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Abstract—Federated Learning is an emerging distributed
collaborative learning paradigm adopted by many of today’s
applications, e.g., keyboard prediction and object recognition.
Its core principle is to learn from large amount of users data
while preserving data privacy by design as collaborative users
only need to share the machine learning models and keep
data locally. The main challenge for such systems is to provide
incentives to users to contribute high-quality models trained
from their local data. In this paper, we aim to answer how well
incentives recognize (in)accurate local models from honest and
malicious users, and perceive their impacts on the model accuracy
of federated learning systems. We first present a thorough
survey on two contrasting perspectives: incentive mechanisms
to measure the contribution of local models by honest users,
and malicious users to deliberately degrade the overall model.
We conduct simulation experiments to empirically demonstrate
if existing contribution measurement schemes can disclose low-
quality models from malicious users. Our results show there exists
a clear tradeoff among measurement schemes in terms of the
computational efficiency and effectiveness to distill the impact of
malicious participants. We conclude this paper by discussing the
research directions to design resilient contribution incentives.
Keywords: Federated Learning, Contribution Measurement,
Adversarial Behavior, Incentive Mechanisms.

I. INTRODUCTION

The increasing capabilities of ubiquitous sensors and smart
devices, whether in terms of computation, storage, or connec-
tivity resources, are driving services from the cloud side to
the edge of the networks [1]. Popular machine learning (ML)
services are no exception to this trend. Another critical reason
behind this trend is the privacy concern [2] of user data that is
often sensed and collected on edge devices. Users increasingly
ask for on-device learning so as to minimize sharing the data
with the cloud.

Federated Learning (FL) [3] is the emerging paradigm that
empower ML-tasks on edge devices in a privacy-preserving
manner. FL systems enable collaborative training of a ma-
chine learning model across distributed users by local model
sharing, instead of direct data exchange with the untrusted
service providers. Figure 1 illustrates a simplified federated

Fig. 1: An illustration of federated system: federator and
multiple users/participants.

system, where there are multiple users and one federator, the
light-weight central server to measure the contribution and
provide the rewards1. Users rely on their local data to train
a common model and periodically exchange their updates of
model parameters with the federator, e.g., the weights of neural
networks, until the common model converges.

As local data never leaves the users’ devices in federated
learning systems, personalized applications that also benefit
from other collaborative users thrive, e.g. text prediction [4],
voice recognition [5], and self-driving cars [6]. However,
in collaborative systems, it is more a norm than rarity that
there exist malicious users who either purposely deteriorate
the model quality or take advantage of the system without
producing real contributions (free-riders).

In this paper, we study the impact of incentive mechanisms
on the model quality of federated learning systems considering
two type of participants: i) honest participants with varying
update quality and ii) malicious participants who deliberately

1This is one of the most common configurations of federated systems [3]



send low-quality updates. We show how incentives mech-
anisms characterize contributions made by these two types
of participants and to survey the-state-of-the-art incentive
mechanisms that lead to maximal model accuracy.

The specific contributions of this paper are summarized as
follows:

• We provide an exploratory analysis of contribution mea-
surement and incentive mechanisms in the presence of
honest participants (Section III).

• We characterize malicious behaviors that has been shown
to deteriorate model accuracy (Section IV).

• We experimentally evaluate existing contribution metrics
in the presence of malicious participants (Section V).

• We provide future research directions to better assess
users’ contribution and hence handle honest and mali-
cious participants (Section VI) .

II. BACKGROUND AND PRELIMINARY NOTIONS

Federated Learning is a machine learning setting where
multiple participants collaborate in solving a machine learning
problem, under the coordination of a central server or service
provider called federator. Each participant’s raw data is stored
locally and is not exchanged or transferred; instead, model
updates, e.g., weights of intended for immediate aggregation
are used to achieve the learning objective [7].

The federator plays the role of an orchestrator. It starts the
training process by assigning learning tasks to the participants,
initializes the global model, and aggregates the updates sub-
mitted by participants in each training round. These updates
can be either neural network weights or gradients in existing
studies.

Participants (or Users), on the other hand, locally own data
relevant to these specific training tasks. It is important that
participants have sufficient computation capability, data, and
network resources to be involved in the training process. They
use their local training data to update the global model sent
by the Federator to build their own local models.

Federated learning is an iterative learning procedure com-
posed of five steps that are summarized in Figure 2. These
steps are the following: 1. Initialization: The federator defines
a specific machine learning task and initialize the global
model. 2. Participant Selection: To maximize the model
quality and for the sake of fault tolerance, the Federator
chooses participants with a good network connection and
battery level to take part in the training process at a given
round, where one round refers to one iteration of local training
and global aggregation along with reward allocation. 3. Local
Training: Selected participants receive the initial model from
the federator and train local models using their own data.
4. Secure Aggregation: The federator averages the model
updates uploaded from partcipants without access to their local
data. 5. Reward Allocation: The federator distributes rewards
to participants based on their own contribution. All steps but
Initialization are iterated until the global model achieves a
desired performance.

Fig. 2: Protocol of Federated Learning

In real-world applications, participants can either be hon-
est, whose submitted updates are genuinely trained locally
with varying data quality, or malicious. Malicious participants
misbehave to gain more profits from the offered service or
even aim at deteriorating the whole FL ecosystem. In order
to characterize the behavior of both types of participants, we
would, however, focus on different peculiarity in response to
their presences. First, for honest users, fair reward distribution
mechanism surely encourage users’ participation, especially
those with high data quality and willing to contribute more
computational power. Designing feasible contribution mea-
surement strategies in federated learning is indispensable but
challenging since directly assessing the quality of a user’s
local data is not possible for the other participants and the
federator. Accordingly, there are a number of contribution
measurement strategies and corresponding reward systems (see
Section III). In contrast, for malicious users, it is essential
to identify the malicious nodes and the type of misbehavior.
Based on different classes of attacks, defences need to be
designed accordingly. In this paper, we present a thorough
classification of both attacks and defences.

III. ASSESSING CONTRIBUTION FOR HONEST
PARTICIPANTS

For honest Users in federated learning, Federators are sup-
posed to recruit sufficient participants to complete the large-
scale tasks with high quality. Participants are more willing to
provide high-quality data and resources if they receive rewards.
The value of the reward should relate to a participant’s
level of contribution, i.e., participants who contribute more,



by some measures, should receive a bigger reward. Yet, a
major challenge for contribution measurement of FL systems
is data isolation caused by the fact that users keep their
raw data secret. Local updates reveal information about their
performance indirectly, since parameters of neural networks
are deep mapped features and do not carry direct information.
As a result, FL systems can measure contribution based on
updates, without requiring access to the raw data.

A. Contribution Evaluation Taxonomy

In this section, we summarize three major taxonomy con-
tribution measurement strategies applied in existing federated
learning systems. They are of evidently differences in detecting
accuracy and transmission complexity but could be suitable for
various of application scenarios.

1) Test /Self-Reported Based Contribution Evaluation:
The most straight-forward way to measure contribution is to
have participants self-report their score, as they have access
to their local data and can hence conduct the measurements.
Theoretically, self-reported contribution is not a measurement
strategy, so we would not discuss it specifically in this paper.

There are multiple ways to define the quality of data in the
context of self-reporting. The first one is just the size of the
data [8], without knowing their distribution. So in this paper,
the model owner (federator) negotiates with the mobile devices
(users) about the size of their training data. In return, each
mobile device receives the revenue. Alternatively, revenues
can depend on the accuracy of the solution to the local sub-
problems [9]

Prior to formally define the measure of users’ contributions,
we first introduce the notations and assumptions. We assume
there is a linearly decreasing valuation function v(θk) (which
is negatively related to reward portion) for user k depending
on the relative accuracy θk attained for the local sub-problem.
The protocol, however, requires a trusted third party to ensure
uniform pricing as basis and leaves it open how such a trusted
party would be realized in practice.

2) Marginal Loss Based Contribution Evaluation: The
marginal loss strategies determine the benefit that a partic-
ipant deserves according to the marginal loss that it brings
withdrawing from the alliance. It is widely adopted in Profit
Distribution Games [10], which refers to designing reasonable
profit distribution strategies among multiple contributors, such
as reward allocation for users in federated learning. We note
that computing marginal loss requires a central party, which
could be either the federator or a different trusted third party
with access to the global model. Based on the idea of marginal
loss, Richardson et al. [11] show how a payment structure can
be designed to measure contributions of different data owners
for linear regression models in a crowd-sourcing scenario as
well as assigning incentives. It determines the influence that
data points have on the loss function of the model to calculate
the decrease without a specific user owning these data points.
However, the paper merely focuses on linear regression and
hence is not of general interest. Furthermore, [12] designs
a deletion method to measure contribution of horizontal FL,

which means users hold data with same feature space and dif-
ferent ID. In contrast, Shapley Value [13] has been introduced
for vertical FL, referring to users holding data with different
feature space and same ID. While the Shapley Value can be
seen as a marginal loss-based contribution measurement, its
main idea relates to game-based incentives, so that we defer
to the respective section for a detailed explanation.

3) Similarity Based Contribution Evaluation: Marginal
loss-based strategies require the federator or a third party to
implement contribution evaluation. However, there are also
studies [14] that focus on pairwise measurement, i.e., partici-
pants evaluate each other. In this manner, the system reduces
both the trust in and the load on the central party. Having a
distributed contribution measurement further enhances robust-
ness to the central failure. Kang et. al [14] accomplishes the
pairwise contribution qualification by introducing reputation.
users apply a multi-weight subjective logic model [15] to
obtain reputation of each other. A participant gains higher
reputation by providing more positive actions that are recorded
in a blockchain for transparency. Besides the pairwise direct
reputation by users, there are also indirect reputation designed
in this model using the records of multiple federators. Lyu et.
al propose FPPDL [16] and demonstrate similarity-based qual-
ification by differential privacy generative adversarial networks
(DPGAN) [17]. In FPPDL, data provider generates artificial
samples with DPGAN, and data verifier uses its local model
to implement cross-user labeling. Then, the verifier computes
the contribution measure by the label similarity between the
data provider and verifier.

B. Incentive Mechanisms as Reaction

Here, we introduce incentive mechanism that rewards and
reacts to honest participants with different quality based on
contribution measurement. Firstly, we rigorously define FL
incentives to give a clear understanding. Then, the various
goals of incentive design are provided. Moreover, we also
survey game theory that is widely adopted incentive design.

1) Definition of Incentive Mechanism in FL: Incorpo-
rating the ideas from a multitude of studies on incentive
mechanism of federated learning, we propose the first formal
definition of incentives for FL.

Incentive Mechanism of Federated Learning: An incentive
mechanism in FL system consists of a set of rewards R
and three functions v, c, and r. The function v : R → R
assigns each reward a value. For a set of participants P ,
the function c : P → R assigns each participant a score
that measures their contribution to the system. We discussed
different contribution measurement strategies in the previous
subsection. Last, the function r : R → R assigns a reward
based on the score that c provides. The reward function r offers
rewards of monotonously increasing value, i.e., if x > y, then
(r(x)) ≥ (r(y)).

From this definition, we see that the incentive design of
federated learning include two main procedure: 1. Contribu-
tion Measurement, which is discussed above; and 2. Rewards
(punishments) Allocation. The FL systems deliver rewards



Fig. 3: Recent studies on incentive mechanism of federated
learning.

based on the contribution using profit distribution methods
including game theory and blockchain. Rewards could be
monetary reward, generally, or other schemes such as biased
information.

2) Goals of Designing Incentive Schemes: Based on the
definition above, we examine that the incentive mechanism
designs for federated learning attempt to encourage desirable
behavior in users. More specifically, goals of an incentive
scheme generally include two main factors:

Attract Users of High Local Quality. The aggregated
results of federated learning highly depend on the quality of
participated users, including local data size and computation
resources. An incentive scheme should attract users of high
quality to join, such that the global model achieves good
performance. On the other hand, data owners of low quality
are supposed to be discouraged from joining due to the low
revenue the incentive mechanism offers.

Attract Users with Good Networking Resources. Network
transmission condition of users and the federator, or between
users are also supposed to be taken into consideration while
designing incentive mechanism, since both effectiveness and
efficiency are imperative for the system performance. Addi-
tionally, some systems apply incentive mechanism to enhance
some specific characteristics according to the objectives of
these distributed systems. For instance, [18] solves the issues
of costs and temporary mismatch between contributions and
rewards to model users’ regret user. Other examples ( [19]
, [9]) focus on improving the communication efficiency of
federated learning systems through involving transmission
time as a highly weighted factor in the utility function of
incentive mechanism.

3) Incentive Design: When participating in FL, users aim
to maximize their rewards through incentives in comparison to
the data and resources they provide to the system. Given their
specific local situation, each participant hence has a utility
function they aim to maximize. In order to determine the best

way of action, participants consider possible action plans for
themselves and the other participants. From a network resource
perspective, the overall goal is to maximize collective utility.
As a consequence, game theory is a useful methodology to
design and analyze FL incentives. In the following, we discuss
the different assumptions about participants and their relations
in the context of the resulting games and incentives.

Stackelberg Equilibrium in Non-cooperative Game.
Stackelberg games are of use if one of the players is in a
leader position while the others are followers. Thus, they are
quite suitable for FL as the federator can be seen as the
leading party. In a Stackelberg game, the followers usually first
observe the behavior of the leading party before deciding their
own actions. Concretely, the leader decides an output, and then
the followers can observe this to determine their own output
factors such as resource inputs. A limitation of the game is the
assumption that the leader should be able to fully apprehend
the behavior of the followers and thus needs to be aware of
their local utility functions. Thus, the output determined by
the leader is a profit maximization constrained by the utility
function of the followers. In this strategy, the non-cooperative
framework assumes all participants act separately. .

As the data of the participants in FL is not available to the
federator, the federator does not know the utility functions with
regard to data. Thus, Stackelberg games are only relevant when
incentivizing the contribution of network resources. So, they
can be applied to mitigate the delays in completion of each
training batch by analytically obtaining equilibrium solution
of a Stackelberg game [20].

Another Stackelberg game-based approach [9] handles the
communication efficiency of users implementing an uncoordi-
nated computation strategy during model aggregation. Specif-
ically, it models a two-stage Stackelberg game by establishing
a communication-efficient cost model for users and a reward
rate for the federator.

Resources are particularly important in the context of edge
and IoT due to the restricted capacity of the devices. Here,
Stackelberg games have been suggested for user utility func-
tions depending on the number of local iterations, i.e., local
computation power [19]. In contrast, the federator aims at
maximizing its utility in terms of the global model, trying to,
e.g., minimize the number of communication rounds needed
to reach a desirable global accuracy. However, there is not any
concrete utility function in this work.

Other studies focus on very specific scenarios for FL. In
the absence of direct communication between all participants,
incentives for adapting a relay network can be modeled
as Stackelberg games [8]. However, in a cooperative relay
network design, a larger training data set can result in a
lower probability to be relayed due to its higher bandwidth
use. As a result, the learning service pricing and cooperative
relaying should be considered jointly. Moreover, [18] makes
the assumption that the rewards can only be paid once the
federation has made a gain from their model. It thus studies
the payoff-sharing scheme on costs and temporary mismatch
between contributions and rewards of FL, focusing on waiting



time fairness. Their proposed scheme FLI maximizes the
overall effectiveness of the data alliance, and at the same time
minimizes the imbalance of regret between users of delays
caused by the training and commercialization time.

Contract Theory Application. Contract theory is an eco-
nomical theory that regards all transactions and institutions
as a kind of contract. It then designs the optimal contract to
reduce the moral hazard, adverse selection, and extortion of the
parties under the condition of asymmetric information, so as to
ultimately improve social welfare. Contract theory can either
deal with complete contracts [21], meaning that the predefined
contract specifies the legal consequences of every possible
state, or incomplete contracts, which includes consideration
of the incentive effects of parties’ inability to make complete
contingent contracts [22].

In federated learning systems, complete contract theory [23]
has been applied due to its clear decision tree of responsibil-
ities and obligations. The federator determines the contract
items and users choose appropriate contract types based on
their own resources to maximize profits on each side. Thus,
contract theory is a type of Unbalanced Stackelberg game,
with the federator as the leader and dominant the optimiza-
tion objective of the federated learning system. However,
the federator provides multiple optional contract classes for
contract theory-based incentives, which is not possible using
Stackelberg games to enhance rewarding efficiency.

Incentive schemes based on contract theory are more robust
than Stackelberg game, in terms of computational complexity.
They allow to simulate data market transactions more real-
istically and avoid some unnecessary fine-grained operations
to enhance efficiency of the federated learning systems. Con-
cretely, contract theory allows the user to select the function
that maximizes its own utility based on the evaluation of
the quantity, quality, computing resources, and communication
capacity of the local data. To maximize its global profit, the
federator takes the computation and communication efficiency
and model accuracy of the uploaded gradient by users into
account. However, verifying the authenticity and quality of
the uploaded updates provided by the users remains difficult.

For incentive studies based on contract theory in federated
learning, Kang et al [14] address the challenges of incentive
mechanisms for participating in training and worker selection
schemes for reliable federated learning. It introduces reputa-
tion as the metric to measure the reliability and trustworthiness
of the mobile devices and combine contract theory to motivate
high-reputation mobile devices with high-quality data.

Shapley Value in Cooperative Game. The above games
are from the perspective of the federator and are based on
leadership competition or non-cooperative games. An alterna-
tive approach is given by cooperative games: the profit of at
least one party increases without reducing the profits of other
parties. Thus, the total utility increases with the participating of
multiple members. The key methodology here is the Shapley
Value [13], which evaluates the contribution of a participant as
loss experienced by the participant leaving. In this manner, the
Shapley value is independent of the order in which participants

join. It assigns a unique distribution among the parties of
a total surplus generated by the coalition of all members.
Furthermore, the Shapley Value allows using a combination
of desirable properties to define a participant’s contribution
rather than focusing on one property.

Formally, we denote the data federation F =< Users, v >
has been contributed by several users as Users =
{U1, U2, ..., Ui}, where v is the contribution value function
of this system. In federated learning scenarios, it could be
the aggregated model accuracy. The Shapley Value define the
contribution of Ui to join Users in F as a margin loss despite
the joining sequence as:

δUi(users) = v {users∪Ui} − v {users} (1)

Since the Shapley Value makes a fair distribution regardless
of the joining order, there are |Users|! joining sequences
with corresponding probabilities. The probabilities of each
sequence (or coalition) S containing Useri could easily be
obtained by |S|!(|F | − |S| − 1)!/|F |! Thus, the contribution
of Ci by Shapley Value is:

SV (F,Ci) =
∑

S⊆F\{Ci}

|S|!(|F | − |S| − 1)!

|F |!
δCi(F ) (2)

There are a number of studies that use Shapley Value
for their incentive design. In vertical FL, it has been used
to calculate the grouped feature importance since features
are grouped to join data federation by multiple users [12].
Although Shapley Value also works for horizontal FL, the
reason why the authors apply Influence function is that we
need to note is that Shapley Value based distribution solution
often takes exponential time to compute with a huge com-
plexity of O(n!), where n denotes the user size. Nevertheless,
this method also sheds light on the researches in model
contribution using Shapley Value in the context of federated
learning.

The key challenge of computing the Shapley Value lies on
the need for extra training to compute the marginal contri-
bution of a user. A contribution index that reconstructs the
approximate models on different combinations of the datasets
through the intermediate results during the training process
replaces the exact Shapley value [24]. In this manner, efficient
contribution measurement becomes possible.

Last, Shapley Value has been used in combination with a
blockchain network due to its fairness and high computation
overhead. The party who can decide on a new block is selected
based on their Shapley Value [12].

IV. MALICIOUS USER UPDATES: HOW TO DETECT AND
LIMIT THE DAMAGE

In FL frameworks, machine learning tasks are massively
distributed among participants. Ideally, this large-scale distri-
bution helps ML-service providers reach more diversified data
sources and thus build stronger models. Nonetheless, in the
basic design principals of Federated Learning, user selection



is mainly based on users’ data availability, their computational
power, and network resources, without any solid guarantees
on user reliability or trustworthiness [25]. As a consequence,
Federated Learning can be subject to various client-side attacks
with different objectives.
It has been shown in prior art [] that participants might deviate
from the intended FL protocol and try to bring damage to the
ecosystem. This malicious activity varies from simple selfish
user behavior to intentionally sending faulty contributions to
tamper with the federated model.
In the following, we characterize types of malicious user
contributions that might intentionally deteriorate model quality
and survey existing detection and prevention mechanisms that
protect against them.

A. Malicious Behaviour Characterization Criteria

Multiple state-of-the-art works have been proposed to
demonstrate the damage caused by malicious participants in
Federated Learning. It is worth mentioning that the attacks
discussed in this section are carried out during training time
either by insider malicious participants or by outsider adver-
saries that take over honest participants’ devices. Threats are
characterized according to the following criteria.

Adversarial Goal. Participants can maliciously contribute
to FL frameworks for a myriad of goals ranging from pro-
voking arbitrary damage to the system to targeted causative
violations. Offenders might try to prevent model conver-
gence, deteriorate model accuracy, incorporate backdoors in
the model, miss-classify a certain type of inputs, or even
have access to the model without actually participating in the
training process.

Number of Offenders. Adversarial behavior can be carried
by individual participants separately or multiple participants
simultaneously. The latter can either be controlled by the same
malicious party in order to bring more damage to the system
(Sybil Attacks) or can collude to achieve a common adversarial
goal.

Participants’ Background Knowledge. The background
knowledge of the attacker is a deterministic factor of the
attack severeness. For instance, they may know other honest
participants’ training data or their training parameters. They
can be aware of the mechanism applied by the federator to
detect malicious activity or of the global data distribution, and
so on.

Attack Duration. Some FL malicious behavior may require
to be carried out continuously through multiple rounds to take
effect. In this case, the attack is said to be stealthy. On the
other hand, some adversarial goals are more straightforward
to achieve and thus the attack can be carried out in a single
round.

B. Characterizing Malicious Behaviour in FL

In the following, we characterize three possible malicious
participant contributions (summarized in Table I), that might
negatively impact model quality in the FL ecosystem. We de-
scribe these attack categories according to the criteria defined

above and survey the existing state-of-the-art works that study
them.

Targeted Poisoning. In this type of malicious behaviour, an
attacker tries to inject a backdoor task of his interest in the
global model along with the main task that was initially trained
without deteriorating the model’s accuracy.This adversarial
goal can be achieved in two possible ways. The first one is
generating poisonous data locally, carrying out local training
on the malicious participant side using this faulty data, and
then sending the resulting poisonous updates to the federator
for aggregation. Generating poisonous data can be done by
simply flipping labels or by injecting naturally occurring or
artificial patterns in the feature space that is associated with
the backdoor. This malicious behavior is referred to as data
poisoning attacks in the state-of-the-art [27], [29], [30],
[34]. The second way is model poisoning where the attackers
carefully craft poisonous updates that efficiently inject the
backdoor task in the model [6], [26], [28], [31]. Both of these
attacks can be done by a single participant individually or
by multiple sibyls collaboratively [6], [29], [30], [32], [34],
[35]. To achieve model poisoning, malicious participants might
send faulty contributions over multiple training rounds till the
damage is done while the most severe attacks can successfully
inject the backdoor in a single round [6].

Untargeted Poisoning. Unlike targeted poisoning, in this
category of malicious behaviour, the attacker’s goal is to cause
a high miss-classification rate indiscriminately for testing
samples. As a consequence, the learned model is unusable
and hence the attack is essentially a denial-of-service attack.
Generally, the malicious participant does not need to carry out
data poisoning but can simply craft model updates that provoke
severe accuracy drop. Concrete instantiations of this type of
attack in the federated learning setting include [31], [32].
The impact on model accuracy can be even more aggressive
when the attacker is aware of the detection mechanism used
on the federator’s side [31] since it can adapt the pace of
sending malicious contributions to remain undetected (up to
78% accuracy drop [31]).

Free-rider. In this category of malicious behaviour, self-
interested participants want to take advantage of the federated
learning service without actually participating in it due to
the lack of data, lack of computing resources, or even for
privacy concerns. To do that, free-riding participants craft fake
updates via simple random generation or based on previous
versions of the model to pretend that they participate in
the learning process. Even though this kind of behavior has
been widely explored in the case of peer-to-peer systems,
there is only one state-of-the-art work that explores how it
applies to federated learning [33]. Although the presence of
free-riders in FL-based frameworks might seem harmless, the
behaviour of this category of participants is opposite to the
main purpose of federated learning which consists of doing
large scale distribution of ML-based tasks to have access to
more diversified and rich data sources. Free-riders can either
have no novel contributions to the system or in worse scenarios
send arbitrary updates that might negatively impact the trained



Attack Category Attack Adversarial Goal Number of
Offenders

Participants’ Background
Knowledge

Offense
Duration

Targeted Poisoning
Attacks

[26] Provoke targeted misclassification
and negate the combined effect of benign agents

Single
attacker

White-box access to the model,
Access to training data Stealthy

[27] Assign an attacker-chosen label
to input data with a specific trigger

Sybil
attack

White-box access to the model,
Access to training data,

Access to a portion of a subset
of the feature space

Stealthy

[28]

Introduce a persistent change in a
joint meta-learning model such that,

when a user adapts it for a new classification
task, targeted misclassification occurs

Single
attacker

White-box access to the model,
Access to training data One-shot

[29] Provoke high testing errors for
particular subset of classes

Sybil
attack

White-box access
to the model,

Access to training data
Stealthy

[6] Inject a backdoor task in the
model

Single
attacker

White-box access
to the model,

Access to training Data,
Knowledge regarding the
detection mechanism used

by the federator

One-shot

[30] Provoke high testing errors for
particular subset of classes

Sybil
attack

White-box access
to the model,

`Access to training Data
Stealthy

Untargeted Poisoning
Attacks

[31] Cause a high miss-classification
rate

Sybil
attack

White-box access
to the model,

Access to training Data,
Stealthy

[32] Degrade the overall model
performance

Sybil
attack White-box accessto the model Stealthy

Free-Rider
Attacks [33] Have access to the model without

participating in the training
Single

attacker

White-box access to the model,
Knowledge of how normal

updates look like
Stealthy

TABLE I: Characterization of malicious behavior in Federated Learning

model’s accuracy.

C. Defense Mechanisms Against Malicious Contributions

There are two possible ways to protect against malicious
contributions in Federated Learning. On one hand, the federa-
tor can implement detection mechanisms and punish attackers
once he suspects an anomaly. He can either react by reducing
their learning rate gradually or directly evict them from the
system. On the other hand, the basic Federated Learning
protocol can be enhanced by prevention mechanisms that
stop malicious behavior from occurring in the first place.
We present below some state-of-the-art mechanisms that were
proposed to detect and prevent malicious contributions in FL
frameworks.

Gradient Auditing. The purpose of this kind of protection
mechanism is to detect and punish malicious behaviour such
as model poisoning or free-riding. In this case, the federator
is assumed to be trusted and he monitors statistical changes in
model updates. The latter tries to point out suspicious updates,
and exclude them from the aggregation process or reduce their
weights. Examples of such approaches are FoolsGold [36] and
Gradient Norm Bounding [37].

Trusted Execution Environments. This a hardware-based
protection mechanism that is mostly adapted to cross-silo 2

federated learning ecosystems where the local training code

2Cross-silo Federated Learning is an FL setting that involves a small
number of relatively reliable clients, for example multiple organizations
collaborating to train a model.

on the participants-side is implemented in a Trusted Execution
Environment (TEE) such as Intel-SGX (e.g., [38]). This way,
the code run by participants is certified by the federator
to make sure that the updates they send are not malicious.
Thus, trusted execution environments prevent any attempt at
deviation from the intended FL protocol.

Gradient Sparsification. This protection mechanism limits
the effect of causative attacks in federated learning by pruning
gradients that have small magnitude, this is also referred to as
gradient compression. It has been shown in [39] that gradients
can be compressed up to a factor of 300, while maintaining the
same model accuracy. This approach was initially proposed to
reduce communication bandwidth in distributed learning but
was proved in [27] to be an effective way to protect against
targeted poisoning with a reasonable accuracy-loss/protection-
level tradeoff.

Differential Privacy Initially, differentially-private FL was
proposed to reduce information leakage about local users’ data
[40]. However, since adding noise to user updates bounds their
influence over the joint model, some state-of-the-art works
[6], [27] considered using differential privacy as a protection
mechanism to limit the damage caused by poisoning attacks.
This approach works by first clipping amplified and potentially
malicious updates, then adding Gaussian or Laplacian noise to
them. This simply reduces the impact of causative attacks but
does not entirely eliminate them. Also, adding user-level noise
potentially reduces the accuracy of the trained models.



V. EMPIRICAL ANALYSIS

Here, we aim to quantify how the existing contribution
measurement strategies could recognize attackers and their sta-
bility under attackers. Specifically, we consider a scenario of
federated training image classifier with benign and malicious
users. We implement three popular strategies against the attack
of flipping labels.

A. Experiment Setup

The Federated Learning system under evaluation consists
of one federator and 4 users. The model to be trained is a
VGG-type [41] convolutional neural network (CNN). Each
user possesses 6000 unique data samples randomly selected
from the CIFAR10 dataset [42]. Original CIFAR-10 dataset
consists of 60000 32x32 colour images in 10 classes, with
6000 images per class.

Some of the users are malicious and perform a data poison-
ing attack. When the attackers train their local models, they
inject data noise by flipping the label with a probability p. The
label is flipped with one of the other 9 labels randomly.

The flipping probability p is varied between 10%, 30%, 50%
and 100%. The number of attackers is varied between 0 and
3.

In the following, we evaluate the user data contribution to
the global model with three mechanisms:

• Influence: The classic notion of Influence means to
measure the effects on global accuracy of individual data
points [43]. Denote the global aggregated model as θ̂
and the global model θ̂/i without the user Ui as θ̂/i.
The contribution for a data set T is then quantified as
the difference in accuracy between the two models, i.e.,
inf(Ui, T, θ) = Acc(T, θ̂)−Acc(T, θ̂/i).

• Reputation: Similar to Influence, Reputation quantifies
the influence of each user. However, the score assigned
is binary with 1 indicating that the involvement of user
C = Ui improves global accuracy. Reputation considers
several time slots (similar to global rounds). In our ex-
periment, there are ts = 5 time slots and we average the
contribution measurement of user U as Rep(Ui, T, θ) =
1
ts

∑
tsH(Acc(T, θ̂) − Acc(T, θ̂/i)), where H(x) is the

heaviside unit step function.
• Shapley: In the settings of Shapley Value, we follow the

definition and calculation of Equation 2. Four users join
this training process and the federator determines their
contributions by sequential deletion of marginal loss. The
Shapley Value could see the impact on joining order of
different users in federated learning.

The reason why we present the evaluation details of Shapley
in Section 3 while the others above is that Influence and
Reputation are relatively straight forward and we just need
to specify some parameters. However, Shapley evaluation is
also a solution to Cooperative Game whose algorithm is well
defined in existing studies. Note that all three mechanisms
are marginal loss-based, as the other types of approaches like
self-reporting are obviously unable to deal with attacks.

The experiments are conducted with library Keras-2.3 based
on Tensorflow-2.2, and executed on Dell Alienware Aurona
(20 CPUs with 32G RAM) equipped with one RTX 2018 Ti
GPU.
B. Experimental Evaluation

Fig. 4: Influence mechanism under combinations of users and
attackers. A higher value indicates a higher contribution.

Fig. 5: Reputation mechanism under combinations of users
and attackers. Higher the value, better the reputation.

Fig. 6: Average Shapley Value under combinations of users
and attackers. Higher the value, better the contribution.

Figure 4 - 6 display the measured user’s data contribution
with respectively Influence, Reputation, and Shapley. In our
experiments, we vary the number of attackers, and we vary
the flipping probability p. Here, the values of Reputation
have been normalized into [0, 1]. Thus, generally, all three
strategies succeed in recognizing attackers since we could see
from Figure 4 - 6 that the mean values of averaging honest
users are larger than those of attackers. It demonstrates the



effectiveness of contribution measurement approaches based
on marginal loss and similarity. Additionally, overall results
also show that for malicious users, higher flipping rates may
result in lower measured contribution, which is more stable in
Figure 6 while there are fluctuations in Figure 4 and 5. And
if we consider a given flipping rate, e.g., 3 attackers with a
flipping rate of 50%, the Influence in Figure 4 of honest users
and the Influence of malicious users are almost the same with
3 attackers with a flipping rate of 10%. This exhibits the fact
that such techniques (similar in Figure 5) to quantify user
contribution is not pertinent in the case of malicious users.

Comparing the three figures, Shapley measurement in Fig-
ure 6 shares the highest capability while Influence in Figure
4 finds difficulty in recognizing attackers. This is reasonable
since Reputation in Figure 5 qualifies and sums up influence
values in multiple rounds, which also indicates the potency
after multiple global iterations of both strategies. We could
also observe that especially in Figure 6 and Figure 5, the
average value on honest and malicious users share opposite
trends on the value with increasing flipping ratio. The diversity
indicates the implicit relativity between the contribution of
the honest and the malicious users since they are all based
on marginal loss. As for Shapley, the significant difference to
Influence illustrates the importance of the impact of joining
sequences in federated learning. In addition, similarly, the
variety on different flipping level shows more discrepancies
and conforms most to our theoretical prospective on Shapely
than Influence and Reputation.

VI. RESEARCH DIRECTIONS

We have seen that incentives in federated learning require
consideration of malicious behavior as they are not necessarily
able to detect such behavior. In this section, we outline
research directions to investigate this research gap which we
believe are promising.
A. Novel Attack-Aware Incentives

As indicated by the results in Section V, designing new in-
centive mechanisms should consider attacks. One possible so-
lution may be introducing blockchain-based contribution mea-
surements with transmitted parameter records on chain [44].
Indeed, such a incentive mechanism can possibly be used
to detect attackers as those users achieve low scores in the
contribution measurement. After attack detection, malicious
users can be evicted from the system to prevent future harm.
B. Alternative Contribution Measurements and Alternative
Attacks

Our experimental evaluation in this paper considered merely
label flipping attacks and three contribution measurement
approaches. Future studies should extend these results to
other attacks and contribution measurement mechanisms. In
Section IV-B, we already identified untargeted poisoning and
Free-riding attacks as potential threats that require further
consideration in the context of incentives. An example for a
future study related to Free-riding is to evaluate whether cross-
user labeling recognizes attackers whose adversarial goal is to
have access to the model without participating in the training.

In particular, as all users just transmit and verify generated
data based on their own data, an attacker can generate new
data based on other submissions to appear as if they contribute.

We can also evaluate these contribution measurement strate-
gies in the presence of other non-causative active attacks that
aim at inferring sensitive information about participants’ data
such as class-representatives [45], data distribution [46], etc.
Although these attacks do not specifically target model quality,
they may indirectly have an influence on it.
C. New Attacks Targeting Incentives

In this paper, we primarily focused on the impact of
attacks on model accuracy. Yet, Free-riding does not primarily
target model accuracy but rather deals with parties that gain
something without contributing appropriately. As stated in
Section IV, Free-riding attacks are not yet fully explored in
the context of Federated Learning. The work presented in [33]
considers an adversarial model where lazy participants aim at
using the federated model without actually being engaged in
the training process. We believe that it could be interesting
to explore other adversarial strategies for this attack category
in the presence of incentive mechanisms. In the context of
incentives, adversaries want to maximize the profit they gain
out of the deployed incentive mechanism and simultaneously
minimize the computational effort they have to invest into
gaining from the mechanism. Concretely, a self-interested
participant carefully crafts model updates that seemingly have
high quality without doing actual local training. This is a
contrasting view of attack-aware incentive design in terms of
adversarial goals that are equally undesirable as participants
are less likely to be incentivized to contribute honestly if
incentives can be gamed.

VII. CONCLUSION

Motivated by the increasing threat of malicious users on
federated learning systems, we presented exploratory analy-
sis on how contribution measurement strategy of incentive
mechanisms can characterize attackers. We surveyed existing
attacks on model accuracy and highlighted that they can have a
detrimental impact on incentive measures. Through federatedly
training a deep image classifier, we evaluated how simple label
flipping attacks can degrade the performance of the state-of-
the-art incentive measures. Based on empirical evaluation and
observations, we discuss future research directions. Specifi-
cally, it is imperative to design new incentive mechanisms that
are resilient to novel attacks circumventing the detection of
incorrect data. We also highlight how free-rider attacks with
the goal of gaining unjustified rewards is a largely unexplored
but critical threat.
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