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Abstract
Introduction: Typical brain development is characterized by specific patterns of mat-
uration	 of	 functional	 networks.	 Cortico-	cortical	 connectivity	 generally	 increases,	
whereas	subcortico-	cortical	connections	often	decrease.	Little	is	known	about	con-
nectivity changes amongst different subcortical regions in typical development.
Methods:	 This	 study	 examined	 age-		 and	 gender-	related	 differences	 in	 functional	
connectivity between and within cortical and subcortical regions using two different 
approaches.	The	participants	included	411	six-		to	ten-	year-	old	typically	developing	
children	sampled	from	the	population-	based	Generation	R	study.	Functional	connec-
tomes	were	defined	 in	native	space	using	regions	of	 interest	 from	subject-	specific	
FreeSurfer	segmentations.	Connections	were	defined	as:	(a)	the	correlation	between	
regional	 mean	 time-	series;	 and	 (b)	 the	 focal	 maximum	 of	 voxel-	wise	 correlations	
within	FreeSurfer	regions.	The	association	of	age	and	gender	with	each	functional	
connection was determined using linear regression. The preprocessing included the 
exclusion of children with excessive head motion and scrubbing to reduce the influ-
ence of minor head motion during scanning.
Results:	 Cortico-	cortical	 associations	 echoed	 previous	 findings	 that	 connectivity	
shifts	from	short	to	 long-	range	with	age.	Subcortico-	cortical	associations	with	age	
were primarily negative in the focal network approach but were both positive and 
negative	 in	 the	mean	 time-	series	network	approach.	Between	subcortical	 regions,	
age-	related	associations	were	negative	 in	both	network	approaches.	Few	connec-
tions had significant associations with gender.
Conclusions:	The	present	study	replicates	previously	reported	age-	related	patterns	
of	connectivity	in	a	relatively	narrow	age-	range	of	children.	In	addition,	we	extended	
these findings by demonstrating decreased connectivity within the subcortex with 
increasing	age.	Lastly,	we	show	the	utility	of	a	more	focal	approach	that	challenges	
the spatial assumptions made by the traditional mean time series approach.
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1  | INTRODUC TION

Understanding	typical	brain	development	is	critical	to	understand-
ing	 the	 mechanisms	 behind	 neuropsychiatric	 disorders.	 Mental	
health in adulthood is highly dependent on brain development be-
ginning in the womb and continuing throughout adolescence and 
into adulthood. One theory is that the neurobiological underpin-
nings of mental illnesses are largely driven by atypical brain connec-
tivity	originating	in	childhood	(Di	Martino	et	al.,	2014;	Menon,	2013).	
Through	an	understanding	of	 typical	connectivity,	we	can	 identify	
aberrant patterns associated with neuropsychiatric disorders.

Functional	connectivity	changes	dramatically	 in	the	early	years	
of	life.	In	infancy,	the	brain’s	short-	range	connections	are	dominant	
(Gao	et	al.,	2011;	Di	Martino	et	al.,	2014).	Throughout	childhood	and	
adolescence,	 functional	 connectivity	becomes	 increasingly	distrib-
uted,	 with	 long-	range	 connections	 becoming	 stronger	 and	 short-	
range	 connectivity	 decreasing	 (Fair	 et	al.,	 2009;	 Di	Martino	 et	al.,	
2014;	 Rubia,	 2013).	 Furthermore,	 graph	 theory	 studies	 have	 also	
demonstrated that while topological features of brain connectivity 
are	mature	by	age	eight,	 the	hierarchical	 and	modularity	of	global	
brain	networks	continues	to	mature	into	adulthood	(Menon,	2013).

Functional	 connectivity	 between	 subcortical	 and	 cortical	 re-
gions	 has	 been	 shown	 to	 decrease	 with	 age	 in	 children	 (Cerliani	
et	al.,	2015;	Greene	et	al.,	2014;	Sato	et	al.,	2015;	Supekar,	Musen,	
&	Menon,	2009).	However,	other	studies	have	found	the	opposite	
pattern	(Sato	et	al.,	2015;	Solé-	padullés	et	al.,	2015).	Age-	related	dif-
ferences in functional connectivity between subcortical and cortical 
regions	are	accompanied	by	stronger	cortico-	cortical	connectivity	in	
older	children	(Supekar	et	al.,	2009).	There	have	been	few	studies	ex-
amining the role of connections between different subcortical brain 
structures	 in	 children.	Gaining	 a	 better	 understanding	of	 the	 age-	
related development of subcortical functional connectivity provides 
an important baseline for the study of childhood psychopathology.

Development of brain connectivity is increasingly being stud-
ied	 using	 whole-	brain	 connectomes	 derived	 from	 resting-	state	
functional	 MRI	 (rs-	fMRI;	 Di	 Martino	 et	al.,	 2014;	 Rubia,	 2013).	
Connectomes represent brain connectivity between pairs of grey 
matter	ROI’s	 (Bullmore	&	Sporns,	2009;	Rubinov	&	Sporns,	2010).	
Since connectome approaches evaluate networks within the entire 
brain,	they	are	well	suited	to	evaluate	the	major	changes	taking	place	
in typical neurodevelopment.

In	 this	 study,	we	utilized	 two	connectome	approaches	 to	eval-
uate age and gender associations in a large group of school age 
children	 across	 the	 functional	 connectome.	 First,	 we	 used	 the	
correlation of the mean time series for brain regions involved in a 
given connection to express uniform and homogenous connectivity. 
However,	connectivity	 in	some	regions	becomes	 increasingly	focal	
during	development	(Durston	et	al.,	2006),	which	we	captured	with	
a new measure of connectivity that determines the focal maxima of 
correlations	 between	ROIs.	 Each	 approach	measures	 different	 as-
pects	 of	 connectivity,	which	 can	 help	 parse	whether	 connectivity	
differences in development involve larger brain regions or tend to be 
more focal within an ROI.

Considering the mixed findings in the literature related to corti-
cal	and	subcortical	functional	connectivity,	we	aimed	to	determine	
age related differences in connectivity between pairs of cortical and 
subcortical	 regions.	 In	 addition,	 we	 were	 interested	 in	 determin-
ing how functional connectivity patterns differ with age between 
pairs of subcortical regions. This has not yet been investigated in 
previous	 studies.	 Previous	 studies	 examining	 rs-	fMRI	 connectivity	
in typical development included subjects with a broad age range or 
had	small	to	moderate	sample	sizes	(n < 200 in most cases; Cerliani 
et	al.,	2015;	Fair	et	al.,	2009;	Greene	et	al.,	2014;	Rubia,	2013;	Sato	
et	al.,	2015;	Solé-	padullés	et	al.,	2015;	Supekar	et	al.,	2009).	Thus,	
to	 reduce	 heterogeneity,	 which	 could	 contribute	 to	 the	 mixed	
findings,	we	used	a	 large	sample	of	6-	to-	10	year-	old	children	from	
a	 population-	based	 cohort.	 By	 focusing	 on	 a	 narrow	 age	 range	 in	
a	 large	sample,	we	aimed	to	shed	new	 light	on	brain	development	
within a narrow period of childhood. This age range is particularly 
interesting	because	 it	 is	a	period	 in	which	the	brain,	behavior,	and	
cognition	are	rapidly	maturing	(Livy	et	al.,	1997;	Mous	et	al.,	2016).	
This critical phase in development can provide clues into typical 
brain	function,	which	can	then	be	extended	to	evaluate	mechanisms	
governing psychopathology.

2  | MATERIAL S AND METHODS

2.1 | Participants

The participants of this study included a subgroup of children partic-
ipating	in	the	Generation	R	Study,	which	is	a	large,	population-	based	
prenatal	cohort	study	in	Rotterdam,	the	Netherlands	(Jaddoe	et	al.,	
2012).	Magnetic	resonance	imaging	(MRI)	scans	were	obtained	in	a	
total	of	1,070	children	between	6	and	10	years	of	age.	The	proto-
col for recruitment and study design is described in detail elsewhere 
(White	et	al.,	 2013).	General	 exclusion	criteria	 consisted	of	 severe	
motor	or	sensory	disorders	(deafness	or	blindness),	neurological	dis-
orders,	moderate	to	severe	head	injuries	with	loss	of	consciousness,	
claustrophobia,	and	contraindications	to	MRI.	Of	1,070	children	who	
visited	the	research	center	for	an	MRI,	964	children	underwent	an	
rs-	fMRI	scan.	Of	those	children,	227	were	screened	as	having	prob-
lem	 behaviors	 using	 the	Child	 Behavior	 Checklist	 (see	 description	
below)	 and	 were	 excluded	 from	 the	 analyses.	 Furthermore,	 sub-
jects	were	 excluded	 due	 to	 excessive	 head	motion	 (n	=	88),	 failed	
registrations	 (n	=	21),	 failed	 or	 low	 quality	 cortical	 segmentations	
(n	=	126),	less	than	125	volumes	left	after	data	scrubbing	(n	=	5)	and	
an	incidental	finding	(n	=	1).	The	final	dataset	included	411	subjects.	
Informed	 consent	 was	 obtained	 from	 parents,	 and	 all	 procedures	
were	 approved	 by	 the	Medical	 Ethics	 Committee	 of	 the	 Erasmus	
MC,	University	Medical	Center	Rotterdam.

2.2 | Behavioral and IQ assessment

The children were assessed for behavioral and emotional prob-
lems	 using	 the	 Child	 Behavior	 Checklist	 (CBCL/1½-	5),	 which	 is	
a	questionnaire	 filled	out	by	 their	mothers	 (93%)	or	 fathers	 (7%;	
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Achenbach	&	Rescorla,	 2000).	 The	CBCL	 is	 a	 99-	item	 inventory	
covering	 various	 behaviors	 reported	 by	 parents.	 It	 uses	 a	 Likert	
response	format	(i.e.,	“not	true”,	“somewhat	true”	and	“very	true”).	
The	CBCL	was	used	to	select	children	without	problem	behavior	
to ensure that associations were independent of major behavioral 
problems. This was accomplished by excluding participants with 
a	score	above	 the	clinical	cutoff	on	any	syndrome	 (98th	percen-
tile),	 DSM-	oriented	 (98th	 percentile),	 or	 broadband	 scale	 (91st	
percentile),	according	to	Dutch	norms	 (Tick,	van	der	Ende,	Koot,	
&	Verhulst,	2007).	Furthermore,	to	minimize	the	potential	for	re-
sidual	 confounding,	 the	 square	 root	 of	 the	 sum	of	 all	 items	was	
used to compute a total problem score to be used as a covariate 
in analyses.

Two	 subtests	 from	 a	 Dutch	 nonverbal	 IQ	 test	 (i.e.,	 Snijders-	
Oomen	 Niet-	verbale	 intelligentie	 test,	 revisie	 [Tellegen,	 Winkel,	
Wijnberg-	Williams,	&	Laros,	2005])	were	conducted,	as	described	in	
Ghassabian	et	al.	(2014).	The	mosaics	subtest	assessed	spatial	visual-
ization abilities. The categories subtest assessed abstract reasoning 
abilities.

2.3 | MR- image acquisition

Magnetic	 resonance	 imaging	 data	 were	 acquired	 on	 a	 General	
Electric	 MR-	750	 3-	Tesla	 whole-	body	 scanner	 (General	 Electric,	
Milwaukee,	 WI)	 using	 a	 standard	 8-	channel,	 receive-	only	 head	
coil.	 A	 three-	plane	 localizer	was	 run	 first	 and	 used	 to	 position	 all	
subsequent	 scans.	 Structural	 T1-	weighted	 images	 were	 acquired	
using	 a	 fast	 spoiled	 gradient-	recalled	 echo	 (FSPGR)	 sequence	
(TR	=	10.3	ms,	 TE	=	4.2	ms,	 TI	=	350	ms,	 NEX	=	1,	 flip	 angle	=	16°,	
matrix	=	256	×	256,	 field	 of	 view	 (FOV)	=	230.4	mm,	 slice	 thick-
ness	=	0.9	mm).	Echo	planar	 imaging	was	used	for	the	rs-	fMRI	ses-
sion	 with	 the	 following	 parameters:	 TR	=	2,000	ms,	 TE	=	30	ms,	
flip	 angle	=	85°,	 matrix	=	64	×	64,	 FOV	=	230	mm	×	230	mm,	 slice	
thickness = 4 mm. In a previous study the number of TRs neces-
sary	 for	 functional	 connectivity	 analyses	 was	 determined,	 and	
therefore	the	first	set	of	acquisitions	acquired	250	TRs	(acquisition	
time	=	8	min	20	s;	White	et	al.,	2014).	After	 it	was	determined	that	
fewer	TRs	provided	stable	networks	of	higher	quality	(less	motion),	
the	number	of	TRs	was	reduced	to	160	(acquisition	time	=	5	min	20;	
White	 et	al.,	 2014).	 Children	 were	 instructed	 to	 keep	 their	 eyes	
closed	and	not	to	think	about	anything	 in	particular	during	the	rs-	
fMRI	 scan.	 After	 the	 scan	 session	 they	were	 asked	 how	 the	 scan	
went and whether they fell asleep during the scan.

2.4 | MR- image processing

2.4.1 | Anatomical Image Processing

Predefined ROIs were defined in native space and used as the ana-
tomical	regions	to	quantify	time-	series	data	for	brain-	wide	connec-
tivity	analysis.	A	total	of	34	cortical	 regions	and	seven	subcortical	
ROIs were defined in each hemisphere of the brain in native space 
from T1-	weighted	images	using	the	FreeSurfer	analysis	suite	(https://

surfer.nmr.mgh.harvard.edu;	 Fischl	 et	al.,	 2004).	 Details	 about	 the	
FreeSurfer	data	processing	and	quality	control	in	the	Generation	R	
Study	are	described	elsewhere	 (Mous	et	al.,	2014).	The	FreeSurfer	
image,	including	the	cortical	and	subcortical	labels	were	registered	
to	the	rs-	fMRI	data	by	applying	the	transformation	matrix	resulting	
from a 12 degree of freedom affine registration of the T1-	weighted	
image	 to	 the	 rs-	fMRI	 data	 (Greve	 &	 Fischl,	 2009).	 Thus,	 all	 time-	
series	for	analyses	were	extracted	from	native	fMRI	space.

2.4.2 | Resting- state image processing

Resting-	state	fMRI	data	were	preprocessed	using	a	combination	of	
tools	from	the	Analysis	of	Functional	NeuroImages	package	(AFNI;	
Cox,	1996),	the	Functional	MRI	of	the	Brain	Software	Library	(FSL;	
Jenkinson,	Beckmann,	Behrens,	Woolrich,	&	 Smith,	 2012),	 and	 in-	
house	 software	written	 in	 Python	 version	 2.7.3.	 For	 the	 rs-	fMRIs	
acquired	with	 250	 TRs,	 only	 the	 first	 160	 volumes	were	 used	 so	
that all time courses contained the same amount of information. 
Preprocessing	of	the	rs-	fMRI	began	with	slice-	timing	correction,	mo-
tion	correction,	removing	the	first	four	volumes,	and	0.01	Hz	high-	
pass	temporal	filtering.	Next,	the	six	motion	correction	parameters,	
the	mean	white	matter	signal	and	mean	cerebral	spinal	 fluid	 (CSF)	
signal	were	regressed	out	of	each	voxel’s	time	course	(Fox,	Zhang,	
Snyder,	&	Raichle,	2009).	Finally,	data	scrubbing	was	used	to	further	
compensate	 for	 motion,	 removing	 volumes	 with	 excessive	 move-
ment	(i.e.,	greater	than	0.5	mm	root	mean	squared	relative	motion;	
Power,	 Barnes,	 Snyder,	 Schlaggar,	 &	 Petersen,	 2012,	 2013)	 since	
head motion during scanning can amplify developmental differences 
in	 connectivity	 (Power	 et	al.,	 2012).	 This	 effect	 is	 significantly	 re-
duced	after	compensating	for	movement	(Di	Martino	et	al.,	2014).

Given geometric distortions resulting from susceptibility arti-
facts,	some	ROIs	were	excluded	from	the	analyses.	In	order	to	iden-
tify	 affected	 ROIs,	 FSL’s	 Brain	 Extraction	 Tool	 (Smith,	 2002)	 was	
used	to	create	a	brain	mask	from	the	rs-	fMRI.	The	proportion	of	vox-
els in each ROI that intersected with the brain mask was computed 
for each subject. Overlap between voxels believed to represent true 
signal	(i.e.,	within	the	brain	mask)	was	found	to	be	low	in	ROIs	known	
to be affected by susceptibility artifacts. ROIs with a mean overlap 
across	subjects	of	less	than	90%	were	visually	inspected	and	those	
ROIs with consistently low overlap were excluded from the analyses 
(entorhinal	cortex,	frontal	pole,	inferior	temporal	gyrus,	lateral	orbi-
tofrontal	cortex,	medial	orbitofrontal	cortex,	and	temporal	pole).	In	
the	remaining	ROIs,	only	voxels	 in	the	 intersection	of	the	ROI	and	
the brain mask were included in the analyses. See Table 1 for a listing 
of included ROIs.

2.5 | Brain- wide connectivity analysis

Brain-	wide	 connectivity	 analyses	 were	 conducted	 in	 rs-	fMRI	 na-
tive	space,	after	the	FreeSurfer	labels	were	mapped	to	the	rs-	fMRI	
data.	The	 labels	 and	preprocessed	 rs-	fMRI	data	were	used	 to	 cal-
culate	 pairwise	 region-	to-	region	 functional	 connectivity.	 Before	
calculating	functional	connectivity,	a	3	×	3	×	3	voxel	median	spatial	

https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
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filter	was	applied	to	the	preprocessed	rs-	fMRI	to	increase	the	signal	
to noise ratio. Two types of functional connectivity matrices were 
calculated.	First,	 the	connection	weight	 for	each	pair	of	ROIs	was	
calculated	using	a	Pearson	correlation	coefficient	of	the	mean	time-	
series	between	all	pairs	of	ROI’s	(MeanTS).	For	the	second	approach,	
Pearson correlation coefficients were computed between all pairs 

of	 voxels	within	 two	ROIs,	 and	 the	 pair	with	 the	 highest	 Pearson	
correlation coefficient was selected to represent the connection be-
tween	 those	 two	ROIs.	We	coin	 this	 approach	 the	 “Anatomic	 and	
Local	 Peak	 Activity	 Correlation	 Analysis”	 (ALPACA).	 The	 first	 ap-
proach represents connectivity which is homogeneous over a pair of 
ROIs,	whereas	the	second	approach	represents	the	peak	connectiv-
ity which is localized to focal areas within a pair of ROIs.

For	both	types	of	connectivity,	only	voxels	that	were	part	of	the	
fMRI	brain	mask	were	considered.	This	minimized	voxels	affected	by	
geometric distortions from influencing the connection weight. Prior 
to	statistical	analyses,	to	satisfy	normality	assumptions	for	paramet-
ric	 statistics,	Pearson	correlation	coefficients	were	converted	 to	a	
normal	distribution	using	the	Fisher’s	r-	to-	z transformation.

2.6 | Statistical analysis

Statistical	analyses	were	conducted	with	the	statsmodels	 (Seabold	
&	Perktold,	2010),	scipy	(Oliphant,	2007)	and	numpy	(Van	Der	Walt,	
Colbert,	 &	 Varoquaux,	 2011)	 packages	 in	 Python	 (v2.7).	 For	 each	
connection,	 two	 regression	 models	 were	 fitted,	 one	 for	 MeanTS	
and	one	for	ALPACA.	In	both	cases,	age,	gender,	and	the	CBCL	total	
problem	score	were	included	as	independent	variables,	and	main	ef-
fects	were	examined	 for	age	and	gender.	The	CBCL	total	problem	
score was included to account for residual behavioral differences 
among	 included	children.	To	control	 for	multiple	 testing,	 the	num-
ber	of	effective	independent	tests/connections,	Meff,	was	computed	
for	both	ALPACA	and	MeanTS	according	to	the	method	outlined	in	
(Li,	Yeung,	Cherny,	&	Sham,	2012).	The	threshold	of	significance	was	
determined	using	the	Sidak	correction,	�corr=1− (1−�)(1∕Meff),	where	
α	=	0.05.	We	additionally	conducted	a	separate	analysis	in	which	in-
teraction between age and gender was tested by adding an interac-
tion	 term	 to	 the	model.	Multiple	 testing	was	 controlled	 using	 the	
same	thresholds	as	in	the	main-	effects	model.

2.7 | Visualization

Connectograms	 (van	 Horn	 et	al.,	 2012)	 were	 used	 to	 visual-
ize associations of age and gender with functional connectivity. 
Connectograms are used in brain connectivity analyses to show re-
lationships	between	ROIs	in	a	circular	two-	dimensional	representa-
tion.	ROIs	are	positioned	around	the	outside	of	the	circle.	A	given	
connection	 is	 represented	by	 a	 line	between	 the	 associated	ROIs,	
where color and thickness are used to indicate specific properties 
of	a	connection.	In	this	study,	ROIs	were	grouped	by	anatomy	(see	
Table	1	for	groupings)	and	by	hemisphere.	Only	connections	with	sig-
nificant associations are shown. Red and blue represent positive and 
negative associations with age or male > female and female > male in 
the case of gender respectively. Increased color intensity represents 
increased significance. Connectograms are often easier to interpret 
than	three-	dimensional	representations	of	connectivity	in	anatomi-
cal	space	(Langen,	White,	Ikram,	Vernooij,	&	Niessen,	2015).

Worm plots were used to directly compare groups of connec-
tions	 between	 MeanTS	 and	 ALPACA	 (Langen	 et	al.,	 2015).	 Each	

TABLE  1 Regions	used	in	connectome	analysis,	grouped	by	
location in the brain

Cluster Region Abbreviation

Frontal	(Fro) Caudal anterior cingulate 
cortex

Cac

Caudal middle frontal 
gyrus

Cmf

Isthmus of cingulate gyrus ICG

Paracentral lobule PCe

Pars opercularis POp

Pars orbitalis POb

Pars triangularis PTr

Posterior cingulate gyrus PCi

Precentral gyrus PrC

Rostral anterior cingulate 
gyrus

RAC

Rostral middle frontal 
gyrus

RMF

Superior frontal gyrus SFr

Occipital	(Occ) Cuneus Cun

Lateral	occipital	gyrus LOc

Lingual	gyrus Lin

Pericalcarine cortex Pcc

Parietal	(Par) Inferior parietal lobule IPa

Postcentral gyrus PoC

Precuneus Pcn

Superior parietal lobule SPa

Supramarginal gyrus SMa

Subcortical	(Sub) Accumbens	area Acc

Amygdala Amg

Caudate CaN

Hippocampus Hip

Pallidum Pal

Putamen Put

Thalamus Tha

Temporal	(Temp) Banks	of	superior	temporal	
sulcus

BSt

Fusiform	gyrus Fus

Insula Ins

Middle	temporal	gyrus MTe

Parahippocampal gyrus Phc

Superior temporal gyrus STe

Transverse temporal gyrus TrT
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point represents the association between the variable of interest 
and	a	specific	connection.	Connection-	age	association	significance	
is on the y-	axis,	which	is	the	negative	log	of	the	p-	value,	multiplied	
by the sign of the association and a scaling factor that is used to 
ensure that the line representing significance is at the same location 
for both connectivity types. Connections were ordered along the x-	
axis according to the anatomical group to which their ROIs belonged 
(see	Table	1	 for	 the	 list	 of	ROIs	belonging	 to	 each	 group).	Groups	
were	ordered	by	their	mean	associations	with	ALPACA.	Within	each	
group	 of	 connections,	 points	 were	 ordered	 by	 their	 association,	
which	produces	a	worm-	like	shape.	This	allows	easy	comparison	of	
association strengths and distributions between connectivity types. 
The ordering was performed separately for each type of connec-
tivity,	which	means	that	the	order	of	connections	likely	differs	be-
tween connection types. Points that are outside of the dashed lines 

indicate connections with significant associations after correction 
for multiple testing.

3  | RESULTS

Sample	characteristics	are	reported	in	Table	2.	Mean	age	was	8	years	
and	206	subjects	were	female.	The	majority	of	subjects	(372	of	411)	
were	right-	handed.	Mean	connectomes	across	subjects	are	shown	in	
Figure	1	for	both	MeanTS	and	ALPACA.

Numerous	age-	related	connections	had	significant	associations	
that survived correction for multiple testing. These are shown in 
connectograms	in	Figure	2	and	are	summarized	in	Table	3.	Negative	
associations	 with	 age	 (i.e.,	 weaker	 connection	 strength	 in	 older	
children)	were	 dominant,	 including	 24	 of	 48	 (50%)	 connections	 in	
MeanTS	and	66	of	84	(79%)	in	ALPACA.	A	large	proportion	of	neg-
ative	associations	with	age	were	found	in	subcortical-	to-	subcortical	
connections,	including	18	of	24	(75%)	in	MeanTS	and	38	of	66	(58%)	
in	ALPACA.	Significant	age	associations	with	cortical-	to-	subcortical	
connections	were	primarily	positive	in	the	MeanTS	approach	(17	of	
19	connections,	89%)	but	negative	in	all	22	of	ALPACA’s	significant	
associations with age. This suggests that functional connectivity 
between subcortical and cortical regions increases homogenously 
over	the	entire	volume	of	the	involved	regions,	but	decreases	focally	
with age. Positive associations involved all lobes except for the oc-
cipital	lobes	in	both	approaches	and	subcortical	regions	in	ALPACA.	
No significant interactions between age and gender were found for 
either	ALPACA	or	MeanTS	in	any	of	the	connections,	once	corrected	
for multiple testing. T-	tests	and	Pearson	correlations	also	showed	no	
significant	relationship	between	age	and	IQ,	gender	and	IQ	as	well	as	

TABLE  2 Sample	characteristics	(N	=	411)

General

Age	at	MRI	(years) 8.05	±	0.99

Gender	(M/F) 205/206

Non-	verbal	IQ 103.77	±	14.40

Handedness	(right/left/unknown) 372/38/1

Ethnicity

Dutch	(n) 316

Nonwestern	(n) 68

Other	western	(n) 27

FMRI motion parameters

Average	RMS	relative	(mm) 0.11	±	0.08

F IGURE  1 Mean	connectomes	across	subjects	for	MeanTS	and	ALPACA.	Each	element	in	the	matrix	represents	one	connection,	where	
connection	weight	is	the	Fisher	r-	to-	z transformation of the correlation between the corresponding regions on the x-		and	y-	axes

MeanTS ALPACA
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age and mean displacement. There was a significant Pearson correla-
tion	between	age	and	mean	displacement	(−0.15,	p	<	0.05),	however,	
we adjusted for motion as described in the methods section.

The	 age	 connectograms	were	 relatively	 symmetric,	 suggesting	
that	 both	 homogeneous	 and	 focal	 age-	related	 differences	 occur	
similarly in both hemispheres in the brain. Specific connections 
with	 symmetric	 age	 associations	 are	 shown	 in	 Figure	2d,e,	 where	
symmetry	 is	 intrahemispheric	 (i.e.,	 both	 ROIA,left-	to-	ROIB,left and 
ROIA,right-	to-	ROIB,right	 are	 significant),	 interhemispheric	 (i.e.,	 both	
ROIA,left-	to-	ROIB,right and ROIA,right-	to-	ROIB,left	 are	 significant),	 or	
both. The nucleus accumbens played a central role in symmetry in 

negative	associations,	which	were	primarily	in	connections	between	
subcortical regions in both network approaches. Positive symmetry 
involved	frontal,	temporal,	parietal,	and	subcortical	regions.

Figure	3	shows	the	distribution	of	connection	weights	grouped	
by	 lobe	using	a	worm	plot	 (Langen	et	al.,	2015).	Most	subcortical/
parietal and subcortical/frontal connection associations with age 
were	positive	in	MeanTS	but	negative	in	ALPACA.	In	other	words,	in	
this group of edges homogenous functional connectivity increases 
with	age,	however,	there	are	focal	areas	where	functional	connec-
tivity decreases with age. There were few connectivity differences 
between	gender	using	both	the	ALPACA	and	MeanTS	approaches.	

F IGURE  2 Connectograms	(van	Horn	et	al.,	2012)	showing	connections	with	a	significant	association	of	(a)	MeanTS	with	age	(b)	ALPACA	
with	age	and	(c)	MeanTS	with	gender.	There	were	no	connections	with	significant	associations	with	gender	and	ALPACA,	therefore	the	
corresponding	connectogram	is	not	shown.	Brain	regions	are	divided	according	to	location	in	the	brain,	including	frontal	(FRO),	temporal	
(TEMP),	subcortical	(SUB),	parietal	(PAR),	and	occipital	(OCC).	They	are	arranged	in	a	circle.	Regions	from	the	left	hemisphere	are	on	the	left	
side	of	the	diagram.	Significant	connections	between	two	regions	are	plotted	as	red	(positive	age	associations,	or	male	>	female)	and	blue	
(negative	age	associations,	or	female	>	male)	lines,	where	color	intensity	indicates	relative	significance.	The	opacity	of	each	region	indicates	
the	relative	number	of	significant	associations	that	each	regions	has.	The	age	associations	had	a	great	deal	of	symmetry	in	both	networks,	
as	shown	in	(d)	for	MeanTS	and	(e)	for	ALPACA.	The	connectograms	in	(d)	and	(e)	show	the	subset	of	connections	that	had	intrahemispheric	
(i.e.,	left-	left	and	right-	right	connections	were	both	significant)	and/or	interhemispheric	(i.e.,	left-	right	and	right-	left	connections	were	both	
significant)	symmetry.	These	connections	are	also	illustrated	more	abstractly	and	simply	to	the	right	of	the	connectograms,	where	regions	
are	represented	by	circles,	connections	are	represented	by	lines	and	the	appearance	of	each	line	indicates	the	type	of	symmetry

MeanTS and gender(c)(a) ALPACA and age(b)MeanTS and age
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MeanTS	had	a	total	of	five	significant	associations	with	gender,	 in-
cluding three in which connectivity in males was stronger than in 
females	 (left	 isthmus	cingulate/left	 lingual,	 left	accumbens/left	 in-
sula,	and	left	lingual/right	hippocampus)	and	two	where	females	had	
greater	connectivity	than	males	(right	accumbens/right	caudate	and	
right	accumbens/right	inferior	parietal	cortex).	ALPACA	did	not	iden-
tify any significant associations after correction for multiple testing. 
This	suggests	that	gender-	related	differences	in	connectivity	are	ho-
mogeneous across the involved ROIs rather than focal.

4  | DISCUSSION

In	 this	 study,	we	examined	age-		 and	gender	differences	 in	 func-
tional	connectivity	by	applying	two	different,	but	complementary	
approaches	 to	measure	 functional	 connectivity.	Both	 connectiv-
ity approaches revealed both common and different patterns of 
connectivity	 in	 relation	 to	 age,	 and	 relatively	 similar	 patterns	 of	
connectivity between boys and girls. Significant associations be-
tween connectivity and age revealed a concentration of negative 

TABLE  3 Location	of	significant	associations

Hemisphere

TotalLeft Right Between

Age ALPACA 30 20 34 84

Positive 8 5 5 18

Fro/Fro 2 1 1 4

Fro/Par 2 0 0 2

Fro/Temp 4 4 4 12

Negative 22 15 29 66

Fro/Par 1 0 0 1

Fro/Sub 3 0 1 4

Fro/Temp 0 1 3 4

Occ/Sub 0 2 1 3

Par/Par 1 0 0 1

Par/Sub 3 2 0 5

Sub/Sub 12 6 20 38

Sub/Temp 2 4 4 10

MeanTS 13 12 23 48

Positive 5 7 12 24

Fro/Par 2 1 0 3

Fro/Sub 2 3 5 10

Fro/Temp 0 2 2 4

Par/Sub 1 1 4 6

Sub/Temp 0 0 1 1

Negative 8 5 11 24

Fro/Par 1 0 1 2

Fro/Sub 1 0 0 1

Occ/Temp 1 0 1 2

Sub/Sub 5 4 9 18

Sub/Temp 0 1 0 1

Gender MeanTS 2 2 1 5

Positive 2 0 1 3

Fro/Occ 1 0 0 1

Occ/Sub 0 0 1 1

Sub/Temp 1 0 0 1

Negative 0 2 0 2

Par/Sub 0 1 0 1

Sub/Sub 0 1 0 1
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associations with age between pairs of subcortical regions and 
positive associations between pairs of cortical regions. The age 
associations	generally	displayed	left-	right	symmetry.	Additionally,	
when	connections	were	grouped	anatomically,	 group-	wise	 shifts	
in associations with age were found. The two different connectiv-
ity	 indices	were	overall	highly	consistent;	however,	 there	were	a	
number	of	connections	where	they	diverged,	suggesting	that	in	a	
subset	of	connections,	 functional	 connectivity	changes	with	age	
either	homogeneously	or	focally	over	the	 involved	ROIs,	but	not	
both.

4.1 | Connectivity increases in the cortex and 
decreases in the subcortex with age

Both	 methods	 derived	 several	 cortico-	cortical	 connections	 that	
were positively associated with age. This is consistent with a recent 
study	that	found	that	cortico-	cortical	connectivity	increases	during	
development	in	children	from	seven	to	18	years	of	age	(Solé-	padullés	
et	al.,	2015).	Our	findings	expand	upon	this	finding	by	demonstrating	
that	 age-	related	 increases	 in	 connectivity	 are	 present	 in	 a	 narrow	
age-	range	 in	 young	 children	while	 utilizing	 two	different	methods	

F IGURE  3 Worm	plots	(Langen	et	al.,	2015)	of	association	of	functional	measures	with	age	and	gender.	Connections	are	split	into	groups	
based	on	the	location	of	the	associated	regions,	including	frontal	(Fro),	temporal	(Temp),	subcortical	(Sub),	parietal	(Par),	and	occipital	(Occ).	
Connections	within	each	group	are	ordered	by	association	strength,	producing	worm-	like	shapes.	Order	of	groups	on	the	x-	axis	is	ordered	
by	mean	association	strength	in	ALPACA.	On	the	y-	axis	is	the	negative	log	of	the	p-	value,	multiplied	by	the	sign	of	the	test,	multiplied	by	a	
scaling	factor.	Each	point	outside	of	the	dotted	lines	represents	a	significant	association	of	age	or	gender	with	a	specific	connection:	Worm	
plots	(Langen	et	al.,	2015)	of	association	of	functional	measures	with	age	and	gender.	Connections	are	split	into	groups	based	on	the	location	
of	the	associated	regions,	including	frontal	(Fro),	temporal	(Temp),	subcortical	(Sub),	parietal	(Par),	and	occipital	(Occ).	Connections	within	
each	group	are	ordered	by	association	strength,	producing	worm-	like	shapes.	Order	of	groups	on	the	x-	axis	is	ordered	by	mean	association	
strength	in	ALPACA.	On	the	y-	axis	is	the	negative	log	of	the	p-	value,	multiplied	by	the	sign	of	the	test,	multiplied	by	a	scaling	factor.	Each	
point outside of the dotted lines represents a significant association of age or gender with a specific connection

(a)

(b) Gender versus functional connectivity

Age versus functional connectivity
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for deriving connectivity indices. This increase in connectivity par-
allels	 an	 increase	 in	 volume	 of	 the	 frontal,	 temporal,	 and	 parietal	
lobes,	which	 has	 been	 reported	 to	 occur	 between	 the	 6–10	years	
of	age	(Lenroot	&	Giedd,	2006).	Thus,	the	increased	volume,	which	
may	be	a	result	of	synaptogenesis	and	arborization,	may	also	result	
in	increasing	cross-	talk	between	brain	regions.	Previous	studies	have	
found	that	functional	connectivity	increases	with	age	in	long-	range	
connections	 and	 decreases	 in	 short-	range	 connections	 (Fair	 et	al.,	
2009;	 Rubia,	 2013).	 This	 is	 partially	 consistent	 with	 our	 observa-
tions,	 since	many	of	 the	 identified	significant	positive	associations	
were in connections between regions in different lobes and/or hemi-
spheres,	and	were	thus	medium	to	long-	range	connections.	We	did,	
however,	 find	a	small	number	of	both	 long-	range	connections	that	
decreased	with	age	and	short-	range	connections	that	increased	with	
age.	Thus,	maturation	of	brain	connectivity	may	be	region	depend-
ent,	with	many	long-	range	connections	increasing	with	age,	whereas	
some show decreases. While the regions with positive associations 
differed	between	the	two	connectivity	types,	both	support	the	no-
tion of generally increasingly distributed networks with age. Our 
observations are particularly interesting because we focused on a 
narrow	age	range,	whereas	many	previous	studies	focused	on	rela-
tively	large	age	ranges	(Fair	et	al.,	2009;	Rubia,	2013).	It	is	remarkable	
that such striking connectivity differences with age can be observed 
even	within	a	narrow	age	range	in	school-	age	children.	This	is	likely	
a result of the rapid neurodevelopment that occurs during this age 
range.	 In	 addition,	 since	 movement	 during	 MRI	 scanning	 shows	
strong	age-	related	differences,	with	children	having	greater	move-
ment	than	adolescents	and	adults,	the	narrow	age	range	used	in	our	
study provides greater similarity in movement parameters compared 
to	studies	with	larger	age	ranges	(Fair	et	al.,	2009;	Rubia,	2013)	and	
thus	is	less	biased	by	age-	related	movement	artifacts.

Age	 associations	 with	 connections	 between	 cortical	 and	 sub-
cortical	 regions	 differed	 between	 network	 approaches.	 MeanTS	
had	a	mix	of	positive	and	negative	associations,	while	ALPACA	had	
exclusively	negative	associations	with	age,	adding	new	insight	 into	
the nature of previously observed changes in connectivity with 
age.	The	negative	 associations	 in	ALPACA	suggest	 that	 focal	 con-
nectivity between cortical and subcortical regions decreases with 
age,	which	is	consistent	with	studies	reporting	negative	associations	
with age in connections between subcortical and cortical regions in 
typical	development	(Cerliani	et	al.,	2015;	Greene	et	al.,	2014;	Sato	
et	al.,	 2015;	 Supekar	 et	al.,	 2009).	 However,	 (Solé-	padullés	 et	al.,	
2015)	 found	primarily	positive	as	well	 as	 some	negative	age	asso-
ciations	 between	 cortico-	subcortical	 connections,	 and	 (Sato	 et	al.,	
2015)	 found	 that	 the	 thalamus	had	both	positive	and	negative	as-
sociation	with	age	in	development.	Our	results	in	MeanTS,	which	is	
an expression of functional connectivity that is homogenous over 
the	 involved	 regions,	 also	 support	 the	 presence	 of	 subcortical-	to-	
cortical	connection	associations	in	both	directions.	Under	the	rubric	
of	 specific	 functional	 brain	 networks	 or	 cortico-	subcortical	 feed-
back	 loops	 associated	 with	 neurodevelopment	 (i.e.,	 the	 cortico-	
cerebellar-	thalamic-	cortical	 circuit	 [CCTCC];	 Andreasen	&	 Pierson,	
2008;	 Ullsperger,	 Danielmeier,	 &	 Jocham,	 2014),	 the	 presence	 of	

both positive and negative associations between cortical and sub-
cortical	regions	may	be	expected.	Maturing	feedback	loops	involv-
ing	similar	functions	would	show	increasing	connectivity	with	age,	
whereas	those	involved	in	different	functions	would	show	less	age-	
related	 functional	 connectivity.	 Significant	 differences	 of	 cortico-	
subcortical functional connectivity with age are also parallel to 
previously	 observed	 increases	 in	 size	of	 the	 frontal,	 temporal	 and	
parietal	lobes	as	well	as	some	subcortical	regions	(Lenroot	&	Giedd,	
2006).

While there is a wealth of developmental studies examining 
cortical-	to-	cortical	connections,	and	to	a	lesser	extent	subcortical-	
to-	cortical	connections,	there	is	a	gap	in	the	literature	regarding	age-	
related differences in the connectivity between different subcortical 
structures.	In	this	study,	we	found	that	all	significant	associations	of	
connectivity between subcortical regions with age were negative for 
both network types. Our findings between subcortical structures 
may reflect networks transforming from local to distributed during 
development,	 as	 was	 shown	 by	 (Fair	 et	al.,	 2009).	 However,	 their	
study	focused	on	cortical	and	cerebellar	regions,	and	did	not	report	
on subcortical/subcortical connectivity.

Structural	MRI	studies	of	subcortical	structures	examined	how	
volumes	of	subcortical	regions	change	over	time	(Lenroot	&	Giedd,	
2006).	These	changes	include	an	inverted	U-	shaped	pattern	in	the	
volume	of	 the	 caudate	with	 peaks	 at	 7.5	 and	10.0	years	 of	 age	 in	
females	and	males,	respectively;	an	increase	in	hippocampal	size	in	
males only and an increase in the size of the amygdala in girls only. 
The	amygdala,	hippocampus	and	caudate	were	 involved	 in	subcor-
tical	 connections	 with	 negative	 associations	 with	 age,	 which	 was	
true	for	both	networks	for	the	amygdala	and	hippocampus,	and	only	
for	ALPACA	 in	 the	caudate.	As	 these	regions	have	been	shown	to	
increase	 in	 volume	 during	 childhood	 and	 subsequently	 decrease	
during	adolescence	(Sowell,	Thompson,	&	Toga,	2004),	their	commu-
nications with other subcortical regions likely also change during de-
velopment. It is thus possible that in the presence of later maturing 
cortical	structures	in	young	children	(i.e.,	prefrontal	cortex;	Lenroot	
&	Giedd,	2006;	Mills,	Goddings,	Clasen,	Giedd,	&	Blakemore,	2014),	
subcortical	 structures	 rely	 on	 within-	system	 connectivity.	 As	 the	
cortex matures and its connections to the subcortex strengthen 
(Cummings,	1993),	this	previous	subcortical	reliance	on	highly	inte-
grative connectivity may be relaxed. Such an imbalance in timing of 
development has been previously proposed for cortical/limbic con-
nectivity	 (Casey,	 Jones,	&	Hare,	2008;	Heller,	Cohen,	Dreyfuss,	&	
Casey,	2016).	Given	the	importance	of	various	subcortical	structures	
and their cortical connections with different psychiatric disorders 
(e.g.,	 Cortico-	cerebellar-	thalamic-	cortical	 loop	 in	 Schizophrenia,	
caudate	 motor	 in	 ADHD,	 thalamus/basal	 ganglia/primary	 sensory	
networks;	 Cerliani	 et	al.,	 2015),	 having	 a	 better	 understanding	 of	
differences within and between cortical and subcortical regions is 
a crucial foundation for future efforts studying connectivity differ-
ences related to psychopathology.

An	 interesting	 finding	 in	 this	 study	 was	 inter-		 and	 intrahemi-
spheric symmetry in age associations. Symmetry in the negative as-
sociations in both network types was primarily between subcortical 
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regions	with	the	nucleus	accumbens	playing	a	central	role,	whereas	
positive	symmetry	involved	frontal,	temporal,	parietal,	and	subcorti-
cal regions. This suggests that many bilateral connections within and 
between hemispheres are developing simultaneously. The fact that 
many subcortical connections with the accumbens area had nega-
tive associations with age in both network types might be related 
to development of the reward center of the brain. The accumbens 
has	been	linked	to	risk-	taking	behavior	in	adolescents	(Galvan	et	al.,	
2006),	but	previous	studies	have	not	directly	investigated	the	devel-
opment of subcortical connection to the amygdala in children. Our 
results suggest that activity is increasingly directed by cortical re-
gions	rather	than	subcortical	regions.	Asymmetry	in	brain	connectiv-
ity	has	previously	been	observed	in	lateralization	studies	(Agcaoglu,	
Miller,	Mayer,	Hugdahl,	&	Calhoun,	2015;	Di,	Kim,	Chen,	&	Biswal,	
2014;	Holland	et	al.,	2007).	Adolescent	and	adult	brains	are	highly	
lateral	across	several	resting	state	networks,	with	several	brain	re-
gions	showing	a	decrease	in	lateralization	with	age	(Agcaoglu	et	al.,	
2015).	 In	 children,	 language	 networks	 become	 increasingly	 left-	
lateralized	throughout	development	(Groen,	Whitehouse,	Badcock,	
&	Bishop,	2012;	Holland	et	al.,	2007),	whereas	visuospatial	networks	
become	right-	lateralized	(Groen	et	al.,	2012).	Although	lateralization	
of the brain may be related to asymmetric association of functional 
connectivity	with	age,	this	relationship	has	not	been	studied	directly,	
nor	can	it	be	definitively	assumed.	Lateralization	can	increase	even	
if the association with age is significant on both sides of the brain. 
While symmetry in functional connectivity has been widely stud-
ied,	the	symmetry	of	associations with functional connectivity have 
not.	Examination	of	 association	 symmetry	 could	be	 informative	 in	
future	studies.	For	example,	individual	deviations	from	the	symme-
try pattern found in typical development could be used as a marker 
of psychopathology.

4.2 | Sexual dimorphism

Five	 connections	 had	 significant	 associations	 surviving	 correction	
of	multiple	 testing	 of	MeanTS	with	 gender.	ALPACA	did	 not	 have	
any associations with gender. Together these results suggest that 
gender-	related	differences	in	functional	connectivity	are	likely	more	
uniform	across	the	 involved	regions,	rather	than	being	 localized	to	
spatially focal peaks. These results could alternately suggest that 
MeanTS	 is	a	more	robust	measure	of	sexual	dimorphism.	Previous	
studies	of	gender-	related	differences	in	resting-	state	functional	con-
nectivity	 are	 sparse	 in	 this	 age	 range.	A	 recent	 study	did	not	 find	
any	gender	differences	in	the	age	range	of	7–12	(Solé-	padullés	et	al.,	
2015).	Additionally,	diffusion	tensor	MRI	study	in	children	aged	six	
to	ten	found	no	significant	gender-	related	differences	in	measures	of	
white	matter	integrity	(Muftuler	et	al.,	2012).	Both	studies	support	
our observation of few connectivity differences between gender in 
this age range.

The lack of observed gender differences in functional connec-
tivity during development in both our study and previous studies 
are surprising given that studies of structural connectivity have 
found gender differences in relation to cognition and/or intelligence 

in children and adolescents. Several previous studies have found 
gender	 differences	 in	 structural	 connectivity	 (Hänggi	 et	al.,	 2010;	
Schmithorst,	2009;	Simmonds,	Hallquist,	Asato,	&	Luna,	2014),	how-
ever,	 a	 recent	DTI	 study	 in	 the	 current	 cohort	 did	 not	 show	 gen-
der	differences	(Muetzel	et	al.,	2015).	Gender	differences	have	also	
previously	been	observed	in	neuroanatomical	studies.	For	example,	
longitudinal	structural	MRI	studies	have	shown	gender	differences	
in	grey	matter	volume	in	the	frontal,	parietal,	and	temporal	lobes,	as	
well	as	in	the	caudate,	amygdale,	and	hippocampus	from	childhood	
throughout	adolescence	 (Lenroot	&	Giedd,	2006).	 In	 this	study,	all	
of these regions with the exception of the amygdala had connec-
tions with significant associations with gender. Given that previous 
work present conflicting views on gender differences in connectivity 
and	related	grey	matter	volumes,	and	since	our	study	found	a	small	
number of connections with gender differences in only one of the 
two	functional	networks	studied,	 it	seems	that	gender	differences	
in functional connectivity are subtle and limited in typically develop-
ing	children	in	this	age	range.	Measureable	gender	differences	in	the	
brain	may	emerge	or	become	unmasked	with	development,	with	dif-
ferences between boys and girls may become more apparent during 
adolescence and young adulthood.

4.3 | Defining functional connectivity by peak 
activation versus over an entire region

As	described	 above,	 both	network	 types	were	 generally	 in	 agree-
ment with each other and with the existing literature. In some spe-
cific	 connections,	 some	differences	were	 apparent	 across	method	
with respect to associations in specific connections. In the case of 
such	differences,	this	suggests	that	the	nature	of	the	development	
of	functional	connectivity	is	not	the	same	for	all	regions.	For	exam-
ple,	MeanTS	did	not	have	significant	associations	with	age	in	fronto-	
frontal	 connections,	whereas	 ALPACA’s	 positive	 associations	with	
age	were	exclusively	 found	 in	 fronto-	frontal,	 fronto-	temporal,	 and	
fronto-	parietal	 connections.	This	 is	 in	 line	with	 findings	of	an	ear-
lier study that suggested that cortical connections become increas-
ingly	 focal	with	age	 (Durston	et	al.,	2006).	This	 is	 in	 contrast	with	
age	associations	with	the	posterior	cingulate,	which	were	positive	in	
MeanTS	but	not	ALPACA.	This	suggests	that	developmental	changes	
in posterior cingulate connectivity are distributed across the entire 
structure rather than localized in a focal region. Previous studies 
have shown that connectivity in the default mode network changes 
during	development,	 including	connections	 involving	 the	posterior	
cingulate	(Fair	et	al.,	2008;	Supekar	et	al.,	2010).

Increasingly diffuse connectivity with age was also found in 
cortical-	to-	subcortical	connections,	which	were	primarily	positive	in	
MeanTS	but	exclusively	negative	 in	ALPACA.	This	 thus	suggests	a	
focal	to	diffuse	trajectory	with	age.	Such	a	trajectory	in	subcortical-	
to-	subcortical	 connections	was	 not	 found	 since	 their	 age	 associa-
tions were exclusively negative in both network types.

It is interesting to consider the differences between the two net-
work types in the context of the underlying neuronal architecture. 
If	 connectivity	 with	 grey	matter	 is	 more	 diffuse,	 with	 connecting	
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neurons	covering	a	more	extensive	surface	of	an	ROI,	then	a	more	
diffuse	 representation,	 such	 as	 MeanTS,	 would	 better	 capture	
changes	in	functional	connectivity	(e.g.,	a	“shared	pathway”).	On	the	
other	hand,	if	axonal	pathways	between	two	regions	start	and	end	
in	focal	gray	matter	 locations,	then	a	focal	representation	of	func-
tional	connectivity,	such	as	ALPACA,	may	target	critical	regions	of	
connectivity.

There are additional factors that must be kept in mind inter-
preting	results	involving	ALPACA.	For	example,	ALPACA’s	focal	ap-
proach may be more flexible in identifying the location of activation 
because	it	does	not	average	over	entire	regions,	which	can	blur	the	
signal. This may be advantageous in relation to both structural and 
functional variability because it may not always be sensible to as-
sume the same spatial activation patterns across individuals. On the 
other	hand,	ALPACA	does	not	guarantee	that	the	activation	detected	
across	individuals	corresponds	to	the	same	focal	connection.	For	ex-
ample,	it	may	be	that	a	large	region	has	more	than	one	focal	peak	in	
connectivity.	ALPACA	may	thus	choose	one	peak	for	some	subjects	
and	another	for	others,	in	which	case	comparison	across	individuals	
would	not	involve	the	same	connection.	Additionally,	in	some	cases,	
weaker functional connectivity has been related to some forms of 
psychopathology	(e.g.,	autism	[Ha,	Sohn,	Kim,	Sim,	&	Cheon,	2015]	
and	depression	[Hermesdorf	et	al.,	2015]).	 In	this	situation,	finding	
the local maximum may not be desirable in the context of better ex-
plaining the neurobiological underpinnings of psychopathology or 
identifying novel biomarkers because the local maxima may not nec-
essarily reflect the reduced connectivity across the involved regions. 
Given the benefits and drawbacks and the underlying assumptions 
of	each	network	type,	using	both	ALPACA	and	MeanTS	simultane-
ously in future studies may result in greater insights into different 
aspects of functional connectivity and make inferences of whether a 
given connection has a diffuse or focal connectivity pattern.

4.4 | Strengths and limitations

While most studies on developmental functional connectivity 
focus	 on	 broad	 age	 ranges	 with	 moderate	 sample	 sizes	 (Rubia,	
2013),	many	 of	which	 used	 task-	based	 fMRI	 rather	 than	 resting	
state	fMRI,	our	study	focused	on	a	narrow	age	range	and	benefited	
from increased statistical power due to the large cohort. The chil-
dren	included	in	this	study	were	sampled	from	a	population-	based	
cohort	and	were	representative	of	the	general	population,	which	
helped to mitigate the common issue of selection bias of children 
with	higher	than	average	IQ	or	greater	socioeconomic	status.	An	
additional	 strength	of	 this	 study	 is	 that,	 by	 keeping	our	 analysis	
in	 native	 space,	 our	 results	were	 not	 influenced	 by	 intersubject	
registration,	which	has	 frequently	been	used	 in	previous	 studies	
and	has	been	shown	to	blur	cortical	areas	(Fischl,	Sereno,	Tootell,	
&	Dale,	1999;	White	et	al.,	2001).	This	study	also	effectively	used	
“brain-	wide”	 visualizations	 to	 display	 large	 amounts	 of	 connec-
tomic	information,	namely	in	the	connectograms	and	worm	plots.	
In	addition,	we	present	both	novel	findings	as	well	as	replication	
of	 observations	 from	 earlier	 studies,	 the	 latter	 being	 important	

in	neuroscience,	which	is	a	field	plagued	by	many	underpowered	
studies	 that	do	not	 replicate	 (Nichols	 et	al.,	 2017;	Open	Science	
Collaboration,	2015).

As	previously	mentioned,	we	used	a	FreeSurfer	anatomical	seg-
mentation	 to	 define	 our	 regions	 of	 interest.	 Anatomical	 segmen-
tations	have	also	been	used	in	several	previous	studies	(Cammoun	
et	al.,	 2012;	 Fornito,	 Yoon,	 Zalesky,	 Bullmore,	 &	 Carter,	 2011;	
Tadayonnejad,	Yang,	Kumar,	&	Ajilore,	2014).	This	approach	bene-
fits	from	a	subject-	specific	segmentation	in	native	space,	which	does	
not	require	intersubject	registrations.	Studies	that	include	intersub-
ject	registrations	are	vulnerable	to	misregistration	(Di	Martino	et	al.,	
2014).	This	approach	may,	however,	fall	short	in	the	event	that	ROIs	
are not functionally specific or homogeneous. Choice of segmenta-
tion	can	affect	the	results	of	connectomics	studies	(de	Reus	&	van	
den	Heuvel,	2013).	Functionally	defined	ROIs	can	be	obtained	using	
fMRI.	Existing	methods	define	regions	to	be	either	nonoverlapping	
(Blumensath	et	al.,	2013;	Shen,	Tokoglu,	Papademetris,	&	Constable,	
2013;	 Yeo	 et	al.,	 2011)	 or	 overlapping	 (Beckmann,	 2012;	 van	 den	
Heuvel	&	Hulshoff	Pol,	2010;	Smith	et	al.,	2012,	2013).	For	example,	
(Yeo	et	al.,	2011)	used	functional	MRI	to	define	a	cortical	segmenta-
tion that maximized functional specialization within regions across 
subjects. The borders of the resulting functional ROIs were signifi-
cantly different from the anatomically defined ROIs used in this 
study.	Thus,	a	functional	ROI	may	intersect	with	several	anatomical	
ROIs.	Additionally,	an	anatomical	ROI	could	be	composed	of	several	
functionally distinct regions or may be part of a larger functional re-
gion.	Because	MeanTS	averages	 signals	over	ROIs,	 some	of	which	
are	quite	large,	imprecise	boundaries	would	likely	be	less	of	a	prob-
lem	than	they	would	be	for	ALPACA.	In	the	event	that	a	given	region	
contains	several	functionally	distinct	subregions,	ALPACA	runs	the	
risk of choosing different subregions across subjects for the same 
connection.	However,	in	the	case	of	large	anatomical	regions,	where	
only	a	part	of	the	ROI	is	active,	the	MeanTS	approach	would	average	
over	the	entire	region,	which	would	not	reflect	activity	in	the	active	
region. This may result in underestimated functional connectivity 
between	regions.	The	ALPACA	approach	would	circumvent	this	by	
choosing the highest activation and the number of voxels involved in 
calculating the correlation coefficient are always the same.

In order to reduce the possibility of spurious correlations we 
applied a median filter. This approach runs the risk that connec-
tivity between highly focal voxels may be diminished via the spa-
tial	smoothing.	Thus,	we	chose	to	smooth	only	using	the	28	voxels	
surrounding the voxel of interest. Given a voxel dimension of 
3.4	mm	×	3.4	mm	×	4.0	mm,	the	total	size	of	the	smoothed	voxel	in-
cluding	the	median	filter	 is	1,248	mm3,	which	is	a	reasonably	 large	
smoothing kernel for native space and should help reduce chance 
findings due to noise spikes within the data. We have shown pre-
viously	that	not	only	structural	variability,	but	also	functional	vari-
ability	contributes	to	differences	in	the	anatomic	locations	of	fMRI	
signals	(White	et	al.,	2001),	and	thus	specific	voxels	may	not	be	spu-
rious	correlations,	but	rather	the	higher	intensity	may	be	the	result	
of a true underlying focal neural signal that differs spatially between 
participants.
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We did not evaluate the variability in the spatial location of the 
ALPACA-	derived	peaks.	Larger	brain	 regions,	 such	as	many	of	 the	
FreeSurfer-	defined	cortical	regions,	may	have	multiple	peaks	where	
the	 relative	 magnitude	 of	 peaks	 may	 vary	 between	 individuals,	
which could be interpreted as greater functional heterogeneity. The 
subcortical	regions,	being	smaller	than	many	of	the	cortical	regions,	
are less likely to have multiple peaks and thus this likely explains the 
similarity	in	findings	between	the	ALPACA	and	MeanTS	approaches.	
Future	studies	should	assess	the	heterogeneity	 in	the	number	and	
locations	of	peaks	within	FreeSurfer	regions	within	the	context	of	
development.

This study measured alertness by asking subjects to report 
whether they fell asleep in the scanner. While none of the children 
reported	falling	asleep,	we	did	not	measure	EEG	activity	and	thus	it	
is possible that some of the children may have slept during the scans. 
This could have an effect on the results of this study.

Functional	 connectivity	 studies,	 and	 particularly	 those	 involv-
ing	pediatric	 populations,	 are	 frequently	 impacted	by	motion	 arti-
facts,	which	can	erroneously	 increase	 long-	range	connectivity	and	
decrease	 short-	range	 connectivity	 (Fornito,	 Bullmore,	 &	 Zalesky,	
2017;	Di	Martino	et	al.,	2014;	Power	et	al.,	2014)	Given	that	younger	
children	 tend	 to	move	more	 than	 older	 children,	 this	 can	 have	 an	
impact	on	developmental	studies.	In	this	study,	we	corrected	for	mo-
tion	using	the	“scrubbing”	method	(Power	et	al.,	2012,	2013),	where	
corrupted volumes are removed. While this method significantly 
reduces	 the	 effect	 of	motion	 (Power	 et	al.,	 2014),	 it	 is	 but	 one	 of	
many	strategies	(Di	Martino	et	al.,	2014).	Among	the	drawbacks	of	
the	scrubbing	method	are	the	loss	of	data	within	subjects,	and	the	
unequal	degrees	of	freedom	across	subjects	(Power	et	al.,	2014).

Another	issue	relevant	to	connectome-	wide	association	studies	
is	multiple	testing	correction.	This	study	calculated	the	“number	of	
effective	tests”	for	each	network	type	based	on	the	covariance	in	
the	data,	and	used	this	number	to	adjust	the	significance	threshold.	
Some of the differences in associations between the two networks 
investigated in this study could be simply due to the threshold cho-
sen for each network. This is one of many similar methods com-
monly used in genetics studies to approximate permutation testing 
(Sham	&	 Purcell,	 2014).	 Permutation	 testing	 has	 been	 used	 pre-
viously	 in	 connectomics	 (Ingalhalikar	 et	al.,	 2014),	 but	 remains	 a	
computationally expensive method of multiple testing correction. 
Another	option	is	to	reduce	the	number	of	tests	by	using	measures	
such	as	the	network-	based	statistic	(Zalesky,	Fornito,	&	Bullmore,	
2010),	 or	 to	 consider	 graph	 theoretical	 measures	 that	 produce	
node-		 or	 graph-	level	 values	 (Kaiser,	 2011;	 Rubinov	 &	 Sporns,	
2010).	This	approach	has	been	used	in	several	studies	(Betzel	et	al.,	
2014;	Crossley	et	al.,	2014;	Fornito	et	al.,	2011;	Fornito,	Zalesky,	
Pantelis,	 &	 Bullmore,	 2012;	 Zhou,	 Gennatas,	 Kramer,	 Miller,	 &	
Seeley,	2012),	however,	it	fundamentally	shifts	the	research	focus	
from identification of relevant connections to the interpretation of 
measures	that	often	do	not	have	a	known	relation	to	neuro-	biology	
(Smith,	2012).	Lastly,	this	study	included	individuals	from	the	gen-
eral	population,	rather	than	solely	recruiting	“typically	developing”	
children from the community. We utilized a common behavioral 

and emotional problem inventory to exclude children with high lev-
els of behavior problems to maximize comparability of these data 
with the existing literature. While most behavioral and emotional 
problems	are	robustly	measured	by	this	parent-	report	instrument,	
the children themselves may arguably be better informants for 
some	types	of	problem	behavior	(e.g.,	 internalizing	vs.	externaliz-
ing	problems).	However,	even	with	some	misclassification	of	prob-
lem	behavior,	the	population-	based	nature	of	the	present	sample	
is highly useful in that it greatly increases the generalizability of 
findings	across	all	 individuals	of	 the	population,	 rather	 than	only	
the	“typically	developing”	individuals.

5  | CONCLUSION

The current study provides both replication and novel findings for 
age-	related	maturation	of	intrinsic	connectivity.	Replication	of	find-
ings	is	noteworthy	given	our	large	sample	size	and	narrow	age	range,	
coupled	with	critique	regarding	less	than	optimal	reproducibility	and	
replication	in	the	field	of	neuroimaging.	Cortico-	cortico	connectivity	
was	found	to	increase	with	age,	while	connectivity	between	subcor-
tical	regions	decreased	with	age.	Some	cortico-	cortical	connections	
became	increasingly	focal	with	age,	whereas	other	cortico-	cortical	
and	most	cortico-	subcortical	connections	became	more	diffuse	with	
age.	Additionally,	we	demonstrate	the	utility	of	native-	space	analy-
ses of connectivity and offer examples of how the data can be effi-
ciently	and	intuitively	displayed.	Future	studies	should	explore	using	
different anatomical or functional parcellations to determine to what 
extent the connectivity patterns are influenced by ROI boundaries.
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