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Abstract. Considering the likely increase in coastal flood-
ing in small island developing states (SIDSs) due to cli-
mate change, coastal managers at the local and global lev-
els have been developing initiatives aimed at implementing
disaster risk reduction (DRR) and adaptation measures. De-
veloping science-based adaptation policies requires accurate
coastal flood risk (CFR) assessments, which in the case of
insular states are often subject to input uncertainty. We anal-
ysed the impact of a number of uncertain inputs on coastal
flood damage estimates: (i) significant wave height, (ii) storm
surge level and (iii) sea level rise (SLR) contributions to ex-
treme sea levels, as well as the error-driven uncertainty in
(iv) bathymetric and (v) topographic datasets, (vi) damage
models, and (vii) socioeconomic changes. The methodology
was tested through a sensitivity analysis using an ensem-
ble of hydrodynamic models (XBeach and SFINCS) cou-
pled with a direct impact model (Delft-FIAT) for a case
study of a number of villages on the islands of São Tomé
and Príncipe. Model results indicate that for the current time
horizon, depth damage functions (DDFs) and digital eleva-
tion models (DEMs) dominate the overall damage estimation
uncertainty. When introducing climate and socioeconomic
uncertainties to the analysis, SLR projections become the
most relevant input for the year 2100 (followed by DEM and
DDF). In general, the scarcity of reliable input data leads to
considerable predictive uncertainty in CFR assessments in
SIDSs. The findings of this research can help to prioritize the
allocation of limited resources towards the acquisitions of the
most relevant input data for reliable impact estimation.

1 Introduction

Small island developing states (SIDSs) are increasingly un-
der threat of coastal flooding, hindering the growth of their
economies and challenging the safety of their societies
(OECD World Bank, 2016). The consequences that they will
face due to climate-change-induced coastal flooding may
overwhelm their intrinsic resilience. For example, sea level
rise (SLR) will exacerbate the impacts and frequency of
coastal hazards for many islands around the world (Storlazzi
et al., 2018; UN-OHRLLS, 2015). This situation has recently
led to initiatives (e.g. Small Island States Resilience Initia-
tives SISRI by the World Bank) aiming to increase the re-
silience of insular communities by using robust coastal flood
risk (CFR) assessments using hydrodynamical models as a
necessary first step to develop sustainable adaptation strate-
gies.

Risk is computed as a combination of hazard, exposure
and vulnerability (Kron, 2005). Specifically, “hazard” is the
probability and magnitude of an event with negative impacts.
“Exposure” means the assets that are exposed to the hazard,
and “vulnerability” refers to the damage inflicted upon the
exposed asset, under a specific hazard. A coastal flood dam-
age assessment entails the computation of damages under a
specific flood event, for a given vulnerability and exposure.
To estimate the overall CFR, damage assessments for every
possible coastal flood event must be performed.

Existing hydrodynamic models can achieve satisfactory
levels of accuracy in estimating flood hazards, particularly
at the local scale (Bertin et al., 2014; Dresback et al., 2013;
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Giardino et al., 2018; Monioudi et al., 2018; Storlazzi et al.,
2018). Nevertheless, CFR assessments are subject to a wide
range of errors and uncertainties, divided into aleatory un-
certainties, i.e. related to the intrinsic randomness of reality,
and epistemic uncertainties, due to imperfect knowledge and
lack of data (Uusitalo et al., 2015). The second type is partic-
ularly applicable to small islands as accurate input data are
often scarce, due to their remoteness and limited economic
resources.

As a consequence, datasets covering the entire globe in
low resolution must often be used in the absence of de-
tailed local data. These global datasets are often inaccurate,
which negatively affects the trustworthiness of the model
and ultimately the outcome of the study. Cook and Mer-
wade (2009), Kulp and Strauss (2019), and Van de Sande
et al. (2012) have acknowledged the unreliability of publicly
available digital elevation models (DEMs) to represent the
exposure to coastal floods, while Cea and French (2012),
Hare et al. (2011), and Plant et al. (2002) have highlighted
the significant uncertainty that low-resolution bathymetric
datasets bring into coastal hazard modelling. Global bathy-
metric datasets (e.g. GEBCO) lack information on nearshore
depth, especially over reefs or in bays, while global topo-
graphic datasets (e.g. SRTM, ASTER) experience contami-
nation of terrain elevation data due to buildings, vegetation
canopies, and other objects that are averaged into the eleva-
tion representing each coarse pixel of the dataset. To reduce
these errors, considerable efforts are being directed to im-
prove the quality of satellite-derived DEMs. Very recently,
improved global datasets such as MERIT (Yamazaki et al.,
2017) and CoastalDEM (Kulp and Strauss, 2019) have been
published, which correct for vegetation and building eleva-
tion biases.

The damage assessment represents a step of a CFR analy-
sis severely affected by both the paucity of reliable damage
information (Apel et al., 2006; Merz and Thieken, 2009; De
Moel and Aerts, 2011; Prahl et al., 2016; Wagenaar et al.,
2016) and the simplifications that are necessary to quantify
the vulnerability of human and natural assets. Furthermore,
the uncertainty of damage modelling is exacerbated in data-
poor SIDSs, where accurate data and models are lacking, re-
quiring strong assumptions. Indeed, often damage curves are
taken from literature and applied in different areas, making
few, if any, adjustments (Schroter et al., 2014; Wagenaar et
al., 2016). Furthermore, extreme sea level (ESL) events con-
stitute a considerable portion of the uncertainties in a CFR
analysis, as their statistical estimation method is based on
extrapolating from limited duration of recorded data and re-
quires the choice of a probability distribution function (pdf)
(Wahl et al., 2017).

Finally, to develop long-term adaptation plans, future risk
estimates including changes to human and natural systems
are required, which introduce further assumptions and un-
certainty. Indeed, both future climatological and societal
changes can significantly impact the model outcome, and dis-

regarding them may lead to poor coastal zone planning and
underestimation of future damages (Bouwer, 2013; Bouwer
et al., 2010).

Several studies have attempted to quantify the uncertainty
in flood risk estimates, for both coastal (Hinkel et al., 2014;
De Moel et al., 2012; Vousdoukas et al., 2018b) and riverine
floods (Apel et al., 2006; Egorova et al., 2008). Vousdoukas
et al. (2018b) and De Moel et al. (2012) performed an uncer-
tainty analysis on CFR assessments for two case studies in
Europe, indicating the quality of coastal protection informa-
tion and the shape of the depth damage functions (DDFs) as
the most influential input for flood damage estimate uncer-
tainty, respectively.

A quantification of the relative contribution of the uncer-
tainty sources has yet not been conducted for SIDSs, where
the scarcity of input data exacerbates the model outcome er-
ror and uncertainty. We therefore present a method to di-
rectly compare the relative importance of uncertainty sources
on the estimation of coastal flood damages, extending the
analysis to present-day and future risk predictions by mod-
elling future damages for the years 2050, 2070 and 2100.
For this purpose, this study describes a developed frame-
work that examines different uncertainty sources, including
the components contributing to ESLs, namely (i) significant
wave height, (ii) storm surge level and (iii) SLR projections;
(iv) bathymetry dataset; (v) DEM; (vi) damage models; and
(vii) socioeconomic growth.

2 Case study

The methodology was applied to two coastal villages Pantufo
and Praia Abade in the Democratic Republic of São Tomé
and Príncipe, an archipelago that comprises two main islands
and several islets, located in the Gulf of Guinea (Fig. 1a).
The two villages were selected based on their high vulner-
ability to coastal flooding hazards and on the availability of
local information to conduct the CFR assessment (Deltares
and CDR, 2019). The small size and location of the islands,
in combination with their colonial history, have significantly
hampered their economic development, increasing their sus-
ceptibility to natural disasters and hindering a sustainable fu-
ture for the communities (Giardino et al., 2012). The village
of Pantufo is situated on the north-east side of the island of
São Tomé (Fig. 1b), bordered by a partially sandy and rocky
beach (Fig. 1c). The village of Praia Abade is located on the
north-east side of the island of Príncipe, at the southern end
of a bay (Fig. 1b), and it is bordered by a sandy pocket beach
(Fig. 1d). Fishing represents the main economic activity for
both villages. Near the coastline, houses are often made of
wood or poor-quality concrete and elevated to prevent flood-
ing damages.

Both communities are on the lee side of the islands shel-
tered from the largest and most frequent southerly swell
waves. The area is not in the track of tropical cyclones and
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Figure 1. Case study site. (a) Geographical location of the islands of São Tomé and Príncipe in the Gulf of Guinea. (b) Geographical location
of the communities of Pantufo and Praia Abade on the two islands. (c) Aerial view of the communities of Pantufo and (d) Praia Abade. Panels
(a) and (b) are provided by ESRI, DigitalGlobe and the GIS community. Panels (c) and (d) were reproduced with permission from CDR
International.

storms, experiencing a calmer wave climate than other extra-
tropical regions (Alves, 2006). However, these communities
are still prone to hazardous rainfall and coastal flooding from
occasional big southerly swells, which damage buildings and
fishing boats (Deltares and CDR, 2019).

3 Data and methods

3.1 Modelling approach

Coastal flood damages at the two villages were estimated
using a chain of models and data as shown in Fig. 2. Haz-
ard, exposure and vulnerability were modelled separately
and are show in green, orange and yellow boxes. Most of
the input data are characterized by uncertainties that con-
tribute to uncertainty in the final damage estimates. The ma-
jor sources of uncertainty considered in this study are high-
lighted with red boxes in Fig. 2: (i) significant wave height,

(ii) storm surge level, (iii) SLR projections, (iv) bathymetry
dataset, (v) DEM, (vi) damage models and (vii) socioeco-
nomic growth.

Coastal floods are driven by nearshore ESLs, computed
as a combination of mean sea level, tidal level, SLR, storm
surge level and short wave contribution, based on the peak
6 h of a 24 h time frame reference storm. To describe the
storm, which has a temporal resolution of 1 h, a storm surge
water level was imposed over a spring tidal water level,
and offshore waves are explicitly included (Fig. 3). The
nearshore wave boundary conditions are computed using
transformation matrixes in the DELFT3D-WAVE (SWAN)
model (Booij et al., 1997) as described in Deltares and
CDR (2019).

To transform the nearshore ESLs, we used cross-shore
transects (Fig. 2) of the nonhydrostatic version of the model
of XBeach (Roelvink et al., 2009, 2018; Smit et al., 2010).
These transects had a minimum grid size of 1 m, running

https://doi.org/10.5194/nhess-20-2397-2020 Nat. Hazards Earth Syst. Sci., 20, 2397–2414, 2020
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Figure 2. Schematic representation of the modelling chain used to carry out the damage assessment and including the different source of
uncertainties analysed (red boxes). The blue rectangles show the numerical models (XBeach and SFINCS) and tools (Delft-FIAT). The inputs
used to model the hazard, exposure and vulnerability are included in the orange, green and yellow boxes, respectively. Inputs used to model
the present condition are represented with rectangles, whereas those used for future scenarios are represented with ellipses. Extreme sea
levels are estimated by combining mean sea water levels, astronomical tides, storm surges and single waves. The earth surface is represented
by bathymetric and digital elevation model (DEM) data. The inundation map produced by SFINCS is combined with depth damage functions
(DDFs) and asset value to compute flood damages. Sea level rise (SLR) and socioeconomic growth are used to assess future predictions.
Arrows indicate the data flow.

Figure 3. Qualitative example of the hydrograph of the storm wa-
ter level: surge level (blue) and astronomical tide (black) over the
length of a 24 h storm. The red lines mark the modelled central 6 h
of the storm.

from approximately 20 m water depth offshore to an inland
elevation of approximately 10 m.

Flood maps representing the coastal flood hazards were
computed using a 2-D SFINCS (Leijnse et al., 2020) model,
with land surface elevation derived from a DEM (Fig. 2).

SFINCS is a computationally efficient coastal zone flood
model and covered the area of interest with a rectilinear grid
and a spacing of 5 m. SFINCS is forced with water levels
taken at 2 m water depths from the XBeach cross-shore tran-
sects (Fig. 2)

The damage assessment was conducted through the model
Delft-FIAT (Slager et al., 2016). FIAT (Flood Impact As-
sessment Tool) is a flexible open-source toolset, where direct
damages are estimated at the unit level (e.g. a single building
or piece of infrastructure). Combining information on the ex-
posed assets, DDFs, and flood maps, expected damages from
single events were obtained (Fig. 2).

DDFs define, for each asset type, the relation between a
given flood depth and the consequent direct damages (Mess-
ner and Meyer, 2006) and are widely used in flood dam-
age modelling due to their simplicity (Schroter et al., 2014).

Nat. Hazards Earth Syst. Sci., 20, 2397–2414, 2020 https://doi.org/10.5194/nhess-20-2397-2020
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In this analysis, arbitrarily chosen extreme 100-year-return-
period sea levels were modelled since, for this case, events
with smaller return periods had only a small difference in
intensity and computed flood damages than the 100-year-
return-period event. The analysis focused on direct and tan-
gible damages to boats and buildings. A proper site-specific
calibration of the different models used was hampered by
the limitation in available local data. Flood maps and im-
pacts were verified based on all available information derived
from field inspections, questionnaires and interviews, fol-
lowing a collaborative modelling approach (Basco-Carrera
et al., 2017). High-water marks were mapped and cross-
validated with information retrieved from about a hundred
semi-structured interviews across all communities (Deltares
and CDR; 2019). The flood hazard maps derived according
to community perception were then used for calibration and
validation of the flood hazard models. Similarly, the esti-
mated impacts were validated with information on damages
and local repair costs after flooding events.

3.2 Data

Multiple data sources were used as a basis to perform the
CFR analysis. Table 1 contains an overview of the uncer-
tainty sources investigated, indicating their baseline values
and the variations from it, for each different input variable
investigated. The baseline scenario uses a combination of
the best available input data (i.e. highest resolution or value
in which we have the highest confidence). To estimate the
uncertainty in our CFR analysis, we tested variations from
this baseline scenario using alternative available data sources
or high and low percentiles of a given probability distribu-
tion. Each input variable and related source of uncertainty
for present and future conditions is described in the next two
sections.

3.2.1 Present scenario

Significant wave height

The ERA-Interim dataset (Dee et al., 2011) by ECMWF (Eu-
ropean Centre for Medium-Range Weather Forecasts), which
covers the period from 1 January 1989 until present, was
used. The dataset provides 6-hourly significant wave height
(Hs) of combined wind and swell data and was used to esti-
mate the 100-year-return-period event for Hs, conducting an
extreme value analysis (EVA)1. A peak-over-threshold tech-
nique (Caires, 2011) was conducted on the nearshore wave
conditions, fitting a generalized Pareto distribution (GPD)
(Pickands, 1975) to the peaks of clustered excesses over a
threshold. The 98th percentile of the Hs distribution was se-
lected as threshold, as recommended by Wahl et al. (2017).
To ensure the clustered peaks were independent and identi-

1The 10-year-period 50th percentile value and 90 % confidence
interval values: 1.24 m (1.19–1.31 m).

cally distributed, 60 h consecutive extremes were not sam-
pled together.

Commonly, extreme hydrodynamic boundary conditions
are represented with probability distributions. However,
these distributions are fit to measured data and attempt to
estimate values for return periods longer than the length of
the available data, thus already introducing uncertainty in
the model. Furthermore, the nearshore wave conditions were
estimated from transformation matrices in the DELFT3D-
WAVE (SWAN) model, which increases the uncertainty of
Hs by introducing model errors. Therefore, the uncertainty
was taken into account by using the 5th, 50th and 95th per-
centile values of Hs (Table 2) in XBeach (Fig. 2).

Storm surge

The estimation of storm surge levels was based on the dataset
by Muis et al. (2016), a global water level reanalysis based
on daily maxima over the time period 1979–2014. In an iden-
tical manner to Hs, the 5th, 50th and 95th percentile values
for the 100-year2 storm surge level were estimated (Table 2),
aiming to reproduce its uncertainty. The probability distribu-
tion of storm surge and significant wave height were assumed
to be independent of each other, therefore without making
use of a joint probability distribution.

Bathymetry

Bathymetry controls the wave transformation mechanisms
and ultimately the flooding on land. Therefore, uncertainty
and errors in bathymetric datasets could lead to an increased
uncertainty in wave and storm surge simulations, increasing
the potential for modelling error and biases.

To explore the role of bathymetry data uncertainty, two
datasets were used. The General Bathymetric Chart of the
Oceans (GEBCO) (Weatherall et al., 2015), a publicly avail-
able bathymetric dataset, was compared to a locally collected
dataset (Deltares and CDR, 2019). GEBCO has a coarser
horizontal resolution than the local dataset (approximately
900 and 50–100 m, respectively). Using bathymetry data
points with coarse resolutions to generate a digital seabed
introduces several errors and uncertainty, due to the unre-
solved terrain variability between measured points (Hare et
al., 2011; Plant et al., 2002). The local measurements were
taken during a campaign in December 2018, when cross-
shore transect profiles were collected at the two commu-
nities, using a handheld echo sounder (Deltares and CDR,
2019).

Digital elevation model

Digital elevation models are numerical representations of
the earth surface elevation. Similar to bathymetric datasets,

2The 10-year-period 50th percentile value and 90 % confidence
interval values: 1.06 m (1.04–1.08 m).

https://doi.org/10.5194/nhess-20-2397-2020 Nat. Hazards Earth Syst. Sci., 20, 2397–2414, 2020
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Table 1. Overview of all uncertainty sources investigated (input variable), with descriptions of their source of uncertainty, baseline value and
the variations from the baseline value as used for the CFR analysis.

Input variable Source of uncertainty Baseline Variations Number
of sce-
narios

Significant wave height
& storm surge level

Uncertainty associated with the
extreme value analysis (EVA)

50th percentile of the
pdf of the extreme val-
ues (Table 2)

5th and 95th percentiles of the pdf of
the extreme values (Table 2)

3

Bathymetry Horizontal and vertical resolu-
tion, errors in the dataset and in-
terpolation between data points

Locally measured Bathymetry retrieved from GEBCO 2

Digital elevation model Horizontal and vertical resolu-
tion, errors in the dataset and in-
terpolation between data points

Locally measured Multiple DEMs
(The investigated satellite-derived
DEMs include TanDEM-X, TerraSAR-
X, MERIT, ASTER and SRTM. Their
horizontal resolution and vertical
accuracy are described in Table 3.)

6

Depth damage function Transfer of damage functions
retrieved from other flood
events and other regions.
Neglect of physical factors,
such as flood duration or flow
velocity

Locally retrieved Multiple DDFs (Table 4) 7

Sea level rise projections Uncertainty associated with ex-
trapolating, based on given
data, as well as with reliability
of climate models

50th percentile of the
pdf of projected sea
level rise

5th and 95th percentiles of the pdf of
projected sea level rise

3

Shared Socioeconomic
Pathway

Uncertainty related to future
predictions of socioeconomic
developments

SSP3 – “business as
usual”

SSP2 and SSP4 (Fig. 5) 3

Table 2. Overview of Hs and storm surge variations considered and
corresponding to the 5th, 50th and 95th percentiles. The baseline
value is italicized.

Percentile Hs Hs Storm surge
Praia Abade (m) Pantufo (m) (m)

5th 1.05 1.24 1.05
50th 1.18 1.35 1.08
95th 1.38 1.53 1.15

DEMs with lower resolution will introduce more uncertainty,
due to interpolation errors. Furthermore, systematic errors
that stem from a bias in the elevation values are often in-
cluded in the datasets and have a considerable impact on
flood risk estimates (Bove et al., 2020; Cook and Merwade,
2009; Kulp and Strauss, 2019; Paprotny et al., 2019; Van
de Sande et al., 2012). Indeed, global and satellite-derived
DEMs often have a low vertical accuracy for CFR assess-
ments, being surface models where terrain elevation values
may be overestimated due to land cover (e.g. tree canopies
and the built environment).

During the site campaign, topography information was de-
rived from unmanned aerial vehicle (UAV) imagery (Deltares
and CDR, 2019), using the Drone2Map software from ESRI,
and referenced to the WGS84 vertical datum. UAV-derived
DEMs have been proven to show higher vertical accu-
racy than satellite-derived DEMs (Gonçalves and Henriques,
2015; Hashemi-Beni et al., 2018; Leitão et al., 2016). The
UAV measurements were horizontally and vertically refer-
enced using one ground control point in EGS 1984 ellipsoid
vertical datum. In order to quantify the effect of the DEM
vertical accuracy on flood estimates, multiple globally avail-
able, satellite-derived datasets were collected and compared
against the UAV-derived DEM. The latter, with a horizon-
tal resolution of roughly 10 cm, was assumed to have the
highest vertical accuracy. The investigated satellite-derived
DEMs include TanDEM-X, TerraSAR-X, MERIT, ASTER
and SRTM. Their horizontal resolution and vertical accuracy
are described in Table 3.

Nat. Hazards Earth Syst. Sci., 20, 2397–2414, 2020 https://doi.org/10.5194/nhess-20-2397-2020
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Table 3. Overview of investigated globally available satellite DEMs: TanDEM-X, SRTM, MERIT, ASTER and TerraSAR-X. Horizontal
resolution and global error metrics of RMSE and mean error (ME) for the vertical accuracy are also provided.

DEM Source Horizontal Vertical
resolution accuracy

TanDEM-X Wessel et al. (2018) 90 m RMSE = 3.16 m; ME = 1.06 m (Hawker et al.,
2019)

Shuttle Radar Topography Mis-
sion (SRTM)

Jarvis et al. (2008) 30 m RMSE = 4.03 m; ME = 2.16 m (Hawker et al.,
2019)

Multi-Error Removed Im-
proved Terrain (MERIT)

Yamazaki et al. (2017) 90 m RMSE = 2.32 m; ME = 1.09 m (Hawker et al.,
2019)

Advances Spaceborne Thermal
Emission and Reflection Ra-
diometer (ASTER)

NASA/METI/AIST/Japan Spacesystems
and Science, U.S./Japa. A. (2009)

90 m RMSE = 8.68 m (Tachikawa et al., 2011)

TerraSAR-X Produced by GeoVille in 2013, derived
from TerraSAR-X imagery

10 m Not available

Depth damage function

Depth damage functions (DDFs) describe the vulnerability
of the assets at risk in the event of a flood, relating a given
flood depth to a damage factor that indicates the percentage
of the lost asset value. DDFs span a large variety of flood-
ing types and building strengths, allowing for the compu-
tation of different damage scenarios (Schroter et al., 2014).
However, numerous simplifications are introduced in design-
ing such curves, such as fitting them to sparse data values
and often disregarding important processes like wave forces
and flooding duration. This is partly due to the high com-
plexity of damage physics (which still lack thorough under-
standing) and to the scarcity of building information (Apel et
al., 2006; Merz et al., 2007; Merz and Thieken, 2009; Wage-
naar et al., 2016). In SIDSs, locally derived DDFs are rarely
available, forcing risk modellers to apply DDFs originally
derived for different geographic areas and flood types. The
uncertainty of this input was represented by using a vari-
ety of possible shapes and types used in CFR analyses re-
trieved from literature. Figure 4 and Table 4 contain a sum-
mary of the DDFs used in this study. Generally, two main
types of DDFs are used. Convex curves are representative of
more flood-resilient assets that only undergo significant dam-
age at high flood depths (e.g. American Samoa and damage
scanner model (DSM) curves in Fig. 4). On the other hand,
a concave shape represents less flood-resilient building, un-
dergoing significant damages already at small flood depths
(e.g. Sint Maarten or Joint Research Centre (JRC) curves in
Fig. 4). Concave-shaped DDFs may be preferable at most
SIDSs, representing buildings in developing countries. Eco-
nomic values for different building types were collected dur-
ing site visits (Deltares and CDR, 2019). In this research,
a single economic value was used to represent an average
building in each community.

Figure 4. Overview of the different DDFs investigated in the
study, including concave (Baseline, JRC, Lisbon, S. Maarten and
Tsunami) and convex (American Samoa and damage scanner
model, DSM) types. See Table 3 for details of curves.

3.2.2 Future scenarios

To perform future risk analyses, changes in the drivers and
receptors of risks must be accounted for; thus, climatic
changes and socioeconomic development were included in
the study. To account for future climatic changes, only SLR
was included. Other processes, such as astronomical tides,
storm surge levels, wave heights and local morphology were
assumed to be constant in time. This is consistent with other
uncertainty studies (Hinkel et al., 2014; Vousdoukas et al.,
2018b), where only the mean sea level was assumed to be af-
fected by climate change. However, the future predictions of
the mentioned processes can have a significant uncertainty

https://doi.org/10.5194/nhess-20-2397-2020 Nat. Hazards Earth Syst. Sci., 20, 2397–2414, 2020
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Table 4. Overview of the considered depth damage functions (DDFs), their geographical application area and flood type. Different DDF
curves are shown in Fig. 4.

Depth damage function (DDF) Reference Geographical application area Flood type

JRC Huizinga et al. (2017) Africa Coastal and riverine
S. Maarten Vojinovic et al. (2008) Sint Maarten (SIDS) Coastal and pluvial
Lisbon Hinkel et al. (2014) Lisbon Coastal
Tsunami Tarbotton et al. (2015) Averaged over several countries Coastal (Tsunami induced)
Damage scanner model (DSM) Kok et al. (2005) Netherlands Riverine
American Samoa Paulik et al. (2015) American Samoa (SIDS) Coastal
Baseline Deltares and CDR (2019) São Tomé and Príncipe (SIDS) Coastal and pluvial

Table 5. Overview of the considered SLR projections for the study
area for the years 2050, 2070 and 2100, according to Vousdoukas et
al. (2018a). The baseline values are italicized.

Sea level rise (m)

Percentile Year 2050 Year 2070 Year 2100
5th 0.19 0.31 0.53
50th 0.30 0.49 0.87
95th 0.47 0.98 2.05

and impact on estimated flood damages, particularly under
climate change (Chowdhury et al., 2007; Karim and Nobuo,
2008)

Sea level rise scenario

The dataset of global probabilistic projection of sea lev-
els under the Representative Concentration Pathway (RCP)
8.5 scenario, developed by the Joint Research Centre (JRC)
(Vousdoukas et al., 2018a), was used. The choice of RCP8.5
relies on the fact that, for the area of interest, the 90 % con-
fidence interval of SLR projections under this scenario also
captures the 50 %–90 % percentiles of SLR projections un-
der the RCP4.5 scenario; i.e. it includes the more severe half
of this milder scenario.

In our approach, SLR scenarios were used to increase the
static water level (Fig. 2). However, the range of future SLR
remains uncertain, considering the variability of the numer-
ous processes that affect it. Therefore, choosing a single SLR
scenario limits the understanding of the system susceptibil-
ity to future flood risk and hides the uncertainty in the pre-
diction. To reproduce this uncertainty, the 5th, 50th and 95th
percentiles values of SLR projections for the study area were
simulated (Table 5), for the three future time horizons 2050,
2070 and 2100.

Socioeconomic scenario

For the case of São Tomé and Príncipe, urbanization and
global development trends drive an increase in the number
and value of exposed assets in coastal communities, for both

mid- and long-term time horizons (2050, 2070 and 2100;
Deltares and CDR, 2019). Riahi et al. (2017), in collabo-
ration with the IPCC panel, have developed a set of possi-
ble societal developments, Shared Socioeconomic Pathways
(SSPs), which vary according to the efforts adopted to mit-
igate and adapt to climate change pressures. They are de-
signed to span a wide range of uncertainty in future human
developments and define future economic variables, such as
the gross domestic product (GDP). The dataset used is pub-
licly available and produced by the International Institute for
Applied Scientific Analysis3. GDP and population growth
rate were used in this analysis as a proxy to compute future
asset values as follows:

asset value growth=
GDPt,s

GDP2018
·

populationt

population2018
, (1)

where GDPt,s is the GDP at the year t , under the SSP s.
Three SSPs (SSP 2, 3 and 4) were considered to reproduce
socioeconomic growth uncertainty, as they cover the largest
range of GDP growth values for the year 2100 (Fig. 5). Al-
though some SSP scenarios are only compatible with certain
RCP scenarios at the global or regional scale (van Vuuren and
Carter, 2014), at the local scale of individual and small coun-
tries RCP and SSP may not be necessarily correlated, since
RCPs represent a global process while SSPs reflect more the
socioeconomic development of the single country.

3.3 Baseline scenario and variations

We conducted a sensitivity analysis on the full parame-
ter space of model inputs (Table 1). This led to combina-
tions of (a) three Hs scenarios, (b) three storm surge sce-
narios, (c) two bathymetry scenarios, (d) six DEM scenar-
ios, (e) seven DDF scenarios, (f) three SLR scenarios and
(g) three SSP scenarios over (h) four different time horizons
(current4, 2050, 2070 and 2100), ultimately leading to a total
of 21 168 simulations for each community.

3Download link: https://tntcat.iiasa.ac.at/SspDb/dsd?Action=
htmlpage&page=about (last access: 13 July 2019).

4For the current time horizon, no SLR and SSP scenarios are
present, reducing the number of simulations required.
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Table 6. Error metrics of the studied publicly available DEMs for the two locations. The bias and error standard deviation from the UAV-
derived DEM for SRTM, MERIT, TanDEM-X, ASTER and TerraSAR-X, in Praia Abade and Pantufo.

Location SRTM MERIT TanDEM-X ASTER TerraSAR-X

Praia Abade Bias (m) 6.43 6.35 3.23 6.90 Not available
Error standard deviation (m) 0.95 0.55 0.54 0.73 Not available

Pantufo Bias (m) 4.63 4.48 2.93 5.81 −1.35
Error standard deviation (m) 0.97 0.89 0.68 0.69 2.30

Figure 5. GDP growth factors for five different SSP scenarios
through time. The different lines indicate the projected GDP growth
according to the five SSPs. The black dashed lines indicate the three
simulated time horizons and the range of used GDP projections.

We considered the following scenario as the “baseline”:
offshore ESLs described by the 50th percentile of storm
surge, Hs and SLR, the locally measured bathymetry, the
DEM derived by UAV aerial imagery, the DDF developed for
São Tomé and Príncipe, and the “business as usual” SSP 3.
For each input and simulation, the ratio of change of the
damage estimate from the simulation with the baseline value
for that input was computed. Values higher and lower than
1 express, respectively, an over- and underestimation of the
damages, while the range of values expresses the introduced
uncertainty around each input parameter, as summarized in
Table 1.

4 Results

The computed flood maps for Praia Abade and Pantufo for
the baseline scenario are shown in Fig. 6. Praia Abade is
more flood-prone than Pantufo, where the coastal topography
is steeper and the village is on higher ground. The effect of
each input on the estimated damages is presented as the ratio
between estimated damages for a given scenario compared

to the baseline scenario, for different time horizons (Fig. 7).
Changes in the range of results through time for a particular
input may be explained by both a variation in the intrinsic
uncertainty of the input and a change of its sensitivity due
to the influence of another input. For example, a change in
the terrain slope may alter the sensitivity of flood damages to
changes in the storm surge level.

4.1 Hydrodynamic forcing

As expected, varying the values of Hs and storm surge af-
fects the estimated damages by between 0.5–1.75 and 0.7–
1.6 times the baseline scenario, respectively, in the current
time horizon (Fig. 7a, yellow and turquoise boxes). Both
their impacts on output uncertainty decrease in time, as can
be seen from the decreasing size of the boxes and whiskers
in Fig. 7b–d. As these inputs are assumed stationary in time,
their impact reduction is due to the influence of other inputs
to their sensitivity.

4.2 Bathymetry

Modelling the damages using the coarser GEBCO
bathymetry dataset rather than with the locally mea-
sured dataset increases the mean damage distribution of
1.25 with respect to the baseline scenario and under the
current time horizon (Fig. 7a, blue box). This is due to the
lower elevation values in the nearshore given by GEBCO,
which leads to higher waves nearshore. This suggests that
the coarse resolution of GEBCO does not resolve nearshore
bathymetry features that have an impact on wave dissipation.
Similar to storm surge and Hs, the impact of bathymetry on
the damage estimates decreases in time, with the boxes and
whiskers decreasing in size in Fig. 7b–c–d. Figure 8 shows
the histograms of damages for the current time horizon
(1260 simulations) using a single bathymetry dataset,
highlighting the effect of using one dataset over another.
Comparing the distribution of estimated damages for the
current time horizon from all input combinations with a
single bathymetry dataset shows an increase in the mean
for both locations when GEBCO is used while the width of
the 50 % confidence interval of results increases by 20 %.
This indicates that the GEBCO profiles are more sensitive to
changes in other input conditions than the locally collected
profiles.

https://doi.org/10.5194/nhess-20-2397-2020 Nat. Hazards Earth Syst. Sci., 20, 2397–2414, 2020
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Figure 6. Flood depth map estimated by SFINCS for the baseline scenario for Pantufo (a) and Praia Abade (b). Flood depths are expressed
in metres. Both aerial images were reproduced with permission from CDR International.

Figure 7. Absolute impacts on damage estimate uncertainty. Box plots of the ratio of damages from the baseline scenario for Hs, storm surge,
bathymetry, DEM, DDFs, SLR and SSP (a–d), for the four time horizons (present day, 2050, 2070 and 2100). Mean values are represented
by the black lines inside the boxes. The 25th and 75th percentiles are indicated by the edges of the boxes. The black thin whiskers extend to
1.5 times the interquartile distance, outside of which are outliers, shown with red crosses. The black dashed line shows the reference of the
baseline scenario.

Nat. Hazards Earth Syst. Sci., 20, 2397–2414, 2020 https://doi.org/10.5194/nhess-20-2397-2020
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Figure 8. Impact of using global bathymetric data versus local measured data. Histograms of damages from all 1260 simulations of the
present scenario, using a single bathymetry dataset, the locally collected bathymetry (blue histograms) and GEBCO (orange histograms) for
Pantufo (a) and Praia Abade (b). Dotted lines indicate the width of the 50 % confidence interval. Damages are expressed in euros (EUR).

4.3 Digital elevation model

Most DEMs highly underestimate flood risk compared to the
UAV-derived DEM (Fig. 7a, green box). The global DEMs
indicate that almost no flooding will occur, as a result of
their low vertical accuracy and positive bias. For both loca-
tions, TanDEM-X has the highest vertical accuracy amongst
all satellite-derived DEMs with a positive bias of 3.2 m in
Praia Abade and 2.9 m in Pantufo (Table 6), although it un-
derestimates the damages (Fig. 9). The impact on damage
uncertainty is considerable for all four time horizons, partic-
ularly in 2100, with estimated damages ranging between 0.25
and 2.9 times the baseline scenario (Fig. 7d, green box). This
indicates that the effect of DEMs becomes more sensitive in
time to changes in other input conditions. TerraSAR-X is the
only DEM underestimating the elevation, explaining the con-
siderable number of upper outliers in the box plots (Fig. 7a–d
green boxes).

Comparing the distribution of estimated damages from
all input combinations but using only the UAV-derived vs.
TanDEM-X datasets, one can see that the latter results
in a considerably smaller mean damage in Pantufo (from
EUR 73 000 to EUR 43 000, Fig. 9a) and Praia Abade (from
EUR 89 000 to EUR 35 000, Fig. 9b). Furthermore, the 50 %
confidence interval is reduced. An explanation of the very
low reliability of satellite-derived DEMs for our case study
might be found in the negative correlation between their ver-
tical accuracy and terrain slope. Indeed, Gorokhovich and
Voustianiouk (2006) have found an increase in the prediction
error given by SRTM on steeper slopes and mountainous ar-
eas, such as the volcanic islands of São Tomé and Príncipe.

4.4 Depth damage function

The estimated damages show a considerable uncertainty and
spread of results depending on the DDF applied. For the cur-

rent time horizon, DDFs hold the largest impact on model
outcome of any input variable, with estimated damages rang-
ing between 0.25 and 4 times the baseline scenario (Fig. 7a,
purple box). Their range of uncertainty only slightly de-
creases through time (Fig. 7b–d). The majority of alterna-
tive DDFs are concave and show lower impacts compared to
the convex baseline DDF, in particular for low flood depths
(Fig. 4), therefore resulting in a box with a mean smaller than
1 (Fig. 7, green boxes).

4.5 Sea level rise

SLR initially has a similar impact on the uncertainty of the
damages for the year 2050 as Hs and storm surge (Fig. 7b,
black box), although this significantly increases for time
horizons further in the more distant future. Indeed, sea level
rise has the most considerable spread of results in the year
2100, 0.5–3.7 times the baseline scenario (Fig. 7d, black
box). This is partially due to the increasing uncertainty in
SLR estimates for the year 2100, as future climate modelling
assumptions become weaker for longer time horizons.

4.6 Socioeconomic scenarios

The uncertainty brought by socioeconomic changes is lim-
ited in this framework. Indeed, varying the selected SSP does
not yield a significant variation in the model outcome, and the
highest spread of results is found for the year 2100 (0.6–1.3
times the baseline, Fig. 7d), when uncertainties in the predic-
tion of social development become larger. However, includ-
ing socioeconomic factors in the risk estimates increases the
economic value of the assets at risk, and thus increases the
potential damage. Figure 10 shows the computed damages
through time, using three modelling approaches: including
only climate-change-induced SLR, including only socioeco-
nomic changes and including both. Future damages are re-

https://doi.org/10.5194/nhess-20-2397-2020 Nat. Hazards Earth Syst. Sci., 20, 2397–2414, 2020
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Figure 9. Impact of using global DEMs versus local DEMs. Histograms of damages from all 1260 simulations of the present scenario, using
a single DEM dataset, the UAV-derived scenario (blue histograms) and TanDEM-X (orange histograms) for Pantufo (a) and Praia Abade (b).
Dotted lines indicate the width of the 50 % confidence interval. Damages are expressed in euros (EUR).

markably higher when taking the economic development of
the communities into account. When both changes are in-
cluded, the damages of the baseline scenario increase by a
factor of 35 in Pantufo and 50 in Praia Abade for the year
2100 (Fig. 10a–b, blue line). Combining SLR and socioe-
conomic growth increases the damages non-linearly, as the
former increases the hazard and the latter affects the value
of exposed assets, therefore acting on different risk compo-
nents.

4.7 Relative importance

To obtain an estimate of the uncertainty of each input variable
through time, the range of possible values within the damage
estimate of each input is considered (Fig. 7). The relative im-
portance of each variable is computed as the ratio between its
range of possible values and the sum of all ranges of possible
values of each input, scaled to unity. DDFs and DEMs have
the largest relative importance of all investigated input vari-
ables for the current time horizon (Fig. 11). For future risk
estimates, the uncertainty due to SLR continuously increases
and becomes dominant for the year 2100, followed by DDFs
and DEMs. Socioeconomic changes have a somewhat more
constrained relative impact, although they increase in time.
Hs, storm surge and bathymetry have the smallest relative
effect on damage estimates, decreasing with time. However,
their impact also decreases absolutely, as their range of re-
sults becomes narrower through time (Fig. 7a–d, yellow,
turquoise and blue boxes). Their reduction is linked to the
change in mean sea level due to SLR, which leads to the ex-
ceedance of thresholds in the elevation that reduce the sensi-
tivity of flood damage estimates to these inputs.

5 Discussion

This paper presents an investigation of multiple uncertainty
sources in relation to CFR assessment at two small islands,
highlighting the consequences of the scarcity of reliable in-
put data for SIDS. The results provide a useful indication and
highlight the need of collecting higher-quality data. Further-
more, the impact of SLR predictions becomes significantly
more important with time, becoming dominant for risk es-
timates at the end of this century. The baseline scenario is
composed by the best available input data (i.e. value in which
we have most confidence or with the highest resolution). To
assess the uncertainty in our CFR analysis, we varied this
scenario based on alternative available data sources or high
and low percentiles of a given probability distribution, esti-
mating the impact brought by each uncertainty source on the
damage estimation. However, there are several assumptions
that go into these estimates, which are discussed below.

5.1 Assumptions and limitations

5.1.1 Present-day scenario

We used advanced hydrodynamic models which enabled us
to include short-wave processes and their effect on floods,
an aspect that can lead to intensified flooding consequences
(Storlazzi et al., 2018). However, each model contains nu-
merous assumptions and simplifications that translate into
further uncertainties in the output estimate (Loucks and Van
Beek, 2017; Uusitalo et al., 2015). These model uncertainties
were disregarded as we focused only on uncertainties related
to data input.

We performed a global sensitivity analysis, exploring the
whole input space domain. All possible input combinations
were tested, leading to the presence of dependencies in the
behaviour and response of some inputs. This approach has
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Figure 10. The relevance of socioeconomic changes. (a) Damages under the baseline scenario expressed in São Toméan dobras (STD) for
Pantufo and (b) Praia Abade over time, differentiated by contributing factors: damages driven only by climate-change-induced SLR (red),
damages driven only by socioeconomic changes (green) and damages driven by both (blue).

Figure 11. Inputs’ relative contribution to damage estimate uncer-
tainty. Relative importance of the investigated inputs’ (Hs, storm
surge, bathymetry, DEMs, DDFs, SLR and SSP) effect on the dam-
age estimate uncertainty over the four time horizons considered.

the advantage of examining input combinations that may in-
clude non-linear interactions (Uusitalo et al., 2015). Most no-
tably, Hs and storm surge have experienced a decrease in
their impact on damage estimate uncertainty in more dis-
tant time horizons (Fig. 7a–d). This was linked to the ac-
tion of SLR, which led to a change in the terrain slope at
the coastline that altered the sensitivity of damage estimates
to changes in storm surge and Hs. This demonstrates how
uncertainty in one input variable can affect the uncertainty
in the estimate brought by another input variable. To further
improve the presented methodology, a Monte Carlo analysis
that considers a pdf for each uncertain input to estimate the
pdf of the expected damages could be performed, although
the computational effort is prohibitive. To avoid the compu-

tational burden of a Monte Carlo analysis, an ANOVA (anal-
ysis of variance) may be performed, as shown for example
by Gangrade et al. (2020).

The choice of uncertainty sources and their range of val-
ues and datasets, although subjective, allow for an indica-
tion of the most important uncertainty regarding risk anal-
yses in SIDS. The choice of inputs that were analysed was
balanced carefully between comprehensiveness of the anal-
ysis and computational expenses. Therefore, several factors
were discarded, including small-scale adaptation measures
that are not represented in the DEMs and other sources of
flood hazards (e.g. rainfall events).

Compound flooding events (e.g. coastal and riverine) can
significantly increase the damages more than single events
only (Ganguli and Merz, 2019; Kumbier et al., 2018; Wahl et
al., 2015; Ward et al., 2017), and further research could es-
timate the added uncertainty. Moreover, the interdependency
between different ESL components has been neglected, al-
though tide and sea level changes are often correlated, adding
further uncertainty in the analysis (Devlin et al., 2017). The
combination of storm surge peak with the spring neap tidal
variability (Vousdoukas et al., 2018b) has also been disre-
garded, to model a worst-case scenario where the storm peak
and spring high tide occur simultaneously (Fig. 3).

Separate datasets with different recorded lengths were
used for the statistical estimation of the storm surge level and
significant wave height 100-year-return-period values, which
is an additional source of uncertainty in the damage predic-
tion.

Finally, in the damage estimation, only direct and tangi-
ble damages were considered, whereas loss of life, natural
habitat and other indirect damages were discarded, therefore
leading to an underestimation of the total damages.

https://doi.org/10.5194/nhess-20-2397-2020 Nat. Hazards Earth Syst. Sci., 20, 2397–2414, 2020
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5.1.2 Future scenarios

Societal developments have been implemented in a rather
simplistic way, considering only future asset and population
growths. In particular, migration patterns, global economic
trends, technological advancement, projected land use and
wealth distribution could be included to further strengthen
the methodology. However, the results have still shown the
detrimental effect of disregarding socioeconomic changes,
responsible for an increase of a factor 50 in the damage esti-
mates (Fig. 10a, blue line).

The spatial distribution of houses built in the future was
assumed to be identical to the current one. Since people may
relocate to areas with lower flood risk, this assumption could
result in an overestimation of the damages. Furthermore, the
possibility of exceeding the level of available land for new
constructions is not considered, which may have led to esti-
mating an unrealistic population growth in the communities.
Moreover, only one representative type of building was in-
cluded in the analysis, using a weighted averaging approach
based on the distribution of building types. This assumption
could yield an underestimation of flood damages in the case
that most highly valuable buildings are in the most hazard-
prone area. Nevertheless, this assumption was supported by
the heterogeneous spatial distribution of buildings in Praia
Abade and Pantufo. The investigation of uncertainty in fu-
ture exposure has not been extensively studied but can have
a strong impact on the risk assessment (Bouwer, 2013).

Climate change impacts on future risk predictions were
only considered in a limited way, evaluating just the role of
SLR. Changes in significant wave height, storm surge and
bathymetry were omitted from our analysis, as in other sim-
ilar studies (Hinkel et al., 2014; Vousdoukas et al., 2018b),
which leaves their impact on future damage estimates un-
quantified.

5.1.3 Applicability of the results to other locations

The methodology was applied to two coastal communities
on the islands of São Tomé and Príncipe. Although the two
villages were located at two different islands, with rather dif-
ferent local geomorphology, the results were rather similar.
Therefore, we believe that the general findings from this re-
search could be translated to other SIDSs.

6 Conclusions

This study aims to better understand uncertainty of input
data in coastal flood risk (CFR) in small island developing
states (SIDSs). The methodology and outcomes were de-
rived based on an assessment of two villages located on the
two islands of São Tomé and Príncipe where locally mea-
sured data were available to be compared with publicly avail-
able global datasets. Investigating the uncertainty propaga-
tion from imperfect input data along the whole risk assess-

ment may guide the allocation of limited financial resources
to collect the most relevant data more accurately for CFR
analyses in SIDSs.

The uncertainty investigation was performed using an
ensemble of hydrodynamic and impact models, estimating
flood damages for a 100-year event. Different input sources
of uncertainty were investigated, including (i) significant
wave height, (ii) storm surge level, (iii) SLR projections to
ESLs, (iv) bathymetry and (v) topography datasets, (vi) dam-
age models (DDFs), and (vii) socioeconomic changes.

Considerable uncertainty is found in the estimation of
flood damages, highlighting the challenges of performing
CFR analyses for SIDSs. For the current time horizon, the
choice of DDF, followed by topography information (DEM),
is the main contributor affecting the uncertainty of the out-
put, varying the estimated damages, with a factor ranging
between 0.25–4 and 0.3–2.5 relative to the baseline case.
For future damage estimates, SLR predictions become the
input with the highest impact on damages estimates. DEMs
and DDFs still carry considerable uncertainty and are ranked
second and third in importance (Fig. 11). SLR and espe-
cially economic and population growth drive enormous in-
creases in future expected risk, with mean damage estimates
of the baseline scenario increasing by up to a factor of 50
from the present day. Nevertheless, socioeconomic changes
have a smaller uncertainty compared to other inputs, partially
due to their limited model implementation. We thus recom-
mend future research in improving the implementation of so-
cioeconomic changes in risk modelling. Hs, storm surge and
bathymetry have a more confined impact on the overall dam-
age estimate uncertainty, and their relative weight slightly de-
creases through time.

Using low-quality input data leads to a significant error in
the prediction, together with a variation in the level of uncer-
tainty reproduced by the model. This negatively affects the
model’s trustworthiness, as it may give unwarranted confi-
dence in its output. Complex hydrodynamic models that in-
clude multiple physical processes and which can achieve a
high level of accuracy in the prediction already exist. How-
ever, the efforts put into developing these models can be fu-
tile whenever incorrect input data are used, suggesting that
the improvement of data-collecting techniques should be-
come a priority. If reducing uncertainty requires obtaining
additional information, then the value of this additional in-
formation must exceed the cost of obtaining it. This value
will be the reduction of the uncertainty brought by the infor-
mation.

Furthermore, we recommend focusing on improving DEM
quality, collecting damage information and improving the re-
liability of SLR projections, as they represent the critical fac-
tors affecting the uncertainty in coastal flood damage esti-
mates in SIDSs.
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