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The beyond mean-field physics due to quantum fluctuations is often described with the Lee-Huang-Yang
correction, which can be approximately written as a simple analytical expression in terms of the mean-field
wave function employing local density approximation. This model has proven to be very successful in predicting
the dynamics in dipolar Bose-Einstein condensates both qualitatively and quantitatively. Yet a small deviation
between experimental results and the theoretical prediction has been observed when comparing experiment
and theory of the phase boundary of a free-space quantum droplet. For this reason we revisit the theoretical
description of quantum fluctuations in dipolar quantum gases. We study alternative cutoffs, compare them to
experimental results, and discuss limitations.

DOI: 10.1103/PhysRevA.110.053316

I. INTRODUCTION

Particles in dilute dipolar Bose-Einstein condensates
(BECs) interact with contact interaction via s-wave scattering
as well as long-range dipole-dipole interaction (DDI). Be-
cause of the anisotropic nature of the DDI, the mean-field
effect becomes comparable to beyond mean-field contri-
butions related to quantum fluctuations. This leads to a
range of interesting and unexpected phenomena, such as
self-bound quantum droplets [1–13], supersolidity and super-
fluidity [14–38], excitations [39,40], and quench dynamics
[19,25–30,41,42]. Similarly, beyond mean-field behavior has
also been discussed and observed in binary BECs [43–52].

The beyond mean-field corrections caused by quantum
fluctuations to the mean field were first theoretically intro-
duced by Lee, Huang, and Yang [53,54]; therefore, they are
referred to as the Lee-Huang-Yang (LHY) correction. The
LHY correction can take different forms depending on the
characteristics of the underlying physics, such as the range of
interactions [43,44,55–57], the dimensionality [43,44,56–58],
multicomponents [8,9], and gauge fields [59–62]. By incor-
porating the LHY correction into the usual Gross-Pitaevskii
equation (GPE), one can obtain an extended Gross-Pitaevikii
equation (eGPE) [43,44,56,57,63–65]. The eGPE success-
fully predicted the emergence of quantum droplets in binary
and dipolar BECs [2–10,43–45]. Moreover, the eGPE also
provided a deeper understanding of the excitation spectrum
[39,40,66–75] and supersolid states [10–41,76,77] as well as
other remarkable phenomena arising in quantum gases that
cannot be understood on the mean-field level.

These experimental observations are in good agreement
with the theoretical description in both binary and dipolar

*Contact author: zhangyc@xjtu.edu.cn

BECs, which demonstrates that the eGPE description is a
powerful tool to describe a range of phenomena quite accu-
rately. Yet, there remains a quantitative deviation between the
theoretical prediction and experimental results [6,45,78].

With respect to quantum droplets, we can distinguish two
situations: either the BECs can form a self-bound droplet state
in free space or the BECs delocalize towards ultimately form-
ing a plane wave, depending on the interaction strength and
particle number. The critical line between these two phases
predicted by the eGPE exhibits an evident shift towards either
weaker repulsive short-ranged interaction or larger particle
number as compared to the experimental results for dipolar
BECs [6]. This mismatch between theory and experiment
might be caused by the approximations used for the derivation
of the LHY correction, which are most importantly the local
density approximation and the infrared cutoff in momentum
space.

A way to avoid having to make a cutoff is resorting
to the time-dependent Hartree-Fock-Bogoliubov (TDHFB)
equations rather than the eGPE. The results obtained nu-
merically by solving the TDHFB equations feature a good
agreement with experimental results at relatively small par-
ticle numbers in dipolar BECs [79]. However, whereas the
TDHFB equations represent a quite accurate tool to inves-
tigate the beyond mean-field physics, they are numerically
expensive to solve, particularly when considering systems
with more than one spatial dimension. Therefore, it remains
desirable to explore simple and nearly analytical approaches
to describe the effect of quantum fluctuations as well as pos-
sible.

A numerically cheaper avenue is to reformulate the LHY
correction slightly, at the cost that the cutoff becomes spa-
tially dependent. To derive the LHY correction, usually one
calculates the Bogoliubov excitation spectrum assuming that
variations in the wave function itself are slow compared to
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excitations. Therefore, one can calculate the spectrum for
an unmodulated state without explicit dependence on spatial
dimensions and later add the spatial dependence of the wave
function. This method is commonly referred to as local den-
sity approximation [56,57,63–65]. It becomes less applicable
once the two scales become comparable.

Due to the attractive part of the DDI, the excitation spec-
trum of dipolar BECs is complex in the low-momentum
regime and, thus, leads to a finite imaginary part of the LHY
correction. This can be neglected to a certain extent [80].
Considering that a finite size of BECs inherently imposes
a threshold on the low momenta of allowed excitations, it
was suggested to reformulate the LHY correction by taking
a cutoff in momentum space [4,77,80].

In this paper we will compare different cutoffs, their impact
on the LHY correction and the subsequent shift of the droplet
phase boundary, and their comparison to the experimental
data. Among the cutoffs we discuss, we choose the healing
length as a natural length scale to the momentum cutoff and
show that it leads to an improved agreement to the experimen-
tal data.

The paper is organized as follows. In Sec. II A we
present the derivation of the LHY correction via Hartree-
Fock-Bogoliubov (HFB) theory to provide context [56,57,63–
65,81,82]. In Sec. II B we propose a cutoff associated with
the healing length to reformulate the LHY correction and
compare it with other possible types of cutoffs. In Sec. III we
compare the theoretical result obtained by employing different
cutoffs for the LHY correction to the experimental observa-
tions and furthermore discuss the contributions of low-energy
discrete excitations of a self-bound droplet [66]. Section IV
provides a conclusion.

II. FORMULATION OF LHY CORRECTION

A. LHY correction

We consider a three-dimensional ultracold quantum gas in
free space, where the particles interact via short-range repul-
sion as well as long-range DDI as

V (x) = g

[
δ(x) + 3εdd

4π |x|3
(

1 − 3
z2

|x|2
)]

. (1)

Here g = 4π h̄2as
M with M being the atomic mass, and εdd =

add
as

. as is the s-wave scattering length and can be tuned via

Feshbach resonances [6,83–85], while add = μ0d2M
12π h̄2 represents

the dipolar length [2,6,57] with μ0 and d being the vacuum
permeability and the magnetic dipole moment, respectively.
The dynamics of such a system is governed by the following
Hamiltonian:

Ĥ =
∫

d3xψ̂†(x)h0(x)ψ̂ (x)

+ 1

2

∫∫
d3xd3x′ψ̂†(x)ψ̂†(x′)V (x − x′)ψ̂ (x′)ψ̂ (x),

(2)

where h0(x) = − h̄2∇2

2M − μ is the single-particle Hamiltonian
containing the kinetic energy and the chemical potential μ,
and ψ̂ (x) denotes the field operator of particles. According

to the HFB theory, the field operator can be approximately
expanded as

ψ̂ (x) = �(x) + φ̂(x) (3)

with �(x) = 〈ψ̂ (x)〉 being the mean-field value and φ̂(x) rep-
resenting the operator of fluctuations with 〈φ̂〉 = 0.

By substituting this expansion into the above Hamiltonian,
keeping up to the third order with respect to the fluctuation
operator and combining the third-order terms into the first-
order term via Hartree-Fock factorization (see Appendix A for
details), eventually one can obtain the following equation by
setting the corresponding coefficient be equal to zero since the
first-order term must vanish for the ground state [64,65,86]:[

h0(x) +
∫

d3x′V (x − x′)|�(x′)|2
]
�(x)

+
∫

d3x′V (x − x′)ñ(x′, x′)�(x)

+
∫

d3x′V (x − x′)ñ(x′, x)�(x′)

+
∫

d3x′V (x − x′)m̃(x′, x)�∗(x′) = 0, (4)

i.e., a stationary eGPE. The first line corresponds to the
usual mean-field GPE, while the additional terms describe
the contributions of quantum fluctuations and can be refor-
mulated into the LHY correction as will be discussed later.
To obtain this eGPE, we have assumed that the dipolar gas
is in the ground state with the corresponding wave func-
tion �(x), and we have defined the noncondensate density
ñ(x′, x) = 〈φ̂†(x′)φ̂(x)〉 and anomalous noncondensate den-
sity m̃(x′, x) = 〈φ̂(x′)φ̂(x)〉.

Due to the dependence on the noncondensate densities,
it is not yet straightforward to deal with the ground-state
dipolar BECs using Eq. (4). To further simplify the above
eGPE, one needs to investigate the excitation spectrum as fol-
lows. By using the Bogoliubov transformation, the fluctuation
operator can be written as φ̂(x) = ∑

j[u j (x)α̂ j − v∗
j (x)α̂†

j ],

where α̂ j (α̂†
j ) is the annihilation (creation) operator of the

quasiparticles and satisfy bosonic commutation relations. The
Bogoliubov amplitudes are subject to the following constraint∫

d3x[u∗
j (x)uk (x) − v∗

j (x)vk (x)] = δ jk and can be determined
by the Bogoliubov-de Gennes (BdG) equations as

L0u j (x) +
∫

d3x′V (x − x′)�∗(x′)�(x)u j (x′)

−
∫

d3x′V (x − x′)�(x′)�(x)v j (x′) = Eju j (x)

L0v j (x) +
∫

d3x′V (x − x′)�(x′)�∗(x)v j (x′)

−
∫

d3x′V (x − x′)�∗(x′)�∗(x)u j (x′) = −Ejv j (x) (5)

with L0 = h0(x) + ∫
d3x′V (x − x′)|�(x′)|2. By incorporat-

ing the Bogoliubov amplitudes obtained from the above BdG
equations into the fluctuation operator, one can readily rewrite
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the noncondensate densities as

ñ(x′, x) =
∑

j

{v j (x′)v∗
j (x)

+ NB(Ej )[u
∗
j (x

′)u j (x) + v j (x′)v∗
i (x)]},

m̃(x′, x) = −
∑

j

{u j (x′)v∗
j (x)

+ NB(Ej )[v
∗
j (x′)u j (x) + u∗

j (x
′)v j (x)]}, (6)

where we have utilized the Bose statistics of the quasiparti-
cles, i.e., 〈α̂†

j α̂k〉 = δ jkNB(Ej ) and 〈α̂ j α̂k〉 = 〈α̂†
j α̂

†
k 〉 = 0 with

NB(E ) = (eβE − 1)−1 and β = kBT . Now we arrive at the
closed Eqs. (4)–(6), which are usually referred to as HFB the-
ory. These equations can be solved self-consistently; however,
the calculation is quite tough even for a homogeneous flat state
and one usually has to resort to numerics [79].

To get around the complicated computation of the above
HFB equations and reach a simple description of the effect
of quantum fluctuations, one viable route is to employ the
local-density approximation (LDA) [56,57,64,65,82] through
the following substitutions:

u j (x) → u(x, k)eik·x, v j (x) → v(x, k)eik·x,

Ej → E (x, k),
∑

j

→
∫

d3k
(2π )3

, (7)

where u(x, k) and v(x, k) are slowly varying functions of x
and are subject to the constraint |u(x, k)|2 − |v(x, k)|2 = 1.
Under such an LDA, the BdG equation (5) can be solved ana-
lytically and results in the excitation spectrum and amplitudes
as follows:

E (x, k) =
√

εk[εk + 2n0(x)Ṽ (k)],

|v(x, k)|2 = εk + n0(x)Ṽ (k) − E (x, k)

2E (x, k)
,

u(x, k)v∗(x, k) = n0(x)Ṽ (k)

2E (x, k)
(8)

with εk = h̄2k2

2M , n0(x) = |�(x)|2, and Ṽ (k) = g[1 +
εdd(3 cos2 θ − 1)] = Ṽ (θ ) being the Fourier transformation
of the interaction potential (1). Here we see that Fourier
transform of the dipolar interaction depends only on the angle
θ and not on all three components of k as can be expected
from the azimuthal symmetry in direct space.

One can notice that the additional terms associated with
fluctuations in Eq. (4) act like a shift of the chemical potential
�μ to the mean-field value μ:

�μ�(x) =
∫

d3x′V (x − x′)ñ(x′, x)�(x′)

+
∫

d3x′V (x − x′)m̃(x′, x)�∗(x′). (9)

Employing LDA, this chemical potential shift can be ex-
pressed as

�μ(x) =
∫

d3k
(2π )3

Ṽ (k){|v(x, k)|2 − u(x, k)v∗(x, k)

+ NB(E )[|u(x, k)|2 + |v(x, k)|2
− 2u(x, k)v∗(x, k)]}. (10)

By substituting Eq. (8) into Eq. (10) and performing proper
renormalization, we can eventually reach the following ana-
lytical LHY correction [56,57,63–65]:

�μ(x) =
∫

d3k
(2π )3

Ṽ (k)

{
εk

2E (x, k)
+ n0(x)Ṽ (k)

2εk
− 1

2

+ 1

exp [E (x, k)/kBT ] − 1

εk

E (x, k)

}

= 32

3
g

√
a3

s

π
[Q5(εdd, kc) + R(εdd, kc)]|�(x)|3, (11)

where

Q5(εdd, kc) = 1

8
√

2

∫ π

0
dθ sin θ

Ṽ (θ )

g

[
(kcξ0)3 − 3

Ṽ (θ )

g
kcξ0

+
(

4
Ṽ (θ )

g
− (kcξ0)2

)√
2

Ṽ (θ )

g
+ (kcξ0)2

]
(12)

and R(εdd, kc) (see the detailed expression in Appendix A) are
associated with the quantum and thermal fluctuations, respec-
tively, with ξ0 = 1/

√
8πasn0(x). To get the above expression

of Q5, we have integrated the momentum k from a cutoff kc

to infinity (again, see Appendix A). It is worth noting that
the cutoff kc is a function of θ rather than a constant due
to the anisotropic property of DDI as discussed in Sec. II B.
Hereafter we will focus on the case at zero temperature, where
the thermal fluctuations vanish (i.e., R = 0), and thus the
LHY correction is reduced to [56,57,63–65]

�μ(x) = 32

3
g

√
a3

s

π
Q5(εdd, kc)|�(x)|3. (13)

We would like to point out that the cutoff kc appearing in Q5

has a significant impact on the LHY correction and will be
further discussed in Sec. II B. Without the cutoff (i.e., kc =
0), Q5 can be simply approximated by a analytical function
of 1 + 3

2ε2
dd by neglecting its imaginary part, which has been

widely used in the research related to the effect of quantum
fluctuations in quantum gases [3,6,66,80].

Here we have omitted the term related to the nonconden-
sate density ñ(x′, x′) in Eq. (4) as it is small compared to �μ

[64,79]. Through a similar derivation as above for �μ, this
term can be rewritten as

�μ̃(x) = 8

3

√
a3

s

π
(Q3 + P )

∫
d3x′V (x − x′)|�(x′)|3 (14)

with Q3(εdd, kc) = 1
2
√

2

∫ π

0 {
√

2 Ṽ (θ )
g + (kcξ0)2[ Ṽ (θ )

g −
(kcξ0)2] + (kcξ0)3} sin θdθ and P (εdd, kc) representing the
quantum and thermal fluctuations, respectively. At zero
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temperature (P = 0), it reduces to

�μ̃(x) = 8

3

√
a3

s

π
Q3

∫
d3x′V (x − x′)|�(x′)|3. (15)

In Sec. III we numerically examine the effect of �μ̃(x) and
show that it merely causes a tiny shift to the critical point of a
self-bound droplet in free space, which justifies the omission
of this term [64,79].

B. Cutoff in momentum space

From Eq. (12) it is clear that Q5 inevitably has a finite
imaginary part due to the anisotropic character of the DDI in
the case of a vanishing cutoff kc = 0. To avoid this artifact,
we can choose to simply neglect the imaginary part of Q5 as
it is small compared to the real part [80]. However, this for-
mulation of the LHY correction leads to a deviation between
the theoretical and experimental results regarding the stable
regime of a single quantum droplet in free space [6].

In case of a finite-sized quantum droplet, the long-
wavelength excitation is actually suppressed, and only the
excitations with the momentum beyond the inverse of size
of the droplet can be supported. Hence, the finite size of
the droplet inherently imposes a momentum cutoff for the
integration in Eq. (12). Assuming the corresponding sizes of
the dipolar droplet along the polarization direction and the
transverse directions are σz and σρ , respectively, two different
options of the cutoff have been suggested [4,80]:

kel,I
c (θ ) =

√
k2

c,ρ sin2 θ + k2
c,z cos2 θ,

kel,II
c (θ ) =

(
sin2 θ

k2
c,ρ

+ cos2 θ

k2
c,z

)−1/2

. (16)

Here kc,ρ = 2π
σρ

, kc,z = 2π
σz

and θ corresponds to the angle
between the momentum and the polarization directions and
is spatially dependent. The superscript reflects that both
parametrize an ellipse in k space. This cutoff does not depend
explicitly on the spatial distribution x of the density n0(x),
but rather on the predefined extent σρ and σz. As the droplet
size increases with particle number, both cutoffs vanish for
N → ∞. We will show later that the difference between these
two cutoffs becomes indeed negligible and approaches the
result without cutoff at large particle numbers. In addition to
the above elliptical cutoffs, Ref. [64] empirically proposes a
cutoff:

kn
c (x) = π

√
2Mgn0(x)

2h̄
. (17)

Note that this cutoff includes information of the spatial dis-
tribution of the density n0(x), but lacks explicit information
related to the interactions.

Apart from the droplet size, the healing length ξ =
h̄/

√
2Mn0(x)|Ṽ (k)| [13,87] also represents a natural charac-

teristic length scale of BECs and provides an inherent limit to
the excitation momentum [88–90]. It is the length scale within
which the wave function can “heal” when it is pinched (or set
to zero). For example, it provides a scale for the size of the
vortex core. One can identify this length scale by equating
the kinetic energy to the interactions. Considering Eq. (8), we

see that the excitation spectrum is phononlike when k 
 ξ−1

[i.e., εk 
 n0(x)|Ṽ (k)|] and behaves like a free particle when
k � ξ−1 [i.e., εk � n0(x)|Ṽ (k)|].

It seems that the phononlike modes shall be easier to
be excited because of the low excitation energy and thus
dominate the effect of fluctuations. Counterintuitively, it has
been observed that the fluctuations associated with these low-
momentum excitations are in fact dramatically suppressed
by the correlated pair excitations carrying opposite momenta
[88,89]. Therefore, we anticipate that the main contribution to
the LHY correction is due to free-particle-like excitations and,
for that reason, propose the following alternative cutoff using
the healing length:

kh,I
c (x, k) = ξ−1 = 1

h̄

√
2Mn0(x)|Ṽ (k)|. (18)

This implies that we neglect the contribution of the phonon-
like excitation modes. It is worth noting that Ṽ (k) depends on
only the direction of the momenta (i.e., the angle θ between
k and the polarization direction) due to the anisotropy of
the dipolar interactions. Hence, the cutoff kh,I

c as well as the
healing length is in fact independent of the modulus of k and
varies only with the angle θ and the position in space. As
Ṽ (k) can be negative, we have chosen the modulus of Ṽ (k) to
reduce the imaginary contribution to the LHY correction. As
a side note, this spatially dependent cutoff is not numerically
impractical in that it is not required to evaluate it for every
point in position and momentum space. As is shown in Ap-
pendix A, one merely needs to insert the specific form of the
cutoff into Eq. (A7) and integrate over the momenta. Hence,
as the density factors out, it is only required to calculate the
coefficients Q5 and R once, without the need to recalculate
them for different density profiles.

One can notice that the excitation energy E (x, k) becomes
imaginary if the cutoff is smaller than

√
4Mn0(x)|Ṽ (k)|/h̄

when Ṽ (k) < 0, and thus leads to a complex LHY correction,
the imaginary part of which is tiny and often neglected in
previous research [1,80]. As shown in Fig. 1, we have checked
that this specific choice does not lead to a significant change as
compared to setting the cutoff equal to 0 (enlarging the imag-
inary part) or

√
4Mn0(x)|Ṽ (k)|/h̄ (removing the imaginary

part) in domains where the interaction is negative. Namely,
we introduced the piecewise functions

kh,II
c (x, k) =

{
1
h̄

√
2Mn0(x)Ṽ (k) Ṽ (k) � 0

0 Ṽ (k) < 0
(19)

and

kh,III
c (x, k) =

⎧⎨
⎩

1
h̄

√
2Mn0(x)Ṽ (k) Ṽ (k) � 0

1
h̄

√
4Mn0(x)|Ṽ (k)| Ṽ (k) < 0

. (20)

Such a cutoff associated with the healing length can also
be understood from the excitation spectrum of a droplet.
The above discussions are based on the LDA, which leads
to an entirely continuous spectrum ranging from a low-
frequency phononlike excitation domain to a high-frequency
free-particle-like regime [see Eq. (8)]. However, as dis-
cussed in, e.g., Ref. [66], the excitation spectrum of a single
droplet is actually composed of two distinct regimes, i.e.,
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FIG. 1. The coefficient of the LHY correction Q5 obtained using
an ellipsoidal cutoff kel,I

c (orange) and kel,II
c (black), a spherical cutoff

kn
c (green), and our proposed cutoff associated to healing length kh,I

c

(gray), kh,II
c (purple), and kh,III

c (red). The result without cutoff is
depicted with the blue line. Only the Q5 obtained via kh,III

c (red line)
is purely real, while the others are complex with small imaginary
parts that have been neglected in this plot.

the low-energy bound modes and the high-energy unbound
modes, which approximately correspond to the aforemen-
tioned phononlike and free-particle-like modes. Additionally,
it is worth noting that the cutoff beyond which the excitation
spectrum is approximated employing LDA discussed here is
different from the energy cutoff introduced in Ref. [86]. In
Ref. [86] the energy cutoff is introduced for computational
tractability for a trapped system, whereas we consider an
untrapped system and discuss cutoffs that are fixed to different
characteristic length scales.

To gain an intuitive understanding of the distinction be-
tween these cutoffs, we plot the coefficient of the LHY
correction as a function of εdd (i.e., Q5) obtained via different
options in Fig. 1. The elliptical cutoffs (16) are obtained using
the size of the quantum droplet close to the phase boundary.
Since this type of cutoff is size-dependent, we need to first
calculate the droplet using the LHY correction without cutoff
and then self-consistently iteratively update the LHY correc-
tion up to convergence. As expected, the LHY correction in
this case (i.e., the orange dashed line) is gradually approach-
ing the analytical approximation without any cutoff (i.e., the
blue line) as εdd decreases, where the critical particle number
becomes large (cf. Fig. 2) and thus leads to a nearly zero
cutoff. In comparison with kel,I

c , the other elliptical cutoff kel,II
c

leads to a smaller deviation from the analytical result (not
shown) [64,80]. In contrast, the spherical cutoff (17) (i.e., the
green dashed line) and the cutoff induced by healing length
(18)–(20) (i.e., the gray, purple, and red lines) present a notice-
able difference towards lower values of the LHY correction
Q5. Moreover, as mentioned before, the choices of the cutoff
associated with the healing length in the negative Ṽ (k) regime

FIG. 2. (a) The phase diagram of dipolar BECs in free space. The
gray region indicates the self-bound droplet phase obtained with the
LHY correction without cutoff. The lines correspond to the transition
points obtained using the ellipsoidal cutoff kel,I

c (orange dashed), the
spherical cutoff kn

c (green dashed), and the healing length induced
cutoff kh,III

c (red), respectively. The experimental results are illus-
trated by the black and blue dots [6]. The red triangles depict the
critical points for N = 500 and 10 000 obtained via kh,III

c including
�μ̃ [see Eq. (15)]. (b) The critical scattering length difference of
each line with respect to the boundary of the gray region in (a) is
plotted to represent the transition lines more clearly. (c) The energy
per particle (red) and chemical potential (blue) of a droplet for
N = 7000 is presented as function of the s-wave scattering length.
The light gray zone and dark gray zone represent regimes of a stable
ground-state droplet and a droplet that is metastable with respect to
the plane wave, respectively.

mainly lead to variation in the imaginary part of Q5, while the
real part changes slightly.

As Q5 is part of the repulsive interaction, we can already
foresee at this point that the droplet phase boundary will
be shifted towards stronger contact interactions (i.e. larger
s-wave scattering length) and lower particle number. Thus,
an appropriate cutoff might lead to better agreement between
theory and experiment [6]. Furthermore, the LHY correction
obtained via our proposed cutoff converges to the result of
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the spherical cutoff upon decreasing εdd, while it features
a clear deviance to the downside upon increasing εdd. This
anisotropic deviance will also manifest itself in a slightly
shifted droplet phase boundary as we will discuss in the fol-
lowing section.

III. RESULTS AND DISCUSSIONS

To examine the reliability of our proposed cutoff, we ex-
plore the ground-state phase diagram of a dipolar condensate
at zero temperature in free space using the following eGPE
including the LHY correction [2–4]:

ih̄
∂

∂t
�(x) =

[
− h̄2∇2

2M
+

∫
V (x − x′)|�(x′)|2d3x′

+ 32

3
g

√
a3

s

π
Q5(εdd, kc)|�(x)|3

]
�(x). (21)

Here N is the total particle number of the condensate, and the
wave function has been normalized to the particle number, i.e.,∫ |�(x)|2d3x = N . We will evaluate the LHY correction em-
ploying the different cutoffs discussed in the last section. To
identify the ground state, we numerically propagate the above
eGPE using imaginary time evolution (i.e., replacing t with
−it) and renormalize the wave function after each propagation
step. We use cylindrical truncation for the DDI to eliminate
the influence of the periodic image caused by Fourier trans-
formation [91,92]. Eventually the solver converges to the least
damped state, unless it gets trapped at a metastable state at
a local minimum of the energy. Our findings are illustrated
in Fig. 2. We proceed with investigating the phase diagram
in Sec. III A and subsequently discuss the error related to
neglecting bound parts of the spectrum in Sec. III B.

A. Phase diagram of a single dipolar droplet

Now we would like to proceed with comparing the differ-
ent approaches to the experimental data presented in Ref. [6].
We consider a dipolar BECs composed of 162Dy (add = 129a0

with a0 being the Bohr radius). To scan the phase boundary of
the quantum droplet, we first fix the atom number N , relax
the state via imaginary time evolution, and then gradually
increase the contact interaction strength by tuning the s-wave
scattering length as up to the point where the droplet is no
longer self-trapped. The results are summarized in Fig. 2(a).

As can be seen from Fig. 2(a), the stable region of the
droplet (see the gray zone) predicted by the analytically
approximated LHY correction without cutoff presents a de-
viation from the experimental observations (dots) as reported
in Ref. [6]. Taking the suppression of low-momentum ex-
citations [4,77,80] due to the finite size into account and
using the elliptical cutoff to improve the LHY correction,
the critical line is slightly shifted towards the experimental
result as shown by the orange dashed line. This shift is more
pronounced at small particle numbers, as the droplet size is
smaller and thus leads to a larger finite cutoff in momentum
space. However, a mismatch between theory and experiment
remains.

Let us now discuss the spherical cutoff (17) and our pro-
posed cutoff associated with the healing length Eq. (20). It

appears that both of them are in good agreement with the
experiment results (dots) as depicted by the green dashed line
and the red line, respectively. As expected, for large particle
numbers, the boundaries resulting from the cutoff associated
with the healing length converges to the spherical cutoff,
which is consistent with the previous analysis of the LHY
coefficient in Sec. II B (cf. Fig. 1), as the anisotropy of the DDI
in momentum space is reduced at small εdd. Nonetheless, the
difference between them grows slightly as the atom number
decreases, and we have to account for the anisotropy. Both
models are in good agreement with each other and with the
experimental data for relatively large particle numbers. For
small particle numbers the two models diverge, and the cutoff
associated with the healing length kh,III

c appears to be closer to
the experimental data. Furthermore, both results remain close
to what has been found via a Monte Carlo-based simulation
[93], in particular for large atom numbers. In order to high-
light the difference between these boundaries, we show the
critical scattering length with respect to the result obtained
via the LHY correction without cutoff, i.e., �as,c = acutoff

s,c −
aanalytical

s,c , in Fig. 2(b).
A stable self-bound droplet can be either the ground state

(with the lowest energy) or a metastable droplet with a higher
energy than a plane wave [see the shading region in Fig. 2(c)]
[79]. The boundary in Fig. 2(a) indicates the critical param-
eters beyond which the droplet no longer exists even as a
metastable state. For illustration, the metastable region for
the droplet with a particle number of N = 7000 is shown
by the dark gray zone in Fig. 2(c). The energy per particle
becomes positive in this regime. The ground state in this case
corresponds to a plane wave, the energy of which is fixed at
zero. In contrast, the chemical potential remains negative in
the metastable region until it reaches the critical point as/a0 ≈
99.1. Such a small absolute value of the chemical potential
implies a small number of discrete excitations around the
boundary of a stable self-bound droplet [66]. We will discuss
bound modes in the next section.

B. Contributions of the bound modes

In the previous subsection, we have demonstrated that
cutoffs have a significant impact on the phase boundary.
Employing cutoffs means neglecting the contributions of all
the discrete internal modes below the cutoff (i.e., the bound
excitation modes of a droplet). It remains unclear whether
these contributions can indeed be safely neglected. Therefore,
we proceed with examining the contributions of the bound
excitation modes to the LHY correction. For this purpose, we
numerically calculate the Bogoliubov excitation spectrum for
the self-bound droplet and then substitute it into the following
equation to get the contributions of these bound modes to the
LHY correction. The correction to the chemical potential can
be written as

�μ′ = − 1

|�(x)|2
∑
j∈B

[Ej |v j (x)|2 + v∗
j (x)L0v j (x)]. (22)

Here B refers to the set of all the bound modes. Equation (22)
is derived without using the LDA; one can find it after some
algebra via combining Eqs. (5), (6), and (9) (see Appendix B
for details).
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FIG. 3. The contributions of free modes and bound modes to the
LHY correction near the phase transition boundary. Panels (a) and
(d) show the contributions of continuous modes beyond the cutoff
for N = 10 000 and 500, respectively; (b) and (e) present the corre-
sponding contributions of the discrete bound modes at N = 10 000
and 500. The contributions of the momenta ranging from zero to the
cutoff, �μcut , are displayed in (c) and (f) for N = 10 000 and 500,
respectively. For (a, b, c) N = 10 000, the s-wave scattering length is
fixed at as = 102.1a0 [marked by in Figs. 2(a) and 2(b)], while it
is set to 67.5a0 for (d, e, f) N = 500 [marked by in Figs. 2(a) and
2(b)].

Figure 3 shows the contributions of both free and bound
excitation modes for the quantum droplets around the critical
point of the phase transition. The contributions from the free
modes correspond to the LHY correction obtained with the
healing length-associated cutoff. Here we present the results
for the droplets at a large particle number (N = 10 000) and at
a small particle number (N = 500), respectively. Since these
states are close to the critical point, where the chemical poten-
tial approaches zero as shown in Fig. 2(c), there is only a small
number of bound excitation modes possible, since only bound
modes with a lower energy than −μ are permitted [66]. In
our case, only five bound modes for N = 10 000 and only two
bound modes for N = 500 are allowed. As can be seen from
Figs. 3(b) and 3(e), the contributions of these finite bound
modes are several orders smaller than the contributions of the
continuous free modes displayed in Figs. 3(a) and 3(d). Such
a tiny contribution of the low-energy bound excitation modes
justifies the cutoff for the LHY correction in the vicinity
of the phase boundary. In Figs. 3(c) and 3(f) we also show
the contribution of low momenta in the bound-mode regime
obtained via the continuous excitation spectrum under LDA.
Specifically, we integrate the momentum from 0 to qc instead
of from qc to infinity in Eq. (A7) to obtain �μcut. Clearly,

�μcut is larger than �μ′. In other words, the LDA effectively
overestimates the contribution of the low-energy discrete ex-
citations, while the effect of the bound modes is negligible
near the phase boundary. For that reason we can improve the
agreement with experiment by calculating the LHY correction
with an appropriately chosen cutoff.

We have also numerically checked the influence of such
discrete modes on the boundary of the self-bound droplet by
adding �μ′ to the eGPE and computing it self-consistently
during the imaginary time evolution, and found that the crit-
ical line [i.e., the red line in Fig. 2(a)] barely changes. Also,
we have also examined the effect of �μ̃ shown in Eq. (15),
which is induced by the noncondensate density ñ(x′, x′) and
usually neglected in previous research [64,79]. By adding this
term to the eGPE in Eq. (21), the critical points for the stable
droplet at, e.g., N = 500 and 10 000 have been recalculated
using our proposed cutoff [see the red triangles in Fig. 2(a)].
In comparison with the result obtained without �μ̃ (i.e.,
the red line), the shift of the critical points is negligible. A
previous investigation also shows that �μ̃ could be actually
further reduced by higher-order correlations utilizing Beliaev
formalism beyond Bogoliubov approximation [94]. Hence, it
is reasonable to neglect the contributions of �μ̃ and �μ′ in
the eGPE, at least close to the phase boundary.

To examine the validity of our approach, we have also
analyzed the bound mode contribution of a droplet state that
is not so close to the transition line. Figure 4 presents an ex-
ample for N = 10 000 at as = 50a0, where the critical s-wave
scattering length is ∼102.1a0. In comparison with the droplet
in the vicinity of the boundary [see Figs. 3(a) and 3(b)], as
can be seen from the Figs. 4(a) and 4(b), the LHY correction
is noticeably larger than that close to the boundary, since the
peak density of the droplet as well as the quantity add/as

increases in the deep self-bound region. Furthermore, it is also
worth noting that the ratio of the LHY contribution from the
bound modes to that stemming from the continuous modes
(i.e., �μ′/�μ) becomes approximately two orders of magni-
tude larger, but remains quite tiny ∼10−2 and negligible. Such
an increased weight of the contribution to the LHY correction
is mainly due to the large number of discrete bound excitation
modes, the spectrum of which is presented in Fig. 4(e). To
verify the negligibility of the bound mode effects, we first
calculate the stable solution of the eGPE (21) using the LHY
correction associated with the cutoff kh,III

c [see the blue line in
Figs. 4(c) and 4(d)]. Subsequently, we numerically address the
discrete excitation spectrum of this stable solution. By adding
the contribution of these bound modes to the LHY correction,
we recalculate the stable solution of the updated eGPE via
imaginary time evolution iteratively. One can see that the red
dashed line (including the bound mode effect) and the blue
line (without the bound mode contribution) are almost on top
of each other, i.e., the density profile barely changes. That is,
our proposed cutoff remains a good approximation to estimate
of the effect of quantum fluctuations in a broad regime around
the boundary.

However, for deeply self-bound droplets that are far from
the critical point, the number of bound modes may grow
quickly and result in a much larger additional contribution
to the LHY correction. In this case, the effect of the bound
modes might no longer be negligible and possibly needs to
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FIG. 4. The LHY correction as well as the density profile of a
quantum droplet state for N = 10 000 at as = 50a0. Panels (a) and
(b) present the contributions of continuous modes beyond the cutoff
and that of the discrete bound modes, respectively, to the LHY cor-
rection. The density distribution of this droplet along the transverse
(polarization) direction is displayed in (c) [(d)], where the blue (red)
line corresponds to the ground state obtained via the LHY correc-
tion with only the continuous modes (including the discrete bound
modes). The excitation spectrum of the bound modes is shown in (e).

be taken into account in Eq. (22) for an accurate descrip-
tion. For example, we also performed the same analysis as
Fig. 4 for the unphysical situation N = 500 at as = 15a0,
where �μ′/�μ ∼ 0.05 (not shown). The iterative calcula-
tion converges after two rounds. In contrast to Fig. 4, there
is a discernible decrease of the droplet peak density. This
is due to the fact that the discrete bound excitation modes
effectively enhance the LHY correction, which behaves like
a repulsive nonlinearity and thus decreases the peak density
of the droplet.

IV. CONCLUSION

In this work we have discussed different possible cut-
offs, including a cutoff associated with the healing length.
Through numerically exploring the stability of a single self-
bound droplet in free space using the different cutoffs for
the LHY correction, we showed that the numerical prediction
using the cutoff associated with the healing length presents a
good agreement with the previous experimental observations.
Moreover, we discussed the underlying physics of this cutoff.
We showed that it is related to the excitation spectrum, where

the inverse healing length is a natural length scale that dis-
tinguishes between the low-energy phononlike modes and the
high-energy free-particle-like modes.

To further quantify the approximations, we have also in-
vestigated the effect of the bound excitation modes that are
neglected by this cutoff. We showed that the contribution of
those discrete modes is comparably small in the vicinity of the
boundary of the droplet stable region. This appears to remain
true in the deeper droplet region (small as) as well. We also
showed that, at least in principle, in the domain of deeply
self-bound droplets, the contribution of these bound modes
can at some point become non-negligible.

In comparison with the numerically demanding calculation
of the HFB equations, our proposed method offers an alter-
native simpler route that still features high accuracy. As an
outlook it could also be interesting to investigate the possible
cutoffs in other quantum gas systems, for example, in dipo-
lar mixtures [5,8,9]. Furthermore, it would be interesting to
include finite-temperature effects in the calculations. In addi-
tion, as the cutoff approach proposed here remains dependent
on the LDA, it would be also desirable to further improve it
beyond LDA in a future study.
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APPENDIX A: DERIVATION OF LHY CORRECTION

In this Appendix we present some details about the deriva-
tion of LHY correction that are neglected in the main text. By
employing the HFB theory, we approximately expand the field
operator as ψ̂ (x) = �(x) + φ̂(x) [see Eq. (4)] and substitute
it into Eq. (3), and then the Hamiltonian reads

Ĥ =
∫

d3x(�∗(x) + φ̂†(x))h0(x)(�(x) + φ̂(x))

+ 1

2

∫∫
d3xd3x′(�∗(x) + φ̂†(x))(�∗(x′) + φ̂†(x′))

× V (x − x′)(�(x′) + φ̂(x′))(�(x) + φ̂(x)). (A1)

Keeping up to the third order with respect to the fluc-
tuation operator φ̂ and combining the third-order terms
into the first-order term via the following Hartree-Fock
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factorization [64]:

φ̂†(x)φ̂†(x′)φ̂(x′)

≈ m̃∗(x′, x)φ̂(x′) + ñ∗(x′, x)φ̂†(x′) + ñ(x′)φ̂†(x),

φ̂†(x)φ̂(x′)φ̂(x)

≈ ñ∗(x′, x)φ̂(x) + ñ(x)φ̂(x′) + m̃(x′, x)φ̂†(x),

φ̂†(x)φ̂†(x′)φ̂(x)

≈ m̃∗(x′, x)φ̂(x) + ñ(x)φ̂†(x′) + ñ(x′, x)φ̂†(x),

φ̂†(x′)φ̂(x′)φ̂(x)

≈ ñ(x′)φ̂(x) + ñ(x′, x)φ̂(x′) + m̃(x′, x)φ̂†(x′), (A2)

Eq. (A1) is then simplified to a form that includes terms
up to the second order in the fluctuation operator. For the
equilibrium case, the linear term with respect to the fluctuation
operator in Eq. (A1) is required to vanish, i.e., the correspond-
ing coefficients of φ̂ and φ̂† must be equal to zero [64,65,86].
Consequently, it leads to the following stationary eGPE:[

h0(x) +
∫

d3x′V (x − x′)|�(x′)|2
]
�(x)

+
∫

d3x′V (x − x′)ñ(x′, x′)�(x)

+
∫

d3x′V (x − x′)ñ(x′, x)�(x′)

+
∫

d3x′V (x − x′)m̃(x′, x)�∗(x′) = 0, (A3)

i.e., Eq. (5), where we have introduced the definitions of the
noncondensate density ñ(x′, x) = 〈φ̂†(x′)φ̂(x)〉 and anoma-
lous noncondensate density m̃(x′, x) = 〈φ̂(x′)φ̂(x)〉. In order
to obtain the ground-state wave function �(x), it requires us to
solve these noncondensate densities. For this purpose, follow-
ing the standard approach [57,86], we rewrite the fluctuation
operator as a superposition of quasiparticle excitations, i.e.,
φ̂(x) = ∑

j[u j (x)α̂ j − v∗
j (x)α̂†

j ], where α̂ j (α̂†
j ) is the anni-

hilation (creation) operator of the quasiparticles satisfying
Bosonic commutation relations, and the amplitudes are sub-
ject to the constraint

∫
d3x[u∗

j (x)uk (x) − v∗
j (x)vk (x)] = δ jk .

By substituting it into Eq. (A1), the second-order terms with
respect to the fluctuation operator,

Ĥ2 =
∫

d3xφ̂†(x)L0φ̂(x)

+
∫∫

d3xd3x′�∗(x)�(x′)V (x − x′)φ̂†(x′)φ̂(x)

+ 1

2

∫∫
d3xd3x′�(x)�(x′)V (x − x′)φ̂†(x′)φ̂†(x)

+ 1

2

∫∫
d3xd3x′�∗(x)�∗(x′)V (x − x′)φ̂(x′)φ̂(x),

(A4)

with L0 = h0(x) + ∫
d3x′V (x − x′)|�(x′)|2, can be diagonal-

ized (i.e., the terms of α
†
j α

†
k and α jαk vanish) when the

amplitudes u j (x) and v j (x) satisfy the Bogoliubov–de Gennes
(BdG) equations as shown in Eq. (5).

By solving the BdG equations, we can derive the Bo-
goliubov excitation spectrum. This allows us to reformulate
the noncondensate densities ñ(x′, x) and m̃(x′, x) in terms of
the excitation amplitudes u j (x) and v j (x) as demonstrated in
Eq. (6).

In principle, Eqs. (4)–(6) can be solved self-consistently;
however, the numerical calculations can become quite com-
plex even for a homogeneous state [79]. Alternatively, a
simpler approach involves using the local-density approxima-
tion (LDA) [56,57,64,65,82] as discussed in the main text [see
the discussion about Eq. (7)]. This permits us to analytically
solve the BdG equation (5) to obtain the excitation spectrum
and amplitudes, as presented in Eq. (8). From the excitation
amplitude solutions, we can easily derive the chemical poten-
tial shift �μ [see Eqs. (9) and (10)] caused by fluctuations. By
substituting Eq. (8) into Eq. (10), we can reformulate Eq. (10)
as follows:

�μ(x) =
∫

d3k
(2π )3

Ṽ (k)

{
εk

2E (x, k)
− 1

2

+ 1

exp [E (x, k)/kBT ] − 1

εk

E (x, k)

}
. (A5)

It is worth noting that this integral is ultraviolet divergent.
Hence, to calculate the chemical shift, one needs to renor-
malize it by incorporating the second-order contribution of
the potential Ṽ (k) to the s-wave scattering length at small
momenta [57,64] as follows:

�μ(x) =
∫

d3k
(2π )3

Ṽ (k)

{
εk

2E (x, k)
+ n0(x)Ṽ (k)

2εk
− 1

2

+ 1

exp [E (x, k)/kBT ] − 1

εk

E (x, k)

}
. (A6)

For simplicity, we define the dimensionless momentum q =
kξ0 with ξ0 = 1/

√
8πasn0(x), and temperature τ = kBT

gn0(x) .
Consequently, the integral in the equation above can be rewrit-
ten as

�μ(x) = 4
√

2g

√
a3

s

π
|�(x)|3

∫ π

0
sin θ dθ

∫ ∞

kcξ0

q2 dq f (θ )

×
{

q2

2
√

q2[q2 + 2 f (θ )]
+ f (θ )

2q2
− 1

2

+ 1

exp[
√

q2[q2 + 2 f (θ )]/τ ] − 1

× q2√
q2[q2 + 2 f (θ )]

}
(A7)

with f (θ ) = Ṽ (θ )/g = 1 + εdd(3 cos2 θ − 1) and kc repre-
senting the momentum cutoff. Eventually, we obtain the fol-
lowing chemical potential shift led by fluctuations [56,57,63–
65]:

�μ(x) = 32

3
g

√
a3

s

π
[Q5(εdd, kc) + R(εdd, kc)]|�(x)|3, (A8)
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where

Q5(εdd, kc) = 3
√

2

8

∫ π

0
sin θ dθ

∫ ∞

kcξ0

q2 dq f (θ )

×
{

q2

2
√

q2[q2 + 2 f (θ )]
+ f (θ )

2q2
− 1

2

}

= 1

8
√

2

∫ π

0
dθ sin θ f (θ )[(kcξ0)3 − 3 f (θ )kcξ0

+ (4 f (θ ) − (kcξ0)2)
√

2 f (θ ) + (kcξ0)2] (A9)

and R(εdd, kc) = 3
4
√

2

∫ π

0 sin θdθ
∫ ∞

kcξ0
dq

q3 f (θ )/
√

q2+2 f (θ )

exp[
√

q2[q2+2 f (θ )]/τ ]−1

are associated with the quantum and thermal fluctuations,
respectively. In the zero-temperature case, where R = 0, the
chemical potential shift reduces to the standard LHY correc-
tion describing the effects of quantum fluctuations, as shown
in Eq. (13).

APPENDIX B: CONTRIBUTION OF THE BOUND MODES

In Appendix A we derive an analytical expression for the
LHY correction using LDA. From Eq. (8) it is evident that
the excitation spectrum is continuous under LDA; however,
this holds true only in the high-frequency regime where ex-
citations behave like free particles. In reality, the spectrum is
discrete for the low-frequency bound modes, as demonstrated
in the main text. To rigorously evaluate the contribution of the
discrete bound modes, we will reanalyze starting from Eq. (9)
without applying LDA.

For simplicity, let’s consider the zero-temperature scenario,
where Eq. (6) reduces to

ñ(x′, x) =
∑

j

v j (x′)v∗
j (x),

m̃(x′, x) = −
∑

j

u j (x′)v∗
j (x). (B1)

Substituting the above expression into Eq. (9), the chemical
potential shift can be rewritten as

�μ�(x) =
∑

j

v∗
j (x)

[∫
d3x′Vint(x − x′)v j (x′)�(x′)

−
∫

d3x′Vint(x − x′)u j (x′)�∗(x′)
]
. (B2)

Meanwhile, by multiplying both sides of the second equa-
tion in Eq. (5) by v∗

j (x) and summing over all excitations, we
obtain the following relation:

−
∑

j

E j |v j (x)|2

=
∑

j

v∗
j (x)L0v j (x) + �∗(x)

×
∑

j

v∗
j (x)

[∫
d3x′Vint(x − x′)v j (x′)�(x′)

−
∫

d3x′Vint(x − x′)u j (x′)�∗(x′)
]
. (B3)

Next, by combining Eqs. (B2) and (B3), we readily derive
the chemical potential shift, specifically the LHY correction,
without employing LDA as

�μ = − 1

|�(x)|2
∑

j

[Ej |v j (x)|2 + v∗
j (x)L0v j (x)]. (B4)

Furthermore, one can easily obtain the contributions of the
bound modes to the total LHY correction by simply restricting
the summation only in the bound mode regime as

�μ′ = − 1

|�(x)|2
∑
j∈B

[Ej |v j (x)|2 + v∗
j (x)L0v j (x)], (B5)

i.e., Eq. (22) in Sec. III B, with B denoting the set of all bound
excitations.
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