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ABSTRACT

Recently, researchers have successfully employed Graph Neural
Networks (GNNs) to build enhanced recommender systems due
to their capability to learn patterns from the interaction between
involved entities. In addition, previous studies have investigated
federated learning as the main solution to enable a native privacy-
preserving mechanism for the construction of global GNN models
without collecting sensitive data into a single computation unit.
Still, privacy issues may arise as the analysis of local model updates
produced by the federated clients can return information related to
sensitive local data. For this reason, researchers proposed solutions
that combine federated learning with Differential Privacy strategies
and community-driven approaches, which involve combining data
from neighbor clients to make the individual local updates less
dependent on local sensitive data.

In this paper, we identify a crucial security flaw in such a config-
uration and design an attack capable of deceiving state-of-the-art
defenses for federated learning. The proposed attack includes two
operating modes, the first one focusing on convergence inhibition
(Adversarial Mode), and the second one aiming at building a decep-
tive rating injection on the global federated model (Backdoor Mode).
The experimental results show the effectiveness of our attack in
both its modes, returning on average 60% performance detriment
in all the tests on Adversarial Mode and fully effective backdoors
in 93% of cases for the tests performed on Backdoor Mode.

CCS CONCEPTS

« Security and privacy; « Computing methodologies — Ma-
chine learning;
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1 INTRODUCTION

In the last few years, federated learning has gained growing at-
tention from the research community thanks to its capability of
supporting privacy-preserving approaches for the construction of
machine learning and deep learning models. Indeed, with the mas-
sive availability of data that characterizes the current information
technology realm, complex Artificial Intelligence (AI) solutions
have been brought to life just by leveraging this data availability
and the most recent technological advancements. However, one of
the baseline factors of the aforementioned data era is the diffused,
user-level data production and collection. On the one hand, this sit-
uation enables the design and realization of advanced Al products,
but the user-level granularity of usable information has raised im-
portant privacy and security concerns on the other hand. Moreover,
in line with the technological advancements, the legal aspects and
regulations have received increasing attention [30], imposing, in
some cases, even a firm limit to Al progress, driving researchers to
work on solutions where privacy protection becomes the main con-
straint. This is precisely one of the objectives of federated learning,
whose design allows for the training of deep learning models avoid-
ing the need to centralize the collection of possibly sensitive data
into a single computation unit. Indeed, according to this learning
paradigm, the computation is distributed, and each involved client
is responsible for the independent training of a local model using a
private, non-shareable set of data. A super node, which acts as an
aggregation server, coordinates the training task by collecting, at
each training epoch, the updates of the local models from the clients
and by applying a suitable aggregation strategy to build the final
global model. Previous studies have demonstrated the effectiveness
of this technology, mainly in its horizontal variant (HFL) [37], by
evaluating its performance in many application contexts. This is
especially true in scenarios in which social collaboration among
users can provide important contributions to obtain improved so-
phisticated Al solutions. For instance, researchers have recently
adopted deep learning approaches in the context of recommender
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systems to refine the recommendation strategy. In this context, they
demonstrated that Graph Neural Networks are very promising due
to their ability to learn patterns from the interactions between the
modeled entities [35, 39]. However, an open issue concerning the
use of GNNs refers to the so-called cold-start, for which freshly
involved users do not have enough interaction history so that the
model can learn adequate representations of their profiles. To over-
come this limitation, some recent studies have leveraged additional
social information of involved users [8, 21, 34]. In this way, the
representation of a user can also be learned by analyzing his/her
social neighborhood. According to this strategy, the underlying
GNN of such a recommender system will model both the classical
user-item interactions and the social user-user ones. Of course, the
introduction of additional sensitive data related to the social life of
users has urged even more researchers to rapidly define and adopt
privacy-preserving strategies, with federated learning being the
most prominent choice.

However, despite its distributed design representing a native
privacy solution, researchers have shown that federated learning
is vulnerable to attacks. Thus, an adversary could infer sensitive
information related to the original private data of local clients based
on the local model variations recorded during consecutive learn-
ing epochs [4, 18, 19]. To address this vulnerability, several recent
studies have combined federated learning with Differential Privacy
techniques [20]. This ensures that the rating assigned by users to
items cannot be inferred by analyzing the local model updates of
consecutive epochs. However, as stated above, to face the cold-start
issue, social information can be also included, thus adding a higher
complexity level to the whole solution. Leveraging this informa-
tion, some authors have proposed to exploit the social nature of the
underlying scenario to create an additional collaborative privacy-
preserving mechanism [18, 32]. In practice, the idea underlying
these strategies is to augment the training of the local models with
information derived from the surrounding social neighborhood so
that the produced updates will not be dependent only on the local
data. Interestingly, as shown in [18], such an augmentation mecha-
nism not only addresses the privacy concerns discussed above but
ultimately leads to the improved general performance of the global
model.

The proposal described in this paper starts from these recent
research efforts. Our intuition is that although the additional social
collaborative solutions can help both in improving the performance
of considered systems and in building strong privacy-preserving
approaches, this paradigm can be maliciously exploited to craft
very powerful cyber attacks. In general, the decentralized nature of
federated learning makes it a very interesting target environment
for attackers. Indeed, each involved client, as well as the aggregating
server, can become potential adversaries to the system [1, 9, 36].
For this reason, the research community has developed several
countermeasures and advanced protection solutions that can be
successfully exploited to protect this complex environment [3, 12,
23]. However, by analyzing the behavior of the most recent defenses,
we can see that the main strategy adopted therein is basically to
detect and isolate from the system any action that differs from
the average behavior of the community composing the federated
scenario. In contrast, the collaborative strategy introduced by the
novel privacy-preserving mechanisms tries to protect the local
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contributions of individual clients. To do so, these strategies suitably
combine local updates with those of the surrounding community
members. From an attacker’s point of view, this configuration can
become an opportunity to spread the attack to its neighbors. Thus,
it results in a novel threat possibly capable of even deceiving the
state-of-the-art protections.

In this paper, we leverage this intuition to design a novel Al-
based attack strategy for existing scenarios characterized by a social
recommender system equipped with the privacy protection mea-
sures introduced above. Borrowing some ideas from the related
literature [2], we include two modes for the attack in our design,
namely: a convergence inhibition strategy (Adversarial Mode) and
a deceptive rating injection solution (Backdoor Mode).

More precisely, we implemented our proposal by focusing on
the system described in [18], in which a GNN model is trained
with a federated learning approach to build a social recommender
system. One of the main contributions of [18] is the definition of
a solution to guarantee a strong privacy protection level. For this
reason, the authors equipped the target system with both a Local
Differential Privacy module and a community-based mechanism,
according to which pseudo-items derived from the community are
included in the local model training. As stated above, we argue
that such a configuration creates an exploitable scenario for an
attacker. Although the attack strategy described in this paper is
specifically tailored to the features of the system proposed in [18],
the underlying intuition and methodology can be generalized to
other similar scenarios.

The contributions of this paper can be summarized as follows:

e We identify the main vulnerabilities of community-based
privacy protection mechanisms for federated learning, fo-
cusing on approaches targeting Graph Neural Networks as
underlying deep learning models.

o To deceive state-of-the-art security solutions for federated
learning, we propose a model poisoning attack leveraging
the features of the considered scenario.

o We adapt our attack to work in two modes: Adversarial Mode
aiming at inhibiting the convergence of the federated learn-
ing model, and Backdoor Mode focusing on the creation of a
backdoor in the learned model.

o To assess the performance of our attack, we adopt the Root

Mean Squared Error, the Mean Absolute Error, and a newly

defined metric, called Favorable Case Rate specifically to

estimate the success rate of our backdoor attack against the
regression model that feeds the recommender system.

We test the effectiveness of our attack against a real-life rec-

ommender system based on the approach of [18]. Moreover,

we carried out an experimental campaign leveraging three
popular datasets for recommender systems. The obtained
results show that our attack can cause very strong effects
in both operating modes. In particular, in Adversarial Mode,
it is capable of causing a 60% detriment in the performance
of the target GNN model, on average, whereas, in Backdoor

Mode, it allows the construction of fully effective backdoors

in about 93% of cases, also in the presence of the most recent

federated learning defenses.
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The remainder of this paper is organized as follows. In Section 2,
we describe some background concepts related to our reference
scenario. Section 3 describes the system model and the intuition
underlying our attack. The technical details of our attack are dis-
cussed in Section 4. In Section 5, we report the experiments carried
out to assess the effectiveness of our attack. The related literature
is surveyed in Section 6. Finally, in Section 7, we draw conclusions
and discuss potential future work directions.

2 BACKGROUND

This section is devoted to the description of background concepts
for our study. In particular, we begin by introducing existing feder-
ated learning solutions that focus on privacy-preserving applica-
tions, with particular emphasis on recommender systems based on
Graph Neural Networks. After that, we describe model poisoning
attacks in this context and introduce the most popular and effective
countermeasures.

2.1 Privacy-preserving Federated Learning

Federated learning exploits decentralized parties, which own pri-
vate sets of data to build global models through the suitable aggre-
gation of learning information derived from the local training of
individual models. This infrastructure ensures the construction of
global models without sharing data between the involved parties.
In any case, this scenario opens possible threats to the privacy of
involved actors, including the possibility of inferring the private
original data based on the model updates during the training phase
or by observing the output produced subsequently.

In this context, solutions like Local Differential Privacy (LDP) [7]
allow basic protection of the privacy of the federated learning
clients by limiting the influence of the single datasets. Generally
speaking, Local Differential Privacy achieves privacy protection by
norm clipping and adding noise to the updates of the local models
from the clients. Some effective solutions apply Local Differential
Privacy by adding Gaussian or Laplacian noise [18]:

g¢ = clip(¢°,y) + Laplacian(0, 1), 1)

where g" are the updates of a client ¢ € C, C is the set of clients, y is
the clipping limit, and A is the standard deviation of the Laplacian
noise. As an example, in the approach of [25], a Graph Convolu-
tional Neural Network is trained in a federated way, and the privacy
of the clients is preserved by using a Local Differential Privacy solu-
tion. Specifically, the involved clients protect their real updates from
a potentially malicious data aggregator by providing a perturbed
version of their updates that is not meaningful individually, which,
however, guarantees the same training capability as the real ones
when aggregated with the other contributions. In addition, they
also proposed a simple but effective Graph Convolutional Layer
called K — Prop. This layer aggregates messages from an extended
neighborhood set, which includes neighbor nodes with a distance
of K hops at maximum. In this way, the proposed solution not only
enhances client privacy by adding noise derived from real data
but also improves the robustness of the global model because it is
trained on an augmented dataset.
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2.2 Graph Neural Networks-based
Recommender Systems

By introducing links between users, social recommender systems
compensate for the data sparsity problem. As typically done in
Social Network Analysis, a very promising strategy in this setting
is to model data through graphs, and then, ad-hoc deep learning
algorithms, such as Graph Neural Networks, can be adapted to
identify complex recommendation patterns. Practically speaking,
Graph Neural Networks are used to learn user and item embeddings
from the graph to predict additional links between them. Research
works like the one proposed by Fan et al. [8] exploit Graph Neu-
ral Networks, particularly Graph Attention Networks, to learn the
embeddings of users and items for recommendation purposes. In
particular, this paper showed how using a GNN as an underlying
model for a recommender system can be effective and efficient. The
advantage of such models is the ability to aggregate high-order
structural information that is important for learning user and item
embeddings. Of course, due to the sensitivity of involved training
data, this type of solution could also be implemented through a
federated learning approach, in which data concerning the links
between users and items remain locally private. For instance, Wu
et al. [32] proposed a federated learning approach to build a recom-
mender system based on a GNN model collectively trained with
highly decentralized user data. This solution builds a robust model
while preserving the privacy of the involved parties via Local Dif-
ferential Privacy and user graph expansion, obtained by randomly
sampling items from the neighbors.

2.3 Model Poisoning on Federated Learning

Due to its decentralized nature, federated learning introduces im-
portant security issues in scenarios where the involved clients
cannot be assumed honest. In such a case, local model updates
can be orchestrated by attackers to cause a detriment in the global
model performance or, even worse, to drive the model behavior
maliciously. As described in Section 2.4, to overcome these flaws,
the aggregator entity of the federated learning solution can apply
different robust aggregation strategies to limit the impact of such
attacks. These defense methods are, typically, Byzantine-robust
algorithms that filter possibly malicious updates returned by the
clients using statistical approaches.

For instance, a baseline strategy could be to exclude gradient
updates too distant from the mean (outside the confidence interval)
of the distribution of the updates of all the clients. However, the
recent scientific literature has demonstrated that these methods are
still vulnerable to model poisoning attacks.

In this setting, Baruch et al. [2] proposed one of the most well-
known attacks trying to circumvent these defense strategies. There,
the authors defined two attack variations, namely Convergence
Prevention and Backdooring. In the first version of the attack, the
attacker controls a small set of clients and tries to perturb their
updates, within a statistically admissible range, with the objective
of preventing the convergence of the model. Gradients are per-
turbed by finding a deviation range from the mean that cannot be
detected by defense methods based on statistical heuristics. Specifi-
cally, the attack identifies the updates from local models with the
maximum distance from the mean of the update distribution. Then
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it boosts this edge signal by replicating it in all the updates sent
by the attacked clients. Instead, the second attack they proposed is
a backdoor attack in which the attacker poisons the model during
the training phase to force the prediction of a specific target class
against a controlled input pattern. In practice, the attacker seeks a
range of parameters that, if attacked, force the model to produce the
desired label. A successful configuration must not affect the model’s
performance on benign inputs. In our paper, we follow a similar
strategy and design two different variants of our attack. However,
an important difference between our proposal and the approach of
[2] is that we adopt a data-driven strategy to learn the optimal poi-
soned gradients to carry out our attack. In particular, the approach
of [2] tries to shift the mean of the gradient distribution towards
the extreme values (and, hence, still admissible values). However,
this approach can be contrasted by very novel defenses that use
sophisticated mechanisms (see Section 2.4) to exclude edge contri-
butions. To deceive such defense strategies, our solution attacks
the vulnerabilities introduced by the recent privacy-preserving
techniques for GNN-based recommender systems trained through
federated learning. In particular, we leverage the community-driven
mechanism underlying such privacy-preserving techniques to learn
malicious gradients and force the community surrounding the ma-
licious client to unknowingly participate in the attack. In this way,
the poisoned gradients will no longer be edge contributions, but
they will be part of the main signal for the whole federated learning
task; this makes the attack very hard to be detected. As we show
in our experiments, our attack proved to be more effective than
the one presented in [2] also against the most advanced defense
mechanisms described in the next section.

Still, in this context, Fang et al. [9] proposed another relevant
example of a model poisoning attack. In this case, the authors
have defined two versions of the attack, the former referring to
a situation in which the attacker has partial knowledge of the
clients (i.e., the attacker knows only the controlled clients), and the
latter, instead focusing on a condition in which the attacker has
full knowledge of the federated learning scenario. In both cases,
the attacker crafts compromised local updates by maximizing or
minimizing the parameters in such a way as to skew the global
model in the reverse of the expected gradient direction; that is,
the direction along which the global model would converge in a
favorable situation.

2.4 Defenses against Model Poisoning

According to the basic implementation of a federated learning solu-
tion, the global model training is obtained by aggregating the local
model updates returned by involved clients. However, as explained
above, this strategy introduces many security issues in general sce-
narios where the clients cannot be assumed fully secure. Among
the other security threats, model poisoning, either in the form of
convergence prevention or backdooring, is, for sure, one of the most
critical. Over the years, researchers have proposed several counter-
measures for this reason. In particular, Yin et al. [38] proposed an
enhanced version of the basic gradient aggregation strategy called
TrimmedMean. According to this solution, the server aggregates the
gradients in the i, position independently. Specifically, given the
gradients of all the clients in the i, position, the aggregator sorts
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them according to their distance from the median. Then, only the
top — k parameters are considered benign, where k = n —m, nis
the number of clients, and m is the corrupted portion of them.

Blanchard et al. [3] proposed a solution called Krum that updates
the global model by choosing the best candidates between the
gradients returned by the clients. The chosen gradients are those
returned by the clients whose updates are the closest to the group of
n—m—2 presumably honest workers. The main intuition behind this
approach is that, even if the selected updates are from malicious
clients, they would still be close to the group of honest clients.
According to this mechanism, all the outliers that differ significantly
from the average will be discarded. Both TrimmedMean and Krum
are designed to work in a scenario with up to m = (% +1) malicious
clients.

Recently, Nguyen et al. [22] proposed an advanced defense mech-
anism for backdoor attacks, named FLAME, which combines a clus-
tering algorithm with an adaptive differential privacy strategy. The
workflow of FLAME consists of three main steps, namely: filtering,
clipping, and noising. The objective of the first step is to filter ma-
licious clients and select only those with the highest probability
of being honest. To do so, the authors perform a clustering using
HDBSCAN over the pairwise cosine similarity distances among the
updates received from the clients. Specifically, they configured it
to return a cluster that includes at least 50% of the batch of clients.
With this setting, the candidate cluster will contain the majority
of clients, and all the remaining updates, possibly poisoned, are
marked as outliers. The second and third steps are dedicated to an
adaptive differential privacy approach that estimates an effective
clipping bound and a sufficient level of noise, such that the effect
of the backdoor attack is removed while preserving the original
performance of the model. The clipping bound should be dynami-
cally adapted to the decreasing trend of the gradients’ Ly — norm.
It is performed by scaling the updates of the clients so that the
Ly — norm of the updates becomes smaller or equal to the chosen
threshold. The clipped updates are then aggregated to obtain the
new global model. The third step adds a certain amount of noise to
the aggregated updates. This amount is determined by estimating a
sensitivity value based on the distance between the clients’ updates.
In this way, the proposed strategy can override the contribution of
the attack on the global model.

Recently, Fung et al. [12] proposed another defense solution
with the name of FoolsGold. In any iteration, FoolsGold adapts
the learning rate of each client based on the similarity distance
of the updates, also considering information derived from past
iterations. To measure the distance between the updates, as done by
FLAME, the authors leverage the cosine similarity. Poisoning attacks
usually affect specific features of the model, which can be identified
by measuring the magnitude of model parameters in the output
layer of the global model. Hence, the malicious updates can be
removed or re-weighted. Another key point of FoolsGold is the
exploitation of the history of the previous updates. Indeed, as stated
above, the similarity distance among the updates is computed by
considering the current values returned by the clients and the values
of the historical updates produced in the previous iterations. This
additional feature allows more accurate identification of malicious
attempts to corrupt the federated learning task.
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3 SYSTEM MODEL AND ATTACK INTUITION

This section is devoted to describing the reference scenario of our
attack. In particular, in Section 3.1, we present the essential concepts
and definitions necessary to understand the scenario. In Section 3.2,
we describe the main characteristics that introduce important ad-
vantages to the referring scenario but, at the same time, can be
exploited by an attacker to perform an even more powerful exploit.

3.1 The System Model

The scenario for our approach is a privacy-aware social recom-
mender system built through a federated learning solution. To
make our strategy concrete, we focus on a recent solution in this
setting proposed in [18]. It is worth observing that, although, in our
approach, we make explicit reference to such a scenario, the main
feature we are focusing on is a common strategy of social systems.
Indeed, in such contexts, collaboration is generally leveraged to
obtain joint advantages among peers. Our strategy relies just on the
fact that if the common objective of the social system is to achieve
privacy protection, such collaboration is typically “blind” and, even
better, includes a Local Differential Privacy strategy in such a way
as to ensure non-disclosure of sensitive information. We argue that,
if properly handled, this condition can be exploitable to craft critical
security menaces for social scenarios.

With that said, our target scenario, proposed by Liu et al. [18]
with the name FeSoG, shown in Figure 1, is a federated social rec-
ommendation system (FSRS) designed to predict users’ ratings for
items using a Graph Neural Network model. In this scenario, let
U={u,...,un} bethesetofusersand I = {is,..., i } be the set of
items, where N = |U| and M = |I| are the number of users and items,
respectively. FeSoG is composed of a set of clients C = cy,...,cn
such that each client ¢, is associated with a user u,. Due to this
direct association, in the following, we shall use the terms user and
client interchangeably.

The coordination of the federated training is delegated to a cen-
tral unit, which receives the updated gradients from the clients and
builds a global model by suitably aggregating them. By design, each
client owns a local graph that contains the first-order neighbors
and the information about the items of interest for the correspond-
ing user, along with their ratings. Therefore, the local graph G,
of a client ¢, consists of both user nodes and item nodes. Gy, is
characterized by two types of edges, namely the user-item weighted
edges, in which the weights represent the ratings assigned to the
items by the corresponding users, and the user-user edges denoting
the interactions between users.

For each client, the set of rated items is denoted as I (n) =
{i1,...,iz}, whereas the set of neighbors is denoted as um =
{u1,...,ux}. Users and items are associated with their embeddings
respectively E,, € R™N and E; € R™N, where d is the dimen-
sion of the embeddings. A complete embedding table is maintained
by the server, and the clients can request access to this table.

Observe that the aforementioned global table of the embeddings
stored in the server contains a manipulated version of the original
embeddings from the clients. Indeed, as will be explained later in
this section, each client processes the produced embeddings by
combining them with information extracted from its surrounding
neighbors and applies a Differential Privacy module. For this reason,
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the information available in the global table cannot be used to leak
information about the clients’ local graphs.

By downloading the complete embedding table, a client can
access the embeddings of the users and items that are part of its
local graph G;,. Such embeddings are then used as input for the local
GNN model and, in particular, a GAT layer to learn the embedding
of the user associated with the client and predict the item scores.

In particular, the client embedding is an aggregation of both the
embeddings of its neighbors and the embeddings of the rated items.
At this point, to predict the local item ratings for a specific user, the
authors adopt a dot-product between the inferred user embedding
and the item embeddings:

Rup iy = Euy * Eiyy.

One of the specifics of FeSoG is the particular attention given to
the privacy of the produced embeddings. In particular, two tech-
niques are implemented to protect the updates of the local user-item
gradients, namely: Local Differential Privacy and pseudo-item la-
beling. The Local Differential Privacy solution prevents the user’s
rating information to be inferred, given the gradients uploaded by
a user during two consecutive steps. To protect the gradients, each
client clips its updates based on their Ly — norm with a threshold y
and adds a zero-mean Laplacian noise to achieve privacy protec-

tion. The local differential privacy process is applied to the item
(n)
i

the model gradients g,(,:l

formalized as follows:

embedding gradients g, ’, the user embedding gradients gl(ln), and

) for each client cpn. This process can be

™ = clip(¢g"™, y) + Laplacian(0, A - mean(g™)), (2)
(n)

where g(") = {gi(n), 9u g,(,': )} is the combination of the gradients
of the three different embeddings considered above. Observe that,
because the involved gradients can be of a different magnitude,
instead of applying a constant noise with strength A, in this scenario,
a dynamic noise is applied by multiplying A by the mean of the
gradients themselves.

The second privacy-preserving technique introduced in this ap-
proach, instead, consists of the inclusion of pseudo-items in the
training process of each local model. This guarantees an enhance-
ment of user privacy and, at the same time, an improvement of the
robustness of the aggregated global model. In practice, before the
computation of the training loss on the local model, each client
samples p items [(") = {fin) e zil(,n) }, not already included in their
local items. Of course, for these additional pseudo-items only, the
corresponding embeddings are available to the client (through the
embedding table available from the server). As for the correspond-
ing ratings, a semi-supervised strategy is adopted, according to
which the client uses its current local model to predict them for
each pseudo-item. At this point, such pseudo-items are included in
the local loss computation as follows:

ZimGI(") Ui(n) (Ru,,,im - }?un,im)
|[(n) U f(n)|

n =

Ly

, ®)

where the adopted loss is the Root Mean Squared Error between
the predicted ratings Ry; and the ground truth rating scores Ry;.
The pseudo-item sampling provides additional rating information,
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Figure 1: Main Scenario.

similar to data augmentation, which, in addition to improving the
protection against data leakage, enhances the robustness of the
local model.

3.2 Attack Intuition and Challenges

By design, the referring scenario introduces two main techniques
that aim to improve the privacy protection of clients’ data while
ensuring greater robustness of the global model built through feder-
ated learning. Between them, the design choice of including pseudo-
items in the local embeddings of clients plays a crucial role. Indeed,
as stated in Section 3.1, because the adopted pseudo-items are gen-
erated from real-data embeddings gathered from other clients, the
introduced noise is informative and resembles a data augmentation
solution. On the other hand, in the case in which the assumption
of the trustworthiness of clients does not hold, such an approach
could lead to exploit opportunities for attackers.

The goal of this paper is to demonstrate that by leveraging this
privacy-preserving social collaboration mechanism, it is possible
to design a powerful poisoning attack. As we will show in the
experiments described in this paper, the social nature of such an
attack allows the achievement of considerable performance also in
the presence of cutting-edge defense solutions.

More in detail, the social mechanism of sampling pseudo-elements
of peer clients to improve privacy protection allows the possibil-
ity of involving such peers in prearranged attacks and, therefore,
forcing them to include poisoned elements in their local training
process, unknowingly. Our attack aims, therefore, at performing a
model poisoning by forging a malicious set of item embeddings. Our
objective is to deceive the target recommender system and make it
act as intended by the attacker, either by inhibiting convergence
of the underlying GNN model or by performing a backdoor attack
to force the system to predict specific ratings for items concerning
a target user. In such a context, not only pseudo-items could be
exploited, but also the Local Differential Privacy strategy could play
a key role in the attack process. In fact, many countermeasures,
like, for example, the one proposed by Nguyen et al. [22], make
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use of Differential Privacy to override or erase the contribution
of an attack, thus filtering malicious gradients updates in a feder-
ated learning solution. In our case, the Local Differential Privacy
module, which is included in the reference privacy-aware social
recommender system, acts as a regulator of the attack so that the
poisoned changes to the updates are close to benign ones while still
guaranteeing the effectiveness of the attack.

It is worth observing that, although the intuition above is de-
rived from an in-depth analysis of the reference scenario of [18],
this can be generalized to forge powerful attacks on other scenar-
ios, including community-based strategies to create a separation
between what an attacker can infer from federated gradients and
the clients producing them. Other approaches, such as [16, 17, 32],
adopt a similar solution to protect the clients’ data. For instance,
the authors of [16] propose a federated recommender system and
adopt a community-oriented strategy to guarantee privacy protec-
tion. Analogously to what is done in [18], in this case, given the
set of item embeddings whose rating is available on the dataset
of a client, the approach enforces that such an embedding set is
enriched with a random sample of item embeddings derived from
the datasets of surrounding clients (i.e., its community). At this
point, the local-model training of each client is carried out on both
the original local item embeddings and the ones sampled from
the community. The resulting gradients from the local training
are then sent to the server for the subsequent aggregation task.
Also, in this scenario, our intuition holds because it could be possi-
ble to craft poisoned local item embeddings on controlled clients
so that, thanks to the community sampling strategy, they will be
spread among other benign clients, thus boosting the local attack
carried out even by a single controlled client. Clearly, the crafting
of the local poisoned embeddings must be controlled by a Local
Differential Privacy module on the attacker side to make the ma-
licious signal almost unnoticeable with respect to the benign one.
The community-driven boosting mechanism will then amplify it to
make the attack more impactful.
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To further prove the general applicability of our intuition, con-
sider the approach described in [32]. In this case, the authors pro-
pose again to protect the local privacy of clients’ data using a
community-driven approach. However, instead of directly includ-
ing the sampled item embeddings in the clients’ local training, the
corresponding synthetic gradients are generated at random using a
Gaussian distribution with the same mean and standard deviation
of the gradients of the real item embeddings. Both the gradients
from the real item embeddings and the synthetic ones generated
for the sampled item embeddings are, then, sent to the server for
the aggregation. Consequently, such synthetic gradients will be
injected into the refined embeddings of the original sampled items.
Once again, our intuition can be extended to this scenario; the at-
tacker can craft optimal poisoned gradients, controlled by a Local
Differential Privacy module, for the sampled embeddings from the
community and, hence, send them to the aggregation server. The
assumption, once again, is that such a poisoning, which will be
unnoticeable in the first learning epoch, will be boosted by the
other clients during the subsequent training steps, thanks to the
community-based sampling mechanism. In this way, the attack can
become effective once again.

4 ATTACK DESCRIPTION

This section is devoted to the design of an attack strategy against
the target scenario introduced in the previous section, for which a
schematic representation is shown in Figure 2.

Similarly to the work proposed by Baruch et al. [2], our design
includes two attack modes. The former aims at the convergence
of the aggregated model and attempts to reduce its general perfor-
mance significantly. The latter, instead, focuses on a more refined
model poisoning goal, which is the construction of a backdoor. In
practice, it aims at forcing the model to predict specific ratings for
items concerning a target user. Both the attacks try to exploit vul-
nerabilities exposed by the strategy adopted to enhance the privacy
and the robustness of the federated learning model, as described in
detail in Section 3.1.

As for the attacker knowledge, previous works describing model
poisoning attacks assume partial or even full knowledge of the
attacker about the local training dataset and local models of ev-
ery client (even the ones not controlled by the attacker). Clearly,
full knowledge has a limited applicability in practice in a fully dis-
tributed context [9]. For this reason, in our approach, we assume
that the attacker has a partial knowledge, strictly related to only the
information about the controlled devices. Moreover, we consider
a setting where the attacker has no additional information about
the aggregation/defense technique. In practice, our attack can be
considered agnostic to the type of aggregation/defense and works
even in the worst condition, which is when the attacker has no
additional background knowledge. Finally, it is important to specify
that, in our solution, the server is assumed honest but curious (as
done in [18]), and that the attacker can control only a limited set of
clients.

In the next sections, we shall report the details related to the two
attack types mentioned above. In particular, the former is presented
in Section 4.1, and the latter is described in Section 4.2.
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4.1 Adversarial Mode - Convergence Inhibition

As presented in Section 3.1, according to the target scenario, each
client involved in the privacy-aware social recommender system
can sample a set of p items, namely I () from the pool of other
clients in their neighborhood (according to the graph underlying the
GNN), and assign them a pseudo-label. This strategy allows them to
add an informative noise to their local updates, thus producing two
important effects: a higher privacy protection level and improved
robustness of the final model.

The intuition behind our attack is that an attacker can exploit
such a community-driven privacy-preserving mechanism, based on
the sampled item set [ to poison the federated learning model.
We assume that the adversary can control a set, even small, of clients,
hereafter referred to as malicious clients. We argue that, by suitably

crafting a poisoned item set, say T(n), it might be possible to coerce
the community around a malicious node to unwittingly participate
in the attack, thus producing a hardly-detectable community attack.

To do so, instead of sampling the items randomly from the other
users, a malicious client tries to generate a set of fake embeddings
E € (R)4xN having the same shape dxN obtained by sampling

real items in normal conditions and, hence, corresponding to an

implicit set of fake pseudo-items T(n). In particular, to undermine

the convergence of the federated learning model, according to our
strategy, starting from random Gaussian noise, at each training
epoch t, the attacker trains malicious embeddings ETf to maximize
the loss of the global model. For this purpose, it uses the model
parameters obtained from the server after the previous epoch t — 1.
Then, it performs a gradient descent optimization on the local
model by keeping all the parameters frozen, with the exception
of malicious embeddings. In practice, to obtain effective malicious
embeddings, an attacked client ¢, associated with a user uy, pursues
the following objective:

. ZiMEI(") Uf(n) (Run,im - Run,im)
mini| — >

1) 1™

where, once again, the ratings of the fake pseudo-items are derived
through a semi-supervised approach using the version of the lo-
cal model obtained after epoch t — 1. Figure 3 shows a graphical
representation of the strategy above.

Once the malicious fake pseudo-items have been crafted, the
attacker trains the local model, as done by any other client in
the scenario, using the crafted embeddings }Z instead of the real

embeddings E; of the sampled items [ () Tt is worth observing that
a domino effect is triggered by this strategy. Indeed, in doing so,
the attacker poisons not only the updates of the local model but
also the embeddings of the corresponding user, its neighbors, and
the associated items. Moreover, the pseudo-item sampling task of
the subsequent training epoch (¢ + 1) of the federated learning will
also include the current malicious embeddings introduced by the
attacker. This will boost the exploit even more by involving other
clients as unaware but still effective attackers.
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Prevention attack.

4.2 Backdoor Mode - Deceptive Rating Injection

The objective of the second attack mode is to poison the federated
learning model in such a way that, given a target user u; and a set of

target items I)((n) not belonging to the local item set of u;, a backdoor
is created on the prediction of the ratings. In practice, the attacker
aims to perform a backdoor attack that will force the recommender
system to predict for the target user a specific (false) rating for
these items. Thus, the adversary can even force the recommender
system to always or never propose a specific item to a user based
on the rating predicted by the model. To carry out this attack, all
the malicious clients controlled by the attacker must agree on the

same target user uy, a set of items I)((n), and the target fake ratings
to associate with them as a result of the poisoning action. As for the
considered scenario, the high-level objective of the attacker might
be to force the inclusion (resp. exclusion) of the target items in the
recommendation set.

To do so, instead of sampling a random set of pseudo-items
I all the malicious clients use the same target set of pseudo-
items I)E") and include it in the training of their local models. As
presented in Section 3.1, in our scenario, each client corresponding
to a single user concatenates the embeddings of the local items
(the items related to the underlying user) to the embeddings of
the pseudo-items (sampled from the items related to the neighbor
users) and, then, computes the corresponding ratings by combining
them (i.e., applying a dot-product) with the trained user embedding.
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To perform our attack instead of concatenating the local items (")
with a set of pseudo-items [(") sampled at random, a malicious
client ¢, performs the following steps:

o First, it combines the local items embeddings I () with the
embedding of the underlying user u,, to obtain a rating
prediction for such items according to u,.

e Then, it combines the embeddings of the target items I,(c")
with the embedding of the target user u; to obtain a rating
prediction for the items of I,((n) according to u;.

e Finally, it concatenates all the predicted ratings (of both the
local items and the target ones) and uses them to calculate
the loss (see Eq. (3)), which is, hence, modified as follows:

Ziperm Ruin = Rupin) + 2y (Rusi = Rupig)

n =

Ly

1)y

As for the last point above, the value of the ground truth rating
score Ry, i of Eq. (3) for each target item, say if, ofIJE"), is forged by
the attacker to obtain the desired effect on the final prediction (e.g.,
obtaining the maximum/minimum rate or setting it to a specific
value). In this way, the backpropagation on the model will include
both the real signal from the local graphs of the clients controlled
by the attacker and the additional poisoned knowledge designed to

control only the rating scores for the items of I,(Cn) for the target u;.
Figure 4 shows a representation of the steps described above.
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Figure 4: A schematic view of the proposed Backdoor attack.
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5 ATTACK EVALUATION

In this section, we present the experiments carried out to assess the
performance of both our attack modes on the referring scenario.
In particular, in Section 5.1, we describe the reference testbeds for
our experiments. Sections 5.2 and 5.3 are devoted to analyzing the
results and performance of our attacks against different settings
and defense mechanisms.

5.1 The Considered Testbeds

To assess the performance of our attack, we define some reference
testbeds, including the adopted evaluation metrics and the under-
lying datasets. Moreover, we identify the experimental setup by
selecting the most promising configurations to test our solution

properly.

Evaluation Metrics. To evaluate the effectiveness of our attack,
we adopt the Mean Absolute Error and the Root Mean Squared
Error and compare the performance of the target scenario in normal
conditions and under our attack. For both metrics, smaller values are
associated with better performance. For our Convergence Prevention
attack, the exploit is successful when both the metrics above return
higher values for the underlying GNN model (the deep model at
the basis of the reference social recommender system) than in a
condition with no attacks.

As for the second attack type proposed in this paper, a successful
backdoor must not affect the general performance of the target
GNN model. Moreover, to further assess the effectiveness of the
obtained backdoor, we define a metric called Favarable Case Rate
(FCR). As seen in Algorithm 1, this metric returns the percentage
of target items whose residuals are lower than the Standard Error
of the estimate function for good items. The objective of this metric
is to assess whether the error produced by the model on the target
items, with respect to the rating value aimed by the attacker, is
comparable to the average baseline error rate obtained for good
items (we require that this error is even lower than the average to
declare an attack success). Indeed, such a condition would imply
that the built backdoor successfully changes the behavior of the
attacked model, forcing it to predict, for the target items, the ratings
imposed by the attacker.

Algorithm 1 Favorable Cases Rate Function.

Input:

1: Res (Residuals of real data)

2: Restr (Residuals of the targeted ratings)

3: SEE() (Standard error of estimate function)
Output:

4: FCR (Favorable Cases Rate)

5: function success_rATE(Res, Resty)
6 FCR«0

7: N « length(Res;y)

8 for r in Resy do

9: if r < SEE(Res) then

10: FCR < FCR+1

11: end if

12: end for

13: return FCR/N

14: end function

Datasets. To validate our proposal, we adopt the same datasets
used in [18] to test the performance of the reference social rec-
ommender system (see Section 3.1). In particular, we use three
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popular recommendation system datasets, namely: Ciao [27], Epin-
ions [26, 28, 29], and Filmtrust [13]. Ciao and Epinions have been
collected by crawling shopping websites, and both of them are
characterized by items rated with integers in the interval (0, 5) and
social trust links among users. Similarly, Filmtrust is composed
of a set of users connected by trust links and a set of items, each
associated with a rating score ranging in the interval (1, 8).

For our experiments, each user of the previous datasets is associ-
ated with a client, and the corresponding local graph is generated
using the items that they have rated and the users with whom they
have trust links to build their neighborhood. The statistics of the
obtained datasets are reported in Table 1.

Table 1: Statistics of the reference datasets [18]

Dataset Ciao Epinions | Filmtrust
Users 7,317 18,069 874
Items 104,975 261,246 1,957

# of ratings

Rating density

# of social connections
Social connection density

283,320
0.0369%
111,781
0.2088%

762,938
0.0162%
355,530
0.1089%

18,662
1.0911%
1,853
0.2426%

Experimental Setup. The reference datasets are randomly split
into three subsets: training set (60%), validation test (20%), and test-
ing set (20%). The validation set is used to evaluate the performance
of the model during the training phase. In our configuration, the
policy for the training early stopping, the learning rate, the initial-
ization of the embeddings, and the strength of the Laplacian noise
are set as proposed in the reference scenario originally described
in [18]. Specifically, the training process is stopped when the model
does not improve on the validation set for more than 5 successive
validation steps. When the training phase is completed, the model
is evaluated on the testing set. For the backdoor mode of our attack,
at each validation step, we also assess the effectiveness of the attack
on the target items. For all our experiments, the learning rate of the
model is set to 0.01. The embeddings are initialized with standard
Gaussian distribution. Moreover, the gradient clipping threshold
is set to 0.3, and the strength of Laplacian noise is set to 0.1. Fi-
nally, we tested our attack for different numbers of items sampled,
specifically {10, 20, 30, 40, 50, 100}, and different percentages of
attackers, namely, {10%, 20%, 30%, 40%, 50%}.

5.2 Results: Adversarial Mode

In this section, we analyze the performance of our attack in Con-
vergence Prevention mode against the scenario introduced in Sec-
tion 3.1 (Main Scenario, for short). In our experiment, as an initial
configuration, we set the percentage of attackers to 30% of the to-
tal number of clients and the maximum number of pseudo-items
sampled equal to 10. Moreover, as commonly done in this con-
text, we also consider different protection configurations based
on the most common and effective Federated Learning defenses,
namely: Krum, TrimmedMean, FoolsGold, and Flame (see Section 2.4
for background on these defenses). Moreover, to provide a compar-
ison baseline for the assessment of the effectiveness of our solu-
tion, we report: (i) the basic performance of the considered GNN
model without the additional privacy-aware social mechanism pro-
posed in [18] based on pseudo-items (Baseline Scenario), (ii) the
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performance obtained in the same configuration when the system
is attacked by a reference state-of-the-art attack, i.e., the Little Is
Enough attack (LIE) (Section 2.3), (iii) the performance obtained by
the complete solution of [18] in the absence of attacks, and (iv) the
performance obtained in the same configuration when the attack
on the pseudo-items is performed using a naive strategy based on
the generation of Gaussian noise. The results for the three datasets
introduced above are reported in Table 2.

By analyzing this table, it is possible to see that our attack is
capable of significantly decreasing the performance of the GNN
model, with a performance reduction spanning from 39% to 76%
with respect to the scenario in the absence of attacks. This result
is even more astounding when we consider that, for the Baseline
Scenario, the state-of-the-art LIE attack produces a maximum per-
formance penalty of 10.2%. The obtained result also confirms that
the use of community-derived pseudo-items and, in general, col-
laborative strategies to achieve privacy protection improves the
robustness of the federated learning model (as originally shown
in [18]) but, at the same time, provides an adversary with the means
to perform possibly stronger attack. As presented in Section 4.1, our
attack crafts the embeddings of the pseudo-item by maximizing the
loss of the model at each epoch. To assess the reasoning behind our
strategy, in Table 2, we report the results obtained by a basic attack
in which, instead of learning optimal embeddings at each iteration,
they are initialized with Gaussian noise. As we can clearly see from
this table, the attack on pseudo-items using Gaussian noise does
not affect the performance of the model, thus confirming that only
an Al-driven attack can suitably exploit this scenario.

As a final remark on these first results, we observe that our at-
tack showed to be resistant to all the different countermeasures we
considered. In fact, as expected, the use of Local Differential Privacy
gives boundaries to the adversary, allowing for a controlled impact
of the attack on gradients, thus keeping them quite similar to benign
ones and, therefore, very complex to detect. The underlying assump-
tion of the aforementioned defenses is that such a limited impact
on the gradients, in principle, would completely prevent the effec-
tiveness of the attack. However, the additional community-based
privacy solution of the attacked scenario provides an opportunity
to boost this malicious signal.

To have a confirmation of our intuition, in Figure 5, we show
the variation of the performance metrics of the GNN model dur-
ing the training phase. We can see at the very beginning of the
training phase that the performances of the federated model on
the validation set, with and without attacks, are almost identical.
As the training continues, the difference between the normal and
the attacked model increases, reaching high values by the end of it.
Indeed, after the first epoch, the clients surrounding the nodes con-
trolled by the attacker begin to sample the malicious pseudo-items
forged by them, thus permanently poisoning their local models.
Such a mechanism continues, epoch by epoch, to expand the mali-
cious signal to a growing neighborhood. In the end, all the poisoned
clients will contribute to the attack boosting the negligible original
signal produced by the attacker.

To deepen the analysis of this aspect, we tested our solution
with both different percentages of malicious clients and several con-
figurations of the number of pseudo-items sampled by the clients.
In particular, in Figure 6, we show the impact of our attack on
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Figure 5: Performance of the federated learning model on
the validation set with and without our attack.
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Figure 6: Performance of the federated learning model with
different percentages of malicious clients.

the performance of the federated learning GNN model underlying
the Main Scenario with a percentage of clients controlled by the
attacker spanning from 10% to 50%.

As expected, from this figure, we can see that the increasing
number of malicious clients causes a linearly related detriment to
the model performance. However, the variation is not very steep
and, sometimes, almost stable, proving that the attack strength
does not depend only on the number of controlled malicious clients.
In Figure 7, we show the variation of the model performance for
different configurations of the number of sampled pseudo-items
(i.e., {10, 20, 30, 40, 50, 100}). Here, we can see how changing the
number of sampled items does not significantly affect the perfor-
mance of the attack. This indicates that, at least for the considered
datasets, a small number of pseudo-items is enough to spread the
malicious payload to a sufficiently large set of clients, which, then,
will unknowingly act as additional collaborators of the attacker.

5.3 Results: Backdoor Mode

This section is devoted to presenting the results of the experiments
carried out to validate the performance of the Backdoor Mode of
our attack (see Section 4.2 for details).

In this experiment, we randomly selected a target user u; from
the set of users of each of our datasets and randomly sampled
groups of 10 items from the whole item pool, excluding those al-
ready belonging to the local graph of u;. At this point, we carried
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Table 2: Results of the convergence inhibition attack

. Filmtrust Ciao Epinions
Scenario Attack Defense RMSE | MAE | RMSE | MAE RMSF}; MAE
Baseline Scenario None None 2.19 1.60 2.54 1.87 2.17 1.52
Baseline Scenario LIE [2] None 2.37 1.69 2.80 2.04 2.36 1.66
Main Scenario None None 2.08 1.56 2.18 1.55 1.79 1.35
Main Scenario Gaussian Noise None 2.06 1.57 2.20 1.59 1.78 1.36
Main Scenario Our attack (Adversarial Mode) FoolsGold 3.21 2.69 3.07 2.45 2.79 2.51
Main Scenario Our attack (Adversarial Mode) Flame 3.01 2.30 3.05 2.45 2.69 2.34
Main Scenario Our attack (Adversarial Mode) Krum 3.03 2.44 3.02 2.42 2.71 2.35
Main Scenario Our attack (Adversarial Mode) | TrimmedMean 3.23 2.60 3.00 2.42 2.66 2.31
[ Average Performance Detriment [ -50% [ -60% [ -39% [ -57% | -51% | -76% |
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Figure 7: Performance of the federated learning model under
our attack with different numbers of sampled pseudo-items
per client.

out our attack on the referring scenario to force the system to learn
a backdoor for this set of items so that, for the only user u;, the
ratings associated with these items are controlled by the attacker. In
the scenario, we included again the state-of-the-art defense mecha-
nisms for federated learning presented in Section 5.2. To measure
the effectiveness of our backdoor attack on this setting, we used
the FCR metric defined in Section 5.1. This metric estimates how
close the ratings of the selected items predicted for the target user
are with respect to the values proposed by the attacker. To return
a reliable estimation, it also considers the general error of the re-
gressor (standard error of estimate) to purge the evaluation from
possibly wrong predictions related to the accuracy of the model.
The results of this experiment are reported in Table 3.

As visible in this table, our attack is capable of achieving an
average FCR score higher than 80% with a maximum of 100% against
all the defenses. Another important result is, as expected, that the
performance (assessed with RMSE and MAE metrics) of the model
on benign items is preserved for all three datasets.

To have a ground truth to compare the obtained results with, we
also measured the FCR score in the case of no attack to exclude any
success case related to the data distribution and not to the attack
effect. As we can see from the results, the maximum FCR value in
the absence of an attack (implying a situation in which, by chance,
the real ratings are in-line with the attacker selection) is around
20% on average, thus showing, once more, the effectiveness of our
attack.

5.4 Evaluation on a Real Recommender System

As a final experiment, we proceed by testing our Backdoor Mode
attack against a real-life recommendation system. To do so, first of
all, we designed a recommender system on top of the GNN-based
model described in the previous sections. Such a model includes
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the embedding of users and items according to their interactions,
which are described in the datasets of reference in this paper (see
Section 5.1). Moreover, as stated in Section 3.1, given the embed-
dings of a user and an item, an estimate of the rating that the given
user would assign to the target item can be obtained through the
dot-product between their embeddings. With this information, it
is possible to build a recommender system capable of suggesting
an item to a user if the estimated rating, according to the strategy
above, is higher than a recommendation threshold 8. A possible
strategy to set a value for § could be to consider that usually, an
item is recommendable to a user if its estimated rating is close to the
upper bound of the rating range (i.e., it is higher than the median
value of the range). As such, § should be a value equal to a fraction
of the rating score range (e.g., for a maximum rating score equal
to 10, § = 0.5 indicates that the recommendable items must have a
rating score higher than half of the maximum rating score, that is,
a rating higher than 5).

The objective of this experiment is to demonstrate that our back-
door attack can force a recommender system to suggest to a target
user any item (also those that would normally receive a minimum
rating score). Of course, it can even be used in the opposite direc-
tion, that is, to force the removal of a good item from the set of
recommendable ones for a target user.

To properly configure our test, we started by selecting a target
user and training the model in a safe configuration without attacks.
Then, using the trained model, we estimated the rating of all the
items available in relation to the target user. After this, we sorted
them and created a ranking of items for the target user. As stated
above, the goal of the attacker can be either to force the recommen-
dation of a specific item to a target user or to remove a good item
from the user recommendation list. In both cases, we considered the
worst-case situation, in which the specific item has originally an
extremely low rating for the former objective, or an extremely high
one, for the latter. To obtain this configuration, as for the former
objective, we selected the bottom 10 items of the ranking above, and
for the latter attack objective, we selected the top 10 items as targets.
At this point, in our experiment, we tested the effectiveness of our
Backdoor Mode attack against the above-introduced recommender
system with different values of the recommendation threshold. In
particular, to measure the obtained attack performances, we started
with the former objective and counted the percentage of attacked
items whose rating was higher than the recommendation thresh-
old 4. In this case, we considered different values of §, namely
{0.5, 0.6, 0.7, 0.8, 0.9}, implying ratings for the recommendable
items always above the median of the rating range and up to a value
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Table 3: Results of the deceptive rating injection attack

Attack Defense Filmtrust Ciao Epinions

RMSE MAE FCR RMSE MAE FCR RMSE MAE FCR

No Attack None 2.06 1.56 20% 2.16 1.56 20% 1.79 1.36 30%

Our Attack (Backdoor Mode) FoolsGold 2.07 1.55 80% 2.19 1.56 100% 1.78 1.34 100%

Our Attack (Backdoor Mode) Flame 2.05 1.57 80% 2.18 1.55 100% 1.79 1.39 100%

Our Attack (Backdoor Mode) Krum 2.03 1.54 80% 2.15 1.54 100% 1.79 1.34 100%

Our Attack (Backdoor Mode) | Trimmed Mean 2.05 1.56 80% 2.19 1.56 100% 1.79 1.34 100%

close to the upper bound (i.e., § = 0.9). As for the latter objective, o Filmtrust i Ciao i Epinions
o

instead, we defined an additional negative threshold, called y, to
evaluate the attack strength. The objective of this second threshold
is the exact opposite of , that is, to verify the percentage of items
with a lower rating than this negative threshold. Of course, the
lower the negative threshold, the more complex the attack goal.
Also in this case, y < § is obtained as a fraction of the maximum
possible rating; in particular, we set it to {0.1, 0.2, 0.3, 0.4, 0.5},
respectively. We reported the obtained results in Figure 8.

The first row of this figure shows the attack performance for the
first objective, whereas the second row concerns the performance
obtained for the second attack objective. By analyzing this figure,
we can see that, for both the Ciao and Epinions datasets, our attack
is successful with all the possible threshold configurations for both
objectives above. As for the Filmtrust dataset, we can notice how
the performance of our attack degrades to 30% in the edge cases (i.e.,
the cases in which ¢ is equal to 0.9, for the first objective, and y is
0.1, for the second objective) while preserving its full effectiveness
for the other configurations of the thresholds. This behavior could
be because this dataset has a fewer number of items concerning
the others, thus increasing the probability for a single item to be
sampled by multiple clients. In this way, the contribution of the
attack could be partially overwritten by the benign clients’ updates,
which implies a slight reduction of the attack performance.

6 RELATED WORK

This section is devoted to surveying the related literature. In partic-
ular, in the next sections, we will review the approaches defining
attacks against recommender system (Section 6.1). Next, we will
analyze the most recent adversarial attacks against recommender
systems leveraging graph-based strategies in Section 6.2. Finally,
we will describe related attacks against user privacy in GNN-based
recommender systems in Section 6.3.

6.1 Attacks Against Recommender Systems

Federated recommender systems are becoming popular due to reg-
ulation on data and privacy of the users, like GDPR in the European
Union [18, 32]. This solution allows social media platforms to build
effective recommender systems useful to produce high-quality sug-
gestions while preserving the privacy of the final user. However,
this kind of collaborative strategy might be affected by malicious
users that take part in the training of the federated recommender
system [5, 14, 40].

Christakopoulou et al. [5] proposed to use a Generative Adversar-
ial Network (GAN) that generates fake users to be injected during
the federated training to control the top-K recommendations pro-
duced by the target recommender system. The proposed solution
is designed to preserve the main characteristics of the data, thus
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Figure 8: The recommendation system recommends an item
if the rating is higher than the given threshold §. As a first
possible objective, the attacker tries to force the model to
predict an item of minimum rating as an item of maximum
rating. We have a success when the rating exceeds a recom-
mendation threshold . Ex. § = 0.5: rating > § - max_rating. As
a second objective, the attacker tries to remove a good item
from the list of recommendable items. The goal is hence to
reduce the rating for a target item under a negative thresh-
old y < §. Therefore, we count the percentage of items with
ratings lower than y. Ex. y = 0.4: rating < y-max_rating. Worst
case scenario: change the rating score of an item from a min-
imum to a maximum value and vice versa.

ensuring unnoticeable changes. Generative Adversarial Networks
not only can be used to attack the systems in an adversarial way,
but they are also effective in stealing private information from other
users. An example of that has been proposed by Hitaj et al. [14] in
which the attacker runs the collaborative learning algorithm and re-
constructs sensitive information stored on the victim’s device. The
attacker also influences the training process inducing the victim to
disclose more detailed information.

The conventional poisoning attacks on recommender systems,
known as shilling attacks [15], are not targeted to a specific type
of recommender system. Therefore, the performance that they can
achieve is sub-optimal to an attack targeted at a specific recom-
mender system. Fang et al. [10] proposed a series of techniques
that optimize the attack to be more effective and achieve better
performances compared to general shilling attacks. Wu et al. [33]
proposed another optimized attack on recommender systems. In
this paper, the authors proposed to use globally hardest sampling as
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a poisoning technique. In particular, they retrieve pseudo “hardest
positive samples” that are farthest from user embeddings to replace
the original positive samples. The obtained gradients significantly
impact the model convergence while being difficult to be perceived
as malicious updates from the server.

6.2 Adversarial Attacks Against Graph-based
Recommender Systems

Fang et al. [11] presented a poisoning attack optimized for graph-
based recommender systems, like the attack we are proposing.
More in detail, in this poisoning attack, the authors’ goal is to
deceive the graph-based recommender system making it promote
a target item to as many users as possible injecting fake users that
provide fabricated ratings to a selected group of items. These fake
ratings influence the recommender system’s algorithm, leading it
to recommend the target item to a larger number of users.

The superior ability of graph neural networks to learn graph-
structured data makes them ideal for recommender systems [24].
Considering this, Nguyen et al. [23] proposed an attack that lever-
ages both the representations of items and users to learn an optimal
attack on a surrogate model. The proposed framework, similar to the
one described above, synthesizes new users and associated edges
to be added into a heterogeneous graph between real users and
items before feeding the poisoned graph as input for optimization.
Graph-based recommender systems are also vulnerable to opti-
mized backdoor attacks like the one proposed by Zheng et al. [42].
In particular, the authors designed a backdoor attack against link
prediction that injects nodes and uses gradient information to gen-
erate optimized triggers building a relationship between any two
nodes in the graph to construct a general attack.

6.3 Attacks Against the Privacy of Graph-based
Recommender Systems

The GNN models are also prone to attacks that aim at the privacy
of the model and the data. These vulnerabilities could be exploited
to infer group properties that are defined over the distribution of
nodes and links, as proposed by Wang et al. [31]. In particular, the
authors designed six different attacks considering a comprehensive
taxonomy of the threat model with various types of adversary
knowledge. They analyzed the main factors that contribute to group
property inference attacks’ success, and they found that it is possible
to infer the existence of a target property by using the correlation
between the property feature and a label in the target model. Duddu
etal. [6] designed three different attacks: the first infers if a node was
included in the training graph, the second recreates the target graph,
and the third infers sensitive attributes of the graph. Considering
attacks against the model instead, Zhang et al. [41] proposed a
property inference attack that aims to infer the basic properties of
the graph given the graph embeddings.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we described an Al-based attack against a scenario
composed of a privacy-preserving social recommender system
leveraging Graph Neural Networks and federated learning to pro-
duce item recommendations. Our attack design starts by analyzing
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the security of recent approaches aiming at building such recom-
mender systems, including Differential Privacy and community-
based strategies to improve sensitive data protection in federated
learning contexts. Although, by design, one of the main features of
federated learning is privacy protection, researchers have shown
that, by analyzing local model updates produced by federated
clients, it is possible to infer sensitive information concerning the lo-
cal datasets. For this reason, recent studies have included additional
privacy protection strategies to face the above-mentioned issue.
This is the case of recent investigations in the context of social rec-
ommender systems, in which federated learning and Graph Neural
Networks are adopted to build a predictive model to estimate item
ratings to be fed to an underlying recommendation engine. In such
a scenario, some authors have proposed combining Differential
Privacy modules with novel privacy-preserving strategies based on
the main characteristics of the underlying scenario. Indeed, in the
context of social recommender systems, user interactions play a
crucial role; this additional information allows the identification
of communities of users related to each other. Leveraging these
communities for each client, it is possible to augment the training
of their local model with knowledge derived from the other commu-
nity members, thus creating an additional separation between the
local updates and the training-sensitive data. However, our intuition
is that, if properly exploited, these additional privacy-preserving
mechanisms can be used to produce a powerful model poisoning
attack against federated learning.

In this paper, we demonstrated this concept by designing a
novel Al-based model poisoning attack with two operating modes,
namely: Adversarial Mode producing a convergence inhibition ef-
fect and Backdoor Mode creating a deceptive rating injection attack
on the federated model. We tested our solution against a target so-
cial recommender system proposed by [18] in a federated learning
scenario equipped with the most effective state-of-the-art defenses.
Furthermore, we discussed the general validity of our strategy also
sketching how it can be adapted to work in other scenarios, such
as the ones described in [16, 17, 32]. The experimental results have
shown how our attack is effective in all the considered cases. More-
over, to further show the significance of our achievements, we built
areal-life recommender system to demonstrate that, with our attack
operating in Backdoor Mode, an adversary can fully control the
recommendations produced for specific target users.

The proposal described in this paper must not be intended as con-
clusive. Indeed, to demonstrate the general validity of our method,
we are planning to extend our investigation by adapting the pro-
posed attack strategy to other possible scenarios. Moreover, the
vulnerability we discovered is based on the collaborative nature
of some privacy-preserving approaches for federated learning. For
this reason, we intend to work on designing possible extensions of
existing defenses to cope with the identified flaw. Finally, we made
explicit reference to a horizontal federated learning scenario. In the
future, we plan to extend our research to vertical federated learn-
ing. Of course, due to the specificities of this variant, a thorough
investigation must be carried out to understand how our attack
methodology can be adapted to it.
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