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Abstract

Space has always been fascinating to humans, since the dawn of civilization. From the first astronomers and
philosophers of ancient times, who looked at the night sky searching for answers, to the scientists and engi-
neers of modern missions, commanding space probes to the edge of the solar system, space has always been
at the epicenter of scientific discovery and human curiosity. From the launch of Sputnik 1 in 1957, to the
robotic rovers exploring Mars, space missions have always relied on the latest technological advancements in
order to enable physical or remote exploration of celestial bodies. Traditionally, designing a space computer
required significant amount of resources, leading to designs with impressive radiation performance records.
However, such designs were lacking computational performance, required years of development and as a re-
sult increased the total cost of the mission.

In recent years, the advent of CubeSats meant that access to space became available to a wider community
of enthusiasts, researchers and private companies who were developing low-mass spacecraft made out of
Commercial Off-The-Shelf components (COTS). These components however, were designed with the goal of
maximizing performance and power, with little to no flight heritage. Several novel technologies were pro-
posed in the field of error detection and mitigation, in an effort to bridge the gap between COTS processors
and their radiation-hardened counterparts. Even though the commercial semiconductor industry has in-
creased the reliability of its products by continuously improving their designs and processes, CubeSats or
other low-mass spacecraft that use these components are still less reliable than their larger counterparts.

Given the aforementioned, this thesis aimed at exploring the latest developments in the field of space em-
bedded systems and error detection techniques, in an effort to produce a software flow able to detect faults
with increased compatibility across processor models. In order to accomplish this goal, the thesis was car-
ried out at ARM Limited, as part of the Software Test Libraries (STL) team responsible for developing efficient
assembly tests for detecting random faults. The Cortex-M55 CPU was chosen as the test-bed for this work,
in order to develop STL routines for a reference module. The Main Interface Unit (MIU) was chosen to act as
the proof-of-concept, since it is an important module in every Cortex-M processor, interfacing the core with
the main memory.

More specifically, a series of tests were developed for every major module within the MIU. The design started
from the largest module first, which yielded a good trade-off between coverage and time. The tests com-
prised of efficient assembly routines designed to trigger specific memory access patterns, targeting different
portions of logic each time. At the same time, a verification software flow was developed in order to test the
newly designed routines against a multitude of possible configurations and initialization parameters. This
activity was necessary to ensure that the developed software will be able to operate in a variety of end appli-
cations, either in the context of a Real-Time Operating System or baremetal application.

The developed STL tests were subjected to a series of fault simulations using a state-of-the-art hardware sim-
ulation tool called ZOIX. Permanent faults caused by accumulated damage were modeled as stuck-at-faults,
whereas transient soft-errors were modeled as transient toggle faults. Determining an accurate fault injection
interval, required knowledge of the radiation environment that a COTS-based mission would encounter. A
state-of-the-art space simulation environment called SPENVIS was used in order to acquire metrics on se-
lected reference missions on Low Earth Orbit and Geosynchronous Equatorial Orbit. This helped setting the
upper limits on upset rates, which were in turn used during fault simulation to recreate realistic conditions.

The developed software tests exhibited solid performance in detecting permanent faults, while achieving
promising results in transient fault simulations, given certain assumptions. A series of recommendations is
given for future research work on the current framework, in an effort to learn from the challenges faced and
tackle some of the identified limitations. Given certain assumptions, there is evidence to believe that STLs
could be indeed used for random error detection in future CubeSat missions, without increasing the total cost
disproportionately.
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1
Introduction

This Chapter presents the background information necessary to understand the context of the thesis objec-
tive. More specifically, Section 1.1 includes a short summary of the efforts made towards human spaceflight
and highlights the challenges faced when designing a space computer. An introduction to the thesis report
is given in Section 1.2, whereas Sections 1.3 and 1.4 provide additional information on the company and the
team where the graduation project was performed.

1.1. Background information
Space Exploration has always been in the center of scientific interest. From the first astronomers, to the recent
exploration missions, space has always been intriguing and mysterious to the human kind. In recent years,
Space exploration relied heavily in the development and deployment of uncrewed vehicles, used to physically
or remotely explore celestial bodies of scientific interest. The motive for exploration, lies on human curiosity;
it is in our nature to explore the unknown, discover new worlds and answer fundamental questions regarding
our existence.

Traditionally, space missions required the use of cutting edge technology, across all disciplines involved with
the design and manufacturing of a space vehicle. That was particularly relevant for the fields of electron-
ics and computing. With the advent of the Integrated Circuit (IC) and the design of silicon chips, the first
electronic computers emerged, with the most notable being the Apollo Guidance Computer (AGC) [97]. Tra-
ditionally, the design of a space computer has been considered challenging due to the following correlated
factors, namely power consumption, performance and radiation tolerance. This is because improving one or
two of the aforementioned factors, always results in damaging the third one.

As a result, engineers have to always balance these factors in order to produce designs that satisfy certain
mission requirements, without sacrificing the reliability and hence the success probability of the whole mis-
sion. These systems required years of development and testing, which only added to the total cost and time
of the whole space program or mission. Historically, designing and manufacturing complex VLSI circuits is
very costly and time consuming, therefore for a system to be economically viable, it will have to be massed-
produced and satisfy a wide range of target applications.

In the meantime, the industry has successfully showcased the design and deployment of reliable, low-cost
and high-performing computers, in the form of embedded systems for safety critical applications. These ap-
plications range from automotive safety and braking systems, to industrial applications that need to operate
in harsh and noisy environments for extended periods of time. The rise of the CubeSat community and the
New Space age of private companies launching spacecraft and other payloads in LEO and beyond, meant that
a wider academic, industrial and enthusiast community was building low-cost, low-mass and small-volume
spacecrafts made out of Commercial Off-The-Shelf components (COTS). The computing systems powering
these spacecrafts were massively produced with the goal of optimizing the two factors mentioned before.
However, they were primarily designed for terrestrial applications with little to no flight heritage.

The continuous push to reduce the development time and cost of spacecrafts, has resulted in spaceflight
programs that use increasing amounts of COTS and taking advantage of their higher densities, better perfor-
mance, low-power consumption and decreased lead-times [50]. Subsequently, new efforts have been made

1



2 1. Introduction

by many space agencies to perform testing campaigns in order to characterise different COTS electronic com-
ponents. The goal of such effort was to determine the most reliable components that could be used in one or
more subsystems, reducing the number of radiation-hardened components used, but without compromis-
ing the success of the mission. In addition, several error mitigation techniques would be implemented on the
system level or in software, to increase the radiation tolerance of such devices.

1.2. Introduction to the thesis
The goal of the project is to research and design an efficient and cost effective method to improve random
error detection and mitigation of COTS microprocessors, with increased compatibility across devices. Com-
mercial grade processors are used both in terrestrial and extraterrestrial applications, ranging from automo-
tive to advanced navigation systems on-board small satellites or CubeSats in Low Earth Orbit (LEO). These
systems have to operate in harsh environments, sustaining multiple faults due to radiation or environmental
noise. Currently, most error detection mechanisms either rely on purely hardware or software solutions, that
are in most cases custom-tailored to a specific device or model. This project aims at exploiting the state-of-
the-art developments in software and CPU design, in order to prototype a software flow able to detect and
mitigate random faults with increased compatibility across CPUs. To that end, the thesis was carried out at
ARM, as part of the Software Test Libraries (STL) team responsible for developing software tests that are able
to detect random errors.

The report has the following layout. Chapter 2 offers an overview of the current state-of-the-art error mit-
igation solutions and sets the framework necessary to define the main Research Questions (RQs) and the
Research Objective of the thesis. Chapter 3 presents an introduction to the problem statement, along with
the detailed objectives of this work, followed by Chapter 4 which elaborates on the steps taken to satisfy
the aforementioned objectives. In addition, Chapter 5 presents an analysis on fault modeling and the cor-
responding radiation environment simulations performed to determine realistic upset rates. Furthermore,
Chapter 6 presents the results achieved in the context of this work, while Chapters 7 and 8 elaborate on the
conclusions and recommendations respectively.

1.3. ARM Limited: The Company
ARM Limited is a multinational fab-less semiconductor and software company, based in Cambridge UK [3].
It designs CPUs, GPUs, SoCs, multimedia systems, platforms as well as software development tools and com-
pilers.

The company was founded in 1990 as Advanced RISC Machines Ltd., with the goal to further develop the Re-
duced Instruction Set (RISC) processor design. Given the nature of RISC, ARM processors are best-known for
their low-power consumption which makes them ideal for use in embedded devices such as smartphones,
tablet computers and wearables, but also in computers used for controlling electro-mechanical applications
such as the Engine Control Unit (ECU) of modern vehicles. Recently, ARM processors have been deployed in
infrastructure and supercomputer systems, effectively covering the full spectrum of computing applications.

Processors are designed in one of ARM’s Instruction Set Architectures (ISA) and licensed to customers want-
ing to fabricate a chip as a hardware Intellectual Property (IP). The company offers a broad portfolio of CPUs,
ranging from low-power embedded processors to server systems. Currently, the majority of ARM’s core busi-
ness relies on licensing CPUs and GPUs and other hardware IP to the embedded computing market, with
ARM technologies reaching up to 70% of the global population. In total, the company has shipped more than
130+ billion ARM chips, creating a vast amount of partners [3].

1.4. Software Test Libraries team
The STL team, is part of the CPU-Engineering team and is responsible for the development of STLs, that en-
hance the functional safety technology of modern CPUs according to ISO 26262 ASIL D [4]. STLs are efficient
assembly tests that are executed either on system startup or periodically, in order to stress and test specific
parts of the target CPU and identify random errors, that could lead to single-point failures. They have been
proposed for use in safety critical embedded systems, however they could be expanded and used in conjunc-
tion with other mechanisms to detect radiation-induced errors.
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The team works closely with the designers, and has access to the CPU designs from an early stage. Therefore,
the team is able to write efficient tests that provide a large coverage with respect to the total number of pos-
sible faults. In addition, the team provides feedback to the designers, in cases where there are difficulties in
targeting a specific module, or in cases where the coverage results are not adequate. This feedback includes
suggestions on how to improve the coverage numbers as well as proposals for additional safety mechanisms,
that could be used together with STLs to increase the reliability of the target processor. Finally, the team
develops the tests and accompanying verification software flow in such a way, to make it as portable as pos-
sible across multiple projects. This in turn reduces the development time of safety tests for future projects,
reducing the impact on the time-to-market of a specific design.
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This Chapter summarizes the work carried out before the beginning of the thesis in order to define the Re-
search Objective. This was accomplished by performing a state-of-the-art review of the current work in the
field of embedded space systems and error mitigation mechanisms. Furthermore, this Chapter presents the
main conclusions drawn which in turn helped define the purpose statement of the thesis.

2.1. Research Questions
The main goal for such research was to identify potential areas of improvement and make a contribution to
the respective body of science. For that reason, the Research Questions were formulated in such a way in
order to better understand the nature of radiation, the effects of random faults on modern CMOS circuits and
the current methods used by academia and the industry to detect and mitigate them.

To achieve that, one or more of the following questions must be answered:

• RQ-1: How does the space environment affects modern semiconductor systems, which are the effects
and how these evolve during the operational lifetime of the mission?

– RQ-1.1: What is radiation and how it affects electronic devices during the lifetime of a mission?

– RQ-1.2: What are the types of radiation effects on modern Complementary Metal-Oxide-Semiconductor
(CMOS) devices in space applications?

• RQ-2: Which are the most prominent methods in the industry, to detect and mitigate errors and which
techniques are implemented in widely-used processors for space applications?

– RQ-2.1: How random errors are detected and mitigated in computing systems, in general?

– RQ-2.2: Which error detection and mitigation techniques are implemented in widely-used pro-
cessors for large spacecraft or CubeSat missions and what is their radiation performance?

The sources of radiation and its effects on IC devices will be elaborated in Sections 2.2 and 2.3. Section 2.4
will focus on the most prominent type of radiation effects and analyze the underlying mechanisms that gov-
ern their behavior. Furthermore, Section 2.5 will present the most prominent error detection schemes used
in COTS or radiation-hardened CPUs, whereas Section 2.6 lists the most preferred mitigation methods in a
selection of widely-used processors. Finally, Section 2.7 will elaborate on novel detection techniques pro-
posed by scholars or the industry and Section 2.8 will summarize the main findings and conclusions of the
said research.

4
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2.2. Sources of radiation
In essence, radiation is the interaction of highly charged particles with matter, resulting in depositing energy
into the target object or device. This interaction can be broken down to three underlying mechanisms which
can occur with different probabilities [24, 26].

There are three ways a charged particle can deposit energy into an object. First, by interacting with the elec-
trons of the target’s atoms, pulling them from their orbits and creating pairs of electrons and holes. This
effectively alters the electrical behavior of devices, by changing for example the threshold voltage of a Metal-
Oxide-Semiconductor Field-Effect Transistor (MOSFET) [80]. Second, radiation’s interaction with objects is
also evident when highly charged particles hit dense matter. The loss of kinetic energy creates photons via
the Bremstrahlung Effect, which consequently results in ionization traces deep inside dense matter. The
third and least frequent way of depositing energy is by interacting with the target’s nucleus. In extreme cases,
charged particles interact with the nucleus though electromagnetic or nuclear reactions causing displace-
ments or even fractures. As a result, the lattice sustains severe damage especially when this effect is prolonged
for extended periods of time.

Radiation has three primary sources. The first source consists of protons and electrons which are trapped
by the Earth’s magnetic field, forming what is known as the Van Allen Radiation Belts [24, 26]. These parti-
cles originate mostly from Cosmic Rays and Solar Flares. In the case of the former, the rays originate from
supernova explosions or other events outside the Solar System and consist of protons, electrons and ions
[24, 71]. The remnant magnetic field from the supernova, as well as other electromagnetic fields accelerate
these particles up to thousands of GeV, effectively converting them to Cosmic Rays [16, 24]. In the case of
Solar Flares, they are usually associated with the ejection of plasma and particles from the Sun and are visu-
ally perceived as sudden flashes of increased brightness [24, 26]. If directed towards the Earth’s vicinity, they
are either trapped in the Radiation Belts, or penetrate the atmosphere causing bright auroras. An illustration
of Solar Flares and Cosmic Rays is visible in Figure 2.1a, whereas Figure 2.1b provides a visualisation of the
Earth’s Radiation Belts.

(a) Graphical illustration of Solar Flares and Cosmic Rays [71].
(b) A cross section of the toroidal-shaped Van Allen belts showing satellites
near the region of trapped radiation [69].

Figure 2.1: Illustrations of the three radiation sources.

2.3. Classes of radiation effects
Radiation affects electronic devices causing permanent or temporal damage, depending on the incident en-
ergy and the location of impact. As a result, microelectronic devices are very sensitive to incoming particles,
not only due to the permanent damage that may be caused, but also due to the deposition of charge on
sensitive areas. There are three main classes of damage, which will be described below.

• Total Ionizing Dose (TID): Total Ionizing Dose is the accumulation of ionizing dose over long periods
of time and can lead to the degradation of the target device’s lifetime [24, 26]. This cumulative effect
alters the transistor’s electrical properties, which could continue to operate without any apparent faults.
However, the accumulation of ionizing dose will lead to its eventual failure. The most characteristic
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example of this effect is the accumulation of charge on the gate oxide of MOSFET devices. When highly
charged particles interact with the oxide of a target device, electron-hole pairs are generated in the SiO2

layer. Due to the mobility characteristics [42], as well as a process called "Hopping Transport" charge
is accumulated on the gate of the transistor effectively inverting the channel and allowing conduction
even at Vg s = 0, in the case of an NMOS [81]. As a result, conduction in the OFF state not only affects
the logic behavior of the device or circuit, but at the same time increases power consumption leading
to an eventual burn out. Finally, medium and low dosage rates can cause a deterioration to the timing
characteristics of an IC, since the affected electrical capabilities degrade the drive of the MOSFET [81].

• Displacement Damage (DD): Displacement Damage refers to the long-term accumulation of non-
ionizing dose, due to the interaction of charged particles with the target’s lattice [24, 26]. This in turn
degrades the electrical behavior of a device and creates background noise [24]. Displacement Damage
(DD) damage is usually observed in sensors, amplifiers or Charge-Coupled Devices (CCD).

• Single Event Effects (SEE): Single Event Effects (SEE) are functional faults on devices and circuit nodes
due to the sudden deposition of ionization energy from a single particle, in sensitive regions. Depend-
ing on specific conditions, these faults can be either destructive causing short-circuits and burnouts,
or non-destructive in the case of functional soft-errors caused by bit upsets and latent voltage swings.

Single Event Effectss are one of the most common radiation effects together with the Total Ionizing Dose
and have been extensively studied in the academia and industry. Given their importance, a more detailed
examination will be presented in the following Section.

2.4. Single Event Effects (SEE) on CMOS devices
A SEE can be seen as sudden charge deposition on a sensitive node of a device or circuit by an ionizing par-
ticle, leading to charge accumulation at the output of a circuit, or where the device connects to. Single Event
Effects (SEE) is actually a name used in academia or industry to describe a family of effects comprising of
both destructive and non-destructive errors.

An incident ion interacts with the medium’s electrons, producing secondary electrons (or δ rays) and there-
fore electron-hole pairs [24]. This is the same mechanism first introduced in Section 2.2. The radial distribu-
tion of charge in the device’s matter, is known as the ion track seen in Figure 2.2a. On the other hand, protons
do not induce an ion track, but instead interact with matter via elastic or inelastic nuclear interactions with
the target device’s atoms [24], creating recoil atoms as illustrated in Figure 2.2b. This mechanism is also simi-
lar to the general mechanism described in Section 2.2, with the difference being that no permanent damage is
induced on the lattice. In order to model the energy deposited in case of a SEE, the concept of Linear Energy
Transfer (LET) was conceived, which measures the energy deposited per unit of length into the target device.

(a) Ionization track of an ion hitting the sensitive region of a device. (b) Inelastic reaction of an incident proton to a silicon atom.

Figure 2.2: SEE mechanisms of interaction with silicon devices from [24].



2.4. Single Event Effects (SEE) on CMOS devices 7

LET is expressed as follows in Equation (2.1), according to [24]:

LET (x) = 1

ρ

dE

d x
(x) (

MeV · cm2

mg
) (2.1)

where ρ is the density of target material, E is the particle energy in MeV and x is the particle range in cm.
The concept of Linear Energy Transfer can be used in order to calculate the deposited energy into a device
or volume of interest and subsequently determine whether an SEE was induced or not. Since the LET of
protons is rather low [24], the energy deposition of secondary created particles is used instead to determine
the type and criticality of SEE. The different SEE effects are presented in the following Sections, starting from
non-destructive effects in Sections 2.4.1 to 2.4.3, followed by destructive effects in Sections 2.4.4 and 2.4.5.

2.4.1. Single Event Upset (SEU)
A Single Event Upset (SEU) is the change of stored state in a memory element inside an IC, due to the sudden
deposition of energy from a highly charged particle. The change of state is the result of charge deposition at a
sensitive node of a microelectronic circuit, either of a memory cell or register, which subsequently influences
the stored value causing a bit-flip or soft-error. These effects are non-destructive in nature, however they can
significantly influence the behavior of logic circuits leading to functional failures, system hangs or crashes.
SEUs have been one of the largest contributors to device failure both at ground level [23], but also in space
[26].

Research in academia and industry has shown that SEUs are observable in areas of a chip that contain a lot of
memory elements including, caches, Register Files, Finite State Machines (FSMs), as well as external systems
such as Dynamic Random Access Memories (DRAMs). The ongoing research has shown that there is a di-
rect relationship between the amount of charge required to represent information, with the susceptibility to
SEUs. More specifically, smaller devices that use lower charge to store information due to technology scaling
are far more likely to sustain a SEU [23]. A visualisation of the aforementioned relationship is presented in
Figure 2.3a for both Bulk-CMOS and Silicon On Insulator (SOI) processes.

2.4.2. Single Event Transient (SET)
A Single Event Transient (SET) is a temporal voltage or current transient that is generated when charge is de-
posited from a heavy ion or proton particle passing through a depletion region [22]. The transient is not an
error by itself, however depending on the deposited energy and circuit topology, it can propagate through
circuit logic and manifest as a SEU on sequential logic or memory arrays [12]. If a SET occurs in the cross-
coupled inverter node of a 6T SRAM cell, then depending on the electrical characteristics a SEU could occur.
On the other side, if a transient occurs in the combinational logic of a circuit or system, with sufficient am-
plitude to propagate through the logic and become registered in a subsequent memory element, then the
transient may also manifest as a SEU [12]. This of course requires that the transient pulse coincides with a
clock edge, otherwise the pulse would not be registered as an upset. As a result, the device susceptibility to
SETs depends on the clock frequency and in fact demonstrates a linear behavior [12, 22, 23]. An example of a
transient pulse and its relationship with LET is visible in Figure 2.3b.

2.4.3. Single Event Functional Interrupt (SEFI)
A Single Event Functional Interrupt (SEFI) is a non-destructive fault that is observable when a SEU occurs at
the control circuitry of a device or subsystem [23]. A SEFI results in the loss of the normal operation, often
requiring a reset, power cycle or reconfiguration in order to recover proper functionality. Some typical exam-
ples include processor hangs, crashes, or engagement of different operational modes without a command.
In the case of Field-Programmable Gate Array (FPGA) chips, the most common errors involve the loss of the
device’s configuration which requires partial or full reprogramming of the chip [23]. SEFIs are also possible
in memory elements such as SRAMs or DRAMs, which contain a lot of control circuitry for address decoding
and data multiplexing. A potential strike could cause a series of errors, either fetching data from the wrong
address, corrupting the data, or even fetching data without a request. The aforementioned would require a
power cycle for full recovery.
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(a) SEU LET threshold with respect to device scaling, for SRAMs in CMOS and
SOI processes [23]. (b) Simulated transient pulses at the junction of a struck NMOS, in a 10-node

inverter chain [22]

Figure 2.3: SEU and SET relationship with device and LET scaling.

2.4.4. Single Event Latch-up (SEL)
A Single Event Latch-up (SEL) is a destructive Single Event Effect that occurs when a particle strike triggers
the parasitic structure inside a CMOS circuit, creating a direct path from the power supply lines to the ground.
The parasitic structure visible in Figure 2.4a, is energized when a highly charged particle forward-biases the
PNP transistor, which in turn drives the base of the neighbouring NPN transistor formed by the N-well of the
PMOS, the p-substrate, the P-well of the NMOS and the n-doped source of the NMOS. This creates a positive
feedback loop which increases the current flow until the devices burns out [8]. In that case, power-cycling
would be the only option to save the device or IC from a short-circuit. In general, it is difficult to predict SELs,
since their occurrence and severity are dependent not only on the radiation environment, but also on the
topology of the circuit and more specifically on the distribution of power supply lines and ground nodes in
the layout [60].

Researchers have observed that SELs do not necessarily induce destructive damage to the target object, but
can trigger a series of latent faults where the device can continue to operate as normal with little to no indica-
tion that a SEE ever occurred [10, 60]. More specifically, SEL events can trigger sudden increases in current in
the interconnects and metalization layers of an IC, which in turn translate into temperature increases of more
than 130 ◦C [60]. The metal of the interconnect melts, stressing the surrounding insulating materials due to
the mismatching thermal expansion [10]. Eventually, this leads to the fracture of the insulating material with
the erupting molten metal forming spheres in the immediate vicinity of the fracture. This effect is visible in
Figure 2.4b. In certain cases local cooling effects could lead to the crystallization of the erupted metal, form-
ing bridges with the remaining parts of the interconnect. The device would still be able to operate, but with
increased interconnect resistance due to the reduction of its cross-section by 1 x to 2 x orders of magnitude
[10, 60]. Each subsequent SEL increases the device’s susceptibility to latch-ups, leading to its catastrophic
failure.

2.4.5. Single Event Burnout (SEB)& Single Event Gate Rupture (SEGR)
A Single Event Burnout (SEB) is a destructive event that is usually observed in Double-diffused Metal-Oxide-
Semiconductor (DMOS) transistors used in the power electronics systems of space missions [47]. The effect
is similar to a SEL and occurs when a highly charged particle strikes the sensitive region of a parasitic BJT,
inherent to the design of every DMOS. More specifically, the parasitic transistor is formed, from the n+ and
n-epi regions, as well as the source n+ region of the device acting as the collector and emitter terminals re-
spectively. The p-substrate region acts as the base terminal, which if energized by a particle strike as seen in
Figure 2.5a, it forward biases the device and turns it ON [47]. The ion track that penetrates the device, creates
electron-hole pairs generating a plasma filament that acts as a current-source.The latter drives the BJT, which
when turned ON, regeneratively increases the current until the MOSFET fails.

A similar phenomenon is known as Single Event Gate Rupture (SEGR), which also occurs in MOSFET tran-
sistors used for power applications. As visible in Figure 2.5b, a particle strike creates an ionizing track in the
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(a) Parasitic bipolar transistors in a CMOS circuit, as illustrated in [8].
(b) SEM photo of a National ADC10321 device after SEL testing. The erupted
Aluminum spheres are visible right next to the fractured and lifted insulator
material [10].

Figure 2.4: Examples of SEL damage and underlying mechanism.

silicon substrate. Upon applying a Vd s > 0, the electron-hole pairs are separated, with the holes moving up-
wards towards the silicon-oxide interface and the electrons moving downwards to the drain electrode [62, 81].
The presence of holes in the Si /SiO2 vicinity, induces a corresponding charge in the oxide therefore creating
an electric field. Depending on the manufacturing parameters, if the field is increased past a certain value,
then the oxide can break causing a Single Event Gate Rupture [62, 81].

(a) A particle strike generating electron-hole pairs, triggering the parasitic BJT
device [47].

(b) Ionizing track in a DMOS device, triggering the upward and downward
movement of holes and electrons [62].

Figure 2.5: The underlying mechanisms of SEB and SEGR effects.

2.5. Random Error Detection & Mitigation
This Section focuses on the most prominent methods developed by academia and the industry in order to
detect and mitigate random errors in computer systems. This covers a wide variety of methods ranging from
the device and circuit level, all the way to the software and system level. Given the breadth and depth of the
field, it is not possible to perform an exhaustive search of all methods in the scope of a thesis project. For that
reason, a careful selection was made of the most successful and prominent methods, which were grouped
into three broad categories and will be presented below.

2.5.1. Device Level
The first category of mitigation methods consists of technologies aimed at the lowest level of the computing
abstraction and more specifically at the circuit level. Some methods even extent to the technology or process
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node, in an effort to further reduce the number of errors and their undesirable effects.

One of the most successful methods in mitigating radiation-induced errors is the Silicon On Insulator (SOI)
process. In a SOI process, transistors are built on top of a thin silicon layer that has been deposited on top of
a buried SiO2 layer that acts as insulation [79]. The source and drain regions extent outwards of the afore-
mentioned silicon layer, which is usually hundreds of nanometers thick [81]. The main advantages of the SOI
process stem from the enhancements in power consumption and performance. More specifically, the buried
insulating layer offers reduced parasitic capacitance with the substrate, reducing power draw and enhanc-
ing the ON-OFF characteristics of the devices. However, the most important characteristic that makes SOI
the main radiation-hardening technique for more than 20 years is the increased tolerance to SELs [81]. The
buried SiO2 completely isolates the N-well and P-well regions, hence no parasitic BJT structure can exist. In
addition, TID effects are also mitigated [20], although the additional trapped charges in the buried oxides
interact in complex ways which require further analysis [81]. A cross section of a real SOI transistor is visible
in Figure 2.6a.

Other prominent methods involve the design of radiation-hardened libraries including cells with increased
tolerances to sudden deposits of energy. These typically include additional elements, as in the case of SRAM
cells which may include up to sixteen transistors instead of the standard six. A very successful example of a
radiation-hardened cell is the Dual Interlocked storage Cell (DICE) [23], which has been originally presented
in [15], but since then has become very popular amongst the community. The Latch implements dual node
feedback control using pairs of cross-coupled inverters that store data in complementary pairs of nodes,
namely in X0,X1,X2 and X3 as seen in Figure 2.6b. The inverters are actually implemented with either PMOS
or NMOS transistors, connected in two opposite loops. The outer clock-wise loop consists of only the PMOS
devices, whereas the inner counter clock-wise loop consists of only NMOS structures [15].

(a) Cross section of a transistor implemented in a SOI process. The main layers
are visible starting from the silicon substrate, SiO2, source/drain regions, gate
oxide and metal [25].

(b) Principle of operation of a DICE cell, using abstracted inverter symbols
[15].

Figure 2.6: Two prominent examples of successful device-level error mitigation.

2.5.2. Microarchitecture Level
This section elaborates on techniques and methods widely used in processors from automotive to space ap-
plications, in order to detect and mitigate random faults.

One of the most popular mechanisms that has been widely used in the industry, is the Watchdog Timer [50].
It is a hardware timer that decrements its value every clock cycle and triggers a system reset upon reaching
the value of zero [57]. The principle of operation is the following: under normal conditions, a software pro-
gram will periodically refresh the value stored in the counter, with a process called "kicking" or "feeding" the
Watchdog [57], preventing the computer system from resetting. In case there is a software or hardware fault,
the computer program would crash and the value of the counter would eventually decrement to zero, thus
triggering a reset. Other successful mitigation methods include the use of Error Detection And Correction
(EDAC) in the form of parity bits, Cyclic Redundancy Checks (CRC) or Error Correction Codes (ECC) with the
most prominent one being the Hamming code [50, 96]. Even though parity and CRC employ only detection
schemes and do not correct erroneous data, as in the case of ECC, they have been widely used in memory
systems and communication channels in order to detect and re-transmit correct data. Their principle of op-
eration is based on the assumption that it is extremely unlikely for corruption to occur on the same data
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sequence twice.

A very prominent mitigation technique is called redundancy, which together with the Watchdog Timer and
EDAC methods, form a set of standard mitigation strategies used by most modern spacecraft, regardless of
their mass and cost [50, 83]. Redundancy relies on the usage of multiple identical hardware modules in order
to execute the same operation in parallel, incorporating voting logic at the outputs to detect any inconsis-
tencies or faults in results caused by SEEs. The most common form of redundancy is the Triple Modular
Redundancy (TMR), where the hardware modules of a whole logic chain are triplicated, using voting logic
that selects the result that two or more modules agree on [50, 83]. Another concept of redundancy involves
the triplication of commands executed in one processor, instead of triplicating the hardware, called Time
Redundancy [20]. The same command would be executed on the processor three times and the results or
checksums would be stored in main memory. A voting mechanism would detect the correct result by select-
ing the outputs that match. Even though this method offers less system complexity and decreased power
draw compared to hardware triplication, it is not as effective in protecting against SEFIs, since a struck bit in
the control logic of the ADD function for example, would result most likely in all three copies of the instruc-
tion being affected [20].

The concept of hardware and time redundancy can be expanded on the microprocessor level to form fault
tolerant computer systems, which perform error detection and correction [18, 46]. Common implementa-
tions of such systems involve Dual-Core Lock-Step where two identical CPUs are implemented on the same
chip having their own local caches and sharing a common pool of memory. Some implementations enable
the execution of the same command with an offset of a few cycles to further increase the confidence in the
produced results, since even if a SEU or SET would occur at the same time in both CPUs, it would affect in-
stances of different instructions. Building on the same principle, ARM published a work which used three
identical copies of the same ARM Cortex-R5 CPU, with separate clock trees [46]. An error in one of the three
processors could be detected and corrected by the matching outputs of the remaining two cores. In case all
three outputs differ, then there is no guarantee which is the correct result. However such a scenario has very
low probability of occurring in a real system.

2.5.3. System Level

Error mitigation on the system level involves the use of one or more of the aforementioned methods, imple-
mented on the more abstract system level. For example, error detection and correction can apply within the
context of a single IC or memory cell, as well as in the context of peripheral systems and buses, correcting
almost all SEUs. Many computing systems used in space missions or commercial applications, require the
communication between chips in the same or different PCBs, sometimes across different systems. As a result,
standards such as the MIL-STD-1773 are used in the aviation, military or space industry in order to imple-
ment fault tolerance at the System Level on buses and peripherals [50]. Other methods such as redundancy,
are implemented on the system level with the duplication or triplication of the computer systems required for
any particular task. For example, the Curiosity rover [38, 99] uses two RAD750 processors, with one serving
as the main computer and the other one as a backup [82]. The New Horizons mission [70, 100] also uses two
Mongoose-V radiation-hardened processors, with two copies of these systems for redundancy [53].

Other techniques, such as Watchdog Timers and Heartbeat messages can be used on different levels of the
computing abstraction to enhance the detection and mitigation capabilities of a given system. For exam-
ple, Watchdog Timers can substitute for heartbeat messages if the message is sent across devices or system
boundaries. If the message is not received within a period of time, then the sender device or system could be
considered non-functional [50]. On the other hand Heartbeat messages enhance the status-reporting capa-
bility of Watchdog Timers but with the addition of telemetry messages. Large deviations from normal values
could indicate a potential upcoming fault and proper action could be taken sooner than later [50]. Heartbeat
messages can be exchanged using simple low-level protocols such as I2C or SPI, which are implemented by
almost all embedded processors. The messages are still prone to SEUs or other random noise sources, but
could be accompanied with an EDAC scheme to boost reliability.
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2.6. Mitigation in popular COTS processors
In the context of the thesis, six sample processors were used as a reference point, to research the most promi-
nent methods implemented by the industry in order to mitigate random errors. The sample was taken from
both ends of the space computing spectrum, namely the traditional space industry and the emerging CubeSat
community. This was done in order to more accurately represent the whole range of available space embed-
ded processors.Three successful COTS microprocessors were used as a reference point for CubeSat designs,
together with three prominent radiation-hardened space processors used in many missions, from deep space
to planet exploration. The CubeSat microcontrollers were selected upon a NASA study, that was performed
for the NASA Electronic Parts and Packaging program (NEPP) [40]. The radiation-hardened counterparts
were selected based on their popularity and mission history and include some of the most well known de-
signs used by NASA and ESA.

The three embedded microcontrollers used for CubeSat missions were chosen based on the aforementioned
study. These include the Texas Instruments MSP430 series, the Microchip Technologies PIC family of micro-
controllers and the SAM9G20 ARM-based line, which was previously offered by the Atmel Corporation. The
aforementioned devices were designed and fabricated for usage in embedded applications and can imple-
ment one or more mitigation methods as presented in Section 2.5, without using any radiation-hardened
components. On the other side, three successful and proven radiation-hardened CPUs were selected from
the traditional space industry. The BAE Systems RAD750, introduced in 2000 [56], has a long flight heritage
including notable missions such as the Deep Impact spacecraft [19, 51], the Kepler Space Telescope [19, 65],
the Curiosity rover [77, 78] and the upcoming Mars 2020 [67, 68]. Furthermore, the Cobham Gaisler GR712RC
is a successful implementation of the well-known ESA developed LEON3-FT core, that is scheduled to fly on
the JUICE [1] mission, as well as on several Deep Space CubeSat missions [43]. It builds upon a long flight
heritage of LEON processors [30], with notable missions such as the ExoMars rover [58]. Finally, the Synopsys
Mongoose-V is a popular albeit older radiation-hardened microprocessor used recently in the New Horizons
Pluto probe [52]. The technical specifications of all selected CPUs are presented in Tables A.1 and A.2.

After careful examination of the devices’ datasheets and a classification of their radiation performance us-
ing appropriate academic sources [35, 40, 66], it was concluded that there is a big gap between the radiation
performance of COTS processors and their radiation-hardened counterparts as expected, but with a lot of
room for improvement. More specifically, almost all embedded CPUs selected in this study featured a Watch-
dog Timer and some form of EDAC scheme in the internal memories and peripheral buses. Although these
mechanisms can be sufficient for terrestrial embedded applications, it is clear that the same can not be said
for space. In general COTS devices performed poorly as it is evident from the results presented in [40], with
the exception of AT91SAM9G20 which performed very well in terms of latch-up performance. On the other
hand, the radiation-hardened CPUs exhibit radiation tolerance or even immunity in SEUs and SELs, given
that they implement one or more of the device-level mechanisms presented in Section 2.5.1. A detailed de-
scription of the radiation performance numbers for the selected processor models is visible in Table A.3.

From the aforementioned, certain results are very promising and typical of what would be anticipated from
radiation-tolerant systems, as in the case of the AT91SAM9G20 device. It is therefore clear that by identify-
ing the gaps in current well-established mitigation techniques and by revisiting some of their strengths or
weaknesses, several new opportunities and possibilities would become available for increasing the radiation
performance of COTS parts.

2.7. Novel technologies and Reconfigurable Computing
Given the rise of the CubeSat community, there has been an ever increasing need to reduce costs and increase
the radiation performance of COTS parts. There has been a series of efforts from companies such as Space
Micro which leverages the use of hardware and time redundancy as presented in Section 2.5.2, to come up
with novel ideas such as the Time-Triple Modular Redundancy (TTMR) [20]. Other companies such as Vor-
ago Technologies and Ramon.space focus on the device level, by offering radiation tolerant libraries such as
HARDSIL [8], or by offering radiation-by-design libraries of custom cells as in the case of RadSafe [55].

Other academic or industrial researchers have shifted their focus towards re-configurable computing, in or-
der to produce efficient open-source solutions for the emerging CubeSat sector. As a result, they implement a
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lot of the techniques presented in Section 2.5 such as TMR or Time Redundancy, in COTS FPGA chips. Some
researchers focus on the development and testing of hybrid techniques as presented in [61, 63], while others
have expanded into software redundancy, by exploiting the multi-threading processing potential of modern
CPUs and providing software Lock-Step features in a coarse-grain granularity [34]. Furthermore, the advent
of re-configurable devices with embedded microprocessors implementing well-established ISAs, such as the
Zynq-7000 SoC [102], has the potential to change the way space embedded systems are designed in the near
future. By implementing custom hardware EDAC systems in the Programmable Logic (PL) of FPGA chips, as
well as taking advantage of the performance of a dedicated CPU, modern system designers have the flexi-
bility to experiment with new heterogeneous computer architectures and potentially provide solutions with
improved radiation tolerance.

2.8. Conclusions
The research presented above aimed to provide a holistic view on the current status of error detection and
mitigation techniques in space embedded systems. From the analysis, it is obvious that mitigating radiation-
induced errors is a problem with multiple interrelated aspects. Section 2.8.1 will elaborate on the main con-
clusions related to the radiation effects on transistors and IC circuits, whereas Section 2.8.2 will focus on
current mitigation techniques and their applicability to COTS or radiation-hardened processors.

2.8.1. Radiation effects

Together with the Total Ionizing Dose, Single Event Effects form the most frequent and well-known radiation-
induced faults, which have been studied by many scientists and spacecraft designers. In essence, as device
size is shrinking, so does their susceptibility to TID, due to the thinner oxide layers associated with reduced
sizes. Although, modern CMOS technologies are inherently more resistant to TIDs, the same cannot be said
for the SEEs. As presented in Sections 2.4.1 and 2.4.2, shrinking device sizes can have a negative effect on the
device’s radiation tolerance. As the amount of charge needed to represent information is getting smaller, the
susceptibility to SEUs or SETs being manifested as upsets is increasing. In addition, although SELs are mostly
dependent on device topology, the smaller cross-sections involved with the reduction in size will definitely
have an adverse effect on lath-up performance of future processors and ICs.

A NASA study in 1996 observed that the majority of spacecraft anomalies were attributed to radiation and
plasma [11]. From these anomalies, up to 80 % were attributed to SEUs, whereas only 8 % were attributed to
TID effects and 6 % to SELs [11]. Even though in the context of that study, the term SEUs includes SETs as
well, it is quite evident that non-destructive transient SEEs are the biggest contributor of radiation-induced
space anomalies. The results of the aforementioned study are visible in Figure 2.7.

(a) Breakdown of spacecraft anomalies, by their physical cause. (b) Distribution of radiation-induced anomalies.

Figure 2.7: Breakdown of spacecraft anomalies from NASA’s study [11], as presented in [26].

The advent of CubeSats using COTS, is only going to make the aforementioned percentage larger. Shrinking
device sizes with superior performance to the corresponding radiation-hardened parts, make commercial
electronics the Achilles’s heel of small-volume, low-mass spacecrafts.
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2.8.2. Current mitigation techniques
Almost all of the methods presented in Section 2.5 can be implemented during the design and manufacturing
process, with the exception of Time Redundancy and Heartbeat messages which are mostly software related.
Therefore, there is some room of flexibility to adapt the behavior of the aforementioned mitigation methods
during the lifetime of a mission, up to certain extent. Also, higher level EDAC protocols used could also be
adapted or enhanced, assuming that there are no additional hardware requirements. From the previous Sec-
tions, it is evident that the vast majority of mitigation mechanisms are implemented in hardware, therefore
requiring additional design effort and costs. Furthermore, most mechanisms favor radiation tolerance over
performance or power. As a result, engineers and system designers have to constantly balance the aforemen-
tioned interrelated factors in order to produce designs that best meet the mission’s requirements.

Most of the current COTS CPUs implement one or more error mitigation techniques, however their radiation
performance varies a lot. On the contrary, radiation-hardened devices employ many error detection and
mitigation strategies across all abstraction levels, at the expense of increased lead times and overall cost.
Recently, there has been an ever growing need to bridge the gap between the performance oriented low-
cost COTS components and their reliable radiation-hardened counterparts. The latter are not able to bridge
this gap, since their superb radiation performance is unfortunately disproportional to their computational
performance, power and cost. Several novel solutions have been proposed by the academia and industry in
an effort to produce cost-effective and performance oriented solutions, however most of them are still in the
early stages of research.



3
Problem Statement

This Chapter focuses on the definition of the thesis objective and topic, by taking into account the results and
conclusions presented in Chapter 2. In addition, the main objective will be further divided into sub-goals
which are necessary in order to break down the main problem into sizeable and manageable parts. These
parts can be latter scheduled to be performed with the correct order or in parallel, making efficient use of the
time and resources available. Finally, several restrictions known prior to the beginning of the project will be
presented in Section 3.3 providing an overview of the depth and breadth of activities performed during this
work.

3.1. Problem Statement
From the academic research performed in Chapter 2, it is evident that only FPGA and software solutions are
able to bridge the gap between COTS and radiation-hardened components, without increasing the cost or re-
ducing performance. However, a lot of these methods are the outcome of ongoing academic research, which
evolves in dynamic ways. Validating and verifying that the novel hardware/software techniques produce the
same results under all circumstances is not a trivial task. In addition, some of the methods presented in Sec-
tions 2.5 and 2.7 may be compatible with only one CPU model or design, requiring heavy modifications and
re-validation in order to be ported to another design. Other available options either apply externally on fixed
COTS devices, or they are applicable during the design and manufacturing phase of few processors with in-
creased prices. Therefore such an approach is not financially viable. Making radiation-tolerant processors
available to mass markets, assuming there is a demand for that, would require methods and techniques that
are scalable and flexible across multiple CPU models.

3.2. Purpose Statement
Given the concluding remarks of Chapter 2, as well as the ever increasing use of COTS in the space sector,
it was decided to explore further in the thesis, ways to improve the error mitigation performance of modern
COTS systems. The project would be performed in co-operation with ARM, as part of the STL team respon-
sible for developing STL tests for a variety of processors. STLs are software tests written in assembly in order
to stress specific parts of the CPU and identify potential random errors [4]. They have been proposed for
usage in safety critical embedded systems, however they could be potentially used in space applications for
detecting radiation-induced errors.

The objective of the thesis project was formulated as the following:

"To research and prototype an efficient and cost-effective method to detect and mitigate random faults in
Commercial-Off-The-Shelf ARM microprocessors, with increased compatibility across processor

models."

More specifically, the main objective can be further divided in the following sub-objectives:

• Familiarize with the ARM architecture and the current infrastructure for Software Test Libraries (STL)
development.

• Select a reference CPU model and a target submodule as a proof of concept. Start designing tests with
portability in mind.

15
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• Tune performance, to match coverage expectations and iterate as necessary.

• Port all tests to a different processor, within the same architecture extension and verify desired be-
haviour and coverage.

• Develop a verification flow to prove that each STL routine achieves expected coverage across multiple
hardware configurations, without corrupting the system’s initial state.

• Provide a unified tool-flow, enabling faster deployment and turnaround time.

Given the wide range of activities needed to satisfy all sub-objectives, it is necessary that one or more tasks
are done in parallel. Therefore, even though the list of objectives offers an intuitive methodology with respect
to the steps that need to be taken, there have been some alterations in the order and depth, according to
intermediate results and scheduling.

3.3. Restrictions
Due to the nature of the problem, as described in Section 3.1 and Chapter 2, as well as the objectives of the
thesis, there are a number of restrictions that have been identified during the course of the project.

More specifically, STL development is done in parallel with the design of the target processor. This usually
takes several years to complete, before any physical devices are available for testing. Therefore, the work done
for this project will capture the development progress of the first 8 months, where the majority of the design
and verification milestones are achieved. As a result, it is not possible to test the effectiveness of the tests by
performing a physical radiation test, since this would greatly extend over the expected duration of a typical
thesis project. Instead, state-off-the-art hardware simulation and fault injection tools will be used in order to
introduce random faults on gate-level representations of the reference CPU. These will provide results with
enough accuracy to verify whether the tests work and whether the objectives of the project have been met.

In order to realistically simulate the environment that most COTS-based missions would encounter, state-of-
the-art space radiation models will be used. These models require years of development and large pools of
scientific and mission data in order to be able to accurately predict the radiation environment that a given
space mission would encounter. The results of these simulations will be used to further enhance the fault
modeling and injection rate used to test the developed prototype flow. This will help reduce the uncertainty
gap between the real case and the simulation environment, providing meaningful results.

In general, error injection and simulation is complicated and requires several years and iterations in order
to develop tools that have been certified in terms of their accuracy and reproducibility of results. This is es-
pecially true for radiation-induced transient faults, whose behaviour is quite complex and their simulation
is still the subject of ongoing scientific research. Therefore, even though special care will be taken in order
to simulate the aforementioned errors in a certified environment, some deviations and inaccuracies will in-
evitably be present. To that extent, the absolute numbers in results will not be that relevant, but rather the
coverage gains with respect to the baseline.
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Methodology

This Chapter focuses on the methodology followed in order to satisfy the thesis objectives as presented in
Section 3.2. More specifically, Section 4.1 will elaborate on the STL building concepts and overall architecture,
while Section 4.2 will present the reference platform of choice that was used as a test-bed for the current
project. In addition, Section 4.3 will present the main design choices and engineering decisions made, while
Section 4.4 will focus on the verification efforts aimed at ensuring that the developed software prototypes
work under a wide range of system initial parameters.

4.1. Overview: STL architecture
STLs are efficient assembly test routines designed to stress one or more subsystems inside a modern CPU.
They play a pivotal role in enhancing functional safety efforts, so that the target systems can achieve ISO
26262 ASIL D level of safety [4]. They can be executed during startup or run periodically with the use of a
scheduler software or RTOS, depending on the selected target application. A C-based Application Program-
ming Interface (API) gives the prospective system designers and integrators an easy-to-use and flexible inter-
face to combine multiple STL routines and form larger test suites and programs suited to their needs. STLs
are different from a Built-In Self-Test (BIST) in the sense that they are executed periodically, instead of only
at startup and do not require any special test or lab equipment in order to be executed. In addition, STLs do
not require the CPU to be taken offline while testing, which might lead to reduction in availability. Finally,
the context of the processor is not changed, making STLs the preferred method of testing where limited loss
of CPU availability is acceptable [54].

The test libraries have been used in the industry to detect stuck-at-faults, which are particularly important
in embedded safety applications for the automotive, aerospace and industrial sector. Given their operating
principle, there is a possibility to extend them in order to cover radiation faults that have caused permanent
damage on the chip, such as the Total Ionizing Dose (TID) and Displacement Damage (DD) effects presented
in Section 2.3. Given the fact that STLs are software routines executed at predetermined intervals, it is very
challenging or close to impossible to detect latent faults occurring with a higher frequency than the clock
frequency, or outside the execution window of the STLs. Hence, fault coverage metrics on SET faults should
be expected to be minimal, making the test routines an auxiliary safety measure for these kinds of faults.

A general overview of the STL architecture is visible in Figure 4.1a. Each STL routine is partitioned into one
or more blocks, containing one or more parts. In essence, every part corresponds to code targeting a specific
submodule or feature within a functional unit of the processor. They are designed in a fully self-contained
way and have a bounded execution time of a few thousand clock cycles. As a result, they are determinis-
tic in nature allowing their integration into larger blocks, which in turn are interruptible and relocatable in
memory. The prospective user can then schedule one or more blocks of preference, depending on the appli-
cation requirements of the target computing system. An example of periodic STL scheduling can be seen in
Figure 4.1b, where execution is interleaved between the main process and a selected STL part, given a user
defined period. In this scheduling scheme, a fixed number of parts is executed per system call and depending
on the duration of the part, there might be periods of idle time.

17



18 4. Methodology

(a) STL software architecture and application interfaces [54].

(b) STL execution of a given part, along with the user’s application. Context switches are labelled as C/S. Adapted from [54].

Figure 4.1: The STL framework, which acts as the starting point of this work.

4.2. Reference platform

The aforementioned framework was used as the starting point for this thesis, together with the reference
processor. For that, the modern Cortex-M55 was selected, which is a new design implementing the latest
ARMv8-M architecture and targeting the next generation of embedded systems, while offering endpoint AI
capabilities [5]. This CPU was selected not only for its potential impact on embedded applications, but also
for the fact that it is the first M-Class implementing the latest instruction set. This opens up opportunities for
reusing the STL routines developed for the project, to future M-class processors, hence satisfying the porta-
bility aspects of this work. An overview of the selected platform is visible in Figure 4.2a.

The CPU contains many functional modules, accompanying the main core. These are responsible for the
communication with memory, peripherals, or used for debugging purposes and system-level control. In ad-
dition, the are many more functional units that have been omitted from the Figure, for the sake of simplicity.
STLs can be developed on a per-module basis, starting form the bigger modules and targeting different func-
tionalities. This will help in acquiring higher functional coverage gains, without having to branch out into
other modules. STLs have been developed in the past for the main functional units and can therefore be
ported to newer designs to some extent, assuming of course that they are modified accordingly. On the other
hand, the memory subsystem and more specifically the interfacing units towards the outside of the CPU have
been explored less, offering many challenges and rewards. These units play a pivotal role in guaranteeing the
correct functionality of any core, since corrupted data arriving in the main execution pipeline will almost
certainly generate faults or system hangs.
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(a) Block diagram of the Cortex-M55 CPU. Module sizes are not representative of chip area [2].

(b) MIU main components and interfacing modules. The major MIU submodules in terms of size and importance are visible with solid lines.

Figure 4.2: Overview of the reference platform used for STL development during the thesis.

4.2.1. Subsystem selection
Most modern CPUs have an ever growing area of the chip dedicated to system caches, embedded graphics or
AI accelerators. Therefore, targeting part of the internal memory system could yield a good trade-off between
coverage and time. Given the aforementioned, the Main Interface Unit (MIU) was selected as the target mod-
ule for STL development, since it is an integral part of the memory subsystem of every Cortex-M processor
and has not been exercised yet. It also provides the opportunity to develop processor-agnostic tests, which
could be later on ported to other designs. The MIU is also a challenging module to work with, due to the
following reasons: it is located far enough from the main core, such that it can only be implicitly targeted
with regular load/store assembly commands, while at the same time it exhibits the typical non-deterministic
behavior associated with every memory subsystem.

The MIU provides a connection to the outside world, by interfacing with the Network-on-Chip (NoC) us-
ing the Advanced eXtensible Interface (AXI), as seen in Figure 4.2b. The latter is a flexible interface capable
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of parallel high-performance communication on chip [7]. The MIU also routes data to/from neighbouring
modules such as the Instruction Cache (I-cache), Data Cache (D-cache) and the main core. Data and in-
structions arriving via the AXI channel are temporarily stored and routed to one or more appropriately-sized
queues. Consequently the Load Unit parses through the pending requests in a FIFO manner, delivering the
requested data to the correct consumer module (I-cache, D-cache or core). Data moving out of the core, in
the form of store commands, follow a different path towards one or more store queues. A control unit, sim-
ilar to the one in the read path, parses through the pending store requests and delivers them to the correct
recipient. Given the burst nature of the store requests, data are grouped and merged if possible, before being
committed again to their destination. The MIU contains the following submodules:

• AXI Read/Write Registers: These registers receive and send data over the AXI Interface, using an AXI Mas-
ter device. The aforementioned device uses five independent transaction channels implemented with
FIFO queues; two for Read operations (AR for address, R for data readout) and three for Write opera-
tions (AW for address writes, W for writing data and B for write acknowledgments) [7].

• Load Unit & queues: The load queues store data in multiples of the word size (32-bit), and use a FIFO
scheme in order to deliver data to the controller unit. In turn, this unit arbitrates between multiple
pending requests and delivers data and instructions to the appropriate consumer module. In case of
data requests, data are always forwarded to the D-cache, meaning that future requests of the same
addresses will be directly served from the cache. Finally, the whole load control system can accept and
merge store data from the Store Unit, whenever there are pending load requests to the same addresses,
or whenever there are pending cacheable stores.

• Hazarding logic: This module is responsible for detecting hazards between successive data requests,
such as a Read-After-Write hazard (RAW), or a Read-After-Read hazard (RAR) to the same address as the
one currently in progress. It is also able to detect hazards associated with cache evictions, since data
words may not allocate in the cache until the data they are replacing have been evicted. The module
has multiple connections with almost all of the aforementioned modules, therefore it has been omitted
from Figure 4.2b for the sake of simplicity.

A regular cacheable load command, results in data being delivered from the AXI Read Register to the load
queues. There, depending on the subsequent commands and program flow, data are delivered either to the
core, or they are allocated in the D-cache. On the contrary, a regular cacheable store command would follow
the path from the core towards the store queues, which collect all store requests. Subsequently, the stores are
merged and forwarded to the load path again, in order to be allocated in the cache. Non-cacheable stores
or evicted cache data can be delivered directly to the AXI Write Register, in order to be committed to main
memory.

In order to effectively stress the MIU, the STL parts will need to be developed in such a way, so that they target
one or more of the aforementioned submodules in a meaningful way. In addition, this also helps in breaking
the problem of targeting multiple interrelated modules, into manageable parts with defined interfaces and
functionality.

4.3. STL Design
This Section elaborates on the design of the STLs, targeting specific submodules inside the MIU. Section 4.3.1
presents the design of the test focusing on the AXI interface, while Sections 4.3.2 and 4.3.3 focus on the load
and store paths respectively. Finally Section 4.3.4 elaborates on the hazard detection logic which plays a
pivotal role in detecting potential corner-case or harmful scenarios. Each test has been designed to be self
contained, using dedicated address ranges, so that they can be used in different scheduling scenarios without
the need to run any initialization functions.

4.3.1. AXI Interface part
The first part of the STL design, focuses on the AXI interface. The test consists of three main steps. During
the first step, the test generates a series of data, grouped in blocks which are in turn mapped to pre-allocated
address ranges in main memory. These blocks contain series of decrementing complementary data, in order
to increase the likelihood of detecting a fault in the AXI bus. This is achieved since complementary values
increase the toggling of address, data and command lines on the bus, hence offering additional coverage on
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the AXI module. The aforementioned blocks are committed to memory, during the second step, using the
appropriate system control registers as described in the ARMv8-M architecture manual [6].

After the data are successfully written to memory, a series of load commands, reads back the blocks in an
interleaving manner. This is the third and final part of the STL, which reads all data values and checks them
for consistency. The requests are written in such a way, so that all load queues in Figure 4.2b are equally
exercised. Incoming data are checked against their pre-calculated values two times, in order to increase the
likelihood of detecting a transient error occurring in the meantime. If all of the aforementioned checks are
completed successfully, then this means that there was no fault in the incoming data. Otherwise, any dis-
crepancy detected signals that a stuck-at-fault occurred and as a result, the program branches to a specific
fail routine.

4.3.2. Load Unit
The second test focuses on the load path and more specifically on the load queues and control logic which is
responsible for delivering instructions and data to the appropriate consumer. This part has a similar struc-
ture to the previous one, while differentiating in the way it performs the final load and checking.

More specifically, the load requests have been timed in such a way, as to hit data arriving from the load queues
directly, before the Load Unit could allocate them in the D-cache. This helps in increasing the fault coverage
of the aforementioned queues, which are an important part of the overall MIU logic. This is achieved through
a timed combination of load multiple commands as described in manual for the M-class architecture [6],
together with a series of comparison instructions. Incoming data are checked against their pre-calculated
values two times- once to validate the data arriving directly from the Load Unit unit and a second time to
check the same data arriving from the D-cache. The latter helps in detecting stuck-at-faults that could have
occurred in the interface between the Load Unit and the cache.

4.3.3. Store Unit
The Store Unit interfaces with the MIU through dedicated merging paths. It is expected that test routines
targeting the aforementioned paths could yield increased coverage results to the Load Unit, since they could
directly affect its behavior. In order to accomplish that, a special test case was written in order to stress
the feedback loop and its corresponding slot allocation mechanism, which is embedded in the Load Unit.
Data patterns are generated, in a similar way to the previous tests, using series of decrementing data values
grouped in two blocks. Both blocks are sent to the Store Unit, however a simultaneous read request forces
the queues to drain early, re-routing data back to the load path. As a result, the test effectively stresses the
merging path between the two modules, hence increasing the potential fault coverage.

4.3.4. Hazarding Logic
As mentioned in Section 4.2.1, the MIU contains a logic block which is responsible for detecting hazards in
the memory subsystem. More specifically, hazards can be created in every pipelined processor, due to the
results of one instruction being needed by a subsequent one, before the former is completed [41]. There are
several types of hazards such as the Read-After-Write hazard (RAW), the Write-After-Read hazard (WAR) and
the Write-After-Write hazard (WAW). Similarly to the pipeline, the same rationale applies to load or store op-
erations sent to the upper layers of the memory abstraction. Modifying data with a series of store commands
will generate a data stream, moving from the core to the upper layers of the memory subsystem. Conse-
quently, while the data are on their way through the upper layers of the memory abstraction, a series of load
commands to the same addresses will cause a RAW hazard which needs to be detected and serviced appro-
priately. This is exactly what this test attempts to recreate, by generating blocks of data, storing them and
preforming requests on the fly. Attempting to exercise the hazarding logic is crucial for the development of
proper STL routines, since it puts the module under test for extreme conditions or corner cases.
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4.4. Verification Process
An integral part of designing systems or processes for use in safety systems is the ability to verify that the
developed prototype is able to operate under a variety of conditions. In order to achieve that, a testing cam-
paign needs to be devised, which will stress the developed software or hardware module with corner cases,
which sometimes might not be obvious even to experienced designers.

As mentioned in Section 1.4, STLs are system libraries developed in order to achieve ASIL D, according to the
ISO 26262 Functional Safety standard [4]. These tests can be used by researchers and system integrators in a
variety of applications, ranging from the automotive to the industrial or space sector. These applications may
require executing software either in a baremetal or RTOS context, with different requirements on the memory
footprint, resource allocation and system configuration. As a result, STLs should be able to operate under a
variety of circumstances without corrupting the architectural state of the host system, neither its initial sys-
tem configuration.

In order to achieve this, the designed tests should be exhaustively tested, however the total number of possi-
ble test-cases increases exponentially. As a result, there needs to be an automated way of performing testing,
proving that STLs can work in a variety of situations. The ARMv8-M Architectural manual lists more than a
few hundred system registers, each one having one or more fields that control a specific function or config-
uration parameter. These registers are accessible to software and can be read or written in order to modify,
enable or disable specific functionality in a modern Cortex-M55 processor. A simplified overview of the Veri-
fication Process is visible in Figure 4.3a.

(a) Simplified overview of the verification flow.

(b) Randomization and STL scheduling in logic simulations.

Figure 4.3: The STL Verification Process, used in the scope of this work.

The process consists of the following steps:

• Randomization: The first step attempts to re-create the many different initial states that a potential
system could be set in, while running arbitrary software. More specifically, several possible architec-
tural states are generated by writing randomly constrained values to memory-mapped system registers,
which in turn control the processor’s configuration and behavior.

• STL Execution: Parts are scheduled either in the context of an RTOS or baremetal application, with a va-
riety of scheduling patterns as previously presented in Section 4.1. In any case, part execution should
neither corrupt the context of the interrupted client application, neither it should change the configu-
ration of the CPU, by accidentally corrupting one or more system registers.
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• Consistency Check: The final step reads back the values of the system registers, and compares it with the
original ones, prior to STL execution. Any inconsistencies in values, point to a badly written STL part,
which corrupts the initial system state.

As mentioned previously, a modern Cortex-M55 core can have more than a few hundred 32-bit system regis-
ters, depending on the version and number of implemented features. Given the number of possible config-
urations, the Verification Process needs to be executed in iterations, in order to cover the vast design explo-
ration space to the best extent possible. These runs are called regressions and are executed in parallel, each
one with a different random seed used for register randomization. This way, many errors in STL design can be
captured and corrected, that would otherwise remain masked or undetected, when using only logic or fault
simulation. As a result, the Verification Process increases the portability and robustness of STL tests, making
sure that they will work in a number of different system configurations, targeting a wide range of applications.

In the context of the thesis, it is important to guarantee that the designed STL parts presented in Section 4.3
are properly verified. At the same time, since the Cortex-M55 processor is a new design, there are several
modifications required in the current Verification Process. In order to avoid having to rewrite and re-verify
the flow each time, it is imperative that the current flow is abstracted and generalized to the extent possible,
in order to enhance its portability and enable support for future M-Class processor designs with minimal
overhead. This will also help in reducing the number of human errors introduced while performing modifi-
cations and reduce the development time. The aforementioned would also satisfy the project’s objective of
providing a unified and flexible flow, as described in Section 3.2.

4.4.1. Verification Design
One important area of potential improvement is the design of the randomization software, which is the first
step in the process, as presented in Figure 4.3b. In previous iterations, randomization was done by manually
generating the input register descriptions and hard-coding certain constraints in the Verification Software, so
that constrained random values were generated for the respective bitfields. In order to make the procedure
as abstract as possible, the whole flow is re-written, using basic parts of the old script and modifying core
functionalities such that the end result satisfies the aforementioned objectives. More specifically, the process
involves the following steps:

• Register List: The input to the flow contains a set of register descriptions for the target processor, deliv-
ered by the design team. This list is automatically generated containing standardized descriptions of
each register and its respective fields.

• Randomization software: This process is an important part of the whole verification flow, as it parses the
aforementioned register list and determines which registers to randomize. The ARMv8-M architecture
manual defines different types of registers, such as Read/Write (RW), Read-Only (RO), Write-Only (WO)
or Write-Clear (WC) registers. The developed software can automatically select which registers can be
irritated, as well as which bits to randomize with constrained random values. Additional functional-
ity was added in order to be able to interpret correctly the desired functionality of each bitfield, since
sometimes there can be multiple syntax options to refer to the same underlying functionality. More-
over, support was introduced for multiple bit dependencies, as in some cases, certain system registers
can only obtain specific values depending on the value of another related register. These dependencies
need to be provided in the form of a separate file labeled as "User Input" in Figure 4.3b.

• Logic Simulation: After calculating all random values, the simulation step starts, by running the initial-
ization routine. This routine basically writes all pre-calculated random values to all system registers,
using dedicated assembly functions. Once initialization is complete, one or more STLs are executed.
Depending on the design, the system registers can be checked for consistency either after each STL
run, or at the end of the whole simulation. Logic simulation is performed using an industry-standard
software provided by Mentor, called Questa [59].

• Consistency Checks: After the randomization and test execution steps are completed, the values of all
system registers are read back, in order to check whether they have been corrupted during the STL exe-
cution. A mismatch in a value of any register, triggers a fault and the process exits with the appropriate
error message. Support has been added for WO and WC registers, which read back zero by default as
defined in the ARMv8-M manual, in order to avoid false positives.
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The aforementioned flow provides the necessary portability required, since it implements a structured way
of generating constrained random values for system registers, having a single requirement on the user’s de-
pendency files. These files need to be hand-written, only when changing architectures. As a result, two or
more implementations of the same instruction set could be accommodated, without the need to change the
dependency files. In addition, the list of dependent registers in a given architectural set is rather short. There-
fore, creating the aforementioned files by hand is considered a good trade-off when compared to having the
whole framework re-adapted or re-written every time from scratch.

4.4.2. Regressions
An important part of the automated flow described in the previous Section, is the ability to launch multiple
verification runs that can execute in series or in parallel. Since the number of system registers and potential
values is so high, a single run of the aforementioned flow is not enough to uncover all potential errors during
the STL design. Hence, by iterating hundreds to thousands of times, many bugs can be uncovered that would
otherwise remain masked or hidden.

In general, regression testing is used during software development in order to test the existing part of the code
and determine whether the software has regressed after a change. In the context of STLs, the developed code
needs to execute correctly in a variety of target configurations, hence testing needs to be performed contin-
uously after every configuration change. This highlights an inherent characteristic of STL verification, which
requires a brute-force approach in order to test the developed routines as fully as possible. Another important
element of regression testing is early integration, which helps in managing complexity. More specifically, the
focus during development was on completing the full Verification Software and creating the aforementioned
verification flow, where all submodules were at a satisfactory level of completion, with most of the functional-
ity in place. Consequently, regression support was added in order to start experimenting with the automated
flow early on and detect issues with the Verification Design. Later on, once the basic framework was com-
plete, one or more system registers were added incrementally, performing regressions. This helped twofold
since the work was split into manageable parts and secondly the whole integrated flow could be tested con-
tinuously, along with the introduced randomized registers. If an error occurred, then this would most likely
be attributed to the last modification or register added, greatly contributing to the reduction of the required
debugging time.
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Orbit & Fault Simulation

This Chapter will present the fault modeling and radiation environment simulations, that were performed as
part of this work. Section 5.1 elaborates on the whole spectrum of faults caused by radiation effects and their
modeling in the simulation environment. Section 5.2 focuses on two categories of space missions, where
COTS component usage is frequent, making the prototype flow presented in Chapter 4, directly applicable.
Finally, Section 5.3 elaborates on the main conclusions of this Chapter.

5.1. Fault Modeling
As seen in Chapter 2, space ionizing radiation has multiple ways of interacting with solid matter and inflicting
damage on circuits and devices. This occurs either by accumulating charge over long exposure times, or by
sustaining damage in the lattice structure through direct collisions, as explained in Section 2.3. At the same
time, radiation also causes functional flaws, by suddenly depositing charge on sensitive nodes of a device or
circuit, hence altering its logic behavior.

In order to test the developed prototype STLs and quantify their ability to detect random or radiation-induced
errors, it is important to first understand the end effects of faults on logic devices and circuits. This in turn
will help to model the faults appropriately, without any loss of generality. Towards that effort, a state-of-the-
art fault simulation environment will be used to inject logic faults during hardware simulation. Section 5.1.1
elaborates on the rationale behind permanent fault modeling, whereas Section 5.1.2 will describe the reason-
ing behind transient fault modeling.

5.1.1. Permanent faults
As already mentioned in Sections 2.3, 2.4.4 and 2.4.5, radiation can cause both permanent and temporal
damage [24, 26]. Usually, permanent damage is caused through SEEs such as Single Event Latchups (SELs)
and Gate Ruptures (SEGR). A particle impact can trigger the parasitic BJT inherent to CMOS devices, causing
regenerative current conduction that can eventually burn the struck transistor. In other cases, SEL-induced
peaks in current, causes localized overheating and melting of the interconnect [10, 60]. Even though the de-
vice may still be able to function, its susceptibility to future SELs increases, leading to its eventual failure.
Latch-up effects can be pronounced in newer CMOS technologies, where the lower metal layers are designed
to carry lower currents under normal operation [10].

Another effect of space ionizing radiation which causes permanent faults or affects the timing of sequential
circuits is attributed to Total Ionizing Dose (TID), affecting mostly devices that have been subjected to long
radiation exposures [75, 81]. This cumulative effect can cause significant changes in the electrical and tim-
ing properties of MOSFET transistors, with the most prominent being the conduction of current even in the
OFF state [75, 81]. Understanding the underlying mechanisms of TID and DD effects in MOSFETs is quite
challenging and several studies in academia have been performed in an effort to quantify a device’s response
[74]. Even though a device subjected to ionizing radiation effects may exhibit an alteration of its electrical
properties at first, it is certain that at some point it will eventually fail [26, 74].

There have been several methods in the industry which allow the detection of permanent faults, such as the
BIST, which however reduces the availability of the CPU to the application software and may require addi-
tional hardware resources. Furthermore, Memory Built-In Self-Test (MBIST) tests have been proposed, which
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perform real-time periodic tests of a system’s built-in memories. However, they may also require additional
hardware resources in the form of dedicated controllers, in order to perform seamless save/restore operations
[54]. Finally, Dual-Core Lock-Step is another successful method for detecting permanent faults, as presented
in Section 2.5.2. The use of duplicate core resources, is another form of hardware redundancy which provides
great fault coverage, at the cost of increased power consumption, chip area and cost. This technique is non-
intrusive and transparent to software [54]. However, in all the aforementioned cases, either the processor will
be unavailable during a certain time period, or there will be a need for extra hardware resources, which for
some applications is not an option. This makes STLs an ideal option for detecting permanent faults, either
for terrestrial or extraterrestrial applications.

Modeling in fault simulation
In the aforementioned cases, permanent damage caused by radiation through a series of mechanisms, lead
to the occurrence of a fault in the circuit or device. Either by having a transistor conducting without any gate
voltage applied, or by burning-out a device or circuit, the logic behavior is permanently affected. The same
rationale applies to interconnect damage, where the erupting molten metal either creates voids or shorts with
neighbouring metalization layers. The aforementioned faults affect the logical behavior of a gate or circuit,
by permanently modifying the logic values at the output of their nodes.

In the scope of this work, permanent faults due to sustained damage will be modeled as stuck-at-1 or stuck-
at-0 faults in the simulation environment. This is done in order to accurately map the behavior of such faults
to the digital world and more specifically to the inputs and outputs of combinational or sequential logic
elements. This fault model provides good gate-level stuck-at-coverage metrics without loss of generality,
since any lower level model or mechanism proves either too complex or inaccurate [76]. Logic stuck-at-fault
performs well for defects both inside and outside of a cell and can be simulated using state-of-the-art fault
injection tools and simulators. This is accomplished by placing faults on input and output terminals, module
ports and nets [86]. Some examples of stuck-at-fault placement can be seen in Figure 5.1.

Figure 5.1: Locations of stuck-at-fault placement.

5.1.2. Transient faults
Transient errors are non-destructive SEEs that occur on sensitive nodes of transistors and circuits and can
usually manifest in SEUs, SETs and SEFIs. As already seen in Section 2.4.2, SETs are temporal voltage or
current transients that depending on the location of occurrence, could propagate and manifest as SEUs in
memory elements. On the other hand, SEFIs are functional soft-errors that occur from upsets striking the
control logic of a circuit or processor, affecting its normal operation.

As their name suggests, transient faults are faults that occur and then disappear making them extremely diffi-
cult to detect and mitigate. They are commonly used in the industry in order to verify designs for automotive
or industrial applications, that need to mitigate soft-errors and comply with ISO 26262 and IEC 61508 [86].
Transient faults are becoming ever more important, since they have been reported on ground or high-altitude
applications [14, 72]. At the same time, transient faults are also quite relevant for space applications, given
the results of the NASA study presented in Section 2.8.1.

Given their importance, there has been a series of mechanisms that were devised in order to detect and mit-
igate them. The most popular methods involve hardware mechanisms such as ECC logic in memory cells
and registers, Dual or Triple-Core Lock-Step and any other form of TMR, as presented in Section 2.5. These
methods, have been also implemented in commonly-used COTS or radiation-hardened CPUs, as mentioned
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in Section 2.6, due to their effectiveness in detecting and correcting transient errors. On the downside how-
ever, these mechanisms require extensive design modifications which in turn increase lead times and prices.
In addition, they are only applicable during design-time of a specific processor model.

As a result, a more flexible and less design-intrusive software method would be desirable, assuming that it
could provide functional coverage from transient faults, but without the inherent disadvantages of the other
methods. However, a purely software approach for detecting transient errors, such as STLs, proves very chal-
lenging or almost impossible. This is due to the random nature of faults, which can occur at arbitrary times.
As a result, if a fault occurs outside the execution window of the test software, then it will not be detected. At
the same time, a fault occurring and disappearing faster than the clock period will also remain hidden to the
test routine. Hence, there are inherent difficulties when trying to detect transient errors with software, which
may limit the applicability of such methods.

Modeling in fault simulation
Given the aforementioned challenges, this work will aim at quantifying whether an STL routine would be able
to detect transient faults and to what extent, given a set of conditions and assumptions. The results could be
useful in determining whether STLs could be used as an accompanying detection mechanism to existing
hardware methods, rather than investigate whether they could replace them.

Faults will be modeled as transient toggle faults, on all possible locations on the target processor module,
with a fixed or variable rate. In addition, it is assumed that the transient faults would be occurring during
the execution window of the STL routine, since a fault occurring when an STL is not run, would never be
detected. Transient faults will be injected in hardware logic simulation as a bit-flip on a target location at
specified cycle times, by inverting the value that a non-faulty machine would have at the exact same location
and cycle. This type of modeling is called Transient Toggle and is used for both functional safety applications,
as well as security applications [86]. Transient faults will be placed on both sequential and combinational
primitives, effectively testing against SETs that could propagate and become registered as SEUs.

5.2. SPENVIS simulations
The analysis presented in Section 5.1.2 requires knowledge of the circuit topology, as well as the radiation en-
vironment, in order to determine where and when to place transient faults during logic simulation. Since the
design of the MIU module is given, the number of possible fault locations can be determined. However, the
rate at which transient toggle faults occur, not only depends on the the radiation environment, but also on
other parameters, such as the position at which the microprocessor or device will be placed inside a space-
craft or satellite.

In order to acquire accurate measurements on the error rates, a state-of-the-art space environment simulator
will be used, called Space Environment Information System (SPENVIS) which is developed by the Royal Bel-
gian Institute for Space Aeronomy (BIRA-IASB) for ESA’s Space Environments and Effects Section [84]. This
software platform enables accurate orbit simulation, giving the user the possibility to link the generated orbit
to a large collection of space environment modules created by agencies and research institutes around the
world. Furthermore, it offers a wide range of models for simulating radiation from the Radiation Belts, the
Solar Flares and the Cosmic Rays as presented in Section 2.2. Given the complex and dynamic space environ-
ment, it is challenging to acquire results that are applicable to every mission scenario. Hence, it was decided
to select two sample type of orbits that were considered the most likely candidates for missions using the
prototype software tests developed in the context of this work.

5.2.1. LEO reference missions
Low Earth Orbits are becoming increasingly important for Earth Observation (EO) missions launched by
space agencies, universities and private companies. These orbits have relatively low altitudes between 200 km
to 1000 km and are primarily used for missions monitoring climate and weather conditions, maritime traffic,
the melting of ice in the polar regions, as well as for cartography applications. Sometimes, there is a need to
monitor a specific place on the Earth, at exactly the same time of day, as scientists may need to take images
of the same place across days, months or even years [28]. Such data can be useful for monitoring forest fires,
floods or other weather conditions. A graphical representation of a LEO is seen in Figure 5.2a.
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(a) An illustration of LEO, with a reference orbital plane [28].

(b) Final assembly of Delfi-C3 CubeSat [21].

Figure 5.2: LEOs are primarily used for Earth Observation space missions or science missions using CubeSats or similar low-mass, low-
volume spacecrafts. A characteristic example of such mission is the Delfi-C3 built from COTS.

A series of private companies have emerged offering accurate Earth Observation data and tools to individu-
als, such as farmers who would like to monitor their crops. At the same time, many universities and academic
institutes have been designing and manufacturing CubeSats, with the goal of launching them to space to ac-
quire scientific EO data, or act as technology demonstrators. A prime example of such an effort is the Delfi-C3
mission launched by TU Delft, which is visible in Figure 5.2b [21]. The aforementioned CubeSat missions are
built using COTS components, either for the primary computing module, or for one or more of their payloads.

Two well-known missions were selected from ESA and NASA-CNES in order to be used as a reference for orbit
simulations. The first selected mission was Envisat, an Earth Observation space mission satellite providing
data for land regions, the atmosphere, as well as the oceans and ice caps [27]. After 10 years of continuous
operation, the team at missions control lost contact with the spacecraft, declaring the mission’s end on the
9th of May 2012 [27]. The second spacecraft selected for this study is TOPEX/Poseidon, which was a joint
mission between space agencies for monitoring Earth’s oceans and studying unique ocean phenomena [49].
It remained in operation for 13 years and provided valuable data, such as measurements of sea levels with
great accuracy [49]. Both missions were selected not only because they were EO missions from major space
agencies, but also because they had an almost circular orbit in close vicinity to Earth, but different inclina-
tions and altitudes. The aforementioned orbits were used in order to get an estimate of the upset rates in
LEO, as well as get an upper bound on the number of faults a potential EO mission might encounter, using
the Cortex-M55 processor. Along with the two selected missions, a generic one was generated to simulate the
environmental conditions at lower altitudes with an inclination of 0°, thus providing additional data for com-
parison. All simulations were performed using the latest models, for an MIU-sized square module protected
with 0.1 cm of Aluminum, acting as the shielding material. The latter was chosen as a conservative estimate,
since in most cases the thickness of shielding will be much larger.

The results of SPENVIS simulations are visible in Table 5.1, reporting the total number of SEU rates for the
duration of each mission. The rates calculated can be interpreted as the number of upsets per sensitive
node, per unit of time. From the results, it is obvious that a hypothetical MIU-sized hardware module in LEO
could experience an increased number of upsets which can reach almost 60 faults per sensitive node per day.
Even though missions at lower altitudes can expect significantly less radiation, the aforementioned results
highlight the need for effective error detection mechanisms even for COTS processors. A CPU comprises of
many modules, therefore the total number of faults would multiply leading to increased error rates.
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Specifications EVNISAT [64, 98] TOPEX/Poseidon [48] Generic†

Mission Duration [years] 10 13 5
Launch Date March 1st, 2002 August 10th, 1992 January 1st, 2021
Perigee [km] 772∗ 1,336 550
Apogee [km] 774∗ 1,336 550

Eccentricity (e) 0.00042∗ 0 0
Inclination (i ) [°] 98.40∗ 66 0

Radiation Belts

Electron model IRENE-AE9
Proton model IRENE-AP9

Solar Flares

Flux model SAPPHIRE peak flux
Ion range H to U

Cosmic Rays

GRC model (1AU ) ISO 15390
Activity data Solar Minimum (May 1996)

SEU rate
(
bi t−1 · sec−1

)
6.81 ·10−4 5.07 ·10−4 5.00 ·10−9

SEU rate
(
bi t−1 ·d ay−1

)
58.8 43.8 4.32 ·10−4

Table 5.1: Simulated radiation upset rates for the selected LEO missions, using SPENVIS. A width of 0.1 cm of shielding was assumed for
the electronics compartment. Items with an asterisk

(∗)
are best-case estimations based on available orbit data, whereas items with a

dagger
(

†
)

represent a generic orbit to be used for reference.

5.2.2. MEO-GEO reference missions
Medium and Geosynchronous orbits are very common for telecommunication or global navigation missions,
such as the Galileo from ESA and the Global Positioning System (GPS) from the US government. They are
heavily used by private broadcasters and other telecommunications providers offering internet services, TV
or radio coverage to a wide area of the globe. Their main characteristic that makes them so attractive for such
missions, is the fact that in GEO an object stays constantly above a certain place over Earth [28]. That way, a
ground antenna can be fixed to point always towards the satellite, without the need to move. Typical altitudes
for MEO missions are 20200 km, whereas GEO orbits require a higher altitude at 35786 km [28]. A typical GEO
orbit is visualized in Figure 5.3a.

(a) An illustration of GEO, with a reference orbital plane [28].
(b) Expandable 24-slot arrangement for the GPS constellation, ensuring that
at least 4 satellites are visible by any user [73].

Figure 5.3: Communications satellites use GEO staying constantly above a specific point on Earth. Navigation satellites use somewhat
lower orbits (MEO) to provide coverage across large parts of the world.
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This type of orbits were selected due to the harsh radiation environment that a spacecraft or satellite would
encounter at these altitudes. During the early stages of such missions, particles from the Radiation Belts are
dominant, whereas Solar Flares and Cosmic Rays become the main contributor to Total Ionizing Dose and
upset rates, during the later phases of the mission. In the context of this work, the analysis was performed
using the spacecrafts’ final orbits, hence more representative results can be acquired by segmenting the mis-
sion profile and studying the contribution of every radiation source in each orbit segment separately. Finally,
such missions carry telecommunication equipment which should withstand the extreme radiation environ-
ment for years. As a result, these orbits present the worst case scenario that modern electronic circuits could
encounter upon insertion to their final orbit around Earth.

For the analysis of the radiation environment in MEO-GEO, two well-known and important navigation mis-
sions were selected, namely Galileo and the Global Positioning System (GPS). These systems comprise of
constellations of satellites, as seen in Figure 5.3b, which are injected into similar or identical orbits over the
years to provide increased coverage. They provide services to a wide spectrum of applications, ranging from
aircraft navigation to street navigation using a personal handheld device. For Galileo, the GSAT0204 satellite
was used for reference, without any loss of generality since all spacecraft in the constellation were injected in
similar orbits. As far as the GPS, the latest Block-III satellites were used as the baseline, which as in the pre-
vious case, were injected in similar orbits. As in the case of Section 5.2.1, a generic mission was also chosen
in order to simulate the environment at higher altitudes and an inclination of 0°. The results are visible in
Table 5.2, using the same shielding thickness and reference volume assumptions as before.

Specifications Galileo [17, 29] GPS-III [9, 73] Generic†

Mission Duration [years] 10∗ 15 10
Launch Date March 27th, 2015‡ January 1st, 2018∗ January 1st, 2021
Altitude [km] 23,222 20,183 35,785

Eccentricity (e) 0 0 0
Inclination (i ) [deg] 56 55 0

Radiation Belts

Electron model IRENE-AE9
Proton model IRENE-AP9

Solar Flares

Flux model SAPPHIRE peak flux
Ion range H to U

Cosmic Rays

GRC model (1AU ) ISO 15390
Activity data Solar Minimum (May 1996)

SEU rate
(
bi t−1 · sec−1

)
2.89 ·10−3 2.58 ·10−3 3.78 ·10−3

SEU rate
(
bi t−1 ·d ay−1

)
250 222.8 326.5

Table 5.2: Simulated radiation upset rates for the selected MEO-GEO missions, using SPENVIS. A width of 0.1 cm of shielding was as-
sumed for the electronics compartment. Items with an asterisk

(∗)
are best-case estimations based on available data, whereas items

with a dagger
(

†
)

represent a generic orbit to be used for reference. Finally items with a double dagger
(

‡
)

represent information for the

selected GSAT0204 Galileo mission.

As it was expected, higher altitude missions are much more susceptible to SEUs, given their proximity to the
Radiation Belts. The average rate increased to almost 3.78 ·10−3

(
bi t−1 · sec−1

)
, which corresponds to an im-

pressive 326.5
(
bi t−1 ·d ay−1

)
. This number is extremely high when compared to the LEO missions and as a

result, a mechanism such as STLs may not be adequate for handling so many faults, especially given the limi-
tations presented in Section 5.1.2. However, it could be used as an additional line of defence, supplementing
an existing hardware method.
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5.3. Conclusions
Section 5.1 presented an analysis on the fault models used in logic simulation. Ionizing radiation interacts
with CMOS devices in a complex manner, which is still the subject of academic research. In addition, radi-
ation causes both permanent and transient errors on devices, with varying probabilities depending on the
topology of the device, the amount of shielding used and the local radiation environment. Hence, perform-
ing a logic simulation on the transistor level, injecting both permanent and transient faults is challenging at
best and out of the scope of this work. Developing a radiation model for transient faults for example, can be
a thesis project or research topic on its own.

Instead, it was decided that faults will be simulated on the gate level, using existing practices and mecha-
nisms in academia and industry. Given certain assumptions presented in Sections 5.1.1 and 5.1.2, radiation
fault modeling is possible with stuck-at-fault and transient-toggle logic faults, at specified locations and tim-
ings. The aforementioned abstraction is also compatible with the current state-of-the-art fault simulation
environments and can produce valuable results. Given the limitations of such tools, as well as the aforemen-
tioned abstractions on fault models, it is expected that there will be deviations from real-life tests. Differences
in absolute numbers will not be that relevant, but instead the coverage gains with respect to a reference could
provide insight as to whether STLs could be used for radiation-induced errors.

Finally, in order to determine the rate at which transient toggle faults could occur, a space environment sim-
ulation was performed. Tests on selected orbits, using data from reference missions, provided the upper and
lower bounds in terms of upsets per sensitive node and per unit of time. These tests showed that a large
number of errors can occur on average per day, highlighting how harsh the space environment can be on
electronic devices. However, the error rate for the given number of sensitive nodes in the MIU, results in a
fault rate of ≈ 63

(
f aul t s · sec−1

)
. Therefore, the frequency of fault occurrence, is orders of magnitude smaller

when compared to the operating frequency of a modern CPU, which is in tens or hundreds of MHz. This is
contrary to the original belief expressed in Section 5.1.2, that multiple transient faults would occur in a clock
cycle. In addition, it highlights the fact that periodic STL execution could coincide with the occurrence of a
transient fault, with a given probability. However, given the calculated low error rate, it is less likely that STL
routines could coincide with a transient fault.



6
Results

This Chapter summarizes the achieved results for the prototype flow developed in the context of the thesis.
More specifically, Section 6.1 presents the achieved results in terms of fault coverage, whereas Section 6.2
elaborates on the work performed on the verification framework. Finally, Section 6.3 presents some prelimi-
nary coverage numbers when porting the developed STLs to a newer Revision of Cortex-M55.

6.1. Fault Coverage
In order to determine the effectiveness of the developed STL routines, a state-of-the-art simulation software
was used called ZOIX. This is a proprietary Fault Simulation Environment, that uses a fault injection mech-
anism to test modern VLSI systems for permanent or transient faults [85, 86]. The tool performs logic simu-
lation of the given hardware design running the payload software, effectively checking for compliance with
automotive functional safety standards, such as the ISO 26262, or other international standards such as the
IEC 61508.

Given the nature of radiation errors, as well as the analysis presented in Section 5.1, two types of faults were
modeled and simulated. The results for permanent fault injection will be presented in Section 6.1.1, whereas
transient fault simulation will be elaborated in Section 6.1.2.

6.1.1. Permanent faults
Table 6.1 summarizes the results obtained when introducing stuck-at-faults only in the MIU, using the avail-
able gate-level (netlist) representation of Cortex-M55 on the development branch. This provides the most
accurate results possible in a simulation environment, since it is using a representation of the design very
close to the actual physical implementation of the chip. The fault universe is split into two main categories of
faults, namely the Testable and Untestable faults. The former, as their name suggests, consists of all the faults
that can be tested in the given design and are taken into account for the final fault coverage calculation. The
latter, consist of faults being structurally undetectable, given that they can not be detected by any workload.
They are either tied to a supply or ground net (VDD or GN D) or being blocked by another signal being tied to
them [86]. These faults are not taken into account when calculating the total fault coverage.

ZOIX calculates fault coverage, using the following expression:

Cover ag e (%) = D −D +D −F

D −D +D −F +N −D
·100% (6.1)

where, Dropped Detected (D-D) and Not Detected (N-D) represent the number of detected and not detected
faults respectively, whereas Detected stop/finish (D-F) represents the number of faults that timed-out. The
total fault coverage calculated using Equation (6.1) is 32.79%, when taking into account not only the major
modules visible in Table 6.1, but also the minor ones which have been omitted for the sake of simplicity.

Given the aforementioned results, it is evident that the current tests achieve good coverage numbers in the
largest modules, namely the Load Unit and the AXI Interface module. In the former case, more than 50% of
the total faults were detected (DD), whereas in the latter the AXI Interface tests manage to stress 42% of the
total interface logic. On the other hand, performance in the other major module inside the MIU, namely the
Hazarding logic, is not satisfactory. Even though the tests as described in Section 4.3.4 seem to exercise the
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MIU module
Testable Faults

Total
D-D D-F N-D

AXI Interface 12,071 (42.00%) 350 (1.22%) 16,319 (56.78%) 28,740

Load Unit 14,987 (57.27%) 330 (1.26%) 10,853 (41.47%) 26,170

Hazarding logic 475 (4.40%) 191 (1.77%) 10,122 (93.83%) 10,788

Test Coverage 38,816 (31.40%) 1,728 (1.40%) 83,093 (67.21%) 123,637

Table 6.1: Fault simulation results for the major modules only, using ZOIX. Testable faults are listed as Dropped Detected (D-D), Not De-
tected (N-D) and Detected stop/finish (D-F). Untestable faults are not presented, since they do not contribute to the total fault coverage.
A more detailed view of the fault simulation results can be seen in Section 5 of the Detailed Design Report.

subsystem up to a certain extent, it is obvious that the results can be improved substantially, by creating more
advanced hazard scenarios. Overall, the total fault coverage of 32.79%, is promising and could be increased
further, by revisiting the Hazarding module or exercising the minor modules.

6.1.2. Transient faults
As previously suggested in Section 5.1.2, transient faults will be simulated using the transient toggle model,
which introduces faults in all possible nodes at specific times. Since the design has a fixed number of nodes,
the only parameter that varies and can influence the results in a meaningfully way is time.

The rates calculated in Tables 5.1 and 5.2 give an indication of the transient error rates that a sensitive de-
vice or module such as the MIU could encounter while in LEO or higher orbits. A rate of almost 4 · 10−3(
bi t−1 · sec−1

)
is possible in the worst-case scenario, averaged for the duration of 10 years in GEO orbit. As

elaborated in Section 5.3, the fault rate is orders of magnitude smaller than the clock frequency of the target
processor. Hence, it is less likely that a transient fault would coincide with the execution of an STL test.

Determining the probability of periodic STL execution and fault occurrence is out of the scope of this work.
This would require extended fault simulations of test execution, together with a RTOS or a baremetal sched-
uler application. Due to its complexity, such a scenario is not possible with the available computational
resources and the current simulation environment.

For that reason, this work will focus on the characterization of transient fault coverage, during the execution
window of the developed STL tests, assuming that the tests would coincide with one or more transient faults.
Given the uncertainty with respect to the time of fault occurrence, an analysis needs to be performed in order
to quantify the absolute maximum and minimum coverage possible, in a variety of injection times.

Figure 6.1a presents the results of transient toggle fault injection on the gate-level netlist of the Cortex-M55
CPU, using different toggle intervals. In the context of this fault model, the term interval refers to the duration
between two different fault injections. The time scale has been adjusted to multiples of the clock period, for
the duration of the whole STL routine. Given the fact that an STL routine completes in the order of microsec-
onds, the analysis is only relevant during the STL execution window. Hence, faults are injected in the given
execution window, increasing each time the transient toggle interval for all possible faults in the MIU mod-
ule. Given the resource-intensive operation of running fault simulations using ZOIX, as well as the number of
available licenses for distributed computing, it was not possible to simulate transient faults with an injection
interval smaller than 25 cycles. As in the case of permanent errors, fault coverage is reported as the number
of detected faults, over the whole fault universe.

From the results, it is evident that fault coverage is significantly lower when compared to the permanent faults
analysis in Section 6.1.1. However, this was expected given the inherent difficulties of detecting transient
faults with software mechanisms. Overall, for very high injection rates in the order of every 25 to 5000 cycles,
fault coverage remains relatively stable above 6.73 %, for the total number of possible faults. From 7500 cycles
onwards, the picture changes dramatically. At 10000 cycle-intervals, the tests reach a maximum of 7.64 %
coverage, which starts to drop significantly until the largest interval possible at 16000 cycles, which is almost
equal to the duration of the STL test. At such large intervals, the injection rate becomes lower, having only one
or two fault injections and achieving a coverage of 3.91 %. This result is surprisingly valuable, as it highlights
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(a) Achieved coverage metrics with respect to increasing toggling intervals.

(b) Fault injection at absolute cycles, along with random fault insertion. Second to last column corresponds to the average of the aforementioned runs.

Figure 6.1: Transient fault simulation results.

a different behavior than the one expected.

As mentioned in Section 5.1.2, faults occurring faster than the clock period could not be detected, since the
logic values of all sensitive nodes would be toggled multiple times, before the next rising edge of the clock. As
a result, it was expected that the absolute worst-case scenario for fault detection would be at intervals close
to the clock period. The results presented in Figure 6.1a portrait a different picture, highlighting that test
performance decreases at larger intervals, which correspond to lower injection rates. At the same time, it is
observed that coverage is also dependent on time of fault occurrence for a given STL design and can change
depending on the toggle activity at the specified time.

In order to quantify the performance of the STL routine at low injection rates, additional tests were per-
formed, where faults were introduced only once at all applicable nodes. The results are visible in Figure 6.1b
and injection times are once again reported in cycles. It is evident that the time of occurrence has a big impact
on the achieved coverage, ranging from 0.41 % to 7.88 % at 16000 and 10000 cycles respectively. This helps
explaining the corresponding peaks and lows in Figure 6.1a. Additional testing was performed using injected
faults at random intervals, yielding a relatively high coverage percentage. Overall, the average detection per-
centage is 6.24 %, suggesting that even though potential drops in coverage are to be expected, on average the
STL routine could yield benefits to the deployed system, assuming that its execution coincides with the fault.
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6.2. Regression results
An important part of developing STL routines is the Verification Process, as outlined in Section 4.4. The pro-
cess aims at validating whether the developed software can run on multiple system configurations with a
wide range of initialization parameters. Given the number of possible configurations, an automated proce-
dure is needed in order to successfully test as many options as possible, with little to no human intervention.

Hence, the software flow presented in Section 4.4.1 was implemented in order to successfully test the de-
veloped routines against a variety of system configurations and identify errors that could potentially remain
masked or hidden. The core functionality has been developed in a master program, which in turn generates
the appropriate code and subsequently initiates logic simulations. The whole process presented in Figure 4.3
is repeated in iterations generating different random values each time. During the Verification Process, the
RTL description of the Cortex-M55 is used, since it is only necessary to verify that system registers have been
logically randomized and thus no accurate coverage numbers are required. The result of the verification ef-
fort is summarized in Table 6.2, using Questa from Mentor for logic simulations [59].

Verification features Status

System register parsing X
Mask generation X

Random seed/value generation X
Dependency resolution (software only) X

RTL Simulation 41/105 registers integrated
Regression support 15 iterations with random seeds

Table 6.2: Status of the verification flow, listing the supported features and functionality. Simulations were performed with Questa
Advanced Simulator.

From the aforementioned, it is evident that the end-to-end functionality has been implemented, creating a
prototype flow that can be successfully used for regressions. More specifically, system registers supported by
the ARMv8-M architecture can be randomized, by generating the appropriate constrained random values for
every bitfield. This is achieved by using information from the provided Register List, as well as dependency
information which has been manually encoded in the "User Input" file. For every register, appropriately
sized masks are generated in order to protect certain bitfields that are marked as Reserved by the ARMv8-M
architecture, while the remaining fields are randomized. This step is crucial, since writing arbitrary values to
Reserved fields may have undesirable effects, resulting in system instability, crashes or hangs.

The developed software flow is able to randomize 105/154 registers which have RW attributes, with the re-
maining registers having hardware dependencies. In order to proceed with the rest of the work and develop
an end-to-end verification flow, it was decided not to include hardware dependency support in the current
verification software, but instead proceed with the regressions. Having a complete flow working with less
functionality was more important than fully developing a specific feature. From the aforementioned regis-
ters, a subset of 41 registers has been selected to be integrated in the RTL flow and consequently intro regres-
sions. This also helped in reducing the complexity and breaking the problem of verification into manageable
parts. Each register was added incrementally, in an effort to ensure the maximum stability of the developed
flow, since a potential crash could be traced back to the last register or parameter added. Multiple successful
regressions of 15 iterations each have been performed, in order to validate the developed STLs, as well as the
flow itself.

The end result consists of a stable software flow that will be used as the main driver behind the Verification
Process of the Cortex-M55 processor. In addition, it proves that the developed STLs work in a variety of
initial conditions and system configurations and have been verified to the extent possible. Given the nature
of the verification problem, outlined in Section 4.4, as well as the total number of hidden dependencies, it
is expected that thousands or even tens of thousands of regressions will need to be performed, in order to
fully validate the developed STLs. Hence, the performed work forms the basis of an iterative process which
requires significant resources and time to complete, extending beyond the 8-month time frame of the current
MSc. thesis.
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6.3. Porting to a new Revision
The Cortex-M55 is a new design targeting the next generation of embedded devices and implementing the
ARMv8-M Architecture. As mentioned in Section 4.2, the design was chosen based on its potential impact to
the next generation of devices and applications, some of which could be targeted towards the space sector.
As a result, there are some inherent advantages, as well as challenges, when working on a new and evolving
CPU model.

More specifically, the design process of a microprocessor has several phases, each one targeting a specific
level of completion of feature implementation, from the total list of functionalities that the new processor
would have. Working on a fresh design has many advantages, such as early RTL access in order to start de-
velopment of STLs as soon as possible, however there are also inherent challenges with constant evolution.
Most importantly, the design is under constant change, affecting the functionality and coverage metrics of
the developed STLs as well. This is an expected and desired behavior, since incremental evolution means
that both hardware and software are getting better over time.

However, this also dictates that the software development should always keep up with the new design changes,
adapting to the implemented features and functionalities, in order to match the target coverage. In some
cases, design changes may include optimization of existing logic modules, by trimming redundant parts and
reducing the size of the respective module. As a result, the total number of possible faults decreases, which
may lead to a slight coverage increase. In other cases, logic is further upgraded and expanded with additional
features in order to increase the performance of a particular module. In that case, both the functionality and
the size of the module are affected, which may lead to an eventual drop in total coverage.

During the development of the STL routines, a specific version of the target CPU was used as the reference
platform, which is known as Revision-0 or simply r0. This was necessary in order to have a stable and working
system to use as a proof-of-concept. However, given that the processor development was well underway,
incremental changes were added frequently, increasing the total MIU module size and affecting its behavior.
As a result, when the tests were ported to the latest r1 Revision of the processor, the aforementioned changes
impacted the total coverage, yielding a 20.37 % coverage on permanent faults. It is expected that transient
coverage will also be impacted, however due to the time constraints, no fault simulation was performed.
Even though the drop is significant, the achieved coverage still highlights the potential of STLs in detecting
random faults. It also reveals an inherent limitation of the aforementioned routines, which is their sensitivity
to hardware changes. Hence, even though portability can be ensured up to a certain extent, the same can
not be said for their effectiveness in detecting faults, which may exhibit drops when porting from one model
version to another.
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Conclusion

This Chapter summarizes the work done in the context of the M.Sc. thesis and elaborates on the achieved
outcomes, as well as to what extent they satisfy the original objectives. More specifically, Section 7.1 rein-
states the goal of the graduation assignment, whereas Section 7.2 elaborates to what extent the purpose of
the thesis has been achieved. Finally, Section 7.3 lists the limitations inherent with this work and discusses
the applicability of results.

7.1. Objective statement
The purpose of this work was to develop a prototype software flow that could help in enhancing the radiation
performance of COTS processors, in an effort to bridge the gap between their radiation-hardened counter-
parts. The goal was formulated after a research on the current mechanisms implemented by academia and
the industry was performed, followed by an analysis on the effects of radiation on modern CMOS devices and
IC circuits. The thesis objective as formulated originally in Section 3.2, is the following:

"To research and prototype an efficient and cost-effective method to detect and mitigate random faults in
Commercial-Off-The-Shelf ARM microprocessors, with increased compatibility across processor

models."

The aforementioned objective can be broken down into several sub-objectives. More specifically, a repre-
sentative ARM processor needs to be chosen, in order to act as a proof of concept for this work. In addition,
familiarization with the existing framework, methods and practices is required, in an effort to understand
how to develop efficient STL routines, on the selected submodule. Finally, tests need to be developed with
compatibility in mind and achieve the desired coverage metrics, without corrupting the target system’s state
or configuration.

7.2. Achieved outcome
Overall, the main objective of the thesis has been achieved, since the prototype software flow was developed
for a target ARM microprocessor, acquiring the first coverage metrics on radiation-induced faults for a spe-
cific module. This CPU was selected not only for its potential impact on embedded applications, but also for
the fact that it implements the latest ARMv8-M instruction set.

More specifically, a coverage of 32.79 % was achieved on a gate-level (netlist) representation of the Cortex-
M55 processor, when testing for permanent faults. The current tests achieve good coverage of the major MIU
modules, exercising the Load Unit to 57 % and the AXI Interface logic to 42 %. The aforementioned metrics
indicate that both modules are stressed to a satisfactory level. Their higher coverage gains, as well as the time
spent on designing targeted tests, may hint on reaching a potential point of diminishing returns, where each
additional percentage increase would require exponential amount of time. On the other hand, the Hazarding
logic test manages to exercise the target submodule, but to a lesser extent, achieving a coverage of 4.4 %. This
is expected up to a certain point, since creating complex test scenarios that recreate all possible hazards is
challenging. Nevertheless, given the size of the module in terms of total faults, as well as the low achieved
coverage, it is assumed that there are more gains to be had from the aforementioned module, that would
greatly impact the total coverage of the MIU and in turn the CPU’s.
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In addition, transient fault simulations were performed, by taking into account the worst-case transient
upset rates calculated from the reference missions. The rates were calculated to be in the order of 10−3(
bi t−1 · sec−1

)
, which for the given set of sensitive bits in the MIU, results in an error frequency of ≈ 63(

f aul t s · sec−1
)
. This is much lower than the operating frequency of the processor. Given that a complete

run of all developed STL parts finishes in several microseconds, there is a probability that transient errors
could occur during a periodic execution of STLs. The probability depends on many factors; however given
the current framework and its limitations, it was not possible to perform periodic fault simulations. Instead,
the thesis focused on determining the maximum and minimum coverage that STLs could yield, assuming
that one or more transient faults would occur during the execution window. Therefore several transient fault
simulations were run, each time increasing the injection interval, in an effort to quantify performance. It was
observed that in all cases coverage remained above almost 4 % and in some cases reached 7.64 %. The latter
was not expected and highlighted the potential of STLs being used as a supporting transient error detection
technique to the existing methods. In addition, the variation of achieved coverage uncovered another aspect,
inherent to the nature of STL routines, that of fault coverage which depends on the time of fault occurrence
and varies depending on the toggle activity at the specific time.

Hence, a series of additional tests was performed in order to quantify the fluctuation of results, when injecting
single faults only at absolute times. These test cases were more representative of a real-life scenario, given the
low upset rates particularly in LEO. It was observed that performance varied from 0.41 % to 7.88 % depending
on the time of fault injection, while placing faults at random times yielded a coverage of 6.89 %. Hence, it be-
came evident that the actual worst-case scenario for an STL routine corresponds to times with low injection
rates and low toggle activity, contrary to the original belief about high frequency injection rates. On average,
the aforementioned tests at specified injection times achieved a coverage of 6.24 %.

Given the aforementioned, it was concluded that STL execution could prove beneficial for the detection of
radiation-induced errors, exhibiting solid performance in permanent faults occurring due to the accumula-
tion of ionizing dose or latch-up events. In addition, there is some evidence to believe that STLs could be used
as a supplementary detection technique for transient faults, providing up to 7.88 % coverage, on the best-case
scenario. Hence, they can be used together with existing hardware techniques, such as ECC in logic, in order
to contribute in the successful detection of faults in COTS processors. STLs are a detection-only mechanism,
which can provide an early warning to the system integrator or user. Depending on the context, they can
be used with traditional hardware methods in order to prevent faults from leading to catastrophic failures.
A fault detected during periodic STL execution could mean that the last application software routine might
have performed calculations on corrupted data. As a result, the user can potentially re-schedule the execu-
tion of the affected software, or perform a system reset effectively mitigating the error.

Finally, the developed tests where integrated into the newly-created verification flow and several regressions
were performed, each one consisting of 15 iterations. This helped verifying that the current STLs do not
corrupt the initial system state and work as intended, at least on the set of possible configurations tested.
Given the nature of the verification work, as well as the whole search space of system configurations, several
hundred or thousand runs may be required, in order to fully validate the aforementioned work. However, the
exhaustive search of hidden dependencies or software bugs cannot be considered as part of this thesis, which
focused on designing a prototype STL and verification flow, as a proof-of-concept.

7.3. Limitations
Given the advantages presented, there are also some inherent challenges identified through the course of
this work. More specifically, it has been demonstrated that coverage metrics are sensitive to the underlying
hardware changes, which may lead to potential drops when porting from one processor Revision to another.
Such was the case when porting the tests designed for r0 to the r1 Revision of the CPU. Hence, additional
work will be required in order to ensure that the developed test routines yield the same results, across differ-
ent versions of the same CPU. Furthermore, even though the STLs were developed with portability in mind
and are compatible with any M-Class design, it was not possible to port them in another CPU due to time
constraints. It is expected that such an activity will require additional time and some modifications on the
address ranges used, in order to match the specifications of the new processor. Given the aforementioned
sensitivity to hardware changes, it is also expected that coverage will vary. This is due to the fact that the test
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software was designed with certain stress patterns in mind, which depending on the respective implementa-
tion, may or may not exercise the same modules to the desired extent. Therefore portability is to some extent
ensured, but definitely requires additional work in order to achieve the same results.

The aforementioned also points to the second major limitation of STL development, which is RTL availabil-
ity. In order to design efficient assembly tests, it is required that the designer has access to the hardware,
in order to understand the cycle-by-cycle behavior and devise test strategies and scenarios that stress large
portions of logic. In addition, a hardware implementation is required to test the developed software in logic
simulation, as well as access to industry leading tools. This might limit the usage of STLs to some companies
or research institutes that have the means to develop their own IP or obtain third-party IP licenses, through
collaboration with industry. Otherwise, it would be extremely challenging or close to impossible to acquire a
fixed COTS microprocessor and try to develop STLs, while treating the hardware as a black box. This would
require additional resources and would take exponentially longer in order to develop tests using a brute-force
method. The end result would be inefficient from a coverage perspective and would also require many more
than few thousand cycles to complete.

Finally, the acquired transient radiation performance numbers are the result of simulation work assuming
that STL execution coincides with fault occurrence. Additional work will need to be performed in order to
estimate the probability of transient fault detection, during periodic STL execution. As already mentioned, it
is expected that the probability will be rather low, given the space environment simulation results in Chap-
ter 5. In addition, all fault simulations presented in Chapter 6 were performed on a gate-level implementation
of the CPU. Even though special care was taken in order to ensure the best possible accuracy, it is expected
that there will be deviations between fault simulation performance and an actual physical test in a radiation
facility. This is attributed to the fact that radiation effects are complex and dynamic and are still the subject
of ongoing research. In reality, both permanent damage through accumulation of dose, as well as transient
faults can be occurring with different probabilities at the same time. Hence, developing an accurate model
which can be used for fault injection during logic simulations, is a research topic on its own right. The cur-
rent abstraction models used and assumptions taken, apply to the selected orbit scenarios and are used in
this work to evaluate a proof-of-concept. A different model of the radiation environment might result in di-
vergent error rates, affecting the final results. Hence, actual coverage numbers can only be obtained and
verified during a radiation test or a potential test flight.
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Future Work

This Chapter focuses on the strategy and methodology that could be used for future work in this subject or
field. The current thesis demonstrated that using STLs for random error detection in COTS processors, can
offer increased fault coverage in permanent faults, as well as provide additional detection capabilities for
transient faults under best-case conditions. Hence, there is substantial evidence to believe that STLs could
be used for radiation-induced error detection in future CubeSat missions, without increasing the total cost
disproportionately. Tests can be developed together with custom FPGA implementations of contemporary
CPU-IP designs, as part of a license agreement between IP providers and research institutions. However,
there are also a lot of possibilities for future additions and enhancements that will be briefly explained below.

8.1. Improving existing framework
More specifically, the current work demonstrated the potential of the STL framework as a random error de-
tection mechanism, however its applicability was proven to a specific module of a selected target micropro-
cessor. Hence in the future, the same analysis could expand to other modules of the same processor, such
as the main core or other units within the memory system, yielding even more fault coverage benefits. This
will increase not only the total number of permanent detected faults, but also lift the transient fault coverage
potentially from single to double digits. Even though, the fault detection performance is not high enough
to claim ASIL certification, it is still more than enough to gain the attention of mission designers or system
integrators. In addition, portability could be verified by re-using the same STL routines on another micro-
processor implementing the same ISA. Coverage will be impacted and additional verification and validation
work will be required, however the overhead in time is rather low compared to the advantages offered.

Furthermore, future work could include further iterations to the design of the MIU STLs, in order to bridge
the coverage gap between the two processor Revisions, as well as achieve higher detection metrics. Given the
current results, it is evident that the Hazarding Logic could be exercised more, by writing more advanced test
scenarios that stress a bigger part of the module. This in turn will not only lift the coverage of the MIU module,
but also of the whole CPU. The remaining modules could also be exercised further, however it is considered
that due to their higher coverage scores, they may have reach a point of diminishing returns. Finally another
area of future improvement could be the continuation of the work performed on the Verification Software.
By taking the current end-to-end developed framework and expanding it further to support more hardware
configurations and even more registers, additional dependencies could be uncovered. This activity will not
only benefit the verification design, but also help develop more robust and reliable STL tests, across multiple
modules or processor models.

Another area of great importance can be the modeling of radiation-induced faults, in the context of a logic
simulation environment. This topic proves to be very interesting and challenging, since creating reliable
models and most importantly certifying them can be a substantial endeavor. Therefore, the aforementioned
activity could be considered as a future M.Sc. thesis topic on its own right. In addition, there is also the possi-
bility of modifying existing radiation models and integrating them into the current or similar fault simulation
environment. As a result, more accurate data could be acquired on the performance of the developed STL
routines, proving or disproving certain assumptions and conclusions of the current work. Given the inherent
challenges of research and design certification, it is recommended that such activities would be performed
with a close collaboration between academic institutions and the industry.
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8.2. Physical tests
Another important area of future work involves physical testing of actual devices in an appropriate radiation
facility. That way, the target processor device can be subjected to a real radiation environment, reducing
the uncertainties and inherent inaccuracies of simulation models. Physical testing for SEEs would require a
dedicated test setup and a radiation facility capable of performing high accuracy tests, with capabilities of
delivering the required flux of protons or electrons at the desired LET [32].

More specifically, a potential test would require several test chips, as well as testing boards to easily mount
the Device Under Test (DUT) and attach the necessary data and power connections, as seen in Figure 8.1a.
Mechanical fixtures would be needed, in order to mount the testing board precisely and orient it towards
the direction of incoming radiation. Given the dangers associated with radiation, the required test personnel
and all monitoring systems should be located in a separate shielded room, to avoid harmful exposures. All
test data would be logged in a computer located in the control room. Hence, radiation-induced faults that
would lead to data corruption or other functional interrupts could be avoided. Finally, an important step in
the process is the removal or thinning of any material in the chip’s packaging, which could interfere with the
penetration of incident radiation to the sensitive regions of the chip [32]. This is mandatory, since there are
not many facilities which could accelerate particles to the same energy levels, as the ones encountered in LEO
or GEO. An example of chip preparation for radiation testing is visible in Figure 8.1b.

(a) A Conga QA6 - Intel E620 testing board at a radiation facility [40].

(b) A Freescale P2020 processor, upon removing the packaging layers, to ex-
pose the underlying cores [39].

Figure 8.1: Examples of radiation testing efforts on COTS processors.

During the course of the test, knowledge of the chip layout would be mandatory, in order to target specific
modules each time. The testing software can include a combination of periodic STL execution, along with
a generic payload software to simulate as accurately as possible real-life computing workloads. Each time,
a different module can be targeted for transient fault injection, while executing the respective STL routines
specifically designed for that module. That way, realistic coverage measurements can be acquired for every
single module. STLs could use the existing software infrastructure to report errors to the scheduling program,
which in turn would broadcast data through the dedicated cables, to the control room. In total, three chips
would be required in order to successfully test a specific processor design and eliminate any lot-to-lot varia-
tions, associated with the manufacturing of complex semiconductor devices [32].

Since radiation testing requires chip availability, which might involve additional costs and impose delays in
the testing schedule, FPGAs could be used instead. More specifically, in order to begin radiation testing early
in the design process, the CPU could be ported to an FPGA, executing the aforementioned STL tests as the
payload. This solution could provide results faster, since it does not require any physical design or implemen-
tation of the selected CPU model, but rather a synthesizable RTL description. This solution could provide
useful insight into the performance of the developed test, but would introduce additional inaccuracies due
to the the potential differences in the implementation of the FPGA chip. Furthermore, porting a CPU design
to an FPGA is not a trivial task, especially in terms of performance modeling.
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Finally, a similar methodology can be followed for TID testing, though the DUT is not necessary to be exe-
cuting test software during irradiation. The effects of ionizing doze can be evaluated after each test, since it
is recommended to perform irradiation at multiple exposures [33]. The device could then be subjected to a
series of electrical tests to determine whether there has been any significant device failure. In addition, the
DUT could be tested using a series of software tests, by reading or writing memory locations and executing
one or more STL tests. That way, the radiation performance of a STL routine could be fully characterized
under real-life conditions.
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Appendix

This Appendix includes the technical characteristics of all selected processors introduced in Section 2.6.

Specifications MSP430F161x [45] PIC24FJ256GA110 [95] AT91SAM9G20 [94]

Architecture 16-bit, RISC Variant 16-bit, Modified Harvard 32-bit ARM, 16-bit Thumb
CPU (@ max. MHz) 1x MSP430 @ 8MHz 1x PIC24F @ 32MHz 1x ARM926EJ-S @ 400 MHz
Internal Memory

(Flash, SRAM)
<55 KB†, <10 KB† 256 KB, 16 KB 64 KB, 2x 16 KB

External Memory
(DRAM, SRAM/Flash)

N/A N/A ≈256 MB∗, ≈768 MB∗

Unit Cost 15.21 $ [44] 5.29e [93] 9.16e [92]

Table A.1: Overview of the most popular microprocessors, for the selected CubeSat missions [40]. Entries with a (∗) are best-case esti-
mates based on memory mapping, whereas entries with a (†) are model dependent.

Specifications RAD750 [90, 91] GR712RC [37] Mongoose-V [87, 89]

Architecture 32-bit, PowerPC 750 32-bit, SPARC V8 V8 32-bit MIPS
CPU (@ max. MHz) 1x RAD750 @ 200 MHz† 2x LEON3-FT @ 100 MHz 1x R3000 @ 15 MHz†

Internal Memory
(Flash, SRAM)

N/A N/A, ≈197 KB N/A

External Memory
(DRAM, SRAM/Flash)

≈1 GB†, ≈512 MB† ≈1.07 GB, ≈33.5 MB/≈33.5 MB 256 MB∗, 192 MB∗

Unit Cost 200.000 $ (ref. 2002) [101] upon request [36] 42.225 $ per 2 units[88]

Table A.2: Overview of the most popular radiation-hardened microprocessors. Entries with a (∗) are best-case estimates based on inter-
nal memory mapping, whereas entries with a (†) depend on model version.

Processor
T I D th

[kr ad(Si )]

SELth[
MeV ·cm2

mg

] SEUth[
MeV ·cm2

mg

]
MSP430F161x [40] >20 <10 20

PIC24FJ256GA110 [40] <20 <2 <2
AT91SAM9G20 [40] - >85.4 <1
RAD750 [13, 56, 90] 200† - 1000† >120 >45

GR712RC [37] <300 >118 Tolerant‡ (>37 ref. FPGA)

Mongoose-V [87] - Immune (>100‡) >80

Table A.3: Radiation performance of all selected processors. Entries with a (†) depend on model version, whereas dash lines denote no
available data. A (‡) indicates classification based on information from [35, 66].
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