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Summary 
This report is the result of the Master of Science thesis of the author, at the Delft University of 
Technology, sub-Faculty of Civil Engineering. 
 
Although a lot is known nowadays about the run-up on smooth and impermeable slopes as well as 
the run-up on slopes covered with a rock armour layer, the physical properties of the armour layer 
of a rubble mound breakwater are not incorporated in the relations describing the run-up on a 
breakwater’s slope. The roughness of a slope and its permeability, which can be described by a 
characteristic diameter of the armour unit and the porosity of the layer, are not used in the 
description of the run-up. 
 
This report is an attempt to get insight into the influence that the roughness and the permeability of 
a slope have on the run-up on this slope. In order to achieve this goal, non-dimensional parameters 
are derived describing the roughness of a slope and its permeability. 
 
Firstly, the framework of the design of a breakwater is given in order to place the run-up on a 
rough, permeable slope. The run-up itself is dealt with separately. 
 
Experiments were performed in order to obtain data that can be used to quantify the influence of the 
roughness of the slope and its permeability. The experiments were performed leaving the 
permeability of the whole structure out of consideration. To achieve a difference in porosity of the 
armour layer, rock armour units were used as well as tetrapod armour units. 
 
Two approaches of data analysis are applied on the data obtained from these experiments.  
 
This first approach describes the run-up on a rough, permeable slope by a combination of a 
roughness parameter, a permeability parameter and the breaker parameter. The roughness parameter 
and the permeability parameter are derived by forming non-dimensional parameters that describe 
roughness and permeability. The run-up, usually made non-dimensional using the wave height (H) 
is made non-dimensional here using the nominal diameter. This gave better results in combination 
with the derived parameters describing the roughness and the permeability of a slope.  
 
The second approach describes the run-up on a rough, permeable slope by using the relative run-up 
Ru/H and a newly derived non-dimensional parameter resembling the Iribarren parameter, but 
incorporating the influence of the permeability of the armour layer. When the relative run-up is put 
against the Iribarren parameter and is put against the newly derived non-dimensional parameter, the 
appearing scatter is less in the latter case. 
 
In both approaches, two relations describing the run-up on a rough permeable slope are derived. 
One for breaking waves and one for non-breaking waves. 
 
For the second approach, the found relations have a significant resemblance with the known 
formulae for run-up on a slope covered with rock armour units, derived by van der Meer and Stam.  
 
When the relations derived following the both approaches are compared, the relations derived by 
the second approach are the relations that give the best feeling with the physical processes as they 
occur. 
 
The relation for non-breaking waves, derived using the first approach, is applied on data obtained 
from physical model tests on a breakwater covered with tetrapod armour units. The calculated non-
dimensional run-up is compared with the measured non-dimensional run-up. The results show that 
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the permeability of the whole structure can not be neglected, especially in the case of non-breaking 
waves. 
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Chapter 1  Introduction 
When a harbour is built on a coast and no natural protection for ships against waves is present, the 
harbour has to be equipped with one or more breakwaters. The breakwaters are constructed to 
ensure that ships will be able to lower speed when entering the harbour. Functional requirements 
often do not demand total tranquillity in the designated area. Therefore breakwaters do not need to 
be constructed in order to absorb all wave action under severe weather conditions. The tranquillity 
in the designated area is dependent on two main mechanisms of energy transfer past the breakwater.  
 
The first mechanism is overtopping due to wave action. The second is transmission of wave energy 
through the breakwater. Overtopping of a breakwater is dependent on the run-up capacity of the 
waves and the height of the breakwater. A low breakwater will have a lot of overtopping whereas a 
high breakwater will reduce overtopping. Since the volume of material involved in the construction, 
and thereby its costs, is proportional to the square of its height, it is worthwhile to consider the 
minimum crest level as carefully as the structural strength of the armour layer. 
 
To be able to estimate the amount of overtopping, the level of run-up on a breakwater slope under 
severe weather conditions has to be known. The known formulae that describe run-up on a slope are 
a function of the wave height and the breaker parameter. The breaker parameter is a function of the 
slope angle and the wave steepness. Influences like porosity of the armour layer or diameter of the 
armour units are not included in the known formulae. In case of considering these influences, a 
constant has to be added to these formulae. 
 
Above stated leads to the following definition of the problem: 
 
Until now, the available relations describing run-up on a slope do not take the physical properties of 
the armour layer of a rubble mound breakwater into account. These physical properties consist of 
the diameter of the armour unit and the porosity of the armour layer. 
 
Logical thinking leads to the assumption that a larger diameter of the armour units and a higher 
porosity of the armour layer lead to a lower run-up. One can think in terms of: a larger diameter 
gives more friction, or a larger diameter gives larger hollow spaces inside the armour layer. In the 
case of the porosity, a higher porosity will lead to more hollow spaces inside the armour layer. This 
roughness (diameter) and permeability (diameter and porosity) will affect the run-up capacity of a 
wave. 
 
The goal of this thesis is: 
 
To examine the influence of diameter of the armour unit and the porosity of the armour layer on the 
run-up on a rough, permeable slope. 
 
Sub goals resulting from the main goal are: 
 
• To derive parameters describing the roughness and the permeability of the slope, using the 

diameter of the armour unit and the porosity of the armour layer. 
• To derive relations describing the run-up on a rough, permeable slope. 
 
The research done in this thesis is restricted to the following: 
 
• Only slopes of a rubble mound breakwater are considered. 
• The slopes are rough and permeable, but the structure supporting the slope is not necessarily 

permeable. 
• The permeability of the whole structure is not taken into account. 
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In order to achieve the goals, experiments were performed at the Laboratory of Fluid Mechanics at 
the sub-faculty of Civil Engineering of the Delft University of Technology. The experiments were 
performed with regular waves attacking an impermeable slope that was covered with a layer of 
armour units. These armour units were rock units or tetrapods; this implied two different values of 
the porosity of the armour layer. The other variables in the experiments were: diameter of the 
armour units, wave height, wave period and slope angle. 
 
The data obtained from the Delft experiments are not the only data available to be used to get 
insight into the parameters that influence the run-up on a rough, permeable slope such as the slope 
of a rubble mound breakwater. During a stay in Iran, a rubble mound breakwater model was tested 
on run-up, reflection and overtopping due to irregular waves. These experiments were performed at 
the Jehad Water and Water management Research Company. The experiments were part of a design 
of a rubble mound breakwater covered with tetrapod armour units. The data on the run-up on this 
model are used to draw a comparison between the results of highly schematised model used in Delft 
and the data of the more realistic model tested in Iran. 
 
This thesis is described chronologically now.  
In the period September 1997 - December 1997, the experiments in Iran were performed. These 
experiments showed that run-up on a slope covered with an artificial armour unit like the tetrapod 
was lower than the run-up on a rock covered slope, see figure XIV-1. Birth was given to the 
hypothesis that porosity of the armour layer and the diameter of the armour units, resulting in the 
derivative roughness and permeability, have a significant influence on the run-up on a slope. 
In the period following the Iran experiments, a literature study was performed in order to get insight 
into the present knowledge on run-up on a rough, permeable slope. During the literature survey, it 
became clear that on this specific topic not much data is available. The data obtained in Iran 
appeared to be insufficient in number and range to be able to find a relation between run-up on a 
slope and its roughness and permeability. Therefore, new experiments were performed in Delft in 
the period October 1998 – January 1999. The data of the Delft experiments were used to search for 
the relation describing run-up on a rough, permeable slope.  
 
The outline of this report is as follows. 
In Chapter 2, the general considerations concerning the design of breakwaters will be described. In 
Chapter 3, the run-up on a slope will be dealt with. Chapter 4 will describe the experiments that 
were performed to obtain the data used to derive the new formula. Further, the experiments 
performed in Iran are described. In Chapter 5, the data sets of the two experiments will be analysed 
and the most important parameters will be discussed. In Chapter 6, the derivation of the relations 
describing run-up on a rough, permeable slope based on the Delft experiment will be given. These 
relations will be used to describe the data from the Iran experiments. A comparison between the 
relations and the data from the Iran experiments is drawn. In Chapter 7, a discussion is given on the 
derived non-dimensional parameters and the derived relations from Chapter 5 and 6. From the 
discussion it followed that the data should be analysed once more. New non-dimensional 
parameters as well as new relations describing the run-up on a rough, permeable slope are derived. 
Finally in Chapter 8 the conclusions and recommendations as they can be originated from this study 
are given. 
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Chapter 2 A short review on the design of breakwaters 

2.1  Introduction 
In the following sections, the purpose of breakwaters is discussed followed by the functional 
requirements that come along with the purposes. Subsequently, the discussion on breakwaters will 
be restricted to one typical variation of breakwater: the rubble mound breakwater. For a rubble 
mound breakwater, the various parameters that are involved in its design will be dealt with. These 
parameters can be divided in structural and hydraulic parameters and are discussed separately. 
Furthermore, the phenomena of hydraulic response of a breakwater are explained.  
 
Although the stability of a breakwater is of utmost importance in the designing process of a 
breakwater, stability will not be gone into here. No relation is present between the hydraulic 
response phenomena like wave run-up and stability of the breakwater. For a discussion on the 
stability of breakwaters the reader can address himself to for instance Van der Meer (1993). 
 

2.2  Purpose of breakwaters 
In the most general definition, the purpose of breakwaters is to change the coast. Changing the 
coast can have many faces. Not only the direct visible change of the coastal profile is covered by 
“changing the coast” but also the change of currents and wave activity can be defined so. 
 
The most obvious purpose of a breakwater is to give protection against waves. This can imply the 
protection of an approach channel to a harbour as well as protection of the harbour itself. This kind 
of protection is needed to when ships want to navigate and moor. When a ship is moored and its 
cargo is handled, it is desirable that the motion of the ship is controllable. Wave action in the 
approach channel can increase the danger for the tugboats that guide the ship and its crew and will 
make the navigation more difficult. Furthermore, dredging in exposed areas is relatively expensive. 
 
A breakwater can also serve to reduce the required amount of dredging needed to keep the approach 
channel at the right depth. Cutting of the littoral sediment supply to the approach channel is one 
way of going so. The other way is using the natural scouring action that occurs in an artificially 
narrowed channel. 
 
When little natural protections are available for the construction of the harbour, the breakwater 
itself can serve as a quay facility. This dual usage will have special requirements to the design of 
the breakwater. From a harbour construction view this dual usage is very economical but from a 
breakwater construction view this might not be so. 
 
Finally, the breakwater’s purpose can be to guide currents in the approach channel or along the 
coast. When a strong cross current is present in the approach channel, a breakwater might be 
constructed in such a way that the gradient is reduced. 
 
A breakwater can be constructed to serve more than one of these purposes. Each purpose might 
have its own requirements making the designing process a complicated one and different for each 
breakwater. 
 
In the next section four different types of breakwaters are discussed. All of them are capable of 
providing one of the four main purposes as mentioned above.  
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2.3  Different types of breakwaters 
Breakwater structures can be distinguished into two types: statically stable and dynamically stable 
structures. 
 
Statically stable are structures where no or minor damage is allowed under design conditions. 
Damage is defined as displacement of armour units. The mass of individual units must be large 
enough to withstand the wave forces during design conditions. Caisson and traditionally designed, 
or conventional, breakwaters belong to the group of statically stable structures. 
 
Dynamically stable structures are structures where profile development is concerned. Units like 
stone gravel or sand are displaced by wave action until a profile is reached where the transport 
capacity along the profile is reduced to a very low level.  
 
In figure 2-1, four different types of breakwaters are shown. 
 

Statically stable breakwaters

Dynamically stable breakwaters

 
figure 2-1, Statically stable and dynamically stable structures  

 
In the remainder of this thesis, rubble mound breakwaters will be focussed on. Their structural 
parameters will be discussed in the next section. 
 

2.4  Structural parameters related to the cross-section of a rubble 
mound breakwater 

 
A rubble mound breakwater can considered to be an orderly piled amount of densely packed 
material such as stone or concrete elements. Many parameters characterise this “pile”, below the 
parameters that describe the cross-section are given. 
 
− crest freeboard, relative to still water level (SWL)  Rc  (m) 
− armour crest level relative to the sea bed    d  (m) 
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− structure width      B  (m) 
− thickness of armour, filter layer    ta, tf  (m) 
− area porosity       na  (-) 
− angle of structure slope     α (-) 
− depth of toe below SWL     ht (m) 
 
 
 

d

B

Rc

ht
ta

tf

h

 
figure 2-2, Governing parameters related to the cross-section 

 

2.4.1  Diameter of material 
The diameter that is used to describe the characteristic size related to the mass of rock is the 
nominal diameter, Dn50. This is the size of the cube with equivalent volume to the block with 
median mass and is given by: 
 

D M
n

r
50

503= FH IKρ           (2.1) 

 
For concrete units, like tetrapod or Dolosse, the nominal diameter is given by: 
 

D M
n

c
= FH IKρ3         (2.2) 

 
In these formulae are: 
 
M50  = median mass of unit given by 50% on the mass distribution curve 
M = mass of concrete armour unit 
ρr = mass density of rock 
ρc = mass density of concrete 
 

2.4.2  Porosity 
The porosity of a layer constructed of (armour) units is the volume of hollow space given as a 
percentage of the volume of the units and the hollow spaces. 
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n V
V V

h

h a

=
+

⋅100%         (2.3) 

 
where  Vh = Volume of hollow spaces 
 Va = Volume of armour units 
 

2.4.3  Permeability 
Permeability can be divided into permeability of the structure as a whole and permeability of each 
layer of the structure. The permeability of the structure is described first. 
 
When comparing different structures it is often very hard to compare the permeability of these 
structures. Mostly only the indication “permeable” or “impermeable” is given. Van der Meer (1988) 
proposed the following values for the notional permeability factor P for various structures: 
 

impermeable

armour
P=0.1

P=0.5 P=0.6

P=0.4

armour

filte
r

core

armour

core
armour

No filter
No core

filter

2 D n50A

2 D n50A

2 D n50A

1.5 D n50A
0.5 Dn50A

Dn50A/Dn50F = 4.5 Dn50A/Dn50F = 2
Dn50F/Dn50C = 4

Dn50A/Dn50C = 3.2

Dn50A = nominal diameter of armour stone
Dn50F = nominal diameter of filter material
Dn50C = nominal diameter of core

 
figure 2-3, Notional permeability factor P. 

 
This factor is derived from stability tests performed by Van der Meer. It is a factor that he uses to 
include permeability in the formulae for stability of armour units on a slope. This factor has no 
physical meaning; it is only a mathematical way of taking into account the permeability of a 
structure. 
 
The permeability of each layer can be described for a turbulent regime and large diameters by the 
Forchheimer equation (see also section 3.5) and by a practical formula given by the Manual on the 
use of rock (1995). 
When permeability is taken according to Forchheimer, it is given by: 
 
k n Da~ g         (2.4) 



Chapter 2 

  7

 
where  n  = the porosity of the layer 
 D  =  a characteristic diameter 
 g  =  gravitational acceleration 

a  =  a constant 
 
Permeability defined by the Manual on the use of Rock (1995) gives: 
 

k n gD
i

= ⋅2
5

         (2.5) 

where  n  =  the porosity of the layer 
 D  =  a characteristic diameter 
 g  =  gravitational acceleration coefficient 
 i  = hydraulic gradient 
 
In figure 2-4, the relation between diameter and permeability for turbulent flow and laminar flow is 
given. 
 

 
figure 2-4, Permeability versus grain size 

. 

2.5  Hydraulic parameters related to the design of rubble mound 
breakwaters 

The hydraulic parameters, which are important for the design of breakwaters, are given by: 
 
• Hs or Hm0 incident wave height at the toe of the structure, given by the significant wave 

height (the average value of the highest 1/3 part of the waves) or based on the energy density 
wave spectrum (4√m0) 

• Tp  peak period based on spectral analysis 
• β  the angle of wave attack 
• h  the water depth at the toe of the structure 
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2.5.1  Wave height 
The wave height distribution at deep water can be described by the Rayleigh distribution and in that 
case one characteristic value, for instance the significant wave height, describes the whole 
distribution. In shallow and depth limited water, the highest waves break and in most cases the 
wave height distributions cannot longer be described by the Rayleigh distribution. This 
phenomenon can have considerable influence on the wave run-up since in most case the Ru2% is 
considered. With the highest waves breaking, also the highest value of run-up will be diminished. 
Other characteristic values that are often used are H2% or H1/10. H2% is the value where only 2% of 
all waves are higher. H1/10 is the average of the highest 10% of all waves. 
 

2.5.2  Wave period 
The influence of the wave period is often described using the deep-water wave length related to the 
wave height at the toe of the structure. Since most breakwaters are constructed in shallow water, the 
wave length at the structure will differ from the wave length at deep water. When the wave length 
at deep water is chosen to represent the wave field in front of the structure and for the value of the 
wave height, the value in front of the structure is taken, the result is called the fictitious wave 
steepness: 
 

s H
gT

s=
2

2

π
         (2.8) 

 
When substituting the peak period, Tp, in this formula, the wave steepness will be denoted as sop, 
when the mean period, Tm is substituted, som is used. 
 

2.5.3  Surf similarity parameter 
The surf similarity parameter can be seen as a combination of the properties of the waves and the 
properties of a smooth, impermeable slope. According to Battjes (1974), the combination of a slope 
angle and a wave steepness leads to the surf similarity parameter, or the Iribarren number: 
 

ξ α
=

tan
s

         (2.9) 

 
Usually, the subscripts p and m are used, denoting the Iribarren number using respectively the peak 
period and the mean period of the wave spectrum in deep water. 
The Iribarren number is used often to be able to distinguish different types of breaking waves. In 
the figure below, the breaking types are related to a ξ for a smooth beach. Van der Meer (1992) 
stated that non-breaking waves on a rough permeable slope occur for ξp>2 and breaking waves 
occur for ξp<2. When ξm is used, breaking waves occur for ξm < 1.5 and non-breaking waves occur 
for ξm > 1.5. When regular waves are considered, breaking waves are present when ξ < 2.5 and 
non-breaking waves are present when ξ > 2.5. The boundary for plunging and surging waves differs 
for different structures, especially for the composition of the structure. 
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figure 2-5, Different types of waves breaking on a slope 

 

2.6  Hydraulic response 
The interaction between the breakwater and the waves is called the hydraulic response of the 
breakwater. Hydraulic response of a breakwater consists of the phenomena: wave transmission, 
wave overtopping, wave run-up and wave reflection. The following sections give a concise 
description of the phenomena wave transmission and wave overtopping. Reflection is not discussed 
here since it mainly plays a role at the outer slope of the breakwater. The run-up phenomenon is 
discussed in chapter 3 since it is the main subject of this thesis. 
 

2.6.1  Wave transmission 
Wave transmission is the phenomenon that wave energy will overtop and pass through the 
breakwater, see figure 2-10. 
 
Transmission is expressed by the ratio of transmitted wave height (Ht) to incident wave height (Hi): 
 

K H
Ht

t

i

=          (2.34) 

 

Hi Ht

Q

 
 

figure 2-6, Definition of wave transmission 
 
The governing parameters related to transmission are: structural geometry, permeability, the crest 
freeboard, crest width, surface roughness, water depth, wave height and wave period. 
 
Most formula express Kt dependent on a dimensionless crest freeboard. Van der Meer (1990b) gives 
Kt dependent on the ratio crest freeboard divided by the wave height (Rc/Hi), see figure 2-11. 
His formulae for wave transmission are: 
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Kt = 08.   when  − < < −2 00 113. .R
H

c

s

    (2.35) 

K R
Ht

c

s

= −0 46 0 3. .  when − < <113 12. .R
H

c

s

     (2.36) 

Kt = 010.   when 12 2 0. .< <
R
H

c

s

     (2.37) 

where Rc is the crest freeboard, the distance between still water level and the crest of the structure. 
 
Disadvantages of this expression are that all influence of the wave height is lost when Rc becomes 
zero, resulting in large scatter and that not much information on breakwater properties are taken 
into account, which also leads to considerable scatter around the proposed line. 
 

 
figure 2-7, Wave transmission over and through low-crested structures 
 

 
Daemen (1991) used another parameter to create a dimensionless crest freeboard, namely Dn50. He 
found the following formula for wave transmission: 
 

K a R
D

bt
c

n

= +
50

        (2.38) 

where: 
 

a H
D

i

n

= −0 031 0 24
50

. .         (2.39) 
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b s H
D

B
Dop

i

n n

= − ⋅ + −
F
HG
I
KJ +542 0 0323 0 0017 051

50 50

1 84

. . . .
.

   (2.40) 

 
where  Hi  = the incident wave height at the toe of the structure 
 Dn50  = the nominal diameter 
 sop = fictitious wave steepness, using Tp 
 B = the crest width 
 
This formula is valid when: 
 

1 6
50

< <
H

D
s

n

 and 0 01 0 05. .< <sop  

 
De Jong (1996) collected data from several investigations on wave transmission and formulated a 
new relation describing wave transmission: 
 

K R
H

B
H

et
c

si si

= − +
F
HG
I
KJ ∗ − ∗
−

− ⋅0 4 1 0 64
0 31

0 5. .
.

. ξd i      (2.41) 

 
here 0.075 < Kt < 0.8 
 
The formula is valid within the following limits: 
 
157 6 63. .< <ξ  

0 75 8 33. .< <
B

Hsi

 

 

2.6.2  Wave overtopping 
If extreme run-up levels exceed the crest level, the structure will be overtopped. This overtopping 
occurs for relatively few waves under the design event. It is therefore not possible to avoid 
overtopping, only some limits to overtopping have to be investigated. 
The definition of overtopping that is used in this study is: 
 
Overtopping deals with the total amount of water passing the line where the slope of the breakwater 
changes into the crest of the breakwater. 
 
Since run-up and overtopping are closely related this definition is of use when describing run-up as 
well. Run-up is measured at the exterior of the armour layer since overtopping according to the 
definition is measured at the exterior of the armour layer. In figure 2-8, wave overtopping is 
depicted. 
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Wave
Overtopping

 
figure 2-8, Definition of wave overtopping 

 
  
Owen (1980) relates a dimensionless discharge parameter, Q, to a dimensionless freeboard 
parameter, R, by an exponential equation of the form: 
 
Q ae bR= − /γ          (2.25) 
 
The definitions of Q and R, as given by Owen are: 
 

Q q
gH

s

s

om=
3 2π

        (2.26) 

 

R R
H

sc

s

om=
2π

         (2.27) 

 
The values of a and b were derived from the test results and given in the next table: 
 

Slope a b 
1:1 0.00794 20.12 
1:1.5 0.0102 20.12 
1:2 0.0125 22.06 
1:3 0.0163 31.9 
1:4 0.0192 46.96 
1:5 0.025 65.2 

table 2-1, Values for a and b to be used in equation (2.25) 
 
De Waal and Van der Meer (1992) used the Owens data besides their own measurements. They 
came to two approaches to describe overtopping, one by relating the overtopping to wave run-up 
and the other by treating overtopping on its own. 
 
When relating the overtopping to wave run-up De Waal and Van der Meer defined a relative crest 
freeboard as a ”shortage of run-up height” divided by the significant wave height: (Ru2%-Rc)/Hs. In 
figure 2-9, on the X-axis, the zero value is equal to the 2% run-up height. 
 
The formula that describes more or less the average of the data in the figure is given by an 
exponential function, as proposed by Owen (1980): 
 

Q e
R R

H
u c

s= ⋅ −
−

8 10 5
3 1 2%. b g

        (2.28) 
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eq. 2.28

 
figure 2-9, Wave overtopping on slopes as a function of wave run-up 

 
Analysing wave overtopping as a separate phenomenon, De Waal and Van der Meer found that the 
wave overtopping should be divided into situations with breaking and non-breaking waves. The 
definitions for dimensionless overtopping discharge and dimensionless crest height are: 
 

Q q
gH

s
b

s

op=
3 tanα

        (2.29) 

 

R R
H

s
b

c

s

op=
tanα γ

1
        (2.30) 

 

Q q
gH

n

s

=
3

         (2.31) 

 

R R
Hn

c

s

=
1
γ

         (2.32) 

 
Here γ is a reduction factor taking the influences of slope roughness, oblique wave attack, a berm 
and a shallow foreshore into account. The reduction factor γ is described by De Waal and Van der 
Meer (1992), and is dealt with in detail in section 3.2.  
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Chapter 3 Wave run-up 

3.1  Introduction 
In this chapter the wave run-up on a rough, permeable slope is described. When a rubble mound 
breakwater is considered, the outer slope can be defined as rough and permeable. First the 
phenomenon wave run-up itself is discussed. After that, the parameters that play a role in the run-up 
on a rough, permeable slope will be dealt with. The aim of this review of the parameters that play a 
role in the run-up on a rough permeable slope is to get insight in the mechanisms that cause the run-
up on a rock armoured breakwater to be different from the run-up on a breakwater covered with a 
concrete armour unit like the tetrapod.  
 

3.2  Wave run-up phenomenon 
When waves encounter the slope of a breakwater, these waves will move up the slope. This so-
called wave run-up can be defined as: 
 
Wave run-up is the extreme level of water oscillation that is reached in each wave caused by wave 
action. 
 
Run-up is defined relative to the static water level. The run-up level is used to determine the level 
of the structure crest, the upper limit of protection or other structural elements, or as an indicator of 
possible overtopping. 
Wave run-up is often indicated by Ru2%, this is the run-up level that is exceeded by two percent of 
the incoming waves. 
 
 
 

Ru2%
SWL

 
 

figure 3-1, Run-up definition 
 
The analysis and especially the description of wave run-up can be done in two different ways. One 
way is using the Iribarren parameter as it is defined by Battjes (1974), see section 2.5.3. 
For a gentle smooth impermeable slope, Battjes (1974) defined run-up as: 
 
R
H

Cu

s
p

2% = ξ          (3.1) 

in which ξp = the surf similarity parameter, using Tp instead of Tm, with C between 1.3 and 1.7. 
 
Van der Meer (1993) concluded that the existing formulae for run-up on impermeable smooth 
slopes could not be adapted for run-up on permeable rough slopes. Relationships of the run-up 
relative to the Iribarren number proposed by Van der Meer and Stam (1992) for a rock slope with 
an impermeable core (P = 0.1) are given by: 
 
R
H

au x

s
m= ξ  for ξm < 1.5       (3.2) 
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R
H

bu x

s
m
c= ξ  for ξm ≥ 1.5       (3.3) 

 
The maximum run-up for permeable structures (P > 0.4)  is limited to the maximum: 
 
R
H

du x

s

=          (3.4) 

 
The notional permeability parameter P is described in section 2.4.3. 
 
The coefficients a, b, c and d are given in table 3.1.  They are dependent on the exceedance level x. 
Mostly the 2% or significant run-up is used.  
 
Run-up level a b c d 
0.1% 1.12 1.34 0.55 2.58 
1% 1.12 1.24 0.48 2.15 
2% 0.96 1.17 0.46 1.97 
5% 0.86 1.05 0.44 1.68 
10% 0.77 0.94 0.42 1.45 
significant 0.72 0.88 0.41 1.35 
mean 0.47 0.60 0.34 0.82 

table 3-1, Coefficients in run-up equations (3.2)-(3.4) 
 
In figure 3-2, the equations (3.1)-(3.4) are shown. 
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figure 3-2, Relative 2% run-up on rock slopes 

 
 
The other method of describing the wave run-up is by using a Weibull distribution. 
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This Weibull distribution can be written as: 
 

R b pu p
f= − lnb g
1

        (3.5) 

 
where p = probability of exceedance (between 0 and 1); Rup = run-up level exceeded by p*100 per 
cent of the run-up levels; b = scale parameter; f = shape parameter. 
 
The shape parameter f defines the shape of the curve. For f = 2, a Rayleigh distribution is found. 
 
Analysis by van der Meer showed that the scale parameter b could not be described by ξm. A graph 
of b/Hs versus ξm showed different curves for different slope angles. Therefore, the slope cotα and 
the wave steepness sm were treated independently. The scale parameter can be described as 
following: 
 

 
e

H
s

s
m= − −0 4 0 25 0 2. cot. .α        (3.6) 

 
The shape parameter is described by: 
 
f m= −30 0 75. .ξ    for plunging waves    (3.7) 

and 
f P m

p= −052 0 3. cot. ξ α  for surging waves     (3.8) 
 
Here P is the notional permeability parameter as described in section 2.4.3. 
 
The transition between the two shape parameters is described by a critical value for the surf 
similarity parameter, ξmc: 
 

ξ αmc

P
P=

+
577 0 3 1 0 75
. tan. / .d i b g

      (3.9) 

 
For ξm < ξmc, the first formula should be used and for ξm > ξmc, the second formula is appropriate. 
The wave run-up distribution formulas are only applicable for slopes with cotα ≥ 2. For steeper 
slopes, the run-up distribution on a 1:2 slope may give a first estimation. 
 
For dikes and revetments Van der Meer and  Janssen (1994) gave a prediction formula based on the 
surf similarity parameter. Reduction factors were used to take slope roughness (γf), oblique wave 
attack (γβ), a berm (γb) and a shallow foreshore (γh) into account. This formula is given by: 
 
R
H
u

s
f h eq

2% 16= ⋅. γ γ γ ξβ        (3.10) 

with a maximum of 3.2 γf γβ γh 
 
in which ξeq = γb ξop 
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The slope roughness reduction factor (γf) is only applicable for ξp < 3 to 4. The range of values 
covered by these values is: 1.0 for smooth, impermeable slopes to 0.5 for rock/riprap slopes. The 
exact values are given in appendix I. 
 
The reduction factor that is found empirically for run-up of oblique waves (γβ) can be described by 
the following formulae (Manual on the use of Rock, 1995): 
 

• short-crested waves: γ β
β = − FHG

I
KJ1

500
 

• long-crested waves: γ β = 1    for 0° < β < 10° 

γ ββ = − − °1 10cosb g ; min(γβ) = 0.6  for β ≥ 60° 
 
  
When a berm is considered, the reduction factor (γb) is derived for plunging and surging waves: 
 
 

 
figure 3-3, Run-up reduction due to berms for plunging waves (MUR, 1995) 

 
 

 
figure 3-4, Run-up reduction due to berms for surging waves (MUR, 1995) 

 
 
The reduction factor for a shallow foreshore can be calculated using the following formula (van der 
Meer and Janssen, 1994): 
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γ h
sH H

= 2%

14
/

.
 

where H2% = the wave height exceeded by 2% of the waves 
 

3.3  Parameters involved in the run-up 

3.3.1  Introduction 
Run-up, the maximum water elevation due to wave action on a slope has been discussed in the 
previous section. In the following sections, the various parameters influencing the run-up on a slope 
will be dealt with. The various parameters are: 
 
1. Hydraulic parameters (characteristics of the waves) 

• Wave height 
• Wave period and connected with this, the wave steepness 
 

2. Structural parameters (characteristics of the structure) 
• Slope angle 
• Slope roughness 
• Permeability of the structure 
• Permeability of the armour layer 

 

3.3.2  Wave height 
The run-up on a slope is directly related to the height of the waves that attack the slope. The higher 
the waves, the higher the run-up will be.  
The wave height can not be separated from the wave period and the water depth; altogether they 
make up the wave steepness.  Researchers like Battjes (1974) and Van der Meer (1988) have given 
a relationship between the run-up and the wave height looking like: 
 

 
R
H

aux

s
op
b= ξ          (3.11) 

 
The subscript x indicates whether the 2%, significant (s) or mean (m) run-up is meant. The 
parameter ξop is the Iribarren parameter calculated with the peak period and the deep water wave 
height. The two parameter a and b are constants. The wave height is used to obtain a dimensionless 
parameter in combination with the run-up. 
 

3.3.3  Wave period 
The influence of the wave period is taken into account by using the fictitious wave steepness. The 
fictitious wave steepness is a measure for the kind of wave that attacks the structure. It is given by: 
  

s H
gTop

s

p

=
2

2

π
         (3.12) 

 
When a wave encounters a slope it can break or it can not break. The two different kinds of wave 
breaking, as it is called, result in two different kinds of energy dissipation. The transition between 
breaking and non-breaking of the waves on a slope is not only dependent on the wave steepness, 
but also on the slope angle. The combination of slope angle and wave steepness is given by the 
Iribarren number or breaker parameter, which is given by (see also section 2.3.3): 
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ξ α
=

tan
s

         (3.13) 

 
Roughly it can be said that breaking waves occur when ξ < 2.5 and surging or non-breaking waves 
occur when ξ > 2.5. For the two different kind of breaking waves two different kind of formula to 
describe the run-up on a slope are derived by Van der Meer (see also section 2.5.1). 
 

3.3.4  Slope angle 
The influence of the slope angle on the run-up is partly described by the Iribarren number. There it 
is used to describe the kind of waves breaking on the slope. This is not the only influence, when the 
angle of the slope is smaller, the slope is milder and the run-up will reduce. This is due to the fact 
that a mild slope will increase the distance that the waves have to travel in order to reach the crest. 
So here the influence of the slope angle has to be seen in combination with roughness of the slope. 
  

3.3.5  Slope roughness 
The roughness of the armour layer surface will influence the run-up on a given slope. The rougher 
the slope, the more turbulence will be induced to the waves that attack the slope. More turbulence 
gives more energy dissipation and therefore the run-up will be lower. In figure 3-1, this can be seen. 
There is a great difference in relative run-up between rough and smooth slopes, when ξp < 6. For ξp 
< 2.5 the largest difference is visible. So especially in the region of breaking waves, the roughness 
seems to have influence on the run-up on a slope. 
 

 
figure 3-5, Comparison of relative 2% run-up for smooth and rubble slopes 

 
 
Up until now, the roughness of a slope is accounted for by a reduction factor, which is used in the 
run-up formulae. Klein Breteler and Pilarczyk (1996) introduced a run-up reduction factor that is 
based on the ratio of run-up on a rough slope and run-up on a smooth slope. The factor is given by: 
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f
R
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u rough

u smooth

=
2%

2%

        (3.14) 

 
with: [Ru2%]rough = wave run-up on a slope with roughness elements 
 [Ru2%]smooth = wave run-up on a smooth slope without roughness elements 
 
The maximum run-up reduction was found for a slope where 4% of the area was covered with 
roughness elements. The reduction factor is derived for a smooth slope like a dike, where the run-
up can be lowered by placing artificial roughness elements. 
 
The formulae of Van der Meer for the run-up on a rock slope, equations (3.2) and (3.3) incorporate 
the influence of the roughness of the slope but they do not use a physical defined roughness to 
describe the wave run-up.  
 

3.3.6  Permeability of the structure 
The influence of the permeability of the structure is usually given by a notion that the structure is 
permeable or impermeable. Van der Meer (1988) defined a notional permeability factor (P) to take 
the permeability of a structure into account when he derived the formula for stability of a 
breakwater. It is a mathematical way of implementing the permeability of the structure into his 
formulae. The notional permeability factor is associated with the ratio of the diameters of the 
different layers. 
When the permeability of a breakwater is considered, one has to keep in mind that most 
breakwaters consist of multiple layer, which all have different hydraulic properties. When 
permeability is considered in soil mechanic science, the permeability of one layer is considered in 
combination with the permeability of the other layers. The smallest permeability has the largest 
effect on the permeability of the structure as a whole. 
 
The flow of water in a porous medium that is permeable is described by the equation of 
Forchheimer: 
 

I a u b u u c u
t

= ⋅ + ⋅ ⋅ + ⋅
∂
∂

       (3.5) 

 
here: 
 
 

a
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        (3.6) 

b n
n gD

=
−β 1 1

3         (3.7) 

c

n
n

ng
=

+
−1 1γ

         (3.8) 

with 
 
α,β and γ = dimensionless coefficients 
n  = the porosity of the layer 
ν  = the kinematic viscosity 



Chapter 3 

  21

D  =  a characteristic diameter 
g  = the gravitational acceleration 
 
Equation (3.6) gives the laminar term of the Forchheimer equation, (3.7) is the turbulent term and 
(3.8) is the inertial term. 
 
Van Gent (1995) performed experiments to find out what the contribution of the three above-
mentioned terms of the Forchheimer equation to the pressure gradient. He found that the turbulent 
term was the first and the inertial term was second in influence. The results are given in figure 3-2. 
 
Inertia can be linked to the permeability of the structure. A structure that is permeable according to 
definition of Van der Meer (fig 2-3), will have an influence on the run-up. Water is present inside 
the structure and when waves attack the structure, the inertia of the water inside the structure will 
reduce the run-up capacity of the waves. It is likely that this will happen in case of non-breaking 
waves. This type of waves usually has large periods and therefore, the water inside the structure is 
able to ‘follow’ the waves. Breaking waves usually move faster and it is likely that the energy 
dissipation of those waves will mainly not take place by inertia of the water inside the structure; 
these waves will loose energy by breaking and dissipating their energy inside the armour layer. 
According to Battjes (1988), the formation of a large-scale vortex takes place so quickly that 
viscosity can have no significant effects except at microscales. Vortex formation as such therefore 
causes no immediate decrease of the total kinetic energy of the large-scale motion, although it does 
imply a loss of energy that can be ascribed to the wave. A rapid decay of wave height can take 
place that is not accompanied by an induced mean horizontal pressure gradient. 
 
Due to the quick motion of swash and back swash, the phreatic surface inside the slope will not be 
able to keep up. The water will infiltrate into the unsaturated zone and dissipate energy due to 
turbulent friction. So, breaking waves dissipate energy due the breaking phenomenon itself and due 
to turbulent friction on and in the slope. 
 
Permeability of the structure therefore will have the biggest influence on the run-up when surging 
waves are considered. Its influence on breaking waves probably can be neglected.  
 

 
figure 3-6,  Contributions of the different terms of the Forchheimer equation to the hydraulic 
gradient 
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3.3.7  Permeability of the armour layer 
 
The permeability of the armour layer is the main driving force when waves break on the structure’s 
slope. As can be seen in figure 3-6, the turbulence that arises inside the armour layer is the main 
contribution to the energy dissipation inside a porous layer. In order to describe the permeability of 
the layer, many investigators have used different equations. Although the equations all differ, they 
have one thing in common: the permeability is a function of the porosity of the layer and the 
diameter of the armour units.  
 
When turbulence is taken as the main term of the Forchheimer equation, the permeability that can 
be derived from it looks like: 
 
k n n Dg~ 3 2−c h  or k n Dga~        (3.9) 

 
where a is a constant. 
 
According to the Manual on the use of Rock (1995),  
 

k n Dg~ 5c h          (3.10) 

 
The fact that run-up is affected by the permeability of the layer, which consists of the porosity of 
the layer combined with the diameter of the armour units can be explained. To have pores, or said 
differently, to have air inside the layer, the layer has to be porous. The size of pores inside the layer 
is dependent on the size of the units. When the size of the pores is big, water waves will be enabled 
to lose energy inside the pores. More space is available for the waves to dissipate energy through 
turbulence. This permeability has to be seen relative to the size of the waves that attack the 
structure. Huge waves attacking a layer of relatively small permeability will dissipate energy, but 
the effect on the total run-up will be small. 
 
One other thing has to be said about permeability in relation to porosity. The layer has to consist of 
loose material in order to be permeable. One can compare this with Swiss cheese, no permeability 
but the layer is porous. 
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Chapter 4 Experiments 

4.1  Introduction 
In this chapter experiments that are performed both in Delft, the Netherlands and in Iran, will be 
described and discussed. The goal of the experiments performed in Delft is to give insight in the 
parameters that play a role in the run-up of waves on a rubble mound breakwater. This goal was 
inspired by the question why run-up on a rock-armoured breakwater is lower than run-up on a 
tetrapod-armoured breakwater, which was found due to the experiments performed in Iran, see also 
figure XIV-1.  
 
The experiments as performed in Delft at the Laboratory of Fluid Mechanics of the Delft University 
of Technology were designed to give insight in the physic parameters that play a role. The 
experiments in Delft were performed to be able to give an answer to the question: 
 
“How can the influence of roughness of the slope and resistance of the armour layer to water 
movement on the run-up of waves on a permeable rough slope be quantified?” 
 
The experiments performed at the Delft University of Technology are a schematisation of reality 
with no permeability of the layer beneath the armour layer, whereas the experiments performed in 
Iran used a model that is more close to reality. Since the experiments in Iran were performed with a 
cross-section of a breakwater, the permeability of the whole structure plays a role in the run-up 
levels reached by waves. The experiments as performed in Iran are used to draw a comparison 
between the results of these two model situations. 
 
In order to be able to give an answer to the above posed question, the experiments performed at the 
Delft University of Technology had to be carried out changing all the properties of the armour layer 
independently. The behaviour of waves on the slope is changed for each composition of the armour 
layer.  
 

4.2  Experiments performed at the Delft University of Technology 

4.2.1  Introduction 
The experiments took place in the Laboratory of Fluid Mechanics of the subfaculty of Civil 
Engineering of the Technical University of Delft. Here a flume of 36.5 meters was available, in 
which a wave paddle was placed that was able to generate regular waves. A specially designed case 
was placed at the end of the flume on which the run-up could be measured for different angles and 
different armour units. In the next sections the experimental set-up will be described and after that, 
the measurements are discussed. 
 
The main goal of the experiments in Delft is to distinguish a relation between run-up on a slope and 
the roughness of this slope and the resistance of the slope to water movement inside the slope 
respectively.  
 
In order to achieve the goal, some constraints have to be defined: 
 
• The waves used to attack the slope are regular waves, this is defined by the available wave 

flume 
• The structure beneath the layer of armour units will be impermeable 
• Wave trains are used in order to prevent re-reflected waves from the wave paddle to disturb the 

observations of the run-up on the slope 
• The water depth is kept constant. 
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4.2.2  Experimental program 
 
The run-up on the rough and porous slope will be measured at different compositions of the slope. 
The parameters that can be altered to achieve different compositions of the slope are:  
 
• Diameter (Dn(50)) of the armour unit 
• Porosity of the slope 
 
Using different kinds of armour units can alter the porosity of the slope. The porosity of a layer of 
rock units will be around 38 %, the porosity of a layer consisting of tetrapods is around 50 %. By 
using these two armour units the porosity of the slope will be changed.  
 
Changing the porosity of a layer consisting of one armour unit is difficult since the wave action will 
make the layer as compact as possible. A porosity of 50% that is laid on a layer of rock by placing 
the units more apart of each other will reduce under wave attack to a value that will be close to the 
earlier mentioned value of 38 %. The actual porosity is hard to determine and the composition of 
the slope has altered during the experiments, which make the result of the experiments less reliable. 
 
The diameters of the armour layer that were to be used were dependent on the available model size 
tetrapods. These tetrapods were borrowed from Delft Hydraulic, location “De Voorst”. Three 
clearly different diameters in right amount were available at Delft Hydraulics. The diameters of the 
rock that was used were chosen around the values of the diameters of the tetrapods. 
 
The grading of the rock material was chosen narrow, this is in line with coastal engineering practice 
where narrow rock gradings are used for the construction of breakwaters. A narrow grading means 
that: 
 
D
D

85

15

= 1.2 to 1.5 

 
Where  D85 is the value of the gradation for which 85% of the gradation is smaller. 
 D15 is the value of the gradation for which 15% of the gradation is smaller 
 
The value of D85 is a measure for the largest stones in a rock gradation whereas the value of D15 is a 
measure for the smallest stones in the gradation. 
 
In the case of tetrapods, the values of D85 and D15 have no meaning since all tetrapod units have 
equal size. The values of D85 and D15 will be equal to the height of the unit. 
 
Each composition of the slope will be attacked by waves with different behaviour on the slope. This 
will be achieved by changing the value of the breaker parameter, ξ. The value of ξ can be altered by 
changing the variables H, T and α (wave height, wave period and slope angle respectively).  
 
The slope angle is varied three times. Although the slope angle for a tetrapod breakwater is hardly 
even different from 1:1.5 due to economic reasons, slope angles of 1:3 and 1:4 are applied as well. 
this because the slope angles of a breakwater covered with rock armour units are constructed in the 
range of 1:3 and 1:4. When a comparison has to be made between run-up on a rock slope (porosity 
of ≈ 38%) and tetrapods slope (porosity ≈ 50%) these slopes have to be tested with equal slope 
angles. 
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The influence of the wave period had to be inquired to get a full picture of the influences of 
different behaviour of the waves on the slope. To keep the amount of experiments in check, the 
period is varied only two times. The wave flume determined the values of the wave period. 
 
The wave height is varied five times for each composition of the slope, each slope angle and each 
wave period. The maximum value of the wave height was determined by the stability of the stones 
on the steepest slope. No movement of stones was to appear in the experiments since movement of 
stones would alter the composition of the slope. Each experiment is carried out twice in order to 
obtain a consistent experiment. 
 
So in total, the following parameters are varied: 
 
Variable Notation Variation Range 
Diameter rock Dn50 3 times 0.027 m, 0.045 m, 0.065 m 
Diameter tetrapods Dn 3 times 0.036 m, 0.044 m, 0.050 m 
Porosity n 2 times 38%, 50% 
Wave height H 5 times 0.03 m – 0.14 m 
Wave period T 2 times 1.12 s, 1.54 s 
Slope angle α 3 times 1:1.46, 1:3, 1:3.87 

table 4-1, Variation of parameters in the experiments performed in Delft 
 
The water depth was kept constant at a value of 0.3 meter. This value represents shallow water at 
the toe of the structure and is a result of a balancing procedure to obtain the maximum wave height 
attacking the slope in combination with the maximum permissible run-up along the slope where this 
run-up will not reach the end of the slope. 
 

4.2.3  Material 
As mentioned before, rock and tetrapods were used to construct the slope. The tetrapods were 
obtained from Delft Hydraulics and the typical dimensions of the tetrapods are: 
 
Height (m) Nominal diameter, Dn 

(m) 
Weight 
(kg) 

mass density, ρ 
(kg/m3) 

material 

0.055 0.036 0.102 2324 epoxy 
0.068 0.044 0.202 2303 mortar 
0.079 0.050 0.313 2435 epoxy+ 

table 4-2, Variation of the properties of the tetrapods used in the Delft experiments 
 
In figure 4-1, the dimensions of a tetrapod are given. Here the height of the tetrapod unit is given by 
H. 
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figure 4-1, Dimensions of a tetrapod unit 

 
 
The rock units that were used had to be sorted from a big pile of rock. By weighing the rock the 
gradation was formed. The available sieves at the Laboratory of Fluid Mechanics were not big 
enough to sieve the stones that were needed for these experiments. The gradation had to be narrow, 
so for the weight of the stones, the following restriction was given: 
 
W
W

85

15

= 1.7 to 3.4  

 
Using this criterion, the stones were selected. After selecting them by weight, the stones were 
measured in three directions: 
 

L
D

HH

Side view Front view
 

figure 4.2, Dimensions of a rock unit 
 
The largest value of H and D is used as representative for the dimension of a sieve. 
 
This results in the following characteristics of the stones used in the experiments: 
 
M50 (kg) ρs (kg/m3) Dn50 (m) D85 (m) D15 (m) 
0.84 3005 0.065 0.074 0.048 
0.25 2680 0.045 0.048 0.030 
0.05 2600 0.027 0.03 0.021 

table 4-3, Variation of the properties of the rock used in the Delft experiments 
 

4.2.4  Wave flume 
As mentioned before, the wave paddle in the flume was only capable of making regular waves. As a 
result, the experiments were carried out with wave trains. Wave trains can be described as a short 
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burst of waves released from the wave paddle. This is done since the waves reflect on the slope and 
the reflected waves return to the wave paddle where they reflect once again. The interaction 
between reflected waves from the slope and waves generated by the paddle results in waves that no 
longer can be described by a combination of the parameters H and T. So before the re-reflected 
waves reach the slope, all measurements have to be done and the experiment can be stopped. For 
this, the wave trains are used. An experiment with wave trains only lasts for about 20-30 seconds. 
 
In the flume two wave height meters are placed in order to be able to measure the period of the 
waves and the wave height. One wave height meter was placed on the toe of the structure in order 
to measure the wave height there. The second was placed near the wave paddle. The wave height 
meter that was placed near de wave paddle was placed with some distance from the paddle in order 
to let the waves develop themselves after being generated by the paddle. Figure 4-3 gives a sketch 
of the wave flume with the positions of the wave height meters in it. 
 

16.0 m

33.8 m

Wave paddle Wave height meter

34.3 m

Case

36.5 m

 
figure 4-3, Positions of wave height meters in wave flume 

 
 

4.2.5  Model 
The model that was used to perform the experiments consists of a wooden board that is supported 
by a steel frame. The steel frame was fixed to the board to keep the board inflexible under wave 
attack. On top of the wooden board a steel girder was fixed, attached to the steel girder was a steel 
fence work. The task of the fence work is to form a basket or case that can hold the rock or tetrapod 
units. The case that is formed with the wooden board as base and the fence work as sides is open at 
the top side and the permeable at the sides. On the wooden board gravel was glued to give the 
armour units some grip. The gravel is assumed to have no influence on the hydraulic behaviour of 
the layer that is constructed with the armour units. 
 
By fixing two bars with screw thread to the steel framework at one side of the model, this side 
could be lifted of the bottom of the flume. Each desired slope angle could be obtained by fixing the 
bars with screw thread with a nut. Figure III-1 in appendix III, shows the case that is used to 
perform the experiments. 
In figure 4-4 a close look is taken at the case when it is placed inside the wave flume. 
 

4.2.6  Measuring run-up  
The run-up of waves on the slope was recorded by a digital video camera that was placed above the 
slope. The video camera recorded the movements of the waves on the slope and the signal of the 
wave height meter that was placed at the toe of the structure. This signal was displayed on a 
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computer screen that was placed on a table next to the wave flume, see the sketch in figure 4-5. In 
this way the run-up was recorded simultaneously with the signal of the wave gauge. A direct 
relation between the run-up on the slope and the measured waves was established.  
 
To be able to measure the run-up along the slope, a ruler was fixed on top of the armour layer 
during each experiment. So when the videotape with the movements of the waves on the slope was 
analysed, the Still Water Level (SWL) could be read from the ruler and the run-up level could be 
read as well. The run-up on the slope was measured here at the outer side of the slope. Deducting 
the Still Water Level from the run-up level gives the run-up height along the slope. By multiplying 
this run-up height along the slope by sinα, the run-up height was determined. See also figure 4-6 for 
an illustration. 
 

SWL

Run-up along the slope

Slope angle, alfa

Run-up

SWL

Run-up
level

along the
slopeRuler fixed on top

of the layer of
armour material

Side view Top view

Case filled with
armour material

 
figure 4-6, Measuring run-up 

 
The recordings made with the digital video camera were analysed on a television screen. By using a 
small ruler to fix the water level that was seen on the television screen, the Still Water Level and 
run-up height along the slope could be determined for each experiment with an accuracy of 1 
centimetre. 
 
In appendix IV, the results of the analysis of the video recordings are given. 
 
 

4.3  Experiments performed in Iran 

4.3.1  Introduction 
During a stay in Tehran, Iran, as a guest of the Sharif University of Technology, experiments were 
performed at the Jehad Water and Water management Research Corporation (JWRC) in Tehran.  
These experiments were performed in the designing process of a breakwater that was to be 
constructed of tetrapods. As a part of the design, the hydraulic responses of breakwater covered 
with a tetrapod armour layer were investigated. The hydraulic responses of a breakwater consist of 
run-up, run down, overtopping, reflection and transmission waves that attack the breakwater. From 
these responses all but the transmission were investigated through experiments. The goal of the 
experiments was to obtain data of the hydraulic responses on a breakwater covered with tetrapod 
armour units that could be compared to data of hydraulic responses on a breakwater covered with 
rock armour units. The experiments on the run-up of waves attacking a tetrapod breakwater are 
used in this thesis. They will be discussed here. 
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4.3.2  Experimental set-up 
The original preliminary design of the breakwater was based on the program BREAKWAT. In this 
design a limited amount of overtopping of the breakwater was allowed. Since the measurements of 
run-up on a slope require the slope to be of infinite length, the design had to be altered a little and 
the scale of the experiment was doubled. In this way also the maximum run-up could be measured. 
Although run-up is usually represented as the 2% run-up, this is the run-up level that is exceeded by 
2% of the waves, all run-up, including the maximum run-up, has to be measured to be able to 
calculate the 2% figure. When measuring the entire range of run-up levels during an experiment, 
including the maximum run-up level, no water will pass the crest and therefor no overtopping will 
take place. 
 
When performing experiments on run-up, the stability has to be absolute. No armour units are 
allowed to displace. During the experiments it was found that at the beginning of the experiment 
one or two units moved, but after a small period of settlement, all units remained at their place. 
 

4.3.3  Scale 
The available model tetrapods were designed for a geometrically undistorted scale of N = 53. 
Geometrically undistorted means that the horizontal length scale is equal to the vertical length 
scale. So the model was geometrically equal to the prototype situation. 
 
This scale was calculated using the weather conditions at the prototype site. Recalculations showed 
that with a scale of N = 50, the tetrapods were not to move as well. 
 
The experiments were performed with two different model scales. The first scale of N = 50, was 
used to measure overtopping and reflection. In the case no overtopping occurred, the maximum 
wave run-up could be measured and these data have been used here too. The second scale of N = 
66, was used to measure only wave run-up and reflection. In this case all the waves could reach 
their maximum run-up level and therefore all data on wave run-up collected in these experiments 
are used here. 
An experiment were a scale is applied to model reality has to meet two mean scaling laws: 
 

Froude law: 
V
gL

V
gLp m

F
HG
I
KJ =
F
HG
I
KJ       (4.1) 

where V = velocity 
 g = gravitational acceleration 
 L = length 
The subscripts m and p stand for model and prototype respectively. 
 
Expressing in terms of scale ratios and rearranging gives: 
 

N
N N

V

g L

= 1          (2.2) 

 
where N = scale factor 
 

Reynolds law: 
ρ
μ

ρ
μ

LV LV

p m

F
HG
I
KJ =
F
HG
I
KJ       (4.3) 

where: ρ = fluid density 
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 L = length 
 V = velocity 
 μ = dynamic viscosity 
 
In terms of scale ratios, the Reynold model criterion is: 
 
N N N

N
V L ρ

μ

= 1         (4.4) 

 
When for both Froude and Reynolds law the similitude time scale is derived one gets: 
 

Froude:  N N
Nt

L

g

=        (2.5) 

 

Reynolds: N
N N

Nt
L=
b g2 ρ

μ

      (2.6) 

 
From equations (2.5) and (2.6) it is clear that in one model the both scale laws can not be applied. It 
is impossible to scale the time to the square root of the length and at the same time scale time to the 
square of the length. 
 
Since it is not possible to meet both scaling laws, the Froude law is applied and a lower boundary 
for the Reynolds number of a model is given. This because gravity forces predominate in free-
surface flows; and consequently, most models is designed using the Froude law. 
If the Reynolds number of the model to be tested is higher than the boundary, one can say that 
water movement on and in both model and prototype is turbulent. 
 
 
The Reynolds number (Re) was calculated using the shallow water wave velocity: √(gH). This 
because the velocity of the wave on the slope is the driving force of the turbulence on and in the 
slope. 
 
Using the formula: 
 

Re =
gH Dn

υ
         (2.7) 

with: g = gravitational acceleration 
 H = wave height (smallest applied in the experiments) 
 Dn = nominal diameter of the armour unit 
 ν = coefficient of kinematic viscosity, taken 1*10-6 for water 
 
the Reynolds numbers of the models as tested are: 
 
N = 50: Re = 2.4*104 
N = 66: Re = 2.3*104 
 
Different investigators give different lower boundaries for the Reynolds number, the range of these 
boundaries is: 6*103 – 4*105. Van der Meer suggested a value of 4*104. According to these values, 
no definite judgement can be given about viscous scale effects in the results of these experiments.  
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4.3.4  Material 
Use is made of one size model tetrapod, so two sizes prototype tetrapods were used since two scales 
were applied. The dimensions of the model tetrapods are: 
 
Htet = 5.2 cm 
Dn = 3.8 cm 
 
where Htet is the height of the tetrapod 
 
This results in the following prototype dimensions: 
N = 50 Htet  = 2.60 m 

Dn = 1.69 m 
 

N = 66 Htet  = 3.43 m 
Dn = 2.23 m 
 

Figure 4-7 shows the dimensions of a tetrapod 
 

 
figure 4-7, Dimensions of a tetrapod armour unit 

  

4.3.5  Hydraulic parameters 
The wave generator was able to generate irregular waves. The program Wave Syntesizer, written by 
the Danish Hydraulic Institute operated the wave paddle. The wave spectrum that was used was the 
JONSWAP spectrum. This spectrum is a good representation of the wave conditions as they can be 
found in the Persian Gulf. The wave height and wave period were taken according to conditions to 
be found at the proposed site of the breakwater. These conditions are: 
 
Significant wave height:  Hs = 5 meter 
Peak period:  Tp = 14 seconds 
Water depth:  d  = 13.5 meters 
 
The conditions found at the proposed site are taken as upper boundary values for the experimental 
program. The prototype values of the experimental program are given below: 
 
Hs (m) 2.5 3.5 4.5 5 5.5 
Tp (s) 6 8 10 12 14 

table 4-4, Experimental program Iran 
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In Appendix V, the cross-section of the model breakwater as it was tested in Iran can be found. 
Appendix VI gives the plan of the wave flume. 
 
The program Wave Synthesizer was able to compute the reflection of waves from the structure. In 
order to measure the reflection, three wave gauges were placed in the middle of the flume between 
the wave paddle and the structure. The distance between the gauges can be calculated according to 
Goda: 
 

0 05 0 45. .< <
Δl
L

        (4.1) 

where:  Δl = the distance between two gauges 
 L = the wave length 
 
Here the distance between two gauges was set to 35 cm, this is the distance between the two gauges 
that are most close to the structure. The distance between the second and the third gauge was set to 
half Δl. 
 
After the program Wave Syntesizer determined the reflection coefficient, the incoming wave height 
could be calculated using: 
 

H H
K

si
si r

r

=
+

+

1 2
       (4.2) 

 

4.3.6  Measuring devices 
The run-up on the slope was measured by placing two wave gauges parallel to the slope. These 
gauges were fixed at an angle of 33.7 degrees (slope 1:1.5) and the distance between the slope and 
the gauge was about zero. The gauges were placed between the tetrapods, but care was taken that 
the gauge never touched a tetrapod. The water movement that was recorded in this way is discrete; 
at any moment in time, the location of the waterfront is known. Both wave gauges produced a 
signal that was acquired by the program Wave Syntesizer with a frequency of 40 Hz. From both 
signals the maximum value in each wave motion is extracted and from those value, the average is 
taken as representative for the run-up levels along the slope. 
 
When a wave gauge is placed in water to measure the water movement, a layer of 4 cm water have 
to be present underneath the end of the gauge. Not in all experiments that were performed, the run-
down of the waves staid above the end to gauges. The results of these experiments are not used in 
the analysis of wave run-up since the accuracy can not be guaranteed. 
 
In total the data of 43 experiments could be used for the analysis of wave run-up on a breakwater 
covered with tetrapod armour units. In Appendix VII, the data of all different tests are given. They 
are given as prototype values since the program Wave Synthesizer gave the results as such.  
 
The run-up on the slope was calculated by running a computer program that calculated the run-up 
for each wave. This was done by comparing the water level at one time step, measured by the two 
wave height meters, with the water level at the next time step. This resulted in an amount of run-up 
level for one test series. This amount corresponded with the amount of waves that was send from 
the wave paddle. From this amount of run-up levels, the 2% value was calculated.  
 
The results of the experiments are discussed in chapter 5 and 6. 
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Chapter 5 Analysis of data  

5.1  Introduction 
In this chapter, two data sets are analysed. The data obtained from the experiments in the regular 
wave flume in Delft as described in section 4.2 will be analysed here first. The influences of the 
parameters H, cotα, D, n and T, on the run-up on a porous slope will be dealt with. Also the 
combination of the above-mentioned parameters like breaker parameter (ξ, roughness and 
permeability (a combination of D and n) will be discussed. Expressions that describe roughness and 
permeability of the armour layer are derived. 
 
Secondly, the data obtained from the experiments in Iran as described in section 4.3 will be dealt 
with. These data will be compared to the results of experiments performed by other researchers. 
 

5.2  Experiments performed in Delft 

5.2.1  Introduction 
In this section the data of the Delft experiments as given in appendix IV, are analysed and used to 
derive non-dimensional parameters describing roughness and permeability of a rubble mound 
breakwaters slope. These non-dimensional parameters have to be representative for the physical 
processes taking place when waves run-up a rough, permeable slope. 
 

5.2.2  Results 
In this section the rough data are used to obtain insight into the influence of each single parameter 
on the run-up on a slope. When analysing one parameter, all others are taken constant. The 
influence of each parameter is described qualitatively. Arrows are used to give an indication of 
positive or negative influence. 
 
In appendix VIII, the figures of the run-up versus wave height for different parameters are given. 
The conclusions that can be drawn from these figures are discussed below. 
 
From figure VIII-1 it can be noted: 
 
H ↑,  Ru ↑ 
 
If waves get higher, the run-up will be higher. Waves are the main driving force for run-up so there 
has to be a direct relation between run-up and wave height. This is also a result of the definition of 
run-up; the extreme level of water elevation reached at every wave action. 
 
From figures VIII-2 and VIII-3 it can be noted: 
 
 Cot α  ↑, Ru ↓ 
 
If the slope gets milder, the run-up will be less. This can be explained by the fact that when the 
waves pass over a longer slope, the roughness of this slope will have a longer route to interact with 
the waves. More energy can be dissipated on the slope and less energy is available for run-up. 
 
From figures VIII-4 and VIII-5 it can be concluded: 
 
Dn(50) ↑, Ru ↓ 
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If the diameter of the armour unit (rock or artificial) gets bigger, the run-up will be less. The reason 
for this phenomenon could be found in two factors. The first is the influence of the roughness of a 
slope. If the diameter gets bigger, the roughness or the amount of resistance a wave encounters will 
be bigger. More resistance results in less run-up due to energy loss. The second influence is the 
permeability of the armour layer. The combination of porosity and diameter of the armour unit 
gives a permeability. The diameter of the armour unit is proportional to the size of the pores. When 
the size of the pores is larger, more space for the waves to dissipate energy is available. This will 
again reduce the run-up due to energy loss. 
 
From figure VIII-6 it can be seen: 
 
n ↑, Ru ↓ 
 
If the porosity of an armour layer increases, the run-up will decrease. The reason for this can be 
found in the energy dissipation of the waves running up the slope. If the porosity is higher, there 
will be more hollow spaces inside the slope. The waves are able to lose energy inside the slope 
better then. 
 
From figures VIII-7 through VIII-10 it can be deducted: 
 
T ↓,  Ru ↓ 
 
The decrease of the wave period causes steeper waves. Steeper waves are more likely to break on a 
slope dissipating energy and therefore not reaching as high as levels as flat waves. In the last 
figures it was visible that no direct relationship as posited here could be distinguished. In these 
cases the transition between breaking and non-breaking waves can be the reason for this. These two 
types of wave behaving on a slope have totally different characteristics and have to be dealt with 
separately. 
 
The conclusions that can be drawn from the exercise performed above are: 
 
• R = f(Ω)*H         (5.6) 
• Ω :: T         (5.7) 
• Ω :: 1/cotα, so Ω :: tanα       (5.8) 
• Ω :: 1/D         (5.9) 
• Ω :: 1/n         (5.10) 
 
where  :: means, is a function of.. 
 D is a characteristic diameter 

 

5.2.3  Non-dimensional parameters 
The run-up on a slope is usually presented as a relative run-up, the run-up is divided by the wave 
height. This non-dimensional parameter is presented versus the breaker parameter, ξ. As a start, this 
way of presenting data will be used here too.  
 
Since the relative run-up is a non-dimensional parameter, a relation that describes the non-
dimensional run-up has to consist of parameters that are non-dimensional as well. A non-
dimensional parameter consists of one or more parameters with a positive influence of the run-up 
relative to one or more with a negative influence on the run-up. Furthermore, the non-dimensional 
parameters used to describe the run-up on a rough, permeable slope will be a combination of 
parameters describing the slope and parameters describing the waves. 
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In the previous section the different parameters and their influence on the run-up represent the data. 
From that examination non-dimensional parameters can be formed. 
 
The different non-dimensional parameters that could be formed are: 
 

• ξ α
π

=
tan
2

2
H

gT

       (5.1) 

 
Which is a parameter that describes the behaviour of waves on a slope. This parameter is derived 
for smooth, impermeable slopes (Battjes, 1974) 
 
• A parameter that contains H/D as description of the roughness   
 
• A parameter that contains a combination of H and (Danbg)   to describe the permeability of the 

structure 
 
with H    = wave height 
 D    = characteristic diameter 
 n     = porosity 
 g     = gravitational acceleration 
 a, b = constants 
 
As mentioned before, run-up is usually made non-dimensional by dividing it by the wave height. 
The data obtained from the experiments are put in figure A5.2-1 where on the y-axis the relative 
run-up  (Ru/H) is placed and on the x-axis the breaker parameter (ξ). As can be seen, a lot of scatter 
occurs. In this figure, the influences of permeability and roughness are not filtered out of the data. 
 

5.2.4  Roughness 
To obtain a non-dimensional parameter describing the roughness of a slope (R), a combination of a 
property of the wave and a property the slope has to be found. For roughness, the wave is 
characterised by the wave height. The slope is characterised by a characteristic diameter. This leads 
to: 
 

R H
D

=  

 
When roughness (H/D) is depicted versus the relative run-up (Ru/H), for D many different 
characteristic diameters could be used.  The first diameter that is used is the nominal diameter. This 
parameter is easy to determine so if a relationship can be found in this way, it will make using a 
formula more simple. 
 
In figure X-1 the data are presented as a function of the relative run-up versus the non-dimensional 
roughness using the nominal diameter. In this figure a lot of scatter is present so a better way of 
describing the relation between relative run-up and non-dimensional roughness has to be found. 
 
When looking at the physics of a rough slope, a good parameter to describe the resistance of the 
slope could be the D85, a measure for the largest stones in a quarry run. Since a comparison with 
tetrapods has to be made, for tetrapods the height of the unit is taken as a characteristic diameter for 
roughness, see also figure 4-1, page 28. In figure X-2 the data are presented as a function of relative 
run-up (Ru/H) versus relative diameter, with the D85 for stone and the Htet for tetrapods as the 
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characteristic diameter. Still a lot of scatter remains, but the data seems to be more concentrated 
around one line. Therefore, the D85 for stone and the Htet will used to describe roughness. 
Roughness (R) will be described as: 
 

R H
D

=
85

  for rock      (5.4) 

and R H
height unit

=
_

 for tetrapods     (5.5) 

 
 
Since there is still a lot of scatter in the data, the data are presented as a function of the run-up 
versus the non-dimensional roughness in order to get insight in the mechanisms that play a role 
here. In figure X-3 the data of the experiments performed with tetrapods are presented as a function 
of the run-up and the non-dimensional roughness. A linear relationship between run-up and the 
non-dimensional roughness can be distinguished. In figure X-4 the data of the experiments 
performed with stone are presented as a function of run-up and the non-dimensional roughness. 
Here more scatter appears than in previous figure. 
 
The scatter is due to different diameters of the material. In this fact may lie a solution for the scatter 
of the relative run-up versus non-dimensional roughness. When run-up is made non-dimensional by 
the diameter of the material, for instance the nominal diameter, the scatter in figures X-3 and X-4 
might disappear and even a more clear relationship between relative run-up and non-dimensional 
roughness could be found. Figure X-5 shows the data presented as a function of the relative run-up 
made non-dimensional by the nominal diameter (Ru/Dn(50)) and the non-dimensional roughness. A 
significantly linear relationship is present. Since a significant relationship is present here, it might 
be better to use the nominal diameter to make the run-up non-dimensional. This will be examined 
for all different non-dimensional parameters. 
 

5.2.5  Permeability 
The non-dimensional parameter describing the permeability of the slope will again have to be a 
combination of a wave characteristic and a slope characteristic. First the wave characteristic will be 
discussed here, followed by the slope characteristic. 
 
Since permeability is a measure for the amount of water that can pass a cross-section of material in 
a period of time, the characteristic of the wave is taken as the amount of water presented by the 
wave in a period of time. 
 
The amount of water presented by the wave can be calculated by using: 
 
 
 

L

H
 

 
V LH= α  
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Where V is the volume of water, α is a shape factor, L is the deep-water wave length and H is wave 
height. 
 
This volume is taken per linear meter to reduce calculations. Per period of time, here the wave 
period, the volume of water presented by the wave per linear meter becomes: 
 

V gTH
i =

α
π2

 (m2/s)        (5.6) 

 
where Vi is the incoming amount of water. 
  
The slope will have to drain this amount of water. Its capability of doing so is dependent on the 
permeability of the slope and the thickness of the slope. 
Permeability can be presented in many ways. The most neutral way of presenting it might be: 
 
k n D ga

x
b~          (5.7) 

 
with  k = the permeability of a layer 
 n = the porosity of the layer 
 Dx = a characteristic diameter 
 g = gravitational acceleration 

a = a constant 
 b = a constant 
 
As a start the practical formula provided by the Manual on the use of Rock (1993) will be used: 

k n gD
i

= 2
5

 (m/s)        (5.8) 

 
with i = hydraulic gradient (-) 
 
The hydraulic gradient is defined as: 
 

H

L
i=H/L

 
figure 5-1, Hydraulic gradient 

 
When the permeability is described using equation (5.7), the hydraulic gradient in combination with 
the gravitational acceleration can be seen as the driving force that makes the water flow. When the 
slope of a breakwater is considered, the hydraulic gradient can not be marked as the driving force. 
The hydraulic gradient is even hard to describe in that case. Waves move up and down the slope, so 
the gradient will change in time. This time dependency makes the hydraulic gradient a non-usable 
parameter describing the wave-induced flow in the armour layer. It will therefore not be considered 
here. All other variables that appear in equation (5.7) are usable and the dimension of the 
combination of these variables is (m/s) which is the dimension of permeability.  
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The volume of water that can be drained by the layer per linear meter and per period of time can be 
written as: 
 
V kdd =          (5.9) 
 
where   Vd = volume of drained water 

k = permeability of the layer 
 d = thickness of the layer 
 
The permeability parameter can be constructed as: 
 

K V
V

i

d

=          (5.10) 

 
When the non-dimensional parameter is put together, all constants are left out of it. The non-
dimensional parameter describing the permeability becomes after re-arranging: 
 

K gTH

D n gDn

=
( )50

5c h
        (5.11) 

 
with: D = characteristic diameter 
 
First of all the data will be presented as a function of the relative run-up, made non-dimensional 
with the wave height (Ru/H), and the non-dimensional permeability parameter. The permeability is 
taken as a combination of porosity and the D20, a measure for the smallest pieces of rock in a quarry 
run. It is likely that the smallest pieces in the armour layer will have the biggest influence on the 
hollow spaces inside the layer. The small pieces are an indication for the size of the hollow spaces. 
In order to be able to compare rock and tetrapods with each other, for tetrapods the size of one leg 
of the tetrapod is taken as the characteristic diameter. The size of one leg is written as c, see also 
figure 4.1, page 28. In appendix XI, figure XI-1, Ru/H is presented versus equation (5.11). 
 
Like with in the case of the non-dimensional roughness, also a lot of scatter is present. When the 
data points calculated with equation (5.11) are put against the run-up (Ru), the scatter has become 
less, see figure XI-2. The scatter is even more reduced when the run-up is made non-dimensional 
with the nominal diameter, see figure XI-3. But the influence of the porosity seems to be overrated. 
Porosity is now put into equation (5.11) to unity: 
 

K gTH
D ngDn

=
( )50 b g

        (5.12) 

 
When equation (5.12) is used to compute the non-dimensional permeability the scatter in the figure 
depicting the non-dimensional run-up (Ru/Dn(50)) versus K is less, see figure XI-4. 
 
Now a closer look is taken on the porosity. When a breakwater is build, the armour layer will have 
a thickness that can vary between 1 and 3 times the nominal diameter of the armour units. Since this 
is a very thin layer when the porosity has to be determined, it will be likely that accuracy of the 
porosity will be low. Furthermore, the effect of the walls on the porosity has to be taken into 
account as well. A simple drawing can explain this effect: 
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figure 5-2 Wall effect and surface definition 
  

In the drawing 5-2 a, the porosity will be lower than in the case of drawing 5-2 b, although the same 
material is used. The walls make the hollow spaces bigger. Not only the walls themselves give a 
problem, also the surface of the layer is hard to define. In all cases the question can be posed, what 
is the surface of the layer, 1, 2 or 3 and 4 or 5. This problem has a big influence as well on the 
definition of porosity. Bregman (1998) found that accuracy of porosity is mainly determined by the 
reduction factor for the wall effect. He found that the porosity has to be corrected up to a 30% due 
to the wall effect. Since an armour layer of a breakwater has more resemblance with the case in 
drawing 5-2 b and the surface of the filter layer of a breakwater can be taken as a wall, the question 
arises whether the porosity is a good parameter to describe the amount of hollow spaces available in 
the layer. 
 
This problem might be avoided when using the amount of armour units placed on a certain area, Na. 
In this way the wall effect is taken into account and the layer is better described since less mistakes 
can be made in measuring the layer thickness and determining the porosity. In this number, the 
layer thickness is incorporated. When the layer is thicker, more armour units are present on one 
defined area. The value of Na can be calculated using the following formula (SPM, 1984): 
 
N k n n Da D v n= − −1 2b g         (5.13) 

 
here, kD is the layer thickness coefficient, n is the number of stones in a layer, see Shore Protection 
Manual and nv is the porosity of the material. So the porosity of the material can be written as: 
 
n N Dv a n~ ( )50

2          (5.14) 
This is used in the expression for the permeability parameter. 
 
In total the expression for the permeability parameter becomes after some re-writing: 
 

K
TH g

D N cn a

=
2 b g   for tetrapods     (5.15) 

 K
TH g

D N Dn a

=
50

2
20b g   for rock      (5.16) 
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In figure XI-5, equations (5.15) and (5.16) are used to calculate K and these data points are put 
against the non-dimensional run-up, Ru/Dn(50). 
 
If the run-up is made non-dimensional by using the nominal diameter, a relation that contains this 
non-dimensional run-up is only applicable for rubble mound breakwaters. Such a relation cannot be 
used to describe run-up on a rough impermeable slope or a dike.  
 

5.3  Experiments performed in Iran 
The experiments performed in Iran are model experiments unlike the experiments performed in 
Delft, which were axiomatic experiments. Axiomatic experiments are not performed in order to 
make model of a prototype situation, but they are meant to examine one specific phenomenon. In 
order to be able to compare the data of the Delft experiments with the data of the Iran experiments, 
the experiments have to be of the same scale. Although all data from the Iran experiments are 
acquired as prototype values, it might be better to scale them back to model values and use these 
values to make a comparison with the data from the Delft experiments. By doing so, both data sets 
are model values and this gives a better ground for comparison. 
 
When the data of the Iran experiments are scaled back to model values, not much variation in 
variables is left. Only the wave height, Hs, and the wave period, Tp or Tm are variables. Variation in 
roughness and permeability is not available. In order to take a first glance at the data, the data can 
be shown as a function of the relative run-up, Ru2%/Hs and the breaker parameter, ξm. This is an 
often used way displaying relative run-up versus breaker parameter. In appendix XII, figure XII-1 
the prototype values of the two data sets acquired from the Iran experiments are depicted as 
function of the wave height based relative run-up and the breaker parameter based on the mean 
period.  
 
According to figure XII-1, the relative run-up (Ru2%/Hs) in the 1200-series is less than the relative 
run-up in the 1100-series. Since the two test series were performed with different scales, the 
characteristics of the prototype armour layers were different. The diameter of the tetrapods in the 
1200-series is 1.5 times the diameter of the tetrapods in the 1100-series. The difference in relative 
run-up can be due to three factors: 
 
1. difference of roughness of the two different armour layers 
2. difference of permeability of the two different armour layers 
3. difference of structural permeability 
 
Since these influences can not be scaled in a proper way up to now, the influences of the three 
mentioned factors on the run-up are took along when scaling from prototype values to model 
values. 
 
The prototype values of the Iran experiments might have a scale effect in them. When designing the 
experiments scaling the filter and core material according to Le Méhauté was not taken into 
account. More about scaling according Le Méhauté is given in appendix XIII. 
 
In appendix XIV, the data obtained in Iran are compared to the present equations for run-up on a 
permeable slope, equation (3.2)-(3.4). From figure XIV-1 it can be noted that the run-up on a rubble 
mound breakwater covered with tetrapod armour units is lower than the run-up on a rock covered 
slope. Equation (3.2) and (3.3) represent the run-up on a rock armour covered slope, when the slope 
itself is impermeable. One is referred here to section 2.4.3. Equation (3.2) and (3.3) are derived for 
notional permeability factor P = 0.1. Equation (3.4) represents a fully permeable slope covered with 
rock armour units. Here the notional permeability factor is P > 0.4. 
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The run-up on the model tested in Iran is lower than the run-up that is described by the equation 
(3.2)-(3.4).  The difference might be a result of the difference in roughness and permeability of the 
slope and a difference in permeability of the whole structure. In chapter 6, the relation that is 
derived by fitting the data obtained in Delft is applied to the data obtained in Iran. Doing so might 
give an indication about the legitimacy of the hypothesis posed above. 
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Chapter 6 Derivation of the relations describing run-up on 
a rough, permeable slope 

6.1  Introduction 
In this chapter two relations for the run-up on a rough, permeable slope will be derived. Two 
relations will be derived since in the previous chapters it became clear that run-up on a slope is 
different for breaking and non-breaking waves. First the relation for breaking waves will be derived 
followed by the relation for non-breaking waves. Then a back coupling is made with the data that 
are obtained in Iran. These data are filled in into the relations obtained from the experiments 
performed at the Delft University of Technology and a comparison is made between measured and 
computed data in order to see if the relations that are found can be justified to some extend. Finally 
a discussion is given about the influence of the results of this thesis on the design of rubble mound 
breakwaters. 
 

6.2  Relation for breaking waves 
The transition between breaking and non-breaking waves in the case of regular waves lies around ξ 
= 2.5  to ξ = 3. This value is found from figure IX-1 where a transition can be seen around the 
value of ξ = 3. The breaking waves occur when ξ < 3 and non-breaking waves occur when ξ ≥ 3. 

 
In chapter five it was found that a linear relationship exists between non-dimensional run-up 
(Ru/Dn(50)) on one hand and non-dimensional roughness (R) and non-dimensional permeability (K) 
on the other hand. When looking at the definitions of non-dimensional roughness and permeability, 
it seems likely that there is correlation between the two non-dimensional parameters. Both 
parameters are derived using the wave height and a characteristic diameter of the armour unit. 
When roughness is zero, permeability has to be zero as well. This hypothesis about the correlation 
between roughness and permeability is checked by using the statistical program SPSS and was 
found right. When the data obtained from the experiments performed in Delft are considered, a 
strong correlation is found between R and K. This means that R and K have to appear in the same 
factor when a the non-dimensional run-up is described. 
 
From figure X-5 in appendix X, it is clear that a linear relation is present between Ru/Dn(50) and R. 
So the following relation can be given for the non-dimensional run-up versus the roughness 
parameter: 
 

R
D

aRu

n( )50

=          (6.1)  

 
where a is a constant 
 
From figure XI-5 in appendix XI, one can conclude that also a linear relation is present between 
Ru/Dn(50) and K. The following relation might represent the non-dimensional run-up versus the 
permeability parameter: 
 

R
D

bKu

n( )50

=          (6.2) 

 
where b is a constant 
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Furthermore a correlation between roughness and Iribarren parameter and a correlation between 
permeability and Iribarren parameter is supposed.  
 
From a physical point of view this can be explained as follows. A change in the behaviour of the 
waves on the slope (ξ) will change the interaction between the waves and the slope. The interaction 
can be divided into interaction at the outer side of the slope (roughness) and inside the slope 
(permeability). 
 
From a more statistical point of view this can be explained by the fact that the wave height is used 
in the Iribarren parameter, the roughness parameter and the permeability parameter. 

 
The possibility of correlation was checked also using the statistical program SPSS. The correlation 
was not as strong as appeared between roughness and permeability but it is present. So roughness 
parameter and Iribarren parameter have to appear in one factor describing the non-dimensional run-
up. The same accounts for the permeability parameter and the Iribarren parameter. 
 
The run-up is dependent on the all three factors described above, KR, ξK and ξR. All these factors 
add their part to the run-up on a rough, permeable slope. So combined with the above stated this 
leads to the assumption that the non-dimensional run-up should look like: 
 

R
D

lKR m K n Ru

n( )50

= + +ξ ξ        (6.3) 

 
with  l, m, n are constants 
 

K = non-dimensional permeability, defined as: 
 

 K
TH g

D N cn a

=
2 b g   for tetrapods    (6.4) 

 

K
TH g

D N Dn a

=
50

2
20b g   for rock     (6.5) 

 
 
 R = non-dimensional roughness, defined as: 
 

R H
D

=
85

   for rock     (6.6) 

R H
height unit

=
_

  for tetrapods    (6.7) 

 
 
 ξ = Iribarren parameter, defined as: 
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 ξ α
π

=
tan
2

2
H

gT

        (6.8) 

 
For the derivation of the non-dimensional parameters for roughness and permeability, one is 
referred to chapter five. 
 
The assumed relation describing the run-up on a rough permeable slope is used to fit the data from 
the Delft experiments. The statistical program SPSS is used to find values for the constants a, b and 
c. A non-linear regression is applied to the data, using the Levenberg-Marquard method. The result 
of the non-linear regression is: 
 

R
D

KR K Ru

n( )

. . .
50

3 47 93 10 2 13 10 0 37= ⋅ − ⋅ +− − ξ ξ     (6.9) 

 
This relation is only valid for the rough and porous slope of a rubble mound breakwater. 
 
The fact that the values of the constants l and m are very small is a result of the definition of the 
permeability parameter. The values of K that are used to derive the relation (6.9) are large while the 
values of Ru/Dn(50) are much smaller. 
 
Not all of the factors, KR, ξK and ξR, given in equation (6.9) may have equal influence on the non-
dimensional run-up. Their contribution to the calculation of the non-dimensional run-up is 
calculated and it is found that the influences are as follows: 
 
factor contribution to Ru/Dn(50) 
7.93*10-3KR ≈ 34% 
-2.13*10-4ξK ≈ 1% 
0.37ξR ≈ 65% 
 
Regarding the contributions, the relation can be reduced to: 
 

R
D

R Ku

n( )

. .
50

0 37 0 021= +ξb g        (6.10) 

 
This relation is valid within the following boundaries: 
 
11.7 < K < 104.3 
0.43 < R < 3.00 
1.07 < ξ < 2.99 
 
In appendix XV, the measured values of Ru/Dn(50) are presented together with the calculated values 
from equation (6.9) and equation (6.10). The formulae seem to give a significantly good description 
of the data points for the experiments as performed in Delft.  
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6.3  Non-breaking waves 
In this section a formula for run-up on a rough permeable slope is derived when ξ  ≥ 3. This value 
of the breaker parameter denoting the transition between breaking and non-breaking waves is only 
valid for regular waves. 
 
Again, the correlation between K and R is calculated using SPSS. Just like in the case of breaking 
waves, the correlation is significant. Also, the correlation between ξ and K and between ξ and R is 
calculated. Correlation is present again, but weaker than the correlation between K and R. Just like 
with breaking waves, the formula is assumed to be of the following form: 
 

R
D

lKR m K n Ru

n( )50

= + +ξ ξ        (6.11) 

 
The definitions for R, K and ξ are given by equations (6.4)-(6.8). 
When applying non-linear regression on the data of non-breaking waves, the formula for run-up on 
a rough permeable slope has the form: 
 

R
D

KR K Ru

n( )

. . .
50

3 44 57 10 4 1 10 0 27= ⋅ − ⋅ +− − ξ ξ      (6.12) 

 
 
 
factor contribution to Ru/Dn(50) 
4.57*10-3KR ≈ 17% 
-4.1*10-4ξK ≈ 5% 
0.27ξR ≈ 78% 
 
Due to the low contribution of the term containing ξK, this term is left out of equation (6.12). The 
equation therefore reduces to: 
 

R
D

R Ku

n( )

. ( . )
50

0 27 0 017= +ξ        (6.13) 

  
This relation is only valid within the following range: 
 
13.6 < K < 156.0 
0.41 < R < 3.46 
3.01 < ξ < 7.61 
 
Appendix XVI shows the measured data points versus the calculated data points, using equation 
(6.13). Equation (6.13) is a reasonably well fit for the data, but some scatter is present. Mainly data 
points lying beneath the line of unity may be the cause of the scatter. The origin of the data is not 
known, but these data might be the result of measuring errors. 
 
Compared with the relation for breaking waves (6.10), the total influence of R on the run-up has 
decreased, the same accounts for K. The decrease of the contribution of the roughness to the run-up 
can be explained. Since the waves do not break, these waves apparently do not “feel” the bottom 
when running up the slope. The roughness of this bottom therefore does not hinder the propagation 
of the waves and the influence of this roughness is small compared to other influences.  
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Another parameter that causes the influence of the roughness of the slope to reduce is the slope 
angle. The combination of the slope angle and the wave steepness, the breaker parameter, is a good 
measure for breaking and non-breaking waves. The non-breaking waves appear mostly when the 
slope is steep. The area where the waves are in contact with the slope is smaller in the case of non-
breaking waves then in the case of breaking waves. The waves simply will encounter less resistance 
due to roughness. 
 
A change in permeability has less effect on the run-up in the case of non-breaking waves than in the 
case of breaking waves. This can be explained like this. The breaking waves need the permeability 
of the slope to dissipate energy, energy that is used otherwise to run-up the slope. Non-breaking 
waves do not dissipate much of their energy inside the slope and therefore the permeability of the 
slope is of less importance. A change of permeability will have less effect on the run-up in the case 
of non-breaking waves than in the case of breaking waves.  
 
The total influence of ξ on the run-up has increased for non-breaking waves compared to breaking 
waves. The reason for this is clear; breaking waves occur when ξ < 3 and non-breaking waves 
occur when ξ ≥ 3. So the value of ξ is higher in the case of non-breaking waves than in the case of 
breaking waves. 
 

6.4  Application of the derived relations on the Iran data 
The data obtained in Iran can be used as a kind of justification of the relations that are derived 
above. Stress has to be put on “kind of” since the relations are derived for regular waves and the 
applied layer underneath the armour layer was impermeable. During the experiments performed in 
Iran, irregular waves were used and the whole structure was permeable. 
 
The data set collected in Iran consist of data where the waves are all non-breaking waves when the 
definition for breaking waves as given by Van der Meer is used. He states that when ξm > 1.5, the 
waves do not break. All data obtained in Iran lie in this area. The relation for breaking waves can 
not be justified using this data set. 
 
The results of the calculation of the relative run-up using equation (6.13) and the data obtained in 
Iran are shown in appendix XVII. The results are giving a good match. This might just be the case 
for the selected run-up and ξ. In figure XVII-1, use is made of the Ru2% and the ξm. In figure XVII-
2, instead of ξm, ξp is used. 
 
In general it can be said that the relation for non-breaking waves is a significantly good description 
for the data obtained in Iran. Especially the data points of the experiments performed with the scale 
of N = 66 are perfectly fit by the relation, when ξm is used. This probably is more a coincidence 
then reality. From both figures in appendix XVII it can be seen that the measured data points for the 
scale of N = 66 compared to the calculated data points are lower than the measured data points for 
the scale of N = 50 compared to the calculated data points. The reason for this might be that the 
permeability of the whole structure is higher in the case of N = 66 than in the case of N = 50. The 
waves here are non-breaking and as posed in section 3.3.6, the influence of the permeability of the 
structure will have influence on the run-up in the case of non-breaking waves. Since the influence 
of the structure’s permeability is not incorporated into equation (6.13), this might cause the 
difference in run-up between the two experimental series performed in Iran. 
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Chapter 7 Discussion 

7.1   Relations derived in chapter 6 
 
When a closer look is taken at the relation derived for the description of run-up on a rough, 
permeable slope, the following conclusions can be drawn: 
 
For tetrapod armour units, the relation describing the run-up of breaking waves can be re-written as: 
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From this relation it can be seen that run-up reduction can only be achieved by varying the diameter 
of the units. By increasing the diameter of the tetrapods, the run-up will be reduced. All other 
variables are fixed by the environmental circumstances at the proposed prototype site (H, T) or 
fixed by economic considerations (tanα).  
 
For rock the relation describing the run-up of breaking waves can be written as: 
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In the case of rock units, the diameter of the rock units itself is not the only variable that could lead 
to a change of the run-up height on a rough, permeable slope. When a rock mass is considered, the 
grading of the mass can be altered. A wide grading leads to a higher value for D85 and a lower value 
for D20 than a narrow grading when the same Dn50 is considered. So here some advantage could be 
achieved in the reduction of the run-up capacity of the waves by altering the grading. 
 
The influence of the grading can be divided into two: the influence on the roughness parameter and 
the influence on the permeability parameter. 
 
Firstly, the roughness parameter. The reduction of the run-up capacity is largest when the D85 is 
large relative to Dn50. This means that a wide grading would lead to a maximum reduction of the 
run-up capacity. 
 
The permeability parameter is dependent on the Dn50, which is supposed constant here, and is 
dependent on D20 and the number of units per square meter. When D20 is large, the maximum 
reduction of the run-up capacity is achieved. This means that the grading should be as narrow as 
possible. 
 
The demands towards the width of the grading is opposite for the roughness and the permeability, 
when maximum reduction of run-up capacity is concerned. Therefore the influences of the two 
phenomena on the run-up reduction are compared here.  
 
An increase of the width of the grading will increase the reduction due to the roughness. An 
increase of the width of the grading causes a decrease of the reduction due permeability. Only the 
decrease of the permeability is by the square root of the increase of the width. So the decrease due 
to the permeability will be eliminated by the increase due to the roughness. This is the case for the 
factor K*R. 
 
When the factor R*ξ is concerned, the increase of the reduction of the run-up capacity is linear with 
the increase of the width of the grading. 
 
So totally, the reduction of the run-up capacity will be maximal when the width of the grading is 
maximal. 
 
When a close look is taken at equations (7.1) and (7.2), these equations are quite complicated. One 
can pose the question whether these equations are easier to use than the common formulae 
describing run-up as: 
 
R
H

au b= ξ          (7.3) 

 
Not only are equations (7.1) and (7.2) very complicated, they also do not accord with the main 
relation found in section 5.2.2: Ru = Ω*(H). When equations (7.1) and (7.2) are put as Ru = X, the 
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result looks like: Ru = ΛH2. Also the non-dimensional parameter Ru/Dn(50) is a parameter that gives 
little feeling with the physical processes that take place when waves attack a slope. So in total, 
describing the run-up on a rough, permeable slope, using the Iribarren parameter, a roughness 
parameter and a permeability parameter does seem to result in a complicated relation which does 
not reproduce the physical processes properly. Therefore, the analysis of the data obtained from the 
Delft experiments will be performed once more. This time a more fundamental approach will be 
used. 
 

7.2  Re-analysis of the data from the Delft experiments 

7.2.1  non-dimensional parameters 
 
The basis for the derivation of the non-dimensional parameters is the set of relations derived in 
chapter five: 
 
• R = Ω*(H)         (7.4) 
• Ω :: T         (7.5) 
• Ω :: 1/cotα, so Ω :: tanα       (7.6) 
• Ω :: 1/D         (7.7) 
• Ω :: 1/n         (7.8) 
 
where  :: means, is a function of.. 
 D is a characteristic diameter 
 
These relations are used to perform a dimensional analysis. A set of non-dimensional parameters is 
derived using the variables: Ru, H, T, tanα, D and n. The gravitational acceleration is not varied in 
the experiments, but it is used in the derivation of the non-dimensional parameters since it is an 
important variable when waves are concerned. 
 
In order to derive non-dimensional parameters, a dimensional analysis is made. Use is made of the 
Buckingham Pi theorem: 
 
In a dimensionally homogeneous equation involving “n” variables, the number of dimensionless 
products that can be formed from “n” variables is “n-r” where “r” is the number of fundamental 
dimensions encompassed by the variables. 
 
This theorem is called Buckingham Pi because Buckingham used the symbol Π to represent the 
non-dimensional products. 
 
Setting up a matrix of variables and their fundamental dimensions eases determining the number of 
fundamental dimensions in a set of variables. Table 5-1 shows the matrix of variables in the case of 
run-up on a rough, permeable slope. Note that the porosity, n, and tanα are not included here, since 
these variables are already dimensionless. The three fundamental dimensions are length (L), time 
(T) and mass (M). 
 
 Ru H T D g 
L 1 1 0 1 1 
T 0 0 1 0 -2 
M 0 0 0 0 0 

table 5-1, Matrix of fundamental dimensions 
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Because the unit of mass is not included in any of the variables, the number of fundamental 
dimensions is r = 2 and the number of non-dimensional products that can be formed from the 
variables is 5-2 = 3. 
 
Each of the non-dimensional products will have the form given by the following expression: 
 
Π = R H T D gu

k k k k k1 2 3 4 5         (7.9) 
 
where Π is the notation for a non-dimensional product and the kn’s are exponents to be determined. 
 
When the fundamental units for each of the variables in the above equation are substituted, the 
equation for Π is given by: 
 

Π = −L L T D LTk k k k k
1 2 3 4 52       (7.10) 

 
which can be rearranged to give: 
 

Π = + + + −L Tk k k k k k1 2 4 5 3 52
       (7.11) 

 
In order for the product, Π, to be non-dimensional, it is necessary for the exponents of  [L] and [T] 
to be zero, which produces the independent set of two equations: 
 
(k1+k2+k4+k5) = 0        (7.12) 
           (k3-2k5) = 0        (7.13) 
 
Any solution of the above set of equations will give values for the exponents, which can be 
substituted into the Π-equation to give a viable non-dimensional product. Because the above set of 
equations consists of 2 equations of 5 unknowns, the set is indeterminate and an infinite number of 
solutions exist. So for this case, it is necessary to specify three of the exponents, then solve for the 
remaining two values.  
 
Since an infinite number of solutions exist, it is necessary to use the knowledge of the physical 
reality when the non-dimensional products are derived. Therefor, the relations between run-
up and the different variables as given by equations (7.4)-(7.8) are used. 
 
Furthermore the dependent variable, here the run-up, has to appear in only one non-dimensional 
product. The non-dimensional products will represent the physical phenomena best when every 
variable occurs only once in the non-dimensional products. 
 
From equations (7.4)-(7.8) it can be seen that run-up (Ru) is linear to the wave height. Since the 
relative run-up (Ru/H) is widely used when run-up is described, the exponents will be chosen in 
such a way that the relative run-up is the result: 
  
k1 = 1, k2 = -1, k3 = 0, this leads to: k5 = 0 and k4 = 0 
 

so, Π1 =
R
H

u          (7.14) 

 
The second non-dimensional product should not contain Ru and H and should contain T. This gives: 
k1 = 0, k2 = 0, k3 = 1, this leads to: k5 = ½ and k4 = - ½. 
 



Chapter 7 

  51

so, Π2 =
T g

D
         (7.15) 

 
One more non-dimensional product could be derived, but all dimensional variables have been used 
to derive non-dimensional products and the relations derived in section 5.2.2 are met. So in total, 
the expression describing the run-up on a rough, permeable slope should be of the form: 
 

R
H

f
T g

D
nu =

F
HG

I
KJ, tan ,α        (7.16) 

 
The relation (7.16) still has two variables (tan α and n) that are not incorporated into one of the two 
non-dimensional products, Π1 and Π2. Since Ω :: tanα, as was found in section 5.2.2, the run-up is 
put against Π2. While doing so, n is kept constant and tanα is varied. In appendix XVIII, these 
figures are given. From these figures it can be seen that tanα has a linear influence on the run-up, 
so it can be incorporated easily into a parameter that describes the run-up. The parameter describing 
the run-up on a rough, permeable slope now looks like: 
 

Π2∗ =tan
tan

α
αT g

D
       (7.17) 

 
In the figures of appendix XVIII it can be seen that when tanα = 0.33 and 0.68, two lines describe 
the run-up. These lines are the result of run-up due to breaking waves and run-up due to non-
breaking waves. 
 
So equation (7.16) can be rewritten as: 
 

R
H

f
T g
D

nu =
F
HG

I
KJ

tan
,

α
       (7.18) 

 
Still the porosity is not taken into account when the non-dimensional parameters are concerned. In 
section 5.2.5 it was found that when porosity is concerned, this could be best incorporated in into 
equation (7.18) as follows: 
 

R
H

f
T g

D N c
u

n a

=
F
HGG

I
KJJ

tanα

b g   for tetrapods     (7.19) 

R
H

f
T g

D N D
u

n a

=
F
HGG

I
KJJ

tanα

50 20b g  for rock      (7.20) 

 
For the choices made in section 5.2.5, dealing with porosity, again reasoning is given now. 
Permeability can be described according to the Manual on the Use of Rock (1995) like:  
 

k n gD
i

= 2
5

         (7.21) 
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So porosity should be incorporated to the power of 5. Since no relation like this was found in 
section 5.2.2, it seems that this overrates the influence of n. In Appendix XIX, the porosity is put 
into equation (7.18) to the power 5 and to unity. The scatter reduces significantly when n to unity is 
used. So therefore n is used in equation (7.18) to unity. Furthermore, in section 5.2.5, the choice of 
using NaD2

n(50) instead of using n is discussed. In Appendix XX, the figures are given where in one 
occasion n is used and in the other, NaD2

n(50). From these figures it can be concluded that the usage 
of  NaD2

n(50) results in less scatter. 
 
When the characteristic diameter is regarded, for rock, the D20 and for tetrapods c is used. In both 
cases, these values have a relationship with respectively Dn50 and Dn. Since a small grading was 
used in all experiments performed with rock units, the ratio Dn50/D20 ≈ 1.3. For tetrapods, the ratio 
Dn/c = 1.36. This since the Dn is derived from the height of the unit and the size of one leg of a 
tetrapod always has a fixed relation with the height. So the values of D20 and c can be rewritten as 
β*Dn50 and β*Dn. This results in the following relations for the relative run-up: 
 

R
H

f
T g

D N D
u

n a n

=
F
HGG

I
KJJ

tanα
βb g   for tetrapods    (7.22) 

 

R
H

f
T g

D N D
u

n a n

=
F
HGG

I
KJJ

tanα
β50 50b g   for rock     (7.23) 

 
where β  is fixed at 0.735 for tetrapods 
  depends on W85/W15 for rock and is 0.77 for these experiments 
 
 
So one can conclude that the unknown factor Ω in equation (7.4) can be written as: 
 

Ω =
tanα

β
T g

D N Dn a nb g    for tetrapods      (7.24) 

 

Ω =
tanα

β
T g

D N Dn a n50 50b g   for rock      (7.25) 

 
The parameter Ω has some resemblance with the parameter ξ, which is used widely to describe run-
up on a slope. The two parameters are compared below: 
 

ξ
α
π

=
tan T g

H2
         (7.26) 

 
 

Ω =
tan

( ) ( )

α

β

T g

D N Dn a n50 50c h
       (7.27) 
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The two parameters do have a resemblance, only in the case of Ω, a term describing the 
permeability of the armour layer is incorporated and H is omitted. When the data available from the 
Delft experiments are displayed as Ru = H*ξ and as Ru = H*Ω, in appendix XXI, it can be 
concluded that the data are described better with Ω than when ξ is used. 
 

7.2.2  Discussion on reliability of measurements 
All the data discussed above are represented as Ru = Ω*(H). This is done since some scatter is 
present in the data. This scatter is the result accuracy of the measurements of the run-up. Since the 
run-up is measured in cm and the wave height is measured in mm, in a non-dimensional product, 
Ru/H inaccuracy is introduced.  
 
This can be best illustrated by figures XXII-1 and XXII-2 in appendix XXII. For one unique 
combination of slope angle, wave period, diameter and porosity, one unique value of Ru/H should 
be measured, but this is not the case. Important in this figure is whether no unique value of Ru/H is 
present due to scatter or due to a trend that is not incorporated into the parameter Ω. After a 
research on these data points, no trend was found in the divergent data points. So these data points 
are likely to be scatter. The data points that were checked, are encircled in figures XXII-1 and 
XXII-2. 
 
The scatter is mainly caused by the method of measuring run-up. In these experiments, the run-up is 
estimated from video images, the accuracy of these estimations is 1 cm. The inaccuracy of this 
method is around 15%. 
 
Secondly in figure XXII-3 in appendix XXII, it can be noted that the smallest units, rock with a 
diameter of Dn50 = 0.027 m and tetrapods with a diameter of Dn = 0.036 m, the relative run-up 
decreases with increasing Ω. This accounts for non-breaking waves. While D20, Dn50 and the 
porosity for the rock units are constant, only the change of slope angle and wave period influences 
the value of the relative run-up.  
 
The reason for this may lay in the fact that the small stones might react more like an impermeable 
slope than like a permeable layer that can drain water. The influence of the impermeable 
underlayer, the wooden board is large. A comparison can be made with figure XXIII-2 in appendix 
XXIII. The data of Ahrens (1981) for smooth slopes show the same trend as the smallest rock units. 
So for the small units, in the case of non-breaking waves another phenomenon than described by 
equation (7.20) plays a role. So in the case of non-breaking waves, the results of the experiments 
for the small rock units should not be used to derive a relation describing the run-up.  
 

7.2.3  Derivation of the relations describing run-up 
In this section relations are derived describing the run-up on a rough, permeable slope, for breaking 
and non-breaking waves. The data set from the Delft experiments is reduced by omitting the data 
points that were found to be scatter in section 7.2.2. Since these points are due to measurement 
faults, they will influence the derivation of the relations in a negative way. 
 
Relation for breaking waves 
 
The transition between breaking and non-breaking waves in the case of regular waves lies around ξ 
= 2.5  to ξ = 3. This value is found from figure IX-1 where a transition can be seen around the 
value of ξ = 3. The breaking waves occur when ξ < 3 and non-breaking waves occur when ξ ≥ 3. 
 
In section 7.2.1 it was found that the following relation exists: 
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R
H

fu = Ωb g , where:        (7.28) 

 

Ω =
tan

( ) ( )

α

β

T g

D N Dn a n50 50c h
 

 
with β  is 0.735 for tetrapods and 0.77 for rock 
 
For breaking waves, Ru/H is plotted against Ω  and given in figure XXIV-1, appendix XXIV. 
Although the scatter as discussed in section 7.3 is present, a trend can be found. A line that has the 
form 
y axb=  can be drawn through the data points. 

 
When a non-linear regression is performed on the data, reduced with the scatter (see figure XXIV-
2), assuming the above given relation, the result is: 
 
R
H

u = 089 0 22. .Ωb g         (7.29) 

  
which is valid within the following boundaries: 
 
19.49 ≤ Θ ≤ 36.80 
0.26 ≤ tanα ≤ 0.68 
with: 

Θtet
n a n

T g
D N D

=
β

   for tetrapods 

 

Θr
n a n

T g
D N D

=
50 50β

  for rock 

 
Relation for non-breaking waves 
 
In this section a formula for run-up on a rough permeable slope is derived when ξ ≥ 3. This value of 
the breaker parameter denoting the transition between breaking and non-breaking waves is only 
valid for regular waves. 
 
Again the starting point is the relation: 
 
R
H

fu = Ωb g          (7.30) 

 
When this relation is plotted, the result (figure XXIV-1, appendix XXIV) shows that two lines 
might represent the data for non-breaking waves: y c=  and y bx= . 
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When a linear regression is performed on these data, assuming relation (7.30) being of the form 
y c=  and of the form y bx= , the best representation of the data, reduced with the scatter, was 

found to be: 
 
R
H

u = 1043.          (7.31) 

Equation (7.31) is valid within the boundaries: 
 
19.42 ≤ Θ ≤ 36.80 
0.33 ≤ tanα ≤ 0.68 
0.036 m ≤ Dn(50) ≤ 0.065 m 
 

Θtet
n a n

T g
D N D

=
β

   for tetrapods 

 

Θr
n a n

T g
D N D

=
50 50β

  for rock 

 
 
The above derived relations (7.29) and (7.31) show a significant resemblance with the relations 
derived by van der Meer and Stam (1992), see figure 3-2. The difference between the relations 
derived by van der Meer and Stam and equations (7.29) and (7.31) is the non-dimensional 
parameter that is used to describe Ru/H. Equations (7.29) and (7.31) make use of a non-dimensional 
parameter that incorporates the permeability of the armour layer of a slope, whereas the relations 
derived by van der Meer and Stam make use of the breaker parameter, ξ. 
 
The relations (7.29) and (7.31) also seem to give a better description of the physical processes as 
they occur when waves attack a rough, permeable slope, than the relations derived in chapter 6, 
equations (6.10) and (6.13).  
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Chapter 8  Conclusions and recommendations 
In this chapter the conclusions and recommendations, which can be drawn from this study on the 
run-up on a rough, permeable slope, are given. 
 

8.1  Conclusions 
• During the investigation of the data of the experiments performed in Delft, it became clear that 

run-up can be described by the following parameters: 
 

- Wave height    H 
- Wave period    T 
- Slope angle    cotα 
- Nominal diameter of the armour unit Dn(50)  
- porosity of the armour layer  n 

 
• In order to be able to compare various structures, non-dimensional parameters have to be 

formed. Two different approaches are followed to analyse the data obtained from the Delft 
experiments. The first makes use of the generally know non-dimensional parameter ξ and of 
two parameter describing roughness and permeability. The non-dimensional parameters are a 
combination of typical properties of the slope and typical properties of the waves. When this 
approach is followed, for roughness and permeability, the following parameters are found: 

 

– R H
Htet

= , for tetrapods and R H
D

=
85

, for rock  

 

– K
TH g

D N cn a

=
2 b g , for tetrapods and K

TH g
D N Dn a

=
50

2
20b g  , for rock 

 
 
• The usual way of presenting the run-up, as a non-dimensional parameter, (Ru/H) is for above 

followed approach not the best way of presenting the influence of the roughness and the 
permeability. Instead of the wave height, the nominal diameter of the armour units is used to 
make the run-up non-dimensional. The non-dimensional run-up (Ru/Dn(50)) gives a better insight 
into the influence of roughness and permeability on this run-up. So Ru/Dn(50) = f (R, K, ξ).  

 
• The newly found relations for run-up on a rough permeable slope are divided into a relation for 

breaking waves and a relation for non-breaking waves. 
 

R
D

R Ku

n( )

. .
50

0 37 0 021= +ξb g   breaking waves   (6.10) 

 
The range for which this relation is valid is: 
11.7 < K < 104.3; 0.43 < R < 3.00; 1.07 < ξ < 2.99, regular waves 
 
for non-breaking waves, the run-up can be expressed as: 
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R
D

R Ku

n( )

. ( . )
50

0 27 0 017= +ξ   non-breaking waves  (6.13) 

 
This relation is only valid within the following boundaries: 
13.6 < K < 156.0; 0.41 < R < 3.46; 3.01 < ξ < 7.61, regular waves 
 

• The non-dimensional parameters and the relations that are found by examining the data using 
the Iribarren parameter and parameters describing roughness and permeability are complicated 
and do not represent the physical processes in a satisfactory way. Therefore in the second 
approach, ξ is not used and non-dimensional parameters are derived by a dimensional analysis, 
combined with knowledge on the physical processes that take place when waves attack a 
rough, permeable slope. Using the non-dimensional parameters, relations are derived 
describing the run-up of breaking and non-breaking waves on a rough, permeable slope. 

 
• The non-dimensional parameters describing run-up on a rough permeable slope are: 
 

– 
R
H

u  

– Ω =
tan

( ) ( )

α

β

T g

D N Dn a n50 50c h
,  

 
with β is fixed at 0.735 for tetrapods and is dependent on W85/W15 for rock and is 0.77 for 
these experiments 

 
• The relations describing the run-up on a rough permeable slope using Ru/H and Ω: 

– 
R
H

u = 089 0 22. .Ωb g  for breaking waves, with the following boundaries: 

19.49 ≤ Θ ≤ 36.80 
0.26 ≤ tanα ≤ 0.68 

where:  Θtet
n a n

T g
D N D

=
β

   for tetrapods 

 

Θr
n a n

T g
D N D

=
50 50β

  for rock 

 

– 
R
H

u = 1043.   for non-breaking waves, valid within the following boundaries: 

19.42 ≤ Θ ≤ 36.80 
0.33 ≤ tanα ≤ 0.68 
0.036 m ≤ Dn(50) ≤ 0.065 m 

    with Θ defined as above 
 
• The porosity was not used to take the amount of hollow spaces into account. Instead of the 

porosity, the total number of armour units in the area considered, Na, is used. By using this 
parameter, the uncertainties on wall-effects and the definition of the surface of the armour layer 
are avoided. 
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• The relations found for run-up are found by examining the data of experiments using a non-
permeable structure. Still the relation for breaking waves is likely to give a good prediction for 
the run-up on a permeable structure with rough surface since the permeability of a structure has 
little influence on the run-up of breaking waves. 

 
• The fact that the structure is impermeable seems to have influence on the run-up of non-

breaking waves on a layer with small armour units. The layer behaves more like an 
impermeable smooth slope than as a rough, permeable slope. From this it can be deducted that 
the thickness of the layer might also have an influence on the run-up. This was not tested in 
these experiments. 

 
• The relations found in this thesis are derived for a rough and permeable slope. Due to the usage 

of Dn and Dn50 to form non-dimensional parameters, these relations cannot be used to describe 
run-up on a rough impermeable slope. Also structures with an armour layer consisting of rock 
units penetrated with asphalt lie not in the range of the derived relations. 

 
• The data obtained from the Delft experiments show a large amount of scatter. This is due to the 

method of measuring the wave run-up. Visual estimation of the run-up results in an inaccuracy 
of around 15%. 

 
• Data obtained from model experiments on a breakwater covered with tetrapods in Iran were 

applied to the relation for non-breaking waves (6.13). The measured data showed correlation 
with the calculated data but the calculated data were higher than the measured data. Reason for 
this can be threefold: 

 
– The structure used in Iran was permeable whereas the structure used in Delft was not. 
– The structure used in Iran was not designed taking viscous scale effect inside the core into 

account 
– The waves applied in Delft were regular whilst the waves applied in Iran were irregular. 

This gives cause for uncertainty to the wave height and run-up level to be used. 
 

8.2  Recommendations 
• The relations describing the run-up on a rough, permeable slope are derived for very specific 

circumstances. Especially the fact that the structure as a whole was impermeable introduces 
laboratory effects that should be avoided if experiments in this field are to be performed again. 

 
• The permeability of the structure will have influence on the run-up of non-breaking waves. 

Especially the permeability of the core will play a role in this since the permeability of the core 
is the smallest of the structure. A good definition for the permeability of the structure has to be 
developed and using this permeability, tests can be performed that describe the influence of 
this permeability on the run-up on a structure. 

 
• The method of measuring the run-up on a slope needs to be optimised. Visual estimation does 

not seem to be the best way of measuring run-up. The method used in Iran, placing wave 
height meters along the slope seems to be a better method. Still, a lot of attention should be 
paid to the accuracy of the measurements and the side effects that are introduced by placing 
wave height meters along a slope. 

 
• The influence of the layer thickness could be subject of further investigation. In the Delft 

experiments the layer thickness, as function of the diameter of the armour units, is not varied. 
Since the run-up on a rough permeable slope is reduced by the energy dissipation inside the 
armour layer, the thickness might have a significant influence on the run-up. 
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Appendix I 

 

Appendix I Reduction factor γf 
 
 

Structure 
γf 

Smooth, impermeable (including asphalt, smooth closely pitched concrete blocks) 1.0 
Stone blocks, pitched or mortared and open-stone asphalt 0.95 
Grass (length 0.03 m) 0.9-1.0 
Concrete blocks 0.9 
Stone blocks, granite sets 0.85-0.9 
Turf 0.85-0.9 
Rough concrete 0.85 
One layer of stone rubble on an impermeable basis (loading conditions: Hs/D = 1.5 to 3) 0.55-0.60 
Stones set in cement 0.7-0.8 
Gravel, gabion mattresses 0.7 
Dumped round stones 0.6-0.65 
Rock/riprap (total layer thickness, ta > 2Dn50 and loading conditions: Hs/D = 1.5 to 3) 0.5-0.55 

table I-1, Roughness reduction factors, γf 
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Appendix II Variation of the material used in Delft 
Large Stone, experiments 400-series 
 
ρ = 3000 kg/m3 
total weight: 146.4 kg 
 
total amount: 178 pieces 
amount/m2: 153.4 
 
Dn50  = 0.065 m 
D85  = 0.074 m 
D20 = 0.05 m 
D15 = 0.048 m 
 
L/D average = 2.15 
 
 
 
Middle stone, experiments 500-serie 
 
ρ = 2680 kg/m3 
 
total weight: 97.4 kg 
 
total amount: 389 pieces 
amount/m2: 335.3 
 
Dn50 = 0.045 m 
D85 = 0.048 m 
D20 = 0.035 m 
D15 = 0.030 m 
 
L/D average = 2.12 
 
 
Small stone, experiments 600-series 
 
ρ = 2600 kg/m3 
 
total amount: 1242 pieces 
amount/m2: 1070.7 
 
total weight: 65.5 kg 
 
Dn50 = 0.027 m 
D85 = 0.03 m 
D20 = 0.022 m 
D15 = 0.021 m 
 
L/D average = 2.13 
 
 
 
Large tetrapods, experiments 200-series 
 
h = 0.079 m 
Dn = 0.05 m 
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c = (0.477*h) = 0.038 m 
 
amount: 341 
amount/m2: 294 
 
 
Middle tetrapods, experiments 100-series 
 
h = 0.068 m 
Dn = 0.044 m 
c = (0.477*h) = 0.032 m 
 
amount: 429 
amount/m2: 369.8 
 
Small tetrapods, experiments 300-series 
 
h = 0.055 m 
Dn  = 0.036 m 
c = (0.477*h) = 0.026 m 
 
amount: 597 
surface: 0.77*1.24= 0.955 m2 
amount/m2: 625.1 
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Appendix III Drawing of case used in Delft 
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figure III-1, Drawings of case used in Delft 
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Appendix IV Data sets of the Delft experiments 

Experiments performed with tetrapods, 100-series through 300-series 
 
100-series 
 

Experiment # H (m) T (s) Dn (m) cotα Run-up (m)
100 0.05 1.54 0.044 1.5 0.049923 
101 0.07 1.54 0.044 1.5 0.074885 
102 0.101 1.54 0.044 1.5 0.099846 
103 0.131 1.54 0.044 1.5 0.127581 
104 0.16 1.54 0.044 1.5 0.160863 
105 0.047 1.54 0.044 1.5 0.049923 
106 0.067 1.54 0.044 1.5 0.072111 
107 0.099 1.54 0.044 1.5 0.099846 
108 0.129 1.54 0.044 1.5 0.122034 
109 0.162 1.54 0.044 1.5 0.160863 
110 0.036 1.12 0.044 1.5 0.038829 
111 0.051 1.12 0.044 1.5 0.05547 
112 0.065 1.12 0.044 1.5 0.072111 
113 0.08 1.12 0.044 1.5 0.077658 
114 0.093 1.12 0.044 1.5 0.094299 
115 0.103 1.12 0.044 1.5 0.11094 
116 0.033 1.12 0.044 1.5 0.033282 
117 0.051 1.12 0.044 1.5 0.05547 
118 0.081 1.12 0.044 1.5 0.072111 
119 0.069 1.12 0.044 1.5 0.066564 
120 0.093 1.12 0.044 1.5 0.094299 
121 0.103 1.12 0.044 1.5 0.116487 
150 0.032 1.54 0.044 3 0.025298 
151 0.053 1.54 0.044 3 0.04111 
152 0.078 1.54 0.044 3 0.063246 
153 0.126 1.54 0.044 3 0.117004 
154 0.103 1.54 0.044 3 0.094868 
155 0.031 1.54 0.044 3 0.018974 
156 0.055 1.54 0.044 3 0.047434 
157 0.079 1.54 0.044 3 0.066408 
158 0.102 1.54 0.044 3 0.094868 
159 0.129 1.54 0.044 3 0.113842 
166 0.039 1.12 0.044 3 0.031623 
167 0.054 1.12 0.044 3 0.04111 
168 0.069 1.12 0.044 3 0.053759 
169 0.091 1.12 0.044 3 0.066408 
170 0.098 1.12 0.044 3 0.082219 
171 0.11 1.12 0.044 3 0.091706 
172 0.041 1.12 0.044 3 0.037947 
173 0.055 1.12 0.044 3 0.044272 
174 0.07 1.12 0.044 3 0.056921 
175 0.084 1.12 0.044 3 0.06957 
176 0.099 1.12 0.044 3 0.082219 
177 0.109 1.12 0.044 3 0.094868 
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Experiment # H (m) T (s) Dn (m) cotα Run-up (m)
180 0.082 1.12 0.044 4 0.050932 
181 0.097 1.12 0.044 4 0.058209 
182 0.108 1.12 0.044 4 0.065485 
183 0.083 1.12 0.044 4 0.053358 
184 0.096 1.12 0.044 4 0.063059 

 
 
200-series 
 
Experiment # H (m) T (s) Dn (m) cotα Run-up (m) 

200 0.04 1.54 0.05 1.5 0.022188 
201 0.063 1.54 0.05 1.5 0.05547 
202 0.093 1.54 0.05 1.5 0.077658 
203 0.123 1.54 0.05 1.5 0.11094 
204 0.147 1.54 0.05 1.5 0.149769 
205 0.04 1.54 0.05 1.5 0.033282 
206 0.063 1.54 0.05 1.5 0.05547 
207 0.094 1.54 0.05 1.5 0.138675 
208 0.123 1.54 0.05 1.5 0.116487 
216 0.072 1.12 0.05 1.5 0.016641 
217 0.04 1.12 0.05 1.5 0.033282 
218 0.057 1.12 0.05 1.5 0.05547 
219 0.091 1.12 0.05 1.5 0.094299 
220 0.108 1.12 0.05 1.5 0.105393 
221 0.121 1.12 0.05 1.5 0.116487 
222 0.037 1.12 0.05 1.5 0.044376 
223 0.055 1.12 0.05 1.5 0.044376 
224 0.073 1.12 0.05 1.5 0.061017 
225 0.088 1.12 0.05 1.5 0.088752 
226 0.106 1.12 0.05 1.5 0.094299 
227 0.121 1.12 0.05 1.5 0.105393 
250 0.032 1.54 0.05 3 0.037947 
251 0.056 1.54 0.05 3 0.050596 
252 0.077 1.54 0.05 3 0.063246 
253 0.102 1.54 0.05 3 0.094868 
254 0.033 1.54 0.05 3 0.018974 
255 0.055 1.54 0.05 3 0.047434 
256 0.081 1.54 0.05 3 0.063246 
257 0.102 1.54 0.05 3 0.072732 
266 0.069 1.12 0.05 3 0.053759 
267 0.055 1.12 0.05 3 0.047434 
268 0.054 1.12 0.05 3 0.047434 
269 0.034 1.12 0.05 3 0.02846 
270 0.084 1.12 0.05 3 0.066408 
271 0.097 1.12 0.05 3 0.075895 
272 0.109 1.12 0.05 3 0.091706 
273 0.039 1.12 0.05 3 0.034785 
274 0.066 1.12 0.05 3 0.050596 
275 0.088 1.12 0.05 3 0.06957 
276 0.099 1.12 0.05 3 0.075895 
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Experiment # H (m) T (s) Dn (m) cotα Run-up (m) 
277 0.108 1.12 0.05 3 0.091706 
278 0.081 1.12 0.05 4 0.03153 
279 0.079 1.12 0.05 4 0.041231 
281 0.095 1.12 0.05 4 0.082462 
282 0.107 1.12 0.05 4 0.089738 
283 0.107 1.12 0.05 4 0.097014 

 
 
300-series 
 
Experiment # H (m) T (s) Dn (m) cotα Run-up (m)

300 0.042 1.54 0.036 1.5 0.044 
301 0.076 1.54 0.036 1.5 0.078 
302 0.102 1.54 0.036 1.5 0.100 
303 0.13 1.54 0.036 1.5 0.133 
304 0.165 1.54 0.036 1.5 0.178 
306 0.045 1.54 0.036 1.5 0.039 
307 0.072 1.54 0.036 1.5 0.067 
308 0.1 1.54 0.036 1.5 0.100 
309 0.13 1.54 0.036 1.5 0.128 
310 0.169 1.54 0.036 1.5 0.166 
311 0.04 1.12 0.036 1.5 0.044 
312 0.05 1.12 0.036 1.5 0.055 
313 0.07 1.12 0.036 1.5 0.083 
314 0.109 1.12 0.036 1.5 0.111 
315 0.085 1.12 0.036 1.5 0.094 
316 0.114 1.12 0.036 1.5 0.128 
317 0.047 1.12 0.036 1.5 0.055 
318 0.053 1.12 0.036 1.5 0.067 
319 0.073 1.12 0.036 1.5 0.083 
320 0.088 1.12 0.036 1.5 0.116 
321 0.101 1.12 0.036 1.5 0.128 
322 0.115 1.12 0.036 1.5 0.139 
350 0.044 1.54 0.036 3 0.022 
351 0.06 1.54 0.036 3 0.041 
352 0.071 1.54 0.036 3 0.047 
353 0.087 1.54 0.036 3 0.063 
354 0.102 1.54 0.036 3 0.076 
355 0.112 1.54 0.036 3 0.092 
356 0.045 1.54 0.036 3 0.022 
357 0.059 1.54 0.036 3 0.038 
358 0.071 1.54 0.036 3 0.054 
359 0.088 1.54 0.036 3 0.063 
360 0.104 1.54 0.036 3 0.079 
361 0.113 1.54 0.036 3 0.089 
362 0.051 1.12 0.036 3 0.041 
363 0.034 1.12 0.036 3 0.019 
364 0.076 1.12 0.036 3 0.066 
365 0.097 1.12 0.036 3 0.092 
366 0.121 1.12 0.036 3 0.123 
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Experiment # H (m) T (s) Dn (m) cotα Run-up (m)
367 0.03 1.12 0.036 3 0.013 
368 0.051 1.12 0.036 3 0.041 
369 0.078 1.12 0.036 3 0.073 
370 0.098 1.12 0.036 3 0.101 
371 0.122 1.12 0.036 3 0.130 

 
 
Experiments performed with rock units, 400-series through 600-series 
 
400-series 
 
Experiment # H (m) T (s) Dn50 (m) cotα Run-up (m) 

400 0.057 1.54 0.065 1.5 0.044 
401 0.033 1.54 0.065 1.5 0.033 
402 0.084 1.54 0.065 1.5 0.089 
403 0.105 1.54 0.065 1.5 0.116 
404 0.126 1.54 0.065 1.5 0.139 
405 0.033 1.54 0.065 1.5 0.033 
406 0.059 1.54 0.065 1.5 0.061 
407 0.083 1.54 0.065 1.5 0.094 
408 0.108 1.54 0.065 1.5 0.128 
409 0.128 1.54 0.065 1.5 0.150 
410 0.047 1.12 0.065 1.5 0.039 
411 0.066 1.12 0.065 1.5 0.044 
412 0.088 1.12 0.065 1.5 0.078 
413 0.103 1.12 0.065 1.5 0.100 
414 0.121 1.12 0.065 1.5 0.116 
415 0.134 1.12 0.065 1.5 0.128 
416 0.072 1.12 0.065 1.5 0.050 
417 0.047 1.12 0.065 1.5 0.039 
418 0.086 1.12 0.065 1.5 0.072 
419 0.104 1.12 0.065 1.5 0.100 
420 0.119 1.12 0.065 1.5 0.111 
421 0.135 1.12 0.065 1.5 0.122 
450 0.036 1.54 0.065 3 0.028 
451 0.054 1.54 0.065 3 0.044 
452 0.078 1.54 0.065 3 0.063 
453 0.102 1.54 0.065 3 0.076 
454 0.123 1.54 0.065 3 0.098 
455 0.034 1.54 0.065 3 0.009 
456 0.055 1.54 0.065 3 0.038 
457 0.079 1.54 0.065 3 0.066 
458 0.104 1.54 0.065 3 0.079 
459 0.126 1.54 0.065 3 0.104 
460 0.041 1.12 0.065 3 0.038 
461 0.055 1.12 0.065 3 0.044 
462 0.086 1.12 0.065 3 0.057 
463 0.07 1.12 0.065 3 0.032 
464 0.11 1.12 0.065 3 0.076 
465 0.099 1.12 0.065 3 0.063 
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Experiment # H (m) T (s) Dn50 (m) cotα Run-up (m) 
466 0.039 1.12 0.065 3 0.022 
467 0.053 1.12 0.065 3 0.035 
468 0.068 1.12 0.065 3 0.047 
469 0.087 1.12 0.065 3 0.066 
470 0.097 1.12 0.065 3 0.076 
471 0.111 1.12 0.065 3 0.082 
480 0.085 1.12 0.065 4 0.046 
481 0.087 1.12 0.065 4 0.051 
482 0.1 1.12 0.065 4 0.058 
483 0.099 1.12 0.065 4 0.056 
484 0.113 1.12 0.065 4 0.065 
485 0.115 1.12 0.065 4 0.061 

 
 
500-series 
 
Experiment # H (m) T (s) Dn50 (m) cotα Run-up (m)

500 0.045 1.54 0.045 1.5 0.033 
501 0.073 1.54 0.045 1.5 0.055 
502 0.101 1.54 0.045 1.5 0.094 
503 0.131 1.54 0.045 1.5 0.122 
504 0.166 1.54 0.045 1.5 0.155 
505 0.047 1.54 0.045 1.5 0.033 
506 0.073 1.54 0.045 1.5 0.067 
507 0.102 1.54 0.045 1.5 0.100 
508 0.133 1.54 0.045 1.5 0.128 
509 0.163 1.54 0.045 1.5 0.161 
510 0.035 1.12 0.045 1.5 0.028 
511 0.078 1.12 0.045 1.5 0.039 
512 0.05 1.12 0.045 1.5 0.055 
513 0.065 1.12 0.045 1.5 0.078 
514 0.09 1.12 0.045 1.5 0.111 
515 0.101 1.12 0.045 1.5 0.128 
516 0.053 1.12 0.045 1.5 0.055 
517 0.029 1.12 0.045 1.5 0.033 
518 0.064 1.12 0.045 1.5 0.078 
519 0.078 1.12 0.045 1.5 0.089 
520 0.089 1.12 0.045 1.5 0.116 
521 0.1 1.12 0.045 1.5 0.128 
550 0.029 1.54 0.045 3 0.032 
551 0.05 1.54 0.045 3 0.051 
552 0.071 1.54 0.045 3 0.073 
553 0.096 1.54 0.045 3 0.095 
554 0.122 1.54 0.045 3 0.130 
555 0.03 1.54 0.045 3 0.028 
556 0.047 1.54 0.045 3 0.047 
557 0.074 1.54 0.045 3 0.085 
558 0.094 1.54 0.045 3 0.104 
559 0.119 1.54 0.045 3 0.136 
560 0.04 1.12 0.045 3 0.032 
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Experiment # H (m) T (s) Dn50 (m) cotα Run-up (m)
561 0.057 1.12 0.045 3 0.047 
562 0.07 1.12 0.045 3 0.057 
563 0.085 1.12 0.045 3 0.076 
564 0.101 1.12 0.045 3 0.092 
565 0.111 1.12 0.045 3 0.101 
566 0.042 1.12 0.045 3 0.035 
567 0.054 1.12 0.045 3 0.044 
568 0.07 1.12 0.045 3 0.054 
569 0.088 1.12 0.045 3 0.070 
570 0.099 1.12 0.045 3 0.082 
571 0.112 1.12 0.045 3 0.101 
580 0.081 1.12 0.045 4 0.056 
581 0.082 1.12 0.045 4 0.061 
582 0.093 1.12 0.045 4 0.073 
583 0.095 1.12 0.045 4 0.073 
584 0.105 1.12 0.045 4 0.082 
585 0.104 1.12 0.045 4 0.082 

 
 
600-series 
 

Experiment # H (m) T (m) Dn50 (m) cotα Run-up (m)
600 0.03 1.54 0.027 1.5 0.028 
601 0.046 1.54 0.027 1.5 0.050 
602 0.064 1.54 0.027 1.5 0.061 
603 0.077 1.54 0.027 1.5 0.072 
604 0.037 1.54 0.027 1.5 0.044 
605 0.047 1.54 0.027 1.5 0.055 
606 0.062 1.54 0.027 1.5 0.067 
607 0.08 1.54 0.027 1.5 0.083 
608 0.028 1.12 0.027 1.5 0.044 
609 0.041 1.12 0.027 1.5 0.061 
610 0.056 1.12 0.027 1.5 0.083 
611 0.028 1.12 0.027 1.5 0.039 
612 0.042 1.12 0.027 1.5 0.067 
613 0.056 1.12 0.027 1.5 0.089 
614 0.069 1.12 0.027 1.5 0.100 
615 0.068 1.12 0.027 1.5 0.111 
650 0.015 1.54 0.027 3 0.028 
651 0.025 1.54 0.027 3 0.038 
652 0.034 1.54 0.027 3 0.054 
653 0.047 1.54 0.027 3 0.073 
654 0.057 1.54 0.027 3 0.085 
655 0.016 1.54 0.027 3 0.032 
656 0.026 1.54 0.027 3 0.044 
657 0.034 1.54 0.027 3 0.057 
658 0.044 1.54 0.027 3 0.070 
659 0.055 1.54 0.027 3 0.085 
660 0.039 1.12 0.027 3 0.038 
661 0.055 1.12 0.027 3 0.054 
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Experiment # H (m) T (s) Dn50 (m) cotα Run-up (m)
662 0.07 1.12 0.027 3 0.073 
663 0.084 1.12 0.027 3 0.085 
664 0.037 1.12 0.027 3 0.038 
665 0.057 1.12 0.027 3 0.060 
666 0.069 1.12 0.027 3 0.073 
667 0.083 1.12 0.027 3 0.085 
680 0.062 1.12 0.027 4 0.056 
681 0.074 1.12 0.027 4 0.068 
682 0.06 1.12 0.027 4 0.056 
683 0.08 1.12 0.027 4 0.068 
684 0.09 1.12 0.027 4 0.078 
685 0.087 1.12 0.027 4 0.078 
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Appendix V Cross-section of model used in Iran 
 
The cross-sections given in this appendix are the drawings used for the experiments performed in Iran. All 
dimensions are model dimensions given either in grams or in centimetres. 
 
 
 

 
 

 
figure V-1, Cross-section of model used in Iran
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Appendix VI Plan view flume Iran 
 
 
 

Wave gauges

Wave paddle

5 
m

main flume

1m

flume with
reduced

width

11 m

Structure Passive
wave
absorbers

19 m

12.5 m

A

 
 
 
 
 

1 
m

5 
m

2 
m

Toe of structure

Crest of structure

Slopes of
structure

3 m1.5 m

5 m

6 m

6.5 m

A

 
 

figure VI-1, Plan view flume Iran 
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Appendix VII, Data of experiments performed in Iran 
 

test # Hs (m) Tp (s) Tm (s) Ru2% (m) ξp ξm 
1101 2.69 6.24 5.64 3.91 3.17 2.86 
1102 3.73 8.23 6.94 3.5 3.55 2.99 
1103 3.41 8.23 6.99 3.24 3.71 3.15 
1104 2.73 8.23 7 2.62 4.15 3.53 
1105 2.45 9.05 8.52 2.63 4.82 4.53 
1106 2.08 12.41 9.98 3.33 7.17 5.76 
1107 2.36 12.41 9.95 3.78 6.73 5.4 
1109 2.82 6.24 5.65 2.73 3.1 2.8 
1110 3.38 6.24 5.77 3.16 2.83 2.61 
1116 4.09 6.73 5.95 3.76 2.77 2.45 
1118 3.69 6.24 5.85 3.44 2.71 2.54 
1124 4.77 8.23 6.4 5.11 3.14 2.44 
1131 5.62 8.23 5.84 5.4 2.89 2.05 
1132 5.3 8.23 5.72 5.27 2.98 2.07 
1137 4.06 9.05 8.09 4.82 3.74 3.34 

table VII-1 Data of experiments performed with λ = 50, prototype values 
 
 

test # Hs (m) Tp (s) Tm (s) Ru2% (m) ξp ξm 
1101 0.0538 0.8825 0.7976 0.0782 3.17 2.86 
1102 0.0746 1.1639 0.9815 0.0700 3.55 2.99 
1103 0.0682 1.1639 0.9885 0.0648 3.71 3.15 
1104 0.0546 1.1639 0.9899 0.0524 4.15 3.53 
1105 0.0490 1.2799 1.2049 0.0526 4.82 4.53 
1106 0.0416 1.7550 1.4114 0.0666 7.17 5.76 
1107 0.0472 1.7550 1.4071 0.0756 6.73 5.4 
1109 0.0564 0.8825 0.7990 0.0546 3.1 2.8 
1110 0.0676 0.8825 0.8160 0.0632 2.83 2.61 
1116 0.0818 0.9518 0.8415 0.0752 2.77 2.45 
1118 0.0738 0.8825 0.8273 0.0688 2.71 2.54 
1124 0.0954 1.1639 0.9051 0.1022 3.14 2.44 
1131 0.1124 1.1639 0.8259 0.1080 2.89 2.05 
1132 0.1060 1.1639 0.8089 0.1054 2.98 2.07 
1137 0.0812 1.2799 1.1441 0.0964 3.74 3.34 

table VII-2 Data of experiments performed with λ = 50, model values 
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test # Hs (m) Tp (s) Tm (s) Ru2% (m) ξp ξm 
1201 3.31 7.43 6.26 2.02 3.39 2.86 
1202 2.79 7.27 6.19 1.78 3.61 3.08 
1203 2.91 8.32 6.83 1.92 4.05 3.32 
1204 3.14 10.77 8.14 1.94 5.04 3.81 
1205 2.57 10.77 8.18 1.79 5.57 4.23 
1206 2.51 12 9.46 2.25 6.29 4.96 
1207 2.37 13.87 10.8 2.55 7.48 5.84 
1208 3.68 7.43 6.35 2.33 3.21 2.75 
1209 3.6 8.32 6.83 2.31 3.64 2.99 
1210 3.51 10.61 8.1 2.44 4.7 3.59 
1211 3.3 12 9.31 3.05 5.48 4.25 
1212 3.29 13.87 10.8 3.79 6.35 4.94 
1213 3.45 13.87 10.8 3.52 6.2 4.82 
1215 4.56 10.61 8.07 2.87 4.12 3.14 
1216 4.36 12.67 9.36 3.47 5.04 3.72 
1217 4.28 13.87 10.7 4.91 5.56 4.28 
1218 4.55 13.87 10.7 5.25 5.4 4.17 
1220 5.09 8.32 7.02 3.15 3.06 2.58 
1221 5.1 10.35 8.05 3.15 3.8 2.96 
1222 5.08 12.84 9.01 4.04 4.73 3.32 
1223 5.14 13.87 10.7 6.06 5.08 3.92 
1225 5.42 10.35 8.09 3.28 3.69 2.88 
1226 5.35 12.84 8.93 4.39 4.61 3.2 
1227 5.55 12.84 8.97 4.49 4.52 3.16 
1228 5.69 13.87 9.54 6.74 4.83 3.32 
1229 4.55 7.43 6.54 2.85 2.89 2.54 
1230 4.82 7.43 6.6 2.95 2.81 2.49 
1231 5.26 7.43 6.66 3.19 2.69 2.41 

table VII-3 Data of experiments performed with λ = 66, prototype values 
 
 

test # Hs (m) Tp (s) Tm (s) Ru2% (m) ξp ξm 
1201 0.0502 0.9146 0.7706 0.0306 3.39 2.86
1202 0.0423 0.8949 0.7619 0.0270 3.61 3.08
1203 0.0441 1.0241 0.8407 0.0291 4.05 3.32
1204 0.0476 1.3257 1.0020 0.0294 5.04 3.81
1205 0.0389 1.3257 1.0069 0.0271 5.57 4.23
1206 0.0380 1.4771 1.1644 0.0341 6.29 4.96
1207 0.0359 1.7073 1.3294 0.0386 7.48 5.84
1208 0.0558 0.9146 0.7816 0.0353 3.21 2.75
1209 0.0545 1.0241 0.8407 0.0350 3.64 2.99
1210 0.0532 1.3060 0.9970 0.0370 4.70 3.59
1211 0.0500 1.4771 1.1460 0.0462 5.48 4.25
1212 0.0498 1.7073 1.3294 0.0574 6.35 4.94
1213 0.0523 1.7073 1.3294 0.0533 6.20 4.82
1215 0.0691 1.3060 0.9933 0.0435 4.12 3.14
1216 0.0661 1.5596 1.1521 0.0526 5.04 3.72
1217 0.0648 1.7073 1.3171 0.0744 5.56 4.28
1218 0.0689 1.7073 1.3171 0.0795 5.40 4.17
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test # Hs (m) Tp (s) Tm (s) Ru2% (m) ξp ξm 
1220 0.0771 1.0241 0.8641 0.0477 3.06 2.58
1221 0.0773 1.2740 0.9909 0.0477 3.80 2.96
1222 0.0770 1.5805 1.1091 0.0612 4.73 3.32
1223 0.0779 1.7073 1.3171 0.0918 5.08 3.92
1225 0.0821 1.2740 0.9958 0.0497 3.69 2.88
1226 0.0811 1.5805 1.0992 0.0665 4.61 3.20
1227 0.0841 1.5805 1.1041 0.0680 4.52 3.16
1228 0.0862 1.7073 1.1743 0.1021 4.83 3.32
1229 0.0689 0.9146 0.8050 0.0432 2.89 2.54
1230 0.0730 0.9146 0.8124 0.0447 2.81 2.49
1231 0.0797 0.9146 0.8198 0.0483 2.69 2.41

table VII-3 Data of experiments performed with λ = 66, prototype values 
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Appendix VIII Influences of H, cotα, Dn(50), n and T on run-
up 

 

figure VIII-1, Influence of wave height on run-up  

Run-up versus wave height
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figure VIII-2, Influence of slope angles on the run-up, tetrapods 

Influence different slope angles on run-up 
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figure VIII-3, Influence of slope angles on run-up, rock 

Run-up versus wave height, different slope angles, stone, Dn=6.5 cm, T=1.54 s, n=0.4
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figure VIII-4, Influence of diameter on run-up, rock 
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figure VIII-5, Influence of diameter on run-up, tetrapods 
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figure VIII-6, Influence of porosity on the run-up 

Influence of porosity on run-up

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.02 0.04 0.06 0.08 0.1 0.12

H (m)

R
u 

(m
)

n=0.5
n=0.36

Dn(50)=0.045m 
T=1.12 s, 
cotα=3.87



Appendix VIII 

 

 

 
figure VIII-7, Influence of period on the run-up, rock  
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figure VIII-8, Influence of the period on the run-up, tetrapods 
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figure VIII-9, Influence of the period on run-up, rock 
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figure VIII-10, Influence of the period on the run-up, tetrapods 
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Appendix IX Relative run-up (Ru/H) versus ξ, Delft 
experiments 
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figure IX-1, Relative run-up (Ru/H) versus ξ 
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Appendix X Non-dimensional parameter describing 
roughness 
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figure X-1, Relative run-up (Ru/H) versus H/Dn(50) 
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figure X-2, Relative run-up (Ru/H) versus roughness (H/D85) and (H/Htet) 
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figure X-3, Run-up versus roughness (H/Htet), tetrapods 
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figure X-4, Run-up versus roughness (H/D85), rock 
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figure X-5, Non-dimensional run-up (Ru/Dn(50)) versus non-dimensional roughness (H/D85) and (H/Htet) 
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Appendix XI Non-dimensional permeability parameter 
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figure XI-1, Relative run-up (Ru/H) versus K, equation (5.11) 
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figure XI-2, Run-up versus K, equation (5.11)  
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figure XI-3, Non-dimensional run-up (Ru/Dn(50)) versus K, equation (5.11) 
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figure XI-4, Non-dimensional run-up (Ru/Dn(50)) versus K, equation (5.12) 
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K, equation (5.15), (5.16) (-)
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figure XI-5, Non-dimensional run-up (RU/Dn(50)) versus K, equation (5.15), and (5.16) 
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Appendix XII Relative run-up (Ru2%/Hs) versus ξm, Iran 
experiments 
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figure XII-1, Relative run-up (Ru2%/Hs) versus ξm 
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Appendix XIII Scaling of core material, Le Méhauté 
 
In the underlayers and core of model breakwaters, geometric scaling of the material sizes may lead to viscous 
scale effects because these layers can become less permeable and lead to relatively higher down rush pressures 
from inside the structure or different values of transmission, run-up and reflection than what occurs at prototype 
scale. This scale effect is encountered by increasing the size of the model stones over that dictated by geometric 
scaling so that: 
 
L
L

K
D
D

p

m

p

m

=  or λ λL DK=        (XIII.1) 

 
where L is the geometrically undistorted characteristic length, D is the characteristic diameter, K is a factor 
greater than unity and p and m represent prototype and model respectively. 
 
Le Méhauté (1965) developed a nomogram method for selecting of an appropriate value for K. He assumed that 
the scale effects are negligible in the outer armour layers and that the prototype and model have the same 
gradation in core material sizes. His method, therefore corrects for scale effects arising from flow through the 
core of the structure. Le Méhauté’s nomogram is given in figure XIII-1. 
 
The factor on the abscissa is: 
 
H

L
D Pi

p pΔ
3 5          (XIII.2) 

 
where: 
HI   - incoming wave height 
ΔL  - the average width of the core 
Dp   - the effective quarrystone diameter, taken 10% smaller than quarrystone from the core material gradation 

curve 
P    - the porosity of the core material 
 
 
 

 
 figure XIII-1, Le Méhauté’s nomogram 
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Appendix XIV Data Iran compared to present formulae 
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figure XIV-1, Data obtained in Iran versus known run-up data 
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Appendix XV Measured data versus calculated data, 
breaking waves 

 
 
In the figure below, the measured data of the experiments performed in Delft are presented versus the calculated 
data. These data cover the range of breaking waves. The calculated data points are obtained using: 
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figure XV, Measured data versus calculated data, breaking waves 
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Appendix XVI Measured data versus calculated data, non-
breaking waves 

 
In the figure below, the measured data of the experiments performed in Delft are presented versus the calculated 
data. These data cover the range of non-breaking waves. The calculated data points are obtained using: 
 

R
D

R Ku

n( )

. ( . )
50

0 27 0 017= +ξ  

 

calculated data points

543210

m
ea

su
re

d 
da

ta
 p

oi
nt

s

5

4

3

2

1

0

 
figure XVI-1, Measured data points versus calculated data points, non-breaking waves 
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Appendix XVII Measured data versus calculated data, Iran 
experiments 

 
In the two figures below, the relation derived in chapter 6, describing run-up on a rough, permeable slope for 
non-breaking waves is applied to the data obtained in Iran. The first figure shows the data when ξm is used, the 
second figure shows the data using ξp. For both figures the calculated data points are acquired by using the 
following relation: 
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 figure XViI-1, Measured data points versus calculated data points, using data obtained in Iran and ξm 
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 figure XVII-2, Measured data points versus calculated data points, using data obtained in Iran and ξp 
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Appendix XVIII, Influence tanα 
 
In this appendix Q is used. This parameter is defined next: 
 

Q
T g

nD
=  

 
with D is a characteristic diameter, for rock: D20 and in the case of tetrapods, c, the size of one leg of a tetrapod. 
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 figure XVIII-1, Influence of tanα on run-up, tetrapods, Dn = 0.044 m  

 
 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.5 1 1.5 2 2.5 3 3.5

H*Q (m)

R
u (

m
)

tanalfa=0.26

tanalfa=0.33
tanalfa=0.68

Dn=0.05 m
n=0.5

 
figure XVIII-1, Influence of tanα on run-up, tetrapods, Dn = 0.05 m 
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figure XVIII-1, Influence of tanα on run-up, rock, Dn50 = 0.065 m 
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figure XVIII-1, Influence of tanα on run-up, rock, Dn50 = 0.045 m 
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figure XVIII-1, Influence of tanα on run-up, rock, Dn = 0.027 m 
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Appendix XIX, Comparison of scatter, using n5 and n 
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Appendix XX, Comparison of run-up scatter, using n and 
NaD2n(50) 
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Appendix XXI, Comparison between ξ and Ω 
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Appendix XXII, Relative run-up versus Ω 

  Relative run-up versus Ω, breaking waves, ξ < 3 
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figure XXII-1, Scatter for relative run-up versus Ω, breaking waves
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  Relative run-up versus Ω, non-breaking waves, ξ >= 3 
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figure XXII-2, Scatter for relative run-up versus Ω, non-breaking waves 
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 Relative run-up versus Ω, non-breaking waves, ξ >= 3 
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figure XXII-3, Scatter for small units, non-breaking waves 
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Appendix XXIII, Run-up on a slope with small diameter units 
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figure XXIII-1, Relative run-up versus Ω, all data points 
 
 

 
figure XXIII-2, Comparison of relative 2% run-up for smooth and rubble slopes 



Appendix XXIV 

 

Appendix XXIV, Relative run-up versus Ω, all data points 
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figure XXIV-1, Relative run-up versus Ω, all data points 
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figure XXIV-2, Relative run-up versus Ω, data fitting 

 


