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Abstract. In this paper, direct numerical simulation is used to study the interaction

between turbulence and a free surface. The configuration is original due to the fact that

a random force generates turbulence in the vicinity of a plane parallel to the free surface.

Turbulence is therefore statistically steady and nearly isotropic at some distance of the

surface. A detailed description of the flow is provided, including second-order statistics

and full Reynolds-stress budgets. It is shown that the results obtained in this configuration

can help the understanding of intercomponent energy-transfer mechanisms.

1 INTRODUCTION

Turbulence interacting with a free-slip surface is encountered in many flows of engi-
neering interest. The most obvious are those of a liquid near a gas-liquid interface like, for
instance, the surface layer of the ocean and lakes, stirred fluids within vessels, and many
flows which occur in chemical engineering processes. On another hand, it can be viewed as
a first approach to the physics of near-wall turbulence since it helps to evaluate the effects
of kinematic blocking independently of the viscous effects, and of those effects induced by
the almost systematic presence of mean shear in the vicinity of a solid wall. Kinematic
blocking is known to affect the mechanism of intercomponent energy transfer (embodied
in the Reynolds-stress-transport equations through the pressure-strain correlations): In
an unbounded turbulent flow, at moderate levels of anisotropy, the mechanism of the in-
tercomponent energy transfer can be viewed as a simple return-to-isotropy phenomenon.
The picture changes drastically in the immediate vicinity of a blocking surface where,
whatever the anisotropy, energy transfer is always at the expense of the normal compo-
nent of the fluctuations. Such a modification has long been attributed to the so-called
splat effect: blobs of fluid moving toward the surface transfer energy from the normal to

1



Gaelle Campagne, Jean-Bernard Cazalbou, Laurent Joly and Patrick Chassaing

the tangential directions at the impact. This simple phenomenology has been questioned
by Perot and Moin1 who noticed that splat events should necessarily be balanced by
“anti-splat” events with an opposite effect on the energy transfer. As a result, they sug-
gested that the imbalance is small —hence the pressure-strain correlation— and can only
be determined by viscous effects along the surface. This was supported by their direct
numerical simulation of decaying turbulence near a free surface at short times. In another
simulation of the same flow at larger times, Walker et al.2 came to a slightly different
conclusion: According to them, the imbalance between splat and anti-splat events results
from conflicting contributions from the kinematic blocking and the return-to-isotropy
mechanism which is present at large times (when anisotropy due to the presence of the
surface becomes significant.) The results based on rapid distortion theory obtained by
Magnaudet3 confirm this last statement, and highlight the fact that the intercomponent
energy transfer mechanism in the presence of a blocking surface strongly depends on the
nature of turbulence at a distance: whether it is steady or unsteady, isotropic or not, etc.

The present study aims at complementing our view of these transfer phenomena when
turbulence at a distance remains steady and quasi-isotropic. We believe that this case is
more representative of engineering applications for which turbulence-production regions
are present in the flow field, and continuously feed the surface regions via turbulent trans-
port. To this end, we have defined a numerical analog of the oscillating-grid experiments
(see, for instance De Silva and Fernando4). This configuration is characterized by sta-
tistical steadiness and continuous feeding of the surface by turbulent diffusion from a
turbulence-production layer. It bears some similarities with the free-surface of an open-
channel flow (see, for instance, the numerical simulations of Handler et al.5), but ensures
strictly-zero mean shear in the surface region and, from a computational point of view,
maximizes the number of grid points placed there. The final goal of our study will be
to identify the structures responsible for the modifications induced by the presence of a
free surface to the intercomponent energy transfer, and to give some informations about a
physically-consistent formulation of a statistical model for the pressure-strain correlations.

The paper is organized as follows: Details about the computational method and the
configuration are given in section 2. A description of the flow based on the examination of
the second-order statistics is then provided in section 3, while section 4 is devoted to the
presentation of the Reynolds-stress budgets. General comments and direction for future
work are provided as the conclusion.

2 CALCULATION METHOD AND DEFINITION OF THE FLOW CASE

Our results are obtained from a numerical solution of the three-dimensional time-
dependent Navier-Stokes equations. We discuss the computational method with a partic-
ular attention to the forcing technique —how turbulence is generated— and then, describe
the way statistics are obtained. All the parameters of the solution are then given, together
with a description of its specific features.
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Figure 1: Definition of the computational domain. Turbulence production is strictly zero outside of the
forcing region.

2.1 Computational method

As one can see in figure 1, the computational domain is a rectangular box in which the
grid spacing is equal and uniform in each direction. The two horizontal directions, x and
y, are periodical, with a period of 2π. The wave numbers are made nondimensional with
Lx = 2π, and all the resolved wave numbers κ are therefore integer numbers. Symmetry
conditions are imposed in the z direction to force free-surface boundary conditions. A
random volume force, confined in the vicinity of a central plane parallel to the free surfaces,
represents the steady source of turbulence.

The incompressible Navier-Stokes equations are solved under the form

{
∇. u = 0
∂t u = u× (∇× u)−∇ (P/ρ+ u

2/2) + ν ∆ u

(1)

using a pseudo-spectral method, similar to that of Orszag and Patterson.6 The momen-
tum equation is advanced in time using a third-order Runge-Kutta scheme with implicit
treatment of the diffusive term. Unlike the periodic x and y directions, odd and even sym-
metries along the z direction deserve a specific treatment. The (even) tangential velocities
and (odd) normal velocity are decomposed using cosine and sine transforms, respectively.
Such a procedure enforces the impermeability and free-slip boundary conditions at the
top and bottom surfaces:

w|z=0 = w|z=2π = 0,
∂u

∂z

∣
∣
∣
∣
z=0

=
∂u

∂z

∣
∣
∣
∣
z=2π

= 0 and
∂v

∂z

∣
∣
∣
∣
z=0

=
∂v

∂z

∣
∣
∣
∣
z=2π

= 0.

Forcing method Among the available methods for the numerical generation of statis-
tically steady turbulent flows, we have followed the method of Alvelius.7 A fully random
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three-dimensional force field is generated in the whole computational domain. It is imple-
mented in spectral space and concentrated at small wave numbers according to a given
spectrum E(κ) ∝ exp[−(κ − κf )

2/c]. We choose the forcing wave number κf = 4 and a
concentration parameter c = 0.05, the result of which is to confine the input of energy in
the range κ = 2 to κ = 6. By construction, the random force is divergence free so that it
does not influence the pressure field. Confinement of the forcing in the vicinity of a central
plane parallel to the free surfaces is performed using a Heaviside function modulated by
a sine function (see figure 1). The energy density injected by the forcing function at each
time step is then equal to P = 0.025. After a transient stage needed for the dissipation
to adapt to the amount of energy-power input, turbulence reaches a statistically steady
state.

Calculation of the statistics Calculation of the statistics benefits from several prop-
erties of the solution: (i) statistical homogeneity in planes parallel to the surfaces, (ii)
invariance under reflection about the midplane, (iii) invariance under rotation about the z
axis, and (iv) statistical steadiness. For a given time, statistical quantities are calculated
by first averaging over planes parallel to the free surface. Symmetry about the midplane
is then used to average the data between planes located at an equal distance from each
of the free surfaces. Finally, rotational invariance about z is used to average correlations
involving tangential components of the fluctuation. The results of this spatial averaging
phase are further averaged in time with samples spaced by half the large eddy turnover
time τ . Hence, for a calculation performed on a nx×ny×nz domain during a time interval
equal to nτ×τ , the z-dependent statistics rely on 2nxnynτ samples for correlations involv-
ing w, and twice that number for those involving at least one of the tangential velocity
components. In the case presented below, we have:

nx = ny = 192, nz = 168 and nτ = 498.

2.2 Parameters and general properties of the solution

Definition of the computed flow Given the general dimensions and discretization
of the computational domain, the flow will be fully defined by the value of the viscosity
(ν). This value must be selected according to a resolution criterion for the smallest scales
(κmax). We use κmaxη = 1.5 (η is the Kolmogorov lengthscale), and κmax is taken as
nx/3 in order to avoid antialiasing in agreement with the two-third rule. Analysis of
the result in the next sections will need meaningful references, we can use several sets of
characteristic scales,

• surface references: the values ks and εs of the turbulent kinetic energy and dis-
sipation rate at the surface, the corresponding turbulent Reynolds number Res is
defined as k2s/(νεs);

• forcing references: the values kf and εf at the edge of the forcing region and Ref =
k2f/(νεf ).
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Figure 2: Time evolutions of the volume-averaged turbulent kinetic energy (– –) and dissipation rate
(—), normalized by their final volume averages.

Quantities made nondimensional with the surface characteristic scales will be denoted by
a star as a superscript, and those using the forcing scales by a tilde. Table 1 below gives
the characteristics of the computed flow according to these two sets of references.

Res z∗f Ref z̃f ν

76.5 1.20 132.5 2.33 2.0 10−3

Table 1: Definition of the flow case. The distance between the bottom surface and the edge of the forcing
region is denoted as zf = (Lz − Lf )/2 and is given in both surface and forcing references.

Establishment of the fluctuating field Figure 2 shows the time evolutions of the
volume-averaged turbulent kinetic energy 〈 k〉 and dissipation rate 〈 ε〉 normalized by their
final steady-state values (angle brackets denote volume average at a given time). The
initial field is at rest when the forcing is switched on. Turbulence initiated in the forcing
region is then diffused in the whole domain. After a transient stage equal to approximately
5 characteristic timescales, the flow reaches a statistical steady state: the figure shows
that the volume averages of the turbulent kinetic energy and dissipation rate rise up to
significant levels and fluctuate around these (constant) levels. In our study, turbulence
production does not rely on the existence of mean-velocity gradients. The absence of a
mean flow can be checked in figure 3 where the time evolutions of the volume-averaged
components of the velocity field normalized by their r.m.s. final values have been plotted.
One can see that these averages are less than 0.15 % at any time. The energy-spectrum
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Figure 3: Time evolution of the volume average of each of the three components of the velocity field,
normalized by their root-mean-square final values: 〈U〉 (—), 〈V 〉 (– –), 〈W 〉 (...).

function obtained at steady state in the domain is plotted in figure 4, it presents several
characteristics worth to mention. First, the input of energy at κ = 4 is clearly visible
on the plot. With increasing wave numbers, a region of limited extension exhibiting the
Kolmogorov −5/3 slope follows, before the dissipation cut-off. At the high end of the
spectrum, a slight pile-up of kinetic energy results from a good compromise between the
value reached by the Reynolds number and the resolution of the smallest scales. This
pile-up can be reduced by increasing the resolution criterion, but we have checked in a
grid-independence study that the main part of the spectrum was unaffected as soon as
κmaxη = 1.5.

3 SECOND-ORDER STATISTICS

Figure 5 shows the profiles of the turbulent kinetic energy and Reynolds stresses, made
nondimensional by ks. The top of the figure corresponds to the lower edge of the forcing
region. The maximum of each of these three quantities is located there. Then, they
decrease toward the bottom surface. As the surface is approached, the normal Reynolds
stress (w2) is forced to zero by the impermeability condition, while the tangential Reynolds
stress (u2) increases significantly to reach a local maximum at the surface. Intercomponent
energy transfer probably contributes to this local maximum, but the turbulent kinetic
energy profile also shows such a maximum at the surface, this latter effect cannot be
explained by intercomponent energy transfer. The simulations of Perot and Moin1 and
Walker et al.2 for an ideal free surface also showed such a peak, in both studies it was
suggested that the peak was due to a decrease in the dissipation rate. Our Reynolds-stress
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Figure 4: Energy-spectrum function at t∗ = 50.

budgets presented in section 4 will support this interpretation.
The difference in the behaviour of the two Reynolds stresses is evidenced by the evo-

lution of the isotropy factor defined as I = w′/u′, where u′ and w′ are the r.m.s. values
of the tangential and horizontal components of the fluctuation. Figure 6 presents the
vertical profile of this quantity. In the middle of the production region zc, turbulence is
slightly anisotropic (I ≈ 0.9) at the expense of the vertical component of the fluctuation.
As the random force field is isotropic, this is probably due to the z-confinement of the
forcing. At the lower edge of the production region and moving toward the surface, the
isotropy factor starts to increase to reach a maximum value about 1.16 at z∗s = 0.79. At
this location, w′ is therefore higher than u′ which is consistent with the experiments of
turbulent diffusion from a plane source (oscillating-grid experiments, see De Silva and
Fernando4 for instance) where the isotropy factor is in the range 1.1–1.3. After reaching
this maximum, the isotropy factor goes to zero at the free surface. We shall consider that
the region located between the surface and zs is the surface-influenced region and call it
the surface layer.

We present in figure 7(a,b) the evolutions of different lengthscales: the turbulence
lengthscale ` = k3/2/ε, the longitudinal and transverse microscales λf and λg. The lon-
gitudinal microscale λf = λu

x is associated to gradients of tangential velocities and the
transverse microscale λg = λw

x to the gradients of normal velocities. Between the lower
edge of the forcing region and the top of the surface region, the turbulent lengthscale and
the microscales exhibit different behaviours, the former slightly decreases while the latters
increase. In this region, the two microscales remain approximately proportional, their ra-
tio being about 1.30 is slightly lower than

√
2 (the value obtained in isotropic turbulence).

In purely-diffusive turbulence, all lengthscales should increase with the distance from the
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Figure 5: Profiles of the turbulent kinetic energy and Reynolds stresses across the zero-production region.
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Figure 6: Vertical evolution of the isotropy factor. The dotted lines at z = zc, z = zf and z = zs indicate,
respectively, the midplane, lower edge of the production region and top of the surface layer.(All data are
normalized with surface references.)
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Figure 7: (a) Profile of the turbulent lengthscale `∗. (b) Profiles of the Taylor microscales λ∗f (—) and
λ∗g (– –). (All data are normalized with surface references.)

source. However, such behaviour relies on a self-similarity hypothesis which is obviously
not satisfied here due to the limited size of the pure-diffusion region. That is probably the
reason why ` decreases there. In the surface region, the evolution of the different length-
scales exhibit some similarities. All of them steadily increase as the surface is approached
except very near the surface where they experience a rapid change: ` exhibits a sharp
peak and the microscales decrease. This region of abrupt change should correspond to
what is usually called the viscous layer (see Magnaudet3). We can estimate the height zv
of this viscous layer with the location of the maximum of λf , and retain z∗v ≈ 0.09.

The evolutions of the Reynolds numbers based on the turbulent lengthscale and mi-
croscales across the flow are plotted in figure 8(a,b). The Reynolds numbers based on
the microscales are defined by Reλ = λ

√
1.5k/ν. All three Reynolds numbers decrease

consistently across the pure-diffusion region. In the surface layer, their evolutions share
the characteristics of those of the lengthscales: a mild variation across most of the layer
followed by rapid changes in the viscous-layer. At this point, we note that the Reynolds
numbers are not small in the so-called viscous layer: the turbulence Reynolds number and
the longitudinal microscale Reynolds number rise up to values which are comparable to
those obtained at the top of the surface layer. Examination of the Reynolds-stress budgets
in the next section will also show that turbulent diffusion is not small as compared to
viscous diffusion in this region, the term “viscous layer” will be kept in the following but
should therefore be used with caution.
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Figure 8: (a) Profile of the turbulent Reynolds number based on the turbulent lengthscale `. (b) Profiles
of the Reynolds numbers based on the longitudinal and transverse Taylor microscales λf (—) and λg (–
–). At the top of the surface layer (z = zs), we have ReT = 48 and Reλf = 13 and, at the surface (z=0),
ReT = 76 and Reλf = 13.

4 REYNOLDS-STRESS BUDGETS

Transport equations for the components of the Reynolds-stress tensor uiuj are easily
derived from the incompressible Navier-Stokes equations. When the flow is statistically
steady with zero mean, they take the form

0 = −∂uiujuk

∂xk
︸ ︷︷ ︸

Du
ij

−1

ρ

(
∂pui

∂xj

+
∂puj

∂xi

)

︸ ︷︷ ︸

D
p

ij

+ ν
∂2uiuj

∂xk∂xk
︸ ︷︷ ︸

Dν
ij

+
p

ρ

(
∂ui

∂xj

+
∂uj

∂xi

)

︸ ︷︷ ︸

Πij

− 2ν
∂ui

∂xk

∂uj

∂xk
︸ ︷︷ ︸

εij

, (2)

where Du
ij, Dp

ij and Dν
ij represent, respectively, diffusion by velocity fluctuations, pres-

sure diffusion and viscosity; Πij represents the pressure-strain correlation and εij the
dissipation-rate tensor. These equations are valid outside of the forcing region, otherwise
a production term corresponding to the random force would have to be added at the right
hand side. Considering the symmetries of our problem, only u2 (≡ v2) and w2 are nonzero
among the components of the Reynolds-stress tensor, their transport equations take the
form

0 = −∂ u2w

∂z
+ ν

∂2 u2

∂z2
+ 2

p

ρ

∂u

∂x
− 2 ν

∂u

∂xk

∂u

∂xk

, (3)

0 = −∂ w3

∂z
− 2

∂

∂z

(
p

ρ
w

)

+ ν
∂2 w2

∂z2
+ 2

p

ρ

∂w

∂z
− 2 ν

∂w

∂xk

∂w

∂xk

. (4)
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Figure 9: Tangential-stress (u2) budget plotted across the surface layer. (All data are normalized with
surface references.)

As k = uiui/2, its transport equation can be deduced from the above:

0 = −1

2

∂ uiuiw

∂z
︸ ︷︷ ︸

Du

− ∂

∂z

(
p

ρ
w

)

︸ ︷︷ ︸

Dp

︸ ︷︷ ︸

Dt

+ ν
∂2 k

∂z2
︸ ︷︷ ︸

Dν

− ν
∂ui

∂xk

∂ui

∂xk
︸ ︷︷ ︸

ε

. (5)

All the terms in equations (3–5) can be computed from the simulation results. The
detailed structure of the budgets will be presented in the next paragraphs.

4.1 Tangential-stress budget

The budget of u2 across the surface layer is presented in figure 9. In the pure-diffusion
region (between zs and zf ) it closely resembles to that observed at the top of the surface
layer and is therefore not reproduced here. At this location, the two dominant terms are
the loss due to dissipation and the gain due to turbulent transport from the forcing region
(by the velocity fluctuations only, since pressure diffusion is zero in this equation). A slight
but noticeable positive contribution to the budget is also provided by the pressure-strain
correlation. Recalling that the flow is slightly anisotropic in this region (w ′ ≈ 1.15u′),
it appears that the pressure-strain term acts conventionally as a return-to-isotropy term.
As the surface is approached, dissipation and turbulent transport remain the dominant
terms while the pressure-strain term goes to zero at z∗ ≈ 0.3, note that this is precisely
the location where the isotropy factor reaches unity. The return-to-isotropy character
of the intercomponent-energy-transfer process is thus remarkably verified down to this
location.
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Things really change in the viscous layer: all the terms in the budget become of the same
order of magnitude. The viscous processes (diffusion and dissipation) both contribute
negatively to the budget, they are balanced by the turbulent transport and pressure-
strain terms. This exact balance between viscous and nonviscous terms confirms that
the “viscous layer” is not fully dominated by viscosity and that such denomination may
be misleading under certain circumstances. The value of the pressure-strain term clearly
shows that intercomponent energy transfer is significant there, and acts in such a way
that anisotropy is increased. Referring to the splat/anti-splat phenomenology introduced
by Perot and Moin,1 this would mean that the balance between splats and anti-splats is
clearly in favour of the formers. A noticeable feature in the evolution of the dissipation
rate in this region is the fact that, after reaching a moderate local maximum at the edge
of the viscous layer (ε11 ≈ 1.2εs), it decreases down to half this maximum at the surface
(≈ 0.6εs). This result is in agreement with the observations of Perot and Moin1 and
Walker et al.,2 and supports the suggestion of these authors that such effect contributes
to the increase of u2 at the surface. Note, however, that the value at the surface of
the other contributor, the pressure-strain term, is nearly twice the “dissipation deficit”
(Π11 = 1.16εs). One last point worth to mention is the fact that, within the viscous layer,
turbulent transport is antidiffusive. At present we are unable to provide an explanation of
this result except that the counter-gradient character of diffusion by velocity fluctuations
follows from Prandtl phenomenology which cannot be invoked when the characteristic
scales of the fluctuating motion become of the same order as the distance to the blocking
surface.

4.2 Normal-stress budget

Figure 10 shows the budget of w2 across the surface layer. As compared to the u2

budget, it involves one more term: pressure diffusion. The addition of this term and
diffusion by velocity fluctuations will be denoted as the turbulent-transport term. At the
top of the surface layer and down to z∗ ≈ 0.3, the budget shares the same characteristics as
that of the tangential Reynolds stress: (i) it is dominated by turbulent transport from the
forcing region and dissipation, (ii) the imbalance is accounted for by the pressure-strain
correlation that acts as a return-to-isotropy term. We can notice, however, that turbulent
diffusion by velocity fluctuations reaches much higher values than the corresponding term
in the u2 budget. This is also true, although to a lesser extend, when turbulent transport
as a whole is considered, and should explain why the isotropy factor is above unity in this
region. Note also that pressure diffusion is antidiffusive, as usually recognized for this
term (see the model of Lumley8).

In the viscous layer, all the terms contribute significantly to the balance except very
near the surface where diffusion by velocity fluctuations goes to zero. In this region, the
dissipation and the pressure-strain correlation both contribute negatively to the budget,
the latter acting — as expected — against a return to isotropy. The positive contributions
to the budget come from pressure diffusion and viscous diffusion. Nonviscous contributions
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Figure 10: Normal-stress (w2) budget plotted across the surface layer. (All data are normalized with
surface references.)

(Dp
33 and Π33) are equal in magnitude and significantly higher (×3 at the surface) than

the viscous contributions (ε33 and Du
33) which are also equal in magnitude. Another

characteristic of the budget in this region is that pressure diffusion, which is antidiffusive
in the top of the surface layer, now becomes diffusive. As mentioned above, this is at
odds with the usual behaviour of this term.

4.3 Turbulent-kinetic-energy budget

In the turbulent-kinetic-energy budget, plotted in figure 11, we have regrouped tur-
bulent transport in a single term. Consistently with the previously presented budgets,
the level of turbulent kinetic energy level in the top of the surface region mainly results
from turbulent transport from the forcing region and dissipation, viscous diffusion being
negligible. In the viscous region, viscous diffusion and dissipation are comparable and con-
tribute negatively to the budget, they are balanced by turbulent transport which is about
twice as large as each of the latters. As in the u2 budget, we can observe a dissipation
deficit at the surface which is most probably one of the reasons for the increase of k there.
Regrouping diffusion by velocity and pressure fluctuations in a single term helps to show
that turbulent transport as a whole behaves as an antidiffusive process in the viscous layer.
This unusual behaviour also contributes to the increase of the turbulent-kinetic-energy
level at the surface.

5 SUMMARY AND CONCLUSION

The results presented in this paper shed some light on the interaction between turbu-
lence and a free surface. Direct numerical simulation is performed in an original configura-
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Figure 11: Turbulent-kinetic-energy budget plotted across the surface layer. (All data are normalized
with surface references.)

tion where turbulence is continuously generated without mean shear in a finite-width layer
parallel to the free surface. As a result the flow is statistically steady, turbulence remains
nearly isotropic at some distance of the surface, and the surface layer is continuously fed
by turbulent diffusion.

Examination of the statistics allows to identify a surface layer where the isotropy
factor responds to the two-component limit imposed at the surface. Rapid changes in the
profiles of the Reynolds stresses and characteristic lengthscales suggest the presence of
a subregion located close to the surface within the surface layer. This region is usually
called the viscous layer. Given the parameters of the simulation, both regions are easily
distinguished, the surface layer being nearly ten times thicker than the viscous layer.

Inspection of the Reynolds-stress budget supports this partition of the flow: The upper
part of the surface layer exhibits roughly the same kind of balance as that of a purely-
diffusive turbulence, while the structure of the budgets radically changes in the viscous
layer.

On the overall, three major conclusions can be drawn from our study:

• The pressure-strain correlation is an important term close to the wall, this makes
our results closer to those obtained by Perot and Moin1 in the simulation of de-
caying turbulence near a free surface at short times than to those of Walker et al.2

in the same situation at large times. It supports the interpretation of Walker et
al. according to which anisotropy, present at large time in their simulation, is re-
sponsible for a return-to-isotropy mechanism superposed onto the splat/anti-splat
phenomenology. This mechanism alters the balance between the two kinds of events
and results in a lower level of pressure-strain correlation at the surface. In our con-
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figuration, anisotropy remains close to unity far from the surface, the pressure-strain
correlation is therefore small outside of the viscous region, but constitutes a major
contributor to the budget near the surface. We may thus suspect a clear imbalance
between splats and anti-splats in favour of the formers.

• The so-called viscous layer is not dominated by viscous effects: the viscous terms
are not dominant in the budget, and the turbulent Reynolds numbers based on the
tangential velocity fluctuations or

√
k are equal or even higher than those recorded

at the top of the surface layer.

• The turbulent-diffusion terms present a rather unconventional behaviour in the vis-
cous layer. Turbulent diffusion by velocity fluctuations is “antidiffusive” in the
tangential Reynolds-stress budget, and pressure diffusion is “diffusive” in the nor-
mal Reynolds-stress budget. As a result, turbulent transport of turbulent kinetic
energy taken as a whole is antidiffusive in the viscous layer. From a modelling point
of view, it may be a delicate task to reproduce such a behaviour with a gradient dif-
fusion scheme: it was shown by Cazalbou and Chassaing9 that such a model would
lead to severe realizability problems.

Future work on the data obtained here will aim at investigating in more details the ele-
mentary structures responsible for the intercomponent energy transfer. Questions remain
on these structures, whether they are all of the generic types “splat” and “anti-splat”, if
there is some possibility to quantify them separately. Answers to these questions would
help to understand the influence of the nature of the blocking surface (rigid or free-slip)
on the level of pressure-strain correlation.
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