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Interaction between Plasma Synthetic Jet and Subsonic 

Turbulent Boundary Layer 

Haohua Zong* and Marios Kotsonis 

Faculty of Aerospace Engineering, Delft University of Technology, Delft 2629 HS, Netherlands 

Abstract: This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) 

and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and a phase-locked 

Particle Imaging Velocimetry (PIV). The PSJ is interacting with a fully developed turbulent boundary 

layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds 

number based on the freestream velocity (U∞=20 m/s) and the boundary layer thickness (δ99=34.5 mm) 

at the location of interaction is 44400. A large-volume (1696 mm
3
) three-electrode plasma synthetic jet 

actuator (PSJA) with a round exit orifice (D=2 mm) is adopted to produce high-speed (92 m/s) and 

short-duration (Tjet=1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in crossflow is 

shown to remain almost identical to that in quiescent conditions. However, the flow structures 

emanating from the interaction between the PSJ and the TBL are significantly different from what 

observed in quiescent conditions. In the midspan xy plane (z=0 mm), the erupted jet body initially 

follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After 

three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to 

approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration 

ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet 

diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an 

expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of 

jets in crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the 

outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer 

shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ exhibits a prominent 

spatiotemporal behaviour. The residence time of the CVP is estimated as the jet duration time, while 

the maximum extent of the affected flow in the three coordinate directions (x, y and z) ισ 

approximately 32D, 8.5D and 10D, respectively. An extremely high level of turbulent kinetic energy 

(TKE) production is shown in the jet shear-layer, front vortex ring and CVP, of which the contribution 

of the streamwise Reynolds normal stress is dominant. Finally, a conceptual model of the interaction 

between the PSJ and the TBL is proposed. 
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1.Introduction 

1.1 Jets in crossflow (JICF) 

The term Jets in Crossflow (JICF), also known as transverse jets, refers to the flow phenomena 

developing during interaction of the jet flow emitting from an orifice with the external flow across the 

orifice (Margason 1993). During the interaction, the emitted jets bend to the crossflow and abundant 

vortical structures are exhibited including horseshoe vortices, shear-layer vortices, wake vortices, 

hanging vortices and a counter-rotating vortex pair (CVP) (Broadwell & Breidenthal 1984, Yuan et al. 

1999, Cortelezzi & Karagozian 2001). Extensive applications of JICF can be found in engineering, 

including gas film cooling on high-temperature turbine blade surfaces, fuel injection in thermal engine 

combustors, thrust vectoring technology for missiles and active flow control on airfoils, as reviewed 

by Margason (1993), Karagozian (2010) and Mahesh (2013). 

Different applications pivot around diverse inherent features of JICF. In supersonic combustion 

chambers, the jet penetration ability, spreading rate and entrainment rate are of paramount importance 

to yield efficient mixing between fuel and air in timescales of several milliseconds (Fuller et al. 1992). 

However, in separation control applications, the signature vortex structure, namely the CVP, receives 

significant attention (Cortelezzi & Karagozian 2001). The CVP is orientated in the quasi-streamwise 

direction and bears similar features as the hairpin vortices in a turbulent boundary layer (TBL) (Adrian 

2007). Specifically, under the induced effects of the CVP, the high-momentum flow in the outer layer 

is transported to the near-wall region and mixed with the low-momentum fluids, leading to an 

energised boundary layer with fuller velocity profile and thus an enhanced capability to resist against 

the adverse pressure gradient associated with flow separation.  

1.2 Steady jets vs. synthetic jets 

Steady jets were investigated much earlier than synthetic jets by the flow control community. 

Johnston & Nishi  (1990) and Compton & Johnston (1992) indicate that by skewing and inclining the 

jet angle, a single dominant streamwise vortex, similar to that created by a weak solid vortex 

generator, can be produced by steady jets in crossflow. Thus, JICF are also named as vortex generator 

jets. The steady-blowing vortex generator jet was tested by Bons, Sondergaard & Rivir (1999) to 

control the flow separation on the suction surface of turbine blades. A clear decrease in pressure loss 

coefficient was obtained at low (<1%) and moderate (4%) levels of freestream turbulence. However, a 

considerable blowing ratio and mass flux are necessary for such effect. This imposes significant 

challenges on industrial applications such as aircrafts, as the penalties incurred by carrying external or 

internal pressurized gas tanks for supplying the jets may go beyond the benefits brought by flow 

separation suppression. Similar restrictions might also apply in the case of extracting bleed air from 

the compression stages of the engine. 

In an effort to relax the mass flux requirement (external gas source requirement or bleed air), 

pulsed jets and synthetic jets were successively proposed and applied for separation control by Seifert, 

Darabi & Wygnanski (1996) and Smith & Glezer (1998). In a typical demonstration (freestream 

velocity: 32 m/s), the stall angle of a NACA four-digit series symmetric airfoil was postponed from 5 



degrees to 17.5 degrees by piezoelectrically driven synthetic jet actuators, accompanied by a 100% 

increment in the lift coefficient and a 45% decrement in the drag coefficient (Amitay et al. 2001).  

While laboratory tests at low Reynolds numbers give encouraging results, conventional 

synthetic jets formed by acoustic waves or oscillating diaphragms are not adequate to manipulate high-

Reynolds-number supersonic flows. Early investigations from Glezer & Amitay (2002) showed that 

the peak jet velocity of piezoelectrically driven synthetic jet actuators is typically less than 60m/s, due 

to the constraints on the power input of piezoelectric membranes. By driving the actuator at the 

diaphragm resonance frequency and using a dual disc configuration, Gomes (2009) and Buren et al. 

(2016) managed to improve the peak jet velocity to approximately 200 m/s. Although promising, this 

velocity magnitude still remains in the high-subsonic category and declines significantly in the 

condition of off-resonance-frequency operation, thus limiting the effective dynamic range of the 

actuator. 

In 2006, Crittenden & Glezer proposed a piston/cylinder synthetic jet actuator capable of 

producing supersonic jets (~600 m/s). Nevertheless, this pure mechanical design has a noticeable 

disadvantage of complex structures and low working frequency (<200 Hz). 

1.3 Plasma synthetic jet (PSJ): characterisation and application 

In 2003, a new-concept zero-net-mass-flow actuator, namely the plasma synthetic jet actuator 

(PSJA), was proposed and designed by Grossman, Cybyk & Vanwie. Similar to other plasma 

actuators, PSJA has an inherently fast response and simple structure, usually comprised of several 

discharge electrodes and a closed cavity with an exit orifice (diameter: 0.5-3 mm). A morphological 

deviation from conventional synthetic jets is the absence of any moving components. Nanosecond 

pulse discharge (Zong et al. 2015), pulsed DC discharge (Shin 2010) and capacitive discharge 

(Belinger et al. 2011) can be utilized to rapidly pressurize the cavity gas, depending on the cavity 

volume. Narayanaswamy, Raja & Clemens (2010) investigated a small-cavity PSJA (~22 mm
3
) fed by 

the pulsed DC discharge (discharge energy: 30 mJ). A high-velocity (250 m/s) pulsed jet is generated 

consistently at 5 kHz. Reedy et al. (2013) measured the flow field of a medium-volume PSJA (~183 

mm
3
) using PIV. The peak jet velocity recorded in the single-shot mode was measured as high as 496 

m/s. For large-volume PSJA (>1000 mm
3
) fed by capacitive discharge (discharge energy: 2.6 J), a 

peak jet velocity of 345 m/s and a jet duration time longer than 2.5 ms were reported by Wang et al. 

(2014). 

Recent characterisation studies by Golbabaei-Asl, Knight & Wilkinson (2015) and Zong et al. 

(2016) suggest that PSJA as an electromechanical device exhibits a rather low energy conversion 

efficiency (<10%). Nevertheless, the unique combination of high jet velocity and high actuation 

frequency still motivates the application of PSJA to scenarios such as shock wave manipulation 

(Emerick et al. 2014), shock wave\boundary layer interaction control (SWBLI) (Narayanaswamy et al. 

2010 & 2012), and flight control (Anderson & Knight 2012). 

Narayanaswamy, Raja & Clemens (2010 & 2012) tested the performance of PSJA in a Mach 3 

crossflow. They showed that the produced pulsed jets have a penetration length of about 1.5 boundary-



layer thickness, and contribute to 30% reduction of the pressure fluctuation associated with the large-

scale separated flow in SWBLI at a Strouhal number of approximately 0.04. Greene et al. (2015) 

adopted a similar experimental setup and examined several skew and pitch angles of the pulsed jets. 

The 20º pitch and 0º skew jets performed the best among all tested cases. The distance between the 

separation line and the compression ramp corner was reduced by up to 40%, while the shape factor of 

the downstream reattached boundary layer was decreased from 1.57 to 1.49, suggesting enhanced 

mixing. Emerick et al. (2014) mounted a PSJA array in a Mach 1.5 crossflow, and a maximum shock 

wave deflection angle of 5º was observed in single-shot operation. In a subsonic study (freestream 

velocity: 40 m/s), trailing edge separation of a NACA 0015 airfoil was effectively weakened by a 

PSJA array and 19% drag reduction was observed (Caruana et al. 2013). 

1.4 Background of the current study: physics of PSJ in crossflow 

Although positive results are demonstrated in the aforementioned preliminary flow control 

attempts, the flow scenario of PSJ in crossflow remains unclear. In contrast to the steady jets, plasma 

synthetic jets demonstrate a highly dynamic behaviour. The jet exit velocity of the PSJA changes 

dramatically in one period (Zong & Kotsonis 2016a). As a result, the major flow structures produced 

by the interaction between PSJ and crossflow may exhibit strong spatiotemporal behaviours. In the 

case of conventional synthetic jets in crossflow, Buren et al. (2016a & 2016b) observed a recirculation 

region downstream of the orifice and a streamwise vortex pair in the far-field. For the interaction 

between PSJ and crossflow, identifying the similar dominant flow structures at different phases of the 

interaction and further investigating the pertinent spatiotemporal scales are essential not only to reveal 

the underlying physics but also to optimize the actuation parameters. 

This study takes the first step towards tackling this issue, beginning with the nominal case of the 

interaction between a wall-normal PSJ and a subsonic TBL in single-shot mode. Phase-locked Particle 

Image Velocimetry (PIV) measurements in multiple planes are deployed to capture the evolution of 

three-dimensional flow structures at different phases. In Section 2, the utilized experimental facilities 

including the PSJA, wind tunnel, hotwire anemometer and PIV systems are introduced. PIV data 

validation is performed in Section 3. From Section 4 to Section 5, the phase-averaged flow 

organisation, and the turbulent kinetic energy distribution are presented successively. In addition, a 

conceptual model of PSJ in crossflow is drafted in Section 6. 

2. Experimental setup 

2.1 Actuator and power supply 

For the purpose of this study, a three-electrode plasma synthetic jet actuator is adopted, mainly 

composed of a ceramic cavity and a metal cap. The ceramic cavity shown in Figure 1 is in a 

cylindrical shape with internal height of 15 mm and internal diameter of 12 mm, resulting in a cavity 

volume of 1696 mm
3
. The cap of this actuator, which accommodates the exit orifice, is fabricated as a 

metal disk flush-mounted with the bottom wall of the wind tunnel test section, as will be shown in 

Section 2.2. Four holes are drilled equidistantly in the circumferential direction, in a plane located 7.5 

mm from the cavity bottom. Three tungsten needles are inserted into the cavity, serving as anode, 



cathode and trigger electrode, respectively. The remaining hole is designed for the intra-cavity PIV 

seeding (Zong & Kotsonis 2016a). The distance from the actuator axisymmetry axis to the anode, 

cathode and trigger electrode is fixed at 1 mm, 2 mm and 0.5 mm, respectively. A weak trigger 

discharge and a strong capacitive discharge are initiated sequentially in the cavity by a high-voltage 

amplifier (Trek Model 20/20C), in conjunction with several electrical components. Detailed 

information on the power supply system can be found in Zong & Kotsonis (2016a). 

Anode

Seeding hole

Cathode

Ceramic cavity

Trigger 

electrode  

FIGURE 1. Actuator structure 

2.2Wind tunnel and test section 

The experiments are carried out in the W-tunnel of Delft University of Technology. The W-

tunnel is an open-return tunnel, with interchangeable contraction parts and test sections. A square test 

section of 0.5m×0.5m dimension and 3 m length is installed for the purpose of this study, resulting in a 

maximum velocity of 25 m/s and a turbulence level of about 0.5%. As shown in Figure 2, the test 

section is smoothly connected with the contraction part and fabricated using plexiglass to facilitate the 

optical measurements. In this study, the freestream velocity (U∞) is kept constant at 20 m/s. 

Atmospheric pressure and temperature of the incoming flow are measured by a digital barometer and a 

thermocouple respectively. At the time of measurement, atmospheric pressure and flow temperature 

were approximately  101000 Pa and 288 K, respectively. 

0
.5
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3.0 m

Steel disk

Ceramic 
cavity

o x

y

1.75 m

Main flow

Jet exit 

Trip tape

Jet trajectory

Arc discharge

0.1 m

Contraction 
part

FIGURE 2. Schematic diagram of test section 



The boundary layer developing naturally on the bottom wall of the contraction part is tripped by 

a zigzag tape located at 0.1 m downstream of the leading edge of the test section. A steel disk 

(diameter: 0.11 m) is flush-mounted in the bottom plate. The ceramic cavity shown in Figure 1 is 

assembled in the steel disk via a step groove. In the centre of the steel disk, a round orifice (diameter: 

2 mm) is drilled, serving as the jet exit. The distance from the jet exit centre to the leading edge of the 

test section is 1.75 m. A coordinate system is in reference to the jet exit centre, with x, y and z axis 

along the streamwise, wall-normal and spanwise direction, respectively. 

The bottom wall of the test section is furnished with 16 pressure taps (diameter: 0.4 mm) 

located between x=-0.75 m and x=0.25 m to acquire the pressure distribution. Additionally, a Pitot-

static tube is mounted at x=-0.15 m to obtain the dynamic pressure of the uninterrupted freestream 

flow (
20.5 U  ). The pressure signals are scanned by a mechanical pressure scanivalve. A high-

accuracy pressure transducer (Mensor, Model 2101), together with Labview software, realizes the 

transformation and the recording of pressure signals. The recording length and the acquisition 

frequency are set as 5 s and 10 Hz, respectively. For the conditions of the current study (U∞=20 m/s), 

the measured pressure distribution on the bottom wall (denoted by Δp) is shown in Figure 3. The ratio 

of Δp to 
20.5 U   defines the pressure coefficient. Due to the growth of boundary layer, the effective 

flow area drops consistently along the streamwise direction. This results in a mildly increasing 

freestream velocity and a decreasing wall pressure. The peak value of the pressure coefficient is 

approximately -0.05. The PIV measurements are performed between -0.02 m<x<0.1 m. In this 

interval, the pressure coefficient changes less than 1%. Thus, the turbulent boundary layer (TBL) 

investigated in this paper can be roughly treated as a zero-pressure-gradient TBL. 

       

FIGURE 3. Pressure distribution along the bottom wall of the test section. The static pressure at x=-0.75 m is 

chosen as the reference pressure. 

2.3. Hotwire anemometer and Particle Image Velocimetry 

Hotwire measurements are performed in the baseline non-actuated case, in order to reference 

and validate the PIV data. A single-wire boundary layer probe (Dantec Dynamics, P15), operated by a 

TSI IFA-300 constant temperature bridge working in constant-temperature mode, is utilized to obtain 

the boundary layer velocity profile at x=50 mm in the xy plane (z=0 mm). The wire calibration is 
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performed in situ in a velocity range of 0-25 m/s, and the calibration curve is fitted by a fourth order 

polynomial, with a maximum relative error less than 0.6%. In addition, atmospheric pressure and 

temperature corrections are applied to the calibration. In y-direction, 60 measurement stations are 

selected to fully restore the boundary layer velocity profile. An automated traversing system with 

accuracy of 2.5 µm, is adopted to realize the probe motion in y-direction. During the recording, the 

sampling frequency and the recording time are fixed as 50 kHz and 5 s respectively, ensuing full 

statistical convergence. 

The adopted PIV system is mainly composed of a single-head Nd:YAG laser (Quantel 

EverGreen, peak pulse energy: 200 mJ), two LaVision digital CCD cameras (Imager Pro LX, 

resolution: 3248×4872 pixels, pixel pitch: 7.4×7.4 µm) and a programmable timing unit (PTU9). 

Depending on the measurement plane, a 3-component (3C) stereo PIV measurement or 2-component 

(2C) planar PIV measurement with two side-by-side cameras is performed, as shown in Figure 4. By 

virtue of two spherical and one cylindrical lenses, the laser beam emitted from the laser head is finally 

shaped into a thin sheet (thickness: 0.6 mm for planar PIV and 1 mm for stereo PIV). Each camera is 

equipped with a 200 mm macro lens (Nikon, Micro Nikkor). The optical apperture of the lenses (f#) is 

fixed to 8 and 11 respectively during planar and stereo PIV measurements to guarantee all the 

illuminated particles are in focus. The particle image diameter is approximately 2-3 pixels. The laser 

and the two cameras are fixed on a two-axis traversing bed (accuracy: 2.5 µm), facilitating the change 

of measurement planes in x-direction and z-direction. In total, 6 measurement planes are selected to 

restore the 3D flow field, as listed in Table 1. 

Table 1. Overview of PIV measurement parameters 

Measurement 

plane 

Measurement 

type 

Location 

(mm) 
FOV(mm

2
) 

Spatial 

resolution 

Magnification 

factor 

xy plane 
2C-planar 

PIV 
z=0 41×118 9.8 vectors/mm 0.54 

yz plane 
3C-stereo 

PIV 

x=5, 10, 20, 

30, 40  
71×73 5.7 vectors/mm 0.30 

o
x

z

y

(a)

     

o

x

z

y

(b)

 

FIGURE 4. (a) 2C-planar PIV measurement setup in the xy plane and (b) 3C-stereo PIV measurement setup in 

the yz plane. 



Regarding the flow seeding, two schemes are adopted. The primary system provides seeding by 

a SAFEX fog generator located in the setting chamber of the wind tunnel, using a working fluid of 

water-glycol mixture, producing particles of approximately 1 µm mean diameter. A separate, 

secondary seeding scheme proposed by Zong & Kotsonis (2016a) is inherited, to overcome the 

problem of low seeding density in the jet core (Ko et al. 2010). Through the secondary system, the 

actuator cavity is seeded with dielectric mineral oil particles (Shell Ondina) of 1.5 µm mean diameter, 

generated by an atomizer (TSI 9302). To minimise possible interference between the intra-cavity 

seeding and the developing jet, the intra-cavity seeding is switched off prior to the discharge by a fast-

response solenoid valve (FESTO, MHJ10), synchronised to the PIV acquisition.  

In order to capture the spatiotemporal evolution of the PSJ in the turbulent crossflow, all 

associated systems including the discharge, seeding and PIV are synchronized, working in a phase-

locked mode. The synchronization is implemented by Labview software. For each measurement plane, 

several time delays between the discharge initiation and the PIV acquisition (denoted as t) are selected 

to execute the measurement. For each time delay (phase), 500 image pairs are recorded. In Section 3.1, 

a simple convergence study is performed to demonstrate statistical convergence of the phase-averaged 

measurements. LaVision Davis 8.3 software is used to record and process the image pairs. The 

interrogation window used in the final pass has a size of 32×32 pixels
2
 and an overlapping ratio of 

75%. Detailed values of the field of view (FOV), spatial resolution and magnification factor pertaining 

to each measurement plane are available in Table 1. 

3. PIV data validation 

Prior to further analysis, it is necessary to define the adopted symbol convention for this study. 

The instantaneous velocity, phase-averaged velocity and fluctuation velocity are denoted by 
iU , 

iU  

and 
iu  respectively, where the subscript i can be either of the three coordinate components (x, y, z). 

i ju u  is the Reynolds stress. k  stands for the turbulent kinetic energy. 
v , u  and y  represent the 

viscous length scale, friction velocity and wall unit respectively.   and   denote measurement errors. 

D is the orifice diameter. 99  is the boundary layer thickness determined by 99% of the freestream 

velocity. Other symbols will be introduced in their first occurrence. 

3.1 PIV statistical convergence validation 

A PIV convergence study is performed in the xy measurement plane (z=0 mm) for the non-

actuated case. 1000 vector fields are recorded. The statistic quantities analysed include the ensemble-

averaged velocity and Reynolds stresses. At x=0 mm, four monitor points are placed at different y-

coordinates (y=1mm, 5mm, 10mm and 20 mm), denoted as P1-P4 respectively. As the ensemble-

averaged velocity is relatively faster to converge compared with the Reynolds stresses, only the 

variation of  and  with sample number (N) is detailed here. Regardless of the monitor 

location,  and  largely converge for N>400 (less than 6% for , not shown). Thus, an 

ensemble size of 500 is chosen in this study as a compromise between the measurement time and the 

statistical convergence. 

  

x xu u x yu u

x xu u x yu u
x xu u



3.2 Comparison of PIV and hotwire measurements 

The hotwire probe used is a single-sensor probe, and as such the measured velocity (Uxy) is 

actually the Euclidean sum of the streamwise and wall-normal velocity, 2 2

xy x yU U U  . The 

fluctuation of xyU  is denoted as xyu . Based on the measured velocity profiles, 99  is determined to be 

34.5 mm. The variations of xyU  at x=50 mm, z=0 mm determined by both PIV and hotwire 

measurements are shown in Figure 5 (a) for comparison. 

The two velocity curves agree well in the outer layer (y/δ99>0.03). However at y/δ99<0.03, the 

velocity measured by hotwire is slightly lower than PIV. This discrepancy can be attributed to the 

finite spatial resolution in PIV measurement, which is largely affected by the interrogation window 

size in the final pass (approximately 0.5 mm in this study). The interrogation window behaves 

essentially as a spatial low pass filter, and the velocity determined by the cross-correlation operation is 

in fact the spatially-averaged velocity in the interrogation window (Scarano 2003). In the outer layer, 

this spatial-averaging effect is not so significant since the velocity changes smoothly. However in the 

near-wall region, the measured velocity profile can be slightly distorted due to the large spatial 

velocity gradient. In the case of zero-pressure-gradient boundary layer, the profile of xyu  is a convex 

function of the y-coordinate (Wu & Moin 2009). Thus, the spatially-averaged value should be larger 

than the actual value. This is confirmed by the positively biased PIV results shown in Figure 5 (a). 

 

FIGURE 5. Comparison between hotwire results and PIV results at x=50 mm, z=0 mm. (a) Normalized 

boundary layer velocity profile; The blue dash line is used to determine the wall friction velocity u . (b) 

Reynolds shear stress normalized by 
2u . 

Between y/δ99=0.03 and y/δ99=0.3, PIV and hotwire data collapse on the same straight line. This 

region corresponds to the log layer (Kline, Coles & Hirst 1969). In the log layer, the velocity profile 

can be accurately described by the following equation. 

1
ln( )

xy

v

U y
B

u  
                                                               (1) 

where,   is the Von Karman constant (0.41). Theoretically, the slope of the blue dash line shown in 

Figure 5 (a) is /u  . By comparing this theoretical slope with the fitted value, u  is determined to be 
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0.79 m/s for the present study and measurement location. The corresponding viscous length scale and 

time scale are 0.019 mm and 0.024 ms respectively. Choosing δ99 as the reference length scale, the 

Reynolds numbers based on U∞ and uτ are 44400 and 2060 respectively. The position of the 

measurement point closest to the wall is 6 and 10.5 in wall coordinates (inner scale) for PIV and hot 

wire respectively. In addition, the variation of 2

xyu  is shown in Figure 5 (b) as a function of the outer 

scale. The two curves show a considerable agreement. A discrepancy exists in the hotwire results not 

capturing the drop of 2

xyu  in the viscous wall region. The basic changing trend of 2

xyu  reported here is 

similar to that obtained in the channel flow (Bernardini, Pirozzoli & Orlandi 2014). 

4. Phase-averaged flow organization 

4.1 xy plane 

Phase-averaged flow fields in the xy plane (z=0 mm) are shown in Figure 6. U∞ and D are used 

to normalize the time delay, resulting in a nondimensional convective time scale tU∞/D. At tU∞/D=2 

(t=200 µs), a nominally wall-normal high-speed jet is expelled abruptly from the actuator, with a peak 

velocity of 4.6U∞ (92 m/s). As a result of this abrupt eruption, a distinctive starting vortex ring (also 

termed as front vortex ring) is shed from the orifice opening, experiencing an upward propagation 

(Cantwell 1986). A small portion of the fluid in the crossflow is entrained towards the upstanding jet 

by the front vortex ring, while the majority of the freestream flow bulk bypasses the high-speed jet as 

a solid protrusion. Despite the presence of the external flow, the incipient flow topology after 

discharge shares much similarity with that in the quiescent condition (Zong & Kotsonis 2016a). At 

increasing time delays from the discharge initiation the jet body gradually bends to the crossflow 

(3<tU∞/D<10). Following the bending jet trajectory, an inclined propagation of the front vortex ring is 

experienced. The bending jet can be attracted to the pressure difference between the windward side 

and the leeward side of the jet body, as well as the horizontal acceleration imposed by the crossflow 

(Mahesh 2013). 

Additional to the bending jet trajectory, a prominent flow phenomenon in the xy plane is the 

formation of recirculation region (defined by ) residing in the leeward side of the jet body, as 

indicated by the solid black lines in Figure 6 (b)-(c). Similar to the separation region formed behind 

bluff bodies (Krajnovic & Davidson 2002), the recirculation region in the studied JICF is also 

accompanied by the production of unsteady vorticity, in the form of the so-called hanging vortices 

(Meyer, Pedersen & Oktayozcan 2007). The streamwise extent of the recirculation region is around 

1D, consistent with the observation in steady jets in crossflow (Gutmark, Ibrahim & Murugappan 

2011). At tU∞/D=5 (t=500 µs) no clear vortex rings can be identified from the velocity fields, 

nevertheless the curved streamlines at the jet front indicate the residual concentration of vorticity. 

Additionally, the peak jet exit velocity drops significantly to 2.4U∞ (48m/s) at tU∞/D=5 (t=500 µs). 

From tU∞/D=10 (t=1000 µs) on, the jet effectively terminates and the velocity fields in Figure 6 (d)-(f) 

show similar patterns. The issued jet body is severed from the orifice and experiences a quasi-drifting 

motion along the streamwise direction. During this drifting motion, momentum of the jet flow is 

gradually dissipated as a result of the mixing with turbulent crossflow. 

0xU 



 

 

 FIGURE 6. Phase-averaged velocity fields in the xy plane (z=0 mm). (a) tU∞/D=2 (t=200µs), (b) tU∞/D=3 

(t=300µs), (c) tU∞/D=5 (t=500µs), (d) tU∞/D=10 (t=1000µs), (e) tU∞/D=15 (t=1500µs) and (f) tU∞/D=25 

(t=2500µs). Note that both the spatial scales and colourmap ranges are changing. The red lines superimposed on 

contour are phase-averaged streamlines. The recirculation regions at tU∞/D=3 and tU∞/D=5 (defined by 0xU  ) 

are indicated by solid black lines. The interrogation window used to obtain the jet exit velocity is illustrated in 

Figure 6 (a) by a solid black rectangle. 

The area of the recirculation region (Ar) is computed, as shown in Figure 7. After each actuation 

pulse, the recirculation region increases in size prior to tU∞/D=5 (t=500 µs), shrinks afterwards and 

disappears completely after tU∞/D=10 (t=1000 µs). The peak value of Ar is just over three times of the 

exit orifice area (Ae). This agrees qualitatively with the results reported in steady jets in crossflow, 
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where a nondimensional area of 2 is observed for a velocity ratio of 3 (Gutmark, Ibrahim & 

Murugappan 2011). The increase of Ar in Figure 7 is ascribed to the continuing penetration of the 

high-speed jet body, while the decrease is directly related to the drop of jet exit velocity since the 

blocking effect diminishes considerably. With a velocity ratio as low as 0.17, no clear jet body and 

recirculation region can be observed and a train of hairpin vortices will emanate consecutively from 

the exit orifice (Wen & Tang 2014). 

 

FIGURE 7. Area of the recirculation region as a function of the nondimensional time 

The temporal evolution of the phase-averaged jet exit velocity can be monitored using an 

interrogation window located just above the jet exit (Zong & Kotsonis 2016a). The used interrogation 

window is indicated in Figure 6 (a) by a solid black rectangle. The exit velocity values reported in 

Figure 8 are the spatially-averaged values in the interrogation window. The two components of the jet 

exit velocity in x and y direction are denoted as  and  respectively. The variation of exU  and 

 in crossflow is plotted in Figure 8 as a function of the nondimensional convective time units. For 

comparison, the experimental data for  in the quiescent flow for an identical actuator are also 

shown (excerpted from Zong & Kotsonis 2016b)). 

 
FIGURE 8. Exit velocity variation with the non-dimension time in both quiescent and cross flow conditions. 
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After each actuation pulse, eyU  initially shows a sharp increase and then a slow decrease. In 

both cases, the peak values of eyU  are around 4.5U∞ (90 m/s). After tU∞/D=10 (t=1000 µs), a small 

negative exit velocity is evident, indicating the start of the refresh stage of the actuator. The peak 

suction velocity in the refresh stage is approximately -0.3U∞ (-6 m/s), considerably lower than the 

peak jet velocity. This feature promotes the conclusion that as a typical synthetic jet actuator, PSJA 

has an inherent zero-net mass flux whereas nonzero-net momentum flux. As a result, a quasi-steady 

impulse (net impulse) will be produced by PSJA working in repetitive mode, with promising 

extensions towards flight control (Anderson & Knight 2012). Based on the sign change of eyU , the 

nondimensional jet duration time (denoted as TjetU∞/D) is determined to be 10 (Tjet=1000 µs) in both 

crossflow and quiescent conditions. Overall, the two curves of eyU  agree well, although some 

disparities exist between tU∞/D=3 and tU∞/D=8. This agreement is largely expected, as suggested by 

the analytical model proposed by Zong et al. (2015) where only significant changes in external 

atmospheric parameters (ambient pressure, temperature and density) can alter the exit velocity 

variation of PSJA. Thus, for the investigated case the external flow condition has little influence on the 

variation of the jet exit velocity. Additionally, a nonzero lateral component of the jet exit velocity is 

exhibited in crossflow. 
exU  varies inversely with eyU , with a peak value of 0.5U∞ (10 m/s). 

 

FIGURE 9. (a) Comparison of jet trajectories at tU∞/D=3 (t=300 µs) extracted from the positions of local 

velocity maxima (blue line) and the jet exit centre streamline (black line). (b) Temporal evolution of the phase-

averaged streamlines originating from the jet exit centre. 

In order to quantify the penetration ability of the PSJA, the jet trajectories at different time 

delays are evaluated. For steady jets in crossflow, the jet trajectory can be defined as the positions of 

local velocity maxima (Kamotani & Greber 1972), local vorticity maxima or as the ensemble-averaged 

streamline originating from the jet exit centre (Mahesh 2013). For PSJ in crossflow, the vorticity prior 

to tU∞/D=5 (t=500 µs) is largely concentrated in the front vortex ring. Thus the vorticity criterion 

cannot be deployed. Comparison of the other two criteria is made in Figure 9 (a). As evidenced, the jet 

trajectory defined by the phase-averaged streamline is more robust, thus suitable for this study. 
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The temporal evolution of the jet trajectories is shown in Figure 9 (b). For each streamline, there 

exists an asymptotic plateau. The y-coordinate of this plateau reflects the phase-averaged jet 

penetration depth, which increases monotonically with nondimensional time. In contrast to steady jets 

(Yuan & Street 1998), the jet trajectories of PSJ exhibit noticeable inflection points after tU∞/D=3 

(t=300 µs). This phenomenon is attributed to the dynamic change of the jet exit velocity within an 

actuation cycle. Specifically, the ability of the jet body to resist the crossflow diminishes significantly 

with time, leading to an increased curvature of the jet trajectories and finally the formation of 

inflection points. 

Between tU∞/D=3 and tU∞/D=10, a considerable downstream drift of the jet body is evidenced 

by the streamwise offsets between the observed jet trajectories. After tU∞/D=10 (t=1000 µs), the PSJA 

enters the refresh stage. In this stage, a stagnation point is formed just above the exit, separating the 

preceding ejection and the anticipating suction flow (Glezer & Amitay 2002, Zong & Kotsonis 2016a). 

Affected by this stagnation point, the streamline originating from the jet exit centre no longer 

represents the actual jet trajectory. An alternative method will be introduced at a later point to quantify 

the jet penetration during the refresh stage. 

    

FIGURE 10. (a) Outer envelope of the jet trajectories and temporal variation of the jet penetration depth. (b) Jet 

trajectory envelope in double logarithmic coordinate. The formula of the fitted line is indicated. 

The outer spatial envelope of the jet trajectories in Figure 9(b) is extracted and shown in Figure 

10(a). Below this envelope lies the region possibly swept by the PSJ. In addition, the variation of the 

jet penetration depth, defined as the y-coordinate of the plateau in Figure 9 (b), is shown in Figure 10 

(a) as a function of the nondimensional time tU∞/D. tU  can be interpreted as the maximum 

convective distance of the jet core in the crossflow. Thus, at any time of the jet stage (tU∞/D<10), the 

jet front should fall into the enclosed region defined in Figure 10 (a). The peak value of the jet 

penetration depth within the jet stage is estimated to be 7.8 D (0.45δ99). 

The pronounced similarity between the jet trajectory envelope of the PSJ and the previously 

studied jet trajectory of steady jets allows a comparison of their penetration ability. Jet trajectories are 
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most commonly scaled with rD (Smith & Mungal 1998), where r is defined as the ratio of the 

momentum flow velocity (Um) to the freestream velocity as shown in Equation (2). The momentum 

flow velocity here (Um) as expressed explicitly in Equation (2) shares a similar definition with that in 

Cater & Soria (2002), which is based on the equivalent integral of velocity square in the jet stage. 
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                                                (2) 

For the investigated case,  and r are calculated to be 46.8m/s and 2.34 respectively. In Figure 

10(b), the normalized jet trajectory envelope is plotted in a double logarithmic coordinate, and an 

approximate linear variation is exhibited in / ( ) 2x rD  . This suggests that the jet trajectory envelope 

of PSJ can also be fitted by the following equation (Margason 1993) 

( )By x
A

rD rD
                                                                 (3) 

where, A and B are coefficients to be determined. For steady jets in crossflow, Margason (1993) 

summarized the possible ranges of 1.2 2.6A   and 0.28 0.34B  . In the current case of PSJ in 

crossflow, the fitted value of B (0.23) is beyond that range, indicating the penetration ability of PSJ is 

not as strong as steady jets with the same momentum flow velocity. When rD is fixed, increasing the 

jet duration time (Tjet) is expected to enhance the penetration ability of PSJ. 

 

FIGURE 11 (a). Projection of the jet body outlines in the xy plane determined by the contour of 20% of the 

maximum wall-normal velocity ( ,maxyU ). (b) Streamwise and wall-normal bounds of the jet body outlines in the 

xy plane. 

The above analysis is performed based on the jet trajectories during the jet stage. As mentioned 

previously, after tU∞/D=10 (t=1000 µs) an alternative method should be proposed to track the motion 

of the jet body. In the xy plane (z=0 mm), the jet body convects downstream and away from the wall 

after the jet issuing is terminated, thus the region with large  can represent the projection of the jet 

body in the xy plane to some extent. In this study, a threshold value of 20% of the maximum wall-

mU
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normal velocity (denoted as ) is exploited to extract a well-defined outline of the jet body in the 

xy plane  (Gutmark, Ibrahim & Murugappan 2011), as shown in Figure 11 (a). 

While convecting downstream, the jet outline in the xy plane remains largely similar. The 

streamwise bounds (xmin, xmax) and wall-normal bounds (ymin, ymax) of the extracted outlines are plotted 

in Figure 11 (b) as a function of the convective time scale. The linear variation of xmax indicates an 

approximately unchanged convection velocity of the jet body (mean value: 0.85U∞). xmax-xmin defines 

the occupied streamwise extent of the jet body (Lx0). In principle, Lx0 increases with nondimensional 

time, due to the significant velocity gradient in y-direction. At tU∞/D=25 (t=2500 µs), Lx0 is about 

10D. ymax can be interpreted as the jet penetration depth of the PSJ. As expected, ymax experiences a 

monotonic increase and reaches a peak value of 10 D (0.58 δ99) at tU∞/D=25 (t=2500 µs). From this 

point of view, the PSJA used in this study still fits in the category of sub-boundary-layer vortex 

generators (Ashill, Fulker & Hackett 2002), although a peak velocity ratio of 4.6 is reported. 

4.2 yz plane 

 

FIGURE 12. Representative velocity fields in the yz plane. (a) tU∞/D=5 (t=500µs), x/D=2.5; (b) tU∞/D=10 

(t=1000µs), x/D=2.5; (c) tU∞/D=10 (t=1000µs), x/D=5; (d) tU∞/D=15 (t=1500µs), x/D=5; The out-of-plane 

velocity component ( xU ) is plotted as contours, while the in-plane velocity components ( yU  and zU ) are 

shown by black vectors and red streamlines. 

Due to the convective nature of the emitted jet, several appropriate time delays are selected to 

perform the stereo-PIV measurement for each of the five yz planes listed in Table 1. The captured flow 
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fields exhibit two distinct topologies. For each topology, two representative samples are shown in 

Figure 12. In Figure 12 (a) and (c), a prominent counter-rotating vortex pair (CVP) is observed, 

similar to that perceived in steady jets in crossflow (Kamotani & Greber 1972).  Driven by the CVP, 

the low-momentum flow in the near-wall region is ejected upward while the high-momentum flow in 

the outer layer is swept downward, as indicated by the contour lines of . The origin of the CVP is 

still a debated topic in JICF-related literature. Marzouk & Ghoniem (2007) suggest that the stretch and 

deformation of the jet shear layer vortices initiate the CVP. However, Meyer, Pedersen & Oktayozcan 

(2007) argue that the hanging vortices may be the origin of the CVP and contribute a significant part 

of the vorticity to the CVP. While the origin of the CVP is beyond the scope of the current work, the 

available planar and stereo PIV measurements can only offer inconclusive conjectures on this issue, 

and as such will not be currently considered.  

Figure 12 (b) and Figure 12 (d) correspond to the second topological structure. In this topology, 

the CVP is not well-defined, although the streamlines are severely curled at z/D=±1, y/D=1.5. A 

positive bifurcation line is observed around z/D=0, separating the velocity vectors with opposite z-

component (Kelso, Lim & Perry 1996). This flow scenario seems to be a plane projection of a second 

highly inclined counter-rotating vortex pair—possibly the so-called hanging vortex pair observed by 

Yuan, Street & Ferziger (1999). The hanging vortex pair is a quasi-steady structure residing at the 

sides of the jet. In the near-wall region, its axis is highly inclined and interests with the wall. However, 

at higher values of y, it behaves unpredictably and possibly contributes vorticity to the CVP (Yuan, 

Street & Ferziger 1999). Its formation is closely related to the skewed mixing layer on the sides of the 

jet (Kelso et al. 1996). In the same streamwise location, the second flow topology appears 500 µs (5 

convective time units) after the occurrence of the first topology. 

 

FIGURE 13. Relationship between the resolved flow topology and the streamwise measurement locations. The 

four vertical lines indicate the streamwise measurement locations of the four cases shown in Figure 12. The first 

and the second flow topology are denoted by blue dash-dot lines and red dash lines respectively. The vortex 

center locations determined roughly from the streamlines in Figure 12 are indicated by the solid points. 

xU



The measurement planes pertaining to the four cases in Figure 12 are further illustrated in 

Figure 13 in the xy plane (z=0 mm). Due to the upwash effect, the CVP can be visualized by the region 

with high  (the case of tU∞/D=5 is not included, as the high value of  is directly associated with 

the high-speed jet, instead of the CVP). All the measurement planes presented in Figure 12 intersect 

the jet body. Judging from the spatial distribution of high , the aforementioned hanging vortex pair 

seems to be connected with the CVP. Both of them bear a curved shape, following the jet outline. This 

conjecture is consistent with the perspective of Meyer, Pedersen & Oktayozcan (2007) that the 

hanging vortices transport a significant part of the vorticity into the CVP. The two distinct flow 

topologies observed earlier can be ascribed to the different intersection angles between the CVP axis 

and the PIV measurement plane. At the jet front, the CVP bends largely to the crossflow, and thus can 

be well-depicted by the stereo-PIV results (Figure 12 (a) and (c)) in the yz plane. In contrast, with a 

measurement plane intersecting the ‘root’ of the jet outline (Figure 12 (b) and (d)), only the induced 

wake flow of the hanging vortex pair will be resolved. 

In contrast to steady jets in crossflow, the CVP produced by the PSJ in crossflow exhibits a 

strongly dynamic spatiotemporal behaviour. Due to the short jet duration time, the CVP occupies a 

rather limited streamwise extent which can be approximated by Lx0 (10D). In addition, the CVP bares 

steady streamwise convection during the evolution. Thus, the residence time of the CVP (denoted as 

CVPT ) in a specific streamwise location is also finite and can be estimated by the jet duration time 

(1000 µs). From this point of view, the actuation imposed by PSJ is inherently intermittent due to the 

essential alternation between the jet stage (ejection) and the refresh stage (suction) (Zong et al. 2015). 

The following analysis aims at quantifying the intensity of the CVP from two aspects: the total 

circulation ( ( , )CVP x t ) and the variation of the TBL shape factor ( ( , , )H x z t ). According to the results 

shown in Zong & Kotsonis (2016b), the peak relative difference between the jet exit density and the 

ambient density is less than 8% for the current investigated cases. This observation, in conjunction 

with a peak jet velocity of less than Mach 0.3 fully justifies the assumption of incompressible flow. 

The boundary layer shape factor in incompressible flow is defined as follows (Schlichting, 1979). 
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where, δ
*
 and θ denote the displacement thickness and the momentum thickness respectively. 

Based on the phase-averaged stereo-PIV results, the shape factor at different spanwise and streamwise 

locations is computed, as shown in Figure 14 (a). In addition, the boundary layer profiles 

corresponding to the streamwise locations and time delays of Figure 14 (a) are shown in Figure 14 (b) 

for several spanwise locations. The shape factor (1.3) and velocity profiles pertaining to the baseline 

case (no jet) are indicated as reference. 
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FIGURE 14. (a) Spanwise distribution of the boundary layer shape factor. A zoomed view of the variation is 

shown in the inset. (b) Boundary layer velocity profiles. The corresponding streamwise measurement stations 

and time delays are indicated by the annotations. Note that the x axis changes repetitively from 0 to 1. 

The spanwise distribution of H assumes the form of a Mexican hat function, where a large 

positive peak is observed in the middle (z/D=0) surrounded by two negative peaks. For the case of 

tU∞/D=5 (t=500µs), x/D=2.5, the positive peak of H is extremely high, reaching 5.85. This can be 

attributed to the recirculation region situated at the leeward side of the jet body, which creates a large 

velocity deficit in y<0.3δ99 at z/D=0 (Figure 6). The downwash effect of the CVP is most prominent at 

z/D=±2.5, where two negative peaks of H (approximately 1.2) are evident and the corresponding 

velocity profile becomes relatively fuller. Specifically, an accelerated region is formed below y=0.3δ99, 

due to the continuous transport of the high-momentum flow from the outer layer to the near-wall 

region. As a result, the TBL is energized, and expected to have an enhanced ability to resist 

streamwise adverse pressure gradients. (Johnston & Nishi 1990) 

As the CVP propagates downstream, both the deficit region and the accelerated region move 

away from the wall. Meanwhile, the actuated velocity profiles gradually recovery to the baseline 

shape, suggesting a weakened intensity of the CVP. The velocity profiles at z/D=±5 for all cases show 

little difference with the baseline cases. Therefore, the effective extent of the CVP in the spanwise 

direction is determined to be approximately 10 D. Compared to the results of conventional synthetic 

jets in crossflow (Smith 2002), the results reported here are considerably positive. Smith (2002) 

experimentally investigated the interaction between a piezoelectric synthetic jet array (three actuators, 

rectangle orifices, wall-normal jet) with a TBL. The ratio of the time-averaged jet velocity (11.3 m/s) 

to the freestream velocity (9.1 m/s) was 1.2. Considering a sinusoidal variation of the instantaneous jet 

velocity, the peak velocity ratio (not reported) is estimated to be around 3.8, comparable to the present 

case (4.6). The boundary layer shape factors were examined in a large streamwise and spanwise 

extent. As a result, no obvious decrease of the boundary layer shape factor was observed. However, a 

distinction should be made concerning the fact that the results from Smith (2002) are time-averaged, 

while in the present study are phase-averaged. 

(a) (b)



   

FIGURE 15. (a) Streamwise vorticity field superimposed with in-plane velocity vectors at x/D=2.5, tU∞/D=5. 

The vortex regions identified by the Q-criterion are indicated by the red lines. (b) Temporal evolution of the total 

circulation and the wall-normal location. It should be noted that the five data points are acquired at different 

streamwise stations (x/D=2.5, 5, 10, 15 and 20). 

The following analysis concerns the characteristics of the CVP. A representative vorticity field 

in the yz plane (x/D=2.5, tU∞/D=5) is shown in Figure 15 (a). High vorticity mainly resides in the CVP 

cores and the near-wall region. To identify the CVP from the background, Q-criterion is used and the 

threshold value is chosen as 1% of the peak Q-value. The identified vortex regions are outlined by red 

lines in the vorticity contour. The total circulation (Г) and the wall-normal location (yc) of the CVP are 

defined as follows. 

                                                        (5) 

where Ω denotes the identified vortex region. A preliminary sensitivity study shows that when the 

threshold reduces to 0.1% of the peak Q-value, a small portion of the near-wall shear-layer region will 

be included as the vortex region. Nevertheless, the relative variation in Г and yc is less than 7%.  

The variations of Г and yc are shown in Figure 15 (b) as a function of the nondimensional time 

(tU∞/D). Since the spanwise spacing and the peak vorticity of the CVP are expected to scale with D 

and rU∞/D respectively, the total circulation (Г) can be reasonably normalized by rDU∞. The 

nondimensional total circulation Г/(rDU∞) is on the order of 0.1, and appears decreasing 

approximately linearly with the nondimensional time. At tU∞/D=25 (t=2500µs), the total circulation 

remains only 20% of that at tU∞/D=5 (t=500µs). By extrapolation, the nondimensional survival time of 

the CVP is estimated to be 32. As stated earlier, this nondimensional time can be interpreted as the 

farthest propagation distance of the jet body. Thus, the maximum effecting extent of the CVP in x-

direction is also 32D. Beyond this extent, the total circulation will drop to a negligible level. In 

addition, yc increases monotonically with the nondimensional time, indicating a lift motion of the 

CVP. This self-induced lift motion is a common behaviour of the vortex pair/ vortex ring formed at 
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orifice openings (Pullin 1979). In principle, the lifting velocity is positively proportional to the ratio of 

the total circulation to the vortex ring diameter (Wu, Ma & Zhou 2007). As Г drops, the rising rate of 

yc declines. The peak value of yc at tU∞/D=25 (t=2500µs) is just above 8.5D. 

Based on the previous analysis, the spatiotemporal characteristics of the CVP are summarized. 

The CVP bears a convective motion with the crossflow, meanwhile lifting slowly. The residence time 

at a specific streamwise location is estimated to be the jet duration time (Tjet). The maximum effecting 

extent of the CVP in the three coordinate directions (x, y and z) is approximately 32D, 8.5D and 10D, 

respectively. 

5. Turbulent kinetic energy (TKE) 

5.1 xy plane 

 

FIGURE 16. Contours of 
2/xyk u  at different time delays. (a) tU∞/D=2 (t=200µs), (b) tU∞/D=3 (t=300µs), (c) 

tU∞/D=5 (t=500µs), (d) tU∞/D=10 (t=1000µs), (e) tU∞/D=15 (t=1500µs) and (f) tU∞/D=25 (t=2500µs). Using the 

same criterion described in Section 4.1 (20% of ,maxyU ), the jet outlines are extracted and plotted as red dash-dot 

lines. The solid white rectangle in Figure 16(f) stands out an isolated high-TKE region caused by the second jet. 

Since only two-component planar PIV measurements are performed in the xy plane (z=0 mm), 

the TKE is computed using the relation of . Contours of  at different time 

delays are shown in Figure 16. The jet outlines extracted with the criterion of 20% of  (see 
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Section 4.1) are plotted as red dash-dot lines for reference. Theoretically, the production rate of TKE 

can be expressed as  (Schlichting 1979). Therefore, high TKE always resides in the 

region with high velocity gradient, namely the front vortex ring and the jet shear-layer. Additionally, 

the inevitable discharge timing uncertainty associated with pin-to-pin arc discharge can result in a 

fluctuation in the timing of the jet, and finally the production of pseudo-TKE. The magnitude of this 

pseudo-TKE can be estimated by 2 2/ u , where   is the peak velocity fluctuation caused by 

discharge timing uncertainty (approximately 3 m/s, see Appendix). As a result, the peak pseudo-TKE 

is about 14.4 , significantly lower than the TKE value measured in the front vortex ring and jet 

shear-layer (Figure 16a and b). Thus, the influence of discharge timing uncertainty can be neglected 

during the following analysis. Prior to tU∞/D=5 (t=500µs), the TKE level in the jet shear-layer is lower 

than in the front vortex ring. The peak value of kxy at tU∞/D=3 (t=300µs) is 1500 , significantly 

larger than that for the baseline case (no jet, 4 ). From tU∞/D=5 (t=500µs) to tU∞/D=10 (t=1000µs), 

the maxima of kxy drops sharply from 750  to 75 , which can be attributed to the breakdown of 

the front vortex ring. 

After tU∞/D=10 (t=1000 µs), the jet terminates and the high-TKE region is gradually 

transported downstream, following the general movement of the jet body (Figure 11). In Figure 16 (f), 

a localised area in the vicinity of the orifice (highlighted by the white solid line) is occupied by 

elevated TKE, which is attributed to the emission of a secondary jet. The existence of multiple jet 

stages in one working cycle was first predicated by the analytic model in Zong et al. (2015) and later 

validated by the PIV results in Zong & Kotsonis (2016a). The rather small area and short penetration 

depth suggest that the second jet has negligible influence on the crossflow. 

5.2yz plane 

In the yz measurement planes, stereo-PIV measurements provide access to all three velocity 

components, thus fully defining TKE by the relation of . Contours of   and k are 

shown in Figure 17. The wall-normal locations of the CVP determined in Section 4.2 are 

superimposed as white circle points for reference. The four cases used here are consistent with those 

used in Figure 12. In Figure 17 (a) and (c), the high-TKE region takes a shape of double lobe. The 

wall-normal location of this lobe pair agrees well with that of the corresponding CVP. For different 

Reynolds normal stresses, the spatial distributions are quite similar yet the absolute values differ 

largely.  contributes a significant part of the TKE, and  closely follows. Compared with Figure 

17 (a), the high-TKE region in Figure 17 (c) expands moderately while the peak value of k drops 

sharply, which can be ascribed to the fast entrainment of the low-energy flow. Figure 17 (b) and (d) 

correspond to the second flow topology shown in Figure 12 (b) and (d), where the measurement planes 

intersect the root of the CVP. In this case, the majority of the TKE remains to be contributed by . 

However, the spatial distributions of different Reynolds normal stresses exhibit a distinct difference. 

High  is concentrated in the near-wall region, showing a triangle shape. High  is also situated in 

the near-wall region whereas spreads more widely in the y-direction than . The distribution of  

takes a saddle shape, with two peaks observed at y/D=2.5 and y/D=3.5. 

/k i j i jP u u U x   

2u

2u
2u

2u
2u

2 2 20.5( )x y zk u u u  
2

iu

2

xu 2

yu

2

xu

2

xu 2

zu

2

xu 2

yu



 

 

FIGURE 17. Contours of 
2

iu  (i=x, y, z) and k at the yz measurement planes. (a) tU∞/D=5 (t=500µs), x/D=2.5; (b) 

tU∞/D=10 (t=1000µs), x/D=2.5; (c) tU∞/D=10 (t=1000µs), x/D=5; (d) tU∞/D=15 (t=1500µs), x/D=5; The four 

cases here are consistent to the ones shown in Figure 12. The contour lines of 20% of the maxima are plotted as 

dash-dot lines for reference. The y-locations of the CVP determined in Section 4.2 are indicated by white circles. 
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FIGURE 18. (a) Spatially-averaged TKE in the jet effecting region (defined by 2/ 10k u  ) as a function of the 

nondimensional time. (b) Contribution of different Reynolds normal stresses to the total TKE. It should be noted 

that the five data points at increasing time delays are collected at five different yz planes (x/D=2.5, 5, 10, 15 and 

20), same as that in Figure 15 (b). 

In order to further analyse the contribution of each Reynolds normal stress to the total TKE, the 

spatially-averaged  (denoted as ) in the “jet effecting region” is calculated, and normalized 

by the spatially-averaged TKE (denoted as ). It should be noted that the jet effecting region here 

is defined by a criterion of >10 , instead of the criterion used to extract the jet profiles in Section 

4.1 ( ). The evolution of  and  (i=x, y, z) is shown in Figure 18 as 

a function of the nondimensional time.  decreases rapidly with time. The contribution of  to  is 

always dominant. At tU∞/D=5 (t=500µs),  reaches the peak value of 66%. Afterwards, this ratio 

gradually decreases and finally keeps constant at about 0.5. For the contribution of  and , their 

variation trends are opposite to that of . They grow slowly with time and reach the steady values 

(0.3 and 0.2 respectivley) at about tU∞/D=20 (t=2000µs). 

6. Conceptual model of PSJ in crossflow 

A conceptual model of PSJ in crossflow is established based on the previous analysis as shown 

in Figure 19. Four time instants are selected, denoting four distinct stages of the evolution. It is 

beneficial to notice that this model doesn’t deny the existence of shear layer vortices, wake vortices 

and horseshoe vortices, since the measurements performed in this study are inconclusive regarding the 

origin of such structures. 

At the first stage (tU∞/D=2), a bulk of high-speed flow is rapidly released from a round orifice. 

Due to the short interaction time, a nominally erect jet body is exhibited, surrounded by a distinctive 

front vortex ring (see Figure 6 (a)). During the later interaction (second stage), the erect jet body 

gradually bends to the crossflow. Additionally, a recirculation region is observed in the leeward side 

of the jet body, associated with the hanging vortices (see Figure 6 (b-c)). A fraction of the flow in the 
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external crossflow is entrained into these hanging vortices, experiencing a spiral rising motion 

described by Meyer, Pedersen & Oktayozcan (2007). 
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FIGURE 19. Conceptual model of PSJ in crossflow. (a) first stage (tU∞/D=2); (b) second stage (tU∞/D=5); (c) 

third stage (tU∞/D=10); (d) fourth stage (tU∞/D=15). Note that both the flow scenarios and their presenting time 

may change with the actuation parameters of PSJ. 

At the third stage (tU∞/D=10), the jet terminates and the front vortex ring disappears. The 

recirculation region no longer exists but the momentum deficit in the TBL velocity profile is still 

evident (see Figure 6 (d) & Figure 14 (b)). Note that the transition from the second to the third stage is 

not abrupt. The three major flow structures (front vortex ring, recirculation region and high-speed jet) 

don’t need to diminish simultaneously. In addition, a quasi-streamwise-oriented CVP takes shape, 

which is ostensibly a natural extension of the aforementioned highly-inclined hanging vortex pair (see 

Figure 12-13). This CVP plays a significant role in enhancing the TBL’s ability to resist a possible 

adverse pressure gradient. At the last stage, the PSJA steps into the refresh stage, ingesting the fresh 

near-exit flow into the cavity for recovery (see Figure 8). The CVP is detached from the wall, 

convecting downstream steadily while lifting up slowly (see Figure 11). 

7. Conclusion 

In this study, a three-electrode PSJA (cavity volume: 1696 mm
3
, exit diameter: 2 mm) has been 

used to produce a high-speed pulsed jet (peak jet velocity: 92 m/s, jet duration time: 1 ms). The 



interaction between this single-pulsed jet and a TBL (freestream velocity: 20 m/s, δ99 thickness: 34.5 

mm) under approximately zero pressure gradient is investigated with phase-locked PIV measurements. 

The phase-averaged flow organisation and the TKE distribution in both xy and yz measurement planes 

are analysed in detail. 

For PSJA operated in crossflow, the exit velocity variation in one cycle remains almost identical 

to that operated in quiescent condition. However, the jet induced flow fields show abundant new 

features. In the xy plane (z=0 mm), the initially issued erect jet body gradually bends to the crossflow 

and a time-dependent jet trajectory is exhibited. The peak penetration depth is just above 10D 

(0.58δ99). Comparison of the nondimensional jet trajectories suggests that the penetration ability of the 

PSJ is not as strong as the steady jets with the same momentum flow velocity. Prior to tU∞/D=10 

(t=1000 µs), there exists a recirculation region in the leeward side of the jet body, experiencing an 

initial expansion and later contraction, with a peak area of three times of the exit orifice area.  

In the yz plane, a signature vortical structure of JICF—CVP is observed. The downwash effect 

of the CVP transports the high-momentum fluids from the outer layer to the near-wall region, leading 

to a much fuller velocity profile and a decreased boundary layer shape factor between 5D>z>-5D. The 

nondimensional total circulation of the CVP is on the order of 0.1, and decreases rapidly with the non-

dimensional time. The maximum streamwise effecting extent of the CVP is determined to be 32D, 

beyond which the total recirculation will drop to a negligible level. As the CVP drifts downstream, its 

wall-normal position increases as a result of the self-induction. The peak value of yc is around 8.5D.   

In the xy plane, a considerably high level of TKE is shown at the front vortex ring and jet shear-

layer. Prior to tU∞/D=10 (t=1000µs), the TKE level in the jet shear-layer is initially lower and 

afterwards equal to that in the front vortex ring. In the yz plane, the high-TKE region is closely 

associated with the CVP, taking a shape of double lobe. The spatially-averaged TKE in this double 

lobe ( k ) decreases exponentially with time, peaking at approximately 50 2u . Of the total TKE, 2

xu  

constitutes the majority proportion while 2

yu  follows. 

To summarize, the influence of single PSJA on the TBL is significant in the sense of velocity 

profile change and TKE production, yet short-lived in time domain and locally-confined in space 

domain. In future work, the interaction between a PSJA array working in repetitive mode and a 

crossflow TBL should be investigated. The spatiotemporal scales obtained in this paper provide useful 

instructions in the optimal design of PSJA arrays. 

Appendix: PIV Measurement Uncertainty 

Finite sample size, peak locking error, limited spatial resolution, finite laser sheet thickness and 

discharge timing uncertainty are identified as the five main sources of PIV measurement uncertainty in 

the present study. Assuming all the samples are uncorrelated and follow a normal distribution, the 

standard uncertainty of the phase-averaged velocity and the Reynolds normal stresses can be 

calculated as follows (Sciacchitano & Wieneke 2016). 



                                           (A1) 

As a result, large measurement uncertainty resides in the region with high velocity fluctuation, 

namely the front vortex ring and the jet shear-layer. The phase-averaged streamwise and wall-normal 

velocities are used here as representative examples. The peak values of  and  for all the tested 

cases reach 26.5 m/s and 41.9 m/s respectively. This results in peak measurement uncertainty of 1.18 

m/s and 1.88 m/s with regard to  and , which are respectively 1.3% and 2.0% of the peak jet 

velocity (92 m/s, as already be shown in Section 4.1). For the Reynolds normal stresses, the relative 

estimation error is determined to be 6.3%. 

The peak-locking error typically stems from the sub-pixel curve fitting in cross-correlation 

analysis, and cannot be reduced using statistical averaging (Huang et al. 1997). This error increases 

significantly when the particle image diameter is less than two pixels. For the investigated case 

(particle image diameter: 2-3 pixels), the peak-locking error has a periodic pattern with typical 

amplitude of approximately 0.15 pixels (Chen & Katz 2005). Considering a maximum particle 

displacement of 10 pixels, the peak-locking error yields a measurement uncertainty of 1.5 % of the 

peak velocity. 

The measurement error associated with the finite spatial resolution of PIV is modelled by 

Scarano (2003). As concluded, this error is proportional to the second-order spatial derivative of the 

velocity field for a fixed interrogation window size. For the investigated case, the actual velocity field 

is largely unavailable. However, based on the results shown in Figure 5 (a), the peak measurement 

error caused by finite spatial resolution is estimated to be 1.1 m/s. 

The finite laser sheet thickness imposes a similar spatial-averaging effect on the measured 

velocity field as the finite interrogation window. This effect is considered by Zong & Kotsonis (2017), 

and the peak measurement error yielded is modelled as a function of the ratio of laser sheet thickness 

to orifice diameter. For the investigated case, the peak relative error is estimated to be 8.3 %. 

The final error is related to the discharge timing uncertainty. Specifically, due to internal 

impedance mismatch and non-ideal properties of the discharge power supply, the high-voltage trigger 

signal is not an ideal square wave and needs a short time to rise to the breakdown voltage. Since the 

breakdown voltage of spark discharge in the inter-electrode gap is not deterministic, the exact 

discharge timing fluctuates between pulses. This timing fluctuation is further propagated to the 

measurement uncertainty of the phase-averaged velocity (Laurendeau et al. 2015). The relationship 

between the standard deviation of the discharge timing ( ) and the produced measurement 

uncertainty ( ) is derived in Equation (A2), where a local linear approximation is utilized. 
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Based on the results shown in Laurendeau et al. (2015), the standard deviation of is 

estimated as 3 µs. Considering a typical jet acceleration time of 100 μs and a peak jet velocity of 100 

m/s (Zong & Kotsonis 2016b), the peak value of  is determined to be 3 m/s. 
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The Euclidean sum of the above five measurement errors defines the total measurement 

uncertainty. However, it should be noted that each of the five errors is a function of the time delay (t) 

and the three spatial coordinates (x, y, z). Accurate estimation of this spatiotemporal total measurement 

error is far beyond the scope of this study. Considering a worst case that the five measurement errors 

peak at the same spatial position simultaneously (statistically improbable), the maximum total 

measurement error in  is determined to be 8.6 m/s, 9.4% of the peak jet velocity. 
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