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Abstract

Rock and fluid properties can be derived from acoustic signals generated by
surface seismic or wireline tools in boreholes. Direct hydrocarbon indicators
receive much attention but they are mainly based on empirical relations
between acoustic wave train attributes and rock parameters. This thesis is
a contribution to the effort to formulate a more fundamental basis for the
derivation of rock and fluid properties from acoustic waves. A two-pronged
approach was followed. First, theories on wave propagation in porous media
were reviewed and extended, and second, calculations based on these theories
were verified independently by means of experiments.

The theoretical work was based on the wave propagation equations de-
veloped by Biot (1956, 1962) for homogeneous and isotropic porous material.
From straightforward continuity and constitutive equations we showed that
the generalized elastic coeflicients appearing in the Biot theory can be di-
rectly related to porosity and rock and fluid bulk moduli. An alternative
derivation of Biot’s coupled momentum equations demonstrated that vis-
cous forces are dominant for low frequencies, while inertia forces prevail at
high frequencies. The viscous effects are characterized by the steady-state
permeability and the inertial effects by the tortuosity parameter. The tran-
sition at intermediate frequencies was decribed by the dynamic permeability
model of Johnson et al. (1987). The scaling function for the dynamic per-
meability of a porous medium only depends on the rollover frequency and a
similarity parameter M. By modelling, we demonstrated that under normal
conditions M has values close to 1, as originally suggested by Johnson et al.

Solving the Biot equations leads to a shear wave, and a fast and slow com-
pressional wave. The fast wave is characterized by in-phase pore fluid and
solid matrix movements, and the slow wave by opposite phase movements.
The out-of-phase motion explains the high attenuation of the slow wave.
Whereas the phase speed of the slow wave is influenced by the frequency-
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dependent dynamic permeability, the phase speed of the fast wave and the
shear wave are frequency independent. For the attenuation of all three bulk
waves the influence of the dynamic permeability becomes significant at higher
frequencies. Evidently, in the lower frequency range the dynamic permeabil-
ity tends to behave like the steady-state permeability. The grain compress-
ibility effects on the compressional wave velocities in the high frequency limit
were investigated. We found that for relevant ratios of grain/matrix moduli,
the two compressional wave velocities, normalized by the corresponding ve-
locities for incompressible grains, vary less than 10%. We also determined the
frequency-dependent reflection and transmission coefficients of plane waves
at oblique incidence on an interface between a fluid and a fluid-saturated
porous medium. Clear angular dependence and critical angle phenomena
were observed for all three wave types.

For the experimental verification of these statements we used two labo-
ratory set-ups and various artificial and natural porous samples. All input
parameters for the theoretical predictions of the experimental results were
measured separately on the samples. The first set-up was specifically de-
signed to measure dynamic permeability. In this so-called Dynamic Darcy
Cell transmission of low-frequency oscillating pressure gradients (20-200 Hz)
was obtained with a vibration exciter on one side and pressure transducers
on both sides of a rigidly mounted artificial sample. All results demonstrated
that the ratio of dynamic over steady-state permeability can be adequately
described by the rollover frequency and a similarity parameter close to 1.
In the second set-up, ultrasonic transmission experiments between 0.1 and 1
MHz were carried out with piezo-electric transducers placed on each side of
a slab of porous material submerged in water. We found that the Biot the-
ory gave a very accurate description of all three phase-speed measurements
both for artificial samples and for samples cut from natural Nivelsteiner and
Bentheimer sandstone. Moreover, we measured the Biot slow wave for the
first time on a natural rock (Nivelsteiner sandstone). The Biot theory cor-
rectly predicted the attenuation of the slow wave in almost all samples but
it failed to predict the fast wave and shear wave attenuation. Scattering,
micro-cracks, and clay-related damping were assumed to account for the dif-
ference between measured attenuation and Biot predictions. We also found
that the unconsolidated Nivelsteiner sandstone samples show much higher
attenuation values than the consolidated samples. Future work should con-
centrate on quantifying the non-Biot type attenuation mechansims, and on
the influence of small-scale inhomogeneities and thin-layered media.



Chapter 1

Introduction

1.1 Background

Acoustic signals are used extensively in the oil and gas industry to delineate
geological structures down to a few kilometres and to obtain lithology infor-
mation on sedimentary rocks. They are also used for gathering knowledge of
the deeper part of the crust, down to 45 kilometres, which is an important
source for earthquake prediction. Acoustic techniques comprise surface seis-
mics, vertical seismic profiling, cross-well tomography, sonic wireline logging,
and ultrasonic logging measurements.

All these techniques use a source which emits acoustic waves. These
waves propagate through the rock and are subsequently detected by one
or more receivers. The detected waves contain information about the rock
along the wave path and the objective of all techniques is to extract this

information in terms of geological structures and rock properties.

In the past, seismic methods used by the oil industry were mainly ap-
plied to delineate structures which might contain hydrocarbons. For this,
conventional surface seismic reflection methods make use of sources and de-
tectors placed near or on the surface (operating frequencies between 10 and
100 Hz). Seismic waves travelling down reflect from layer boundaries back
to the surface, where they are recorded. From these recorded signals, veloci-
ties and depth profiles of the subsurface are extracted by means of dedicated
seismic processing techniques. Besides the arrival times of the seismic waves,
changes in signal amplitude are also studied. Seismic stratigraphy uses the
fact that a given geological sequence corresponds to a given signature on the
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seismic signal, which makes it possible to obtain qualitative lithologic data
on the various layers. Furthermore, the presence of gas sometimes causes
high energy reflections in the form of local amplitude anomalies known as
bright spots. Recently, a range of seismic attributes has been used to indicate
the presence of hydrocarbons (direct hydrocarbon indicators or DHI’s).

Borehole logging techniques are used to obtain more detailed information
about potential reservoirs. In vertical seismic profiling (VSP) the source
remains located on the surface, but the receiver is placed in a borehole. This
configuration allows for higher frequencies to be used (up to 500 Hz). In areas
with more than one borehole, the source can be placed in one borehole, and
the receiver in the other. This is called cross-well seismology. A maximum
frequency of several kHz is feasible. In this way details in the order of 1
to 5 m can be detected, whereas for the surface seismic method the highest
resolution is about 20 m.

Finally, the sonic (10-100 kHz) and ultrasonic (up to 10 MHz) bore-
hole logging techniques enable us investigating the reservoir at the pore
scale. Conventional acoustic logging measurements started out as a com-
panion to surface seismic measurements. This led to the well-known Wyllie
time-average equation to estimate porosity from velocities. Subsequently,
newer acoustic devices and improved signal processing techniques provided
borehole measurements which allow applications beyond the conventional
estimation of porosity. These applications include determination of lithol-
ogy and fluid type, detection of overpressured zones, fracture density and
estimation of formation strength. The ultrasonic devices operating in the
MHz ranges have opened the door to acoustic borehole imaging.

1.2 Problem statement

Because of the increasing value of undepleted reservoir rock, remaining oil,
and the higher complexity of new oil fields, a major shift in the use of acous-
tic signals occured. One of the central aspects of this shift involves the need
to establish and understand the relations between the acoustic responses
of reservoir rock, and their production and lithological properties, such as
porosity, permeability, and saturation. So far, practical interpretation pro-
cedures have been based on empirical relationships between the transit time
and amplitude of acoustic signals to the various rock properties. To under-
stand the influence of the rock properties on the recorded wavetrain better,
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we are not only interested in velocity and amplitude variations but also in the
damping of the wave and the frequency-dependent behaviour of the acoustic
signal.

To fulfil this requirement, we need a comprehensive theory of frequency-
dependent wave propagation in poro-elastic media to offset the higher com-
plexity and sub-seismic size of many newly discovered reservoirs. Moreover,
this understanding is expected to contribute to locating the remaining oil
in developed reservoirs. In this study we concentrate on the experimental
verification of such a theory.

A suitable approach for this verification is found in the scientific model
depicted in Figure (1.1). We start by measuring the production and litholog-

accept theory
| YES !
S '.J'I_ —
predicted Agreement within |‘ actual
measurements P |speciﬁed tolerance? | measurements
— RS
1 1 NO ! 1
[ _I
theory (flexible) - acoustic
adjustment experiment
measured 4 1
rock parameters rock sample

Figure 1.1: Scientific model

ical parameters of one specific rock sample separately. Next, we formulate
a theory which describes the propagation of acoustic waves in space and
time through a medium which is representative of the rock sample. After
substituting the rock and fluid parameters in this theory, we can calculate
a synthetic seismogram for this specific sample, called the ”predicted mea-
surement”. Next, we subject this rock sample to an acoustic experiment and
compare these ”actual measurements” with the predicted measurements. If
the difference between these measurements is within a specified tolerance,
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the theory is accepted. If not, the theory needs to be adjusted, because
both the input parameters and the actual measurements are considered to
be correct. In the end, the resulting theoretical model can be used as a fixed
part in an inversion process to determine unknown rock parameters. This is
beyond the scope of this study, but it is shown in Figure (1.2) for the sake
of completeness. In the inversion process the rock parameters are adjusted

accept
rock parameters

e "';
t YES
—t = -_—I__ —_
predicted '—Agreement within |<_ actual
measurements : | specified tolerance?l measurements
— —I—-_!—?—-—' -_
1 t NO ! T
co
theory (fixed) acoustic
. survey
adjustment
unknown IEservoir
rock parameters < prediction rock

Figure 1.2: Inversion process

until the best fit between predicted and actual measurements is obtained. In
practice the inversion process is used as a starting point to extract the rock
parameters from the actual measurements. The remarkable resemblance be-
tween scientific work to find new theories and the practical work done to
find rock parameters is noteworthy.

1.3 Literature survey

Theory

A theoretical description of wave propagation and damping in saturated
poro-elastic material was already developed in 1956 both by Biot and by
De Josselin de Jong. Biot (1956, 1962) derived a straightforward and effec-
tive two-phase theory in which the averaged motions of both the solid and
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fluid parts of the porous medium were described. A fundamental feature of
the Biot theory is the existence of three types of bulk waves: a fast com-
pressional wave, a slow compressional wave, and a shear wave. For the fast
compressional wave, the pore fluid and the porous material are compressed
simultaneously, but for the slow compressional wave the porous material re-
laxes when the pore fluid is compressed. These two wave types are therefore
often denoted as the ‘in-phase’ and the ‘out-of-phase’ wave types, respec-
tively. Independently of Biot, De Josselin de Jong (1956) described acoustic
wave propagation through sandstone saturated with water, and he also pre-
dicted the occurrence of two compressional waves and a shear wave.

The classical Biot theory contains two limits: the low-frequency and
high-frequency limit.

o Low-frequency limit. In this low-frequency limit the frequency is low
enough for viscous effects in the fluid to dominate the inertia effects. In
this case the viscosity of the fluid causes the fluid motion to ‘lock-on’
to the solid motion, and consequently the slow wave becomes diffusive
instead of propagatory. This low-frequency limit is often called the
Biot-Gassmann result (Gassmann, 1951).

e High-frequency limit. In the high-frequency limit the inertial forces
are much larger than the viscous forces between the fluid and solid
movements. This means that in this case we may ignore any viscosity
effects and the only coupling mechanism left between the fluid and
solid movements is determined by the tortuosity of the porous material,
which is an inertial coupling mechanism.

The frequency-dependent combined effect of inertial forces and viscous drag
forces is described by the so-called complex viscosity correction function
(Biot, 1956b). This function was evaluated for the flow of a viscous fluid
under an oscillatory pressure gradient in a circular tube.

In 1987, Johnson et al. described this complete frequency-dependent in-
teraction between the fluid and solid movement by introducing the dynamic
permeability of a rigid fluid-saturated porous medium. This behaviour was
reformulated by Smeulders et al. in 1992 using a microstructural approach.
Both papers showed that the permeability depends on the frequency of the
oscillating flow through the rocks. The dynamic permeability over the en-
tire frequency range can be described by a scaling function. Similar to
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Biot’s complex viscosity correction function, this scaling function exhibits
a transition from the low-frequency behaviour, viscosity-dominated part, to
a high-frequency inertia-dominated part. It was also found that the nor-
malized permeability, defined as the dynamic permeability divided by the
steady-state permeability, in most practical cases does not depend on the
microstructural geometry of the rocks. Numerical calculations of the dy-
namic permeability for a variety of microstructures were presented by Sheng
and Zhou (1988), Yavari and Bedford (1990), and Chapman and Higdon
(1992). Experimental data was obtained by Charlaix et al. (1988), Smeul-
ders et al. (1992), Johnson et al. (1994), and Kelder and Smeulders (1996b).
Despite the fact that the dynamic permeability does not depend on the mi-
crostructural geometry of the rocks, numerical computations indicated that
this is probably not the case for microscopically sharp-edged pore geometries
(Smeulders et al., 1994).

Biot derived his macroscopic equations for wave propagation in saturated
poro-elastic material by postulating definite positive energy density func-
tions. In contrast to Biot’s approach, Burridge and Keller (1981), Whitaker
(1986), Pride et al. (1992), De Vries (1989), and Geerits (1996) derived
the macroscopic equations rigorously from the microscopic equations of the
constituents of the fluid-saturated porous medium. To this end, they in-
troduced averaging techniques to translate the microscopic behaviour to a
scale much larger than the characteristic pore diameter (macroscopic level).
For example, De Vries (1989) developed a linear acoustic theory for wave
propagation in a porous medium with the aid of a spatial volume-averaging
technique. The resulting macroscopic field equations of this theory have the
same appearance as Biot’s high frequency-limit equations. In 1996, Geerits
extended this theory for the case in which damping of the interface-type is
incorporated.

The reflection and transmission of acoustic waves from an interface be-
tween a fluid and a fluid-saturated porous medium is another subject of
our study with widespread applications. We mention for instance ultrasonic
non-destructive evaluation, underwater acoustics, seismology, and acoustic
imaging in fluid-filled boreholes. Over the years, many authors have inves-
tigated the influence of such an interface on the propagation and reflection
characteristics of the three different bulk waves (Allard, 1993). Already
in 1960, Deresiewicz (1960) calculated reflection coefficients for these bulk
waves generated in a non-dissipative case semi-infinite fluid-saturated porous
medium incident at oblique angle upon a free surface. This was extended to
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the general case, taking account of the dissipation, by Deresiewicz and Rice
(1962). Subsequently, Deresiewicz and Levy (1967) and Chin et al. (1985)
successfully derived expressions for both reflection and transmission coeffi-
cients at normal incidence. Other authors (Hajra and Mukhopadhyay, 1982;
Wu et al., 1990) discussed these coefficients for waves incident at oblique
angles, neglecting however dissipation effects.

Experiments

In recent years it has become clear that the acoustic bulk properties (phase
speed and bulk attenuation) of artificial porous material saturated with New-
tonian fluids are well described by the Biot theory. Extensive quantitative
experimental research on porous materials of this type showed the strong
predictive power of the Biot theory, and confirmed the attenuation mech-
anism involved (Hovem and Ingram, 1979; Berryman, 1980; Johnson and
Plona, 1982). Moreover, Johnson et al. (1994) and Kelder and Smeulders
(1995, 1996a) showed for the same type of samples that all observed phase
speeds and the attenuation of the Biot slow wave can be explained by intro-
ducing the dynamic permeability in acoustic wave models . The attenuation
mechanism for the propagating bulk waves in porous material as proposed
by Biot in 1956 is based on viscous dissipation. For the slow wave this
results in strong, frequency-dependent attenuation, which makes this wave
very difficult to observe. The first clear observation of a propagating slow
wave was reported by Plona (1980) for water-saturated sintered glass beads.
Following Plona’s observation, considerable effort has been expended in try-
ing to detect this slow wave in natural sandstones. Although the slow wave
was already detected in thin slabs of air-filled sandstone (Nagy et al., 1990),
and in water-saturated, unconsolidated sand (Boyle and Chotiros, 1992),
the first measurement of slow wave propagation in natural water-saturated
sandstones was reported only recently by Kelder and Smeulders (1997).

Many natural sandstones show much more velocity dispersion and atten-
uation than is predicted by the Biot theory. Several review articles have been
published on this specific subject (Johnston et al., 1979; Gist, 1994; Win-
kler and Murphy III, 1995). It was suggested that there are important pore
structures in natural sandstones that produce additional attenuation rela-
tive to the Biot prediction. In this respect, we mention two major non-Biot
attenuation mechanisms from literature which cause a significant additional
attenuation of waves in natural sandstones, and which might be able to
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account for the difficulty to observe the Biot slow wave. The first is the
so-called ’local flow’ mechanism, which is based on small aspect-ratio micro-
cracks along grain boundaries, generating local fluid flow at the grain scale.
Viscous dissipation driven by this local flow increases the wave attenuation
(O’Connell and Budiansky, 1977; Murphy et al., 1986). A second mechanism
was demonstrated by experimental data from Klimentos and McCann (1988)
in artificial rocks made of cemented sand grains. They observed that clay
increases the attenuation of the slow wave (relative to the Biot theory pre-
diction) by increasing the pore wall surface area. According to Gist (1994),
these two attenuation mechanisms are not present in synthetic porous ma-
terial because it lacks both the microcracks responsible for local flow, and
small-scale pore wall roughness resulting from the growth of clay particles
on the surface of the sand grains.

1.4 Approach and thesis outline

In this thesis we investigate both theoretically and experimentally to what
extent the frequency-dependent propagation, reflection and damping of acous-
tic waves is influenced by formation rock properties like porosity, permeabil-
ity and lithology of the porous material.

On the theoretical side, we investigate the mechanisms of frequency-
dependent wave propagation and damping. As was mentioned before, this
dynamic behaviour is a result of the relative fluid to solid motion which takes
place when a wave propagates through saturated porous rock. We extend the
description of existing theoretical models by presenting alternative deriva-
tions and we discuss the behaviour of wave propagation in the low and high
frequency limit. Besides the influence of the bulk material on wave propaga-
tion and damping, we also investigate the frequency-dependent transmission
and reflection coefficients of plane waves with oblique incidence on a plane
interface between a non-viscous fluid and a dissipative fluid-saturated porous
medium.

On the experimental side, we present new and more accurate measure-
ments of acoustic bulk properties of water-saturated porous media. This
includes measurements of phase speed, attenuation, and specific attenuation
(1/Q), for all three types of bulk waves, covering an ultrasonic frequency
range from 100 kHz to 1 MHz. A fluid/rock/fluid transmission configuration
was chosen, because such a configuration is the most suitable for measuring
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the fast compressional wave, slow compressional wave and shear wave. By
comparing measurements on two different slab thicknesses of the same ma-
terial we were able to separate the reflection/transmission effects from the
bulk effects and to measure the bulk properties independently. Experimental
results are compared with synthetic results, based on the Biot theory. The
dynamic permeability is used to describe the frequency-dependent charac-
teristics. It should be noted that all parameters relevant to the Biot theory
were measured independently, allowing us to calculate the measured bulk
properties. The latter is expected to make an important contribution to the
constrained inversion of seismic signals to find rock properties, which is very
topical in seismic interpretation.

For test materials we used both artificial sandstone samples and samples
cut from Nivelsteiner and Bentheimer sandstone outcrops. The latter sand-
stone is a reservoir rock in other places. As far as we know, the experimental
observation of the Biot slow wave in the natural water-saturated Nivelsteiner
sandstone is the first time this wave is observed in such a medium. It en-
abled us to investigate the viscous damping in natural sandstone more pre-
cisely, and to find out quantitatively wether additional mechanisms should
be incorporated in the theory. It also allowed us to measure accurately the
attenuation of the slow compressional wave, as well as the fast compressional
wave and the shear wave.

The thesis outline is as follows:

e Chapter 2 discusses in some detail the basic field equations which gov-
ern the elastic wave propagation in fluid-saturated porous media. The
equations are based on the Biot theory (1956, 1962) for wave propa-
gation through homogeneous, isotropic porous material. For a better
understanding of these field equations we show some alternative deriva-
tions.

e Chapter 3 introduces the concept of dynamic permeability (Johnson
et al., 1987) in a fluid-saturated rigid porous medium. We also derive
a new analytical relationship between the dynamic permeability and
rock properties for a model porous medium. This model clearly shows
the influence of pore texture on the production parameters.

e Chapter 4 gives the expressions for the acoustic bulk properties of a
fluid-saturated porous medium. These theoretical values, based on the
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Biot theory, are verified experimentally in Chapter 7. A new aspect in
this chapter is the effect of grain compressibility on the high-frequency
velocities of both the fast and slow compressional wave.

e Chapter 5 discusses a two-dimensional numerical model from which
we obtain frequency-dependent and angle-dependent transmission and
reflection coefficients at the interface between a non-viscous fluid and
a fluid-saturated porous medium. Results are used to calculate the
total transmission coefficients through a fluid-saturated porous layer
immersed in fluid.

e Chapter 6 provides a description of the artificial and natural sandstone
used for the acoustic experiments. Furthermore, we discuss the exper-
imental determination of the rock parameters of these types of sand-
stone. Finally, we show the experimental verification in rigid porous
media of the scaling function for the dynamic permeability over the
full frequency range.

e Chapter 7 shows the ultrasonic wave propagation experiments through
disks of water-saturated sandstone placed in a water-filled tank. Re-
sults of phase speed, attenuation and specific attenuation (1/Q) for
all bulk waves are given. Measurements of these bulk properties are
compared with theoretical predictions calculated with the Biot theory.



Chapter 2

Basic field equations for
fluid-saturated porous media

2.1 Introduction

This chapter discusses the basic field equations which govern elastic wave
propagation in fluid-saturated porous media. We use the linearized equa-
tions formulated by Biot in 1956 and 1962. In these equations the averaged
motions of the solid and fluid parts of the fluid-saturated porous media were
considered separately. For the derivation of constitutive relations the gen-
eralized Hooke’s law was followed. In describing the dynamics in such a
medium, he introduced the concept of dynamic coupling between the solid
matrix material and the saturating fluid. To describe the macroscopic Biot
parameters in terms of microscopic properties of the porous structure, rig-
orous averaging techniques were applied by authors such as Burridge and
Keller (1981), Whitaker (1986), Pride et al. (1992), De Vries (1989), and
Geerits (1996).

We start with a general description of poro-elastic material. Next, con-
stitutive relations are discussed within the framework of the Biot theory for
poroelasticity (Biot, 1941, 1955). A new aspect is to relate the parameters
used in the Biot theory to measurable quantities of the porous aggregate
using ‘gedanken’ experiments and continuity equations. Finally, equations
of motion for both the fluid and solid phases are reviewed including the
dynamic coupling between these phases.
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2.2 Mechanical description of a porous medium

The original Biot theory was developed using a semi-phenomenological, macro-
scopic approach, based on a set of physically realistic assumptions. This ap-
proach means that the microscopic dimensions of the individual constituents
of the saturated porous medium are not considered. The following assump-
tions were made:

e The fluid-filled porous material is constituted in such a way that the
fluid phase is fully interconnected. Any sealed void space is considered
a part of the solid.

e A so-called representative elementary domain D is defined, which is
small compared to the relevant wavelength but large compared to the
individual grains and pores of the system.

e Small displacements for both the fluid and solid phases are assumed.
This means that equations are presented in their linearized form.

e The fluid neither transmits nor reacts to a shear force in the solid.
This is in accordance with the assumption that the fluid has no shear
strength.

e The matrix is assumed to be elastic and isotropic, and all the mech-
anisms of dissipation related to the matrix, such as those due to the
possible presence of fluid in the sealed pores, will not be dealt with.

e The absence of thermo-elastic and chemical reaction effects is assumed.

Consider an orthogonal Cartesian reference frame with origin 0 and the
three mutually perpendicular base vectors {i1,i2,i3} of unit length each
(see Figure 2.1). Following the assumption of small displacements for the
constituting phases, the strain components e;; for the solid and ¢;; for the
fluid, respectively, are

ei; = 1/2(0;u; + djuy), (2.1)

Eij = 1/2(3]‘Ui + 81;Uj), (2.2)

in which the averaged fluid particle displacement U; and the averaged solid
particle displacement u; follow from an intrinsic volume averaging procedure
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1

Uitx,) = 77 / Ul (<, t)av, (2.3a)
x'eDf (x)
1

wilx,t) = o / w (x, 8)dv, (2.3b)
x’'€D3(x)

where V; is the fluid volume, V; is the solid volume, Uif is a local displacement
of the fluid, and u{ a local displacement of the solid. The vector x denotes the
location of the centroid of the representative elementary domain D within
the orthogonal Cartesian reference frame, as depicted in Figure (2.1). The

vector x’ is a position vector which denotes locations of points within the
fluid or solid part of D.

Figure 2.1: The position vector x' of fluid and solid particles in the subdo-
mains Df and D inside the representative elementary domain D.
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Considering a fluid-filled elastic skeleton with a statistical distribution of
interconnected pores, the porosity will be denoted by:

)

¢ = ) (2.4)

where V; is the volume of the pores contained in a sample of bulk volume
V,. The term ‘porosity’ refers to the effective porosity, thus including only

the interconnected void spaces as opposed to those pores which are sealed
off. The total stress tensor in the bulk material is

Tt +7 Ti2 T13
T21 T2 + T To3 ) (2.5)
731 732 T33+ T

with the symmetry property 7;; = 7;;. If we consider a cube of unit size of
the bulk material, 7 represents the total normal tension force per unit bulk
area Ay applied to the fluid part of the faces of the cube. Denoting by p the
pressure of the fluid in the pores we may write

T = —¢p. (2.6)

The remaining components 7;; of the total stress tensor are the forces per
unit bulk area applied to that portion of the cube faces occupied by the
solid. They are a result both of the fluid pressure p and the additional
intergranular stresses o;;

Tij = —035 — (1 — ¢)pdy;, (2.7)

where the Kronecker symbol 6;; is obviously introduced because the pore
fluid cannot exert nor sustain any shear forces. We notice that the additional
intergranular stresses o;; are defined as negative in tension. They are referred
to as ‘additional’ because they add up to the fluid pressure-induced stresses
in the solid (see Equation 2.7). We may also define the forces per unit solid
area A; applied to that portion of the cube faces occupied by the solid

Psi; = Tij A/ As = —0ij/ (1 — ¢) — pdy;. (2.8)

Obviously, the total normal tension force per unit fluid area A; applied to
the fluid part of the faces of the cube can be written as 74;/Af = —p. From
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Equations (2.6) and (2.7) it follows that the total stress tensor in the bulk
material may also be written as:

—011 —pP —0O12 —013
—o91 -0 —p —093 . (2.9)
—031 —032 —033 — P

This formulation of the total stress tensor is also given by Verruijt (1982);
it must however be noted that he denotes the total stress tensor by o;; and
the intergranular stress by &;;.

2.3 Continuity and constitutive relations

Following the assumptions and definitions as mentioned above, and by a
generalization of the procedure followed in the classical theory of elasticity
(Love, 1944), the elastic potential energy, V, for a symmetric fluid-filled
poro-elastic medium is given by Biot (1955) as:

2V = men + Tazez2 + T33€33 + Ti2€12 + Ti3e13 + Tozers + TE, (2.10)

where € = €. Summation over repeated indices has been assumed. The
form of the strain-energy function (2.10) implies the symmetry of stress,
Tij = Tji, and strain, e;; = ej;. This reduces the number of independent
elastic coeflicients in the poro-elastic streso-sirain relations, following the
generalized Hooke’s law, from 81 to 28. In the literature this is known as
general anisotropic poro-elasticity. When the material is isotropic, i.e. when
there are no preferred directions in the material which means the principal
stress and strain directions coincide, this is reduced to four distinct elastic
coefficients. Introducing the elastic constants G, A, Q and R, the stress-
strain relations for an isotropic rock may be written as (Biot, 1955)

Tij = 2Geij + Aekrdij + Qekrdij, (2.11)

T = Qe + Regg, (2.12)

The parameters A, @}, R and G are generalized elastic coefficients which can
be related to such measurable quantities as the porosity ¢, the fluid bulk
modulus Ky, the bulk modulus of the grains K, the bulk modulus of the
porous composite K, and the composite shear modulus G.
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The elastic coefficients, determining the deformation properties of the
fluid-solid system, were related to measurable quantities by Gassmann (1951),
Biot and Willis (1957), Geertsma and Smit (1961), Stoll (1974), Brown and
Korringa (1975) and Berryman (1981). Up to now these relationships were
always derived from static ‘gedanken’ experiments on jacketed and unjack-
eted porous samples. However, in this study the results of these experiments
are used to give an alternative derivation of the stress-strain relations from
straightforward continuity and constitutive relations.

2.3.1 ‘Gedanken’ experiments

In the ‘gedanken’ experiments the volume effects caused by the stresses in
the porous medium are investigated. As these stresses can be expressed in
terms of pore pressures and intergranular stresses, we discuss two experi-
ments in which the influences of the two stresses are studied separately. The
first experiment is the so-called unjacketed test in which the influence of
pore pressure is studied.

Unjacketed test

When a porous sample is fully submerged in a watertank, while a pressure
change dp’ is applied, and the sample is assumed to be fully water-saturated,
it is immediately clear that the fluid pressure must be continuous over the
interface:

dp' = dp. (2.13)
For the intergranular stresses at the interface we may write
dO’u = d022 = d0'33 = 0. (214)

As there are no changes in the intergranular stresses, the unjacketed test is
used to study the volume effects caused by the pore pressure changes. Defin-
ing the matrix bulk modulus K,, the bulk volume change dV, = — K[ V,dp
is measured in this test. In the case of homogeneous bodies, whether or not
isotropic, the application of an incremental pressure dp’ means applying this
increment both to the outer and inner pore surface, which leads to a linear
mapping and does not change the porosity ¢ (d¢ = 0). Therefore we may
write for the volume change of the matrix grains

1
Vs = (1 - §)dVy = ——Vidp. (2.15)
K,
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This means that for homogeneous media K, can also be interpreted as the
bulk modulus of the single grains, denoted by K. In the case of inhomoge-
neous bodies, it can no longer be argued that the porosity is not influenced
by a pressure change. Instead, it seems appropriate to introduce a bulk
modulus of the pore volume K V= _(¢V3)"18(¢V3) /Op, which leads to

_ L4
dé = — (K¢ X, dp. (2.16)
From the relation d¢ = d[1 — V;/V;) it can be found that
1 1 ¢
W=~ ( 7 K¢) Vdp. (2.17)

Although it seems straightforward to determine the coefficient K, by mea-
suring the displacements of the sample’s boundary surfaces it is not imme-
diately clear how to determine Ky. This problem was discussed by Biot and
Willis (1957), who proposed measuring the increment of pore fluid content.
We will not discuss this any further and will assume homogeneity from now
on.

Jacketed test

The second experiment is the so-called jacketed test in which the influence
of intergranular stresses is studied. In this case, a porous sample is jacketed
and fully submerged in a watertank (pressure change dp’) and the inside
of the jacket is allowed to communicate with the atmosphere via a tube to
ensure constant internal fluid pressure. We may write (cf. (2.9) and dp = 0)

dp' = d0'11 = d0'22 = d0'33. (2.18)

As there are no pore pressure changes, the jacketed test is used to study
the volume effects caused by intergranular stresses. Defining the matrix
bulk modulus Kj, the bulk volume change dV, = — K~ ly,do is measured
in this test, where o is the isotropic component of the intergranular stress:
o = okk/3. It is often assumed that a dry specimen exhibits the same
properties as a fully saturated one and therefore the conventional jacketed
test is usually performed on a dry specimen. Assuming that the response
of the solid particles to a unit increase of the average stress induced by the
intergranular forces equals the response to a unit increase of the uniform
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stress induced in these particles by the fluid pressure, we may write for the
volume change of the particles (cf. (2.8) and (2.15))
1 1
dVy = ————
* (1 - ¢) Ks
This relation between the particle volume and the intergranular stress is also
described by Verruijt (1982), who initially assumes that the volume change
is not described by [Ka(1 — ¢)]™!, but by a separate parameter Bp. Again
using the relation d¢ = d[1 — V,;/V;], we can find for the porosity change

V,do. (2.19)

1-¢ 1
dep = — ( K, Z) do. (2.20)
Apparently, there is always a porosity change in this type of compression
test, whether or not we are discussing homogeneous samples. It can also
be argued that a small increase of the intergranular stress must result in
a decrease of the porosity, so 9¢/00 < 0. From (2.20), we then find that
(1 — ¢)K;s > Ky, which was also previously stated by Verruijt (1982).

The bulk volume change can now be described as a function of both the
pore pressure change and the change of the intergranular stress and thus as
a summation of the effects discussed in the previous experiments:

dVy = ——~Vydo — —Vpd (2.21)
b= K, b K, baP- .
Equation (2.21) describes the change in particle volume as a function of
the change in pore pressure and intergranular stress. This relation may be
rewritten as

K
—atd = Kbate + Fbc')tp, (2.22)

where e = egy, = dV,/V,. Only the intergranular stress o can produce shear
strain. So when we measure the shear modulus of a dry sample, i.e. p =0,
the rock shear modulus G' can be incorporated following Hooke’s law for
an isotropic elastic solid. In this way, it can easily be seen from Equation
(2.22) that the stress-strain relation for the porous skeleton may be written
as (Verruijt, 1982)

2 K,
—0i5 = (Kb — gG)e(Sij + 2G6i]‘ + ?bpdij. (2,23)

S
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In the literature, the effective stress o7 is often introduced in such a way that
the deformation of the matrix is fully determined by that stress (Verruijt,
1982):

K 2
—0jj = —0ij — fip% = (Kp — §G)65ij + 2Ge;; . (2.24)

The factor Ky — %G is often referred to as A, whereas p is frequently used
as a different notation for G. A and p are known as Lamé’s coefficients.

2.3.2 Relations to measurable quantities

We continue with the derivation of stress-strain relations for a fluid-filled
porous system by means of continuity and constitutive equations. Consid-
ering a homogeneous body, we refer to Equations (2.15) and (2.19). For the
fluid, the bulk modulus K7y is introduced. The constitutive relations then
become

1 1 1 1
p—sc')tps = K‘satp'i— (1 — ¢) Ksatd, (225)
L duop = —a (2.26)
pf tpf - Kf tp' .
The linearized continuity equations are
(1 = Bps] + (1= §)psV.v =0, (2.27)
Bi(dpys) + dpsV.w = 0, (2.28)

where we have defined the averaged velocities w = ;U and v = d;u of the
fluid and solid parts of an arbitrary volume element. From the combination
of the solid relations (2.25) and (2.27) and the fluid equations (2.26) and
(2.28) respectively, we may write

1-¢
K,

1
Op + Fato -0+ (1-¢)V.v=0, (2.29)
8
2 op+ O+ V. =0, (2.30)
Ky

Elimination of the porosity term by adding the equations yields

(11;4’ + K%) Ohp + Kisata +(1=¢)V.v+¢V.w =0, (2.31)
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This relation is usually called the storage equation, which forms a basic rela-
tionship in consolidation problems (Verruijt, 1982). We may now eliminate
either o or p from the storage equation (2.31) with (2.22) and using the
identity 0:e = V.v. This yields

[0:p + Kf (1 —¢— —II%) Vv+ (].')KfV.W =0, (2.32)

S

BOi0 + pKpV.v — QSkaK—QV.w =0, (2.33)
S

where we have introduced 8 = ¢ + K;/K (1 — ¢ — K,/K,). Combining
the fluid relation (2.32) and the time derivative of the solid relation (2.23)
we may obtain the following seét stress-strain relations for a fluid-saturated

porous medium:
—04055 — (1— ¢)8tp6ij = G(aﬂ)j + iji) + Aakvkdij + Qakwkéij, (2.34)
—¢Op = QOkvy + Ropwy, (2.35)

where we have introduced the following parameters:

LKt (1=K (1 -¢— )

ﬂ - gG, (236&)

_ 4 _ K,
_ #K0 ﬂd’ ?5), (2.36b)
R= ?%{i. (2.36¢)

Again, 8 = ¢ + K;/K,(1 — ¢ — K,/K;). If we assume that the porous
rock and pore fluid are much more compressible than the grains themselves
(Ky/Ks <1 and Ky/K; < 1), we may write

a=U ;"5)21(, + Ky — §G, (2.37a)
Q= Ks(1-¢), (2.37b)
R = ¢K;. (2.37¢)

The parameters A, @ and R were also used by Biot (1956a), Biot and
Willis (1957), Geertsma and Smit (1961), Stoll (1974), Johnson (1986) and
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Smeulders et al. (1992), but up to now they were always derived from static
‘gedanken’ experiments on jacketed and unjacketed porous samples and not
from straightforward continuity and constitutive relations. Equations (2.34)
and (2.35) are the time derivatives and full equivalents of the stress-strain re-
lations (2.11) and (2.12), describing the deformation behaviour of the solid-
fluid system. For this, note the use of the identities ;¢ = V.v = vy,
Oie = V.w = Ogwyg, Oie;; = 1/2(0;vj + 0jv;) and the pressure-stress defini-
tions in Equations (2.6) and (2.7)

Geerits (1996) defined the constitutive parameters «/f, x8f, /s, A%S,
and M**. It can be shown (see Appendix A) that they can be expressed in
terms of the four Biot parameters A, G, Q and R:

WF I D¢

= SR (2.38a)
s _ 51;?—%2’ (2.38b)
w5l = :DQIS_——Q(?’ (2.38¢)
oM — %ﬂ , (2.38d)
g LE1=9) (1-9) (2.380)

" 3 DR-Q? 2G
where 3D = 2G + 3A.

2.4 Momentum equations

Following Biot (1956a), we consider a homogeneous, isotropic fluid-filled
porous medium and assume that the flow of the fluid relative to the solid
through the pores is of the Poiseuille type. In this case, the microscopic flow
pattern inside the pores will be a linear function of the six average velocity
components of the solid and the fluid v; = 0u;/0t and w; = OU;/3t. The
kinetic energy T of this system per unit volume may be expressed as

2T = p11viv; + 2p12v;w; + prw;w;, (2.39)

The density coefficients p;; and po2 are related to the density of the solid p,
and fluid p; by

pui1 = (1— ¢)Ps — P12, (2.40)
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p22 = ¢ps — p1a. (2.41)

The coeflicient p;5 represents a mass coupling parameter between fluid and
solid. It is always negative and proportional to the fluid density

pr12 = (a0 — 1)dpy, (2.42)

where the parameter aq is referred to as the tortuosity parameter (aqy, > 1),
a purely geometrical quantity.

Similar to the case for the stress-strain relations, Geerits (1996) defined
the coupling parameters mff, m® mf* and m*/. It can be shown (see
Appendix A) that they can be expressed in terms of the Biot coefficients
P11, P12, and poo:

mf! = ”72)2, (2.43a)
mls = ﬁ, (2.43b)

* = 1”_“ 5 (2.43¢)
m* = %—2. (2.43d)

Dissipation energy considerations are based on the fact that dissipation
only depends on the relative motion between the fluid and the solid and
vanishes when this relative motion is absent. Again, the dissipation energy
can be written as a quadratic function of the six average velocity components.
The dissipation function Dy, is given by

2Ddis = bO('U’L' - wi)(vi - wi)7 (244)

in which (v; — w;) is the relative velocity of the fluid with respect to the
solid, and by is the dissipation coefficient related to Darcy’s coefficient of
steady-state permeability kg by
2
by = 1 (2.45)
ko
where 7 is the fluid viscosity. According to Biot (1956a), the Lagrange’s
momentum equations incorporating dissipation are stated as

or ODuis o NS
at (81)1) + ayi - _BJU]Z - (1 ¢)61pa (246)
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OT\ 9Dy

8, ( ) 4 ais __ 45, (2.47)
Owi Owi

where use has been made of the stress definitions in Equations (2.6) and
(2.7). The L.H.S. of Equations (2.46) and (2.47) denotes the acceleration
of the phase, and the R.H.S. denotes the total force acting on the phase
under consideration per unit volume. Substituting the kinetic energy equa-
tion (2.39) and the dissipation function equation (2.44) in the Lagrange’s
equations (2.46) and (2.47) results in

—0j05i — (1 — ¢)oip = 6):2(P11Ui + p12U;) + bpO(ui — Uy), (2.48)
—$0ip = 8 (pr2u; + p22U;) — body(us — Uy). (2.49)

These are the Biot equations in the most general form.

For a better understanding of these momentum equations it is useful to
discuss a number of limiting cases. We will start with the low-frequency limit
by neglecting inertia forces and making use of Darcy’s law for low Reynolds-
number fluid flow in rigid porous media. In this case, the pressure gradient
is balanced by viscous forces according to Darcy’s law

0=— WP — n—¢-’wi, (2.50)
ko
where w; = G,U; is the velocity component of the fluid in direction 4.

When oscillating fluid motion is involved, Darcy’s law only holds in the
low-frequency limit. At higher frequencies unsteady terms have to be added |

dpsOiw; + (oo — 1)¢ppsOyw; = —p0;p — bow;, (2.51)

The first term on the left side of Equation (2.51) is the inertia term. The
second term on the left side describes the unsteady interaction, originat-
ing from the pore fluid acceleration in a narrow-widening micro-structural
porous geometry. The direction of acceleration on a micro-scale may very
well differ from the macroscopic acceleration direction. This means that
(a0 — 1) describes the deviation of the arbitrary tortuosity from the tortu-
osity of a cylindrical duct. In the high-frequency limit (w — oc), the steady
interaction may be ignored:

Qoopp fOiw; = —PO;p. (2.52)

The discussion above states that pressure gradients are either balanced by
viscous forces (low-frequency limit), or by inertia forces (high-frequency
limit), but generally by a combination of both.
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If motion of the porous solid material is allowed, only minor modifications
in the steady and unsteady interaction terms of Eq. (2.51) are required, with
v; = Opu; as the solid velocity:

PpfOiw; = —@dip 4 bo(v; — w;) + (oo — 1)Pp 0 (v — w;). (2.53)

For the fluid-saturated porous material as a whole we may find an expression
similar to Equation (2.53)

qﬁpfat’wi + (1 — ¢)p38tvi = —8j0‘ij — aip. (2.54)

Subtracting Equation (2.53) from Equation (2.54), and rearranging terms,
we may write for the solid and fluid components respectively

—0505i — (1 — ¢)0ip = B4(p11vi + prawi) + bo(vi — wi), (2.55)

—¢(9ip = at(plQ'Ui + 922’wi) - bo(Ui - wi), (2-56)

with the density terms pi1, p22, and p12 formulated in Equations (2.40),
(2.41), and (2.42), respectively. By replacing the velocity terms in the R.H.S.
of Equations (2.55) and (2.56) with the time derivatives of the displacement
fields, we end up with the momentum equations which are exactly analogous
to those formulated by Biot (1956a) and De Josselin de Jong (1956) (cf.
Equations (2.48) and (2.49)).

Up to now, we assumed that the flow of the fluid relative to the solid
through the pores is of the Poiseuille type. This resulted in a constant Darcy
related friction between the relative fluid and solid motions in the porous
system, denoted by the friction constant by. Biot (1956b) extended this low
frequency range wave propagation to the higher frequency range. It turns
out that the Darcy related friction by should be replaced by a complex-
valued, frequency dependent drag coefficient, boﬁ‘(w). At low frequencies,
this drag coefficient will show a Stokes-flow behaviour, whereas at higher
frequencies, when the viscous skin depth é = {/2n/wps decreases, inertial

effects will become dominant. To this end, Biot (1956b) modelled the porous
medium as an ensemble of cylindrical ducts. In the next chapter we will give
a thorough description of this frequency-dependent behaviour by means of
the so-called dynamic permeability, introduced by Johnson et al. (1987).




Chapter 3

Dynamic interaction

3.1 Introduction

An important aspect of wave propagation in a porous medium is the frequency-
dependent interaction between the pore fluid and the solid matrix. For low
frequencies, a constant Darcy-related friction between the fluid and solid
phases is dominant. At higher frequencies, inertial effects are dominant.
These aspects were first mentioned by Zwikker and Kosten (1949) and Biot
(1956b). Zwikker and Kosten derived analytical expressions for frequency-
dependent friction at the wall of a gas-filled circular tube. Biot studied
viscous fluid flow under an oscillatory pressure gradient either between par-
allel walls or in a circular tube. Biot also showed that his results could be
applied to any arbitrary porous medium. In 1987, Johnson et al. described
this frequency-dependent interaction between the fluid and solid by a dy-
namic permeability factor. Their description differed slightly from the one
used by Biot, but showed the same behaviour in the low- and high-frequency
limits. The approach of Johnson et al. was based on energy flux consider-
ations on the microscale. Smeulders et al. (1992) found the same results
but used a more rigorous averaging method. All papers showed that the
permeability, a key property of productive rock formations, depends on the
frequency of the oscillating flow through the rocks.
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3.2 Dynamic permeability for a fluid-filled rigid
porous medium

Johnson et al. (1987) (to be referred to as ‘JKD’, i.e. Johnson, Koplik,
and Dashen) have provided an interesting model for the so-called dynamic
permeability of a fluid-saturated porous medium fully saturated with a New-
tonian fluid. It is important to note that all important features in this model
refer to a rigid porous medium. Introducing an exp(—iwt) dependence for
the fluid pressure p and the macroscopic fluid velocity w, the Biot equation
for the fluid part of the porous medium, cf. Equations (2.45) and (2.53),
may be written as

[Z—gb -~ iwaoopf] w = —Vp, (3.1)
0

From this it follows that the dynamic fluid behaviour may be characterized
on a macroscopic scale by the dynamic permeability k(w) or, alternatively,
by the dynamic tortuosity &(w),

M - _vs
lAc(w)W = —Vp, (3.2)
—iwpsé(w)W = —Vp. (3.3)

Obviously, Equations A(3.2) and (3.3) are alternative descriptions of the same
physical reality, thus k(w) and &(w) are related as follows

(w) = —- ine

T (3.4)

In the low frequency limit the dynamic permeability approaches the (real-
valued) stationary value ko,

lim k(w) = ko. (3.5)

w—0

Consequently, we obtain for the low-frequency limit dynamic tortuosity

lim G(w) = -1 (3.6)

In this limit the fluid follows a Stokes flow pattern. At higher frequencies,
where the viscous skin depth § = /2n/wpy is small compared to the char-
acteristic pore sizes, the fluid obeys a potential flow pattern, except within
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a thin layer of size J along the walls. However, JKD noticed that ¢ is ar-
bitrarily small at high enough frequencies and that therefore the walls of
the pores in the boundary region appear to be flat. Using a boundary layer
approach, they were then able to describe the asymptotic behaviour of &(w)

approaching its limit . The results for this high-frequency behaviour of
k(w) and &(w) are (w — 00):

Loy i in \'* 2
k(w) = ~ aer] [1 - (,)f_w) X} : (3.7)
in 12 2
a(w) = O Iil + (Pf—UJ) X:I ; (38)

where A is an independently measurable property of the porous material with
the dimension of length, and ax is the tortuosity or added mass parameter,
defined by its extreme high-frequency limit

wlmgou( W) = Geo- (3.9)
Having defined how the average time-harmonic flow through a porous ma-
terial behaves in the limit both of low frequencies (Darcy’s law) and high
frequencies (inviscid flow except for a thin viscous boundary layer near the
pore walls), JKD connect the two limits for k(w) and é&(w) with a postulated
function given by

. -1
k M w\1/?
JQ=O_L1)_g__ (3.10)
k‘() 2 We We

in which w, is a rollover frequency from a viscosity-dominated regime to an
inertia-dominated one, defined as

W, = 3.11
C ‘0 ’ ( )

and M is the similarity parameter defined by JKD as

M = AT

(3.12)

In the same paper, JKD generalized these results by suggesting that M is
equal to 1 for all porous media, at least approximately. This assumption
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that only one scaling function k(w)/ko exist for all porous media, as given in
Equation (3.10), was validated in later years, both numerically and experi-
mentally. Numerical calculations of the dynamic permeability for a variety
of microstructures were presented by Sheng and Zhou (1988), Yavari and
Bedford (1990), and Chapman and Higdon (1992). Experimental data were
obtained by Charlaix et al. (1988), Smeulders et al. (1992), and Johnson
et al. (1994). Other authors have discussed calculations on extreme geome-
tries. Pride et al. (1993) showed that Equation (3.10) might be expected
to break down for a model of pores with variable widths. Smeulders et al.
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Figure 3.1: Amplitude (a) and phase values (b) of the reduced dynamic per-
meability for M =1(—), M =2 (—=), and M =10 (---)

(1994) discussed that M might deviate considerably from the value 1 for
sharp-edged porous media. In Figures (3.1a) and (3.1b), the amplitude and
phase values of the reduced dynamic permeability, k(w)/ko, are plotted as a
function of the reduced frequency, w/w.. To show the influence of different
M-values on this scaling function, results are plotted for M = 1, 2, and 10.
Figures (3.1a) and (3.1b) show that for low frequencies k(w) approaches its
stationary value ko. In this case, there is no phase shift. For higher fre-
quencies I%(w) shows w~! behaviour, and the phase shift tends to 90°. We
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also observe that the choice of M influences the plots significantly. A study
of the similarity parameter M for different sharp-edged pore structures was
published by Smeulders et al. (1992, 1994). In the next section we extend
that study by discussing the effects on the parameter M of narrowing and
widening non-interconnected pore channels.

The conventional approach has been to treat the pore space as an en-
semble of circular tubes (Biot, 1956a, 1962). In this model the dynamic
dissipation coefficient b(w)/bp = F'(w) is described by first and zeroth order
Bessel functions, where the function F'(w) is given in Equation (3.22). The
dynamic permeability model of JKD offers an alternative description for the
dynamic dissipation. The scaling function for the dynamic permeability is

10 T T T T

phase (deg.)

10'
w/we

Figure 3.2: Amplitude (a) and phase values (b) of interaction force b(w) /by
for tube flow (—) and the scaling function of JKD (—-).

given in Equation (3.10). Using the relation

bw) _ k@
bo  k(w) T (3.13)
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we find

b(w) _ M w
b =1 5 (3.14)

A comparison of the two models in terms of amplitude and phase values of
the reduced dissipation b(w)/bg as a function of the reduced frequency w/w,
is plotted in Figures (3.2a) and (3.2b). For the JKD model, we have used
M = 1. From Figures (3.2a) and (3.2b) we notice that the two functions
essentially display the same behaviour. One clearly observes the rollover
of the absolute values of b(w)/by from the value 1 at low frequencies to an
increasing friction at higher frequencies. Only minor differences occur in the
behaviour of the phase values of the two cases in the limit of low and high
frequencies. It is therefore plausible to say that the frequency dependence
of the JKD model is similar to that of a grouping of constant-width flow
channels; however, it is more elegant in its analytic form.

3.3 Dynamic behaviour for a model porous medium

We consider a cylinder consisting of N non-interconnected tubes per unit
area. The tubes have different radii R; and Rs over a length of L; and Lo,
respectively. The total length of the cylinder is L, see Figure (3.3). For this

Figure 3.3: A cylinder with a bimodal pore size distribution.



42 3. DYNAMIC INTERACTION

model the porosity ¢ of the cylinder can be written as

p=N % R? + %mg : (3.15)
A constant pressure gradient Vp causes a steady-state fluid current through
the cylinder’s tubes. The fluid current is considered a Poiseuille current, i.e.
laminar and incompressible. We will ignore transition effects caused by the
narrowing and widening of the tubes. The Poiseuille current has a parabolic
velocity profile and the volume flux @, can be written as

Qu = ———Vp. (3.16)

The pressure difference over the cylinder therefore is

877Qv [Ll L2}
Ap =p(0) —p(L) = —— | =5 + = | . 3.17
p = p(0) — p(L) T Ri‘ R421 ( )
Using Equations (3.1 ), (3.17), and Darcy’s law as defined in Equation
(2.50), in which w = Q, N /¢ is the macroscopic fluid velocity in the cylinder,
the Darcy re51stance can be written as
— = | AR+ 22| |2 22 | 3.18
ko ¢[L1+L2L;1LR3 (3.18)
where ky is the stcady-state permeability. Notice that for a cylinder consist-
ing of tubes with a constant radius R, we find ko = §¢R%. Adopting the
notation L I
Ry = | 2R+ 2R 1
(R = | S+ 2R (319)
we may write
1 8 -
P E(RQ)(R 4. (3.20)

To describe the dynamic interaction of the fluid and the solid walls of the
tubes in the cylinder, we will extend the steady-state flow to the case of
an oscillatory pressure gradient. Ignoring transition effects caused by the
narrowing and widening of the tubes, the pressure difference Ap for an os-
cillatory flow may be written as (Zwikker and Kosten, 1949)

. . . 8 . . 8
Ap = —i Ly [zwpf — R—ZF(m)] — oLg [zwpf - EZ—F(KZz) . (3.21)
1 2
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Here an exp(—iwt) dependence has been assumed for the relevant quantities.
The microscopic fluid velocities in the tubes are denoted by w; = Q. /mR?
and Wy = Q,/7R3. The parameter F'(k;) for (j = 1,2) is given by

2.J1 (k5 Vi)
ki Vido(ki Vi) — 2J1(55v5)’

im?

(3.22)

where k;=R;\/wpy/n, and Jo and J; are Bessel functions of zeroth and first
order, respectively. Combining Equations (3.3) and (3.21) yields

A qS [Ll 1 8 Ly, 1 8 }
= 1-—F ———(1——=F . .
Substituting the porosity relation (3.15), we arrive at
~ Ly L, 2
G(w) = [L nR? + 'EWR2 1
Ly 1 8 L, 1 8 )
—F ———(1-—=F .
[L 7rR2( K2 (k1)) + L TFR%( K3 (52))]
In the limit for high frequencies, it can be shown that
Jim F(x;) \/_n] 1—1) (3.25)

Substituting Equation (3.25) into (3.24) and using notation (3.19) yields
(w — 00):

G(w) = (R?) [(R72) + (R*)3(w) + i(R™*)6(w))] , (3.26)

where §(w) is the viscous skin depth defined by § = 1/2n/wps. Relation
(3.26) can be written as

() = g [1 4+ i)d(:)] , (3.27)
Qoo — (R2>(R_2)a (3.28)
(R7?)

- . (3.29)
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In this way we have introduced the tortuosity parameter oo, and a charac-
teristic length scale A of the porous medium. Both the definitions of as, and
A are in accordance with the ones given by JKD and Smeulders et al. (1992,
1994) for arbitrary porous media. It is now possible to plot the dimensionless

Ry/R,

Figure 3.4: Influence of tube configuration on tortuosity oo
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Figure 3.5: Influence of tube configuration on reduced permeability 8kq/¢pA?
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parameters ao and 8ko/ $A? as a function of L;/Ls and Ry /Ry, where

8ko (R™%)?
$A% (R (R2)(R™Y)

(3.30)

The results are given in Figures (3.4) and (3.5). In both cases we observe that
the tortuosity and the reduced permeability are equal to unity for Ri /Ry = 1.
In Figure (3.4) the tortuosity a., increases for increasing inequality of R
and R, but it decreases for increasing inequality of L; and L,. Wide pores
with narrow throats therefore have a high tortuosity value. Figure (3.5)
shows that the reduced permeability decreases for increasing inequality of
R; and R,, but it is not influenced too much by the L,/L, ratio. This
means that the presence of one narrow throat already drastically reduces
the permeability. Combining Equations (3.28) and (3.30) yields:

_ 8ok _ (R_3>2
M= = "R

(3.31)

Note that for straight tubes (R; = R2) M = 1. 'In Figure (3.6) we have
plotted M as a function of L;/Ly and R1/R>. We note that the similarity
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parameter M remains of the order 1 for a wide variety of cylinder configu-
rations. This confirms the suggestion made by JKD that M is equal to 1 for
all porous media, or at least close to this value.

3.4 Acoustics in deformable porous media

We will now briefly mention the relationship to acoustics in deformable
porous media. From relation (2.53), the equation of motion for the fluid
constituent may be written as

. . ~ ¢77
WP fwW = D k(

) (V — W) +iwpyp (¥ — W). (3.32)

In this relation frequency-dependence is introduced by replacing the steady-
state interaction factor by with the dynamic permeability parameter of JKD.
The implications are that the general properties of k(w) in rigid porous media
automatically apply to the acoustics of deformable porous media, via the
Biot theory. The relationship between by and k(w) has been made explicit
in Equation (3.13). From that relation, it is obvious that by considering the
Biot equations in the limit that the skeletal frame moduli are much larger
than the bulk modulus of the fluid, so that the solid does not move (v = 0),
Equation (3.32) reduces identically to Equation (3.2). By using the circular
tube model of Zwikker and Kosten (1949) and Biot (1956b), Equation (3.32)

a onlan fassnd ey Tl 1000\
was also found Uy JOIilis0il and Plona (1J04).




Chapter 4

Acoustic bulk properties of
fluid-saturated porous media

4.1 Introduction

In this chapter we will discuss the acoustic bulk properties of fluid-saturated
porous media, i.e. phase speed, attenuation, and specific attenuation 1/Q.
These parameters can be obtained by solving the Biot momentum equations
and stress-strain relations as discussed in Chapter 2, including the concept
of dynamic permeability as treated in Chapter 3. A new aspect in this
discussion is the investigation of the grain compressibility effects on the
high-frequency limit velocities of the fast and slow compressional waves.

4.2 On potentials

To investigate the frequency-dependent acoustic bulk properties of a fluid-
solid system, the field equations will be transformed to the wavenumber-
frequency domain. To this end, we define a temporal transformation of the
function f(x,w) to the frequency domain. With ¢ as the integration variable,
the temporal Fourier transform and its inverse follow as

flx,w) = /_o:o f(x,t) exp(iwt)dt, (4.1a)

f(x,t) = % /_o:o f(x,w) exp(—iwt)dw. (4.1b)
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where x = {z, 22,23} is the position vector in a Cartesian reference frame.
We start our analysis by eliminating the pore fluid pressure p and the inter-
granular stress tensor o;; from the stress-strain relations (2.11)-(2.12) and
the momentum equations (2.55)-(2.56). Subsequently, applying the tempo-
ral transformation (4.1) to the resulting set of equations we arrive at the
following time-harmonic coupled relations:

—pnw’l — ppw’U = (P - G)V(V-0) +QV(V - U) + V24,  (4.2)

—p22w?U — prow?ia = RV(V - U) 4+ QV(V - ), (4.3)

in which use has been made of a newly introduced parameter P = A + 2G
and where

pr2 = p12 — ib(w)/w, (4.4)
p11 = p11 + ib(w) /w, (4.5)
P22 = p22 + ib(w)/w. (4.6)

S

The density terms p11, p22, and p12 are defined in Equations (2.40)-(2. 42),
respectively. Furthermore, we have introduced the frequency-dependent pa-
rameter b(w), as formulated in Equation (3.14), describing the dynamic inter-
action force between the fluid and the solid matrix. The solid displacement
vector @ and fluid displacement vector U may be decomposed into longi-
tudinal (compressional) and transverse (shear) vector components. To this
end, we may define the Lamé potentials according to

W=Vd, +V x ¥, (4.7)
U=Vé;+Vx¥, (4.8)
in which the subscripts s and f denote the solid phase and fluid phase,

respectively. {®;,®;} and {¥ 7, ¥} are called the compressional wave and
shear wave potentials of {U, a}, respectively. Note that with this definition

V-a=V%,, (4.9)
Vxa=Vx(Vx¥,), (4.10)
V.U =v2%,. (4.11)

Upon substitution of Equations (4.7)-(4.11), Equations (4.2) and (4.3) sep-
arate into two uncoupled sets of equations, referring to the compressional
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wavefield components and to the shear wavefield components. For the com-
pressional waves we end up with

—pr1w?d, — prow?d; = PV, + QV*dy, (4.12a)
—poaw®f — praw’ds = RV2®; + QV2,, (4.12b)
and for the shear waves we may write,
—prw* ¥ — prow?¥; = GV, (4.13a)
—poaw? ¥ § — prow T, = 0. (4.13b)

In the following we consider a two-dimensional situation in the X; X3-plane
in which the z3-axis points vertically downwards. Restricting the discussion
to the propagation of in-plane compressional waves (P-waves) and vertically
polarized shear waves (SV-waves), Equations (4.7) and (4.8) can be written
as (Berkhout, 1987)

i1 = 8%, — 85(Fy)s, (4.14a)

dg = 83®5 + 01(¥y)a, (4.14b)
and |

Uy = 185 — 95(¥5)a, (4.15a)

Us = 338, + 01(¥ )2, (4.15b)

where (¥,) and (¥ f)2 represent the zo-component of the vector potentials
¥ 7 and ¥, respectively. In the following we shall replace these compo-
nents notationally by ¥, and ¥ 7- We will not consider the propagation
of cross-plane horizontally polarized shear waves (SH-waves). The in-plane
propagation of P-waves is described by Equations (4.12). The in-plane SV
waves are described by Equations (4.13). The solution of these two sets of
equations can be obtained by the integral transformation of the independent
variable z;. This means that for the 2-D case, we will apply a spatial Fourier
transformation of the horizontal z; component to the wavenumber k;. For
this, we define the spatial transformation of the function f (z1,w). With
r1 as the integration variable, the spatial Fourier transform and its inverse
follow as

fkw) = [ °; f(@1,w) exp(—ikiz1)da, (4.16a)

fne) = o [ ‘: F (k) explikyz)dk, (4.16b)
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where k; is an element of the 2-D wavenumber vector k = {k,0, k3}. From
the definition in Equation (4.16), the following solution for the compressional
wave potentials can be proposed

@s,f(zl, T3,w) = és,f(kl,xg,w) exp[ik1z1). (4.17)
For the vertically polarized shear wave potentials we have
\ils,f(xl, T3, w) = \ils,f(kl, I3, w) exp[z'klxl]. (418)

This is equivalent to analyzing a type of plane wave solution. Note that
according to Snell’s Law the wavenumber vector component k; is identical for
both cases. As the only dependent variable is the vertical component z3 (Aki
and Richards, 1980), an exp(ik3 pz3] and exp[iks sz3) dependence is proposed
for the wave potentials <i>,,-, f(k1, z3,w) and 7 s,f(k1,23,w), respectively. Here,
k3 p is the vertical component of the compressional wavenumber vector k, =
{k1,0, k3 ,} for which we have kg = k?+k2 p» With k, the complex magnitude
of the compressional wavenumber vector k,. Obviously, k3 s is the vertical
component of the shear wavenumber vector k; = {/cl, 0, ks 3} for which we
have k2 = k? + k3 ¢» With k; the complex magnitude of the shear wavenumber
vector k,. Express1ons for k, and k, are obtained from solving the Biot
equations for the compressional and shear wave velocities as discussed in the
following sections. Because of the dependence of ki, in Chapter 5 we will
discuss the angle-dependent reflection and transmission coefficients at the

interface between a non-viscous fluid and a fluid-saturated porous medium.

4.3 Compressional wave velocities

By a transformation to the (k;,w) domain and assuming an expl[iks ,3)
dependence, we find from relations (4.12):

—pw?d, — ﬁ12w2<1> —Pk;®, — Qk2%y, (4.19a)
—p22w (I)f - p12w = —Rk2¢f + Qk‘2 (419b)

From the set (4.19), and introducing the inverse squared complex wave ve-
locity ¢p = kf, /w?, the dispersion relation is found:

dalp + diGp + do =0, (4.20)
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where we have used

dy = PR — Q?,
di = —(Pp22 + Rp11 — 2Qp12), (4.21)
do = pr1p22 — Pa-

We note that dp can also be written as ¢?°Ks(Kp + %G)/,B, where 8 =

¢+ Ki/Ko(1 — ¢ — Kp/K,) as defined previously. Equation (4.20) has
two complex roots:

—dy + dy (1 — adydy /d2)*?
Cprpn} = — 1 { 50 oda/di) (4.22)

and therefore we have two damped compressional waves. The properties of
the two waves were illustrated by Biot (1956), who showed that the fluid and
skeletal velocities have the same sign for one root, and have the opposite sign
for the other root. This means that there is one wave in which fluid and
skeletal velocities are in phase, and another in which they are in opposite
phase. In the same paper, it is also shown that the wave which propagates
fastest has in-phase fluid and skeletal velocities, whereas the slower propa-
gating wave has those velocities in opposite phases. As a matter of definition,
the wave which propagates fastest will be denoted as the fast wave (denoted
by subscript p1), while the other one will be denoted as the slow wave (de-
noted by subscript p2). It is conceivable that the slow wave is damped more
strongly than the fast wave, because the out-of-phase character of the slow
wave mode represents a highly effective dissipation mechanism.

Furthermore, it is worth noting that Equation (4.19) for <l~'>f and @
implies a simple linear relationship between fast and slow components of the
corresponding fluid and solid displacement amplitudes, U and 4. It can be
seen that

(4.23)

{7 - Qg{pl,]n} — P12 _ —‘PC{PI,PZ’} t P
Cipipa) = B ’

- —RC{pl,}ﬂ} + P22 B QC{pl,pZ} — P12
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Low- and high-frequency limits

We will now discuss some limiting cases for the complex wave velocities as
formulated in Equation (4.22). We start with the low-frequency limit for
which the viscous effects in the fluid dominate the inertial effects. From the
definitions in Equation (4.21) we note that the lowest order term of (dody)/d?
is proportional to w. Following this, we replace the square root in Equation
(4.22) by the first order term of the Taylor series expansion:

4dyds 2dydy
1-— d2 ~1- d2 . (4.24)
In this way, we arrive at
_ —dy £ d; (1 — 2dody/d?)
})5% g{pl,pz} = 2d2 s (425)
Now it can easily be found that li_r)rb (p1 = —dp/d1, which means that this

fast wave becomes propagatory in the low-frequency limit with a reai-valued
velocity equal to \/H/p, where

Ky(1- %0y 4 k(1 - 4
H=P+R+20=" o1~ &) + Ko s)+—G. (4.26)
¢+K3(1—¢—f5) 3
This can also be written as
4 Kl —
H=Ky+ -G+ /1= ) . (4.27)

3 ¢+ gL(1—g¢— 5

This effective modulus H was originally derived by Gassmann (1951) in an
article which predates the Biot theory and therefore this low-frequency limit
is often called the Biot-Gassmann result. In 'Equation (4.23) we have found
the fluid-solid displacement amplitude ratio U /. For this propagatory wave
it can be seen that hm(U /%) = 1, which implies that the fluid motion is

locked-on to the sohd’

The slow wave is strongly damped at low frequencies because of the fluid
viscosity, since it involves a relative motion of fluid and solid. We find that

) P
1im<p2=_ﬂ+d_0_ di _ _ib (P+R+2Q)
w—0

d di  da w (PR-Q? (4.28)
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Apparently this slow wave is described by a diffusion equation rather than a
wave equation in the low-frequency limit, because (p, is the solution of the
diffusion equation

cpO2€ = ¢, (4.29)

where £ can be any relevant variable (p, p¢, v, etc.) and

PR - Q?
= . 4.30
D= bo(P + R+2Q) (4.30)
Substitution of {; in Equation (4.23) yields
J P

lim 2 = 2+ (4.31)

This diffusive behaviour in the low-frequency limit was studied previously
by Chandler (1981) and Chandler and Johnson (1981). Obviously, this wave
has an infinite travel time in the low-frequency limit.

In the high-frequency limit we find from relations (4.21) that
. _ N2
S5,z = PR,
lim d; = —(Pp22 + Rp11 — ZQplg), (4.32)

W00

: _ 2
Jim do = p11p22 — Pl

The density terms all take on real values and consequently both waves be-
come propagatory. Also for real-valued density terms the inverse squared
velocities are defined in Equation (4.22).

Acoustic bulk properties

The complex wavenumbers k; for j = p1,p2 are related to the acoustic bulk
properties of the material, phase speed w/|Re{k;}|, attenuation Sm{k;},
and specific attenuation 1/Q). We may define the specific attenuation pa-
rameter 1/Q) as

1 2|Smik;

1 _ 28mik)| (4.33)

Q  [Re{k;}|
The results of numerical computations for the phase speed and the (specific)
attenuation of both compressional waves are given in Figures (4.1)-(4.3).

Also the shear wave is plotted, but this wave is discussed in the following
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section. All curves are computed with (solid lines) and without (dashed
lines) dynamic permeability (see Section 3.4). The input parameters used
for the calculations are listed in Table 4.1. The ‘constrained modulus’ K,
is defined as Kj + 4G/3. All these input parameters refer to Nivelsteiner
sandstone which is used for our high-frequency experiments as discussed in
Chapter 7. It is assumed that the sandstone is fully water-saturated.

constrained modulus K, | 26.1 GPa
shear modulus G | 10.14 GPa
fluid bulk modulus Ky | 2.22 GPa
solid density ps | 2760 kg/m3
fluid density ps | 1000 kg/m3
porosity ¢ | 24 %
tortuosity O | 2.5

permeability ko | 10x10712 m?
fluid viscosity n | 0.001 Pa-s

Table 4.1: Parameter values for water-saturated Nivelsteiner sandstone

The following points emerge from these computations for the compressional
waves:

e The fast wave speed is frequency-independent. The slow wave speed
shows the transition from a low-frequency diffusion phenomenon to a
high-frequency propagatory wave.

e From calculations for various sets of input parameters we found that
the phase speed of the fast wave is mainly influenced by the solid phase
properties (e.g. elastic moduli), whereas the production properties
(e.g. permeability, tortuosity) dominate the slow wave propagation.

e The attenuation is frequency-dependent for both compressional waves
and the attenuation of the slow wave is much higher than the atten-
uation of the fast wave. This is a result of the out-of-phase character
of the slow wave which represents a highly effective dissipation mech-
anism.

e The influence of the dynamic permeability is largely limited to the
attenuation coefficients. This is in accordance with previous results
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Figure 4.1: The phase speed for the fast wave, shear wave, and slow wave
in the Nivelsteiner sandstone. The solid curves indicate the calculations
with dynamic permeability, and the dashed curves indicate the calculations
involving steady-state permeability.
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Figure 4.2: The attenuation for the fast wave, shear wave, and slow wave in
the Nivelsteiner sandstone. Legend identical to Figure 4.1.
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Figure 4.3: The specific attenuation 1/Q for the fast wave, shear wave, and
slow wave in the Nivelsteiner sandstone. Legend identical to Figure 4.1.

by Van der Grinten et al. (1987). The dynamic permeability strongly
influences the attenuation behaviour at higher frequencies.

e The specific attenuation 1/Q peaks in the vicinity of the crossover
frequency w,. For this specific case, the crossover frequency (w./27) is
equal to 1.3 kHz.

4.4 Shear wave velocity

By a transformation to the (k1,w) domain and assuming an expliks sx3]
dependence, we find from relations (4.13):

_511“)2@3 - /312w2\i’f = "Gkg@m (4.34a)

—poaw? ¥ — praw? Ty = 0, (4.34b)
From the set (4.34), the inverse squared complex wave velocity ¢, = k2/w?
follows as

s o= =2
G = %ﬁ' (4.35)
P22
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Similar to the longitudinal case, from the set (4.34) not only ¢, can be found,
but also the shear fluid-solid displacement amplitude ratio

—h2 _ =GG+pu

'y, = — —
P22 —P12

% (4.36)

Low- and high-frequency limits

From the inverse squared complex velocity of the shear wave as formulated
in Equation (4.35), the low frequency limit real-valued velocity follows as
V/G/p. Furthermore, it can then be seen that linb U/i = 1, which again

implies that the fluid motion is locked-on to the l;glid’s. For the shear wave
in the high-frequency limit the density terms in Equation (4.35) take on real
values. Furthermore, we have the fluid-solid displacement amplitude ratio
lim U/’l~1, = —plz/pzz.

w—r00

Acoustic bulk properties

Finally, results for acoustic bulk property calculations of the shear wave are
given in Figures (4.1)-(4.3). The almost frequency-independent phase speed
values are smaller than the values for the fast wave and greater than values
for the slow wave. The attenuation of the shear wave in its turn is greater
than the attenuation of the fast wave but smaller than that of the slow
wave. The frequency-dependence of the shear wave attenuation shows the
same behaviour as the compressional wave attenuation.

4.5 Effect of grain compressibility

It is possible to investigate the grain compressibility effects on the high-
frequency limit of the compressional wave velocities. The density terms in
the expressions for these wave velocities are given in Equations (4.32). In
general, the wave velocities are a function of the bulk moduli K;,, K,, and
Ky. Other parameters are not considered in this section. In Equations
(2.36) we derived relations for the generalized elastic parameters @), R, and
P, where P = A + 2G, as a function of the bulk moduli. To investigate
the compressional wave velocities in the high-frequency limit as a function
of the grain compressibility K, they are normalized by the velocities for the
case of incompressible grains (K/K, < 1 and K;/K, « 1). For this case,
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relations for the generalized elastic parameters as a function of measurable
quantities are given in Equation (2.37). The input parameter values for our
calculations are given in Table 4.1. For the case of incompressible grains,
the fast compressional wave velocity in this sandstone equals 3902 m/s. The
slow compressional wave velocity equals 824 m/s. The normalized wave
velocities for both the fast and slow compressional wave as a function of
K/Ky are depicted in Figure (4.4). Note that the calculations are limited
by the relation (1 — ¢)K, > K, (Verruijt, 1982), which was discussed in
Chapter 2. As we may expect, the normalized velocities tend to 1 in the
limit for K5 — oo (incompressible grains). For increasing compressibility of
the grains (decreasing K,) we note that the normalized fast wave velocity
becomes less than 1. This is because the fast wave is mainly governed by
the properties of the solid phase of the porous medium. From Figure (4.4),
we also note that the normalized slow wave action is diametrically opposed
to this. Finally, for relevant K,/Kj values the normalized velocities vary by
less than 10%.
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Figure 4.4: High-frequency values of the normalized fast and slow wave ve-
locities. Parameter values are listed in Table 4.1.
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Chapter 5

Waves and interfaces

5.1 Introduction

In this chapter we discuss the frequency-dependent transmission and re-
flection coefficients of plane waves at oblique incidence on a plane interface
between two media. One of the media is a non-viscous fluid and the other is a
dissipative water-saturated porous medium. Two general cases of wave type
conversion are investigated: (I) The incident wave in the fluid generates one
reflected compressional wave in the fluid and three transmitted bulk waves
in the porous medium, and (II) an incident wave in the porous medium gen-
erates three reﬂected bulk waves in the porous medium and one transmitted
compressional wave in the fluid. Results of both cases can be used to calcu-
late the total transmission coefficient of all three bulk waves through a layer
of porous medium immersed in fluid. Such a transmission configuration is
used for our acoustic experiments through slabs of water-saturated porous
material immersed in a water-filled tank (see Chapter 7).

5.2 Solutions of the field quantities

The basic equations that govern the acoustic wave motion in a fluid-saturated
porous medium were described in the previous chapter. We found that in
general the compressional wave potentials ®, and ® 7 in the solid and fluid




5.2. SOLUTIONS OF THE FIELD QUANTITIES 61

phase of the porous medium can be written as follows:

D, (k1,23,w) = @}, expliks pi73) + @y, exp[—iks pi 73] +

, _ (5.1a)
90;-2 exp[3k3m2m3] + ©pa exp[—zkg,mxg],
& (k1,73,w) = Lo, expliks py 23] + Cpipy, exp[—iks piz3) + (5.1b)
Fm(p;,g exp(ik3 p223] + Tpa4py, €xp[—ik3 pa T3]
For the shear wave potentials T s and T ; we have
\i/s(kl, T3,w) = ¥y expliks sz3] + ¢, exp[—iks sz3). (5.2a)
\~Iff(k1, r3,w) = Dspf expliks sx3] + 59, exp[—iks sz3)- (5.2b)

The fluid and solid displacement amplitude ratios I'y, for the fast wave, I'p,
for the slow wave, and I'; for the shear wave, are given in Equation (4.23)
and (4.36), respectively. The wave potentials in the solid are defined from
the solid displacements in Equation (4.14), and the potentials in the fluid are
defined from the fluid displacements in Equation (4.15). Combining Equa-
tions (5.1) and (5.2) means that all field quantities (pressure, stress, and
particle velocities) in a porous medium consist of a fast and slow compres-
sional wave component, and a shear wave component. All wave types may
be downgoing (increasing z3) with wave type amplitudes {¢}, ¢, %5}, or
upgoing (decreasing z3) with wave type amplitudes {¢,;, ¢5,, %5 }-

The field quantities &33, P, 631, U3, and w3 are of particular interest for
the study of boundary conditions between a fluid and a porous medium.
They are grouped in the velocity-stress vector F?:

033

FP=| 63 |. (5.3)

We are now able to derive expressions for the field quantities appearing in
the vector F? of the porous medium. We may write

F? = T} oy, expliks piz3] + Thpp, exp[—iks piz3] +
Ti%‘P;; expliks pox3] + Ti’%cplg2 exp|—ik3 p223] + (5.4)
Thiby expliksszs] + Ty expl—iks sa3),
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for i = {1,..,5}. The elements of the matrix T? can be calculated from the
stress-strain relations:

—G33 = 2G3U3 + (A — ¢* Q) (D11 + B3ti3) + (Q — ¢* R) (61U + 35U3), (5.5)
—¢p = Q(al'fl,l + (93’&3) + R(3101 + 3303), (5.6)
—631 = G(0s11 + O is3). (5.7)

In Equation (5.5), ¢* = (1 —¢)/¢. Solutions for the particle velocities follow
from:

03 = —iwils, (5.8)
w3 = —iwls. (5.9)
The matrix TP can now be written as
2GY 0 + $pEm 2GVpaYpr + Cpepe 2G a7y,
(pi(Q+ RUp1)/d  (p2(Q + RTp) /¢ 0
TP = 2 2Gypn 2Gyp, 1 (a1a1 — v575)G
k Yp1 Vp2 o
Yo l'p1 Yp2L'pa ail’s
(5.10)
2GYpYp +$nZp 2GYp2Yp2 + (paZpe —2Gags \
(p(Q + RUp1)/d  (p2(Q + RLpy) /b 0
—2Gypay —2Gype1 (a1 —7575)G |,
—Tm —Yp2 (231
~Y¥p1I'py ~Yp2l'pe s
where
Eprpe = A—¢"Q + 'y o(Q — ¢"R). (5.11)

Here we have introduced the horizontal slowness o;; and the vertical slowness
7;, defined as follows (Aki and Richards, 1980):

k1

oy = 'J, (512)
k3 1/2
Yp1 = # = (<p1 - a%) y (513)
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k 1/2
Yp2 = i,)pz = (sz - Ol%) s (514)
k3, 1/2
o= = (G —of) (5.15)

in which the inverse squared velocities ¢, {p. and (s are given by Equations
(4.22) and (4.35). Due to the positioning of the elements of T? in Equation
(5.4), the columns of TP represent the downgoing fast wave, slow wave, shear
wave, and upgoing fast wave, slow wave and shear wave, respectively.

In a similar way, we may define a fluid potential ® in the non-viscous
fluid. It can be written as follows:

d(k1,z3,w) = 7 expliks sz3] + ¢~ exp[—iks jz3), (5.16)

in which we consider a downgoing wave with amplitude ¢t and an upgoing
wave with amplitude ¢~. The fluid potential ® is defined from the non-
viscous fluid displacement

af = 8,9. (5.17)

For the study of boundary conditions the field quantities 5/ and 1"){ , grouped
in the vector Ff = (p/, ﬁg )T, are of particular interest. We may write

Fl-f = Tif1<p+ expliks rz3) + Tij;go_ exp[—iks rz3]. (5.18)

for ¢« = {1,2}. Using the non-viscous fluid equations as given in Equations
(A.1) and (A.3), the matrix T/ can be written as

T/ = wz( oo ) (5.19)

in which use has been made of @; = ki/w and y5 = k3 s/w. The vertical
slowness ~y; is given by (Aki and Richards, 1980)

) . 1/2
Yr = g — 0 ) (520)

with ¢y = (Kj/p f)l/ 2, representing the non-viscous fluid wave velocity.
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5.3 Reflection and transmission coefficients

We will now discuss two configurations to investigate the two general cases
of wave type conversions. We consider a two-dimensional situation in the
X1X3-plane of an orthogonal Cartesian reference frame with origin O. We
chose the interface between the external fluid and the porous medium to
coincide with the horizontal axis z;. In this way, z3 is chosen normal to
this interface and points vertically downwards. In Figure (5.1) we have
plotted the configuration for both cases I and II. For case I, a downgoing

S35 porous medium

% (b),

Figure 5.1: Schematic of the two-media configurations for cases I and II
wave type conversions.

incident compressional wave in the fluid with wave amplitude ¢ generates
a reflected compressional wave at the fluid/porous medium interface with
amplitude ¢~, a transmitted fast wave with amplitude go;fl, a transmitted
shear wave with amplitude ¢}, and a transmitted slow wave with amplitude
go;;. Please note that we consider a semi-infinite porous sample, so there
are no reflected waves within the porous sample. For case II, a downgo-
ing incident fast wave in the porous medium generates three reflected bulk
waves in the porous medium with wave amplitudes {y;,,¥;, ©,,} and one
transmitted compressional wave in the fluid part of the configuration with
amplitude ¢*. We only plotted the wave type conversions of the fast wave.
Evidently, similar wave type conversions appear for incident shear waves and
slow waves.

Boundary conditions at the interface between the external fluid and
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a fluid-saturated porous medium are in accordance with Deresiewicz and
Skalak (1963). At such an interface the pore fluid pressure p is equal to the
external fluid pressure. This means

p=p. (5.21)
Furthermore, we have the intergranular stress boundary condition
o33 =0, (5.22)

&3 = 0. (5.23)

Mass conservation for the fluid over a moving boundary yields:
(1 — @)is + duis = o4 (5.24)

For the interface boundary conditions in matrix notation for case I we find

0 Th T Th Y- 0
—pPf Tgl T52 T"f3 (p;jl — Pf + 5.25
0 T% Tg;Q T3:3 i 0o |¥> (5.25)
7f T*l T*2 T*B ¢j ’Yf
where
T = (1 — ¢)T¢; + ¢TE;, for j = {1..6}. (5.26)

From Equation (5.25), the reflection coefficient and transmission coefficients
follow as

Rpp = /e" 0 THh T, Th (o

Tpl,p _ ‘p;_;/‘;o+ _ —Pf Tgl T2p2 TQPB Pf (5 27)
sz,p (P;_z/(p+ 0 Tg,l TZ?Q Tg3 0 .
Tsp (7 Vf Y T T B4

The same approach can be used for the derivation of the reflection and
transmission coefficients for case II. In Figure (5.1b) we only plotted the
wave type conversions for the fast wave. The interface boundary conditions
in matrix notation for this incident fast wave in case II are

lel 0 le4 T1:;5 T156 (,0t+
Ty + —pr Ty To5 T Pp1

o + 7| = 0. (5.28)
T§)1 P 0 T§)4 T?fs Tge P2

! —ys Thy T Ti U
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The same set of equations can be written for an incident shear wave and

slow wave. Combining these expressions, the reflection and transmission
coeflicients follow as

T Tppz  Tpys of1eg o e, of vt
Ryipr Rpipe Ry s _ ‘P;1/‘P;1 ‘P;]/‘P;—z ‘P;l/'lf’:_ -
RP2,P1 R’P2,p2 R’pZ,s ‘P;2/901_j_1 <P;2/<P;rz 90;2/"/’: -
Ropi  Rspr R Vs /o Vs [t W5 [T (5.29)
o T Th TH\'[ThL TP T}
—Pf T2p4 T§’5 Tge szl szz szs
0 T T T 1% T Ti
v T Th Th T TS T}

The transmission and reflection coefficients in Equations (5.27) and (5.29)
depend on the frequency and the angle of incidence. Frequency dependence
follows from the definitions of the density terms (11, 22, p12, and p) and the
inverse squared velocities ({p., (p, and (;) as defined in Chapter 4. The angle
dependence is introduced by means of the horizontal slowness a;. According
to Snell’s Law this horizontal slowness is identical for all bulk waves under
consideration. For case I, for example, we may write:

ay = /|¢s]sinfy = 1/|¢5|sin b, (5.30)

where (¢ = 1/c% and for j referring to {p1,p2,s}. Furthermore, 87 is the

angle of incidence, and 6; the angles of transmission for the different types
of bulk waves. The vertical slownesses are not equal for the different waves.

We found that, if a1 < 1/4/¢jl,

v=(¢-a)", (5.31)

for j = {f,p1,p2, s}. On the other hand, if &y > 1/,/|¢;|, we cannot allow the

bulk wave to grow exponentially with increasing x3 and therefore it follows
that

V=1t (af - Cj)1/2 ; (5.32)

which are called inhomogeneous waves.
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5.4 Numerical results

In this section we will show the numerical results of the absolute values of the
complex reflection and transmission coefficients derived in Equations (5.27)
and (5.29). The parameters used for the calculations are listed in Table 5.1:

constrained modulus K, | 12 GPa
shear modulus G |4 GPa
solid bulk modulus K, | 36.6 GPa
fluid bulk modulus Ky | 2.22 GPa
solid density ps | 2640 kg/m3
fluid density ps | 1000 kg/m?
fluid viscosity n | 0.001 Pa-s
porosity ¢ | 30 %
tortuosity Qoo | 2.0

permeability ko | 10x10712 m?

Table 5.1: Input parameter values for a water-saturated porous medium

All curves are plotted for the high-frequency limit (solid line) and for the
rollover frequency w, = (n¢)/(pkooo) = 1.5x10* rad/s (dashed line). This
corresponds to f = 2387 Hz.

Case 1

For case I (see Figure 5.1a), we have plotted the reflection and transmission
coefficients for an incident compressional wave in the fluid. The reflection
coefficient R, of this compressional wave is shown in Figure (5.2). The
transmission coefficients are shown in Figure (5.3). Because the fast wave
velocity for the set of input parameters is greater than the incident fluid wave
velocity there is a critical angle of incidence of about 29.5°. For an angle
of incidence of 90°, the transmission coefficients are zero and no energy is
transmitted. For normal incidence, we notice that the shear wave is not gen-
erated and that the fast wave transmission coefficient is much greater than
the slow wave transmission coefficient. For increasing angles of incidence,
the fast wave disappears at 29.5°, and the shear and slow wave coefficients
show minimum values at this critical angle. The shear wave transmission
coefficient even becomes zero for the high-frequency limit. Subsequently,
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Figure 5.2: Reflection coefficient Ry, for an incident compressional wave in
the fluid. The solid line represents the high-frequency limit and the dashed
line the rollover frequency.
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Figure 5.3: Transmission coefficients Ty, (FAST), Tpep (SLOW), and Ty,
(SHEAR) for an incident compressional wave in the fluid. The solid line
represents the high-frequency limit and the dashed line the rollover frequency.
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both coefficients reach their highest values around 40°. For all transmission
coefficients, there is only a small difference between results for the rollover
frequency w, and the high-frequency limit values.

Case 11

For case II (see Figure 5.1b), we have plotted reflection and transmission
coefficients for incident bulk waves in the porous medium. For an incident
fast wave the results for the reflection coefficients of the fast wave Ry, p,, the
slow wave Rp,p;, and the shear wave R;;, are plotted in Figure (5.4). It is

1 . : . : — r .
. e a ]
ook Llnmdent fast |

FAST /|
0.8} .

07 1
o6f o 7
0.5

0.4f > 1

reflection coefficient

oal S BT
0.2}

0.1F p

0F—— — . ‘
0O 10 20 3 4 50 6 70 8 90

angle of incidence (degr.)

Figure 5.4: Reflection coefficients Ry;p, (FAST), Rpsp: (SLOW), and R p,
(SHEAR) for an incident fast compressional wave. The solid line represents
the high-frequency limit and the dashed line the rollover frequency.

clear from these curves that there is no critical angle of incidence, and the
reflection coefficients vary smoothly with the angle of incidence. We observe
that for an incident fast wave at 90°, the fast wave reflection coefficient is 1
and both other coefficients are 0.

In Figure (5.5) the transmission coefficients for an incident fast wave
Ty p1, an incident slow wave T}, p,, and an incident shear wave T, s are shown.
The high value and the frequency dependence of the transmission coeflicient
for an incident slow wave are remarkable compared with the fast wave and
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Figure 5.5: Transmission coefficients Tpp, for the incident fast compres-
stonal (FAST), Ty p, slow compressional (SLOW) and T, s and shear wave
(SHEAR). The solid line represents the high-frequency limit and the dashed
line the rollover frequency.

shear wave. Because both the slow wave and the shear wave velocities are
less than the velocity of the transmitted fluid wave, they both show a crit-
ical angle of incidence. The fast wave coefficient goes to 0 as the angle of
incidence approaches 90°, and no energy is transmitted anymore.

Total transmission

The expressions for the transmission coefficients T}, », Ty, p, and T p, of case
I, and T p1, Ty ps, and Ty, 5 of case II may now be combined to calculate the
total transmission coefficients of the fast wave T},, slow wave Tp,, and shear
wave T through a fluid-saturated porous layer immersed in fluid (see Figure
5.6). The total transmission coefficients follow as

Iy, = To1,pTp,p1s (5.33a)

Tpe = To2pTp,p2 (5.33b)
Ts = Ts pTp s (5.33c)
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Figure 5.6: Scheme of a transmission configuration showing the various
transmission coefficients at both interfaces.

This transmission configuration corresponds with the experimental set-up
used for the measurements of acoustic bulk properties as described in Chap-
ter 7. Numerical results of the total transmission coefficients can be verified
experimentally in this set-up once the bulk properties in a sample are ob-
tained (Johnson et al., 1994).

Figure (5.7) shows the calculated results. All three wave types are found
to show a distinct angular and frequency dependence. At small angles of
incidence the fast wave total transmission coefficient is greater than the
coefficients for the shear wave and slow wave. It approaches 0 at the critical
angle of incidence of about 29.5°. From that point on the shear wave and slow
wave coefficients show a sharp increase with increasing angles of incidence.
Both for the high-frequency limit (solid line) and for the rollover frequency
(dashed line), the shear wave coefficient reaches its highest value at 35°.
The slow wave coefficient peaks around 70° in the high-frequency limit and
already around 35° at the rollover frequency. Furthermore, it is remarkable
that the maximum total transmission values are around 0.5 for all three
wave types. Evidently, the attenuation of the each wave type has to be
taken into account for comparison of the total transmission coefficients with
experiments. In a type of transmission configuration as depicted in Figure
(5.6), a time-domain comparison of measured and calculated ultrasonic short
duration pulses was done by De Gijzel (1996).



72 5. WAVES AND INTERFACES

L iicli_dent fllq_id PJ

06l P

total transmission coefficient

0 { U 1 1 1 1
0 10 20 30 40 50 60 70 80 90

angle of incidence (degr.)

Figure 5.7: Total transmission coeffients Ty, (FAST), Tp, (SLOW) and T,
(SHEAR) through a fluid-saturated porous layer immersed in fluid. The

solid line represents the high-frequency limit and the dashed line the rollover
frequency.




Chapter 6

Sample properties and
description

6.1 Introduction

In this chapter we will discuss the experimental determination of rock pa-
rameters. For our study, we used samples consisting of fused glass beads,
permeable ceramic material, and samples cut from natural Nivelsteiner and
Bentheimer sandstone. The choice of these specific natural sandstones was
motivated by the homogeneity and the simple mineralogical composition of
the samples (90-95% quartz). In addition, we also measured the dynamic
permeability of samples of glued glass beads and permeable ceramic mate-
rial. A total of 10 different rock and fluid parameters were considered. The
porosity ¢, density of the grains p;, tortuosity a, steady-state permeabil-
ity kg, bulk modulus of the permeable rock Kj, and the rock shear modulus
G, were all determined by independent laboratory measurements. The fluid
density py, the fluid viscosity 7, the bulk modulus of the fluid Ky, and the
bulk modulus of the grains K, were obtained from textbook values.

6.2 Description of porous materials

Artificial porous material

We used three types of commercially available artificial porous samples. A
sample of fused glass beads, labelled as Asstl (manufactured by Louwers
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Hapert, The Netherlands), a permeable ceramic material, labelled as Asst2
(manufactured by Ferro Corporation, New York, USA), and a permeable
ceramic material, labelled as Asst3. The first two types of samples were
used for velocity and attenuation measurements as described in Chapter 7,
and the third type was used for the dynamic permeability measurements.
Photomicrographs of all samples are shown in Figure (6.8) at the end of this
chapter. These were obtained from thin sections of the samples, which were
examined with a Quantimet-570C image analyzer (Leica-Cambridge Ltd.).
The grain size of the Asstl sample is 40-100 pm, of Asst2 50-200 pxm, and of
Asst3 100-400 pm. The bulk modulus of the grains K is taken to be equal
to textbook values of the dominant grain material. For the Asstl sample
we have taken that of bulk glass (K; = 49.9MPa). For the Asst2 sample
we have taken K; to be equal to that of quartz (K, = 36.6 MPa). The
K value of the Asst3 sample is not relevant for the dynamic permeability
measurements.

Preliminary acoustic measurements on the Asst 1 sample were performed
by Geerits and Kelder (1997) but these were restricted to phase velocities
and qualitative assessment of frequency-dependent attenuation. Johnson
et al. (1994) performed acoustic measurements on ceramic material similar
to the Asst2 sample and compared results with the Biot theory. However,
they were not able to measure bulk attenuation of the fast and shear wave,
since the attenuation factors of these waves are very small. Therefore, we
have used samples with a thickness of several centimetres, whereas Johnson

et al. (1994) used samples of only 1cm thickncess.

Nivelsteiner sandstone

Nivelsteiner sandstone is found within the Miocene sediments (deposited
10 million years ago) exposed in southern Limburg, The Netherlands, as
depicted in Figure (6.1a). The Miocene stratigraphy comprises thin layers
of lignite (brown coal) and very pure, well sorted, high porosity quartz sands
(Figure 6.1b). The Middle Miocene Nivelsteiner sandstone was deposited
within a littoral to very shallow marine / tidal environment (Kuyl, 1973).
The sandstone occurs as silicified homogeneous layers (up to a few decimetres
in thickness) embedded in 10 to 20 metres of extremely weathered very
pure white sands (see Figure 6.1b). The Nivelsteiner sandstone and the
weathered unconsolidated sands exhibit a remarkable similarity in textural
and mineralogical properties. Samples of this sandstone were obtained from
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Figure 6.1: (a) Geological map of Southern Limburg, showing the distribution
of Miocene and Pliocene formations; Quartenary is omitted. (b) Simple
stratigraphic column of the Middle and Upper Miocene deposits (after Kuyl
(1973)).

the Nivelstein and Heerenweg quarries. Because of the pureness of the quartz
sand, it is still being exploited mainly to be used as a raw material for
the crystal glass industry. Photomicrographs of four Nivelsteiner sandstone
samples, labelled as Nsstl, Nsst2, Nsst3 and Nsst4, are depicted in Figure
(6.9). All samples show a clear predominance of well-sorted quartz grains
(over 95%), with a grain size of 150-250 pum. Furthermore, silicification
as overgrowth and at grain contacts is a common occurrence. Obviously,
the bulk modulus of the grains K, is taken to be equal to that of quartz
(Ks; = 36.6 MPa).

Bentheimer sandstone

Bentheimer sandstone is of the Lower Cretaceous age (deposited 135 mil-
lion years ago) and crops out near the town of Bentheim in Germany. The
regional distribution of this sandstone is shown in Figure (6.2a). This ho-
mogeneous sandstone is the reservoir rock of the largest onshore oil field in
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Figure 6.2: (a) Geological map of the Emsland region, showing the origi-
nal and present distribution of Bsst in this region. (b) Simple stratigraphic
profile of the Bsst deposits (after Kemper (1976)).

North West Europe, the Schoonebeek oil field. It is also the reservoir for the
large majority of oil fields west of the river Ems in Germany. Benthcimer
sandstone is characterized by a vertical coarsening upward profile. This is
interpretated as a shallow marine environment of deposition, and is depicted
in Figure (6.2b) (Kemper, 1976). A photomicrograph of a Bentheimer sand-
stone sample, labelled as Bsst, obtained from the Bentheim quarry is shown
in Figure (6.8). The grain diameter of the sandstone varies from 150-300
pm. The sandstone consists mainly of quartz (90%-95%), but with a higher
percentage of other minerals than the Nivelsteiner sandstone. The image
analysis study showed that in addition to quartz overgrowth at the grain
contacts, kaolinite (clay) is present in Bentheimer sandstone. This mineral
is not present in Nivelsteiner sandstone. Nevertheless, the bulk modulus of
the grains K is taken to be equal to that of quartz (K; = 36.6 MPa).

Before we discuss the experimental determination of the rock param-
eters for these artificial and natural sandstone samples, we first show the
experimental verification of the dynamic permeability model.
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6.3 Dynamic permeability

In Chapter 3 we discussed the scaling function for the reduced dynamic
permeability of a rigid porous medium, according to Johnson et al. (1987).
Charlaix et al. (1988) and Smeulders et al. (1992) took direct measurements
of the dynamic permeability of fluid-saturated samples of sintered spherical
beads and sintered crushed glass. Johnson et al. (1994) used the acoustic
properties of superfluid He II to probe the dynamic permeability of porous
media. Direct measurements of dynamic permeability are often hampered
by persistent acoustic resonances in the equipment. Here we report new and
more accurate experimental results of dynamic permeability measurements
(Yazir, 1995). For this, we specifically designed the set-up drawn in Figure
(6.3a), which is an improved version of the set-up used by Smeulders et al.
(1992). It is called the Dynamic Darcy Cell. A photo of this set-up is shown
in Figure (6.5) An oscillating pressure gradient was induced by a vibration
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Figure 6.3: (a) Dynamic Darcy Cell for dynamic permeability measurements.
(b) Detailed sketch with relevant dimensions of porous material and its sur-
roundings.
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exciter driving a rubber membrane. The vibration exciter, controlled by
a power amplifier, induced an oscillating flow in a frequency band ranging
from 20 to 200 Hz. Hence the wavelength is much larger than the length of
the porous sample (Ly). Therefore, the fluid may be regarded as incompress-
ible. The pressure drop across the porous sample was measured using two
piezo-electric transducers. Pressure transducer PT1 (PCB) was installed in
the stiff steel body of the set-up, in order to avoid resonance disturbances.
Pressure transducer PT2 is identical to PT1 and was mounted on the lower
end of a cylindrical Perspex shaft, fixed to a separate steel framework.

For the dynamic permeability measurements the samples were carefully
saturated with degassed water. During the measurements the pressure sig-
nals of the lower and upper pressure transducers were recorded as an elec-
tric charge. The signals were converted by Kistler 5011 amplifiers, to obtain
a proportional analogue voltage. This voltage was digitised by a Keithly
Das-1400 data acquisition board, which was plugged into a PC. The data-
acquisition board was used in combination with a external sample-and-hold
unit (SSH-4/A, Keithly) for simultaneous acquisition of both signals, with a
maximum delay time of 40 nsec. The software package Viewdac from Keithly
controls the data-acquisition by the DAS-1400. Effective noise reduction in
the recorded signals was obtained by signal averaging during processing.
The phase shift was measured as well as the amplitude difference between
the lower and upper transducer signals. To quantify this behaviour, the sig-
nals were transformed to the frequency domain by means of a Fast Fourier

Tranefaorm alaarithm
srangiorm aigor:

vassiis,

Defining p2 as the Fourier transformed pressure amplitude recorded by
PT?2, as depicted in Figure (6.3b), the corresponding fluid velocity ¥, can be
obtained by the momentum equation over the distance L;:

P2~ —ppiwdy. (6.1)
Ly
Subsequently, the macroscopic fluid velocity @ within the porous sample,
follows from the continuity requirement for the incompressible fluid in the
system ¢ = yvg, where v = (As;py — Ag)/Atot- The dynamic permeability
for each frequency component may now be solved by means of the dynamic
equivalent of Darcy’s law as defined in Equation (3.2):

ng . Pn—Pi
— = ,
k(w) Ly

(6.2)
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where the pressure drop is determined by the fluid pressure amplitudes py
and p;, just below and above the porous sample (Figure 6.3b). Using the
momentum equations over distances z; and z,, these pressure amplitudes
can be expressed in terms of the pressure recordings p; and po:

Yz .

pp, = P1 — — 6.

Pn=p1~ P, (6.3)

p=p2+ 12P2~ (6.4)
S

We used samples of glued glass beads and the Asst3 sample, all with lengths
of 100 mm and diameters of 60 mm. The samples of glass beads are made
of three dominant glass bead sizes, respectively, Dy, =0.93, 1.39, and 1.98
mm. The beads were glued together and to the wall of a confining cylinder
by means of a epoxy resin, so that any free motion of the porous material was
avoided. The Asst3 sample was also glued into a confining cylinder. Table

Parameter values glass 1 glass 2 glass 3 Asst3
Diom mm 0.93 1.39 1.98 0.30

¢ 0.32+0.02 | 0.34+0.02 | 0.32+0.02 | 0.51+£0.03
Qoo 1.90+0.04 | 1.984+0.04 | 1.81+0.04 | 1.44+£0.03
ko Darcy | 34020 920+ 30 1500 £ 50 9+7
We rad/s 492 186 117 3577

Table 6.1: Rock parameter values for dynamic permeability measurements.

(6.1) shows the relevant parameter values and the rollover frequency w,, as
defined in Equation (3.11). These values followed from independent non-
acoustic experimental measurements as discussed in the following sections.
As was mentioned before, the properties of the water saturating the samples
were obtained from textbook values. Taking into account the temperature
of the water during the measurements, average values for the experiments
followed as K= 2.22 MPa, py = 1000 kg/m3, and n = 0.001 Pa - s.

Results for both absolute and phase values of dynamic permeability mea-
surements are presented in Figure (6.4a) and (6.4b). For each porous sam-
ple, dynamic permeability k(w) and frequency w are scaled by corresponding
steady-state permeability ko and rollover frequency w,.
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Figure 6.4: (a) Absolute and (b) negative phase values of dynamic permeabil-
1ty measurements. * glass beads 1.98 mm. o glass beads 1.39 mm. + glass
beads 0.93 mm. e Asst3. The drawn curves represent the scaling function
for different M-values. Errors are indicated by the size of the data symbols.
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Figure 6.5: Photo of Dynamic Darcy Cell and data-acquisition system.
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Obviously, the experimental data for the fused glass bead samples show
excellent agreement with the scaling function for dynamic permeability for
M = 1. Note that M is the similarity parameter as defined in Equation
(3.12). In this way, the measurements supports the suggestion of Johnson
et al. (1987) that M is equal to 1 for all porous media, or at least ap-
proximately. In contrast to the experimental data of Charlaix et al. (1988)

and Smeulders et al. (1992), our experimental results were not affected by
persistent set-up resonance.

A tendency to deviate from the M = 1 curve was observed for the dy-
namic permeability data for the Asst3 material. Both the absolute values
and the phase values tend to coincide with the M = 5 curve. This supports
the conclusion by Smeulders et al. (1994) that M might deviate from the
value 1 for a porous medium with a sharp-edged pore structure (M = 10
to 100). However, our measurements indicated that the deviation is less
pronounced than was predicted by Smeulders et al. (1994). From the pho-
tomicrograph of the Asst3 sample (see Figure 6.8) it seems plausible that this
material has a sharp-edged pore structure. Sintered glass beads and natural
rock samples show more smooth pore structures (see Figures 6.8 and 6.9).
Therefore, extremely high M-values are not likely to occur for sintered glass
bead and natural rock samples.

We will now continue with the discussion of the experimental determina-
tion of the rock parameters for the artificial and natural sandstone samples

6.4 Porosity and grain density

Porosities of all porous samples were measured by using the standard two-
weight (dry and buoyant) method. This implies that we first determined the
dry weight Gg of the porous sample, and then the weight G; of the same
sample when it was fully water-saturated and fully immersed in water. For
these porosity measurements we used four cores of each sample type to de-
termine whether the measurements are reproducible. Typical core thickness
was in the order of 20 mm. Core diameter ranged from 26 mm to 80 mm.
From these experiments both porosity ¢ and particle density ps were derived:

_ Go-G,
gy

(1-9)Vs (6.5a)
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pr _ G
Ps B GO,
where V; is the bulk volume of the core, g is the constant of gravity and py
the water density. Measured average porosities and particle densities for all
porous samples are listed in Table (6.2).

1-— (6.5b)

Sample ¢ ps (kg/m®)
Asstl | 0.34+£0.01 | 2230+20
Asst2 | 0.40£0.01 | 2750+ 20
Nsstl | 0.36+0.01 | 264020
Nsst2 | 0.3140.01 | 2640420
Nsst3 | 0.23+0.01 | 2640+ 20
Nsstd | 0.25+0.01 | 2640+ 20
Bsst | 0.23+0.01 | 264020

Table 6.2: Porosity and grain density.

6.5 Tortuosity

The tortuosity was determined in an electrical resistivity experiment. The
analogy between the acceleration of an inviscid incompressible fluid within a
rigid porous medium, and the electrical current density within an electrolyte
filled porous insulator, was first demonstrated by Brown (1980). This was
experimentally verified by Johnson et al. (1982). We may write

by
where 7, is the intrinsic resistivity (in Qm) of the fluid-filled porous insulator,
and 7y is the intrinsic fluid resistivity. The /¢ ratio is known as the
formation factor F'. The set-up is drawn in Figure (6.6). A small cylindrical
core sample was clamped between two permeable electrodes, covered with
a rubber sleeve and placed inside the measurement cell. All porous core
samples had a thickness and a diameter of 25 mm. Non-conducting PVC
plugs were used to avoid any contact between the hollow electrodes and
the cell. The sample was fully saturated with a 0.086 mol/l NaCl solution.
The resistance R, (in §2) of the core sample was measured with a Wayne-
Kerr resistance bridge. Measurement accuracy was better than 0.2%. For

Qoo Ts

(6.6)
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the fluid resistivity measurements, the core sample was replaced by a piece
of thin-walled perspex tubing of the same dimensions. The results of the
tortuosity measurements are listed in Table (6.4).

resistance bridge

electrodes

core sample

!

Figure 6.6: Ezperimental set-up for tortuosity measurements.

Sample F Qoo

Asstl 6.2+0.2 | 2.1+0.1
Asst2 48402 (1.9+0.1
Nsstl 50+0.2 | 1.84+0.1
Nsst2 6.6+0.2 | 20+0.1
Nsst3 12.14+0.2 | 2.84+0.1
Nsst4 9.14+02 | 2.3+0.1
Bsst 11.3+0.2 | 2.6 +0.1

Table 6.3: Formation factor and tortuosity values.




6.6. STEADY-STATE PERMEABILITY 85

6.6 Steady-state permeability

Figure (6.7a) shows the experimental set-up used for the steady-state per-
meability measurements. The same cylindrical core sample as described in
the previous section was jacketed between two plungers, and placed in a
stainless steel coreholder. A confining stress of approximately two bars was
applied to the sample. The system was evacuated and fully saturated with
water. During the measurements, water flows from the container vertically
upwards through the core sample. The height of the container above the
coreholder can easily be adjusted, so the flow can be measured as a function
of the height of the driving head A (in m). The flow from the outlet of the
coreholder was measured by a computer controlled balance. The volume
flow Q (in m3/s) through the sample is given by Darcy’s law:

Q= koA, ghpf,

p L
where g is the constant of gravity. In Figure (6.7b) we plotted the volume
flow against the driving head for three different core samples. For all samples

(6.7)

9 v
o1 (b)
(a) Asst2
7
6l
«
S s
< 4
3+ Nsst4
2l
vacuum pump 1l Bsst
jacketed 0 W
core sample 0 50 100 150 200 250

driving head A (cm H,0)

Figure 6.7: (a) Ezperimental set-up for water flow steady-state permeability
measurements. (b) Results for samples Asst2, Nsst{, and Bsst. The volume
flow Q against the driving head h is plotted.

we found a linear relationship between ) and h. The steady-state perme-
ability can now easily be calculated by means of Equation (6.7). Results are
shown in Table (6.4).



86 6. SAMPLE PROPERTIES AND DESCRIPTION

Sample | ky (Darcy)
Asstl 3.5+0.2
Asst2 16.3 £ 0.5
Nsstl 27.0+£1.0
Nsst2 9.7£0.5
Nsst3 3.7+£0.2
Nsst4 4.74+0.2
Bsst 1.3+0.1

Table 6.4: Steady-state permeability values.
6.7 Elastic properties

The values of the elastic bulk moduli K, and G were deduced from acous-
tic transmission measurements in a water-filled tank on a dry sample of
porous material, enclosed in a thin impermeable jacket. From the inverse
squared velocities in Equations (4.22) and (4.35) the nondispersive shear and
compressional wave speeds in dry material are, respectively (Johnson et al.,

1982),
f G
Cg (dl'y) = m, (683.)
¢y (dry) = (| 2 /G (6.8b)

V (1 - ¢)ps
The same experimental set-up was to determine the acoustic bulk properties
of the saturated porous material. The results are shown in Table (6.5). It is

Sample | c,(dry) (m/s) | ¢p(dry) (m/s) | Ky (GPa) | G (GPa)
Asstl 1760 + 20 3280 + 20 9.8+0.2 4.6+0.2
Asst2 2160 £+ 20 3580+ 10 10.9+0.2 | 7.71+0.2
Nsstl 1340+ 20 2310+ 30 5.0+0.2 3.0+0.2
Nsst2 1710 £ 20 2850 + 15 7.7+0.2 5.3+0.2
Nsst3 2180+ 25 3540+ 20 126 +£0.2 | 9.7+0.2
Nsst4 2120+ 25 3450 £ 20 11.74+0.2 | 8.94+0.2
Bsst 1510+ 25 2410+ 30 5.6+0.2 | 4.61+0.2

noteworthy that for all Nivelsteiner sandstone samples the contrast between

Table 6.5: Elastic properties.
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the grain and composite bulk moduli, K;/K) and K;/G, correlate with the
rock production parameters (see Table 6.6). A decrease in K;/K} and K;/G
ratios correlates with a decrease in porosity and permeability, and with an
increase in tortuosity. This ratio is also a measure for the consolidation
of the material. The samples Nsstl and Nsst2 with relatively high grain
composite ratios are unconsolidated samples, and the samples Nsst3 and
Nsst4 are consolidated.

Sample || K;/Ky | Ks/G || ¢ | ko (D) | ac
Nsstl 10 16.6 || 0.36 1 27.0 | 1.8
Nsst2 6.5 9.4 0.31 9.7 2.0
Nsst4 4.3 5.6 0.25 4.7 2.3
Nsst3 4.0 5.1 0.23 3.7 2.8

Table 6.6: Correlation between K;/Ky and K;/G ratios and rock production
properties for all Nivelsteiner sandstone samples.
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Asst2

< —» <+« —»

500 um 500 um

Figure 6.8: Photomicrographs of thin sections of the fused glass bead sample
Asstl, the ceramic material Asst2, the Bentheimer sandstone sample Bsst,
and the ceramic material Asst3. Blue indicates pore space.
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Figure 6.9: Photomicrographs of thin sections of four Nivelsteiner sandstone
samples. The samples from the Nivelstein quarry are labelled Nsstl, Nsst2,
Nsst3. The sample from the Heerenweg quarry is labelled Nsstj. Blue indi-
cates pore space.



Chapter 7

Measurements of acoustic
bulk properties

7.1 Introduction

This chapter discusses measuring the acoustic bulk properties of artificial
and natural water-saturated porous samples. For all samples, we measured
the phase speeds, attenuations, and specific attenuations as a function of
frequency. We compared the experimental results with theoretical compu-
tations. The Biot slow wave was observed experimentally in natural water-
saturated sandstone. To our knowledge, it is the first time that this obser-
vation was reported in such a medium. This enabled us to verify the Biot
theory experimentally in natural water-saturated sandstone for all three bulk
waves. All input parameters needed to calculate the theoretical values of the
bulk properties were measured separately on all samples. This means that
the comparison between experiments and theory does not involve any pa-
rameter adjustments.

7.2 Experimental set-up

For the experiments we used a transmission configuration similar to the ones
used by Plona (1980) and Kelder and Smeulders (1995, 1996a). The exper-
imental set-up is shown schematically in Figure (7.1). A photo is shown
in Figure (7.6). A sample slab was carefully saturated with water. A CO,
procedure was used for this (Smeulders et al., 1992). Subsequently, the slab
was mounted on a rotation table in a water-filled tank to perform acous-
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*t

Figure 7.1: Configuration of the experimental set-up.

tic measurements at different angles of incidence. A single pair of identical
piezo-electric ultrasonic transducers was used to generate and detect short
duration acoustic pulses. Because of mode conversion at the interfaces be-
tween the saturated sample and the surrounding fluid, all three bulk waves
were generated in the sample. Because of the different velocities of these
wave modes, they were separated in time. Recorded signals were displayed
on an oscilloscope and stored in a computer. Figure (7.2) shows a dia-
gram of the various components of the data-acquisition system. The central
part of the data acquisition set-up is a LeCroy 9400 digital oscilloscope
(transient recorder). This oscilloscope contains two channels and an 8-bit
A /D-converter. A signal averaging processing option was used to reduce the
noise level in the recorded data. Pre-programmed acoustic pulses were sup-
plied by a programmable waveform generator. The pulse was amplified by
a broadband power amplifier before it was passed on to the emitting trans-
ducer. For extremely low amplitude levels of recorded signals a conditioning
amplifier was used before data acquisition by the oscilloscope. The transduc-
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Personal <
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Figure 7.2: Diagram of the data acquisition set-up.

ers used for our laboratory measurements are commercially available, flat,
circular, piezoelectric transducers with different centre frequencies and di-
ameters. We used three pairs of transducers, manufactured by Panametrics
and Rhosonics. The centre frequencies of these transducer pairs are 200, 500,
and 800 kHz, respectively. In this way a total bandwidth of 100 kHz to 1 MHz
was covered. An elaborate description of the transmitted wavefield of these
transducers was given by Hylkema (1996). A XY Z-positioning system was
used to control all transducer movements. The transducers were mounted on
two vertical poles which were both attached to two horizontal bars. The dis-
tance between the transducers in the X-direction was controlled by sliding
the two horizontal bars along a stiff frame from which they were suspended.
The vertical poles were both able to slide in the vertical and horizontal di-
rection along the horizontal bars. The transducers, placed at the bottom
of the vertical poles, were able to rotate in the XY -plane. All movements
were performed by six Stepper motors with a smallest step distance in each
direction of 25.0+0.5 um. The rotation table was also controlled by the po-
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sitioning system. A PC was used to guide the positioning system, control
the oscilloscope, and store the recorded data during the measurements.

7.3 Water measurements

We used a short duration acoustic pulse for the transmission experiments.
Figures (7.3a) and (7.3b) show an example of a recorded pulse and the corre-
sponding frequency amplitude spectrum when no sample was placed on the
rotary table. In Figure (7.3b) we observe the 500 kHz centre frequency. For

4
x 10

1000 T -
(a) 16} (b)

500

P (mV)

-500f

~1000 170 174 178 0 2 4 6 )

time (us) frequency (Hz) x 10

5

Figure 7.3: (a) Recorded time trace and (b) absolute values of frequency
spectrum.

plane wave propagation in the positive z3-direction, the pressure response
in the frequency domain for a transmitter-receiver distance d can be written
as

p(w) = Q(w) exp[ikyd). (7.1)
Q(w) is the source amplitude for a specific frequency, and k f=ksf=wlcs
is the fluid wavenumber. Combining recorded signals for distances d; and

do results in ( )
ﬁ d2,w .
——= = expliks(dy — di)]. 7.2
A(dr, @) xpliks(dz — di)] (7.2)
Fluid damping is ignored, which means that the fluid wave number k; is
real-valued. The phase angle of the pressure ratio in Equation (7.2) may be
written as 5(dg, )
plaz,w
hase{f————}zk dy — dy). 7.3
p Fdy ) f(d2 — d1) (7.3)
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In Figures (7.4a) and (7.4b) results for the wavenumber ky = w/cy are plot-
ted as a function of frequency. The corresponding velocities follow as ¢y =
1477+2m/s and ¢y = 147612 m/s, respectively. These are good approxi-

® (radfs) ® (rad/s) x10

Figure 7.4: Wavenumber k; as function of the frequency w for (a) dy=0.11m;
d2=0.12m, and (b) d1 =0.11m; d2=0.18m.

mations of the theoretical phase velocity in water, which is 1480 m/s (Del
Grosso & Mader 1972).

7.4 Microseismograms

Acoustic transmission measurements through slabs of water-saturated porous
materials were performed for different angles of incidence 6 (Figure 7.5 and
7.6). As it may be difficult to identify the arrivals of the different bulk
waves at one single 6, it was convenient to perform measurements at sev-
eral angles of incidence and plot the recorded traces in one single so-called
microseismogram.

Artificial sandstone

In Figures (7.7) we plotted the microseismograms of the three transducer
pairs. Results are shown for the fused glass bead sample Asstl. Effec-
tive noise reduction in the recorded traces was obtained by signal averaging
procedures. The recorded acoustic traces are plotted against the angle of
incidence at increments of 3° for the 200 kHz transducers and at increments
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Figure 7.5: Measurement configuration for ultrasonic detection of different
wave modes. Reflected waves are not shown. The angle of incidence is
indicated by 0.

of 2° for the 500 and 800 kHz transducers. The different waves can be iden-
tified clearly. For normal incidence and f. = 800 kHz, the fast compressional
wave (FP) is recorded at ¢ = 0.0161 us, followed by its first multiple FFP
at 0.0173 ps. This first multiple interferes with the slow compressional wave
SP, which arrives at ¢t = 0.0175 us. At t = 0.0185 ps and ¢ = 0.0196 us
the second (FFFP) and third (FFFFP) multiples of the FP wave are visible.
The FP wave disappears after the critical angle of incidence of about 34° is
reached, which is slightly higher than the calculated critical angle of inci-
dence according to Snell’s law (31° &+ 1°). At increasing angles of incidence,
this FP wave shows a time shift toward an earlier arrival time because the
distance travelled through the sample becomes longer, while the velocity of
this wave is higher than the wave speed in water. The shear wave arrival
(S) is visible at an angle of 12° at ¢ = 0.0168 us and is generated strongly
at angles over 34°. Its velocity is of the same order as the velocity in water,
so only a minor curvature of the arrivals at increasing angles of incidence is
observed. As mentioned before, at small angles the arrival of the slow wave
(SP) is drowned by the strong arrival of the first multiple reflection of the
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Figure 7.6: Photo of water-filled tank for acoustic transmission ezperiments
and data-acquisition system.




7.4. MICROSEISMOGRAMS 97

60 — B
sol LA ] £, =200kHz
-
ﬁﬁ&[ﬂ%
o AR A
| R/
20 W Y Y-
10f JVJ\/é\//
0 éV/
1.6 17 18 19 2
x10_4
60—
5ol / \ || £ = 500kHz
40 Jf[:f'/a?f
. . "[[11",///55 1
angle of incidence 34 R
JI.I Nﬂ/’w"
(degrees) 20 /[ V/VN*M = ,(
n
10 ‘_‘_W(N’/Nw
v ;WWM";?’
=
16 17 ;
18 19 2“0_4
60 S —
sol [5] | J, = 800 kHz
) a
40 /[ :éﬁp
== A
=
20 o —
-
== ==
[FP] Fepl(SP)  [Frep]  [Frere] |
1. . . .
6 17‘ 18 1.9 2“04
time (s)

Figure 7.7: Microseismograms of recorded time traces in fused glass bead
sample Asstl as a function of the angle of incidence. Results are plotted for
three different transducer pairs with centre frequencies f. = 200, f.= 500,
and f. = 800 kHz, respectively.



98 7. MEASUREMENTS OF ACOUSTIC BULK PROPERTIES

fast wave (FFP). At an increased angle of incidence, this multiple reflection
is no longer detected. This is due to the fact that the receiving transducer is
in a fixed position, and the multiples have obtained significant displacement
in the Y-direction. The distinction between the multiple reflections and
the slow wave is easily made because of the curvature of the arrivals in the
microseismogram. The arrivals of the multiple reflections bend to the left,
while the slow wave arrivals curve to the right. From these seismograms it is
also possible to extract qualitative information about frequency-dependent
attenuation. The maximum amplitude of the FP wave at normal incidence
is scaled to unity. The resulting scaling factor is used for all recorded traces.
The same procedure is used for each single transducer pair. In Figures (7.7)
we note that the damping of the shear wave becomes more pronounced with
respect to the damping of the FP wave when the centre frequency increases.
For the slow wave (SP) this increasing attenuation is even more pronounced.
Considering one single microseismogram, we also note an increasing atten-
uation of the multiple reflections of the fast wave (FFP, FFFP, FFFFP)
because of the longer travelpath of these multiples through the porous ma-
terial. All this is in agreement with the Biot prediction for attenuation, as

depicted in Figure (4.2).
Nivelsteiner sandstone

In Figures (7.8) the microseismograms of the Nivelsteiner sandstone sample
Nsst4 are depicted. All three types of bulk waves are beautifully visible. We
claim that it is the first time that the slow compressional wave is measured
in a natural water-saturated rock (Kelder and Smeulders, 1997). Following
Plona’s observation of the slow wave in water-saturated sintered glass beads
(Plona, 1980), up to now the slow wave was only detected in thin slabs of air-
filled sandstone (Nagy et al., 1990), and in water-saturated, unconsolidated
sand (Boyle and Chotiros, 1992). The Biot slow wave observation enabled
us to simultaneously study all three wave types in natural sandstones.

Bentheimer sandstone

The microseismograms of the Bentheimer sandstone sample Bsst are de-
picted in Figures (7.9). In this case, a minimum of transmitted acoustic
energy is observed for the shear wave, as well as for the multiple reflec-

tions of the fast compressional wave. The slow compressional wave was not
detected at all.
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Figure 7.8: Microseismograms of recorded time traces in the Nivelsteiner
sandstone sample Nsst4 as a function of the angle of incidence. Results are
plotted for three different transducer pairs with centre frequencies f. = 200,
fe= 500, and f. = 800 kHz, respectively.
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Figure 7.9: Microseismograms of recorded time traces in the Bentheimer
sandstone sample Bsst as a function of the angle of incidence. Results are
plotted for three different transducer pairs with centre frequencies f. = 200,
fe= 500, and f. = 800 kHz, respectively.
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In Table (7.1) the measured wave velocities in all samples at 500 kHz are
listed. They are obtained from first arrivals. In the next section, a spectral
ratio technique is introduced to obtain these wave velocities as a function of
frequency. Moreover, this technique allows accurate damping measurements
of the recorded wavetrains.

Sample | ¢,y (m/s) | ¢ (m/s) | ¢y (m/5)
Asstl | 3350+30 | 1770+ 30 | 960 £ 20
Asst2 3420£30 | 202030 | 990+ 20
Nsstl 2440430 | 135030 -
Nsst2 2810+ 30 | 151030 | 860+20
Nsst3 3850+30 | 2450+30 | 810+£20
Nsst4 369030 | 2290+30 | 870+20
Bsst 2910+30 | 1450+ 30 -

Table 7.1: Measured bulk wave velocity values for the 500 kHz centre fre-
quency pulse.

7.5 Spectral ratio technique

It is possible to obtain frequency-dependent bulk properties from the ratio
of the transmission amplitudes of the measured pulses through two slabs of
different thicknesses (d; and dg) of the same material (Toks6z et al., 1979;
Sears and Bonner, 1981; Johnson et al., 1994). For a sample with thickness
d; the configuration for an arbitrary angle of incidence € is shown in Figure
(7.10). The complex pressure amplitude p,, of each Fourier component of
an isolated fast wave can be written as

Dp1(w,d1) = Q Ty p(w) explikpils] Ty pn (w) explik(lo — I7)], (7.4)

where Q is the source characteristic, Tp1,p is the transmission coefficient of
the compressional wave in the fluid converted to the fast wave in the porous
medium, T p, is the transmission coefficient of the fast wave converted to
the compressional wave in the fluid, [ is the travelpath of the wave from the
transmitter to the receiver, kp, is the complex wavenumber of the fast wave,
and k; the real-valued wavenumber of the fluid. Furthermore, [; and I/} are
length parameters depending on the angle of incidence 6 (see Figure 7.10).
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porous medium

transmitter receiver

— 6( ,,,,,, ' :' """""""""""""""""""

Figure 7.10: Diagram of the experimental technigue for measuring acoustic
bulk properties of a fluid-saturated porous medium. Note that we have used
two different thicknesses (di and dg) of the same material.

For an isolated slow wave we find a similar expression:
ﬁpz(‘”‘, di) = Q sz,p(w) eXp[ikpzll] Tp,pz(w) CXp[ikf(lﬂ ~17)]. (7.5)

The expression for the complex pressure amplitude of each Fourier compo-
nent of an isolated shear wave can be written as

Ps(w, d1) = Q Ty p(w) expliksli] T s(w) expliks(lo — I})]. (7.6)

From Equations (7.4)-(7.6), the ratio of the pressure amplitudes for two
different sample thicknesses (d; and dy) gives an explicit expression for the
complex wavenumber at any angle of incidence. This is due to the fact
that this ratio separates bulk characteristics from source characteristics and
transmission coefficients:

ﬁ] ((.d, d?)

By (wrdy) — Pk (2 = )] expl—iky (I = 11))- (7.7)

All relevant length parameters are shown in Figure (7.10). It can be seen
that for normal incidence we have I} =[] = d;, and I3 =[5 = d2. Equation
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(7.7) can now be written as

pj(w,da) _ Xp [i(dQ —d1) (Re{k;} — kg cos(02 — 0))

Pi(w,d1) cos 6,

(7.8)

—%m{kj}(dg - dl)
xp [ cos 0,

Subsequently, it can be seen that the real part of the complex wavenumber
follows from

5 (w.d (do — o —

phase Izj(wa 2) — Z(d2 dl) (%e{kj} k;f COS(@Z 0)) (79)

pj(w,dy) cos §;

According to Snell’s Law, the angle 6 is a function of the measured phase

speed

sin(f)  sin(6;)
T,

, (7.10)

for j = pl,p2,s. An iteration process (function fzero MATLAB) with the
measured phase speeds c; (see Table 7.1) as starting values was used to
solve Equation (7.10).

The absolute values of the pressure ratio in Equation (7.8) yield the
imaginary part of the complex wavenumber:

—ex [—gm{kj}(dz —dy)
cos 8,

Pj(w,ds)
ﬁ] (wa dl)

. (7.11)

Following the definitions of the acoustic bulk properties in Chapter 4, Equa-
tions (7.9) and (7.11) can now be used to determine the phase speed, at-
tenuation, and specific attenuation for arbitrary angle of incidence 8. The
spectral ratio technique requires the signals of corresponding bulk waves or
reflections to be completely separated in time. Since we windowed out the
isolated bulk wave arrivals and then Fourier analyzed them, any overlap of
the signals may cause errors in the spectral data. The experimental results
for each single bulk wave were obtained for that specific angle of incidence
at which the bulk wave under consideration has its strongest arrival (see
microseismograms). The receiver was displaced sideways for optimal record-
ing of this strongest arrival. Repeated measurements at different angles of
incidence in the vicinity of the strongest arrival were used to determine the
accuracy of the measurements. Using the spectral ratio technique, we will
now describe the measurements of the acoustic bulk properties for all types
of rock samples.
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7.6 Phase speed and attenuation measurements

Artificial sandstone samples

In Figures (7.11) the measured and theoretical values for the acoustic bulk
properties of the Asstl sample are shown. Results are obtained for all three
transducer pairs covering a total bandwidth of 100 kHz to 1 MHz. For the

Fused glass bead sample Asstl
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Figure 7.11: (a) Phase speed, (b) attenuation, and (c) specific attenuation
1/Q for the fused glass bead sample Asstl. The curves represent the theoret-
ical predictions. The ezperiments are indicated by (o) fast wave, (+) shear
wave, and (x) slow wave. The shaded region represents minimum detectable
attenuation values. Errors are indicated by the size of the data symbols.

phase speeds in Figure (7.11a) and the (specific) attenuations in Figures
(7.11b) and (7.11c), all measurements are in excellent agreement with pre-
dictions on the basis of the linear Biot theory. This means that the measured
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phase speeds show non-dispersive behaviour but that the measured (specific)
attenuations do show a distinct frequency dependence. As we noted before,
all input parameters needed for the Biot predictions were measured indepen-
dently. Maximum errors in our measurements were estimated by repeating
the spectral ratio technique for different angles of incidence. Typically, the
variation of the phase speed was within 5 % of the measured value, and the
variation of the attenuation within 15 % of the measured value. These errors
are indicated by the size of the data symbols. The transmission measure-
ments were performed on thin slabs of porous material ranging from 2 cm to
4 cm. Whereas a typical attenuation value for the slow wave is 50 m~! (40
% signal loss per cm), the shear wave attenuates by 5 m~! (5 % signal loss
per cm) and the fast wave by only 0.5 m~! (0.5 % signal loss per cm). For
these low attenuation values we had to take into account the minimum level
of attenuation that could be measured with our equipment. From the 8-bit
A /D-conversion it can be shown that the minimum detectable attenuation
value ranges between 1 and 5 m~!. This region is shaded in Figure (7.11b).
The minimum detectable attenuation is the reason why we were not able
to observe the very small bulk attenuation of the shear and fast waves in
sample Asstl.

The results for the permeable ceramic sample Asst2 are depicted in Fig-
ures (7.12). Also for this sample, excellent agreement was found for the phase
speed measurements. The attenuation of the slow wave is slightly underesti-
mated at low ultrasonic frequencies but the deviation becomes progressively
more significant for increasing frequencies (see Figure 7.12b). This is prob-
ably due to the onset of Rayleigh scattering, which becomes important in
the ultrasonic frequency range (Schwartz and Plona, 1984). Scattering oc-
curs whenever velocity or density heterogeneities occur on the same length
scale as the acoustic wavelength. Winkler (1983) presented experimental
results showing scattering effects in sandstones at ultrasonic frequencies,
where the scatterers are the grains and the pores of the rock. This grainsize
dependence is the reason why scattering was hardly observed in the fused
glass bead sample Asstl (see photomicrographs in Figure 6.8). Scattering
results in dramatic signal loss. Typical Rayleigh scattering at high frequen-
cies should follow a f* dependence, whereas the Biot theory shows an f1/2
dependence. Another interesting result is that we were able to measure at-
tenuation values for the shear wave in the Asst2 sample (see Figure 7.12b).
From the 8-bit A/D-conversion it can be shown that the absolute accuracy
for the attenuation measurements is 2 m~'. This is represented by the error



106

7. MEASUREMENTS OF ACOUSTIC BULK PROPERTIES

Permeable ceramic material Asst2
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Figure 7.12: Theory versus ezperiments for the permeable ceramic sample
AsstZ. Legend identical to Figure (7.11). The error bar indicates the absolute
accuracy of the data-acquisition set-up (2 m=1).

bar in Figure (7.12b). Also in this case the attenuation is slightly under-
estimated for low ultrasonic frequencies, but for increasing frequencies the
f* dependence becomes clearly visible. The fast wave attenuation was too
small to detect. Similar results for artificial sandstone samples were found
by Hovem and Ingram (1979); Berryman (1980); Johnson and Plona (1982);
Johnson et al. (1994); Kelder and Smeulders (1995, 1996a).

Nivelsteiner sandstone samples

In Figures (7.13), the results from the spectral ratio technique for the sam-
ple Nsst4 are shown. The measured phase speeds are in excellent agreement
with the theoretical predictions. This is also the case for the newly observed




7.6. PHASE SPEED AND ATTENUATION MEASUREMENTS 107

slow wave. In this sample, we were able to measure even the attenuation of
the fast compressional wave (see Figures 7.13 b and c). Despite the onset

Nivelsteiner sandstone sample Nsst4
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Figure 7.13: Theory versus ezperiments for Nivelsteiner sandstone sample
Nsst). Legend identical to Figure (7.11). The error bar indicates measure-
ment accuracy of the data-acquisition set-up (2 m=1).

of Rayleigh scattering at high ultrasonic frequencies, the attenuation of the
slow wave is only slightly underestimated by the Biot theory. This underes-
timation is greater for the shear and fast waves. Similar results were found
for the Nivelsteiner sandstone sample Nsst3, as depicted in Figures (7.14).
The phase speed measurements in Figure (7.14a) are in good agreement with
the theoretical predictions. Only the measurements of the shear wave show
a maximum discrepancy of 10 % from the theory. The comparison between
theory and experiments for the slow wave attenuation is quite good and dis-
crepancies for the shear and fast wave attenuation are similar to the results
for sample Nsst4. In the literature, several non-Biot attenuation mechanisms
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Nivelsteiner sandstone sample Nsst3
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Figure 7.14: Theory versus experiments for Nivelsteiner sandstone sample
Nsst3. Legend identicai to Figure (7.11). The error bar indicates measure-
ment accuracy of the data-acquisition set-up (2 m=1).

were proposed which may play a role in the additional attenuation of waves
in natural sandstones. One of these mechanisms is the so-called 'local flow’,
which is based on small aspect-ratio microcracks along grain boundaries,
generating local fluid flow at the grain scale. If pores are isolated from one
another, then the fluid pressure created in each pore by the passage of an
elastic wave depends on the pore aspect ratio. Because pores in sandstones
are interconnected, the fluid pressure in pores with different aspect ratios will
attempt to equilibrate by local flow. Viscous dissipation driven by this local
flow increases the wave attenuation (O’Connell and Budiansky, 1977; Mur-
phy et al., 1986). The origin of this dissipation is in fact the same as in the
Biot theory: viscous losses in the pore fluid from motion of the fluid relative
to the solid skeleton. However, whereas the ’local flow’ mechanism is based
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on microscopic fluid motion, the Biot theory is concerned with macroscopic
fluid flow controlled by the interconnected pore geometry. Despite the fact
that most of the local flow models can be fitted to experimental data, none
of them can be used as an independent theory for attenuation prediction.
This is because they all depend strongly on details of the microstructure that
cannot yet be adequately quantified (Winkler and Murphy III, 1995). The
driving force for the local low mechanism is the compression of solid grains,
which induces local flow from microcracks. For the slow wave, only a small
part of the wave motion is governed by the solid phase, which makes this
wave ineffective at generating local flow attenuation (Gist, 1994). Besides
the Biot fluid flow attenuation, the local flow mechanism might contribute
to the attenuation in samples Nsst4 and Nsst3. However, for sample Nsst4 it
should be noted that the results were obtained close to or within the limits
for detectable attenuation values (shaded region). Obviously, for increasing
frequencies we note for both samples that scattering occurs.

In Figures (7.15) and (7.16), results for the samples Nsst2 and Nsstl
are plotted. In contrast to the Nsst3 and Nsst4 samples, which were con-
solidated ones, the samples Nsstl and Nsst2 are unconsolidated (see the
photomicrographs in Figure 6.9). We found in Chapter 6 that the measure
for consolidation can be derived from the ratios of the bulk moduli of the
matrix and the grains K;/K} and K,/G. For all Nivelsteiner sandstone sam-
ples these ratios are given in Table 7.2. The unconsolidated Nsst1 and Nsst2

Sample | K;/K, | K;/G

Nsstl 10 16.6
Nsst2 6.5 9.4
Nsst3 4.0 5.1

Nsst4 4.3 5.6

Table 7.2: K;/K; and K;/G values for all Nivelsteiner sandstone samples.

samples have higher K;/K, and K;/G ratios than the consolidated Nsst3
and Nsst4 samples. The Nsst2 sample was used by Kelder and Smeulders
(1997) in their paper on the first experimental observation of the Biot slow
wave in water-saturated natural sandstone. In both the Nsst2 and Nsstl
samples, the phase speeds are in good to excellent agreement with the Biot
theory. The attenuation of the slow wave of sample Nsst2 is slightly underes-
timated by the Biot theory. For sample Nsst1, we were not able to record the
slow compressional wave. Also in these samples, the attenuation of the shear
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Nivelsteiner sandstone sample Nsst2
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Figure 7.15: Theory versus ezperiments for Nivelsteiner sandstone sample
Nsst2. Legend identical to Figure (7.11)

and fast wave are underestimated by Biot’s theory. We also find that the
underestimation of the shear and fast wave attenuation in these unconsoli-
dated samples is much greater than the underestimation in the consolidated
samples Nsst3 and Nsst4. Because local flow is very unlikely to occur in
the unconsolidated samples (Murphy et al., 1986), our observations strongly
suggest the existence of an additional non-Biot type of attenuation in un-
consolidated material. Plona and Winkler (1985) mentioned the possibility
of a type II scattering mechanism related to the interactions between grains
(‘connected solid space’). They observed a qualitative correlation between
this scattering loss and the contrast between the grain and matrix bulk
moduli, as calculated in Table 7.2. In their experiments, a pressure increase
tends to reduce this scattering loss while also reducing the grain/matrix bulk
moduli ratios. Taking into account this correlation, type II scattering loss,
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Figure 7.16: Theory versus experiments for Nivelsteiner sandstone sample
Nsst1. Legend identical to Figure (7.11)

related to the relatively high K,/ K, and K,/u ratios for our unconsolidated
samples, might cause the high attenuation values of the shear and fast waves.

Bentheimer sandstone sample

Results for the Bentheimer sandstone sample Bsst are shown in Figures
(7.17). The slow wave could not be detected. The phase speeds of the fast
and shear waves are in excellent agreement with the Biot theory, as depicted
in Figure (7.17a). The measured attenuation of the shear and fast waves in
the Bsst sample was, respectively, a hundred and a thousand times greater
than predicted. Another attenuation mechanism may explain why the slow
wave was not detected in Bentheimer sandstone. Klimentos and McCann
(1988) demonstrated that the attenuation of the slow wave increases strongly
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by adding clay suspensions inside the pores of artificial cemented sandstones,
which finally resulted in the complete disappearance of this wave. Therefore,
it is possible that the absence of the slow wave in the Bsst sample is explained
by kaolinite (clay) particles present in this sandstone (see photomicrograph in
Figure 6.8). Consequently, the pureness of the Nivelsteiner sandstone (over
95% grained quartz) is probably the reason why we observed the slow wave
in this sandstone without any problem. The great discrepancy in measured
and predicted attenuation for the shear and fast waves in the Bsst sample

is probably due to a combination of these clay particles and the local flow
mechanism.

Bentheimer sandstone sample Bsst1
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Figure 7.17: Theory versus ezperiments for Bentheimer sandstone sample
Bsst. Legend identical to Figure (7.11)
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7.7 Discussion and conclusions

This chapter showed a large number of ultrasonic experiments on artifi-
cial and natural water-saturated sandstones. Measured microseismograms,
showing the recorded time traces as a function of the angle of incidence, were
used to obtain qualitative attenuation behaviour of propagating waves in the
rock samples. Frequency-dependent phase speed and attenuation measure-
ments were compared with calculations based on the Biot theory. All input
parameters for the Biot theory were obtained by independent experiments
and thus the theory represents a purely predictive set of results. The Biot
theory, without any adjustable parameters, gave a very accurate description
of all three phase speed measurements in both water-saturated artificial and
natural sandstones. This predictive power of the Biot theory is truly a major
strength. Measurements of slow wave attenuation in the fused glass bead
sample conformed excellent to the Biot predictions. For all other artificial
and natural sandstone samples the slow wave attenuation was underesti-
mated only slightly. Most samples showed a steep increase in slow wave
attenuation at higher frequencies. This is indicative for Rayleigh scatter-
ing. The Biot theory strongly underestimated the attenuation behaviour of
the fast and shear wave in natural sandstones. Scattering, local flow, and
clay-related damping most likely account for the differences between the
measured attenuation and Biot predictions. In the unconsolidated Nivel-
steiner sandstone samples we found higher attenuation values than in the
consolidated samples. A type II scattering mechanism related to the con-
trast between the grain and matrix bulk moduli K,/K} and K/G may have
caused this additional attenuation in the unconsolidated samples. A review
of attenuation mechanisms known from literature for all bulk waves in the
rock samples is given in Table 7.3.
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[ Sample |

fast P — wave

shear wave

slow P — wave

Asstl

- attenuation not

measurable

- attenuation not

measurable

- Biot fluid flow"

Asst2

- attenuation not

measurable

- Biot fluid flow*
- type I scattering for

increasing frequencies

- Biot fluid flow*
- type I scattering for

increasing frequencies

Nsst1

- Biot fluid flow
- type I/II scattering

- Biot fluid flow
- type I/1I scattering

- wave mode not

oberved

Nsst2

- Biot fluid flow
- type I/1I scattering

- Biot fluid flow
- type I/II scattering

- Biot fluid flow
- type I/II scattering

Nsst3

- Biot fluid flow
- type I scattering for

increasing frequencies

- local fluid flow

- Biot fluid flow
- type I scattering for

increasing frequencies

- local fluid flow

- Biot fluid flow”
- type I scattering for

increasing frequencies

Nsst4

- Biot fluid flow
- type I scattering for

increasing frequencies

- local fluid flow

- Biot fluid flow
- type I scattering for

increasing frequencies

- local fluid flow

- Biot fluid flow*
- type I scattering for

increasing frequencies

Bsst

- Biot fluid flow
- local fluid flow

- clay-related damping

- Biot fluid flow
- local fluid flow
- clay-related damping

- wave mode not

oberved

Table 7.3: Review of attenuation mechanisms from literature for all bulk
waves in the various rock samples. For type I scatiering, ihe individual grains
and pores are the scattering objects. In type II the scattering strength is
related to the contrast between grain and matriz bulk moduli. The superscript
* indicates a good agreement between Biot theory and experiments.




Chapter 8

Conclusions

1. Based on straightforward continuity and constitutive equations we
showed that the generalized elastic coefficients appearing in the Biot
theory for wave propagation in porous media can be related to mea-
surable rock and fluid parameters such as porosity and bulk moduli.
These relations were required to obtain a purely predictive set of re-
sults, which was used to verify the theory with experiments.

2. At low frequencies wave propagation is dominated by viscous forces,
and at high frequencies inertia effects prevail. The viscous effects are
characterized by the steady-state permeability and the inertial effects
by the tortuosity parameter.

3. The transition at intermediate frequencies can be decribed by the dy-
namic permeability model of Johnson et al. (1987). This model only
depends on the rollover frequency and a similarity parameter M. By
modelling, we demonstrated that under normal conditions M has val-
ues close to 1, as originally suggested by Johnson et al.

4. Solving the Biot equations leads to a shear wave, a fast compressional
wave in which fluid and solid move in-phase, and a highly dissipative
slow compressional wave in which fluid and solid move out-of-phase.
The influence of the frequency-dependent dynamic permeability is lim-
ited to the phase speed of the slow wave and the higher frequency range
attenuation coefficients of all wave types.

5. For relevant ratios of grain/matrix moduli, the high-frequency limits
of the fast and slow wave velocities normalized by the corresponding
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10.

velocities for incompressible grains varied by less than 10%. For in-
creasing compressibility of the grains we noted that the normalized fast
wave velocity is less than 1, whereas the normalized slow wave velocity
behaves in the opposite way.

We developed a numerical model for wave propagation from which we
derived the reflection and transmission coefficients of plane waves at
oblique incidence on an interface between a fluid and a fluid-saturated
porous medium. Clear angular dependence and critical angle phenom-
ena were produced for all three wave types. The results were also
used to calculate the total transmission coefficients through a layer of
porous medium with fluid on either side.

Low frequency oscillating pressure gradients were used for the exper-
imental verification of the dynamic permeability model. Results for
artificial porous samples demonstrated that the ratio of dynamic over
steady-state permeability can be described adequately by the rollover
frequency and a similarity parameter close to 1.

High frequency wave experiments confirmed that the Biot theory gives
a very accurate description of all three phase speed measurements for
both artificial and natural sandstone samples. Moreover the slow com-
pressional wave was detected in a natural water- saturated sandstone
(Nivelsteiner sandstone) for the first time.

. The Biot theory predicted excellent the measured attenuation of the

slow wave in the fused glass bead sample. For all other samples,
the measured slow wave attenuation was underestimated only slightly.
However, the theory failed to predict the fast wave and shear wave at-
tenuation, especially in natural sandstones. This discrepancy is prob-
ably due to the absence of scattering, micro-cracks and clay effects in
the theoretical model.

In the unconsolidated Nivelsteiner sandstone samples we found higher
attenuation values than in the consolidated samples. A scattering
mechanism related to the contrast between the grain and matrix bulk
moduli K;/K} and K/G may have caused this additional attenuation
in the unconsolidated samples.




Appendix A

De Vries-Geerits approach
for non-viscous fluid

Geerits recently published a macroscopic theory for wave propagation through
fluid-saturated porous media (Geerits, 1996). The results are closely linked
to work by De Vries (1989), who originally started to investigate the scope of
a linear acoustic theory for impulsive wave propagation in a porous medium
with the aid of a spatial volume averaging technique. To this end, the mi-
croscopic field equations of a non-viscous fluid and a perfectly elastic solid
were spatially averaged over a representative elementary domain of the fluid-
solid composite. In this appendix we will briefly review the derivation of the
macroscopic field equations of the original theory proposed by De Vries and
discuss the similarity of the resulting equations to the Biot equations. In
the following, the formulation of De Vries and Geerits will be referred to as
the DVG approach.

In the DVG approach, a non-viscous fluid is considered. The basic idea
behind the averaging technique is the following. Assume that on the scale
of the geometry of the pores, the continuum equations for perfectly elastic
solids and non-viscous fluids hold. These microscopic continuum equations
are then spatially averaged over a representative elementary domain of the
fluid-solid composite. The size of this representative elementary domain
should be both sufficiently small and sufficiently large, such that both the
macroscopic and the microscopic inhomogeneities will not affect the results
of the averaging procedure. After this averaging procedure and some funda-
mental assumptions about the coupling between fluid and solid field quan-
tities, we end up with the basic equations which describe the acoustic wave
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motion in a porous medium on a macroscopic scale.

The description of this DVG model starts with the momentum equations
and stress-strain relations (i.e. the constitutive equations for deformation
rate behaviour) for the constituents of the fluid-saturated porous medium, a
non-viscous fluid and a perfectly elastic solid, respectively. For the equations
of motion we have

dio — psdw! =0, (A.1)
ity — psc?t'v;- = 0. (A.2)

Here the superscripts f and s denote the non-viscous fluid and the perfectly
elastic solid, respectively. Furthermore, o is the omnidirectional fluid trac-
tion, which is the exact opposite of the fluid pressure, 75 is the solid stress
tensor, v/ and v® are the particle velocities of both phases, and py and p;

are the densities. For the stress-strain relations we have
8o — K;9vl =0, (A.3)
at'r{i,' - Cijrsérs =0, (A.4)

where Ky is the fluid bulk modulus, Cijrs the solid stiffness tensor, and é,
the time derivative of the solid strain tensor defined by

€rs = 1/2(05v + 0,v%). (A.5)

Next, the macroscopic equations for a porous medium follow from a proce-
dure of spatial averaging applied to the local solid and fluid quantities over
a so-called representative elementary domain D, as depicted in Figure (2.1).
For this, we distinguish two types of field quantities on a microscopic scale
in the porous medium: one for the fluid phase, 1/ (z,t), and one for the solid
phase, 9*(z,t). In the spatial averaging theorems two kinds of averages show
up. The first type are averages over the total volume V of the representative
elementary spatial domain (denoted as total volume averages).

1
<l > (x,) = 3 / IS (!, £)dV (A.6)
x'eDfs(x)
where D/ is the subdomain of D where the fluid is present, and D* the

subdomain of D where the solid is present. The second type are averages
over the volume of the single phases (denoted as intrinsic volume averages)

1
T PHe (!, t)dV (A7)

x'eDfs(x)

<yl >he (1) =
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where Vf and V¢ are the volumes of the fluid and solid contained in the total
volume V. Obviously, in Equations (A.6) and (A.7), the quantities < Pl >
and < 1°* > are total volume averages and < ¢/ >/ and < 9* > are intrinsic
volume averages. In the DVG theory, the concept of total volume-averaging
for all relevant field quantities was chosen. Biot defined the macroscopic par-
ticle displacements (and velocities) as intrinsically volume-averaged, and the
macroscopic acoustic pressure and stresses as totally volume-averaged. From
these definitions it then becomes clear that the relationship between these
two types of volume averages follows from the straightforward definition of
the volume fractions (porosity)

_ Vi)

(%) = —

(A.8)

occupied by the fluid and solid, respectively. From Equation (A.8) it follows
that
<pf > (x,t) = ¢/ (x) <9/ > (x,2) (A.9)

for a fluid-phase quantity and
<P > (x,t) = ¢°(x) <9 >° (x,1) (A.10)

for a solid-phase quantity.

Now, from Equations (A.1)-(A.4), we note that these continuum equa-
tions have the shape of partial differential equations. For the macroscopic
partial differential equations of the porous medium we need partial deriva-
tives of spatially averaged field quantities (fluid pressure and particle velocity
in the fluid phase, stress and particle velocity in the solid phase). This poses
the question of how the partial derivatives of a spatially averaged field quan-
tity are related to the spatial average of the partial derivatives of this field
quantity. From the volume-averaging theorems it is shown that the differ-
ence between the two is a surface interaction integral over the microscopic
fluid /solid interface. The relevant relations are found to be

1
< 9Pt > (x,t) = 8 < pP* > (x,t) + v / vlSyhs(x t)dA (A.11)

x'€)(x)

and
< Ot > (x,t) = 0, < 9P > (x,1) (A.12)
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Note that > (x) denotes the interface between the fluid and solid as far
as this is located in the interior of the representative elementary domain
D. Furthermore, vif and v} are the unit vectors along the normal to ()
pointing away from the respective phases.

If we now return to the surface interaction integrals of Equation (A.11),
we note that the only fundamental assumption of the DVG theory is that
this interaction term is linearly related to the volume averaged acoustic state
quantities of the phases involved. For example, if we start the averaging
procedure by applying the volume averaging operator as defined in Equation
(A.6) to the equation of motion for a perfectly elastic solid (cf. Eq. (A.2)),
and use the averaging properties in Equations (A.11) and (A.12) we obtain

B <75 > (%,8) — poby < v >= % / VT, )dA  (A.13)
x’eZ(x)

The surface interaction integral in Equation (A.13) represents the total time
rate of momentum transfer via Y (x), by which the fluid and solid phase
are coupled. We now make the physically plausible assumption that the
time rate of net momentum transfer through Y (x) is proportional to the
total volume-averaged particle accelerations of the fluid and solid phases.
Therefore, we may write

1
7 / VTS, dA = mfie, < vf > —mifa, <ol > (A.14)
x'€57(x)
where
mzfjs, mfjf = mutually-induced tensorial volume densities of mass (kg/m?).

This kind of reasoning can be used for all surface interaction integrals of the
relevant field quantities which show up after applying the averaging theorems
to the basic equations of the constituents of the porous medium (cf. Egs.
(A.1)-(A.4)). This will finally lead to a system of basic equations which
can be used to describe the acoustic wave motion in a porous medium on a
macroscopic scale. Upon following this procedure the homogeneous, isotropic
poro-elastic momentum equations in absence of source terms follow as

0i{o) = m¥1 8, (v]) + mT28,(v3), (A.15)
8i(15) = m** 9, (v5) — m* 8, (v]), (A.16)
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for the fluid part and the solid part of the porous medium, respectively, in
which

(75;) = macroscopic solid stress tensor (Pa),

(o) = omnidirectional macroscopic fluid traction (Pa),
(vf) = macroscopic solid particle velocity (m/s),
<,sz ) = macroscopic fluid particle velocity (m/s),

and where
mif = p; —m*f (A.17)

is the self-induced scalar fluid volume density of mass (kg/m?), and

88

m® = pg —m/* (A.18)

is the self-induced scalar solid volume density of mass (kg/m3). For the
stress-strain relations of the fluid part and the solid part we obtain, respec-
tively,

1
8i(v]) = I 0,(0) + §mf5(9t('r,§k), (A.19)
1 9. (vs 9: vt K38 3 s 15 sf A
5 [ j(vi) + i('Uj>] = Kijpg ( pq) + g ijk at<0>, ( 20)
where
kI = Kf— kI3 (A.21)

is the self-induced scalar fluid compressibility (Pa™'), with « the fluid com-
pressibility. The rank four tensor 3, is the self-induced solid compressibil-
ity (Pa—1). For an isotropic porous medium, this becomes
13pqat< ) Asséijat<Tlgk) +2M* 09, (Ti§>a (A.22)
where M55 and A®® are Lamé-like compressibility coefficients and in which
use has been made of the definition
Kipp = K°° = 9A® + 6M°°. (A.23)
Next, we will discuss the similarity between these macroscopic field equations

and the Biot equations in terms of the coupling coefficients defined in both
theories.
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A.1 Similarity to Biot formulation

In the Biot theory, the fluid and solid velocities w and v are intrinsic vari-
ables, which means that the averaging takes place over the corresponding
phase, and not over the bulk volume V. This means that (v/) = ¢w and
(v®) = (1 — ¢)v, where ¢ denotes the fluid volume fraction, usually called
the porosity. For both the Biot theory and the DVG theory, the macro-
scopic fluid traction and solid stress are total volume-averaged variables.
This means that 9;(c) = d;7, and that 04(75)) = OuTkr. With this in mind,
the momentum equations for the DVG theory can be rewritten as

Ot = ¢mIT Buw; + (1 — ¢)ymI* 8y, (A.24)
9jji = (1 — $)m**dpv; + ¢pm*/ Syw;. (A.25)
The momentum equations according to Biot for a non-viscous fluid follow as

O = p2aduw; + p120;v;, (A.26)
0jTji = p110wv; + p120sw;. (A.27)

From Equations (A.24)-(A.27) it can easily be seen that

mff = %, (A.28a)
m’® = (1%5 (A.28b)
m*® = (lp—llqﬁ)’ (A.28¢)
msf = %‘ (A.28d)
Next, the stress-strain relations for the DVG theory can be rewritten as
pOw; = kIO + %nfsamck, (A.29)
O 001+ 0] = wifpgirn + 305n 0. (A.30)

The stress-strain relations according to Biot follow from Equations (2.11)
and (2.12) as

O, = QOsexk + ROsekk, (A.31)
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Oytij = 2G0se;j + Adreridij + QOsekids- (A.32)
From Equations (A.32) and (A.31) it can be derived that

D i

Orern = ———— 8 _Q
= PDR_02 " T 3DR- Q2

Tk, (A.33)
where 3D = 2G + 3A. Relation (A.33) can now be compared with Equation

(A.29), where we notice that the LHS of (A.29) equals ¢0;exk. It then follows
that

D¢
ff— =%
K DR_ 0% (A.34a)
fs _ _—Q¢ 4
K DR_O° (A.34b)
From Equations (A.32) and (A.31) it can also be derived that
Q(D — A) 1 AR - Q?
2Gate'ij = at’l'ij - —DW 5ijat7' - gm (51‘3'8)3’)']‘;[@. (A35)

Using Equation (A.22), Equation (A.35) can now be compared with Equa-
tion (A.30), where again we notice that the LHS of (A.30) equals (1—¢)0;e;;.
It then follows that

58 __ (1 - ¢)
2M* = S, (A.362)
ss_lR(1—¢)_(1_¢)
R S T (A.36b)
—0(1 —
K,Sf = %:—ég)- (A36C)

A.2 Energy considerations

To continue our comparison of the Biot formulation with the DVG formu-
lation, we investigate the exchange of acoustic energy between a certain
portion of the porous medium and its surroundings. Multiplying Equations
(A.24)-(A.25) and (A.29)-(A.30) by the macroscopic field quantities —w;,
—v;, —7, and 75, respectively, and adding the resulting equations we obtain

Ekin + Eges + 8,8 = 0, (A.37)
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in which

Ein = om!fw; pw; + (1—- qS)mfswiBtvi (A.38)
.38
+ ¢msfv,-8twi + (1 — p)m**v;0v;,

denotes the volume density of the time derivative of kinetic energy (SI-unit:
J/m3s),

. if fs sf
Egey = %Tat’r + K'd) atTkk + (—1%,;)—%8,:7
ASS IMSS (A.39)
T gy e

the volume density of the time derivative of deformation energy (SI-unit:
J/m3s), and

Si = —w;T — ’UjTij (A40)
denotes the area cousti
SI-unit: W/m?3s). Equatlo (A.37) i
balance in a porous medium.

o
e
e}
=
17
o+
...
3

"8
g
[¢°]
~

Next, we mention the condition under which the volume density of the
time derivative of deformation energy, cf. Equation (A.39), can be written
as a time derivative of the deformation energy density, where the latter is

n atatna v than An Ao +tha snatandanann
@ Suvauve \iuﬂllull‘.y, 1 \J u \.iu(l:llhlu_’ I;l.la;l; UIIAJ UUHCLLUD ULI. V11U 1110 uvalivaicuud

values of the macroscopic fluid traction and the macroscopic solid stress.
The relevant condition is

kIS wSS
—_— = . A.41
In this way Equation (A.39) can be rewritten as
Eges = 0,Eq, F (A.42)

in which

If Issf ASS M58
5 KR Tk AT M
Egey = 5% TT + ¢(1—¢)T 3 +2(1_¢)T"Tpp+ (1_¢)ququ, (A.43)

where Eg.r denotes the volume density of the deformation energy (SI-unit:
J/m?3)
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Equations (A.34) and (A.36) give the relationships between the DVG
coefficients and the Biot coefficients. The Biot coefficients in terms of mea-
surable quantities are mentioned in Equations (2.36) and (2.37). To prove
that both theories are completely identical, it is necessary to investigate
the DVG definitions for consistency with the Biot theory. Starting with
condition (A.41), we notice from Equations (A.34b) and (A.36c) that this
condition also holds for the Biot coefficients. Furthermore, it turns out that
the DVG definitions for x// (cf. Equation A.21) and % (cf. Equation A.23)
are also applicable to the Biot theory. This can be shown after substituting
Equations (A.34) and (A.36), and using the relationships between the elas-
tic coefficients and the measurable quantities formulated in Equation (2.36).
For the case of incompressible grains, cf. Equation (2.37), the DVG defini-
tion of k°° results in 1/k% = 0. Obviously, Equation (2.37) is based on this
assumption.

Similarly, we mention the condition under which the volume density of
the time derivative of kinetic energy, cf. Equation (A.38) can be written as
the time derivative of the kinetic energy density, where the latter is a state
quantity, i.e. a quantity that only depends on the instantaneous values of
the macroscopic fluid and solid velocities. The relevant condition is

pm*! = (1 — )m/*. (A.44)
In this way Equation (A.38) can be rewritten as
Eyin = 0,Egin, (A.45)

in which

( ; ¢) m**v;v;, (A.46)

Eiin = %mff’wiwi + ¢(1 — d))msfmfswivi +

where Ep;, denotes the volume density of the kinetic energy (SI-unit: J/m?).

Equation (A.28) gives the relationships between the DVG coefficients and
the Biot coefficients. The Biot coefficients in terms of measurable quantities
are mentioned in Equations (2.40)-(2.42). Again, to demonstrate that the
two theories are completely identical, it is necessary to investigate the DVG
definitions for consistency with the Biot theory. Starting with condition
(A.44), we note from Equations (A.28b) and (A.28d) that this condition
also holds for the Biot coefficients. Finally, it turns out that the DVG
definitions for m/f (cf. Equation A.17) and m*® (cf. Equation A.18) are also
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applicable to the Biot theory. This can be shown after substituting Equation
(A.28), and using the relationships between the density coefficients and the
measurable quantities, formulated in Equations (2.40)-(2.42).
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Samenvatting

Akoestische signalen uit oppervlakteseismiek en boorgatmetingen kunnen
worden gebruikt om informatie te verkrijgen over gesteente- en vloeistofeigen-
schappen. Metingen die een directe indicatie geven van olie of gas worden
veel gebruikt maar zijn voornamelijk gebaseerd op empirische relaties tussen
de karakteristicken van het golfveld en de gesteenteéigenschappen. In dit
proefschrift proberen wij een meer fundamentele basis te leggen voor het
afleiden van gesteente- en vloeistofeigenschappen uit akoestische signalen.
Hiertoe werd een tweeledige aanpak gebruikt. Ten eerste werden bestaande
theoretische beschrijvingen voor de voorplanting van golven in poreuze me-
dia beschreven en uitgebreid. Ten tweede werden de berekeningen gebaseerd
op deze theoretische formuleringen experimenteel geverifieerd.

Het theoretische gedeelte van dit proefschrift is gebaseerd op de golf-
propagatievergelijkingen voor homogeen en isotroop poreus materiaal gefor-
muleerd door Biot (1956, 1962). We toonden aan dat, door middel van con-
tinuiteits- en constitutieve vergelijkingen, de gegeneraliseerde elasticiteitsco-
efficiénten uit de Biot theorie rechtstreeks gerelateerd kunnen worden aan
de porositeit en elasticiteitsmoduli. Met behulp van een alternatieve aflei-
ding voor de gekoppelde bewegingsvergelijkingen uit de Biot theorie werd
aangetoond dat bij lage frequenties de visceuze krachten domineren, ter-
wijl bij hoge frequenties traagheidskrachten domineren. De visceuze effecten
worden gekarakteriseerd door de stationaire permeabiliteit en de traaghei-
dskrachten door de tortuositeit. Het model voor de dynamische perme-
abiliteit, geformuleerd door Johnson et al. (1987), beschreef de overgang in
het tussenliggende frequentiegebied. De schalingsfunctie voor de dynamische
permeabiliteit van een poreus medium hangt alleen af van de zogenaamde
omslagfrequentie en de evenredigheidsparameter M. Door middel van mod-
ellering toonden we aan dat onder normale condities M min of meer gelijk
is aan 1. Oorspronkelijk werd dit ook al gesuggereerd door Johnson et al.
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Het oplossen van de Biot vergelijkingen leidt zowel tot een schuifgolf als
tot een snelle en een langzame drukgolf. Bij de snelle drukgolf bewegen de
porievloeistof en de matrix in fase en bij de langzame drukgolf uit fase. Dit
uit-fase gedrag verklaart de grote demping van de langzame drukgolf. Waar
de snelheid van de langzame drukgolf nog word beinvloed door de frequen-
tieafhankelijke dynamische permeabiliteit, zijn de snelheden van de schuifgolf
en de snelle drukgolf frequentieonafhankelijk. De invloed van de dynamische
permeabiliteit op de demping voor alledrie de bulkgolven wordt significant
bij hoge frequenties. Klaarblijkelijk vertoont de dynamische permeabiliteit
bij lage frequenties een gedrag identiek aan de stationaire permeabiliteit. Het
effect van de korrelcompressibiliteit op de drukgolfsnelheden in de hoge fre-
quentielimiet werd ook onderzocht. Het bleek dat voor relevante verhoudin-
gen tussen korrel- en matrixmoduli, de snelheden van de twee drukgolven,
genormaliseerd met de corresponderende snelheden voor incompressibele ko-
rrels, minder dan 10% varieerden. Tenslotte hebben we de frequentieafhanke-
lijke reflectie- en transmissiecoefficienten van vlakke golven, invallend op een
grensvlak tussen een vloeistof en een vloeistof-verzadigd poreus medium,
bepaald. Voor alledrie de golftypen werden duidelijke hoekafhankelijkheden
en kritische hoekkarakteristieken waargenomen.

Voor het experimenteel verifieren van deze theoretische beschouwingen
hebben we twee laboratoriumopstellingen gebruikt. Voorts hebben we ge-
bruik gemaakt van verscheidene exemplaren van kunstmatig en natuurlijk
poreus materiaal. Alle inputparameters die nodig zijn voor het voorspellen
van de metingen zijn voor alle exemplaren apart en onafhankelijk van elkaar
bepaald. De eerste opstelling is speciaal ontworpen voor het meten van de
dynamische permeabiliteit. In deze zogenaamde Darcy Cel genereren en
meten we de transmissie van laagfrequente oscillerende drukgradiénten (20-
200 Hz) door een star bevestigd poreuze kolom. Aan een kant van deze kolom
bevindt zich een trilpot en aan beide kanten van de kolom zijn drukopne-
mers gemonteerd. Alle resultaten toonden aan dat de verhouding tussen
de dynamische en stationaire permeabiliteit correct beschreven kan worden
door de omslagfrequentie en een evenredigheidsparameter ongeveer gelijk aan
1. In de tweede opstelling werden ultrasone (0.1-1 MHz) golftransmissie-
experimenten uitgevoerd met behulp van piézo-elektrische transducenten.
De transducenten bevinden zich aan beide kanten van een in water onderge-
dompelde schijf van poreus materiaal. Voor schijven van zowel de kunst-
matige als de natuurlijke Nivelsteiner en Bentheimer zandsteen bleek dat
de Biot theorie een zeer nauwkeurige voorspelling gaf voor de gemeten snel-
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heid van alledrie de bulkgolven. Bovendien hebben we voor het eerst de
langzame drukgolf in een natuurlijk materiaal gemeten (Nivelsteiner zand-
steen). De Biot theorie gaf verder voor bijna alle zandsteenexemplaren een
zo goed als correcte voorspelling van de demping van de langzame drukgolf.
De voorspelling van de demping van de schuifgolf en de snelle drukgolf was
echter incorrect. Deze afwijking tussen gemeten demping en de Biot voor-
spelling werd waarschijnlijk veroorzaakt door verstrooiing, microscheuren,
en klei-gerelateerde demping. Verder stelden we in de ongeconsolideerde
Nivelsteiner zandsteen exemplaren een grotere demping vast dan in de gecon-
solideerde exemplaren. Toekomstig onderzoek zou zich moeten concentreren
op een kwantitatieve analyse van alle niet-Biot dempingsmechanismen en op
de invloed van kleinschalige inhomogeniteiten en dungelaagde media.
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