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H I G H L I G H T S

• Large-scale short-term load forecasting of medium voltage distribution feeders.

• Automatic data cleansing of medium voltage distribution feeder time series.

• Comparative study of data quality enhancement strategy for distribution feeders.

• Nested validation procedures for model evaluation of time series data.

• Bias-variance trade-off in the enhancement of data quality of distribution feeders.
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A B S T R A C T

Distribution networks are undergoing fundamental changes at medium voltage level. To support growing
planning and control decision-making, the need for large numbers of short-term load forecasts has emerged.
Data-driven modelling of medium voltage feeders can be affected by (1) data quality issues, namely, large gross
errors and missing observations (2) the presence of structural breaks in the data due to occasional network
reconfiguration and load transfers. The present work investigates and reports on the effects of advanced data
cleansing techniques on forecast accuracy. A hybrid framework to detect and remove outliers in large datasets is
proposed; this automatic procedure combines the Tukey labelling rule and the binary segmentation algorithm to
cleanse data more efficiently, it is fast and easy to implement. Various approaches for missing value imputation
are investigated, including unconditional mean, Hot Deck via k-nearest neighbour and Kalman smoothing. A
combination of the automatic detection/removal of outliers and the imputation methods mentioned above are
implemented to cleanse time series of 342 medium-voltage feeders. A nested rolling-origin-validation technique
is used to evaluate the feed-forward deep neural network models. The proposed data cleansing framework
efficiently removes outliers from the data, and the accuracy of forecasts is improved. It is found that Hot Deck (k-
NN) imputation performs best in balancing the bias-variance trade-off for short-term forecasting.

1. Introduction

Relatively little attention has been given to the short-term load
forecasting problem of primary substations, probably because of load
forecasts were not essential to secure the operation of passive dis-
tribution networks. With the increasing uptake of intermittent genera-
tions, distribution networks are becoming active since power flows can
change direction in a rather volatile fashion. High shares of solar PV
and wind generation are connected at all voltage levels in distribution
networks, resulting in substantial uncertainty in their planning and

operation routine [1]. The volatility of power flows introduces opera-
tional constraints on voltage control, system fault levels, thermal con-
straints, systems losses and high reverse power flows [2]. Greater ob-
servability of the networks is required to maintain a safe overall system
and to maximise the utilisation of existing assets. Distribution networks
operators (DNOs) are compelled to broaden their visibility of the net-
works to time horizons that include not only real-time information but
also hour-ahead, day-ahead up to week-ahead forecasts. With this
change in paradigm, short-term load forecast technology is becoming
an essential tool that can assist distribution network operators and
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planners in identifying and anticipating any future critical operational
conditions.

The electric power industry uses the term short-term load fore-
casting (STLF) to refer to the estimation of the system demand over a
time horizon ranging from less than one hour to one week. Various
techniques were developed starting in the mid-sixties to predict system
load power grids. These techniques fell in the realm of statistical
methods and rely on the assumptions of stationarity and linearity of the
underlying process. Nowadays, short-term load forecasting statistical
models are built upon two main modelling frameworks, the seasonal
ARIMA (SARIMA) class models [3] and the exponential smoothing class
models [4]. Meanwhile, short-term load forecasting based on artificial
intelligence (AI) approaches took on momentum with artificial neural
networks (ANN) receiving the largest share of attention due to their
universal ability to learn complex nonlinear functions. With increas-
ingly large datasets made available, forecasting models can be trained
with powerful learning architectures such as forward deep neural net-
work (FDNN), long short-term memory (LSTM) [5] and convolutional
neural network (CNN) [6].

The data acquisition of large scale real-world data is prone to errors;
anomalies in data sets can lead to erroneous forecasting outcomes.
Hence, data cleansing is an essential first step in data-driven learning
techniques [7]. Data cleansing attempts to address data quality issues
by detecting and correcting errors in data sets. In [8], data cleansing
relates to the methods performed on data to enhance the quality and
reliability of the data. The authors in [9] propose four quality dimen-
sions for data: accuracy, completeness, consistency, and timeliness.
Cleansing procedures seek to enhance the quality dimensions of a given
data set.

Data cleaning is a labour-intensive and time-consuming task for the
following reasons: (1) to select a suitable cleaning method is not trivial
(2) to generalise or automate a cleansing procedure is challenging, (3)
there is a risk to introduce new errors in the data. The definition of data
cleansing is strongly dependent on the process under analysis. Since
data cleansing activities require specific domain knowledge and ex-
pertise, errors detection and correction techniques are intrinsically ei-
ther manual or semi-automatic. Most data cleansing procedures in-
corporate domain knowledge and statistical techniques. Domain
knowledge contributes to setting rules or constraints that the data must
satisfy. Statistical techniques are used to screen the data, identify pat-
terns, detect inconsistencies and outliers, and, eliminate contamination.
A comprehensive data cleansing procedure defines error types, identi-
fies and corrects the uncovered errors and, measures improvement in
the data quality. Data cleaning operations encompass data exploration,
data formatting, missing values imputation, eliminating duplicates, and
outliers detection [10].

In [11], historical data for one year period, with 5% of missing data,
were used to predict consumption on weekdays only. Missing values
were handled by listwise deletion. Listwise deletion consists of re-
moving all timestamped rows for which one or more observations are
missing. In the context of time series, listwise deletion produces an ir-
regular spaced time series which can affect the structural dependencies
of the series. The authors overcame the issues as mentioned earlier by
creating multiple sections of time series bounded by the missing ob-
servations. An interesting study is also proposed that sets the problem
of multistep forecasting strategies rigorously by formulating the day-
ahead load forecast of commercial buildings with both recursive and
direct strategies.

In [12] the authors were explicitly concerned with the impact of
missing data estimation on the accuracy of solar irradiance short-term
forecast, identifying the imputation methods that generate the best
estimates of solar irradiance missing values. The study has identified
interpolation, weighted moving average, and Kalman filtering as the
most suitable imputation strategies for solar irradiance dataset. The
authors did not consider structural breaks in the investigation but
suggested the topic as a direction for future research. In [13], Rahman

et al. address the problem of training medium to long-term residential
and commercial building electricity consumption forecasting models in
the presence of small and large gaps (segments) of missing observations
in the hourly training dataset. Small gaps are imputed using linear in-
terpolation, while segment imputation is performed using a scheme
based on LSTM models. The algorithm identifies the segment of missing
values then estimates the missing observations as the weighted average
of predictions produced by training two LSTM models: one with the
data before the segment and the other with data after the segment.

One of the few studies investigating the impact of outliers and level-
shifts on one day ahead forecast of system load can be found in [14].
The authors proposed a robust filtering algorithm based on the Kalman
filter, which allows outliers to be filtered and replaced with estimates
generated by the filter. The robustification of the filter is achieved by
using the one-sided Hampel function, which filters only large negative
residuals identified as the most dangerous contamination for the pre-
dictive model.

Akouemo et al. proposed in [15] two data cleansing procedures
tested on natural gas consumption series. Their implementations are
based on autoregressive with exogenous terms (ARX) models and ANN
models. This approach is further discussed in Section 5.2.

In [16], the treatment of bad real-time load readings is raised.
Wrong measurements are said to be caused by thunderstorms or com-
munication transmission outages. These outliers are detected and cor-
rected based on specified upper/lower limits defined by offset toler-
ances for the typical load profiles. Chen et al. [17] describe an
investigation of forecast improvement of high voltage substation load
where data quality enhancement is at the centre of the study. The ar-
ticle reports up to 20% of bad data and inaccurate measurements in the
substation load historical data. Two outlier detection strategies are
used. The first outlier detection method uses thresholds built upon
Chebyshev’s inequality, while the second compares typical daily and
weekly patterns extracted by Fourier Transform from the partially
cleaned data and compare the typical load curve to the raw data. Re-
moved outliers are imputed using a linear transformation of the typical
daily pattern. Forecasts are produced for raw and preprocessed testing
datasets, and accuracy are reported for both data. It was applied to a
scenario with a limited test set and in the absence of network config-
uration events.

In [18], Ding et al. focus on providing a steps-by-steps model design
procedure to proficiently train and test ANN-based STLF for medium
and low voltage distribution feeders. The problem of missing values is
handled by replacing missing observations with data from a similar day.
In this study, 24-h ahead forecasts for two MV distribution feeders are
produced using a recursive forecasting strategy. Forecast accuracy is
evaluated with the mean average percentage error (MAPE) metric and
reported as 15.5% and 10.3%. Outlier detection, structural breaks or
level-shifts were not considered.

Today, short-term load forecasters start to be deployed at large
scale, and hundreds of primary substation load time series data require
to be modelled and forecast. In [2], Huyghues-Beaufond et al. provide
an example of a real-world solution where a large number of medium
voltage (MV) distribution feeders forecasts are used for look-ahead
contingency analysis studies. Real-world time series modelling is
known to be a challenging task and MV distribution feeders time series
are no exception. First, there are practical challenges associated with
the manipulation of time series data (i.e. timestamps format issues,
duplicate data points, timezone and daylight saving issues, diverging
sampling, etc.). In addition, primary substation load profiles are mix-
tures of industrial, commercial and residential customers [19]. Feeder
data also have typical time series characteristics, such as a slow trend
due to load growth over the years, several seasonal effects, annual cycle
and pronounced dips around holidays periods [20]. Beside intricate
seasonal patterns, the data structure might change over time due to
load transfer requirements or network reconfiguration operations [21].
Network reconfiguration is bound to happen from time to time since it
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is essential for (1) securing the operation of the network and (2) en-
suring reliable energy delivery to the end consumer. Structural breaks
in feeder time series affect the level of the data and occasion level-
shifts; these features are present in historical data, and they will arise in
future data. Thus, level-shifts have a double contribution to decreasing
STLF accuracy. Their presence in the training and testing datasets af-
fects, respectively, the estimation of the model parameters and impact
on the accuracy of forecasts [14]. Another difficulty arises when one or
multiple level-shifts occur in feeder series during the data preprocessing
stage, particularly during the cleaning process, during which outliers
are detected and removed from raw data, and missing observations are
estimated and imputed. Level-shifts affect outlier detection effective-
ness if the detection procedure does not explicitly account for them.

This paper describes a detailed study of data cleansing and short-
term forecasting for a large-scale MV distribution feeder dataset. To the
best of authors’ knowledge, the proposed study has not been conducted
before and does not currently exist in the literature. The paper also
introduces a robust, automatic and computationally efficient data
cleansing approach for STLF of distribution feeders and performs and
extensive analysis. The main contributions are:

• We provide an in-depth discussion of the challenges associated with
producing accurate short-term load forecasts at the medium voltage
distribution level using real-world data.
• All studies are performed on a real-world data set comprising 342
MV feeders, with measurements spanning two years and one half.
The analysis simultaneously addresses outlier detection, missing
value imputation, level-shift detection and short-term forecasting.
• An unsupervised outlier detection framework for multi-seasonal
univariate time series data is proposed. It combines binary seg-
mentation and an adapted version of the boxplot labelling rule to
detect outliers in the presence of unknown numbers of structural
breaks in the data. It is robust and has low computational com-
plexity. On average, it is 65 times faster than standard hypothesis
test. The description of the method also includes a general for-
mulation for the stopping criterion of the binary segmentation al-
gorithm that is suitable for fitting L1-norm models.
• The performance of three missing data imputation techniques
(Unconditional mean, Kalman smoothing and Hot Deck) is com-
pared in combination with the outlier detection framework.
• An adaptation of Nested Cross-Validation to time series data named
Nested Rolling-Origin Validation (NROV), is proposed to tune the
parameters and evaluate the models’ generalisation performance. A
comparison has been performed against a Nested Adjusted k-fold
validation (NAkfoldV).
• The accuracy of short-term load forecasts is quantified and com-
pared across the full ensemble of MV distribution feeders.
Consistency of performance across different feeders and its depen-
dence on outlier and imputation methods are analysed.

The rest of this paper is organised as per the flow chart provided in
Fig. 1: Section 2, we discuss the proposed outlier detection framework
and its main components. In Section 3, missing data imputation tech-
niques used for the experiment are introduced. Section 4 discusses the
models’ selection and evaluation methodology, as well as the strategy
used to generate multistep ahead forecasts. Section 5 presents the case
study where the forecasts results are discussed. We compare 24-steps-
ahead forecasts performances for eight combinations of the data
cleansing strategies. Finally, in Sections 6 and 7, we offer discussions
and suggestions for extensions and conclusions

2. Outliers detection in univariate time series

Real-world data are frequently noisy and corrupted with outliers.
Outliers relate to gross measurement errors, blunders and measurement
errors [22]. Depending on the context, the proportion of gross errors in

data is between 0.1% to 10% [23]. In [22], outliers are defined as data
points that are significantly inconsistent with the remaining data. Many
authors have reported outliers in empirical data to bias parameters
estimation, leading to model misspecification and reduced forecast
accuracy. In the following sections, we then introduce the two com-
ponents of the proposed outlier detection technique, namely Tukey’s
boxplot labelling rule and a robust implementation of the binary seg-
mentation algorithm.

2.1. Robust detection of outliers in univariate time series

There are two standard approaches for dealing with outliers in re-
gression problems, the regression diagnostics and the robust regression.
A diagnostic approach identifies and removes the outliers from the data
first and then fit the model to cleaned data, whereas a robust approach
fits first a model to the entire dataset and then identifies the outliers as
those data points which present large residuals. Robust regression ap-
proaches are sequential, and model parameters are re-estimated once
the identified outliers are removed. In a recent publication, Akouemo
and Povinelli [15] adopt a robust regression approach for the treatment
of outliers in daily natural gas data, based on the analysis of the extreme
values of forecasting residuals. This approach can be found in the sta-
tistical literature of outliers detection in time series data [24].

Statistical techniques are parametric, relying either on prior
knowledge of the data distribution or on estimating unknown para-
meters of an assumed family of statistical distributions. The salient
downsides of parametric strategies are (1) their model dependency, (2)
the estimation of the model parameters is biased by outliers, (3) they
often assume stationarity of the model. Robust outlier detection pro-
cedures are classified together with nonparametric and distribution-free
procedures [25]. The density-based techniques with the kNN (k nearest
neighbour), the LOF (local outlier factor) and Tukey’s rule are among
the most popular.

Tukey’s rule relates to the robust method applied to identify outliers
via boxplots visually. Potential outliers are flagged on the basis of upper
and lower hinges that are related to quartiles of a batch of measure-
ments rather than distributional assumptions. The first quartile q1 (25%
percentile) and third quartile q3 (75% percentile) are computed to es-
timate the width of the central part of the data. The interquartile range
( =iqr q q3 1) has a breakdown point1 of 25% [26], indicative of high
robustness against outliers. In Tukey’s method, an observation is classed
as an outlier when its value lies outside the outer fences, defined using
the parameter r such that data points below ×q r IQR( 1 ) or above

+ ×q r IQR( 3 ) are viewed as being too far from the median. he value
=r 1.5, referred as the main resistant rule by Tukey and its perfor-

mances is discussed in [27]. It is frequently used as a value that bal-
ances false positives and false negatives. The resistant rules =r 2 and

=r 3 were also proposed later for heavy tail distribution [27]. We have
tried the above resistant rules, but the main resistant rule =r 1.5 was
the most suitable rule for our application

2.2. Robust off-line change-point detection in univariate time series

Change-points are those points in a data sequence where statistical
properties such as mean, median, variance or distribution change sig-
nificantly. Among multiple change-points detection techniques, the
Binary Segmentation (BS) is selected for its conceptual simplicity and
its low computational complexity n n( log ) [28]. The BS is a forward
selection algorithm introduced by Scott and Knott in [29]. Let = yy { }n1:
denote a sample of observations from a nonstationary random process
assumed to be piecewise stationary with k change-points at

= … … n{ , , } {1, , }k1 , the sequence of change-points is ordered such

1 The breakdown point is the smallest percentage of outliers that can cause an
estimator to take arbitrary large aberrant values.
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that <i j if, and only if <i j. The dummy variables = 00 and =+ nk 1
are implicitly available. The segmentation refers to the automatic de-
composition of = yy { }n1: into +k 1 weakly stationary segments with
the ith segment +s y{ }i 1:i i1 .

At first, the entire dataset is searched for one change-point, typically
via a cost function to be minimised. Once a change-point is found, the
data are split into two sub-segments, defined by the identified change-
point. Then, a similar search is performed on either sub-segment, pos-
sibly resulting in further splits. The recursion continues until a given
criterion is satisfied. Here, to identify multiple unknown change-points
in the data, the method adopts a general form where a contrast function
V y( , ) (that penalizes a high number of change-points in order to avoid
overfitting) is minimized with respect to k and = …{ , , }k1 . As dis-
cussed in [30], we assume the penalty term to be linear in =k . Under
this assumption, the cardinality constrained problem to be solved can
be written as

+ >V ymin , with 0
, (1)

=
+V c yy, ( )

i

k

0
1:i i1

(2)

+
= +

+c y y y( )
t

t1:
1

1:i i
i

i

i i1
1

1
(3)

where +c y( )1:i i1 is the sum of absolute deviations for each t from the
empirical median +y 1:i i1 of sub-signal +y 1:i i1 . The parameter con-
trols the balance between model complexity and goodness of fit. Low
values of favour overfitting with too many change-points and high
values of discard most true change-points. The cost function c (.) in Eq.
(3) measures the homogeneity of the sub-signal = +s y{ }i 1:i i1 . Thus, the
cost is expected to be low when the sub-signal does not contain any
change-points and large when it does.

Various cost functions are found in the existing literature among
which piecewise linear models.

We use the Least Absolute Deviation (LAD) that was proposed by Bai
in [31] for the estimation of level-shift points in autoregressive signals
and noisy distributions. He considered the L1-norm because of its ro-
bustness against fat tails distribution [31].

The Binary Segmentation approach iteratively inserts change-points
in segments = +s y{ }i 1:i 1 of the entire signal = yy { }n1: . The elementary
operation is the single change-point method, it tests if a split of the
segment exists such that the cost function over the two sub-segments
plus the penalty term is smaller than the cost function across the entire
signal = yy { }n1: . Under the linear assumption, the penalty term is
reduced to for a single change-point search and the algorithm tests
whether it exists a time index …n{1 } that satisfies

+ + <+c y c y c y( ) ( ) ( )n n1: 1: 1: (4)

If no change-point is detected, no additional change point is created and
the algorithm stops. In the literature, penalty terms have been proposed
and justified either from theoretical assumptions or inferred from data
[30,32].

In our application, we applied the two most common penalties used
in the literature, namely the Akaike and Schwartz penalties, but in
combination with the L1-norm cost function, the binary segmentation
failed to detect any change-points. After experimentation, the value

= × n[4 log( )] was selected as a suitable choice that allows the binary
segmentation algorithm to approximate the number of change-points
for a wide range of feeder data. We carried a sensitivity analysis on the
parameter to assert that its value was suitable for feeder data with and
without level-shifts. In addition, the proposed choice of has been
successfully tested for invariance properties against scaling and shifting
of the data.

2.3. Proposed outlier detection procedure

In [22], Aggarwal asserts that the most effective methods for outlier
detection are dataset specific and make use of contextual information to
develop strategies tailored to the data in hands. The proposed strategy
integrates the seasonal load features, namely, typical days of the week
and the yearly cycle, in the outlier detection procedure. It is a single-
step automatic procedure which identifies all outliers in a “segment” at
once as opposed to the recent recursive method proposed in [33], which
requires many model fits.

The method proposes to adapt Tukey’s univariate rule method to
detect and remove outliers from piecewise stationary segments. Time
indexes of detected change-points bound segments if any exists;
otherwise the full dataset is processed. A segment must contain at least

Fig. 1. Flow chart of paper organisation.
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a full day to be processed.
The method compares observations to suitable upper bound and

lower bounds at each time step. Let S be a segment of raw data to be
processed. S is divided into p

w s, , where p is the hour of day, p depends
on the granularity of the data, i.e. for hourly data, =p 48 for half-
hourly data, w is the typical day, weekday (WD) or weekend (WE) and s
is the season. We implement Tukey’s method to construct one Upper
Bound (UB) vector and one Lower Bound (LB) vector, one for each
typical days at all seasons s in S. Let ×L U[ , ]b b

p(1) (1) 2
s s , theUBs and LBs

be vectors for WD and ×L U[ , ]b b
p(2) (2) 2

s s the UBs and LBs vectors for
WE. We compute the 5th and the 95th percentiles q j5 [ ]s

i( ) and q j95 [ ]s
i( )

respectively, and iqr j[ ]s
i( ) with …i j p[1, 2], [1, , ], then we update

the UBs and LBs vectors for both typical days as follow:

= ×L j q j iqr j[ ] 5 [ ] 1.5 [ ]b
i

s
i

s
i( ) ( ) ( )

s (5)

= + ×U j q j iqr j[ ] 95 [ ] 1.5 [ ]b
i

s
i

s
i( ) ( ) ( )

s (6)

Once Tukey’s hinges are computed for WD’s and WE’s for each
season, daily observations in S are compared against theUBs

i( ) and LBs
i( )

vectors and outliers are flagged then removed from the data. Data are
classified as outliers/non-outliers based on whether or not they fall
outside the given bounds.

The results of the segmentation and cleaning process are illustrated
in Fig. 2. The top figure exhibits the raw data from Feed 3 (see Table 5)
prior to application of the outlier cleansing framework to the data. This
feeder data presents multiple structural breaks and multiple outliers;
piecewise stationary segments 1 to 4 are indicated with red horizontal
arrows. The bottom figure illustrates the data after the outliers being
removed. Table 1 reports the count and the percentage of removed
outliers in each segment. The proposed cleansing procedure consists of
the combination of the binary segmentation algorithm and the Tukey
rule. Both procedures have a complexity of n n( log ) which gives to our
procedure a complexity of n n( log ). Figs. 3 and 4 illustrate the per-
formance of the outlier detection procedure for a half-hourly and hourly
resolution. The boxplots show the statistics of the running time and the
percentage of removed outliers relative to 342 MV feeders. In practice,
however, the running time rarely exceeds one minute, which is easily
doable for the size of the datasets. On average less than 1% errors were
detected in the training datasets with a maximum of observations re-
moved not exceeding 2%. For distributions close to normal, the

masking (false negatives) and swamping (false positive) effects on the
detection error using the Tukey rule should not exceed 0.6% as per the
study carried out by Hoaglin et. al in [27]. The forecasting perfor-
mances associated with this feeder following outlier removal and
missing values imputation process are presented in Tables 5 and 6 and
discussed in the case study section.

Fig. 2. Outliers detection/removal with BS-Tukey for Feeder 3 data which contain multiple structural breaks – top plot(before detection), bottom plot(after detec-
tion).

Table 1
Number of outliers removed per segment for Feeder 3.

Segment 1 Segment 2 Segment 3 Segment 4

Sequence [0, 6150] [6151, 9380] [9381, 18450] [18451,21641]
No of outliers 70 18 87 23
(%) outliers 0.32 0.08 0.4 0.1

Fig. 3. Running time statistics of the automatic outlier detection across 342
feeders for half-hourly data (43,282 samples each) and hourly data (21,641
samples each).
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3. Missing observations imputation

As standing assumption for the rest of this work, we assume the
missingness mechanism in feeders load data is Missing at Random
(MAR) as per Little and Rubin [34] classification system. This as-
sumption suggests that we can ignore the precise mechanism under-
lying the missing data, and missing data and observed data are assumed
to come from the same distribution. The imputation techniques used in
this paper to handle missing observations in the MV feeder series are
listed below.

3.1. Simple imputation: mean substitution

The simplest univariate imputation technique is mean substitution.
Mean substitution is a heuristic method that substitutes missing ob-
servations by the unconditional mean of the observed data. Mean im-
putation is naive and should be cautiously used since it can severely
distort the empirical distribution of the data and insert bias in analytic
or statistical inference, especially if the data is nonstationary [35,36].

3.2. Hot deck imputation: k-nearest neighbour

Hot Deck class of imputation techniques is widely used because it
makes only minimal assumptions on the data. The procedure replaces
missing values (recipient) by values extracted from responding cov-
ariates (donors) that most resembles the recipient. The algorithm
widely used for matching donors to recipients is the k-Nearest
Neighbour (kNN). The imputed value is either a single observation
drawn from another variable (1-NN) or the weighted average of k ob-
servations drawn from k variables (k-NN) [37]. In standard kNN im-
putation, the similarity between recipient and donors is measured with
the Euclidean or Manhattan distance [38].

In this work, the optimistic knn algorithm available in the py-
thon’s fancyimpute library was used to impute the feeders’ data. The
imputation procedure is illustrated in Fig. 5. Feeder data sets are re-
presented as a matrix ×M n m, where each column is a time series of
n regularly spaced measurement values. There are m such columns
(features), one for each feeder. Missing observations are imputed on a
row-by-row basis; the k-NN algorithm selects each row’s k nearest
neighbours (i.e. times with similar measurements) and computes their
weighted average to impute the missing observations. The nearest
neighbours of the ith row are identified as being the k rows with the
smallest normalized Euclidean distances

=d i j
n

O O, 1 ( )
i j h

i h j h
0( , )

, ,
2

i j, (7)

where Oj h, is the observed value for feeder h at timestamp j and the set
i j, is defined as the set of common features between i and j (i.e. the

feeders for which data is available at both time stamps) with
n mi j i j0( , ) , . Note that =d i j d j i( , ) ( , ) holds for all

…i j n, {0, , 1}. Let us define the set i
k of k indices with the

smallest distance from i as = …j i d i j d j n{ : ( , ) , 0, , 1}i
k

i
k

with = ( )d d kmin :i
k

d x j d i j d( , )x x in which [.] denotes the in-

dicator function. The imputed value x i h( , ) of feeder h at time stamp i is
given by
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k

i
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=w
d i l

1
( , )i l, (9)

The weight wi l, controls the influence of the observed values Ol h, in the
computation of x i h( , ).

3.3. Kalman smoothing imputation

The Kalman Filter is a recursive optimal linear filter, which is based
upon the representation of a dynamic system in a state space form. Let

=y y{ }t t t
n

1 be a univariate nonstationary time series. It is supplemented
by unobserved variables represented in a state vector { }t where y{ }t and
{ }t are jointly Gaussian processes. We adopt a simple local linear trend
model as suggested in [39,40], taking the following form:

= +y µt t t (10)

= + +µ µt t t t1 1 (11)

= +t t t1 (12)

where N N(0, ), (0, )t t
2 2 and N (0, )t

2 are white noise
disturbances mutually uncorrelated. The local trend model can be cast
in state space form as follows
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Parameters are estimated by maximizing the Gaussian likelihood
function of the chosen model. For this work, we use the Kalman
smoother imputation available in pykalman library (version 0.9.2)
with python 3.6.

The algorithm is used in four variants. The first variant consists of
smoothing the entire raw univariate time series so that the filter per-
forms two actions: it smooths the entire signal (all observed data) and
interpolates the missing observations. In the second variant, the outliers
are flagged and removed using the proposed outlier detection tech-
nique, and the remaining cleaned data are smoothed while all missing
observations are interpolated by the smoother. In the third and fourth
variants, missing values and removed outliers are replaced by inter-
polated values. No smoothing is performed on healthy raw data.

4. Methodology

4.1. Inputs selection and model architectures

Deep neural network models were trained to forecast load for each
feeder. Network architectures were optimized by grid search via a
nested cross-validation procedure which is discussed in the following

Fig. 4. Statistics of the percentage outliers removed by the automatic outlier
detection across 342 feeders for hourly data (43,282 samples each) and hourly
data (21,641 samples each).
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section. Tables 2 and 3 provide details on the input layer configuration
and network architecture and training algorithm specifications re-
spectively. All algorithms have been implemented in Python 3.5 and
3.6. All studies were carried out on Windows 10 operating system with
an Intel Xeon CPU E5-2630 2.4 GHz processor. The mean absolute
percentage error (MAPE) given by Eq. (14) is computed as the forecast
performance metric. Model performance evaluation and the forecasting
results are discussed in the following sections.

= ×
=n

y y
y

MAPE 1 100%
t

n
t t

t1 (14)

Weather variables were added to the input layer based upon the

localization of the substation that hosts each feeder and the proximity
of the substation to one of the eleven weather stations for which we had
weather forecast data. Even though weather and feeder load scatter
plots revealed a low correlation between the variables, which agrees
with recent studies that report 80% of heating and cooling systems in
the UK are supplied with gas energy, temperature and humidity
weather forecast appeared to improve model performance during
stepwise feature selection. High dimensional input space leads to an
excessive number of input weights and poor performance [41]. Thus, to
reduce the input space, dummy calendar variables were encoded with
sinusoidal functions as shown in Table 2 rather than using one-hot
encoding as in [13]. The network input vector x contains 13 inputs
reported in Table 2. Each input was standardized with zscore such that
each xi was computed as x x µ( )/i i i i, where µ is the input mean
and is its standard deviation.

4.2. Multistep-ahead forecasts strategy

A recursive prediction strategy was used to generate 24-h load
forecasts (24 values) at midnight (12 am). Let = yy { }n1: be a univariate
feeder time series comprising n observations, and we aim to forecast the
next 24 values of the time series. The underlying process is estimated by
a model of the form m and an error term t given by

= +y m z( , ; )t t t t1 (15)

where N (0, ),t t
2 are the model parameters, = y y y[ , , ]t t t t23 47

and zt is the vector of the exogenous inputs (either known or forecast
for time t) depending on the current hour, day, month and day type as
reported in Table 2 and summarised with the parameter

h d m DT( , , , ). For simplicity, from hereon, we drop the depen-
dence on in m z( , ; )t t1 and use the shorthand notation m z( , )t t1 .
The recursive prediction consists of repeating one-step-ahead predic-
tion several times using the previous forecast as input [11]. We com-
pute forecasts recursively for = …h 0, , 23 as

=
+

+ + + +

m y

m m y y y

z

z z

( , )

([ ( , ), , ], )

h
t t t t h

h
t t t t h t h t h t h

( )
1: 47 :

( 1)
1: 47 : 1 24 47 (16)

where the recursion is initialized by m y yz( , )t t t t
( 1)

1: 47 1 1, and we
use the conventions …y y y[ , , ]t t t t1: 47 1 47 and …+ +z z z[ , , ]t t h t t h: .
We preprocessed training and testing datasets either by imputing
missing values only or by detecting and removing outliers first followed
by the imputation of all missing observations.

Fig. 5. k-NN imputation technique illustration for k = 2. hm = feeders, i l, k = time.

Table 2
Network input layer (∗)

Variables Inputs

Load lags (current) yt 1 or yt 1
y y,t t24 48

Weather forecast temp(t + h), hum(t + h)
Calendar cycles h hcos(2 /24), sin(2 /24)

d dcos(2 /7), sin(2 /7)
mcos(2 /12) , msin(2 /12)

Day-type (DT) Weekday/Weekend = 0 1
Holidays = 0 1

∗ Notes: t is the current time, y denotes the current and y denotes
one-step-ahead forecast, h = …H {0, ,23} for time of day,
d = …D {0, ,6} day of week with Monday = 0 and Sunday = 6,
m = …M {1, ,12} month of year with January = 1 and
December = 12.

Table 3
Specification of models’ architecture and training algorithm.

Tuning parameters method Grid search
Inputs standardization z-score
Hidden layers [1, 2, 4, 6, 8]
Cells per layer [2, 4, 6, 8, 10]
Batches [16, 32, 64]
Activation ReLU
Solver Adam
Hyperparameters default settings = =0.001, 0.91

= =0.999, 102
8

Cost function MSE
Early stopping True
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4.3. Datasets preprocessing strategy

We have preprocessed 342 MV feeders series with eight pre-
processing strategies producing eight training/testing datasets. Each of
the datasets was modeled with a FDNN architecture. Hence, we trained
eight models per feeder. The first set of four training/testing datasets
r_m, r_knn, r_kf_imp, r_kf_smo was obtained following the imputation
of the raw data (r) without detecting and removing outliers; the missing
values were imputed using either unconditional mean (m), 10-nearest
neighbour (knn), Kalman imputation (k_imp), Kalman smoothing
(k_smo). The other set of four training/testing datasets no_m, no_knn,
no_kf_imp, no_kf_smo was processed by performing a detection/re-
moval outliers procedure (no) to the raw data before imputing all
missing values using the aforementioned imputation strategies.

4.4. Model selection and performance evaluation

Common cross-validation techniques found in the STLF literature
are out-of-sample (OOS) evaluation and k-fold cross-validation. In
general, cross-validation techniques result in good model selection
performances. However, particular care should be taken when the aim
is to estimate the generalisation error of a model [42]. The out-of-
sample method is a simple cross-validation technique that suffers from
issues of high variance which can lead to overfitting in model selection
due to information leak [43]. Hence, a resampling method, such as k-
fold cross-validation, is more suitable. However, k-fold cross-validation
implementation is not straightforward when it comes to time series
forecasting. Because of the temporal dependence between errors in the
training and testing datasets of time series data, training and testing sets
are not independent, which invalidates the cross-validation results
[44]. In addition, the traditional setting of k-fold cross validation uses
future observations to predict the past.

To overcome the shortcomings of the standard k-fold cross-valida-
tion, two procedures are proposed to tune the parameters and evaluate
the models’ generalisation performance: the Nested Rolling-Origin-
Validation (NROV) and the Nested Adjusted k-fold validation
(NAkfoldV) illustrated in Fig. 6. Each procedure implements a pair of
nested loops which offers an unbiased and robust model performance
evaluation technique. Model selection and model fitting procedures are
integral parts of the entire model evaluation process.

The Nested Rolling-Origin-Validation makes uses of the basic
rolling-origin evaluation discussed in [45], also known as anchored
walk-forward evaluation in financial optimisation. Feeder time series
are partitioned multiple times in training, validation and testing sets.
Each time, the training period is moved further ahead with its origin
fixed at the beginning of the series. The advantages of NROV are (1)
several out-of-sample errors referred to as forecast origin in [45] are
obtained which gives a better understanding of how the models per-
form, (2) the strategy mimics the production scenario where forecasting
models are retrained on new coming historical data, and (3) the pro-
cedure returns multiple optimum model architectures.

After each training period p with …p m[1, , ], an optimum archi-
tecture is selected out of k pre-selected architectures. The selection is
made based on the best one-step-ahead forecast performance achieved
on the validation data of each period. The optimum architecture is
retrained on the training and validation sets, and forecasts are produced
on the test data (out-of-sample). At the end of the NROV, there are p
optimum architectures available; in Fig. 6, Model selection 1 compares
the mean percentage error (MPE) achieved by each optimum archi-
tecture on the out-of-sample data and picks the best model that
achieved the best performance.

Arguably, model selection 1 carries the risk of biasing the model
selection because different test sets are used to quantify the perfor-
mance of the various optimal architectures. As a comparison, an al-
ternative Model selection 2 approach, NAkfoldV, is proposed, which
applies an adapted k-fold strategy to split the training data into twelve

equal splits. The procedure reserves the two last splits for validation
and test purposes which are identical for each of the 10 periods. The
best architecture is selected in the same way as for as the one used in
Model selection 1.

The statistics for the performance of 24-steps ahead forecast across
342 MV feeders using NROV and NAkfoldV are shown in Fig. 7. The
preprocessed data used for these model evaluation studies are the fully
cleaned 10-nearest neighbours dataset (NO_KNN). The models’ perfor-
mance displays a comparable distribution of errors; thus, NROV and
NAkfoldV procedures display similar model evaluation performance,
and both methods offer a robust measure of forecast uncertainty
through narrow confidence bands and a performance distribution close
to normal. In the remainder, we use the NROV, because the procedure
does not depend on a single choice of testing data (i.e. the most recent
time window). Once the best models have been identified, they are
retrained on the entire training data and forecasts are produced on the
new sets of test data. The data are introduced in the case study section.

5. Case study

5.1. The data

UK Power Networks (UKPN), one of the six distribution network
operators (DNO) in the United Kingdom have provided us with his-
torical time series data for 342 MV/LV feeders alongside with next-day
historical weather prediction data collected from eleven weather sta-
tions spread across the East Kent area in the South East region of
England. Feeders are connected to 33 kV and 11 kV distribution sub-
stations. Load and weather data cover the period starting from January
2014 and ending in September 2017 at hourly granularity. Datasets are
divided into training, and testing sets with the testing set starting in
May 2017. The number of missing observations averages 1.08% across
(training and testing data combined) with a standard deviation across
feeders of 1.25%. In the following, the notation ±1.08 1.25% will be used
to report mean and variation across feeders. After outlier removal, the
fraction of missing data increases to ±2.0 1.41%.

5.2. Outlier detection: Tukey rule vs hypothesis testing

Here, we compare the proposed outlier detection using Turkey’s
method with the algorithm proposed by Akouemo and Povinelli [15],
which we will refer to as H-test. The H-test procedure is recursive; it fits
uncleaned data to a given model and runs a hypothesis testing proce-
dure on the forecast residuals to establish if an extremum is an outlier.
When the probability of an extremum to be an outlier exceeds the level
of significance set to = 0.01, the corresponding data point is removed
from the dataset, imputed, and the model is retrained on healthier data.
The procedure repeats until no outliers are found in the residuals.

The method proposed in [15] was adapted in a few ways to make a
direct comparison possible. The authors of [15] propose to fit the data
to ANN and NARX models, instead, we used the same FDNN archi-
tecture and inputs vector described in the previous section to fit the
data. Moreover, we have modified the procedure to accommodate the
data in hands in three ways. First, we had to impute all missing values
in the raw data prior to train the FDNN models. We chose to impute the
raw data with unconditional mean. Secondly, to ensure a fair compar-
ison, we added the change-points detection procedure to the H-test
algorithm. For each of the detected segments, we trained a model and
detect outliers in the one-step-ahead forecast residuals. Lastly, we im-
puted the outliers using the median of segments instead of an inter-
polation method since the feeder data exhibit groups of consecutive
outliers but not isolated outliers as it was the case with the natural gas
data used in [15]. We run the H-test augmented with change-points
detection as follows; outliers were searched one-by-one and temporarily
imputed with the median of the segment. Outlier indices were recorded
during the search. Once the algorithm had found all the outliers, we
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Fig. 6. Nested validation procedures – top: Nested Rolling-Origin Validation (NROV) – bottom: Nested Adjusted-k-fold Validation (NAk-foldV).

Fig. 7. Statistics for the performance of 24-steps ahead forecast across 342 MV feeders using (1) Nested Rolling-Origin Validation (NROV) on the left and (2) Nested
Adjusted-k-fold Validation (NAk-foldV) on the right (NO_KNN dataset).
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substituted them with mean, and we trained the FDNN forecasters so
that we could compare the forecasting results with no_m (no out-
liers + mean imputation) datasets for Tukey and H-test method.

We compare both procedures in terms of running time and detection
accuracy, by applying them to load time series of two feeders: Feed 1
and Feed 3 (see Fig. 8). We first used both Tukey’s procedure and the H-
test to detect outliers in the training and testing data of the two
aforementioned feeders. We then trained two forecasters per feeders
with the cleaned data and compared the predictions from each model.

In Table 4, we report on the number of outliers found in the training
and testing datasets by both procedures. We have recorded the running
time for each outlier detection procedure. Running time and 24-h ahead
forecasts MAPE results are also reported in the table. Note that Tukey’s
method on average is 65 times faster than H-test. If we compare the
MAPE results for Feed 1 between both procedures, the performance of
dataset preprocessed with Tukey and H-test are similar although H-test
omitted a number of outliers in the testing data which has slightly
penalized the forecast accuracy. In Feed 3 case, H-test was significantly
less successful at identifying harmful outliers. The discrepancies in the
number of found outliers by the H-test algorithm can be explained; the
binary segmentation only approximates the number of change-points.
Hence, the number of level-shifts detected in the data might not always

be optimal. If the segmentation is not optimal, the residual normality
assumption does not hold, and the H-test cannot perform well. This
demonstrates the robustness of the Tukey method. In addition, the H-
test method relies on the model’s parameters estimation, therefore each
time the method runs, the total number of found outliers varies as
opposed to Tukey method that always flagged the same observations as
outliers.

To conclude, both methods are relatively easy to implement, but H-
test is less suitable for large data sets, due to computational require-
ments. Tukey’s method is fast and robust and will be a better choice for
voluminous data.

5.3. Forecast performances

Let us first recall that FDNN or any deep neural networks archi-
tectures fail to process data with missing values. Here, results are
provided for (1) 24-steps-ahead forecast at feeder level (2) 24-steps-
ahead forecast at scale.

5.3.1. Results at individual feeder level
To evaluate forecasting performance, we used the mean absolute

percentage error metric referred to as MAPE in Eq. (14). We have
computed the MAPE using two ground truth datasets; the raw testing
data (r) and the testing data cleansed from outliers (no). The latter
allows us to compute a ‘clean’ forecast accuracy because accuracy re-
sults are reduced when the ground truth data contain outliers. Note that
training and testing data are always preprocessed with the same
strategy.

The achieved accuracies for 24 h-ahead forecasts of five feeders are
reported in Table 5 and Table 6. In both tables, the left-hand-side
column indicates in black the data preprocessing strategies and in gray
which ground truth data were used to compute the MAPE (i.e.
r_kf_imp_no must be understood as the model is trained and tested with
raw data imputed with the Kalman filter and the ground truth has been
cleaned from outliers). Table 5 describes the accuracy results obtained
for the forecasters trained and tested on raw data with the missing
values imputed. Table 6 outlines the performances achieved by the

Fig. 8. Time plots for the training and testing raw datasets of “Feed 1” to “Feed 5”.

Table 4
Outlier detection and MAPE (%) results: Tukey method vs Hypothesis testing
(H-test).

Feed 1 Feed 3

H-test Tukey H-test Tukey

Number of outliers in training data 199 191 52 198
Running time (min) 50.51 0.37 8.33 0.33

number of outliers in testing data 22 39 35 76
Running time (min) 2.23 0.055 3.60 0.061

MAPE(%)
no_m_r 5.33 4.11 10.40 8.38

no_m_no 4.11 4.02 10.34 6.22
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forecasters trained and tested on data fully processed (outliers re-
moval + imputation). The results highlighted in red indicate the worst
forecasting performances between Table 5 and Table 6.

Fig. 8 shows the time plots of the training and testing raw datasets
for each of the five feeders under consideration. The plots help high-
light the presence of gross errors and level-shifts in the datasets. From
these plots we see that Feed 1 and Feed 4 present no structural breaks in
the training data and behave alike in terms of overall shape; both data
contain outliers of varying amplitudes spread across the full dataset
(training and testing), but Feed 4 has two large outliers at the end of the
training data. The training and testing data of Feed 2 and Feed 3 contain
multiple structural breaks and gross errors of various amplitude. Feed 5
presents only one significant structural break in the middle of the
training data, but there are no significant data quality issues in its
testing data. At the bottom of Tables 5 and 6, the percentage of missing
values (mv) in the feeders’ training and testing data are reported. Note
that missing values can only be logged before any imputation is per-
formed.

Next, we discuss the forecasts accuracy results considering the five
feeders one-by-one, and we compare the feeders’ MAPE reported in
Table 5 (imputed raw datasets) and Table 6 (cleaned and imputed da-
tasets). We are interested in assessing how a given data cleaning pro-
cedure improves the modelling performances; ergo, we compute the
forecasting accuracy improvement as the difference between the best
performances found in Tables 6 and 5. Starting with Feed 5, its raw data
present a modest percentage of missing observations, and consequently,
most of the missing values in Table 6 are due to outliers being removed.
The forecasts results obtained with the raw data imputed with mean
outperformed the three other techniques. Following the outliers
cleaning procedure, forecasts accuracy has improved for all imputation
techniques, but the knn imputation did a better job on cleaner data and
surpassed all the other imputation methods. Because the testing data
had very few outliers, the MAPE results obtained with both type of
ground truth data (r and no) are almost identical. With Feed 5, we
achieve a 0.80 reduction of the MAPE.

Feed 4 performs better than Feed 5 despite (1) its level of missing

Table 5
24-h ahead forecast MAPE (%) results for 5 feeders – Training/testing datasets preprocessed with imputation
only (no outliers cleaning).

Note: Training and testing data preprocessing strategies are indicated in black; ground truth data are indicated
in blue (r = Raw data, no = No outliers, m = Unconditional mean imputation, kf_imp = Kalman filter
imputation, kf_smo = Kalman smoother imputation, knn = 10-Nearest Neighbour).

Table 6
24-h ahead forecast MAPE(%) results for 5 feeders-Training/testing datasets preprocessed with imputation
and outlier cleaning.

Note: Training and testing data preprocessing strategy is indicated in black; ground truth data are indicated in
blue (r = raw data, no = no outliers, m = unconditional mean imputation, kf_imp = Kalman Filter im-
putation, kf_smo = Kalman smoother imputation, knn = 10-Nearest Neighbour).
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values being larger than in Feed 5 data and (2), its series present many
large gross errors. This implies that the only presence of the level-shift
in Feed 5 training data has biased the estimation of the model para-
meters. Feed 4 model’s performances indicate that Kalman smoothing
was the best imputation procedure used on the raw data. These good
performances are a consequence of the filtering of some of the noisy
data in both training and testing data. Note that imputing Feed 4 raw
training data with knn produced the worst forecasts possibly because
contaminated observations have been used to impute missing ob-
servations. Overall, Feed 4 forecasts accuracy has improved following
outliers removal and best forecasts are achieved with mean imputation
on cleansed data. We have reported the accuracy improvement based
on the MAPE obtained with the cleaned ground truth data (no) since
Feed 4's testing data contained several outliers. Feed 4 forecasts were
improved by 0.8.

Feed 3 performed the worst among all five feeders. These poor re-
sults are due to the presence of multiple level-shifts in the training data
and one in the testing data. In addition, the feeder’s raw data contain
the highest level of missing observations exacerbated by the outlier
cleansing procedure. Similar to Feed 4, Feed 3’s model performed best
on smoothed raw data while knn imputation outperformed mean and
Kalman on cleaned data. With Feed 3, we also achieved 0.80 accuracy
improvement. Forecast results for Feed 2 show that outlier cleansing
does not always help FDNN models to perform better. The results also
emphasise what we have already discussed for Feed 5 and Feed 3; level-
shifts in the training data affect negatively the model fit consequently
the performance of the forecasters. From Feed 2 accuracy results, we see
that the forecasts produced by the models trained on cleaned data only
and imputed with knn or Kalman smoothing are approximately equal.

The forecaster trained on Feed 1 data achieved the best forecasts
among the five feeders with the lowest MAPE = 3.59% against 6.08% for
Feed 3. As a reminder, all accuracy results reported in this section relate
to 24-h ahead forecasts. We achieve 0.33 accuracy improvement for this
feeder with Kalman filter imputation outperforming the other strate-
gies. We further discuss these results in the discussion section.

Next, we propose to visualise the carry-over effect of outliers on
short-term forecasts. This effect occurs because lagged values of feeder
load data are used as inputs to the forecast model. Fig. 9 illustrates the

carry-over effect. The red areas in the plots highlight the contaminated
observations in the testing data and their carry-over effect on predic-
tions while the green areas outline the improved forecasts produced
with the testing data cleaned from contaminated data. Level-shifts not
only affect the model parameters estimation, but they also alter the
forecast accuracy as illustrated in Fig. 9. Although in Fig. 9 the level
does not jump significantly, the 5th day experienced a drop in level
which could not be predicted by the forecaster. In closing, we have
identified several factors which contribute to deteriorate the perfor-
mance of MV feeders short-term load forecaster: level-shifts, outliers in
historical and future data, the level of missing values, and the im-
putation strategy used.

5.3.2. Forecast results at scale
In this section, the forecasting results of all 342 MV distribution

feeders for which accuracy performances are compiled in Tables 7, 8
and 10, are discussed. Similarly to the previous section, the forecasts
relate to 24-h ahead prediction of feeders loads. In Table 7, the fore-
casting models are identified by the strategies used to preprocess the
training and testing datasets. For each model (8 models per feeder), two
MAPEs are computed: one uses raw ground truth data, the other uses
cleaned ground truth data. The daily MAPEs were averaged across the
full testing data so that we report a unique accuracy value per feeder for
a total of 342 values per model (each model accuracy being evaluated
twice). The MAPEs of each model are reported in terms of their dis-
tribution; histograms are displayed in Fig. 11.

In Table 7, we have summarised all distributions with mean and
standard deviation. Because these statistics are highly sensitive to
outliers, we have also computed the median and the Median Absolute
Deviation (MAD) as robust alternatives to the mean and the standard
deviation, respectively. The MAD is defined as

= =X X X XMAD median with median .i (17)

Table 7 is organised as follows: the first two columns report on the
distribution of the MAPEs for the models that were trained on raw
datasets (missing values are imputed) while the two last columns pro-
vide MAPEs’ statistics for models trained on data fully preprocessed
(outliers removal + missing values imputation). In the table, each

Fig. 9. ×9 24-steps-ahead forecasts. Testing data contain outliers (top) while outliers are removed and missing value are imputed.
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block of four rows refers to a different imputation strategy. If we
compare the mean and median of each model, they are quite dissimilar,
which indicates significant skewness in the results (see Fig. 11). The rest
of the analysis is consequently based on the median and the MAD. We
have highlighted the robust statistics of the MAPEs in blue in the 2nd
and the 4th columns of Table 7. These statistics correspond to the ac-
curacy performance computed with cleaned ground truth data, and we
refer to them in the following discussions.

Several outcomes can be drawn from the statistics in Table 7: the
outlier cleaning procedure did improve the median performance of the
forecasters regardless of which imputation strategy was adopted.
Nonetheless, the removal of outliers tends to slightly increase the dis-
persion of the MAPEs (as evidenced by the MAD), which indicates an

increase in the models’ performance uncertainty. Overall, the imputa-
tion techniques that we have investigated perform alike on the MV
feeders datasets. Surprisingly, the simple unconditional mean imputa-
tion technique achieved a good score with the lowest median of the
MAPEs.

To contrast between the performance of each cleansing strategy and
better identify if a given data preprocessing can be more suitable, we
provide in Table 8 the counts of feeders for which the computed MAPE
does not exceed the following upper bounds: 5%, 7.5%, 10% and 15%.
Feeders for which the MAPE exceed 15% are considered to be outliers;
these represent approximately 8.80% of all feeders.

Our experimental results indicate that most of the feeders for which
forecasts accuracy were notably improved had a raw performance not

Table 7
MAPE(%) statistics of 24-h ahead forecasts across 342 feeders.

Note: Training/testing data preprocess strategy is in black - ground truth data are in blue with r = raw data,
no = no outliers, m = unconditional mean imputation, kf_imp = Kalman Filter imputation,
kf_smo = Kalman smoother imputation, knn = 10-Nearest Neighbour.

Table 8
Models performances – count of feeders per data preprocessing.
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exceeding 7.5%. The imputation strategy for which outliers removal
has been the most beneficial are knn and mean with 32 feeders and 18
feeders respectively that were led under the 7.5% upper bound per-
formance. Table 8 shows that the mean strategy presents more models
which perform under the 5.0 % upper bound.

We have further investigated the 30 feeders for which the MAPE
exceeded 15%. By inspecting the feeder data and the produced fore-
casts, we have identified three main reasons for the lousy forecast
performance. (1) The quality of the testing data is poor; hence, it may
be difficult to assess the out-of-sample performance of the forecaster

Fig. 10. Hourly analysis of 24-steps-ahead forecasts across 342 MV/LV feeders for the NO_KNN training dataset. Hourly boxplots of the MAPE (top) and median
normalised hourly forecast residuals (bottom).

Fig. 11. Histograms of the MAPEs distributions for raw imputed data and fully cleansed data.

Table 9
Distribution of training and testing MAPE (binned) for 30 feeders with testing
MAPE>30%.

Upper bounds

MAPE(%) 5 7.5 10 15 30 60 200 1000

Training 3 9 4 5 6 1 1 1
Testing 0 0 0 0 23 5 2 0
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from test datasets are unreliable. (2) The model was fitted on poor
quality training data, therefore, the model was misspecified; the model
must be retrained on better quality data. (3) The features selection was
inappropriate. Generally, any issues related to the model specification
should be identified and solved during model evaluation.

To investigate the outlying forecast performances, we propose to
compare the forecasts collected during the Nested Rolling-Origin-
Validation (NROV) (see illustration Fig. 6) to those obtained during the
final testing phase. Throughout the NROV, we evaluated the perfor-
mance of 10 potential model architectures for each of the preprocessed
datasets. At each evaluation, we stored the forecasts generated from
out-of-sample test data. As it is reported in Table 9, the MAPE perfor-
mance of the 30 outlying feeders differs significantly from training to
testing. The analysis from the table shows that only nine feeders per-
formed with a MAPE exceeding 15% during the training; the remaining
feeders (21) were tested on bad quality data. Table 9 also shows that
two feeders performed badly during both the training and testing phase;
the quality of the historical data cause these performances. In defini-
tive, only nine feeders require more in-depth investigation.

The results in Table 8 also show that automatic outliers detection
has succeeded in improving the forecasts whenever it was possible
without deteriorating the overall accuracy. The main drawback with
removing outliers is the increased level of missing observations to be
estimated. Thus, there exists a bias-variance tradeoff associated with
the choice between cleaning contaminated observations and creating
additional missing values to be estimated. We have summarised the
outcomes in Table 10 where we show the variations in MAPE dis-
tributions between models trained and tested on raw data and models
trained and tested on cleaned data. Although mean imputation exhibits
the best performance improvement with 0.49 MAPE improvement, the
statistics show that it is at the cost of an increase in the variability of the
models’ performance. Hence, mean displays the highest MAD increase
even if the increased model variability remains low. A comparison of
MAPE distributions is given in Fig. 11.

In conclusion, the knn algorithm enhanced with the proposed
cleaning strategy achieves the best compromise between improving the
forecasters’ performance and keeping the uncertainty of the model as
low as possible.

5.3.3. Residuals analysis
A careful analysis of residuals helps to assess adequately the risks

associated with the use of forecasts on decision making or control
strategy. We propose to investigate the average performances of the 24-
steps-ahead forecasts across the full forecasting horizons. We have
clustered the hourly forecast residuals, and hourly percentage error
results in 48 groups using all the forecasts. The top of Fig. 10 displays
the distribution of the hourly MAPE using boxplots while we only
plotted the median of hourly residuals of the forecasts at the bottom of
the figure.

Because feeder loads vary in magnitude, we have normalised the
residuals using the feeders’ load median as base-load. We have used the
datasets cleaned and imputed with knn for the analysis. The forecast
horizons for which forecasts are the most uncertain are highlighted in

yellow (top panel); these hours correspond to the morning peak-hours
of the day. The corresponding forecast residuals (bottom panel) show
that most of the time, the models underestimate the load. These results
corroborate the analysis found in [14] where the authors stipulate that
robust models penalise the prediction of peak demand by down-
weighting their estimation.

5.3.4. General outcomes
The key outcomes drawn from our experiments and results are (1)

there is no perfect missing values imputation technique that works well
for any datasets since we found that mean imputation outperforms the
Kalman smoothing method despite the latter being highly re-
commended in the literature given its optimality properties. (2) The
knn is an effective imputation technique that generally performed well
on our dataset but, to take full advantage of the method, the data must
be cleaned from contaminated observations. (3) Structural changes lead
to biased parameter estimates and forecasts. However, the forecasters
handle level-shifts well by adapting quickly to changes. (4) The past 24-
h lagged values are significantly weighted in the short-term forecasts
problem, which creates the need for an on-line data cleaning procedure.

6. Discussion

We chose to implement the FDNN forecasters with the Scikit-
learn Python library because it is computationally very efficient.
Scikit-learn offers a class of deep learning models for regression
problem that are fast to learn; however, the only loss function available
to train the models is the mean squared error (MSE). TensorFlow is a
powerful and flexible deep learning library. It offers a wide range of
preprogrammed loss functions and users also have the option to im-
plement customized functions. However, we have found TensorFlow
to be computationally less efficient than Scikit-learn on this large
scale problem [46]. Since we used the MSE loss function to train the
models, further improvement in forecast accuracy might be achieved by
using more robust loss functions such as the Mean Absolute Error
(MAE), the Huber loss or Log hyperbolic loss.

In our work, we have computed forecasts recursively. The recursive
formulation is computationally more efficient than the direct method,
which requires to train one model per forecasting horizon h. The ad-
vantage of using a recursive strategy, therefore, grows when a large
number of time series and multiple forecast horizons are involved. If the
model’s parameters are chosen adequately during the cross-validation
phase, the one-step ahead prediction is unbiased. However, in [47],
Taieb et al. show that the same unbiasedness property does not hold for
forecast horizons h 2, particularly when the model is nonlinear. The
authors show that bias increases with the curvature of the nonlinear
function. In future works, we should consider the impact on the bias of
this recursive strategy. Additionally, if computational resources are
available, one should consider using a direct strategy or a hybrid re-
cursive-direct strategy to possibly improve forecast accuracy.

The Nested Rolling-Origin-Validation (NROV) returns multiple op-
timum models. An improved model selection procedure would involve
ensemble learning as a model averaging technique, but, here again, it
would require substantial computation resources. In addition, a multi-
variate and univariate imputation procedures have been used in-
dependently to estimate missing observations. A hybrid imputation
technique that optimally combines both procedures should be in-
vestigated for better missing value estimates. There is substantial merit
in investigating how a full structural model that includes a trend, two
seasonal components and cyclical component could improve the per-
formance of Kalman imputation.

7. Conclusions

In this paper, we have presented a comprehensive investigation into
the problem of short-term load forecasting for large numbers of MV

Table 10
MAPE’s adjustment after full data cleansing.

Note: In blue is the best trade-off between improving the accuracy across all
feeders while maintaining the variability of MAPE to a low level.
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distribution network feeders. Data quality and good practices in model
design and evaluation are key features to achieve good forecast per-
formances. To enhance the quality of MV feeders data, we proposed a
hybrid automatic outliers cleaning procedure that is fast, robust and
easy to implement. It is suitable for large datasets that present struc-
tural breaks.

We have considered three primary imputation techniques for the
estimation of missing observations: Unconditional Mean, Hot Deck (k-
NN) and Kalman smoothing. We combined outlier detection and
missing values imputation techniques to preprocess 342 MV feeders.
We modelled the MV feeders data with feed-forward deep neural net-
works, applying a rigorous nested cross-validation methodology that is
suitable for time series data, to evaluate the performance of the models.
We have adopted a recursive forecasting strategy which has the ad-
vantage of reducing the problem of 24-step-ahead forecasting to the
training of a single model.

We have observed that bias and variance trade-off exists in the data
quality enhancement problem. Ideally, we would like to achieve low
bias and variance simultaneously, but in practice, a decrease of the bias
generates an increase of the variance and vice versa. Although no im-
putation methods outperform the others significantly, among the three
imputation techniques that we have investigated, we recommend Hot
Deck (k-NN) because of its better performances in balancing between
the bias and the variance in the recursive forecasting setting. Moreover,
the k-NN technique works best on data cleaned for large gross errors.
We found that robust statistics such as median and MAD should be used
to report on the overall performance of the forecasters.

The results described in this paper provide essential support to
analysts in charge of developing and reporting large scale short-term
forecasting projects at MV distribution network level. Besides, the
proposed procedure allows to quickly identify the challenges in mod-
elling time series with data quality issues and structural changes. We
have also provided guidelines on how to overcome these challenges.
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