to dλ3
dϕ also appears in the remaining vector components, it is treated first.

Equation 4.8 shows Equation 2.66 after having separated the natural dynamics (first row) from the
control contribution (second row).

dλ3

dϕ
= 2λ3

3

(
Rp,nζ+Tp,nn + ∂U

∂t

√
λ3ϱ

)
+2λ3

3

(
Rp,uζ+Tp,un

)
=

(
dλ

dϕ

)
n
+

(
dλ

dϕ

)
u

(4.8)

From this, one of the rows of the B2 matrix can be constructed such that the definition
(

dλ
dϕ

)
u
=

B2u⃗EDr omo is satisfied:(
dλ3

dϕ

)
u
= 2λ3

3

(
Rp,uζ+Tp,un

)= (
2λ3

3ζ
)

Ru + (
2λ3

3n
)

Tp,u (4.9)

∴B2,λ3 =
[
2λ3

3ζ 2λ3
3n 0

]
(4.10)

The previous result reappears in future steps as part ofΛ3, hence it is also split:

Λ3 = 1

2λ3

dλ3

dϕ
= 1

2λ3

[(
dλ3

dϕ

)
n
+2λ3

3

(
Rp,uζ+Tp,un

)]
= 1

2λ3

(
dλ3

dϕ

)
n
+λ2

3

(
Rp,uζ+Tp,un

)
=Λ3,n +Λ3,u

(4.11)

WithΛ3,u found, all components necessary to repeat the process for the remaining differential equa-
tions are available. Thus, the equation governing the time element (2.63) is treated next by setting
R = Rn +Ru andΛ3 =Λ3,n +Λ3,u :

dλ0,l

dϕ
=λ3/2

3 [1+ ((Rn +Ru)r −2U )r +2(Λ3,n +Λ3,u)ζ]

=λ3/2
3

(
1+ (Rnr −2U )r +2Λ3,nζ

)+ (
λ3/2

3 Rur 2 +2λ3/2
3 ζΛ3,u

)
=

(
dλ0,l

dϕ

)
n
+

(
dλ0,l

dϕ

)
u

(4.12)
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Now, expanding Λ3,u and factoring out the relevant components leads to another row of the B2

matrix: (
dλ0,l

dϕ

)
u
= (

λ3/2
3 r 2 +2λ7/2

3 ζ2)Ru + (
2λ7/2

3 ζn
)

Tp,u (4.13)

∴B2,λ0,l =
[(
λ3/2

3 r 2 +2λ7/2
3 ζ2

)
2λ7/2

3 ζn 0
]

(4.14)

Continuing with an analogous process for Equation 2.64,

dλ1

dϕ
= ((Rn +Ru)r −2U )r sinϕ+ (Λ3,n +Λ3,u)[(1+ϱ)cosϕ−λ1]

= (
(Rnr −2U )r sinϕ+Λ3,n[(1+ϱ)cosϕ−λ1]

)+ (
Rur 2 sinϕ+Λ3,u[(1+ϱ)cosϕ−λ1]

)
=

(
dλ1

dϕ

)
n
+

(
dλ1

dϕ

)
u

(4.15)

Which results in the following after expansion ofΛ3,u :(
dλ1

dϕ

)
u
= (

r 2 sinϕ+λ2
3ζ[(1+ϱ)cosϕ−λ1]

)
Ru + (

λ2
3n[(1+ϱ)cosϕ−λ1]

)
Tp,u (4.16)

∴B2,λ1 =
[(

r 2 sinϕ+λ2
3ζ[(1+ϱ)cosϕ−λ1]

) (
λ2

3n[(1+ϱ)cosϕ−λ1]
)

0
]

(4.17)

Repeating the process again for dλ2
dϕ (starting from Equation 2.65):

dλ2

dϕ
= (2U − (Rn +Ru)r )r cosϕ+ (Λ3,n +Λ3,u)[(1+ϱ)sinϕ−λ2]

= (
(2U −Rnr )r cosϕ+Λ3,n[(1+ϱ)sinϕ−λ2]

)+ (−Rur 2 cosϕ+Λ3,u[(1+ϱ)sinϕ−λ2]
)

=
(

dλ2

dϕ

)
n
+

(
dλ2

dϕ

)
u

(4.18)

Expanding the terms and grouping based on Ru and Tp,u yields:(
dλ2

dϕ

)
u
= (

λ2
3ζ

[
(1+ϱ)sinϕ−λ2

]− r 2 cosϕ
)

Ru + (
λ2

3n
[
(1+ϱ)sinϕ−λ2

])
Tp,u (4.19)

∴B2,λ2 =
[(
λ2

3ζ
[
(1+ϱ)sinϕ−λ2

]− r 2 cosϕ
) (

λ2
3n

[
(1+ϱ)sinϕ−λ2

])
0
]

(4.20)

Finally, equation 2.67 provides the derivatives of λ4 through λ7 and contains the perturbation pro-
jection N which is split as before:

d

dϕ


λ4

λ5

λ6

λ7

= Nn
r 2

2n


λ7cν−λ6sν
λ6cν+λ7sν
−λ5cν+λ4sν
−λ4cν−λ5sν

+Nu
r 2

2n


λ7cν−λ6sν
λ6cν+λ7sν
−λ5cν+λ4sν
−λ4cν−λ5sν

+ ωz

2


λ5

−λ4

λ7

−λ6

 (4.21)

However, ωz defined in Equation 4.22 also contains perturbing accelerations R and the previously
foundΛ3 term:

ωz = n −m

ϱ
+ (2U −Rr )

(
2−ϱ+m

)
r +Λ3ζ

(
ϱ−m

)
m (1+m)

= n −m

ϱ
+ (2U − (Rn +Ru)r )

(
2−ϱ+m

)
r + (

Λ3,n +Λ3,u
)
ζ
(
ϱ−m

)
m (1+m)

(4.22)



32 4. OCBE Regularization

Expanding the terms, collecting those containing Ru as well asΛ3,u and simplifying the result leads
to (where again, the first row contains the natural contribution and the second corresponds to the
control acceleration):

ωz = n −m

ϱ
+ (2U −Rnr )

(
2−ϱ+m

)
r +Λ3,nζ

(
ϱ−m

)
m (1+m)

+ −r 2m + r 2
(
ϱ−2

)
m (1+m)

Ru + −mζ+ϱζ
m (1+m)

Λ3,u

=ωz,n +ωz,u

(4.23)

Combining this result with Equation 4.11 in Equation 4.21, the equation that can be used to obtain
the final four rows of B2 is found:

d

dϕ


λ4

λ5

λ6

λ7

= Nn
r 2

2n


λ7cν−λ6sν
λ6cν+λ7sν
−λ5cν+λ4sν
−λ4cν−λ5sν

+ ωz,n

2


λ5

−λ4

λ7

−λ6

+Nu
r 2

2n


λ7cν−λ6sν
λ6cν+λ7sν
−λ5cν+λ4sν
−λ4cν−λ5sν

+ ωz,u

2


λ5

−λ4

λ7

−λ6

 (4.24)

∴B2,λ4−λ7 =



(−r 2m+r 2(ϱ−2)
m(1+m) + −mζ+ϱζ

m(1+m)λ
2
3ζ

)
λ5
2

(−mζ+ϱζ
m(1+m)λ

2
3n

)
λ5
2

r 2

2n (λ7cν−λ6sν)(−r 2m+r 2(ϱ−2)
m(1+m) + −mζ+ϱζ

m(1+m)λ
2
3ζ

) −λ4
2

(−mζ+ϱζ
m(1+m)λ

2
3n

) −λ4
2

r 2

2n (λ6cν+λ7sν)(−r 2m+r 2(ϱ−2)
m(1+m) + −mζ+ϱζ

m(1+m)λ
2
3ζ

)
λ7
2

(−mζ+ϱζ
m(1+m)λ

2
3n

)
λ7
2

r 2

2n (−λ5cν+λ4sν)(−r 2m+r 2(ϱ−2)
m(1+m) + −mζ+ϱζ

m(1+m)λ
2
3ζ

) −λ6
2

(−mζ+ϱζ
m(1+m)λ

2
3n

) −λ6
2

r 2

2n (−λ4cν−λ5sν)

 (4.25)

Compiling the results, the B2 matrix given in Equation 4.26 is obtained, resulting in a fully defined
control input scaling matrix B = B2 ·B1.

B2 =



λ3/2
3 r 2 +2λ7/2

3 ζ2 2λ7/2
3 ζn 0

r 2 sinϕ+λ2
3ζ[(1+ϱ)cosϕ−λ1] λ2

3n[(1+ϱ)cosϕ−λ1] 0
λ2

3ζ
[
(1+ϱ)sinϕ−λ2

]− r 2 cosϕ λ2
3n

[
(1+ϱ)sinϕ−λ2

]
0

2λ3
3ζ 2λ3

3n 0(−r 2m+r 2(ϱ−2)
m(1+m) + −mζ+ϱζ

m(1+m)λ
2
3ζ

)
λ5
2

(−mζ+ϱζ
m(1+m)λ

2
3n

)
λ5
2

r 2

2n (λ7cν−λ6sν)(−r 2m+r 2(ϱ−2)
m(1+m) + −mζ+ϱζ

m(1+m)λ
2
3ζ

) −λ4
2

(−mζ+ϱζ
m(1+m)λ

2
3n

) −λ4
2

r 2

2n (λ6cν+λ7sν)(−r 2m+r 2(ϱ−2)
m(1+m) + −mζ+ϱζ

m(1+m)λ
2
3ζ

)
λ7
2

(−mζ+ϱζ
m(1+m)λ

2
3n

)
λ7
2

r 2

2n (−λ5cν+λ4sν)(−r 2m+r 2(ϱ−2)
m(1+m) + −mζ+ϱζ

m(1+m)λ
2
3ζ

) −λ6
2

(−mζ+ϱζ
m(1+m)λ

2
3n

) −λ6
2

r 2

2n (−λ4cν−λ5sν)


(4.26)

4.3. Covariance Transformations
Finally, as the estimation process requires an initial state covariance to kickstart the process, its
representation in terms of the elements used in the estimation is required. In theory, it is possi-
ble to select a suitable value by trial and error. However, should a conversion between a Cartesian
representation Px and the elements Pλ be developed, more representative comparisons between
the A-OCBE, U-OCBE and R-OCBE, using equivalent initial state covariances may be performed.
Furthermore, a covariance in terms of the regularized elements may be more difficult to interpret
considering the variety of the parameters and their non-dimensional nature. As a result, this sec-
tion treats two methods that were developed to convert a covariance matrix between a Cartesian
and regularized representation as well as covariance remediation which is necessary to compensate
for the effects of introducing additional dimensions to the covariance.
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4.3.1. Monte Carlo based transformation
The first approach to converting between Px and Pλ is based around the Monte Carlo method. This
involves sampling n points, converting each point individually to the desired elements and find-
ing the covariance using the equation given in Equation 4.27, where y⃗i represents the individual
samples and ȳ is the mean thereof.

P = 1

n −1

n∑
i=0

(
y⃗i − ȳ

) · (y⃗i − ȳ
)T (4.27)

Such an approach has been applied in literature in context of other regularization methods such as
the K S method and it was found to be quite reliable despite the computational intensity [35]. Due
to its simplicity when it comes to implementation it was also tested for the regularization discussed
in this thesis. In the case of a conversion Px → Pλ it is a three step approach:

1. Sample n points x⃗i from a multivariate Gaussian distribution with covariance Px around
mean x⃗.

2. Convert each sample x⃗i to regularized elements λ⃗i = f (⃗xi , t ).
3. Compute Pλ using Equation 4.27.

However, the inverse transform Pλ → Px is more cumbersome. As discussed in Section 4.1, the
conversion from EDromo elements to Cartesian coordinates involves the independent variable ϕ,
which needs to be corrected given a change in regularized state λ. Additionally, given random sam-
pling, the quaternion magnitude is not preserved and must also be corrected prior to the conversion
of a sample. Hence, the following approach is applied:

1. Sample n points λ⃗i from a multivariate Gaussian distribution with covariance Pλ around
mean λ⃗.

2. Normalize quaternion elements of each sample.
3. Find suitable ϕi using method described in Section 4.1.

4. Convert each sample λ⃗i to Cartesian coordinates x⃗i = g
(
λ⃗i ,ϕi

)
.

5. Compute Px using Equation 4.27.

4.3.2. Linear Covariance Mapping
The second method implemented revolves around using Jacobian matrices of one variable with re-
spect to the other as shown in Equation 4.28 for the forward transform and Equation 4.29 for the
inverse.

Pλ =
[

d λ⃗

d x⃗

]
Px

[
d λ⃗

d x⃗

]T

(4.28)

Px =
[

d x⃗

d λ⃗

]
Pλ

[
d x⃗

d λ⃗

]T

(4.29)

While the two necessary Jacobian matrices may be found analytically, the conversion between the
elements and Cartesian coordinates is cumbersome. A much faster to implement alternative is sim-
ply using a finite-difference approach. Considering that the covariance conversion is only necessary
for initialization of the estimator and post-processing of results, it is not expected that this will in-
troduce error significant enough to affect the comparison between the different OCBE variants. As

a result, a central difference method was implemented to find both d x⃗
d λ⃗

and d λ⃗
d x⃗ which can then be

used to obtain the corresponding covariances.
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4.3.3. Conversion method comparison
Upon implementation both methods discussed in the previous subsections were tested by perform-
ing conversions Px 0 → Pλ → Px 1 and comparing the values of Px 0 and Px 1. In broad terms, it was
found that both approaches work, with limited error, though some particular cases result in com-
plications.

Figure 4.2 shows the absolute element-by-element error after the conversion process for a diagonal
covariance given by Equation 4.30. In this example, the Monte Carlo approach used 10000 samples
(number chosen by trial and error, until an increase in number of samples no longer resulted in a
significant change in error). This results in the largest errors in a few of the off-diagonal entries,
primarily in the upper left quadrant. The errors reach up to 2% of the value of the largest entries
of Px 0, which may be argued to be acceptable. The linear mapping method however, results in
negligible errors in all elements.

Px 0 =
[

100I3×3[m2] 03×3

03×3 10−4I3×3[(m/s)2]

]
(4.30)

3e-01 1e+00 2e+00 1e-02 2e-02 1e-02

1e+00 6e-02 2e-02 3e-03 2e-02 2e-02

2e+00 2e-02 4e-01 2e-02 2e-03 1e-02

1e-02 3e-03 2e-02 3e-05 2e-04 9e-05

2e-02 2e-02 2e-03 2e-04 6e-07 2e-04

1e-02 2e-02 1e-02 9e-05 2e-04 2e-04

Error in conversion using Monte Carlo

2e-06 1e-07 3e-07 4e-10 8e-07 2e-06

1e-07 4e-07 5e-07 1e-06 1e-07 2e-07

3e-07 5e-07 6e-07 2e-06 1e-07 2e-07

4e-10 1e-06 2e-06 5e-10 2e-11 3e-11

8e-07 1e-07 1e-07 2e-11 1e-10 1e-10

2e-06 2e-07 2e-07 3e-11 1e-10 3e-10

Error in conversion using Jacobian

10 9

10 7

10 5

10 3

10 1

Figure 4.2: Diagonal covariance conversion absolute error for both methods, given a mean in Tundra orbit (matching
initial state specification in Table 5.1). Monte Carlo method using 10000 samples for both forward and backward

conversion.

This was also tested for more general, randomized matrices that are positive-definite and it was
found that while the linear mapping approach retained it’s accuracy, the Monte Carlo approach of-
ten resulted in multiple matrix elements diverging. An example of this is shown in Figure 4.3.

In this example, the original matrix Px 0 is obtained from Equation 4.31, where A is a 6×6 matrix. In
order to ensure Px 0 is positive semi-definite, each entry of the A matrix is randomly sampled from
a uniform distribution between 0 and 1. For this particular test, after the matrix product in Equa-
tion 4.31 this results in entry values for Px 0 between 1 and 3. While the linear mapping approach
also showcases some sensitivity in this case, as the errors related to the y position increase to around
1% of the covariance values, Monte Carlo results in errors multiple orders of magnitude above the
original values of the matrix elements.

Px 0 = A AT (4.31)
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1e+04 2e+05 6e+03 2e+01 3e-01 2e+00

2e+05 9e+06 2e+05 8e+02 2e+01 5e+01

6e+03 2e+05 5e+03 2e+01 1e-01 1e+00

2e+01 8e+02 2e+01 1e-01 5e-02 3e-02

3e-01 2e+01 1e-01 5e-02 3e-02 3e-02

2e+00 5e+01 1e+00 3e-02 3e-02 7e-03

Error in conversion using Monte Carlo

4e-04 1e-02 2e-04 1e-04 2e-04 6e-05

1e-02 2e-02 1e-02 1e-02 8e-03 9e-03

2e-04 1e-02 1e-06 4e-07 3e-07 7e-07

1e-04 1e-02 4e-07 3e-06 7e-07 7e-07

2e-04 8e-03 3e-07 7e-07 6e-08 2e-08

6e-05 9e-03 7e-07 7e-07 2e-08 1e-09

Error in conversion using Jacobian
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Figure 4.3: Randomized positive semi-definite covariance conversion absolute error for both methods, given a mean in
geostationary orbit (matching initial state specification in Table 5.1). Monte Carlo method using 10000 samples for both

forward and backward conversion.

This effect was particularly prominent when applying the conversion on a mean state with low
(< 0.1) eccentricity. It was identified that the differences between the two methods in such condi-
tions are already present in Pλ, particularly the quaternion components. As a result, this effect may
be attributed to the definition of the quaternion and independent variable in the regularized ele-
ments. The quaternion describes an orientation of an intermediate frame, the definition of which is
dependent on the true (or rather eccentric) anomaly which is in turn defined relative to an argument
of periapsis. If the eccentricity of a mean state used in the conversion is zero, each sample obtained
using Monte Carlo (with variations in position and velocity) introduces a different definition of the
argument of periapsis. For some samples, (i.e. if only the radial position decreases w.r.t. the mean
value) the spacecraft will be considered at or near the periapsis. Though if the radial position were
to increase due to the random sample, the spacecraft is defined as near the apoapsis, causing sig-
nificant variation in θ, which results in vastly different definitions of regularized elements and thus
an inappropriate covariance conversion. As a result of these findings, in addition to the more com-
putationally expensive nature of the method, it was deemed that the Monte Carlo approach is not
appropriate for use in the R-OCBE.

On the other hand in the case of the method described in Subsection 4.3.2, only one case where
the method failed was identified. This method also showcases sensitivity to low eccentricity val-
ues, though the ability to select the steps in the finite difference method allows for the issue to be
avoided as long as eccentricity is not perfectly 0. However, even for values such as e = 0.01, it was
found that for two points on the orbit (θ = 90° or θ = 270°), givenω= 0° , the solution to Equation 4.4
does not exist1. While this is not an issue for numerical propagation, when applying a finite dif-
ference approach to obtain the necessary Jacobian terms the method described in Section 4.1 fails
to converge to a solution for ϕ. Thus, the conversion Pλ → Px 1 results in a gross overestimation (or
potentially negative values) of certain terms of the covariance (often those related to the x position).
As this is a rather specific point of failure, that only appears in the conversion which is applied after
the state estimation is complete (in the post-processing), this approach was selected for use in the
R-OCBE with the knowledge that at particular points the Cartesian covariance may be significantly
overestimated.

1For other values of argument of periapsis, the relationship is less clear, though the points do not vanish.
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4.3.4. Covariance remediation
It should be noted that regardless of the conversion approach, the covariance is mapped from a
6×6 matrix to an 8×8. As the regularized elements contain a quaternion and two projections of the
generalized eccentricity, they are not entirely independent of each other. This implies a covariance
matrix in terms of the EDromo elements is rank 6 despite its shape. This is similar to the findings by
Ayuso[31], though that discussion treats a covariance in terms of traditional Dromo elements rather
than the modified EDromo which is the focus of this thesis. This aspect must be treated as it implies
the matrix shall contain two eigenvalues of 0 and is in turn positive semi-definite rather than posi-
tive definite as assumed in the development of the OCBE. Furthermore, it violates the requirement
for the Cholesky decomposition which is used in the Unscented OCBE approach introduced in Sec-
tion 2.1, thus covariance remediation is a necessary step in the R-OCBE.

The approach of remediation by clipping eigenvalues is discussed in [50] and revolves around re-
placing the zero or negative eigenvalues of a given matrix with very small positive values to ensure
the matrix is positive definite. In order to minimize the effect on the meaning of the matrix P , the
first step of the process is to perform an eigen-decomposition:

P =VΛV T (4.32)

Where V contains the eigenvectors of P and all eigenvalues are contained in the diagonal matrix
Λ. If any of the elements of Λ are non-positive, they may be replaced with an appropriately cho-
sen small positive value, yielding an updated diagonal matrix Γ. The remediated, positive-definite
covariance matrix can then be found using Equation 4.33.

Pr em =V ΓV T (4.33)

Given that the covariance matrix is expected to be positive semi-definite and only eigenvalues of 0
must be replaced, the impact of remediation on the estimation process should be negligible while
allowing the use of methods such as Cholesky decomposition.



5
Test Cases

As discussed in Section 3.1, the first step necessary to obtain numerical results is to define the test
cases for which the performance of the R-OCBE shall be evaluated. Based on the findings of the
literature survey, three distinct satellite orbits were selected. This chapter summarizes the tested
orbits, dynamics models as well as the spacecraft itself in sections 5.1, 5.2 and 5.3 respectively.

5.1. Spacecraft Initial States
As mentioned in the chapter introduction, in order to gain insight on whether orbital parameters
influence the performance of the R-OCBE three distinct initial states are used for the propagations.
As the focus of thesis remains on the perturbed two-body problem and particularly on the GEO
region, the initial states were selected to be representative of common cases:

1. A general satellite in geostationary orbit
2. An uncontrolled satellite in inclined graveyard orbit [51]
3. A heavily inclined and eccentric alternative disposal orbit - a tundra orbit [8]

The initial state parameters of each of these cases are summarized in Table 5.1.

Table 5.1: Initial state of three selected test cases

Test Case Geostationary Orbit Graveyard Orbit Tundra Orbit
Initial Time [-] J2000 J2000 J2000

Semi-Major Axis [km] 42164 42564 42164
Eccentricity [-] 0.01 0.01 0.3

Inclination [deg] 0 15 63.4
Argument of Periapsis [deg] 0 0 270

RAAN [deg] 0 0 0
True Anomaly [deg] 0 0 0

5.2. Dynamics Model
A key aspect of all astrodynamics problems that must be determined is, of course, the environment
and the corresponding dynamics model. In order to compare the performance of estimation meth-
ods, two dynamics models must be defined. The first represents the true (or reference) solution and
is used to obtain measurements as well as compute the final errors of the estimations. The second,
represents the known dynamics and includes slight error in modelling. This model is a direct part
of the OCBE variants.

As discussed in Section 3.1, the goal of the thesis is to determine if the R-OCBE can provide benefits
to state estimation of spacecraft, in particular with low observation frequency. The work done in
this thesis does not correspond to a specific spacecraft, instead it is focused on hypothetical, repre-
sentative cases. As a result of this, one may argue that an extreme fidelity dynamics model, accurate
to real life is not necessary, as long as the reference solution still captures the driving effects and
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provides sufficient detail to distinguish estimation methods. Hence, primarily to reduce runtimes,
a lower fidelity dynamics model was used to compare the R-OCBE performance with the A-OCBE
and U-OCBE.

While a detailed selection of the true dynamics model is presented in Chapter 6, the results are also
provided here in order to summarize all parameters necessary for reproduction of results in one
chapter. Hence, the ‘true’ solution of the trajectories are obtained with the following:

1. The Earth’s gravity is modelled using spherical harmonic gravity, of degree 7 and order 7
2. The perturbing bodies (the Sun and the Moon) are modelled as point masses
3. The solar pressure is modelled using the panelled method discussed in Section 2.3
4. All other perturbations are neglected

When it comes to the known dynamics model, sources of error must be introduced relative to the
reference model. Similar to the true model, the impact of simplifications of the known dynamics
model is discussed in Chapter 6. The primary simplification present in all test cases, is the use of
cannonball solar radiation pressure instead of the panelled model. Additionally, the impact of fewer
spherical harmonic gravity terms is introduced for particular tests, where explicitly specified.

5.3. Spacecraft Parameters
The final aspect of the environment yet to be covered is the spacecraft itself. As discussed in the
previous section, the only forces it is subject to are gravity and solar radiation pressure. Thus, only
parameters used for these models are necessary to define the spacecraft. Table 5.2 summarizes the
list of values used for all dynamics models. For the panelled body SRP model, the spacecraft is mod-
elled as rectangular box, with fixed pointing towards the earth and rotating solar panels pointing
towards the sun. In order to obtain representative parameters for a satellite in the GEO region, the
GOES-R series datasheet was used [52].

It should be noted that the spacecraft mass was selected to be equal to that of a GOES-R series
spacecraft, after approximately 5 years of operation. Additionally, in the case of cannonball SRP,
the reference area was calculated such that it results in the same mean acceleration as the panelled
model in a reference simulation (assuming the reflectivity coefficient is constant). This should result
in a small yet noticeable error that is further discussed in Chapter 6.

Table 5.2: Summary of defined spacecraft parameters

Dynamics Model Parameter Value
Gravity Mass [kg] 3547.9

Reference Area [m2] 74.598
Cannonball SRP

Reflectivity Coefficient [-] 1.3

Body Specular Reflectivity [-] 0.32
Body Diffuse Reflectivity [-] 0.18

Array Specular Reflectivity [-] 0.05
Array Diffuse Reflectivity [-] 0.05

Length [m] 5.6
Width [m] 3.9
Height [m] 6.1

Panelled SRP

Array Area [m2] 26.617
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Dynamics Model Analysis

This chapter discusses the approach to select numerical integration methods and environment fi-
delity for both the ‘true’ (reference solver) and the ‘known’ (primary solver) solutions. Section 6.1
discusses the accuracy requirement for the numerical solution, as well as the selection of the refer-
ence fixed-step integration algorithm, used for the following environment selection. This is followed
by Section 6.2, where the environment model for the true solutions is selected. Next, Section 6.3
briefly covers the effect of the simplified dynamics in the primary dynamics solver and the selection
of the variable step integrator to be used in the OCBE algorithm. Finally, the numerical performance
of the regularized formulation originally introduced in Section 2.2 is discussed in Section 6.4.

6.1. Benchmark Integration Error
When applying the OCBE, the primary goal is to evaluate each of the variant’s capabilities at estimat-
ing the state of a spacecraft with measurement noise and dynamic mis-modelling. However, due to
the nature of the perturbed two-body problem and the lack of analytic solution, numerical solution
methods are necessary. These introduce additional sources of error, namely truncation and float-
ing point errors. Generally, the exact values of these errors are unknown. To ensure the later found
differences in performance can actually be attributed to the variations in the OCBE algorithm, it
is important to quantify the impact of both of these error sources and ensure they are sufficiently
small. In addition to ensuring accuracy of the algorithm itself, ‘true’ solutions must be defined for
error calculations. It is also important to evaluate the extent to which these solutions can actually
be considered true.

Thus, the first step of this process is to define a numerical accuracy requirement. For the purposes of
comparison of the OCBE variants, the smallest expected standard deviation of the simulated mea-
surements is in the order of 10 meters. To ensure the numerical propagation error does not eclipse
the measurement uncertainty (with some margin) the requirement for numerical integration accu-
racy is set to be two orders of magnitude lower: O (0.1[m]). While not necessary for measurement
sampling, a velocity standard deviation is also used when setting an initial state covariance in the
estimation process. This value was chosen two orders of magnitude below the position (0.1 meters
per second), which could then be used to define a numerical accuracy requirement in terms of ve-
locity to be O (0.001[m/s]).

Note that the impact of environmental mis-modelling is not taken into account when setting this
requirement. This is primarily due to the fact that the mis-modelling can easily be tuned to achieve
a desired effect. For example, the spacecraft mass or effective area for cannonball solar pressure can
intentionally be set incorrectly.

With the accuracy requirement set, a reference propagation must be performed as a starting point
estimation of the error. To achieve this, for each of the test cases discussed in Chapter 5, two fixed-
step propagations (for a set timestep) are performed using 7th and 8th order accurate integration
schemes. When the truncation error is dominant, the difference between the 7th and 8th order
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40 6. Dynamics Model Analysis

propagation is a good representation of the overall error. The change in this error can also be pre-
dicted for a change in timestep. For a 7th order scheme, increasing the timestep by factor 2 is ex-
pected to increase the global truncation error by approximately factor 128, or more broadly speak-
ing two orders of magnitude. If this trend is not observed, it is likely other effects are influencing
the error of the integration (such as the floating point error). Using this information, a number of
propagations with varying time-step were performed.

For the sake of completion, before discussing the results, the environment used for the initial bench-
mark generations contains the following:

• Spherical harmonic gravity of the Earth (up to degree and order 30)
• Point mass gravity of the Moon
• Point mass gravity of the Sun
• Panelled spacecraft SRP

The results of the benchmark error approximations are shown in Figure 6.1 for the Geostationary
orbit, for a week long propagation (while the other orbit cases follow later in Figures 6.3 and 6.5).
The first thing to notice is that in order to satisfy the error requirement set earlier, timesteps below
1000 [s] are necessary. However, while the trend of error increasing by 2 orders of magnitude for
double the timestep was expected, this relationship only stands in the region violating the error re-
quirement.
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Figure 6.1: Geostationary Orbit test case integration error after one week. Each consecutive data point represents a factor 2
increase in timestep.

To gain further insight into the issue, the error development over time was plotted for a number
of the propagations, focusing on position error as the velocity displayed identical behaviour. For
example, in the GEO case in Figure 6.2, the expected error scaling trend can be observed for large
timesteps such as 3200 [s] and 6400 [s]. On the other hand, the effect of discrete floating point
error is noticeable for a very small timestep such as 6 seconds. The region inbetween seems less
well-behaved. From Figure 6.2, it is very clear that for dt=1600 [s] the error follows a very different,
somewhat oscillatory trend to other timesteps. Additionally, dt = 800 [s] produces an error O (0.1[m])
while it was expected to produce O (10−3[m]). As the precise reasoning for this behaviour was not de-
termined, it is difficult to guarantee future propagations will deliver the same accuracy and a margin
should be employed. Thus, an even smaller step (dt = 400 seconds) was chosen as the benchmark
integration for the geostationary orbit test case.
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Figure 6.2: Position Error Magnitude over duration of propagation for the GEO test case

Similar to the Geostationary test case, from Figure 6.3 it can be observed that dt = 800 [s] would
satisfy the accuracy requirements for the Tundra orbit as well. However, upon more detailed in-
spection of Figure 6.4, a slight dip in error before the first day of the propagation is observed, and
only present for this timestep. In order to ensure that given different environment conditions this
decrease in error does not disappear and result in a violation of the requirement, the dt = 400 [s]
solution is used as the benchmark. This solution presents some slightly erratic error behaviour near
the end of the seven-day propagation. However, considering the two order of magnitude margin to
the requirement, this was not deemed an issue.
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Figure 6.3: Tundra Orbit test case integration error after one week. Each consecutive data point represents a factor 2
increase in timestep.
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Figure 6.4: Position Error Magnitude over duration of propagation for the Tundra test case

Finally, for the Graveyard orbit the situation is a bit different. Figure 6.5 indicates that timesteps of
200, 400 and 800 seconds all satisfy the error requirement, but are extremely close together. Once
again, the error behaviour over time is plotted in Figure 6.6 to gain additional insight before select-
ing the benchmark solution. Once again, large timesteps display steadily growing error separated
by around two orders of magnitude as expected. However, the three propagations of interest all dis-
play error oscillations of at least one order of magnitude. Additionally, both the 400 and 800 second
step solutions reach a maximum error just before the third day of the propagation. Considering the
global error is generally expected to grow over time, this may be a reason to doubt the reliability of
the maximum error metric in this particular case.
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Figure 6.5: Graveyard Orbit test case integration error after one week. Each consecutive data point represents a factor 2
increase in timestep.

On the other hand, while the dt = 200 seconds solution still displays the error decreasing at times,
this decrease is periodic and much more consistent, displaying minima exactly one day apart. This
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likely implies an interaction between the truncation error and perturbations acting on the inclined
orbit. While the behaviour is still not desired, at the very least it remains more predictable and
consistently below the requirement limit. Furthermore, the maximum error is still observed at the
end of the propagation and its mean is growing steadily in a shape similar to those observed for
timesteps the likes of dt=3200 [s]. Resorting to lower timestep solutions was also considered, but
the truly random influence of floating point error became more and more noticeable, without re-
sulting in steadier error behaviour for the propagation. Considering that, the dt = 200 [s] solution
was chosen as the most suitable benchmark to ensure O (0.1[m]) and O (0.001[m/s]) accuracy for the
Graveyard orbit.
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Figure 6.6: Position Error Magnitude over duration of propagation for the Graveyard test case

6.2. True Environment Selection
With benchmark solutions for each test case obtained, some tweaks to the environment model
could be made. As discussed in Section 5.2, an extreme fidelity dynamics model was not deemed
necessary for this application. Instead, the focus lies on including the effects on the order of mag-
nitude of measurement and dynamics mis-modelling errors. In simpler terms, if the removal of a
perturbation results in a change of state more than: O (0.1[m]) and O (0.001[m/s]), the perturbation
should be included in the true solution of the dynamics problem. This requirement was chosen to
coincide with the requirement set on the numerical integration precision, a few reasons for this may
be highlighted:

1. The numerical accuracy requirement is set for a propagation of 1 week, whereas the measure-
ment gaps in the testing of the OCBE are below a day, hence a margin is anticipated.

2. As discussed in Section 6.1, due to the behaviour of the integration error, the time steps se-
lected resulted in error 1 order of magnitude below the requirement, providing additional
margin in which the truncation error remains distinct from the modelling error.

3. In the OCBE implementation a further simplified model is employed in order to test the ca-
pabilities of the algorithms capability to compensate for dynamics mis-modelling. As long as
this additional mis-modelling is at least one order of magnitude above the error requirement,
the distinction between integrator truncation and modelling error in the truth solution shall
remain of little consequence.
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In any case, terms with a smaller effect than the requirement may be omitted as they increase com-
putational time while their contributions would remain inconsequential due to the numerical inte-
gration error. In this section, only the selection process for the GEO test case is presented. This is
simply due to other test cases leading to identical conclusions.

As a first step in picking the environment model, the magnitude of some accelerations acting on the
spacecraft was plotted in Figure 6.7. This provides a general overview of how impactful the different
perturbations are relative to each other. As expected, the point mass contributions of the sun and
the moon are significant, followed closely by solar radiation pressure and the largest terms of the
Earth’s spherical harmonic gravity. All of these terms are expected to have a noticeable impact on
the solution. The same can not be said about some higher order spherical harmonic terms, which
result in average acceleration magnitudes as low as O (10−32[m/s2]).
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Figure 6.7: Geostationary orbit acceleration magnitudes acting on spacecraft. Brackets indicating acceleration resulting
from Spherical Harmonic term of (degree, order)

In order to determine how many spherical harmonic terms may be omitted from the final envi-
ronment model, a variety of propagations were performed. With each propagation, the number of
spherical harmonic gravity terms was reduced. These results are then compared to the benchmark
solutions defined in Section 6.1 by computing the state differences over time.

The position requirement was found to be the limiting one, hence the corresponding results are pre-
sented in Figure 6.8. As can be seen in Figure 6.8a, reducing the spherical harmonic terms to degree
and order 6 results in a position error of over 0.1m in less than four days, violating the requirement.
On the other hand, Figure 6.8b shows that the difference in position w.r.t. the reference solution re-
mains well below the requirement even after a week of propagation. This implies degree and order
7 results in a suitable environment for the geostationary case.

For the Tundra and Graveyard orbits, the results remain extremely similar and are thus omitted from
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(b) Degree and order 7 spherical harmonic model

Figure 6.8: Alternate Earth gravity model inertial position difference w.r.t benchmark solution

this report. The core difference is that the state difference in the z component is comparable in mag-
nitude to the x and y. This behaviour was expected considering the out of plane nature of both the
orbits. Regardless, it does not result in a violation of the accuracy requirements when using the
same 7, 7 gravity model.

The same procedure may be repeated for other perturbations such as the solar radiation pressure
or point mass gravity contributions of the Sun and the Moon. However, from Figure 6.7 it can be
seen that each of these accelerations is multiple orders of magnitude larger than the contribution
of degree and order 6 spherical harmonic term, which is necessary to meet the requirements. It is
thus easy to conclude that these perturbations will also be necessary.

Based on the previous analysis, the ‘true’ or ‘reference’ solutions for each of the test cases are gener-
ated with the following final choice of environment and integrator:

• Spherical harmonic gravity of the Earth (up to degree and order 7)

• Point mass gravity of the Moon

• Point mass gravity of the Sun

• Panelled spacecraft SRP

• 7th order accurate, fixed step RK (Runge-Kutta) integration scheme

• dt = 400 [s] for the GEO and Tundra test cases

• dt = 200 [s] for the Graveyard test case

With the aforementioned choices, after a propagation of one week, obtained solutions are consid-
ered to have state errors no larger than: O (0.1[m]) and O (0.001[m/s]) in inertial position and velocity
respectively. Furthermore, as the numerical reference solution is obtained with fixed steps of 200 or
400 seconds, in order to facilitate OCBE testing on measurements at different observation gaps, the
solution may be interpolated using a Lagrange 7th order interpolation [49].
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6.3. Known Dynamics Model
For the OCBE testing, it is desired to simulate imperfect knowledge of the environment and intro-
duce some mis-modelling. One of the ways this can be done is by use of a simplified SRP model for
the ‘known’ dynamics model.

The first step in setting up the simplified cannonball model, is choosing the parameters such that
they provide similar results to the panelled specular diffuse model used for the true solution. Given
the completed propagations, the mean acceleration due to the panelled specular diffuse model over
the propagation can be computed. This can be used to obtain a suitable approximation of the ref-
erence area, by assuming a reflectivity coefficient of 1.3 and rewriting Equation 2.81 as follows:

A =
∫ t f

t0
|a⃗SRP |

t f − t0

mc

ΦCr
(6.1)

For the Geostationary Orbit, this results in A = 74.598[m2]. Considering how similar the results are
for the other orbits (72.006[m2] and 74.094[m2]), the Geostationary value is used for all cases for the
sake of simplicity. The next step is to determine the effect of such a simplification. The position
difference with respect to the true solution in RSW coordinates is given in Figure 6.9. It can be
seen that for all test cases, within half a day the position difference reaches the order of magnitude
of the minimum standard deviation discussed in Section 6.1. This implies the mis-modelling is
sufficiently significant to be detected by the OCBE, though it is not orders of magnitude larger than
the measurement error, hence it is not expected to dominate the problem.
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Figure 6.9: RSW position difference resulting from use of cannonball solar pressure for each test case

The impact on the velocity error was also quantified, which is shown in Figure 6.10. In can be ob-
served that in Tundra conditions, error variation approximately factor 2 larger in the radial compo-
nent of the velocity, over each orbital period is present. This can likely be attributed the eccentricity
of the test case. Regardless, for all test cases the differences in state still exceed the guaranteed
numerical precision (given a week-long error accumulation), hence for all test cases the SRP mis-
modelling effects should remain identifiable in the OCBE estimation process and remain largely
unaffected by numerical integration errors.
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Figure 6.10: RSW velocity difference resulting from use of cannonball solar pressure for each test case

While the discussion above is based on results using the reference dynamics solver implemented
using the Tudat library, as was discussed in Chapter 3, a custom ‘Primary’ dynamics solver was
implemented for use in the OCBE. With the known environment selected, this solver was imple-
mented. The validation of the implemented methods can be found in Appendix A.

With the primary dynamics solver implemented, a variable step integrator that maintains the er-
ror within specification was selected in order to improve performance of the estimation methods.
It was found earlier that the introduction of the cannonball SRP model results in a modelling po-
sition error in O (100[m]), while a numerical integration error (primarily truncation) of O (0.1[m])
was expected. This is a very significant difference which implies the requirement for integration
accuracy of the known dynamics model may be relaxed w.r.t. that of the true dynamics, without
a significant effect on the difference between the two. To ensure this difference between models
remains unaffected, the requirement was relaxed to two orders of magnitude below the modelling
error introduced: O (1[m]). However, as it was found that the velocity error due to the SRP model
simplification is only one order of magnitude above the original requirement, it is not relaxed as it
would in turn noticeably affect the difference between the dynamics models.

To perform the selection of appropriate tolerances, a number of variable step integrators were tested
with the known environment model, comparing the obtained states to the previously found fixed
step integration results. The final choice was made such that the necessary state derivative function
evaluations are minimized while adhering to the updated error requirements: O (1[m]), O (0.001[m/s]).
The only further constraint in this selection process was that only the RKF7(8) integration scheme
was considered, as this is the only scheme fully implemented and tested as part of the primary dy-
namics solver.

As the process is rather straight forward and the behaviour of the Cowell propagator is generally well
known, only the final selection of tolerances is discussed in this subsection. For all three of the orbit
test cases, an identical absolute tolerance was chosen at a value of: εabs = 10−10. The choice of rela-
tive tolerance varied, however. To achieve the requirements for the Geostationary case, εr el = 10−12

was selected. This choice reduced the necessary function evaluations to 27.3% of the 400 [s] fixed
step integration. For the Tundra case, εr el = 10−12 violated the position accuracy requirement on
the final day of the propagation by a small margin, hence the tolerance was reduced to: εr el = 10−13.
This results in a small loss in performance compared to the GEO case as 34.9% of the fixed-step
function evaluations are now necessary to obtain the solution.
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Finally, for the Graveyard case, a selection of relative tolerance of εr el = 10−12 was made to satisfy
the error requirements. While the value of the tolerance selected is the same as the GEO case, the
performance gain relative to the fixed step solution is not. Only 13.45% of the function evaluations
of the fixed-step propagation were necessary to meet the requirements. While at an initial glance
such a major difference in performance may be surprising, it is explained by the fact that the refer-
ence fixed step solution employed a 200 [s] step rather than 400 [s] as in the other test cases. Indeed,
it was found that the time steps of the variable step integrator for the graveyard orbit were compa-
rable to that of the other solutions.

With the integrator selection for each test case completed and the impact of solar pressure mis-
modelling quantified, the known dynamics model is fully defined and error predictions are avail-
able. From this point onwards, in the analysis of the A-OCBE and U-OCBE, environment models
used are the ones discussed in this section unless specifically stated otherwise.

6.4. EDromo formulation performance
For the R-OCBE, the regularized EDromo propagator was implemented and in order to select a set
of suitable tolerances, a similar approach was applied as for the Cowell propagator. Though, con-
sidering the behaviour of this propagation scheme is less well known, the process is discussed in ad-
ditional detail in this subsection. As the first step, for the known dynamics model, a set of GEO solu-
tions with varying absolute and relative tolerance were obtained, with the necessary state derivative
evaluations for all tested combinations displayed in Figure 6.11.
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Figure 6.11: Total state derivative function evaluations for propagated solutions with varying tolerances for the
geostationary orbit. Red X indicates violation of position error requirement, while black X indicates violation of both error

requirements.
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From Figure 6.11, it may be observed that the position error requirement is violated before that of
the velocity in all cases (as indicated by the lack of ‘x’ corresponding to a violation of only the ve-
locity error requirement). This implies the approach of relaxing the position requirement for the
known dynamics model is most certainly resulting in a gain in performance of the propagator.

Regardless, it was found that for this particular case, the number of necessary function evaluations
to obtain a solution satisfying the requirements depends substantially on the absolute tolerance. In
fact, for absolute tolerance equal to or lower than εabs = 10−14, it was found that the numerical in-
tegration may at times effectively get ‘stuck’ in taking steps smaller than 1 second (when converted
from the ϕ independent variable). This can be explained considering the case when the solution
error requirement resulting from the tolerances, is lower than the machine error. As with any in-
tegration, the integrator attempts to reduce the integration step to satisfy the error requirement.
However, in this case, the state error is now significantly influenced by the random machine error,
thus the step change does not guarantee the satisfaction of the error requirement, and the process
may be repeated over and over again, leading to extremely small integration steps. While the issue
could be resolved by making use of quadruple precision floating point format, as this was not im-
plemented, the options encountering this issue were excluded from the selection.

At first glance tolerances εr el = 10−14 as well as εr el = 10−16 with εabs = 10−12 both indicate good
performance without violating the requirements. However, propagations with εr el = 10−15 and
εr el = 10−17 violated the position requirement, while they are expected to be more accurate than
the two aforementioned methods. This suggests that while relative tolerances εr el = 10−14 as well
as εr el = 10−16 satisfy the requirements in this case, they may not do so reliably and should thus be
investigated further.

Additionally, in order to further investigate the reasoning behind the strong effect of absolute toler-
ance, the two most efficient solutions corresponding with εabs = 10−13 are also considered, despite
the seemingly higher number of function evaluations. In order to make the final selection of tol-
erances, two aspects of the aforementioned selected configurations are discussed in further detail.
First - the efficiency of the solution. Second - the error behaviour over time.

Given a few potentially suitable configurations have been selected, it is now possible to investigate
the performance of each option in more detail. As discussed in earlier chapters, one of the con-
cerns for the efficiency of the regularized propagator is that the state estimation procedure requires
propagation of reference trajectories to a precise final time (corresponding to a measurement). As
the implemented regularized propagator performs propagations using an independent variable ϕ
which is different to time, and its final value is unknown prior the propagation, it is necessary to
employ root finding to terminate at the appropriate time. To investigate the potential impact to the
performance of the propagation, the breakdown of the function evaluations due to the integration
steps and the root finding is shown in Figure 6.12, where the chosen candidates are also compared
to the Cowell integration settings selected in the previous section.

It is rather clear that regardless of the final choice of tolerances, the regularized propagations re-
quire a fraction of the function evaluations of the Cowell propagation. However, the root finding
contributes on average around 8% (∼ 80) of the total necessary state derivative evaluations, which
is likely necessary regardless of the length of the propagation. This implies, for propagations cor-
responding to short measurement gaps in the estimation, the contribution of the root finding may
cause the relative performance of the regularized method to diminish. This is further discussed in
Chapter 7.
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propagators, compared to a Cowell solution (εabs = 10−10; εr el = 10−12, as selected in Section 6.3). Solutions obtained for

geostationary orbit.

On the other hand, it can also be seen that the number of function evaluations for εabs = 10−12

hardly depends on the relative tolerance. Tolerances εr el = 10−14 and εr el = 10−16 even result in the
same total. It was confirmed that this was a slight coincidence, as the higher tolerance solution takes
3 fewer time steps, though it does iterate additional times in order to ensure the truncation error is
within the specified bounds. Regardless, this behaviour implies the absolute tolerance’s dominance.
For the choice of εabs = 10−13 in Figure 6.12, the dependence on relative tolerance is immediately
more obvious, where, as expected, decreasing it results in additional function evaluations.

The second aspect that should be treated is the error behaviour over time, which is shown in Fig-
ure 6.13 for the solutions dominated by the absolute tolerance. It can be seen that all three of these
solutions behave in a very similar manner for approximately the first two and a half days of the
propagation, after which the integration with εr el = 10−17 takes a slightly larger step in time and the
errors grow apart. Considering this tolerance is expected to result in a more accurate solution, it
seems plausible that in the context of an estimator, when propagating reference trajectories with
εr el = 10−16 and εr el = 10−14, a similar ‘mistake’ may occur and result in a violation of the position
error requirement. Especially so when considering the margin is rather small.

As the performance losses from reducing the absolute tolerance were not excessive (as was seen
in Figure 6.12), the behaviour of the error for these settings was also investigated as shown in Fig-
ure 6.14. While both methods satisfy the requirements, εr el = 10−13 results in an unexplained and
very significant jump in error on the final day of the propagation. Considering the nature of this be-
haviour was not identified, the more well-behaved solution with εr el = 10−14, which also provides
additional margin, was selected for use in the R-OCBE, despite the slight loss in performance.



6.4. EDromo formulation performance 51

0 1 2 3 4 5 6 7
t [days]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Po
sit

io
n 

Er
ro

r [
m

]
abs = 1e-12; rel = 1e-14
abs = 1e-12; rel = 1e-16
abs = 1e-12; rel = 1e-17

(a) Position Error

0 1 2 3 4 5 6 7
t [days]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Ve
lo

cit
y 

Er
ro

r [
m

/s
]

abs = 1e-12; rel = 1e-14
abs = 1e-12; rel = 1e-16
abs = 1e-12; rel = 1e-17

(b) Velocity Error

Figure 6.13: Geostationary Orbit test case integration error over the course of a week using different RKF7(8) tolerances,
with respect to fixed step solution.
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Figure 6.14: Geostationary Orbit test case integration error over the course of a week using different RKF7(8) tolerances,
with respect to fixed step solution.

The same process was repeated for the other orbit test cases and the final selection of RKF7(8) toler-
ances satisfying the accuracy requirements of O (1[m]) and O (0.001[m/s]) for the regularized prop-
agator are as follows:

• GEO - εabs = 10−13; εr el = 10−14

• Graveyard orbit - εabs = 10−13; εr el = 10−14

• Tundra orbit - εabs = 10−13; εr el = 10−15



7
OCBE Performance

This chapter discusses the numerical results obtained by applying the three implemented variants
of the OCBE to the test cases discussed in Chapter 5, using the dynamics models defined in Chap-
ter 6. First, Section 7.1 discusses the selection of the dynamic uncertainty parameter for the R-OCBE
as well as an identified flaw. Then, the current iteration of the R-OCBE is compared to the other
methods in Section 7.2, in terms of the sensitivity to measurement gaps and uncertainty. Finally,
Section 7.3, discusses the ability of the methods to compensate for the presence of additional mis-
modelled dynamics, in form of reduced fidelity gravity models.

7.1. R-OCBE Dynamic Uncertainty Selection
As discussed in Chapter 3, the R-OCBE implementation does not contain the adaptive dynamic
uncertainty modification. As a result, the first step necessary before comparisons between imple-
mented variants of the OCBE are made, is a selection of an appropriate dynamic uncertainty matrix
Q. For the BL-OCBE Lubey recommends a choice for Q such that Q =σ2

Q I , whereσQ has the units of

the control input ([m/s2]). As a result, the approach to select appropriate values forσQ is rather sim-
ple: for each test case the estimation algorithm was applied for a wide range of values of dynamic
uncertainty and a mean error is evaluated (excluding outlier values at the start of the estimation).
For the purposes of this section, the measurements are simulated with standard deviations of 10
[m] for the range and 1 arcsecond for the angle measurements (Azimuth and Elevation). Though,
choice of these values is not expected to significantly impact the choice of dynamic uncertainty.

In order to reduce the number of runs necessary, a more suitable range of σQ is identified by direct
inspection of results, and a few additional iterations with a finer step in dynamic uncertainty are
performed to find a good value. As in practice, perfect truth data is not available for tuning of the
dynamic uncertainty, a true optimization of σQ may lead to over-optimistic results, hence a value
near the minima of average error may be considered suitable to obtain a realistic representation
of performance. This approach results in generation of Figure 7.1a to get an overview of the best
performing option, though due to the compounding effect of dynamic mismodelling over time, it
is generally suggested to scale the value depending on the measurement gap, hence the process
should be repeated multiple times to find an appropriate scaling.

From the aforementioned figure an optimal dynamic uncertainty slightly below 10−7 [m/s2] for the
Tundra orbit is immediately obvious, with a generally smooth parabolic (given logarithmic x scale)
relationship between the dynamic uncertainty and the average position error. For the other two test
cases, the lowest achievable average error is approximately factor 5 higher, despite the same mea-
surement and dynamics model errors, and they do not display the same parabolic behaviour, which
is even more evident given an increased measurement gap as shown in Figure 7.1b.

During the development of the Covariance conversion method in Section 4.3, a condition during
which the method fails to obtain an updated independent variable ϕ and thus results in a poorly
estimated Cartesian covariance was identified. Such cases were investigated in order to determine

52
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Figure 7.1: Mean estimate position error with respect to the true solution as a function of dynamic uncertainty, for
sequences of 20 measurements.

if these conditions result in additional, unexpected impact on the estimator. An example of this is
shown in Figure 7.2a, where a clearly divergent σx value is obtained precisely 12 hours apart in the
estimation, despite the other dimensions remaining seemingly unaffected. That being said, a sig-
nificant increase in the estimate error is also present at the same epochs, which was not originally
expected. It appears that the same convergence issue (discussed in more detail in Section 4.3) is
present when sigma points under these conditions are evaluated and corresponding values ofϕ are
found.
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Figure 7.2: State estimate position error and 2σ bounds w.r.t. true solution, using measurements every hour.

As this issue is entirely absent in the Tundra orbit (as shown in Figure 7.2b), which boasts a larger
eccentricity, it is likely that the aforementioned conditions result in a failed update of ϕ in the es-
timation process, in addition to the covariance transformation. It is believed that this issue may
potentially be resolved in a few ways, one of which involves estimating the independent variable
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ϕ instead of λ0,l in order to ensure Equation 4.4 always has a solution to synchronize the estimate
with the measurement. Unfortunately, due to a limited duration of the thesis, this change was not
implemented and the rest of the performance evaluations in this chapter focus on the Tundra orbit,
where the issue is avoided.

Returning to the topic of dynamic uncertainty selection, from Figure 7.1 it can be observed that
from the tested values σQ = 7 · 10−8 [m/s2] and σQ = 1.5 · 10−8 [m/s2] for the 1.5 hour and 7 hour
measurement gaps respectively give near-optimal solutions. Coincidentally, the ratio of dynamic
uncertainties is precisely the inverse of the ratio of measurement gaps (which were selected com-
pletely arbitrarily). To test if this is a trend that can be taken advantage of, the process was repeated
to identify a near-optimal value for a measurement gaps of 4.25 and 10 hours, for which an optimum
are anticipated around σQ = 2.5 ·10−8 [m/s2] and 10−8 [m/s2] respectively, should Equation 7.1 be a
reasonable method to obtain an approximation of a near-optimal dynamic uncertainty.

σQ (d th) = 1.5

d th
· (7 ·10−8) (7.1)

The corresponding results are given in Figure 7.3. As can be seen from the figure, the estimated Q for
both measurements gaps is not quite at the optimal value, though it is near. For a measurement gap
of 4.25 hours in Figure 7.3a, the optimum is around σQ = 10−8, with a mean error ≈ 58 [m], whereas
using the predictedσQ = 2.5·10−8 results in a mean error of ≈ 69 [m]. In case of the 10-hour gap, the
optimum is around σQ = 8 ·10−9 with a mean error ≈ 77 [m], while the predicted σQ = 10−8 results
in a mean error only 1 [m] higher. In the context of measurement standard deviations in the order
of 200 [m], this was deemed acceptable.

10 9 10 8 10 7 10 6 10 5

Dynamic Uncertainty [m
s2 ]

50

100

150

200

250

300

350

Av
er

ag
e 

Po
sit

io
n 

Er
ro

r [
m

]

Tundra

(a) Measurement Gap - 4.25 hours

10 9 10 8 10 7 10 6

Dynamic Uncertainty [m
s2 ]

75

100

125

150

175

200

225

Av
er

ag
e 

Po
sit

io
n 

Er
ro

r [
m

]

Tundra

(b) Measurement Gap - 10 hours

Figure 7.3: Mean estimate position error with respect to the true solution as a function of dynamic uncertainty, for
sequences of 20 measurements.

While it is likely possible to construct a more sophisticated empirical method to obtain Q(d t ), as it
was earlier discussed, a detailed optimization of σQ would not be possible in a real world applica-
tion. In turn Equation 7.1, provides a reasonable estimate for this particular application, while still
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capturing the effect of an imperfect choice of dynamic uncertainty.

7.2. Variations in Measurement Quality
With a method to select the dynamic uncertainty for the R-OCBE defined, it is finally possible to
compare the three estimators. In order to answer the research questions stated in the introduction,
the performance shall be evaluated on three primary metrics:

• The error of the estimates with respect to the true trajectory
• The number of state derivative function evaluation necessary to obtain the estimates
• The quality of the covariance estimate (is the state estimate error within 2σ)

In this section, the relationship of these metrics to the parameters defining measurements are dis-
cussed. Due to the expected benefits of the R-OCBE for long-term propagations, the first parameter
of interest is the time gap between measurements. Furthermore, the sensitivity of the estimators to
standard deviations of the simulated range, azimuth and elevation measurements is investigated.
However, in order to limit the dimensionality of the problem, the three measurement standard devi-
ations are coupled as shown in Equation 7.2 using an error scaling factor a, which may be increased
in order to simulate worse quality measurements. This error scaling factor is used as an indepen-
dent variable in a number of tests discussed in this chapter.

σ⃗a = a ·
 σR

σAz

σEl

= a ·
 10m

1arcsec
1arcsec

 (7.2)

7.2.1. Mean Estimate Error
To get a first idea on the performance of the estimators, the mean error of each version was ob-
tained for a sequence of 20 measurements with varying time gaps and the error scaling factor. For
the purposes of conciseness, only error in terms of position is discussed as velocity errors display
very similar behaviour. These results are shown in Figure 7.4.
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Figure 7.4: Mean position error of the estimators as a function of the measurement error scaling and time gap. Each point
of the grid is a sequence of 20 measurements in the Tundra orbit, with outliers prior to convergence excluded from the

value of the mean error.

It is rather clear that in terms of mean error the R-OCBE performs very well with respect to the
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other methods. The mean error is also rather unaffected by the measurement gap. The U-OCBE
displays generally larger error, which also increases further with larger values of both error scaling
and the measurement gap. On the other hand, while generally the A-OCBE displays a similar trend,
there does appear to be a set of outliers for measurement gaps of 2 or 3 hours with high error scaling.

These examples were investigated further, and it was identified this effect was caused by a flaw in
the post-processing of the results rather than the estimator. In order to ensure the state estimates
prior to filter convergence do not affect the comparison of the OCBE methods, n datapoints with
error magnitude above a threshold were deemed as outliers and hence not included in the mean
error in Figure 7.4. However, as shown in Figure 7.5, in particular cases, a number of outliers prior
to filter convergence were not identified (as the magnitude of the error was just under the threshold)
and hence had a severe negative impact on the mean error.
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Figure 7.5: A-OCBE Estimate position error w.r.t. to true solution, for: Measurement gap = 3 hours, Error scaling factor = 5

For example, the result shown in Figure 7.5 originally resulted in the highest mean error of all OCBE
tests, at ≈ 1100 [m]. After revisiting and excluding three additional estimates at the start of the simu-
lation, the mean error was reduced to a much more reasonable ≈ 490 [m], which is also more in line
with the other tests. While this example was the most severe case, it was ensured that the outliers
had not affected any results outside the 5 highest error configurations of the A-OCBE in Figure 7.4
and having made the appropriate adjustments, the method comparison was continued. Given that
it was desired to highlight the presence of this post-processing artifact and its correction does not
suggest any previously unidentified trends in Figure 7.4, an updated version of the Figure is omitted
from this report for the sake of conciseness.

7.2.2. Estimation Costs
While Figure 7.4 provides an overview of the estimate error, of the methods, it does not provide any
information when it comes to the costs of the estimation process, which is also of great interest.
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Using the same data as in Figure 7.4, Figures 7.6a and 7.6b were generated, in which the theoretical
best performing algorithms resulting in minimal error at the lowest cost are in the lower left corner.

Starting with the smaller measurement standard deviations in Figure 7.6a, it can indeed be seen that
the output of the R-OCBE (indicated by the circular markers) results in a well grouped, very small
mean error (50-100 [m]), with the necessary function evaluations ranging between 6 ·104 (for d t = 1
[h]) to 9 ·104 (for d t = 8 [h]), which is higher than quite a few of the other algorithms.
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Figure 7.6: The mean error and state derivative function evaluations of the implemented OCBE variants for varying
measurement gap, which is indicated by the size of the markers in addition to the colour.

Speaking of which, for small measurement gaps (particularly 2 - 3 hours), the A-OCBE (indicated by
the diamonds) results in comparable error (≈ 100 [m]), at much fewer function evaluation (≈ 2000).
This massive distinction in computational cost can be explained when considering the R-OCBE re-
quires propagation of not only the estimated state itself, but also 16 sigma points between each
measurement epoch. Furthermore, as it was already discussed in Chapter 6, the necessary root
finding for the regularized propagator was expected to result in significant increase in costs, espe-
cially for low duration propagations. However, while the costs of the A-OCBE remain much lower
than the R-OCBE even for higher measurement gaps, this comes at the cost of mean error growth to
around 250 [m]. This increase in error was generally anticipated given the linear nature of the esti-
mator, applied on a non-linear system, limiting the range over which the method is most accurate.

While these results seemingly already indicate the use cases for both of the two aforementioned
algorithms, the U-OCBE (indicated by triangles) error seems generally higher than the other meth-
ods, while remaining more expensive than the A-OCBE. It is also seemingly by far the most sensitive
method to measurment gap, at least in terms of function evaluations, as can be seen from the wide
spread along the x-axis in Figure 7.6a. This can be explained considering the combined effect of the
unscented transform and the adaptive dynamic uncertainty (Q) modification, which is also present
for the U-OCBE. For the A-OCBE, the cost is limited as only one trajectory must be propagated
between each measurement, with three additional trajectory propagations per Q adjustment nec-
essary. On the other hand, to perform the unscented estimation, 12 additional sigma points require
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propagation between every measurement epoch, which must each also be propagated three addi-
tional times if the dynamic uncertainty is adjusted, causing significant growth in costs. That being
said, for higher values of the measurement gap, the U-OCBE does result in lower error than the A-
OCBE. This was also anticipated, given that the Unscented modification should aid in the handling
of the non-linear dynamics effects that compound over time and damage the accuracy of the A-
OCBE.

To inspect the effect of an increase in measurement standard deviation, Figure 7.6b was also created.
Given a factor 3 increase in measurement uncertainty, the distribution of points changes quite sig-
nificantly compared to Figure 7.6a. The first notable effect is that the U-OCBE results in generally
lower mean error than the A-OCBE. This result implies that the U-OCBE benefits of better handling
the non-linearity of the system are beneficial when exposed to poor quality measurements.

On the other hand, while the R-OCBE generally remains the most expensive in Figure 7.6b, it also re-
sults in fantastic error performance compared to the other methods. This error also seems relatively
unaffected by the measurement gap, similar to the conditions for a measurement scaling factor 1 in
Figure 7.6a. The original motivation for the approach of estimating regularized elements hinged on
the idea that a linear estimator, applied to perturbed-linear (regularized) dynamics would perform
better than if it were applied directly on the non-linear system (Cartesian equations of motion).
While it is difficult to confirm that this is indeed the reasoning behind the consistently low mean er-
ror, which is generally less sensitive to measurement gap, it is a very plausible explanation. It should
also be noted that the R-OCBE results are also the most tightly grouped in terms of function eval-
uations, which in turn implies the measurement gap (and thus propagation duration) has a much
smaller effect on propagation costs for the regularized elements rather than a Cowell propagation,
further confirming the findings of Section 6.4.

As a final note before moving on to testing the covariance estimate and the sensitivity of the estima-
tors to the known dynamics model, an additional investigation to determine the reasoning behind
the costs of the R-OCBE was performed. Part of the expenses can be attributed to the need to prop-
agate 16 additional sigma points next to every state estimate trajectory (compared to only 12 for
the U-OCBE). However, in Section 6.4 a concern was also raised, that the root finding necessary to
terminate the propagation precisely at the measurement epoch would result in performance losses,
particularly for low measurement gaps. To quantify the impact of this limitation Figure 7.7 was cre-
ated. In the figure, the total state derivative function evaluations over the course of the estimation
is shown as a function of measurement gap, with an indication as to how much of the costs can be
attributed to the root finding.

As is rather obvious from the figure, the root-finder contribution to the costs is very significant, at
around 40% for a measurement gap of one hour. Fortunately it remains relatively constant regard-
less of the measurement gap as the number of measurements handled for each datapoint is the
same. Considering the earlier discussed small spread of points along the x-axis in Figure 7.6 com-
pared to the other estimators, one can conclude that the propagation over time itself is much more
efficient than in the cases of the Cowell propagator in A-OCBE and U-OCBE, and it can in theory
become more efficient given extremely long measurement gaps. However, the costs of the R-OCBE
for low measurement gaps can also likely be significantly reduced if:

• The R-OCBE modifications are applied to the A-OCBE instead of the U-OCBE, hence avoiding
the propagation and root finding for each sigma point. Though, this may come at the cost of
estimator error as the Unscented transform is expected to aid with the handling of non-linear
perturbations, which are present even for the regularized elements.



7.2. Variations in Measurement Quality 59

• The propagation is performed in terms of time as the independent variable rather than ϕ.
While the need for root finding is completely eliminated with this approach, it will make the
cost of the estimator more sensitive to the measurement gap as the propagation itself will be
less efficient.
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Figure 7.7: State derivative function evaluations for the R-OCBE as a function of measurement gap. For each
measurement gap, a series of 20 measurements was processed.

7.2.3. Covariance Estimate Quality
While the earlier discussion shows the performance of the methods in terms of error with respect
to the true solution, in practical applications this error is not available. Hence, a different metric
to quantify the accuracy of the results is necessary. This is generally done using covariance esti-
mates which are also obtained during the estimation process. The quality of this estimate, is the
final performance metric with respect to which the OCBE variants are compared. In practice, it the
covariance matrix may be used to get a measure of the confidence of the estimate by using the stan-
dard deviations σ2 on the diagonal (though this does assume the errors are mostly decoupled). If
the error with respect to the truth data is often outside the 2σ bounds, the estimator is effectively
over-confident (the covariance is optimistic) and in practical applications may result in larger than
expected error. Conversely, if the standard deviations are very high, the accuracy of the method is
under-appreciated (the covariance is pessimistic), which may have adverse implications for high-
precision applications.

In order to qualitatively investigate the covariance estimates, the error of the estimates over time is
plotted, next to the 2σ bounds. As the trends are generally similar throughout the estimation se-
quences performed for the earlier results, two specific cases were selected for discussion in more
detail in this section. In order to ensure a fair comparison of the different OCBE variants can be
made, the first case discussed in Figure 7.8, treats conditions where the mean error of all three esti-
mators is comparable (measurement error scaling factor 3 and a measurement gap of 6 hours).

Starting with the behaviour of the R-OCBE, (indicated with blue in Figure 7.8) it can be seen that
the error is at all points contained within the 2σ bounds, though often the standard deviation is
significantly higher than the actual error. It also displays rather odd triangular-wave behavior, with
relatively constant amplitude, which may imply that the R-OCBE has a tendency to overestimate the
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Figure 7.8: Inertial position error of the estimators as a function of time over the course of the Tundra trajectory.
Measurement error scaling = 3, measurement gap of 6 hours.

covariance, though it is able to identify this and correct it for a subsequent measurement. While the
precise underlying reason for this behaviour was not identified, it is likely that the the severity of the
effect may be reduced should smoothing also be incorporated in the R-OCBE.

When it comes to the A-OCBE and U-OCBE in Figure 7.8, both of the methods indicate generally
lower standard deviation values, which also result in the majority of the estimates within the 2σ
bounds. However, there are a few data points where the bounds are violated, in particular in the
latter half of the simulation where the covariance has further converged.

While the example above treats a case where all estimators are performing relatively equally in terms
of mean error, the cases where the R-OCBE performs best are also of interest, as under these con-
ditions the estimator is most likely to be used. Such conditions are shown in Figure 7.9, which
corresponds to an 8-hour measurement gap rather than 6. In these conditions, the R-OCBE error
is again always within the 2σ bounds, though after the initial ∼ 75 hours of the simulation, the co-
variance remains constant despite the decrease in error and once again results in over-estimated
uncertainty. It also maintains some oscillatory features originally observed in Figure 7.8, though it
should be noted that for this measurement gap the standard deviation minima are obtained every
orbital period, which potentially implies a relationship to the eccentricity of the orbit.

On the other hand, as previously discussed, the error for the A-OCBE and U-OCBE grows substan-
tially for this measurement gap, and from Figure 7.9 it can be seen that it also results in the error
exceeding the 2σ bounds in the second half of the trajectory. That being said, while in this partic-
ular case the two methods result in a very similar mean error, it does appear that the covariance
obtained using the Unscented transform is larger and results in fewer state estimates outside the 2σ
bounds, which does suggest the U-OCBE results in slightly better overall results for such conditions.



7.3. Variations in Known Dynamics 61

500

0

500

x 
er

ro
r [

m
]

500

0

500

500

0

500

1000

0

1000

y 
er

ro
r [

m
]

1000

0

1000

1000

0

1000

50 100 150
time [h]

250

0

250

z e
rro

r [
m

]

50 100 150
time [h]

250

0

250

50 100 150
time [h]

250

0

250

R-OCBE A-OCBE U-OCBE 2  bounds

Figure 7.9: Inertial position error of the estimators as a function of time over the course of the Tundra trajectory.
Measurement error scaling = 3, measurement gap of 8 hours.

Despite the fact that the estimates obtained via A-OCBE and U-OCBE occasionally do violate the
bounds, it can be argued that the significant over-estimations of the R-OCBE may be more detri-
mental to some applications. As multiple other cases display similar behaviour, the reasoning be-
hind the overestimation of covariance of the R-OCBE should be discussed. While part of the effect
may be attributed to the lack of smoothing, another aspect should be considered. In the state esti-
mation process, the method to update the state with a correction (discussed in Section 4.1), is not as
straight forward as simply taking a sum of vectors, as in the case of estimation in terms of Cartesian
state. During this process of applying a correction to the state, constraints are applied to the state
vector λ⃗, though the effect of this process on the corresponding covariance is not treated. Indeed, in
context of Kalman filtering with state constraints, particularly when a quaternion is present in the
estimated vector, it has been found that applying a correction to the covariance is beneficial [53].
While such a modification was not made to the prototype R-OCBE implemented in this thesis, it
should be considered for future versions of the method as it may aid in ensuring less pessimistic
values of the covariance are obtained as part of the results.

7.3. Variations in Known Dynamics
The last research question that has yet to be treated focuses on the impact of dynamics mis-modelling
on the OCBE. While the results obtained in the previous section use a dynamics model in the esti-
mator with a simplified model for solar radiation pressure to simulate imperfect knowledge of the
environment (cannonball instead of specular-diffuse panels), this provides little insight in terms of
the impact of the dynamics model on the overall performance. As a result, in this section the estima-
tion procedure is repeated, this time varying the gravity model fidelity instead of the measurement
uncertainty.

Figure 7.10 shows the mean error of each of the estimators for a varying measurement gap, given a
known dynamics model with a varying number of terms in the spherical harmonic gravity poten-
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tial series. As the goal of this analysis is to determine the magnitude of the impact of simplification
of the known dynamics model, rather than evaluate the particular contributions of specific zonal,
sectoral or tesseral terms, the order of the spherical harmonic series is always selected to be equal
to the degree (and both are thus indicated by the y-axis in Figure 7.10). Furthermore, the truth data
remains matching that of the previous section for all cases.
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Figure 7.10: Mean position error of the estimators as a function of the known dynamics spherical harmonic gravity model
fidelity and measurement time gap. Each point of the grid is a sequence of 20 measurements (error scaling factor 1) in the

Tundra orbit, with outliers prior to convergence excluded from the value of the mean error.

Inspecting the results in Figure 7.10, one might observe that there is little in terms of an observable
trend due to variation in number of spherical harmonic series terms, regardless of the measurement
gap. Originally, it was expected that reducing the fidelity of the dynamics model would degrade the
performance of the R-OCBE as a new choice of dynamic uncertainty would be required. On the
other hand, it was predicted that the U-OCBE or A-OCBE, would remain relatively unaffected by the
changes in known dynamics, given that the adaptive modification present is used to automatically
update the dynamic uncertainty to a suitable value.

The reason these expectations were not met, may actually be determined by considering the mag-
nitudes of the mis-modelled accelerations. Earlier, in Section 6.2, (or more precisely Figure 6.7) the
magnitudes of a variety of perturbing accelerations over an orbit were presented. There it could be
seen that the solar radiation pressure induces an acceleration in the order of magnitude of O (10−7)
[m/s2], which is larger than any of the spherical harmonic gravity terms with contributions lesser
than that of the (2, 2) term. As in all tests a mis-modelling was introduced to the SRP by using a can-
nonball model instead of the panelled specular-diffuse method, the error in terms of acceleration
could already be expected between O (10−8) and O (10−7) [m/s2]. This error was taken into account
in the dynamic uncertainty (σQ ) selection in Section 7.1, which resulted in appropriate values in
the range of O (1.3 ·10−8) - O (10−7) [m/s2] (depending on measurement gap). This implies that the
R-OCBE is already ‘prepared’ to take into account mis-modelling larger than the contributions of
spherical harmonic gravity terms, which in turns causes a simplification of the model not to have a
significant impact on the error.

Similarly, from manual inspection of the dynamic uncertainties obtained by the A-OCBE and U-
OCBE it was found that they also generally converge to a similar range ofσQ , though it varies slightly
between different tests. This further confirms that the selection process in Section 7.1 was suitable,
while also suggesting that given a dominant mis-modelled acceleration, lower magnitude contri-
butions may be excluded from the known dynamics model. This should improve runtimes without
significant losses in accuracy, nor a need for adjustments to the dynamic uncertainty choice.
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While this test failed to identify behaviour of the OCBE variants given changes in dynamics model,
it is still possible to test the influence of dynamics by introducing mis-modelling noticeably larger
than the SRP. This could be done by, for example, introducing a bias to the spacecraft mass or de-
coupling the spherical harmonic degree and order to test a gravity model taking into account only
the J2 term. Unfortunately, this would require some modification to the interface module and due
to time constraints on the thesis it was not deemed possible and is left for future work.
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Conclusions & Recommendations

As of late, a dramatic increase in space traffic has resulted in rapid growth of a variety of objects,
from active spacecraft to debris, in orbit around Earth. Tracking these objects is crucial to Space
Situational Awareness initiatives and collision avoidance. This includes orbits in the Geostationary
region, where spacecraft with large area to mass ratios are common. This condition often results
in rather significant dynamics mis-modelling (due to the significant impact of solar radiation pres-
sure), which degrades the performance of many state estimation algorithms used for tracking.

A notable state estimation algorithm is the OCBE (Optimal Control Based Estimator), first intro-
duced by Daniel P. Lubey [13]. The method is well suited to performing in the presence of mis-
modelled dynamics and is thus a good fit for the aforementioned conditions, despite its generally
rather high costs. While variants of the OCBE have been developed in literature including an un-
scented variant of the algorithm, in the context of orbital mechanics, the linear estimator is gener-
ally applied on the non-linear dynamics, which limits its range of applicability.

In the field of orbital mechanics propagation, the pursuit of efficiency has led to formulations of dy-
namics in terms of linear equations by means of regularization. One of such regularization method,
referred to as EDromo [28], provides an 8-dimensional state representation in terms of elements
λ0,l −λ7, and a new, angle-like independent variable ϕ. This formulation results in linear underly-
ing dynamics (at least in the unperturbed case). Applying a linear estimator to the EDromo linear-
perturbed state dynamics was thus considered a potential opportunity for performance gains in the
context of state estimation. While a similar approach in literature has been done in the context of a
Kalman filter [31], the same could not be said about the OCBE. Hence, as the primary product of this
thesis, a prototype version of the Regularized Optimal Control Based Estimator was developed. This
was achieved by modifying the Unscented Optimal Control Based Estimator in three key aspects.

First of all, in order to ensure the state estimation can be performed directly on the EDromo el-
ements, a method to apply a correction vector to the state without violating the constraints was
necessary. It was found that to satisfy the state constraints it is sufficient to simply normalize the
quaternion after the vector summation of the original state and the correction vector. However, as
this results in updates to the first four EDromo elements, using the updated vector to reconstruct
a Cartesian state representation, results in state estimates at epochs different to the measurement
epochs. This issue was resolved by adding an additional step to the state correction process. As
the angle-like independent variableϕ is necessary to convert the elements to a Cartesian state (and
corresponding time), it may be updated together with the state estimate by means of numerical
root-finding such that it enforces a fixed epoch.

Next, a matrix mapping a control input in terms of acceleration to the EDromo state derivatives
was necessary to obtain a quadrant of the state transition matrix necessary for state estimation with
the OCBE. This control input scaling matrix B was derived as a matrix product, of two components
B1 and B2. The (3× 3) B1 matrix, maps a control input acceleration in the inertial frame, to the

64
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projections found in the regularized element dynamics. The (8×3) B2, maps the aforementioned
projections to their contribution to each of the regularized element derivatives.

Finally, two methods to convert covariance matrices between a Cartesian representation and an
EDromo representation were developed and tested. While it was found that the Monte Carlo ap-
proach was not suitable for low eccentricity orbits, linear covariance mapping was found to work
well in all conditions, bar two singularities for low eccentricity orbits. Additionally, due to the di-
mensionality of the EDromo elements, it was found that the corresponding covariance matrix be-
comes positive semi-definite, rather than positive-definite as assumed by the estimator. Hence,
covariance remediation was also implemented as a necessary step in the estimation process.

With the methods implemented and numerical error of the dynamics models quantified, the re-
search questions were answered by investigating the performance of the R-OCBE and comparing it
to the A-OCBE and U-OCBE variants available in literature.

Based on the investigation to answer first research question ‘How does the performance of the
regularized OCBE depend on measurement frequency and uncertainty?’, it was found that the
R-OCBE results in notably lower state estimate errors, regardless of the measurement uncertainty,
compared to the A-OCBE and U-OCBE, especially for measurement gaps larger than 4 hours. How-
ever, a tendency to obtain a pessimistic covariance estimate was also identified.

During the investigation treating the second research question ‘How does the performance of the
regularized OCBE depend on the severity of dynamics mis-modelling?’, it was found that the method
is capable of performing well, regardless of the presence of mis-modelled solar radiation pressure,
given an appropriate selection of the dynamic uncertainty parameter. As further mis-modelling was
introduced with a reduction in the fidelity of the spherical harmonics gravity model, the overall esti-
mate quality was not impacted significantly. This was attributed to the fact that during the selection
process of the dynamic uncertainty, a mis-modelling in the order of O (10−7) [m/s2] due to SRP was
already introduced. This mis-modelling was generally larger than any of the contributions of the
spherical harmonic gravity terms. Hence, the selected dynamic uncertainty was already sufficiently
high to allow the estimator to compensate for the mis-modelling introduced by truncation of the
spherical harmonic gravity series. However, while it was not tested directly, it is still expected that
a mis-modelling larger than what was used in the dynamic uncertainty selection will degrade the
performance of the R-OCBE, given the lack of the adaptive modification.

The answer to final research question ‘How does dynamics regularization affect the computa-
tional efficiency of the OCBE?’, was clear based on all previously obtained test results. It was im-
mediately obvious that the aforementioned accuracy benefits of the R-OCBE come at significant
computational costs. This was attributed primarily to the presence of the unscented transform and
the inability of the regularized propagator to terminate at a measurement epoch without employing
root finding for the angle-like independent variableϕ. However, while the costs of the R-OCBE were
generally higher than the A-OCBE or U-OCBE, the method was less sensitive to gaps between mea-
surements, and it may thus still result in cheaper estimates given extremely long measurement gaps.

While some of strengths and weaknesses of the R-OCBE were identified, there are many additional
steps that can be performed to both further evaluate the performance of the algorithm, and also to
potentially improve it.

When it comes to steps to further evaluate the performance of the method, one aspect of the OCBE
that has not been implemented as part of the thesis is the estimation of the mis-modelled accel-
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eration as a control input. While the first step of this process (evaluation of adjoint estimates at
measurement epochs) was implemented, the propagation of said adjoint, necessary to obtain the
control input as a function of time was not. The quality of this reconstruction would be another
suitable performance metric to evaluate the R-OCBE performance.

Furthermore, the truth data tested involves only trajectories with no maneuvers. Introducing dis-
continuities such as impulse maneuvers may also highlight the different OCBE variants perfor-
mance when it comes to changing dynamic uncertainty. As the prototype R-OCBE does not include
the ’adaptive’ modification, its performance is expected to degrade in this case. However, the sever-
ity of this degradation is unclear and should be investigated.

Throughout the thesis a number of issues in the R-OCBE were identified, though not fully resolved.
First of all, the linear mapping covariance transformation contains two singularities for low eccen-
tricity orbits, caused by the application of a central difference method to determine the necessary
Jacobian matrices. During this process, when a new regularized state vector is obtained (one in-
cluding a finite step in one of the elements), an update of the independent variableϕ is necessary to
find partial derivatives corresponding to the appropriate time. Under particular conditions (twice
per orbit) for very low eccentricity, the method to update ϕ has no solution, resulting in a very poor
covariance conversion. Though, is likely that this issue can be eliminated entirely given analytical
derivation of the Jacobian matrices.

The same issue resulting in failure to update ϕ is also encountered in the estimation process for
low eccentricity orbits, which results in significant increase in estimate error. This issue is predom-
inantly found when evaluating sigma points, as per the unscented transformation present in the
R-OCBE. One approach to alleviate the issue is to omit the unscented modification, though this will
require additional modifications to the BL-OCBE equations. Alternatively, the issue may be resolved
by changing the vector that is modified in the state estimation. In the current implementation, state
elements λ0,l - λ7 are updated by the estimator, and ϕ is solved for such that it ensures the state es-
timate corresponds to the measurement time. Instead, if ϕ was updated with the estimator next to
λ1 - λ7, and λ0,l was solved for to apply the measurement time constraint, a solution should always
exist potentially avoiding the error.

As meantioned earlier, despite its accuracy, the R-OCBE was found to be more computationally ex-
pensive than initially expected. Two approaches have been identified that may compensate for this
weakness. The most significant part of the costs is due the unscented transformation applied on
an 8-dimensional state. It requires propagation of 16 additional sigma points, which results in sig-
nificant additional propagation costs. Omitting the unscented transform would reduce the costs
drastically, though it may result in slightly less accurate state estimates. The second reason for the
high costs is the root-finding necessary to terminate an EDromo propagation precisely at a mea-
surement epoch, given that the propagations are run in terms of an angle independent variable ϕ.
This primarily affects short measurement gap performance, and it can be remedied by using time
as the independent variable in the propagations instead. Such a modification would render the
root-finding entirely unnecessary, though it has been found in literature that the propagator is less
efficient when not using ϕ, hence the computational efficiency would degrade for long measure-
ment gaps.

Finally, it should be noted that the R-OCBE prototype may further be improved by incorporating the
adaptive modification and smoothing of the estimates. Both of these steps are expected to make the
estimator more robust at insignificant additional costs.
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All in all, the need of state estimation in the presence of mis-modelled dynamics is widespread and
growing due to the uptick in constellations and other spacecraft in orbit around Earth. The imple-
mented prototype of the R-OCBE already shows promise for high precision automatic tracking of
objects with poorly modelled dynamics, particularly given significant gaps between measurements.
Given the modifications proposed in this thesis, the efficiency of the algorithm may also be im-
proved further, such that the method remains competitive for short gaps between measurements.
The R-OCBE may then form the basis for the next generation of the SSA cataloging pipeline, meeting
the ever-growing demands in both accuracy and efficiency.
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A
Primary Dynamics Solver Validation

As discussed in Chapter 3, a dynamics solver was implemented as part of this thesis for use in the
optimal control based estimator. As the Tudat library contains limitations making it unsuitable for
use in the OCBE without significant modification, the primary dynamics solver had to be imple-
mented from scratch, including the acceleration models, coordinate transformations, integration
scheme, etc.

Thus, prior to use of the solver, a large number of tests were performed in order to ensure the solver
is accurate to the desired degree. While a significant amount of unit tests for verification of func-
tions were developed, this appendix focuses on key results of broader scale validation testing.

The validation was performed with a number of propagations with the primary dynamics solver,
each including a different aspect of the simulated environment. For all validation tests, reference
solutions were obtained using an equivalent environment in Tudat. In order to ensure any differ-
ences in the solution of the primary dynamics solver and the Tudat variant are not due to differences
in the integration scheme, all tests were performed with a fixed-step 7th order RK scheme. This ap-
proach also implies the states obtained using both solvers are obtained at the same epochs, hence
eliminating the need for interpolation when evaluating differences. It should be noted that while
this appendix only presents the results for validation tests for a Tundra orbit, validation tests for all
three test cases discussed in the thesis were performed, leading to equivalent conclusions. That be-
ing said, in order to validate the Cowell propagator, the following validation tests were performed,
each of which is discussed in further detail below:

1. ‘Point Mass Central Body’ test (propagation with only point-mass gravity of the Earth acting
on the spacecraft)

2. ‘Perturbing Point Masses’ test (propagation with point-mass gravity of the Earth, Moon and
the Sun acting on the spacecraft)

3. ‘Cannonball SRP’ test (propagation with point-mass gravity of the Earth and SRP due to the
Sun acting on the spacecraft)

4. ‘Earth Centered Inertial to Earth Centered Fixed Spherical frame conversion’ test (conversion
of every state representation along a pre-propagated orbit)

5. ‘Spherical Harmonic Gravity’ test (propagation with only spherical harmonic gravity of the
Earth acting on the spacecraft)

Tests, #1, #2, #3 were simply performed by propagating an orbit with the acceleration settings rele-
vant to the test and finding a state difference between the implemented ‘Primary dynamics solver’
and the Tudat equivalent. The results for a Tundra orbit are shown in Figures A.1 through A.3.

The maximum error w.r.t. a Tudat solution for the first three aforementioned tests is four orders of
magnitude below the accuracy requirement for the known dynamics model set in Chapter 6, hence
it is considered negligible. It should be noted that while negligible in magnitude, the error does
not display discrete behaviour, which implies presence of a source of error different to machine
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error. While the precise reasoning behind this was not investigated in detail (due to the tiny ef-
fect), it may be caused by a number of steps necessary for the propagation, that are not inherently
tied to the equations stemming from the physics models used (i.e. different methods to interpolate
ephemerides.)
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Figure A.1: Tundra Orbit propagation state error, w.r.t Tudat reference solution, given only point mass of the Earth acting
on the spacecraft
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Figure A.2: Tundra Orbit propagation state error, w.r.t Tudat reference solution, given point masses of the Earth, Sun and
Moon acting on the spacecraft
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Figure A.3: Tundra Orbit propagation state error, w.r.t Tudat reference solution, given point mass of the Earth and
cannonball solar radiation pressure acting on the spacecraft

As the spherical harmonic gravity is a more complex perturbation to implement, two validation
tests are dedicated to it, First test #4 covers the necessary conversion of a position vector in an
‘Earth Centered Inertial’ reference frame to a spherical ‘Earth Centered Fixed’ frame. As Tudat has
built in functionality to output the relevant radius, latitude and longitude for a given propagation, a
Tundra orbit was propagated again using Tudat, and the conversion results were stored. Then, the
custom implemented frame conversion function was applied to the states obtained from the Tudat
propagation to obtain new values of radius, latitude and longitude, and a difference was found and
is shown in Figure A.4. The radial component obtained with both methods is found to be exactly the
same, while the latitude and longitude show discrete differences. This can be attributed to the ma-
chine error introduced by inverse trigonometric functions necessary to obtain these components.
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Then, similar to earlier propagation tests, an orbit is propagated using the full implementation of
spherical harmonic gravity using degree and order 20 and 20 respectively, and a difference between
the implemented dynamics solver and a Tudat equivalent is found. Similar to the earlier tests, this
results in maximum difference in the order of O (10−4[m]); O (10−8[m/s]), as also shown in Figure A.5.

Similarly to the previous tests, the regularized propagator part of the ‘Primary Dynamics Solver’ was
also compared to a Cowell propagation obtained using Tudat to validate its output. However, as
fixing a step in terms of time in seconds for the regularized propagator is not trivial (given the prop-
agation is handled in terms of independent variableϕ), a different approach was necessary. Instead
of using fixed-step solutions as before, variable-step solutions with low tolerances (εr el = 10−17,
εabs = 10−13) were propagated, despite the knowledge that any possible modelling errors will now
be coupled to the truncation error. As it was found that even with low tolerances the time-steps
of the regularized propagator are large enough that they are generally not suitable for interpola-
tion, the reference solution was instead interpolated to find differences between the two solvers.
The results for a Tundra orbit propagation with aforementioned tolerances are shown in Figure A.6.
While this results in larger error than the fixed-step solutions used in previous validation tests, this
was anticipated given only 98 steps in time compared to the ∼ 1500 used for the fixed-step solu-
tions. Hence, the method was deemed functional and a more detailed tolerance selection follows in
Chapter 6.
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Figure A.5: Tundra Orbit propagation state error, w.r.t Tudat reference solution, given spherical harmonic gravity of degree
20 and order 20 on the spacecraft
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Figure A.6: Tundra Orbit propagation state error (of regularized propagator), w.r.t Tudat reference solution, given
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B
Thesis Planning Reflection

As part of the requirements for the thesis, a reflection on the planning is provided in this appendix.
In the latter half of the literature study, two variants of a thesis planning were created. The first, rep-
resenting an ambitious ‘best-case’ scenario and a back-up option that would still be sufficient for
a thesis, though more limited in scope. A summary of both options is provided in form of a Gantt
chart at the end of this appendix, with the ‘best-case’ scenario indicated by the purple and green
objectives, while the back-up plan is indicated in yellow.

The main difference between the two planning options is that the best-case planning allowed for
implementation of the of a regularized OCBE for the perturbed three body problem in cis-lunar or-
bits in additional to the geostationary orbit region that is treated as part of this thesis. Regardless of
the planning method, an R-OCBE implementation was divided in 6 primary milestones (in addition
to documentation of results):

1. Problem definition - Selection of necessary problem parameters (i.e. spacecraft parameters
or initial state). It is separated as an independent milestone despite the low workload, as it is
a prerequisite for all numerical estimation results.

2. Benchmark Generation - This milestone primarily involves propagation of truth solutions,
with quantified error which are necessary for the estimation process later on. Similar to the
problem definition milestone, this is a pre-requisite for numerical results.

3. Numerical OCBE implementation - This milestone covers the implementation (in addition to
testing and first numerical results) of the A-OCBE and U-OCBE methods based on literature,
which may later be used as control groups for the tested R-OCBE.

4. Regularized OCBE derivation - The derivation step involves obtaining all methods necessary
to implement the R-OCBE, for example the control input scaling matrix B discussed in Chap-
ter 4. Completion of this milestone implies a conceptually finished algorithm, which, if ob-
tained, implies the method is possible to implement and hence the thesis research questions
may be answered.

5. Regularized OCBE implementation - The penultimate milestone involves the implementation
and testing of the R-OCBE.

6. Analysis of Results - Finally, analysis of the results covers all comparisons made between the
OCBE variants and is separated as the final milestone. With it’s completion all thesis results
may be documented.

This method of identifying large scale milestones allowed for easy tracking of pre-requisites for var-
ious steps of the thesis, while a bottom-up approach to allocating time to each milestone allowed
for rather good approximations of the duration of each task. The majority of the steps were thus
completed without significant complications, according to the durations allocated in the ‘alternate’
schedule section of the Gantt chart. However, one step was not originally foreseen in the planning.

Initially, it was desired to use the Tudat library for all dynamics propagation in all implemented
variants of the OCBE. However, during the implementation of the A-OCBE, it was found that Tudat
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does not innately support propagation of state in terms of non-time independent variables, nor the
extended STM. As a result, a decision between the following had to be made:

1. implementing these features in Tudat
2. implementing a custom propagator from scratch, allowing for the aforementioned features

Considering the lack of prior knowledge on the back-end of Tudat and lesser experience in C++
programming, it was deemed that implementing a propagator from scratch (with overall reduced
features) is the less risky approach, despite a likely lengthier process with additional need for ver-
ification and validation. This resulted in a delay of one month and three (work) weeks in order to
implement the desired environment models and perform validation of all methods.

Given that after this modification to the schedule there were no significant complications, and that
the issue with Tudat was likely unavoidable, the scheduling is still overall deemed a success. That
being said, the issue was identified relatively late. A major takeaway is that a schedule with more
concurrent milestone progression may have allowed for an earlier schedule amendment.
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