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sometimes difficult journey to reach the finishing end. Mine is no special one in general, but 
surely significant to my life in all senses.  

I was about to find my career in business after finishing my Master study. Bert, my then 
Master thesis supervisor, intrigued me with the possibility of being a PhD candidate. The 
research topic was ‘Behavioural Aspects of Supernetwork’, which sounded interesting 
already. After an inspiring and smooth talk with Bert and Caspar, I was convinced that being 
a PhD candidate was surely challenging but rewarding at the same time, and that I should take 
this opportunity to further explore the academic world and further explore myself. The later 
interview with Eric in Eindhoven only strengthened that impression. Luckily, Bert, Caspar, 
and Eric also saw the potential in me, and then I became a PhD candidate.   

These five years as a PhD candidate really opened my eyes, enhanced my knowledge, and 
shaped my view on this world. Being a PhD candidate was not just about exploring the 
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experience, as I fathom, would be unique to me at least for a very long time if not for a life 
time.  

It wasn’t always a smooth journey, along which there were many ups-and-downs. However, I 
was fortunate enough to have Caspar, Bert and Eric by my side to guide me through. Caspar, 
your sharp and meticulous thinking, your tender and persuading approach, and your 
unreserved help and support was essential to me, for which I owe you endless gratitude. As a 
supervisor and a role model, for me, you are second to none! Bert, your gush of new ideas and 
helpful suggestions, your refreshing management style, your all-time positive attitudes, and 
your generosity and kindness, always inspired me, for which many thanks are far from 
enough. Your ‘half-funny’ jokes and ‘bullet-speed’ talk are always missed. Eric, your 
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on a broader range of topics always delighted me. Finally, I am pleased to say that it was truly 
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tightly than before. Your continuous love and encouragement were always an important 
driving force to keep me forging ahead. Thank you with all my heart! 

Last but not least, I want to acknowledge NWO for funding this research and its support in 
other various ways. I would also like to extend my gratitude to the Faculty of Technology, 
Policy and Management, Delft University of Technology for facilitating this research.  

 

Chao Chen 

Shanghai, September 2014 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

iii 
 

Table of Contents 

PREFACE I 

1. INTRODUCTION 1 

1.1 Background of the research ................................................................................................. 1 

1.1.1 Increasing accessibility .......................................................................................... 1 
1.1.2 Traveller behaviour ................................................................................................ 2 

1.2 Research goals ..................................................................................................................... 5 

1.3 Methodology and the scope of the research ........................................................................ 6 

1.3.1 Literature review .................................................................................................... 6 
1.3.2 Construction of choice models............................................................................... 6 
1.3.3 Stated preference data collection by using travel simulator ................................... 7 
1.3.4 Model estimation ................................................................................................... 8 
1.3.5 Societal implication-related analyses ..................................................................... 8 

1.4 Structure of the dissertation ................................................................................................. 8 

2. MODELLING THE IMPACTS OF TASK COMPLEXITY AND TIME PRESSURE ON 
TRAVELLERS’ CHOICES 11 

2.1 Introduction ....................................................................................................................... 11 

2.2 Discrete Choice Theory, the Random Utility Maximisation paradigm, and the (Mixed) 
Multinomial Logit model ........................................................................................................ 11 

2.3 Modelling the impacts of task complexity and time pressure: the Heteroscedastic Logit model 
  ...................................................................................................................................... 14 

2.3.1 Measuring task complexity .................................................................................. 16 
2.3.2 Measuring time pressure ...................................................................................... 19 

2.4 Conclusions ....................................................................................................................... 21 



iv                              Task Complexity and Time Pressure: Impacts on Activity-Travel Choices 

3. A COMPUTER-BASED ACTIVITY-TRAVEL SIMULATOR 23 

3.1 Introduction ....................................................................................................................... 23 

3.2 A focus on activity-travel .................................................................................................. 24 

3.3 The design of ATS ............................................................................................................. 25 

3.4 Task complexity and time pressure ................................................................................... 28 

3.4.1 Varying choice task complexity levels ................................................................ 28 
3.4.2 Varying travel alternatives ................................................................................... 29 
3.4.3 Specifying mode availability and varying travel time and travel cost ................. 30 
3.4.4 Varying decision time budget .............................................................................. 31 

3.5 Execution of the SP experiment ........................................................................................ 32 

3.5.1 A typical process of the experiment ..................................................................... 32 
3.5.2 Participant recruitment ......................................................................................... 34 

3.6 Validation of the simulator experiment ............................................................................. 36 

3.6.1 Self-reported feedbacks from the respondents ..................................................... 36 
3.6.2 Consistency of ATS data ..................................................................................... 38 

3.7 Conclusions and discussions ............................................................................................. 40 

4. THE IMPACTS OF TASK COMPLEXITY AND TIME PRESSURE ON TRAVELLERS’ 
CHOICES: EMPIRICAL FINDINGS 41 

4.1 Introduction ....................................................................................................................... 41 

4.2 Specifying the discrete choice-based models .................................................................... 41 

4.2.1 The systematic component of the utility function ................................................ 42 
4.2.2 The scale of the systematic component of the utility function ............................. 43 
4.2.3 Choice probability................................................................................................ 45 
4.2.4 The models to be estimated ................................................................................. 47 

4.3 Empirical results ................................................................................................................ 47 

4.3.1 Functional form of the distributions of the Mixed Logit models ......................... 48 
4.3.2 The impacts of task complexity and time pressure .............................................. 49 
4.3.3 The systematic component of the utility function ................................................ 53 
4.3.4 Value of travel time savings ................................................................................ 53 
4.3.5 Value of avoiding a travel interchange (in both time and cost) ........................... 54 
4.3.6 Choice probability predictions ............................................................................. 57 

4.4 Conclusions ....................................................................................................................... 58 

5. MAIN CONCLUSIONS AND IMPLICATIONS FOR POLICY AND RESEARCH 61 

5.1 Introduction ....................................................................................................................... 61 

5.2 Model developing (Goal 1)................................................................................................ 61 

5.3 Data collection (Goal 2) .................................................................................................... 62 

5.4 Traveller behaviour in synchronized networks (Goal 3) ................................................... 63 

5.5 Implications for policy and research (the secondary goal) ................................................ 66 

5.5.1 Estimating VTTS and VATI ................................................................................ 66 
5.5.2 Choice probability predictions ............................................................................. 67 
5.5.3 Travel information service providers ................................................................... 67 

5.6 Avenue for further research ............................................................................................... 72 



Table of Contents                                                                          v 
 

APPENDICES 75 

SUMMARY 87 

SAMENVATTING 93 

REFERENCES 99 

ABOUT THE AUTHOR 107 

TRAIL THESIS SERIES 109 
 
  



vi                              Task Complexity and Time Pressure: Impacts on Activity-Travel Choices 

  



 

1 
 

1. Introduction 

1.1 Background of the research 

1.1.1 Increasing accessibility 

One of the central aims of transport policy-makers (e.g. European Commission 2011; 
Department of Transport 2012) and many transportation researchers (e.g. Murray 2003; Geurs 
and van Wee 2004; Lacono et al. 2010) is to improve accessibility in transportation. It is 
generally acknowledged (e.g. European Commission 2004) that there are essentially two ways 
to achieve improvements in that respect: a first approach is to expand physical infrastructure 
capacity, and a second approach is to increase the efficient use of existing infrastructures and 
transportation services. In many societies, especially highly developed and urbanised ones, it 
is increasingly felt that the former of these two approaches (i.e., expanding physical 
infrastructure) comes with a number of critical disadvantages, such as need for high amounts 
of capital investments, large areas of land use, lengthy period of construction time, and 
relatively large impacts on environment (Banister and Berechman 2000; Flyvbjerg et al. 
2003). 

As many of these disadvantages are moderated if not absent in the second approach (i.e., 
better use of infrastructure and transportation services), the interest in this approach is 
growing among policy-makers (e.g., Department of Transport 2004; European Commission 
2011; Ministry of Infrastructure and the Environment 2011) and researchers (e.g., Meyer 
1999; Gärling and Schuitema 2007). One prominent example of such an approach is road 
pricing (Lewis 1993). Nevertheless, its application is rather limited, despite its huge potential 
repeatedly shown in the academic literature (e.g., Jones 1995; Yang and Huang 2005). One 
critical reason contributing to this limited implementation from a driver’s perspective is 
“perceived infringement on freedom and unfairness” (Jakobsson et al. 2000), while political 
motives driven by these public opinions may also further halt the applications (Chorus et al. 
2011).  
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However, there is an alternative direction of the latter approach that is less controversial, 
which recently in particular has been gaining interest among a small but growing number of 
researchers. It aims at improving accessibility by increasing the level of network 
synchronisation through strategies related to improving the interconnectivity of different 
transportation networks, such as bus, train and car networks. Examples are synchronising the 
time tables of different public transportation services or realizing Park and Ride facilities near 
railways stations. In addition, as people travel because they want to conduct an activity at 
another location, the geographical location of these activity locations may also be 
synchronised with transportation networks. Hence, those who advocate this approach believe 
that sustainable accessibility can be enhanced by improving synchronisation, while increasing 
physical infrastructures to only a limited extent (e.g., enhancing interconnectivity between 
different public transport (PT) modes (e.g. train and bus), establishing park and ride facilities 
near train station, and adding or relocating supermarkets or day-care centres with more 
flexible opening hours near train stations, etc.). In practice, noticeable efforts following this 
direction have already been taken. For example, in the Netherlands, Dutch Railways is 
developing their railway stations from just a node in the network where travellers can embark 
trains towards activity centres with offices, shops, meeting places, food stores and stalls, and 
leisure facilities. Similarly, large shopping centres have been realised at the central stations of 
Utrecht and Hamburg. Recent findings have shown that synchronisation of networks along 
the temporal and/or spatial dimensions as exemplified above holds potential of achieving 
significant gains in accessibility. Geurs et al. (2006) showed that by relocating commercial 
and non-commercial services to the surrounding areas of the future high-speed railway 
stations in Randstad1 region may lead to an average accessibility gain of 5 % relative to a 
reference scenario.  

1.1.2 Traveller behaviour 

In principle many distinctive synchronisation strategies of various directions can be 
developed, however, it is not yet clear how effective each strategy is. As methods to ex-ante 
evaluate synchronisation strategies were largely missing, a multi-stage Supernetwork model 
was developed (Liao et al. 2010; Liao et al. 2011; Liao et al. 2013a; Liao et al. 2013b) as a 
first innovative step to understand the synchronisation strategies. Very briefly stated, this 
model is able to predict for any individual within a certain urban system given his or her daily 
activity program, how this program is implemented. More specifically, the model predicts 
when people are traveling, where they are traveling to, which mode they are using, via which 
route they travel, where they park their car or bike (if using a private mode), and at which PT 
stop they access, egress and transfer (if using a public transport mode). This model allows 
comparing the travel impacts of different synchronisation strategies.  

An important part of this Supernetwork model is concerned with traveller behaviour. The 
underlying assumption of the Supernetwork model is that travellers would be able to choose 
their favourite daily activity-related travel alternatives from their choice sets independent of 
choice situations they are faced with. In another word, no matter how complex the choice 
situations would become (e.g. a much larger choice set), traveller are always capable of 
selecting their favourite alternatives. However, introducing network synchronisation strategies 
to the society would most probably make travellers’ choice situations more complex. It may 
be doubted whether such an assumption can still hold in the context of choosing between 

                                                        
1 Randstad is an urbanized region in the western part of the Netherlands. It consists of the four largest Dutch cities 
Amsterdam, Rotterdam, The Hague, Utrecht, and the surrounding areas, with a population around seven million. 
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different travel implementations of complete activity programs. More specifically, if 
synchronisation strategies are implemented many more options for activity program 
implementation2  will become available, and consequently travellers’ choice sets 3  may 
inevitably become larger. These options are called activity-travel choices in this research. 
Furthermore, as these options themselves may become very complex (which may consist of 
several travel trips4 in one single option), it takes much effort and time from the travellers to 
evaluate each of them. This thus raises the additional question whether individuals are able 
and willing to do this, given the limited time many individuals in highly developed countries 
have available because of busy schedules. Therefore, because of this task complexity as 
induced by synchronisation strategies and time pressure (the two aspects that constitute the 
content of a choice situation in this research) travellers may not be able to choose the more 
effective ways to conduct their activity program offered by increased network 
synchronisation. Consequently, not every individual will benefit even if synchronisation 
would allow them to complete their activity program in a more effective way. This would 
mean that potential gains in sustainable accessibility of synchronisation strategies as predicted 
by the Supernetwork model may not be reached. Therefore, in the context of modelling choice 
in highly synchronised networks it is important to study the impacts of task complexity and 
time pressure and take these impacts into account while making predictions. In the following 
task complexity and time pressure are discussed in more detail.  

Task complexity 

A stark contrast between the existing, yet less synchronised networks and the highly 
synchronised ones lies in travellers’ opportunities of easily chaining their activities with 
related travel on a daily basis. More specifically, the highly synchronised networks offer a 
much richer set of feasible activity-travel alternatives. For example, the construction of new 
P&R-facilities may increase the availability of multimodal alternatives, synchronised 
timetables may increase the availability of more public transit options, more activity locations 
(e.g., shops, supermarkets, and day-care centres, etc.) situated near the multimodal transit 
points may provide travellers with more attractive travel alternatives that can reduce their 
overall travel time for a whole day. Notwithstanding the potential benefits brought up by 
these enhanced opportunities, travellers may have increasing numbers of travel alternatives to 
choose from. These upgraded choices themselves also pose more challenges to the travellers, 
with respect to the growing complexity of choice tasks. For the purpose of conciseness and 
consistency in the thesis, the “task” in this research refers to the task to choose an 
implementation of a daily activity program, more specifically, the choice when and where to 
conduct the activities, and how to travel to those activities (e.g. mode and route choice). 
Consequently, complexity of the task of making a choice is simplified as the phrase of “task 
complexity” in this thesis.  

As found in various literatures in and outside the transportation field, task complexity does 
have non-negligible impacts on choice. Swait and Adamowicz (2001) examined several types 
of choice, including choosing yogurt, canoeing site, work mode, courier, apartment rental and 

                                                        
2 For a normal workday, a traveller would usually execute several activities, e.g., working, grocery shopping, escorting 
children to or from school, etc. These activities in a day together form a so-called activity program. 
3 A choice set is a set of choice options from which a traveller can choose. 
4 Since each activity in the simulator usually has its own distinctive geographic location, some activities (e.g. grocery 
shopping) may have multiple locations of its own. In order to execute them all in a day, people may have to travel between 
the respective locations. If we define traveling between two activity locations as one trip, conducting an activity program 
usually consists of several trips. 
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camping site, concluding that task complexity does affect inferences about choice model 
parameters and that context effects, such as complexity, have a clear impact on choice. 
Arentze et al. (2003), using single trip-based mode choice data, found that task complexity 
also has an impact on choice. However, the empirical data used in these studies either belong 
to the categories of either non-travel-related consumer products or single-trip based mode 
choice. Though they indicate the existence of the impacts of task complexity on choice, it is 
still unclear at the moment whether the results concerning these impacts can be readily 
applied to the context of choosing between different activity-travel choices, i.e., a choice task 
that is typically more complex.  

Time pressure 

Intuitively speaking, if there is a limit on how much time a traveller has to make a choice, it 
can induce certain pressure on the traveller. This particular type of pressure as caused by a 
limited time for making a choice is called time pressure. As discussed before, this may be 
caused by the complexity of the choice task in combination with generally limited available 
time of individuals caused by busy schedules and the need to arrive on time at their activity 
locations. Furthermore, travellers may also feel time pressure when they have to change their 
activity agenda during a day due to a cancelled appointment on a short notice, and they 
subsequently have to choose a new travel option in a short time. Another example is that the 
train a traveller has planned to take has been cancelled, forcing the traveller to find another 
travel option to continue his or her travel. From the perspective of opportunity cost (e.g., 
Payne et al. 1996; Rieskamp and Hoffrage 2008), if a traveller does not do so in a timely 
fashion, the consequence may well be that some existing favourable options become foregone 
with every moment delayed in decision-making.  

The impacts of time pressure on decision-making have been frequently investigated in 
psychology. Edland and Svenson (1993) overviewed the research efforts of 30 years, 
highlighting the importance of including the impact of time pressure in high-level 
decision-making processes. Hahn et al. (1992) reported that the decision quality is much 
influenced – with a possibility of inverse-U shape with information load – by the presence of 
time pressure. Similarly, Maule and Edland (1997) and Ahituv et al. (1998) suggested that 
time pressure usually impairs the performance of decision-making. There are also ample 
evidences in marketing literature. Nowlis (1995) found that consumers when choosing brands 
would be influenced by time pressure, though this may not necessarily lead to a switch of 
decision strategies. Suri and Monroe (2003) suggested that an increase in time pressure from 
low level to high level will be likely to result in a reduction in the extent of systematic 
information processing. Haynes (2009) also reported that with high time pressure and more 
choice alternatives, decision-makers are usually dissatisfied with their decisions and often feel 
frustrated.  

However, in traveller behaviour research, the impact of time pressure on choice has not 
received much attention. The majority of the efforts that deal with “time” in transportation are 
actually focusing on time as something related to travel time itself, hence as one of the most 
important attributes of the travel alternatives. Time pressure of making a choice, which 
concerns with the time of decision-making process, is hardly touched upon in traveller 
behaviour research. Thus, there is a lack of understanding of the impacts of time pressure on 
choice in traveller behaviour research, particularly in the context of daily activity choice and 
related travel. Consequently, there is also a lack of understanding of possible interactions 
between choice task complexity and time pressure on choice in the same context. 
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Discrete choice theory 

These daily activity-related travel choices are usually discrete in nature: destination, travel 
mode, and route choices all can be understood as being made from a finite set of mutually 
exclusive and discrete alternatives. Ever since the 1970s, Discrete Choice Theory (DCT) 
(McFadden 1973) has become the dominant theory to model discrete choice behaviour. 
Therefore, the efforts of understanding the impacts of task complexity and time pressure on 
activity-travel choices, which are so far incomplete in literature, can be made in the 
framework of discrete choice modelling. In another word, the discrete choice models that help 
understand the impacts of task complexity and time pressure should be further developed. 

1.2 Research goals 

Given the potential importance of task complexity and time pressure for the prediction of 
travellers’ choices in the context of highly synchronised networks, it is important to study the 
impacts of these two aspects on travellers’ choices in order to improve the evaluations of the 
synchronisation policies in terms of traveller behaviour. However, it is unclear at the moment 
how these two aspects together should be properly modelled and what the impacts of these 
two aspects are on travellers’ choices. In light of these, the following research goals of this 
thesis are formulated. This research primarily aims: 

Goal 1 

To develop coherent discrete choice models that can accommodate the impacts of both task 
complexity and time pressure on travellers’ choices simultaneously 

This goal is essentially to further develop discrete choice models that can help understand the 
impacts of task complexity and time pressure on travellers’ choices. Therefore, in these new 
models, task complexity and time pressure should be properly modelled so that their impacts 
on the choices can be investigated. 

Goal 2 

To collect relevant data concerning the impacts of task complexity and time pressure on 
travellers’ daily activity-travel choices in the context of highly synchronised networks 

Reaching this goal is an intermediate step to achieve the understanding of the impacts of task 
complexity and time pressure on travellers’ daily activity-travel choices. Should the 
theoretical discrete choice models be developed by reaching the first goal, without the support 
of the data, the understanding can only remain at an early stage and no concrete findings can 
be made or confirmed. However, as the concepts of task complexity and time pressure are 
short of straightforwardness as compared with those of travel time and travel cost, the 
collection of these relevant data may require more innovative ways to achieve. Besides, the 
emphasis on travellers’ daily activity-travel choices in the context of highly synchronised 
networks is particularly important to the research as the impacts of task complexity and time 
pressure may be arguably more relevant in this condition. 

Goal 3 

To gain insight in traveller behaviour in the context of highly synchronised networks, with an 
emphasis on capturing the possible impacts of task complexity and time pressure 
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By reaching Goal 1 and Goal 2, the research would have the necessary ingredients to capture 
the possible impacts of task complexity and time pressure on travellers’ choices, which is the 
third goal of this research.  

This research also aims: (the secondary goal) 

To utilize the gained insights to provide the relevant societal implications, in particular with 
respect to policies involving highly synchronised networks 

This goal is to derive more relevant societal insights based on yet not confined to the insights 
attained from the reach of the previous three goals. By doing this, the potential benefits of the 
research towards the society can be clearly demonstrated. However, compared with the other 
three goals, this goal stays in a less prominent position and only serves as a secondary 
research goal. 

1.3 Methodology and the scope of the research 

To reach the research goals of this thesis, several methods will be adopted, including literature 
review, model construction, Stated Preference data collection by using a travel simulator, 
estimating econometric models, and societal implication-related analyses.  

1.3.1 Literature review 

Each of the next three chapters starts with a respective literature review aimed at reviewing 
the relevant state-of-the-art knowledge including substantive findings as well as theoretical 
and methodological contributions to the particular topics, upon which further contributions 
will be made.  

1.3.2 Construction of choice models 

The first research goal of this thesis involves developing choice models that can 
accommodate the impacts of task complexity and time pressure. As the objective is to 
improve the models that predict the travel changes due to synchronisation policy strategies, 
hence the Supernetwork model, the same framework on which this model is based is adopted, 
that is the DCT framework. This framework has been developed and applied extensively and 
comprehensively in the last fifty years and has become the dominant method in the research 
of traveller behaviour (McFadden 1974; Ben-Akiva and Lerman 1985; Train 2003). 

However, under the umbrella of DCT, not all modelling attempts in the existing literature 
share the same perspective on people’s decision-making mechanism. The paradigm of random 
utility maximization (RUM) is the most widely applied one. Briefly stated the RUM assumes 
that decision-makers evaluate and compare all possible alternatives known to them and 
eventually choose the alternative that maximises their utility. RUM is widely adopted as it 
proves to be very proper and elegant for the quantitative analysis of traveller behaviour 
(McFadden 2001). Although the efforts of exploring and developing paradigms other than 
RUM are indeed worthwhile and deserve credits and attentions, there is no strong evidence 
yet in pragmatic applications to demonstrate that RUM has been systematically out-performed 
by others. Various and continuous efforts into extending RUM paradigm have further 
facilitated the use of RUM paradigm in traveller behavioural research. A branch of these 
efforts has been devoted to the so-called Heteroscedastic models (e.g., Bhat 1995; Hensher et 
al. 1998; Louviere et al. 2008), which allow more flexible error structures in the utility 
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function. As will be argued in the next chapter, Heteroscedastic models are especially 
convenient to model the impacts of task complexity and time pressure on travellers’ choices.  

1.3.3 Stated preference data collection by using travel simulator 

In order to estimate the developed travel behaviour models, choices travellers make among 
alternatives need to be observed. In travel behaviour research, typically two types of data are 
distinguished, namely Revealed Preference (RP) data and Stated Preference (SP) data. In RP 
data collections, data are gathered about real world alternatives including the alternative(s) the 
respondent actually has chosen. In SP data collections, hypothetical alternatives are presented 
to participants, of which they select the alternative that they would choose in real life 
situations.  

The big advantage of RP data is that they actually represent choices people have made in real 
life (Samuelson 1948; Houthakker 1950). Hence, the external validity of the models estimated 
from these data is potentially high. On the other hand, RP data have a series of disadvantages 
of which those most relevant for this study will be briefly discussed now. A first disadvantage 
of RP data is that high correlations among explanatory variables are often spotted, for 
example, travel time and travel costs are often highly correlated (Wardman 1988). This 
severely decreases the efficiency of the data with the result that the coefficients of some 
explanatory variables only become statistically significant if substantial amounts of data are 
gathered and thus typically very large numbers of respondents are needed. Another 
disadvantage is that by its nature RP methods do not allow observing choices of alternatives 
that do not exist in real life. As discussed before, synchronisation policy strategies may 
introduce new alternatives for implementing activity programs. Although some elements of 
those alternatives may already exist in the real world, those alternatives for implementing 
activity programs cannot yet be observed in real life (Adamowicz et al. 1994). A final 
disadvantage of RP methods is that it is difficult if not impossible to systematically, reliably 
and accurately observe information about the decision-making process.(Hensher 1994). This 
is especially a disadvantage in this research, as information on the complexity of tasks and the 
amount of time pressures need to be observed, which is virtually impossible with RP 
approaches.  

SP data collection methods provide solutions for these disadvantages of RP methods. First, SP 
methods allow researchers to efficiently and intricately control experimental conditions to 
such a level that choice outcomes can be traced back to each of the explanatory variables 
under investigation with a relatively small number of respondents and therefore relatively low 
costs. Next, as the choice alternatives are constructed and controlled by the researchers, SP 
methods allow observing choices for alternatives that do not yet exist. Finally, SP methods 
make it possible to create sufficient variations in choice task complexity and time pressure 
levels required to estimate the developed econometrics models. Given these advantages of SP 
over RP methods, SP methods are the proper choice for collecting the data in this research.  

The use of SP data has been a major advance in traveller choice modelling. With the 
continuous development (e.g. Louviere and Hensher 1982; Hensher 1994; Louviere et al. 
2000), SP methods have gained much attention in transportation. However, SP methods face 
the issue of external validity, which reflects to what extent the respondents participating in SP 
experiments would behave the same way in real life as they do in the experiment. It is often 
argued against SP methods that a respondent does not feel the consequences of his or her 
choices in a SP experiment, and that he or she probably to a much lesser extent takes into 
consideration the efforts of changing his or her choices during the process while they would 
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do so in real life. Even though it is virtually impossible to assure that people would behave in 
SP experiments the same way as they do in in real life, it is widely acknowledged that 
external validity can be increased by constructing choice situations in such a way that they as 
much as possible realistically mirror real-life travel environments. Travel simulators (e.g., 
Chen and Mahmassani 1993; Mahmassani and Jou 2000; Bonsall and Palmer 2004; Chorus et 
al. 2007; Prendinger et al. 2011), a special type of SP methods, are probably best suited to 
increase the realism of the choice tasks and in addition allow observing information about the 
choice process or allow manipulating different choice contexts. Compared with the 
conventional SP methods (e.g., paper-pencil survey, web-based survey, etc.), travel simulators 
usually provide illustrative and interactive user interfaces, stimulating respondents to more 
actively involve themselves in the experiment and allowing for easy interactions between 
respondents and experimental conditions. Therefore, in this research a fairly sophisticated 
activity-travel simulator (ATS) concerning travellers’ daily travel choices will be developed 
to collect the data.  

1.3.4 Model estimation 

As soon as the mathematical models and the required data are ready, the model is estimated 
from the data collected by the activity-travel simulator. Most of estimation procedures involve 
maximization of some function, such as the likelihood function, the simulated likelihood 
function, or squared moment conditions (Train 2003). Some existing and free estimation 
packages may help estimate those models with convenience and efficiency. The software 
applied in this research is Biogeme, developed by the group in EPFL led by Prof. Michel 
Bierlaire. It is an open source freeware designed for the estimation of discrete choice models. 
Among other models, it allows the estimation of Heteroscedastic models (Bierlaire 2008).  

1.3.5 Societal implication-related analyses 

In order to reach the third research goal, a series of societal implication-related analyses are 
implemented. First, the implications derived from this research concerning transport policies 
are analytically explained. Transport policies are herein narrowly defined as the public 
policies that can be implemented by governments, with the primary aim to improve 
productivity and quality in the transport sector. In particular, the important and yet relevant 
policy implications are identified. The implications for travel information service providers 
are next explicated. In particular, the focus rests on the implications for travel information 
content, travel information format, and travel information load.  

1.4 Structure of the dissertation   

In this section, it is described how this PhD thesis is structured and how the chapters relate to 
the research goals.  

Chapter 2 first provides a literature review of the existing modelling efforts into the impacts 
of task complexity and time pressure on traveller’s decision-making. It helps identify what 
sorts of impacts these two aspects exert and what modelling approaches may be most 
appropriate to incorporate them. Then a Heteroscedastic model is formulated, embedding the 
impacts of choice task complexity and time pressure on traveller’s choices. This chapter is 
intended for reaching the first research goal. 

Chapter 3 is devoted to developing the activity-travel simulator. First, an introduction to the 
design of the simulator is presented. This is followed by a description of the simulator in more 
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detail. Next, the data collection procedure is described including the recruitment of the 
respondents and the actual application of the travel simulator. Finally, the respondent 
feedbacks concerning their experience of using the simulator are reported. It is oriented to the 
reach of the second research goal.  

Chapter 4 first specifies the respective operational Heteroscedastic models proposed in 
Chapter 2. Then the specified models are estimated by using Biogeme based on the data 
collected in chapter 3. The results are subsequently analysed and discussed. It aims at 
reaching the third research goal.  

Chapter 5 first presents the main conclusions from the previous three chapters. By combining 
relevant state-of-the-art knowledge and state-of-the-practice transportation policies with the 
knowledge attained from these chapters, this last chapter also draws the implications for 
policy and research . It intends to reach the secondary research goal.   
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2. Modelling the impacts of task complexity and time 
pressure on travellers’ choices 

2.1 Introduction 

Both task complexity and time pressure, as argued in Chapter 1, may have impacts on 
travellers’ choices, especially in highly synchronized mobility networks. In order to 
understand these impacts, a crucial step is to model these impacts in a rigorous manner. This 
chapter presents discrete choice models that are capable of simultaneously incorporating the 
impacts of task complexity and time pressure on travellers’ choices. 

The chapter is organized as follows: Section 2.2 introduces the discrete choice framework and 
the adopted Random Utility Maximization (RUM) paradigm. Section 2.3 presents a 
RUM-based Heteroscedastic model that can incorporate the impacts of task complexity and 
time pressure. It then discusses how task complexity and time pressure can be formulated in 
the proposed Heteroscedastic model. Section 2.4 finally concludes the chapter. 

2.2 Discrete Choice Theory, the Random Utility Maximisation paradigm, 
and the (Mixed) Multinomial Logit model 

Given that excellent textbooks are available on the topics mentioned in the title of this 
subsection (e.g., Ben-Akiva & Lerman, 1985; Train, 2009), only a brief and generic overview 
of relevant notions and concepts will be presented here. 

Travellers’ choices are usually discrete in nature: destination, travel mode, and route choices 
all can be understood as being made from a finite set of mutually exclusive and discrete 
alternatives. Ever since the 1970s, Discrete Choice Theory (DCT) (McFadden 1973) has 
become the dominant theory to model discrete choice behaviour. DCT postulates that, from 
the analyst’s perspective, the probability that the decision-maker would choose an alternative 
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from a given and finite choice set is conditional upon the decision-makers’ tastes, attributes 
(features of the alternatives and/or the decision-maker) and the decision rule adopted.  

The dominant operational paradigm within DCT is that of Random Utility Maximization or 
RUM (McFadden 1973). In RUM, each choice alternative in the given and definitive choice 
set is assumed to be associated with a corresponding utility perceived by the decision-maker; 
he or she is further assumed to choose the alternative that yields his or her maximum utility. 
The utility consists of a systematic or observed portion, and a random or unobserved error 
component:  

i i iU V                                                                 (2.1) 

where 

iU , is the utility of alternative i; 

i , is the stochastic (random) component of the utility, reflecting the idiosyncrasies of the 

choice process and possibly unobserved attributes, and more generally the notion that the 
analyst cannot ‘look in the head of the decision-maker’.  

Louviere et al. (2002) investigated in detail the composition of the random component, which 
is defined as “unobservable (unexplainable) component of utility that represents researchers’ 
inability to ever fully observe or understand all facets of behaviour germane to particular 
behavioural outcomes of interest”. Note that this paper also argues that conditions, contexts, 
circumstances or situations that are relevant during the choice process may influence the 
variance of the random component.  

iV , is the systematic component of the utility, i.e. that part of the utility which can be linked to 

attributes and estimable tastes. Although there are various ways to specify this utility 
component, the dominant approach adopted by researchers and practitioners alike is the linear 
additive approach. Its popularity is primarily due to its intuitive and simplistic nature (e.g. 
Lancaster 1966). According to this approach, if there are K distinctive attributes, iV  has the 

following expression: 

1

K

i k ik
k

V x


                                                             (2.2) 

where 

k , is the taste regarding attribute k; 

ikx , is the value of attribute k of alternative i. 

Given a decision-maker has a feasible and finite choice setC , the probability of choosing 
alternative i has the following expression: 

( ) Pr( , , )i jP i U U j C j i                                                  (2.3) 

( ) Pr( max( ), , )i i j jP i V V j C j i                                         (2.4) 

where 
( )P i  is the probability of choosing alternative i; 

C  is the choice set in consideration. 
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Depending on the assumptions regarding the distribution of the random component of the 
utility, different choice probability formulations arise. If it is assumed that the random 
component i  is independently and identically distributed (IID) Extreme Value type I with a 

normalized variance 2  equal to 2

6
 (this normalization is needed for identification 

purposes) equation (2.4) translates into (McFadden, 1973): 

( )
i

j

V

V
j C

e
P i

e




                                                        (2.5) 

This yields the so-called Multi-Nomial Logit Model (MNL), which is arguably the simplest, 
most elegant and most popular RUM model. The IID assumption implies that the random 
error for alternative j is independent from that of alternative i, and that the errors of all 
alternatives have the same variance. This latter assumption is called homoscedasticity, and 
will be relaxed in the next subsection. 

Without the normalization of the variance of the error component (which is inversely related 

to the scale of the utility ( ) in the sense that
6







), a more general form of MNL model 

can be obtained: 

( )
i

j

V

V
j C

e
P i

e











                                                       (2.6) 

Note that this non-normalized model is not identifiable and hence cannot be estimated, due to 
the confounding of scale and error term variance. However, in the next section it shows how 
the scale can be parameterized as a function of time pressure and task complexity, leading to 
an identifiable and estimable model formulation. If equation (2.2) is substituted into equation 
(2.6), this becomes: 
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                                                 (2.7) 

For the sake of elegance, it is assumed that   is a transposed vector of K attribute tastes and 

ix is a vector of K attribute values of alternative i, then equation (7) can rewritten as: 

( )
i

j

x

x
j C

e
P i

e

 

 

 

 



                                                    (2.8) 

If it is assumed that tastes  are random across the sample population, then the Mixed 

Multi-Nomial Logit (ML) model (in its random parameter form) arises (e.g. McFadden and 
Train 2000; Train 2003).  
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( ) ( )
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e
P i f d

e



  





   
                                          (2.9) 

where ( )f   is the probability density function for . 

2.3 Modelling the impacts of task complexity and time pressure: the 
Heteroscedastic Logit model 

It has been acknowledged by many researchers that the assumed underlying decision-making 
process of multi-attribute Utility Maximization requires intensive efforts from a 
decision-maker. When a choice task assigned to the decision-maker is quite complex (e.g., it 
contains a large choice set with many attributes per alternative) and when such a task has to 
be finished under time pressure, it is less likely that the decision-maker is always able to 
select the alternative of the highest utility from the set. In other words, it is likely that the 
amount of noise or random error associated with the decision increases.  

One approach5 to handle the impacts of task complexity on choice behaviour is to allow for 
the variance of the random component in the utility function to be a function of task 
complexity. Since the variance of the random component is confounded with the scale of the 
utility, this is equivalent to the notion that the scale of the utility is a function of task 
complexity. As each choice task may be associated with a different level of task complexity, 
the scale is no longer identical for all the choice tasks. This gives rise to a more flexible 
RUM-based model, called Heteroscedastic Logit.  

The core feature of Heteroscedastic models is that the random component is no longer 
identically distributed across alternatives. Daganzo (1979) first developed a close-formed 
discrete choice model that has this feature, allowing for different variances for the random 
components with an independent negative exponential distribution. Bhat (1995) proposed a 
Heteroscedastic Logit (HL) model. Its successful construction and estimation has paved way 
for the further development of Heteroscedastic models. DeShazo and Fermo (2002) utilized a 
HL model to evaluate the impacts of the complexity of choice sets on choice consistency. 
Arentze et al. (2003) took a similar approach to demonstrate that the variance of the random 
component rises with the increase of task complexity. Caussade et al. (2005) further applied 
the HL model with the scale parameter specified as a function of task complexity. Finally, 
Scarpa et al. (2010) used the HL model to investigate variation in the scale parameter induced 
by both differences in types of decision-makers and in types of experimental design. Fiebig et 
al. (2010) developed a so-called generalized MNL model, not only accounting for (random) 
scale heterogeneity but (random) coefficient heterogeneity as well, i.e., a model that combines 
the Mixed Logit and HL models.  

To my knowledge, there are no DCT-based modelling attempts to embed the impacts of time 
pressure on choice making, which is in stark contrast to the amount of efforts devoted to 
modelling the impacts of task complexity on choices. The majority of the research that is 
concerned with time pressure impacts on choices focuses on the impacts on choice processes 

                                                        
5 Other approaches have also been adopted to tackle the impacts of task complexity in DCT. For example, one assumes that 
if choice task becomes more complex, decision-makers would ignore certain attributes (e.g., Swait and Adamowicz, 2001; 
Hensher et al., 2005). In essence, these approaches assume that if choice task becomes more complex, decision-makers would 
switch to decision rules other than Utility Maximization. 
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or/and judgments, and is qualitative in nature (e.g. Edland and Svenson 1993; Diederich 
1997). 

Time pressure can be properly considered as a constraint on the ‘supply side’ of cognitive 
computation capacity, and therefore the notion of time constraint is often used in this context 
as well (e.g. Suri and Monroe 2003). Nowlis (1995) postulated, drawing on empirical 
evidence, that consumers faced with time pressure may accelerate their choice process while 
still using the same decision rule. Intuitively speaking, given the same choice task and the 
same decision rule adopted, compared with a decision made under no time pressure, the 
decision-making process under time pressure would probably induce more 
mistakes/inconsistencies when evaluating choice alternatives and maximizing utility. The 
approach used in this thesis for modelling the impacts of time pressure on choices is based on 
this assumption. Similar to the approach of modelling the impacts of task complexity, the 
impacts of time pressure on a traveller’s choice is incorporated in Heteroscedastic models6 by 
assuming that the variance of the random component of the utility is a function of time 
pressure.   

In equation (2.6), the scale  is constant across choice sets (in other words, the model is 
homoscedastic, as contrary to heteroscedastic). However, in the HL model the scale is no 
longer constant but it is parameterized as a function of task complexity and time pressure. 
This function takes the following form to ensure non-negativity ( see (e.g. DeShazo and 
Fermo 2002) for an early application of the exponential function in this context): 

exp( ( , , ( , )))s s s s sa D T Int D T                                             (2.10) 

where 
( )a is a linear function of its arguments and associated parameters; 

s
D is the measurement of task complexity in choice situation s; 

s
T  is the measurement of time pressure in choice situation s;  

( , )
s s

Int D T is the measurement of the interactive effect of task complexity and time pressure. 

That is, apart from the separate impacts of task complexity and time pressure on choice, it is 
hypothesized that the impact of any of these two factors may be dependent on the level of the 
other factor.  

Incorporating the parameterization of the scale factor in equation (2.6) leads to the following 
HL expression for the choice probability: 

( )
s i

s j
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j C

e
P i

e













                                                  (2.11) 

                                                        
6 Similar to that of choice task complexity, some literature also implies other DCT-based modelling approaches. Dhar and 
Nowlis (1999) found that under time pressure, consumers are more likely to consider unique attributes among alternatives 
and less likely to consider common attributes. In addition, their experiment participants recalled more attributes (unique and 
common) with no time limit than under time pressure. Kaplan et al. (1993) suggested that under time pressure people may 
use alternative decision rules to simplify the cognitive task. 
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Although the general form of the HL model is constructed in equation (2.11), the concrete 
measurements of task complexity, time pressure and the interactive effect of the two have not 
been specified yet. To enable this, a review of the relevant literature is presented below. 

2.3.1 Measuring task complexity 

Intuitively, a definition of task complexity could be quite straightforward in terms of the 
difficulty to evaluate and choose one’s favourite alternative from a given choice set. However, 
to quantify this theoretical concept, a variety of approaches can be adopted. Of these 
approaches to measure task complexity in the literature, two have gained particularly high 
levels of popularity. The first one relies on ‘dissecting’ the components of a choice task, in the 
sense of counting the number of normatively required acts (e.g. evaluating the value of one 
attribute of one alternative means one act.) to finish the task (Wood 1986). The second 
approach is essentially to introduce a proxy indicator that reflects task complexity. For 
example, Diederich (2003) used decision time as a measure of conflict strength in 
decision-making. Conflict here relates to choice in that a conflict can be resolved by making a 
choice. Therefore, the stronger a conflict becomes, the more difficult to make a choice.  

The first approach: dissecting the choice task  

Within the fields of psychology, economics, consumer research and transportation, the 
overwhelming majority of the literature concerning task complexity has taken this approach. 

Payne (1976) and subsequent work (e.g., Lussier and Olshavsky 1979; Timmermans 1993; 
Arentze et al. 2003) identified and used two important dimensions to describe the complexity 
level of a choice task: the number of alternatives and the numbers of attributes per alternative. 
The task complexity is assumed to increase as the number of alternatives increases, and as 
well as the number of attributes per alternative increases. Therefore, if it is assumed that task 
complexity is the product of the number of alternatives and the number of attributes, the task 
complexity of Task One and that of Task Two in Table 2.1 are equal, while that of Task Four 
is the highest among the four tasks. The rank of the task complexity levels between the first 
two tasks and Task Three cannot be determined, as none is dominant in both of the two 
dimensions of the task complexity. However, in the context of this research, it is plausible to 
assume that the number of attributes is unlikely to vary. Thus, it is reasonable to assume that 
only the number of alternatives is relevant in this context.  

Payne (1982) later identified another important source of task complexity, i.e., similarities 
between alternatives. For example, a decision-maker is presented with the first two choice 
tasks in Table 2.1. In terms of the number of alternatives and the number of attributes, these 
two choice tasks are identical in task complexity. The only difference is that the alternatives 
in the second task are comparatively distinctive in terms of values of the attributes, while this 
is not the case in the first task. As such, the decision-maker would probably struggle to make 
a choice in the first task as it is more difficult to distinguish between the alternatives, 
compared with the second task.  

  



2. Modelling the impacts of task complexity and time pressure on travellers’ choices                      17 

Table 2.1: Four sample tasks 

Attribute Attr. A Attr. B Attr. C 

Taste  0.2 0.1 0.1 
Task One 
Alt. 1 5 10 15 
Alt. 2 6 11 14 
Task Two 
Alt. 1 5 10 15 
Alt. 2 6 11 10 
Task Three 
Alt. 1 5 20 n/a 
Alt. 2 6 18 n/a 
Alt. 3 4 22 n/a 
Task Four 
Alt. 1 5 16 4 
Alt. 2 6 12 6 
Alt. 3 4 17 5 

	

Swait and Adamowicz (2001) have innovatively translated the notion of entropy (Shannon 
2001) to describe overall complexity of choice task. Its advantages lie in the fact that only one 
single aggregate indicator (the entropy) is used to express task complexity, which makes it 
quite simple and elegant, and that attributes are coupled with a priori attribute taste, which 
addresses similarities between alternatives in a more meaningful manner. The indicator is 
specified as follows: 

1

( ) ( ) log ( ) 0
J

x j j
j

H x x  


  
 

where ( )jx  is an a priori probability of choosing alternative j from the given choice set. 

The more complex a choice task is, the higher this indicator value becomes. If there is a 
dominant alternative that has a choice probability of one while those of the remaining 
alternatives equal zero, then this indicator has a minimum value of zero. If all the alternatives 
have the same a priori probability, ceteris paribus, then the indicator has a maximum value. 
However, this measure is quite different from the others. Firstly, the formulation of the 
entropy requires knowledge about the a priori probabilities of the alternatives, which is 
usually unknown and often one of the desired outcome of choice models. Therefore, the usual 
practice is to calculate it with a priori attribute taste by the means of estimating MNL models. 
Secondly, the role of the number of attributes as part of choice task complexity is diminished 
entirely in the formulation. Instead, the focus of entropy is primarily on behavioural 
complexity, based on preference similarity. For example Table 2.1, both the entropy 
indicators of Task Three and Task Four are equal to 1.098, assuming the tastes equal to 0.2, 
0.1, and 0.1 respectively for the three attributes, thus accordingly suggesting equal choice task 
complexity for the two tasks. However, Task Four appears to be more complex than Task 
Three, since an additional attribute needs to be considered in Task Four.  

The second approach: search for direct indicator 

This approach essentially means searching an indicator that directly measures (perceived) task 
complexity. By searching the relevant literature only one such indicator can be found: the 
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decision time a person has spent on a choice task when there is no time pressure. This is a 
quite intuitive operationalization of task complexity.  

Its validity originates from the assumption that decision time highly correlates with the 
amount of cognitive efforts devoted to choice making, which as such reflects task complexity: 
i.e., the more decision time is consumed, the more cognitive efforts are made, and the more 
complex a given choice task is, given that the same decision rule is used (as is assumed in this 
thesis). Later work appears to suggest that decision time (under no time pressure) may indeed 
be considered as a useful indicator for task complexity (Diederich 2003).  

Compared with the indirect measures as explained beforehand, this direct measure of task 
complexity is highly personalized. This is because even for a same choice task two distinctive 
decision-makers may assess its complexity differently, probably resulting in a difference in 
decision time. It may imply that this direct measure is more personal and hence induces more 
variation in the sample – so it is easier to do statistical analysis. Given this advantage of 
personalization, when possible, this direct measure of task complexity by using decision time 
should be preferred.  

The relationship between s  and the task complexity measures 

There are two hypotheses concerning the relationship between s  and the task complexity 

measures: 1) with the increase of task complexity measure, s  is expected to become 

smaller, suggesting a diminishing ability of the decision-maker to correctly compute the 
observed utilities of all the alternatives in the choice set, inducing more “randomness” in 
choice outcome; 2) rather than a monotonic relationship, with the increase of task complexity 
measure, s  may first become larger and then smaller, resulting in an inverted-U shape 

relationship between s  and the task complexity measures. Figure 2.1 graphically shows 

these two hypotheses, with the dotted line for the first and the solid line for the second 
hypothesis. Which hypothesis is the more reasonable one will be empirically answered in 
Chapter 4. 

 

Figure 2.1: Visualization of the proposed relationship between the scale of the systematic 
part of the utility function s  and the value of the task complexity measure 

Note: This figure is only for the purpose of demonstrating the shape of the qualitative relationship between the two variables.  
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2.3.2 Measuring time pressure 

The approach that most of the relevant research has adopted to measure the time pressure 
level is based on how much time a decision-maker is allowed to make his decision (i.e., 
decision time budget).  This time budget is a priori constrained and usually set-up by 
researchers (e.g. Nowlis 1995; Ordóñez and Benson Iii 1997; Dhar and Nowlis 1999). For a 
simple example, given a same task, many decision-makers are asked to make their choices 
within 10 seconds, 30 seconds, and 60 seconds respectively. By this approach, the time 
pressure induced by 10 seconds of decision time limit is assumed to be higher than that 
induced by 30 seconds, while 30 seconds is assumed to induce a higher level of time pressure 
than 60 seconds. That is: it is assumed that the less decision time budget a decision-maker 
has, the more time pressure he experiences, ceteris paribus. However, based on this method 
one of course cannot know with certainty to what extent a given budget would actually 
translate into time pressure, nor can it be inferred whether a decision time budget that 
“pressures” one decision-maker has a similar effect on another decision-maker. For the same 
example above, one decision-maker may use 30 seconds to make his or her decision given a 
budget of 60 seconds, while another decision-maker may use 59 seconds out of 60 seconds to 
complete the same task. Using the time-budget measure, the time pressure levels that both 
decision-makers have experienced would be measured as being the same. However, it is much 
more reasonable to postulate that the latter decision-maker has experienced a higher time 
pressure level than the first decision-maker, as the latter has almost used up all his or her 
decision time budget.  

In light of these disadvantages, this research intends to construct another measure of time 
pressure, which combines the decision time budget and the actual decision time under 
pressure. It is formulated as follows: 

/s s sDS DT DTB  

, where 

sDS  is the time pressure measure for choice situation s; 

s
DT  is the actual decision time for choice situation s; 

s
DTB is the decision time budget for choice situation s. 

For the same example above, the value of this new measure sDS  equals to 0.50 for the first 

decision-maker and 0.98 for the second decision-maker. Intuitively speaking, this difference 
of the sDS  values reflects the notion that the second decision-maker has experienced a 

higher time pressure level than the first decision-maker. Should sDS  approach 0, this 

implies the presence of an extremely large decision time budget or equivalently the absence of 
time pressure. Should sDS  approximate 1, it suggests a choice is made at a moment when 

almost no time is left for additional thinking, implying a high time pressure level.  

Since an increase of time pressure is assumed to be associated with an increase in the 
randomness of choice, one may at first sight be compelled to expect that the scale of the 
systematic part of the utility function of choice alternatives would become smaller as sDS  

increases. Therefore, it may be hypothesized that the scale of the systematic part of the utility 
function monotonically decreases as a function of sDS . This hypothesis is roughly depicted as 

the dotted linear line in Figure 2.2.  
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However, this hypothesis may not necessarily reflect the true nature of this measure. If the 
value of sDS  is close to 1 (e.g. 0.98 in the example above), it is reasonable to think that it 

reflects a high time pressure level, leading to a smaller scale of the utility. If the value of 

sDS  is more remote from 1 but still not close to 0 (e.g. 0.50 in the example above), this can 

safely be interpreted as implying less time-pressure, causing an expected increase in the scale 
of the utility. However, when the value of sDS  is close to 0, a more subtle picture appears: 

obviously, the time pressure in this situation is less than it was when sDS  was either 0.5 or 

close to 1, but the relation with the scale of the utility is not straightforward: the fact that the 
individual only used a very small fraction of the available time budget may well signal 
absence of engagement with the choice task. In other words, the low value of sDS  may well 

be interpreted as a signal that the decision-maker spent only a very limited amount of time 
because he or she did not care about choosing the best alternative. This, of course, would 
suggest that values of sDS  close to 0 are expected to lead to relatively small scales of the 

utilities of alternatives. In combination, one may expect an inverted U-shape, rather than a 
monotonic relation, between sDS  and the scale of the utility. This hypothesis is roughly 

depicted as the solid curving line in Figure 2.2. Moreover, given the reasoning underlying the 
second hypothesis, it may be considered more suitable to term this sDS  as engagement/time 

pressure index rather than time pressure index alone.  

Whether or not the scale for sDS  = 0, or for sDS = 1, is higher, and where exactly is the 

location of the maximum scale, is of course an empirical question. More generally, it is 
unclear at the moment which of the two hypotheses can be supported empirically. Given the 
data collected in Chapter 3, Chapter 4 will give an empirical answer to this.  

 

Figure 2.2: Visualization of the proposed relationship between the scale of the systematic 
part of the utility function and the value of engagement/ time pressure index 

Note: This figure is only for the purpose of demonstrating the shape of the qualitative relationship between the two variables.  
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2.4 Conclusions 

In RUM (Random Utility Maximisation), each choice alternative in the given and definitive 
choice set is assumed to be associated with a corresponding utility perceived by the 
decision-maker, and he or she would choose the alternative that yields the maximum utility. 
The utility consists of a systematic or observed portion, and a random or unobserved error 
component. The latter component reflects the idiosyncrasies of the choice process and 
possibly unobserved attributes, and more generally the notion that the analyst cannot ‘look 
into the head of the decision-maker’. Conditions, contexts, circumstances or situations (e.g., 
task complexity and time pressure in this research) that are relevant during the choice process 
may influence the variance of the random component.  

The approach taken in this research to model the impacts of task complexity and time 
pressure on choice is to allow for the variance of the random component in the utility function 
to be a function of task complexity and time pressure. Since the variance of the random 
component is confounded with the scale of the utility, this is equivalent to the notion that the 
scale of the utility is a function of task complexity and time pressure. As each choice task may 
be associated with a different level of task complexity and time pressure, the scale is no 
longer identical for all the choice tasks, which gives rise to a more flexible RUM-based 
model, called Heteroscedastic Logit Model.  

Though various indirect measures of task complexity were introduced in literature (e.g. 
number of alternatives, entropy, etc.), decision time, which a person has spent on a choice 
task when there is no time pressure, is preferred as a suitable indicator that directly measures 
(perceived) task complexity. This is a quite intuitive operationalization of task complexity. Its 
validity originates from the assumption that decision time highly correlates with the amount 
of cognitive efforts devoted to choice making, which as such reflects task complexity. Two 
competing hypotheses on the relationship between the scale and the task complexity measure 
(i.e., decision time) are formulated. Given the data collected in Chapter 2, Chapter 4 will give 
an empirical answer to which of two hypotheses can be supported.  

In light of the disadvantages of using the conventional fixed-time-budget as time pressure 
index, this research constructs another measure of time pressure, which combines the decision 
time budget and the actual decision time. It is formulated as the product of the actual decision 
time divided by the decision time budget received. Similarly, two competing hypotheses are 
formulated on the relationship between the scale and the time pressure index. Given the data 
collected in Chapter 2, Chapter 4 will give an empirical answer to the question which of two 
hypotheses can be supported.  

However, it is worth mentioning that decision time as a direct measure of task complexity 
should be not confused with the engagement/time pressure index where decision time is also 
used. The former decision time can serve as a measure of task complexity only when it is 
recorded under the condition of no time constraint. The latter decision time is one of the 
components that together form the engagement/time pressure index and it is recorded only 
when there is time constraint on decision-making.  
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3. A computer-based activity-travel simulator 

3.1 Introduction 

Chapter 2 has presented the discrete choice-based Heteroscedastic models that embed the 
impacts of choice task complexity and time pressure on choice making in mobility networks. 
In order to estimate those models, data on travellers’ choices need to be collected. Given the 
targeted context of daily activity travel, the data requirement of the models formulated in 
Chapter 2 has clearly indicated that besides the two conventional attributes of travel time and 
travel cost, three additional attributes, namely the amount of travel alternatives in a given 
choice set, the number of daily activities in an assigned activity program, and the 
engagement/time pressure level in a choice task, need to be properly varied in the data for 
model estimation. As argued in the Introduction chapter, a travel-simulator approach is the 
most suitable method for observing those choices. 

Travel simulators have been gaining popularity with the aim of addressing the issue of 
validity in collecting SP data. Compared with the conventional SP methods (e.g., paper-pencil 
survey, web-based survey, etc.), travel simulators usually provide illustrative and interactive 
user interfaces, stimulating respondents to more actively involve themselves in the experiment 
and allowing for easy interactions between respondents and experimental conditions. Bonsall 
and Palmer (2004) developed a two-dimensional (2D) travel simulator to collect data on 
driver’s car parking behaviour, in which an experiment participant takes a first-person view 
(the images shown on the screen simulate the eye-sight of a person) of driving a car when 
approaching parking lots. In order to collect data concerning the effects of travel information, 
Chorus et al. (2007) presented a more abstract 2D interface of a travel simulator to an 
experiment participant, the travel context of which is based on one single trip. Prendinger et 
al. (2011) created a 3D travel simulator to attain the data of drivers’ acceptance of intelligent 
transport system. Sun et al. (2012) utilised a travel simulator equipped with a concise 2D map 
to collect data concerning traveller’s activity rescheduling, route choice and information 
acquisition decisions under multiple uncertain events. Inspired by these efforts, a 
computer-based activity travel simulator (ATS) is developed and presented in this chapter. 
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While most of the previous mentioned travel simulators typically consider only single trips, 
ATS deals with complete daily activity programs, hence with all trips made for a whole day. 
Given this context, a 2D interface looks appropriate enough to illustrate the information of 
implementing a daily activity program, while 3D ones may appear excessive. 

This chapter is organized as follows. Section 3.2 starts with describing the activities that will 
included in the simulator. Section 3.3 describes on the basic design of ATS with respect to the 
experiment. Section 3.4 focusses on the elaborate variations in task complexity and time 
pressure.  Section 3.5 describes the execution of the experiment. Section 3.6 focuses on the 
validation of the simulator. Finally, Section 3.7 concludes the chapter with discussions. 

3.2 A focus on activity-travel  

The starting point for the development of ATS is the notion that a traveller needs to conduct 
some activities in a weekday. In order to carry out these activities that can be situated in 
different geographically dispersed locations away from his or her home, the traveller must 
make a choice for his or her travel to reach all these locations from home and then get back to 
home to finish the day. ATS assumes for the traveller which activities s/he is supposed to do 
for the day and which travel alternatives (i.e. the choice set) the traveller can take into 
consideration. That is to say, given the activities assigned by ATS, the traveller needs to 
choose his or her favourable travel alternatives from the choice set provided by ATS.  

For a normal workday, a traveller would usually execute several activities, e.g., working, 
grocery shopping, escorting children to or from school, etc. These activities in a day together 
form a so-called activity program. While each activity in the simulator has at least one 
distinctive geographic location, some activities (e.g. grocery shopping) may have multiple 
locations of its own (alternative destinations). In order to execute them all in a day, people 
may have to travel between the respective locations. If traveling between two activity 
locations is defined as one trip, conducting an activity program usually consists of several 
trips. In addition, it is assumed that a traveller can choose between different main travel 
modes, i.e., bicycle, private car, public transport, and a combination of the previous three 
(walking is explicitly considered as a transferring mode either between two main travel modes 
for multi-modal travel or between adjacent activity locations and main travel models. 
Moreover, the timely order to execute activities (defined as activity sequence) may differ. For 
example, people can choose first to go to fitness training and then visit a supermarket, while 
the reverse order is also viable. In short, it appears that for a given activity program (even for 
one that consists of only one activity), there can be many travel possibilities to execute it. Any 
one of these possibilities for a given activity program is defined here as a choice alternative. 
To be more specific, an alternative in a choice set is considered the execution of a complete 
activity program, which contains the following basic elements: 

 timely ordered sequence of the activities; 
 geographic locations of the activities; and 
 trip between the activity locations (including trip modes, their respective travel time 

and travel cost). 

In order to provide a more realistic travel context, ATS additionally manifests the 
activity-associated travel burdens. For example, a choice for a trip by bicycle from a 
supermarket to home after grocery shopping, is not only affected by travel time and travel 
cost, but also by a grocery-associated travel burden like transporting the purchased groceries 
on the bicycle. Therefore, this kind of travel burdens needs to be shown in ATS.  
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Although the purpose of including activities in ATS is to help create a more realistic travel 
context, it is important to note here that this research does not extend its interest further on 
traveller’s perception of intrinsic attractiveness of activity locations. For example, how much 
variety of goods one supermarket offers for grocery shopping is not concerned in this search 
as a criterion for choosing between two supermarkets. The determining factor is only their 
geographic locational attractiveness.  

Since in real life there are so many daily activities that an individual person can possibly 
have, it is not only difficult but unnecessary as well to include all these activities in ATS, as 
only the ones commonly shared by most of the travellers may warrant attention from this 
research. Thus, a set of typical activities may suffice to serve the purpose7. As a result, ATS 
has selected a few typical activities from different activity categories. Though there are 
several ways to classify daily activities, the most popular one is to divide them into three 
categories, namely primary, maintenance and leisure activities (e.g., Dijst 1999; Wen and 
Koppelman 2000; Axhausen et al. 2002; Bhat and Koppelman 2003). Primary activities are 
those daily activities that are most important to travellers, e.g. work. Maintenance activities 
are those ones required to maintain one’s living and normally sustained with a daily or weekly 
regular frequency, e.g. grocery shopping. Leisure activities are those recreational ones that are 
not necessary but with which people occasionally are entertained with. Excluding 
business-related activity and education-related activity, the following list contains the 
activities that have been included in ATS according to the three categories: 

 Primary: work; 
 Maintenance: grocery shopping, fitness and escorting children to school8; 
 Leisure: leisure shopping and meeting friends. 

3.3 The design of ATS 

ATS has created a hypothetical travel environment. Participants have to assume that they 
recently moved to this environment. Figure 3.1 shows an example of the interface of ATS. As 
illustrated in this figure, there are two cities (“Stad A” and “Stad B” in Dutch language). The 
supposed home is located in Stad A, while the work location in Stad B. City A and B are 
located farther from each other as can be seen in the figures. This geographical separation is 
symbolised with the black space between the two cities. The school is located near home. 
Work place, home and the school, have only one single location, while all other activities can 
be conducted at two alternative locations. One of those locations is in the neighbourhood of 
home, and another is clustered with others near the train station in Stad A, the aggregate of 
which is called integrated facility.  

Although the activity of meeting friends can occur in multiple locations in real life, ATS 
assumes that a cafeteria would be the only place for it. This is due to the consideration of 
simplifying the setting of ATS without hampering the reach of its overall goal, as it is 
reasonable to think that other friend-meeting places (except at home) may not make a huge 
difference from a cafeteria as long as the theme of the activity is mainly about meeting friend 
(e.g., getting together and casual chats). 

                                                        
7 A later feedback from the ATS participants may confirm this notion. 
8 In the category of maintenance activities, “escorting children to school” is only available to respondents who have this 
routine in their real life. 
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Table 3.1: Icons of the activity locations in the interface and their functionalities 

In Stad A, close to home 

Icon Location Activity 

 

home  

 

supermarket Grocery shopping 

 

fitness/sport centre Fitness/sport 

 

shopping centre Leisure shopping 

 

cafeteria  Meeting friends 

 

school Escorting children to school 

 

In Stad A, further away from the activity locations above 

Icon Location Activity 

 

integrated facility  
(containing  
supermarket,  
fitness/sport center, 
shopping center, 
and cafeteria) 

Grocery 
shopping, 
 
Fitness/sport, 
 
Leisure shopping, 
 
Meeting friends 

 

 

Train station City 
A  

 
Where a train to 
City B can be 
taken 

 

In Stad B 

Icon Location Activity 

 

Office 
 

Work 

 

Train station city B  
 

Where a train to 
City A can be 
taken 
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Table 3.1 shows the icons of the activity locations in the interface, and their respective 
activity functionalities. Table 3.2 shows the icons of the travel modes in the interface. It is 
worth noticing that some icons shown in Table 3.2 not only indicate their travel modes but the 
additional travel burdens associated with their respective travel modes in particular trips. If 
the content of a trip is to take a child from school to home and the mode is riding a bicycle, 
the fifth icon in the table (with a child in the rear of the bicycle) would be shown rather than 
the third icon. If a trip is to travel from a supermarket to home after a grocery shopping by 
riding a bicycle, the fourth icon in the table (with a shopping bag in front of the bicycle) 
would be shown rather than the third icon. If a trip is to travel from a supermarket to home 
after a grocery shopping with a child by riding a bicycle, then the sixth icon would be shown 
rather than the third icon. 

Table 3.2: Icons of the travel modes in the interface and their functionalities 

 

Icon 
      

 

Mode Private 
Car 

Train Bicycle Bicycle 
carrying 
bags 

Bicycle 
with 
child 

Bicycle 
with 
child, 
carrying 
bags 

Walk On foot 
carrying 
bags 

 

 

 

Figure 3.1: An example opening interface of ATS 

As previously introduced, there is one activity, “escorting children to school”, which may 
only apply to those participants who escort children to school on a daily basis. Moreover, 
participants that are private car-users may have more car-oriented travel alternatives in their 
real life than public transport-users. Therefore, in order to induce more realistic behaviours 
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from the experiment participants, the experiment is tailor-made for each of the four groups 
that can be formed along the dimensions of escorting or not escorting children to school and 
car or public transport user. The differences of the settings between these four groups exist in 
activity program (where there is the activity of “escorting children to school” or not) and in 
travel alternatives (more car-oriented or more public transport-oriented). However, ATS does 
not further distinguish between people who practise sports and those who don’t, and between 
people who do grocery-shopping and those who don’t, etc. It is reasonable in the sense that 
unlike “escorting children to school” the participants usually have the similar experiences of 
carrying out those activities. Therefore, even if the participants may no longer practise sports 
or do grocery shopping, they would not find these activities as completely unfamiliar.  

The design of ATS was finished in the first half of Year 2011. From the second half of that 
year till early Year 2012, with the help of Hydom Co. Ltd., a software company, the 
Java-based ATS was fully programmed, deployed to the server of Delft University of 
Technology, and ready for use.  

3.4 Task complexity and time pressure 

This section describes how task complexity and time pressure is varied in the simulator. To 
reduce redundancy, the set-up of the experiment is illustrated for only one of the four 
distinguished groups, i.e. the group of “not escorting children to school” and “private 
car-user”. The settings of the other three groups can be found in Appendix I.  

3.4.1 Varying choice task complexity levels 

As suggested in Chapter 2, two critical explanatory variables may control choice task 
complexity level in an activity travel context. The first is the number of activities in an 
activity program. The second is the number of travel alternatives in a choice set given the 
activity program, i.e. the number of ways in which an activity program can be executed. The 
approach taken in this research to vary choice task complexity levels is to ask each participant 
to make choices from several similar travel choice sets. Each set is varied with a unique 
combination of these two variables denoting complexity, since this approach can help 
generate a large amount of data for the model estimation. Table 3.3 shows the six travel 
choice sets assigned to the participants under the condition of no time pressure. Another series 
of six choice sets is presented to each participant under the condition of time pressure, though 
in terms of the number of travel alternatives and the number of activities in an activity 
program, they are identical to the previous choice sets. Therefore, in total a participant would 
have to make choices in twelve choice sets. Table 3.4 shows the contents of the activity 
programs of the respective choice sets listed in Table 3.3. It is probable that choice tasks that 
include more activities and more alternatives than the ones shown in Table 3.3 may become 
too complex for participants to handle, thus running the risk that the participants would detach 
themselves from the experiment. Task 6 in this example therefore may presumably be the 
most complex choice task assigned to a participant, as it consists of four travel alternatives in 
the choice set, and four activities included in the activity program. On the contrary, Task 1 in 
this example is assumed to be the least complex one assigned, since it only consists of two 
travel alternatives with only one activity in the program.  
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Table 3.3: An example of the travel choice sets assigned 

  Nr. of activity-travel alternatives in choice set 

  2 3 4 
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1 Set 1 
 

  

2 Set 2 
 

Set 3 
 

 

3  Set 4 Set 5 
 

4   Set 6 
  

 

Table 3.4: The activity programs assigned to their respective choice sets 

Set  Activity Program 

Set 1 Work 

Set 2 Work, Grocery shopping 

Set 3 Work, Fitness 

Set 4 Work, Fitness, Grocery shopping 

Set 5 Work, Meeting friends, Fitness 

Set 6 Work, Leisure shopping, Fitness, 
Meeting friends 

3.4.2 Varying travel alternatives 

According to Table 3.3, in Set 2 (i.e. work and grocery shopping), there should be two travel 
alternatives to choose from. As explained earlier, even this comparatively simple activity 
program can be executed in several possible ways, depending on the activity sequence, the 
activity locations, and the respective travel modes. Therefore, it is important to select the most 
appropriate ones as the alternatives of the choice sets. Three principles, which are listed 
below, have been developed to help achieve this selection, the motivations of which are based 
upon reflecting some of the usual scheduling practices in people’s daily life, as well as 
realizing some of the ideas of synchronizing activity locations with travel: 

 For participants who are car-users, at least one full-car travel9 alternative should be 
provided, while for those who are public transport-users (PT users), at least one full-PT 
travel10 alternatives should be provided; For activities that have multiple optional 

                                                        
9 A full-car travel alternative is defined in ATS as one in which all the travels between activity locations are carried out by in 
the mode of car.  
10 A full-PT travel alternative is defined in ATS as one in which the travels between activity locations are carried out in train 
and bicycle, while no car is involved. 
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locations, one travel alternative should be characterized as clustering the locations of these 
activities in an integrated facility. 

 Except the activity of “escorting children to school”, in terms of time order, all the other 
activities should come after the activity of “work”;  

Given these principles, the travel alternatives corresponding to Table 3.3 and 3.4 for the 
participants who do not escort children to school and who are car-users are shown in Table 
3.5.  

3.4.3 Specifying mode availability and varying travel time and travel cost 

As shown in Table 3.5, there is at least one travel leg between each pair of two physical 
locations. A travel leg is any direct travel link between two locations, which differs from a 
travel trip that may include several travel legs (e.g. a multi-leg trip as opposed to a single-leg 
trip). However, for some travel legs, only a single travel mode is available: between Train 
Station A and Train Station B only the train is available; the direct travel link between Office 
and Home is only available for car; and the travel link between Office and Train Station B is 
only available for walk.  

Table 3.5: Activity-travel alternatives for participants who do not escort children to 
school and who are car-users 

Set Nr. Activity-travel alternatives 

1 Home (car)*  Office (car) Home 

Home (PT)** Office (PT) Office 

2 Home (car) Office (car) Supermarket (car) Home 

Home (PT) Office (PT) Integrated facility*** (PT) Home 

3 Home (car) Office (car) Fitness centre (car) Home 

Home (car, PT)**** Office (PT) Integrated facility (car) Home 

Home (PT) Office (PT) Integrated facility (PT) Home 

4 Home (car) Office (car) Fitness centre (car) Supermarket (car) Home 

Home (car, PT) Office (PT) Integrated facility (car) Home 

Home (PT) Office (PT) Integrated facility (PT) Home 

5 Home (car) Office (car) Fitness centre (car) Cafeteria (car) Home 

Home (PT) Office (PT) Integrated facility (PT) Home 

Home (car, PT) Office (PT, car) Fitness centre (car) Cafeteria (car) Home 

Home (car, PT) Office (PT) Integrated facility (car) Home 

6 Home (PT) Office (PT) Integrated facility (PT) Home 

Home (car, PT) Office (PT, car) Fitness centre (car) Shopping centre (car) Cafeteria (car) Home 

Home (car, PT) Office (PT) Integrated facility (car) Home 

Home (car) Office (car) Fitness centre (car) Shopping centre (car) Cafeteria (car) Home 
Note:  
* Items within the brackets indicate travel mode between two activity locations; 
** PT can be a multi-modal travel (e.g. a combination of train and cycling); 
*** Integrated facility is near train station where fitness centre, supermarket, shopping centre and meeting place are clustered 
together; 
**** (car, PT) suggests the involvement of mode transfer.  

In order to estimate the coefficients of the tastes for travel time and travel cost, as formulated 
in all the models shown in Chapter 2, travel time and travel cost need to be varied properly in 
the experiment. For any travel leg, the travel time and the travel cost corresponding to its 
travel mode are randomly drawn from a certain range of values for each choice task and for 
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each participant. Table 3.6 demonstrates the ranges of the values for these travel legs. Before 
the experiment execution, 10 sets of simulated data that were randomly generated from these 
ranges of the values by using a simple MNL model (that only considers travel time and travel 
cost, and its tastes of the two attributes are assumed) were re-estimated with the same MNL 
model. The results suggested that all the 10 sets of data had such sufficient variations in travel 
time and travel cost that the MNL model was estimable. With this test, it is reasonable to 
suggest that the design of the attribute values is sufficient.  

Table 3.6: the ranges of values for the travel legs 

 Travel time(min) Travel cost(€) 

Within Neighbourhood*   
Cycling 6 – 10  0 

Car 3 – 5   1 – 2  

Between Neighbourhood and Train Station A   
Cycling 12 – 16  0 

Car 6 – 10  2 – 3  

Between Train Station A and Integrated facility   
Walking 1 – 3  0 

Cycling 1 – 3  0 

Between Train Station A and Train Station B   
Train 35 – 45  4 – 6  

Between Train Station B and Office   
Walking 3 – 5  0 

Between Neighbourhood and Office    
Car 46 – 56  7 – 10  
Note: Neighbourhood represents all the activity locations within the home neighbourhood. The travel between any pair of 
activity locations within the neighbourhood is assigned with the same ranges of values, while the travel between any activity 
location within the neighbourhood and one activity location outside the neighbourhood also has the same ranges of values.  

3.4.4 Varying decision time budget  

As mentioned earlier, ATS would also assign choice tasks to a participant when there is a 
time limit for making a decision. Shown in Chapter 2, the specification of measuring time 
pressure as well as engagement (as termed engagement/time pressure index in Chapter 2) 
takes the following form: 

/s s sDS DT DTB                                                         (3.1) 

where 

sDS  is the calculated time pressure measure in choice situation s; 

s
DT  is the observed individual specific decision time in choice situation s; 

s
DTB is the individual specific decision time budget in choice situation s. 

With this specification, the value of the decision time budget, which indicates how much time 
a participant has to make his decision, is the only variable that can be controlled for by the 
researcher, while the decision time is observed from each individual decision-maker. It is 
arguably better not to fully randomize the decision time budget so that a participant would not 
be either fully stressed out in extreme cases when assigned with a very small decision time 
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budget or fully relaxed when assigned with a very large decision time budget. In this 
experiment, the decision time budget is therefore derived with the following formula: 

s
DTB  = time factor * decision time under no time pressure                        (3.2) 

The decision time with no time limit is the observed decision time of the same task taken by 
the same participant under the condition of no time pressure. In that case, the time factor 
would be 1. The time factor is set up based on each task assigned to the experiment 
participants, with the goal of neither stressing out nor relaxing them fully. To obtain its values 
for each choice set, a small-scale pilot experiment was carried out. 20 people were recruited 
for this pilot run, who were randomly divided into three groups. For the first group of 7 
people, the time factors all take the value of one. A brief interview was conducted afterwards, 
asking their opinions about the extent they felt pressured to make their decisions for each of 
the tasks. Then based on the results from the first group, with the aim that a participant should 
be neither over-stressed nor over-relaxed during the choice tasks with time limit, the time 
factor values were adjusted. The second group of 6 people took on the adjusted values. With 
the same routine, the time factor values were marginally re-adjusted. The final group of 7 
people tested the experiment with the latest adjusted coefficients, the results of which helped 
determine the final values of the time factor respective to each choice task as shown in Table 
3.7. Although the values of the time factor were adjusted with the three rounds of pilot 
experiment, the result still looked arbitrary, which from hindsight can be further improved.  

Table 3.7: Coefficients of decision time budget as to actual decision time with no time 
limits 

Choice Task Nr.  1 2 3 4 5 6 

Value of time factor 0.7 0.7 0.7 1.1 0.9 1.1 
 

3.5 Execution of the SP experiment 

3.5.1 A typical process of the experiment 

In order to ensure satisfactory data to be collected during the experiment, each participant 
underwent the experiment in a controlled environment. First of all, a participant listened to a 
live presentation of around 10 minutes about the goal in Dutch language, the content, and the 
procedure of the experiment, and could ask any questions s/he has concerning the experiment. 
During the presentation, some important points were stressed. For example, the participant 
was explicitly informed that whichever activity location s/he prefers, as long as the activity is 
the same, the duration of the activity and the inherent attractiveness of the activity locations 
are the same across all the travel alternatives. A user manual11 in Dutch language is placed on 
his or her computer table, which can be read before and consulted with during the experiment. 
S/he could also ask an experiment supervisor any relevant questions during the process.  

Prior to entering ATS, the participant answers eleven basic questions concerning his or her 
socio-demographic characteristics. Depending on whether s/he has a private car at his or her 
disposal or not and whether s/he has to escort children to school on a daily basis or not (the 

                                                        
11 A copy of the manual in English can be found in Appendix II.  



3. A computer-based activity-travel simulator                                                    33 

two questions that are among the eleven), s/he would be put into one of the four designated 
groups introduced in Section 3.4.  

When entering ATS, the participants one by one finish the choice tasks one to six under no 
time constraint, i.e., s/he could take as much time as s/he feels like when making a choice. 
More specifically, the moment the participant logs into ATS, an interface like the one shown 
in Figure 3.1 would be shown. On the right side of the top, under the label “Taak” the content 
of the assigned activity program is shown. In this case, only one activity “werken” (work in 
Dutch) is in the program. To the right of the middle, two travel alternatives are listed in the 
panel. By clicking the yellow button tagged “Toon op kaart” (show on map) by the right side 
of each alternative, its respective mobility information can be both animatedly visualized on 
the abstract map in the middle of the interface and concisely narrated in the bottom panel of 
the interface, as exampled in Figure 3.2.  

It is important to note that at any moment in time, the specific information of only a single 
alternative can be shown on the interface, so that it is impossible to see all the alternatives 
listed in full detail in a single screen. As such, to see and compare the different alternatives, 
the participant has to look at the alternatives one by one. After evaluating each of the travel 
alternatives, the participant can choose his or her favourable alternative, by checking the 
respective circle right under the panel listing all the travel alternatives. The instant it is done, 
the button “Invoeren” to confirm his or her choice would be transformed from grey colour 
into bright colour. Once the participant clicks the highlighted button “Invoeren”, ATS then 
automatically moves on to the next task. The same process reiterates until all the six tasks are 
finished.  

 

 

Figure 3.2: An example of showing the specific information of one alternative in ATS 
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Figure 3.3: An example interface of ATS when there is a decision time budget 

Then the participant takes a break of any duration s/he feels like to prevent possible 
experiment fatigue. The participant subsequently finishes the other six choice tasks with the 
same choice task complexity levels as to those of the previous six tasks (though as explained 
earlier, the travel time and travel cost of each travel leg are randomised), however the 
participant is now given a restrictive decision time budget for each choice. Figure 3.3 shows 
an example of the interface of ATS when a participant would have to finish the choice task 
under time pressure, where in the upper-right corner a countdown clock showed how many 
seconds were left for choice making (i.e., decision time budget). If the participant fails to 
reach a decision within the given time budget, ATS would inform him or her that because of 
this, a choice is randomly and automatically made by ATS instead12. With these six tasks 
finished, the participant has completed all the tasks assigned to by ATS. Before stepping out, 
the participant would also complete a questionnaire survey about how s/he experienced the 
experiment, which finalizes the whole experiment.   

3.5.2 Participant recruitment 

Two criteria have been used to recruit the experiment participants. People, who work at least 
two days a week and who commute to towns or cities other than their own place of residence, 
form the population targeted for this experiment, as this group of people may easily identify 
themselves with the travel settings provided by ATS. With this requirement of sampling, 
Intomart was hired for the participant recruitment service, which is one of the biggest market 
research companies in the Netherlands. In May and June 2012, 200 participants were 
recruited by Intomart from its existing panel to join this experiment. € 20 of incentive and €10 
of travel cost has been paid to each person who joined the experiment. The experiment was 
executed in a controlled computer room in Delft University of Technology. 200 participants 
joined the experiment in a sequence of eight sessions, in each of which no more than 40 
                                                        
12 The results suggest that out of the total number of 194*6=1164, 15 records from by 13 people are registered as random 
choice made ATS, which only takes up 1.29 % of the whole data.  
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persons were allowed inside a computer room that had the capacity of 80 persons, to ensure 
that every participant could be closely monitored by an experiment supervisor and that the 
chances of the participants’ interactions with each other could be kept at a minimum level.  

Table 3.8: Characteristics of the experiment participants (n=194) 

Characteristics Value Frequency (%)
Job Paid Job 96.3

Volunteer 2.6
Others 1.1

Commuting to work  
(per week) 

>=4 days 85
4> and >=2 days 11
<2 days 4

Age 20-30 12.3
30-40 15.4
40-50 31.4
50-60 31.4
60-70 9.3

Gender Male 69
Female 31

Education Lower Education 10.3
MAVO/VMBO 23.7
HAVO 11.8
VWO 5.2
WO/HBO 49.5

Marriage Single 36.1
Married 44.8
Partner/Living together 19.1

Group Car and no escort* 58.3
Car and escort 6.7
No car and no escort 28.8
No car and escort 6.2

Note: “Escort” here means dropping or picking-up children at school 

Table 3.8 shows the main characteristics of the participants. In total, 194 valid entries of data 
from 194 participants were recorded in the database. Almost all participants have a paid job 
and a few were volunteers or had another job position. 85 % of those with paid jobs commute 
to work at least four days a week. For the rest of the background characteristics, except that 
nearly half of the participants belong to the category of WO/HBO13 in education, the sample 
is fairly heterogeneous. Moreover, over 58% of the participants belong to the designated 
group of having private car and having no children to escort to school, while only a few 
participants need to escort children to school. 

As presented above, the desired population is defined as people who own a car, work at least 
two days a week and commute to towns or cities other than their own place of residence. The 
representativeness of the sample data with respect to the desired population is discussed 
below. The respondents were taken and recruited from an existing panel. Although it is 
difficult to determine whether people in a panel were the same people as those who did not 
join a panel, the underlying and more ‘answerable’ question is whether these people in the 

                                                        
13 WO/HBO stands for university education or university of Higher Professional education, MAVO/VMBO intermediate 
vocational education, HAVO senior general secondary education, and VWO pre-university education in Dutch education 
system. 
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panel would make different choices than people not in the panel. It is argued here that this 
may not be the case. Although as a commercial company Intomart would not share the 
insights of the recruitment mechanism as to how the people joined the panel, they ensured us 
that the sample was representative. Though it may be doubtful, the motive of pursuing 
financial reward may convince us that the conclusion is reasonable. The most important 
motive for a person to join the panel is probably earning financially-related benefits. In ATS, 
travel cost is an important variable for the participants to evaluate the activity-travel 
alternatives. These two elements share the same root of pursuing financial rewards, which 
may make the participants easily relate to the choices made in ATS. In this sense, the 
representativeness was enhanced. However, it is harder to tell whether this resulted in a 
systematic bias of value-of-time-alike parameters in a particular direction. 
 
Nevertheless, even if the bias exists, this may not pose as a critical issue for this research. The 
main research goals are not concerned with estimating unbiased values-of-time-alike 
parameters, but examining whether task complexity and time pressure have impacts on 
activity-travel choices. It is hard to postulate that people who have a lower or higher value of 
time would be more or less affected by task complexity and time pressure, at least not with 
respect to the randomness of their choices.  

3.6 Validation of the simulator experiment 

As mentioned earlier, compared with RP methods, SP methods may suffer from the lack of 
external validation for data collection. Therefore, it is important to explore to what extent the 
SP-based Travel Simulator is a valid tool for data collection. The ultimately legitimate way to 
do so is to show that observed choices made within ATS “resemble those made in real life 
under comparable conditions” (Chorus et al. 2007). However, the important reason to develop 
ATS rather than using RP methods lies in the fact that “choices made in real life under 
comparable conditions” are foreseeably difficult to attain: such a dilemma makes this ultimate 
approach of validation rather impractical.  

However, there are also indirect approaches to help validate ATS, which have been adopted in 
this research. First, as prerequisites to induce real behaviour from the experiment participants, 
they must adequately understand the function of ATS and the process of the experiment, and 
preferably enjoy the experiment. Once these are met, it is reasonable to think that the 
participants are more likely to be engaged in the experiment. The self-reported feedbacks 
from the participants after they have completed the experiment are useful to demonstrate 
whether these prerequisites are indeed met or not. Second, Chorus et al. (2007) suggest that 
using a less strict validation, a simulator may be regarded as a valid way to collect data when 
it is established that observed behaviour made within the simulator resemble intuitions 
concerning what kind of behaviour would be made in real life.  

3.6.1 Self-reported feedbacks from the respondents 

The experiment participants (of 194 valid entries) were asked to rate five statements, each on 
a five-point  scale ranging from to “completely disagree” denoted as 1 to “completely agree” 
denoted as 5, regarding their evaluations of the experiment, as listed in Table 3.9. The table 
suggests that the overwhelming majority of the participants were able to remain focused 
during the experiment process, felt the information shown in ATS was illustrative, understood 
the experiment well, and enjoyed the experiment as a whole, while only a small proportion of 
the participants felt that activity programs presented to them were not sufficiently realistic to 
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their real life situation. Overall, this feedback suggests rather positive evaluations from the 
participants.  

Table 3.9 Self-reported feedbacks on the experiment 

Variable  Counts Proportion 

It was easy to understand the travel simulator.  
1 very much disagree 1 1 

2 disagree 2 1 

3 neutral 15 8 

4 agree 82 42 

5 very much agree 94 48 

Average (4.37)   

It was easy to remain focused during the experiment.  
1 very much disagree 1 1 

2 disagree 7 3 

3 neutral 6 3 

4 agree 99 51 

5 very much agree 81 42 

Average (4.30)   

The information shown in the abstract map was illustrative.  
1 very much disagree 1 1 

2 disagree 1 1 

3 neutral 5 2 

4 agree 68 35 

5 very much agree 119 61 

Average (4.56)   

The daily activity programs presented in the experiment look realistic for my situation. 
1 very much disagree 8 4 

2 disagree 18 9 

3 neutral 50 25 

4 agree 89 45 

5 very much agree 29 17 

Average (3.58)   

It was enjoyable to participate in the experiment.  
1 very much disagree 1 1 

2 disagree 4 2 

3 neutral 7 4 

4 agree 106 54 

5 very much agree 76 39 

Average (4.30)   

 

The average ratings obtained in this research are quite comparable to those attained in another 
travel simulator (Chorus et al. 2007). In Chorus et al’s experiment, similar evaluations on the 
participants’ feedback on their simulator are obtained, with the following four statements: 1) I 
found it difficult to remain concentrated during the experiment; 2) I found it difficult to 
identify with the different travel situations; 3) I found the travel simulator easy to understand; 
4) I enjoyed participating in the experiment. They found that the average ratings of the four 
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statements are 2.24, 1.94, 4.19 and 4.47 respectively (the small values of the first two are due 
to the negative formulations in the answers of the two statements). If the first two statements 
would be reformulated by replacing the word ‘difficult’ with ‘easy’, the ratings of the two 
might be transposed to 3.76 and 4.06 respectively. It may be argued that the choice task in the 
travel simulator in this study is a complex task, but a very concrete one, while the choice task 
applied in Chorus’ at al.’s travel simulator was less complex, but more abstract. That 
comparable results are found for both simulators, indicates that indeed travel simulators 
succeed in engaging participants in complex choice tasks, which increases our trust that the 
observed choices reflect real life choice behaviour better than observed in standard SP choice 
tasks.  

3.6.2 Consistency of ATS data 

As mentioned in Section 3.1, ATS can be validated when it is established that observed 
behaviour made within ATS resemble intuitions concerning what kind of choices would be 
made in real life. Usually, these intuitions should be formulated at a very basic, general level 
(Chorus et al. 2007). The following are the intuitions formulated for ATS: 

For travel choices 

1a. The higher the overall travel time, the lower the choice probability; 
1b. The higher the overall travel cost, the lower the choice probability; 
1c. The larger the total number of travel interchanges, the lower the choice probability; 

For task complexity 

2a. The larger the number of travel alternatives in the choice set, the more decision time used; 
2b. The larger the number of activities in the activity program, the more decision time used; 

The first two propositions (1a and 1b) of intuition 1 are quite straightforward. One travel 
interchange (1c) here means a break of travel where a traveller has to either switch to another 
travel mode or enter an activity location in a travel alternative. A larger number of travel 
interchanges suggests that a traveller would have to make more transfers either between travel 
modes or between travel modes and activity locations, which travellers generally do not prefer 
(Krygsman et al. 2004). In terms of intuition 2, with the increase of the number of travel 
alternatives and the number of activities included in a choice set, the choice task complexity 
levels shall generally increase, inducing more decision time to make a choice. 

Intuition 1) 

With regard to intuition 1 a simple Multi-Nomial Logit model was applied to estimate the 
tastes for travel time, travel cost and the number of travel interchanges, based on the data 
collected. Each of the alternatives presented to participants, especially those alternatives that 
consist of one or more public transportation legs and/or multi-modal travel, contains multiple 
interchanges. Much research (e.g., Hine and Scott 2000; Wardman and Hine 2000) indicates 
that the number of travel interchanges in a travel alternative is also an important attribute that 
helps determine the attractiveness of a travel alternative. Therefore, it is reasonable to include 
this attribute as well in the systematic component of the utility function. It is expected that the 
values of all the three tastes should take a negative sign. The model is specified without the 
consideration of choice task complexity and time pressure. We’ve specified the systematic 
component of the utility function, iV  as: 
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       i TT i TC i TI iV TT TC TI                                             (3.3) 

where 

iTT , total travel time (door-to-door) of alternative i; 

iTC , total travel cost of alternative i; and 

iTI , the number of travel interchanges in alternative i. 

The main segment (e.g. the group of “car and no escort” as shown in Table 3.3) is selected to 
estimate this model by using Biogeme, yielding an adjusted rho square index of 0.152. As the 
aim of this model to test general internal validity of the SP data, this model performance is 
acceptable. As shown in Table 3.10, the values of TT , TC  and TI  all take negative signs 

and are statistically significant, which indicates that with the increase of travel time, travel 
cost and the number of travel interchanges, the utility of the travel alternative would become 
smaller, indicating a lower probability of choosing this alternative. Thus, intuition 1 can be 
confirmed. Moreover, by calculating the value of TT * 60/ TC , the average value for travel 

time saving can be attained, which equals to 18.07 €/hour based on the sample data. This 
value seems to be in line with the estimates of value for travel time saving from other research 
(e.g., Hensher 2001; Hess et al. 2005; Shires and De Jong 2009; Hensher and Greene 2011). 
Moreover, by calculating the value of TI / TT , the value of average travel time per travel 

interchange saving can be attained, which equals to 29.84 minutes per interchange. This value 
is larger than that in Hensher et al. (2013), which is 18.25 based on the data collected from 
Sydney, Australia. There may be two reasons of distinctive nature that result in this 
difference. The first one is that the value attained here is derived from the estimates of a very 
basic MNL model: a more advanced discrete choice-based model may produce a different 
value that may be much closer to the one from Hensher et al. (2013). The second reason is 
that apart from the possible regional distinction, this difference may be also due to the fact 
that the data used in Hensher et al. (2013) is collected from PT users, while the segment of the 
data used in the model here belongs to car-users who may be much less tolerable towards 
travel interchanges. Therefore, the value of average travel time for per travel interchange 
saving attained from this data may be considered as reasonable. 

Table 3.10: Consistency of travel choices 

Coefficients Value t-stat 

TC  -0.0415 2.74 

TT  -0.0125 2.16 

TI  -0.373 14.41 

Intuition 2) 

With respect to the first and the second proposition of intuition 2, the value of the decision 
time ranges from 1.61 seconds to 623 seconds per choice tasks in the dataset. Recall that the 
number of activities ranges from 2 to 4, and the number of travel alternatives ranges from 2 to 
4. The correlation between the decision time and the number of activities equals to 0.10 
(p-value < 0.01), which is statistically significant and has a positive sign. The correlation 
between the decision time and the number of travel alternatives equals to 0.147 (p-value < 
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0.01), which is also significant and has a positive sign. As may be expected, the correlation 
with the number of alternatives is stronger as it may take more time to consider an additional 
alternative, than just only considering an additional activity in an activity program. From 
these results, it is reasonable to suggest that intuition 2) can be supported.  

3.7 Conclusions and discussions 

This chapter has explained the development of an activity-travel simulator. This simulator 
allows collecting data about activity travel choices that allow modelling the possible impacts 
of task complexity and time pressure.  

A computer-based travel simulator is a special type of SP experiment, which has gained 
growing popularity in academia which is considered as an appropriate and improved way to 
collect SP data. It intends to help mitigate the problem of external validity associated with SP 
methods. In the simulator, participants make choices among alternatives that describe the 
execution of complete activity programs. Task complexity is varied by varying across the 
choice sets both the number of activities included in the activity program and the number of 
activity program executions to choose from. In addition, choices are observed for a choice 
situation without time pressure and a situation with a travel time budget. In total, 194 persons 
participated in the travel simulator. The majority of the participants has a paid job and 85 % 
of those with paid jobs commute to work four days or more per week. The results of the 
various validation methods have increased our trust in the validity of the activity-travel 
simulator.  

Notwithstanding the overall legitimacy of the travel simulator approach, there are some points 
in the detailed design of the experiment that can be further improved. In Sub-section 3.4.4, it 
is evident that the result of the time factors looks arbitrary. By design the possibility of 
observing the extreme cases of ultimate time pressure experience was excluded. For example, 
a choice situation is excluded where a choice that usually takes 60 seconds to think is only 
assigned with 5 seconds. Traveller behaviours under these circumstances cannot be observed 
by using this experimental setup, as decision time budget should be more or less proportional 
to its normal decision time. Moreover, the values of the time factor are correlated with the 
increased complexity of the choice task, which implies that the more complex a choice task is, 
the larger the time factor becomes. As such, the participants may not feel as much time 
pressure in a more complex choice situation as in a less complex one. However, such 
correlations between engagement/time pressure index and choice task numbers have not been 
strongly supported in the data collected (as the correlation equals to -0.165). Moreover, as can 
be seen in Table 3.7, the values of the time factor vary across choice tasks but are constant 
within a given choice task. Nonetheless, the fact that eq. (3.1) combined with eq. (3.2) 
includes individual’s decision time under time pressure and under no time pressure, 
fortunately created enough variation in engagement/time pressure index to jointly estimate 
engagement/time pressure and task complexity effects in these models. With hindsight, the 
setup would have been better – for reasons for creating more random variations in 
experimental conditions – to randomly vary the values of the time factor across and within 
tasks, as this would have allowed for a more efficient simultaneous identification of 
engagement/time pressure effects and task complexity effects (since the latter also vary 
between tasks but not within tasks). 
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4. The impacts of task complexity and time pressure 
on travellers’ choices: empirical findings 

4.1 Introduction 

Chapter 2 develops the theoretical discrete choice models that incorporate impacts of task 
complexity and time pressure on travellers’ choice. Chapter 3 subsequently explains the data 
collection effort. With the data available, it is now possible to estimate the developed models. 
Furthermore, based on inspection of the estimation results, insights can be gained concerning 
the impacts of task complexity and time pressure on travel choice behaviour. This chapter 
serves the purpose of operationalizing the models developed in chapter 2, presenting the 
estimation results, and interpreting the results.  

Section 4.2 of this chapter constructs four operational choice models ranging from a simple 
MNL model to a more advanced Heteroscedastic Mixed Logit model. Subsequently, Section 
4.3 analyses and compares all the estimation results. Section 4.4 finishes the chapter with 
conclusions and discussions.  

4.2 Specifying the discrete choice-based models 

As explained earlier in Chapter 2, the critical difference between a Heteroscedastic Logit 
(HL) model and a Multi-Nomial Logit (MNL) model lies in the assumption regarding the 
random component of the utility function. The MNL model assumes that the random 
component of the utility function is independently and identically drawn from a Type I 
extreme value distribution (IID property) which has a constant variance for all alternatives 
and individuals. As the variance of the distribution of the random component of utility and the 
scale of the systematic component of utility are confounded, this assumption equivalently 
states that the scale of the systematic utility is the same across choice alternatives in the MNL 
model. The Heteroscedastic Logit (HL) model relaxes the assumption that the random 
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component of the utility function is drawn from an identical distribution (i.e. a distribution 
with constant variance). In other words, the HL model allows the scale of the systematic 
component of the utility function to vary across choice alternatives and individuals. As 
explained in Chapter 2, this property of the Heteroscedastic Logit model can be exploited to 
model the impacts of task complexity and time pressure on the scale of the systematic 
component of the utility function.  

However, irrespective of the assumptions regarding scale / error variance, the systematic 
components of the utility functions of both the models can share the same functional form. As 
such, a logical first step in specifying the discrete choice-based models is to specify the 
functional form of the systematic component of the utility function, which is the same for the 
MNL model and the HL model; and the second step is to specify the functional form of the 
model’s scale, which differs between model types (MNL versus HL). Finally, choice 
probabilities for both model specifications are formulated.  

4.2.1 The systematic component of the utility function 

Recall that the data collected for the model estimation is within the context of an 
activity-travel program for a given workday. The choice alternatives presented in the 
experiment essentially refer to a sequence of trips between activity locations (including travel 
modes, and their respective travel time and travel cost). Given this context, the systematic 
component of the utility function should include three conventional attributes associated with 
travel, namely the (total) travel time, the (total) travel cost and the number of travel 
interchanges of a choice alternative. For the sake of easy readability of the mathematical 
equations in this chapter, the utility function of a choice alternative is formulated from a 
single representative person’s perspective. Therefore, the subscript representing a particular 
person is in general suppressed from the equations in this chapter. As such, the systematic 
component of the utility function can be formulated as the following linear-in-parameter 
formulation:  

       i TT i TC i TI iV TT TC TI                                             (4.1) 

where 

iTT , total travel time of alternative i; 

iTC , total travel cost of alternative i; and 

iTI , the number of travel interchanges in alternative i. 

A plausible improvement on eq. (4.1) would be the inclusion of an intrinsic preference for car 
over public transport in the systematic component of the utility function. This is done by 
creating a dummy-attribute which equals 1 one if a travel alternative features car as the main 
travel mode, and 0 otherwise. More specifically, as explained in Chapter 3, the travel context 
of the choice task includes travel between two cities. If the travel mode of these travels 
between cities is car in a particular travel alternative, then the car is considered as the main 
travel mode. As such, eq. (4.1) can be further extended to, 

          i TT i TC i TI i car iV TT TC TI Car                                    (4.2) 

where  

iCar  equals 1 when alternative i employs car as the main travel mode, or 0 when it does not. 
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Eq. (4.2) completes the specification of the systematic component of the utility function14. 

4.2.2 The scale of the systematic component of the utility function 

As explained in Chapter 2, to ensure its non-negativity, the scale is formulated in an 
exponential form with the following equation, 

exp( ( , , ( , )))s s s s sa D T Int D T                                               (4.3) 

where 
(  )a  is a linear function of its arguments and associated parameters; 

sD represents the impact of task complexity in choice situation s; 

sT represents the impact of engagement/time pressure in choice situation s; 

( , )
s s

Int D T , relates to the interactive effect between task complexity and engagement/time 

pressure in choice situation s. 

Specification of the impact of task complexity sD  

As explained in Chapter 2, there are two competing hypotheses concerning the relationship 
between s  and the task complexity measure. One linear and one quadratic parameter 

specification associated with the task complexity measures are sufficient enough to represent 
both of these two hypotheses.  

Also introduced in Chapter 2, there are multiple approaches to measure task complexity. 
However, it is argued here that the decision time a person has spent on decision-making in the 
absence of a time constraint, which is an individualized and direct measure of task complexity 
for a given choice situation s, is the most suitable one to take. This is further supported by the 
fact that other indirect measures of task complexity are either empirically or theoretically 
inappropriate. More specifically, the linear parameter of the number of the travel alternatives 
not only produce the unexpected sign (which is positive in this case, suggesting more 
alternatives make choice task less complex) but is statistically insignificant (t-value of 1.57), 
while the quadratic form of the number of travel alternatives not only produce statistically 
insignificant linear and quadratic parameters (the t-values are -1.02 and 1.25) but produce 
insignificant estimates in travel time, travel cost, and the number of travel interchanges as 
well. On the other hand, the entropy measure of task complexity, whose focus is primarily on 
preference similarity, requires knowledge about the a priori probabilities of the alternatives. 
Ignoring many other important aspects of task complexity, this theoretical focus makes the 
use of entropy as a task complexity measure unsuitable. Therefore, decision time is used in 
subsequent model specifications for the measure of task complexity. More specifically, a 
linear and a quadratic parameter are used to represent the functional form of the relationship 
between the task complexity measure (i.e. decision time) and the impact of task complexity:  

                                                        
14 It is worth mentioning here that the travel context of the SP experiment presented in Chapter 3 may induce the participants 
to consider some additional contextual attributes when evaluating their travel choices for a workday (e.g., carrying grocery 
bags while travelling, taking a child while cycling). In principle, these contextual attributes might also be included in the 
systematic component of the utility function. However, estimation results suggest that the impacts of these contextual 
attributes are statistically insignificant. As a consequence, these contextual attributes are not considered in the remainder of 
this chapter and thesis.  
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 2
s DT s DT sD DT DT                                                       (4.4) 

Recall that there are two competing hypotheses concerning the relationship between s  and 

the task complexity measure: 1) with the increase of task complexity measure, s is expected 

to become smaller, suggesting a diminishing ability of the decision-maker to correctly 
compute the observed utilities of all the alternatives in the choice set, inducing more 
“randomness” in choice outcome; 2) rather than a monotonic relationship, with the increase of 
task complexity measure, s  may first become larger and then smaller, resulting in an 

inverted-U shape relationship between s  and the task complexity measures. For the first 

hypothesis, Parameter  DT  and DT are expected to either have negative signs or equal 0 

(in the latter case, there would be only one negative-sign parameter left), as higher levels of 
task complexity are expected to decrease the scale of the systematic part of the utility. For the 
second hypothesis, it is expected that Parameter  DT  would take a positive sign while DT  

would take a negative sign. One can test which of these two hypotheses holds (after 
inspecting the signs and significance levels of associated parameters). 

Specification of the effect of time pressure sT  

Recall that in Chapter 2, two possible hypotheses were formulated concerning the impacts of 
time pressure on scale, as a result of different interpretations of the engagement/time pressure 
index. The first hypothesis is that scale would monotonically decrease as the index increases, 
suggesting that more time spent on decision-making, given a time constraint, always leads to 
more randomness in choice behaviour. The second hypothesis is that scale would first 
increase and then decrease as the index increases, implying that i) very short decision times 
are associated with high levels of randomness (due to limited engagement of the 
decision-maker); ii) medium decision times are associated with low levels of randomness (due 
to increased engagement of the decision-maker and still relatively low levels of time 
pressure); iii) high decision times are associated with high levels of randomness (due to high 
levels of time pressure).  

By using the index in a linear as well as a quadratic15 form simultaneously, one can test 
which of these two hypotheses holds (after inspecting the signs and significance levels of 
associated parameters).  

2
s T s T sT DS DS                                                        (4.5) 

/s s sDS DT DTB                                                        (4.6) 

where 

sDS is the engagement/time pressure index; 

sDT is the decision time in choice situation s; 

sDTB is the decision time budget received for choice situation s 

                                                        
15 Power functions whose numbers are more than 2 were tested. However, the parameters of the corresponding power 
numbers that are above 2 are statistically insignificant. Therefore, those parameters are set up as 0, resulting in the 
formulations in which there are only linear and quadratic figures left.  
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Given this equation, some expectations concerning the values of T  and T  with respect to 

each of the intuitions can be derived. In order that the model estimation result conforms to the 
first intuition that sT  would monotonically decrease as the engagement/time pressure index 

increases, the following condition that the first derivative of sT on sDS should be negative 

would be expected to meet: 

( ) 2 0      s s T T sT DS DS ,  0,1sDS            

In order to conform to the second intuition that sT  would first increase and then decrease as 

the engagement/time pressure index increases, it can be expected that the following 
conditions should hold, that there is a maximum value of sT in between the sDS value range 

between 0 and 1, and that sT is a concave function within the sDS value range between 0 

and 1. To translate these three conditions with respect to the values of T  and T , the 

following equations should hold: 

a)   0,1sDS  , ( ) 2 0      s s T T sT DS DS  , and thus  0,1
2

T

T




 


;                

b) ( ) 2 0   s s TT DS ;                    

Specification of the interaction effect between task complexity and time pressure   

In eq. (4.3), ( , )s sInt D T  refers to the interaction effect between task complexity and time 

pressure in choice situation s. Given the specifications in eq. (4.4) and (4.5), this interaction 
effect can be formulated as the following: 

( , )s s s sInt D T DT DS                                                      (4.7) 

where   is the parameter for this interaction effect. The sign of   is expected to be 
negative, as the interaction effect between task complexity and time pressure may probably 
create more difficulty to choice making. 

4.2.3 Choice probability 

Now that the systematic component of the utility function and its scale have been specified, 
the choice probabilities with respect to the different model types can be derived.  

MNL model 

As discussed in Chapter 2, the probability of choosing alternative i from choice set C reads as 
follows in the MNL model: 

( )
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                                                       (4.8) 
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Mixed Logit (ML) model 

The choice probability of the MNL model in eq. (4.8) assumes that there is no unobserved 
heterogeneity across individuals in terms of their tastes for alternatives and their 
attribute-levels. In other words, the estimated parameters represent the collective tastes of the 
sample population. However, it is quite reasonable to suspect such unobserved heterogeneity 
does exist. Therefore, a plausible improvement of the MNL model consists of assuming that 
the tastes of an individual are randomly drawn from a probability density function with 
pre-specified functional form. This gives rise to the so-called Mixed MNL model or simply 
Mixed Logit (ML) Model. Based on eq. (4.8), one can formulate the choice probability of an 
ML model (Train 2003)  as 

( , , , )

( , , , )( ) ( , , , )
   

               


      
i TT TC TI Car

Car TI TC TT j TT TC TI Car

V

TT TC TI Car TT TC TI CarV

j C

e
P i f d d d d

e
  (4.9) 

where ( , , , )   TT TC TI Carf is the joint probability density function for TT , TI , TC  and

Car . 

As pointed by Hensher and Greene (2003), if there is more than one random taste in a mixed 
logit model, there may exist correlation of random parameters of attributes that are common 
across alternatives. However, in this research the correlations of the random parameters have 
not been tested and maintain a venue for further research. It is pragmatically assumed here 
that TT , TI , TC  and Car are independent from each other, the practise of which is 

found not uncommon in empirical modelling in literature (e.g. Algers et al. 1998; Brownstone 
et al. 2000; Greene et al. 2006). Thus, eq. (4.8) can be further rewritten as  

( , , , )

( , , , )( ) ( ) ( ) ( ) ( )
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Car TI TC TT j TT TC TI Car

V

TT TC TI Car TT TC TI CarV

j C

e
P i g q k h d d d d

e
  (4.10) 

where g, q, k and h are the separate probability density functions for TT , TI , TC  and 

Car  respectively. To complete the specification of the ML model, g, q, k and h need to be 

further determined in terms of their functional form. This is done further below.  

Heteroscedastic model 

By combining eq. (4.3) and (4.8), the choice probability of a Heteroscedastic Logit (HL) 
model can be formulated as follows: 
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                                                   (4.11) 

By combining eq. (4.3) and (4.10), the choice probability of a Heteroscedastic Mixed Logit 
(HML) model can be formulated as: 
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4.2.4 The models to be estimated 

As stated in Section 4.1, this chapter mainly aims to help reach the third research goal, i.e. to 
gain insight in traveller behaviour in the context of highly synchronised networks, with an 
emphasis on capturing the possible impacts of task complexity and time pressure. To achieve 
this, four models with different levels of model sophistications are estimated.  

Model 1: an MNL model, which only includes the total travel cost, the total travel time, the 
total number of interchanges, and the car preference as the attributes in the systematic 
component of the utility function: 

( )
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e
 

where           i TT i TC i TI i car iV TT TC TI Car  

Model 2: a Heteroscedastic MNL model (HL), which is based on Model 1, with the additional 
specification on the scale of the systematic component of the utility function: 
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Model 3: a ML model, which is based on Model 1, with the tastes of the four attributes 
randomly drawn from separate distributions: 
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Model 4: a Heteroscedastic ML model (HML), which is based on Model 2, with the four 
attributes randomly drawn from separate distributions: 

( , , , )
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Of these, model 4 is the most sophisticated one, as it allows one to capture the impacts of task 
complexity and time pressure while also accommodating for possible unobserved 
taste-heterogeneity. 

4.3 Empirical results  

The four models specified in the previous section are estimated using Pythonbiogeme, which 
is developed by Michel Bierlaire in Python language and running in a Linux environment 
(Bierlaire 2008). Halton draws were used to simulate the integrals for ML and HML models, 
and the number of the draws was gradually increased to 3000 where the stabilities of the 
estimated parameters of both the MNL and the HML models are achieved. Moreover, the 
dataset (as explained in Chapter 3) adopted for the estimation is from the group of the SP 
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experiment participants which contains the largest sample size, for reasons explained below. 
The participants within this group are car-users with no duty of escorting children to school. 
In total, the dataset of this group contains 1356 choices made by 113 individual participants 
(with 12 choices made by each participant).  

However, it is worth mentioning that the whole dataset of 194 participants have not been fully 
used for the model estimation. The key reason to this is that the estimation based on the whole 
data set by using the basic MNL model, though converged, produces a rather unsatisfactory 
result. The adjusted Rho square equals to 0.093, which indicates a fairly poor model fit. What 
is more critical is that the estimated taste of travel time is a statistically significant and 
positive-sign value of 0.0168 (t-test 5.33), which given the experiment setting is quite 
counter-intuitive. This implies that some unexpected variables that ‘distort’ part of the dataset 
may probably exist. So far, it cannot be achieved to exactly pinpoint these variables, thus 
leaving the search of them as a venue for further research. Notwithstanding, nearly 60% of the 
whole dataset has been utilized to estimate the models. The estimation results based on these 
113 individual participants can provide meaningful insights, though more cautions to 
extrapolate the estimation results are warranted. 

4.3.1 Functional form of the distributions of the Mixed Logit models 

As explained earlier, the independent random distributions ( )TTg  , ( )TCq  , ( )TIk  , and 

( )carh   in the Mixed Logit model, as shown in eq. (4.10), still need to be determined. That is 

to say choices have to be made regarding which particular statistical distributions should be 
selected for ( )TTg  , ( )TCq  , ( )TIk  , and ( )carh  . As for ( )carh  , since there is no a priori 

constraint towards the  sign of the associated taste (i.e., the intrinsic preference for the car 
option), the default choice of a normal distribution looks like a reasonable one to choose. 

Intuitively and theoretically speaking, TT , TC  and TI should take negative signs, as 

individuals should prefer travel alternatives with less travel time, less travel cost and fewer 
travel interchanges. Although there are reports in the literature suggesting the possible 
existence of positive signs for TT (e.g.,Mokhtarian 1998; Mokhtarian and Salomon 2001),  

the occurrence of a positive sign given the experiment setting in this research can be 
considered implausible. This is due to the fact that many elements that may lead to such a 
positive sign (e.g., multi-tasking during travel or the pleasure of driving a car) are far from 
salient in the experiment conditions as participants were strongly reminded of the fact that the 
purpose of travelling in the experiment setting was for commuting to their respective activity 
locations. Therefore, it is strongly expected that TT , TC , and TI  will all take negative 

signs. 

Given this strong expectation, normal distributions – whose domain includes (large) positive 
values – look less suitable for ( )TTg  , ( )TCq  , and ( )TIk  . Although lognormal 

distributions – which can ensure negativity in the signs - can serve as a candidate, their 
comparatively large skewness (implying the presence of a fairly large probability mass 
associated with (very) large and negative parameter values) may diminish their usefulness. 
The triangular distribution – which can ensure both negativity in the signs, symmetry and a 
bounded domain– looks like a more promising candidate for the distributions of the three 
tastes. To ensure negativity in the signs for triangular distributions, however, one additional 
constraint is needed: the sum of the mean and the spread of the triangular distribution should 
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also take a non-positive sign, so that the whole distribution lies within either a positive-sign or 
a negative-sign range (Hensher and Greene 2003). 

Notwithstanding the intuitive preference for the triangular distribution, both the ML and the 
HML model have been estimated with all three types of distributions (their respective model 
fit results are shown in Table 4.1). In terms of fit, models with lognormal distributions have 
an inferior performance relative to those with triangular and normal distributions. In 
combination with the theoretical considerations presented above, the lognormal distribution 
appears to be unsuitable. As shown in Table 4.1, the triangular distributions and the normal 
distributions are on a par with each other in terms of model fit, with the latter slightly 
outperforming the former. This slight difference in model fit is hardly a guarantee that the 
normal distributions should be preferred to the triangular distributions, as suggested by Hess 
et al. (2005). Moreover, the estimation results of the normal distribution imply that 36.7% of

TC , 36.6% of TT , and 2.8% of TI  would take a positive sign in the context of Model 4, 

while 36.9% of TC , 34.6% of TT , and 11.0% of T I  would take a positive sign in the 

context of Model 3. Hence, large proportions of the estimates would take a positive sign when 
using normal distributions. In comparison, all the estimates generated by using triangular 
distributions by definition take a negative sign. Therefore, in light of theoretical superiority 
and empirical non-inferiority to the normal distributions, the triangular distributions is 
adopted for ( )TTg  , ( )TCq  , and ( )TIk  . Thus, the estimation results for Models 3 and 4 

that are presented subsequently are attained by using triangular distributions for ( )TTg  ,

( )TCq  , and ( )TIk  .  

Table 4.1: Distribution comparisons with respect to the ML and the HML model 

 ML HML 

 Final 
Log-likelihood 

Adjusted 
Rho-square 

Final 
Log-likelihood  

Adjusted 
Rho-square 

Triangular -1108.436 0.271 -1088.864 0.282 

Normal -1101.010 0.275 -1086.175 0.283 

Lognormal -1289.310 0.151 -1282.757 0.155 
Note: 3000 Halton draws have been made for each distribution. 

4.3.2 The impacts of task complexity and time pressure  

As shown in Table 4.2, in terms of both adjusted rho and likelihood ratio test, all the models 
perform better than the ones to their left (the more constraint models) with regards to model 
fit. This suggests that the model fit is gradually and significantly enhanced by increased 
model sophistication in both the systematic component of the utility function and its scale. By 
comparing the HL with the MNL model, and the HML with the ML model, it can be seen that 
adding the impacts of task complexity and engagement/time pressure modestly increases 
model performance, irrespective of whether unobserved taste heterogeneity is accounted for 
or not. However, if the MNL is compared with the ML model, or the HL with the HML 
model, the results suggest that allowing for random taste heterogeneity has a much bigger 
effect on model fit. This strong performance of Mixed Logit models compared to models that 
do not allow for random taste heterogeneity should not come as a surprise in light of previous 
results obtained in other studies (e.g., Hensher and Greene 2001; Hensher and Greene 2003; 
Hess et al. 2005; Sillano and Ortúzar 2005). What is more important in the context of this 
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study, is that the estimation results strongly suggest that the impacts of task complexity and 
engagement/time pressure on traveller’s choice do exist, and that accounting for those impacts 
in choice models improves model fit.  

Table 4.2: The results of the model estimation 

 MNL HL ML HML 

adjusted rho-square 0.150 0.171 0.271 0.282 

Initial log-likelihood -1528.12 -1528.12 -1528.12 -1528.12 

Final log-likelihood  -1295.780 -1260.534 -1108.436 -1088.864 

Likelihood  ratio test 464.68 535.172 839.368 878.512 

Nr. of draws   3000 300016 

Nr. of parameters 3 6 5 8 

Parameters Value t-stat. Value t-stat. Value t-stat. Value t-stat. 

Mean (TC
) -0.0415 -2.74 -0.0738 -2.66 -0.115 -4.75 -0.159 -3.88 

Spread (TC
)17     (0.115)  (0.159)  

Mean (TT) -0.0125 -2.16 -0.00669 -0.63 -0.0476 -5.10 -0.0636 -3.67 

Spread(TT)     (0.476)  (0.0636)  

Mean (TI ) -0.373 -14.41 -0.690 -3.86 -0.590 -9.72 -0.938 -5.20 

Spread(TI )     0.406 4.21 0.590 2.63 

Mean(  C a r
)18 0  0  0  0  

Stt.Dev.( Car
)     1.70 6.07 2.92 4.12 

D T

19   -0.0101 -6.05   -0.00745 -3.16 

T    2.03 3.95   2.56 4.44 

T    -3.36 -4.58   -3.96 -5.01 

Mean VTTS (€/h) 18.07  34.32 33.27 

Median VTTS    24.83 23.98 

Fixed VTTS20   24.83 24.00 

Mean VVATI (min/inter.) 29.84  17.17 20.49 

Median VVATI   12.40 14.77 

Fixed VVATI   12.39 14.75 

Mean VTIS (euro/inter.) 8.99  7.25 8.17 

Median VTIS   5.25 5.91 

Fixed VTIS   5.13 5.90 

                                                        
16 3000 draws are empirically sufficient for a stable estimation results as Appendix III shows. 
17 To ensure non-positivity of 

TC  and TT
, the spreads of the triangular distributions are restricted to be less than or equal 

the absolute values of their respective means. In this case, the estimation results suggest that these spreads equal the absolute 
values of their respective means. Therefore, these triangular distributions do not produce separate t-statistics for their spreads. 
18 The estimates of Mean (  C a r

) in all the four models are of very small values with opposite signs and highly insignificant 

(t-values are -0.54, -0.15, 0.81, and 0.34 respectively). Moreover, in terms of adjusted rho and likelihood ratio test, the four 
models that set the value of Mean (  C a r

) as zero are all non-inferior to the corresponding ones that do not. Therefore, this 

value is fixed at zero in the subsequent models. 
19 The estimation cannot converge when DT  (i.e. the quadratic term) is included in the model. Thus, it is suppressed. 

20 Fixed VTTS equals Mean (
TT ) / Mean ( TC ) *60.  
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From here on, those estimation results that relate to the impacts of task complexity and time 
pressure shall be first discussed, before moving to a discussion of taste-parameters and their 
distributions. 

The estimates of the HL model on the scale are quite stable and comparable to the ones 
produced by the HML model. Figure 4.1 shows the respective plots between the value of the 
engagement/time pressure index and the scale produced by the estimates of the HL and the 
HML model, given a constant level of task complexity. From the figure, it can be seen that the 
estimates of both the HL and the HML produce a similar relation between the 
engagement/time pressure index and the scale. This relation, and the stability of the relevant 

estimates of T  and T , is not only found in these two models but in all the other 

specifications of the systematic component of the utility function that have been tested during 
the course of this research and are not reported in this thesis.  

Intermezzo: a caution related to modelling the impacts of task complexity and time 
pressure when not accounting for random taste heterogeneity  

The t-statistic of mean ( TT ) is -0.63 in the HL model, which indicates its statistical 

insignificance. Consequently, the estimates of the value of travel time savings produced by 
the HL model are drastically different from those produced by the MNL, ML, and HML 
model. Therefore, empirical analyses based on the estimates produced by the HL model can 
be considered highly unreliable, which implies that – on the data used – embedding the 
impacts of task complexity and time pressure into the conventional MNL model (i.e., without 
taking into account random taste heterogeneity) has led to a bias in the estimates of the taste 
for travel time. As a result, the estimates from the HL model are not used in the subsequent 
analyses.  

 

 

Figure 4.1: Plots of Engagement/time pressure index ( sDS ) and the scale of the utility 

function divided by the task complexity-related specification (
( )/ sD

s e ) in Model 2 and 4 

Notes: 
The dotted line corresponds to Model 2, while the continued line corresponds to Model 4. 
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The impacts of task complexity 

As shown in Table 4.2, the estimates of DT  in the HL and the HML model are all 

significant and all have taken negative signs. However, when DT  and its associated 

quadratic form of 
sDT  are included in the model, the estimation cannot converge. Given this 

empirical result, it indicates that the first hypothesis concerning the relationship between s  

and the task complexity measure is empirically the more plausible one to choose.  

This suggests that the more complex the choice task is (as measured in terms of the decision 
time in the absence of time constraints), the smaller the scale of the systematic part of the 
utility function is, leading to more random choice. 

The impact of time pressure 

The values of T  and T in the HML model support the hypothesis that the scale of the 

systematic component of the utility function first increases and then decreases as the 
engagement/time pressure index increases.  

More specifically, T  and T  equal 2.56 and -3.96 respectively. Instead of a monotonic 

relationship, this suggests that given task complexity remains constant, the scale would first 
increase with the increase of the value of sDS until it reaches its maximum value of 1.512 

when sDS approximates to 0.321 (when the first derivative function of sDS equals to 0), and 

then the scale decreases until it reaches its minimum of 0.247 as the value of sDS further 

increases towards 1. The minimum value of 0.247 suggests that when under high time 
pressure (as the engagement/time pressure index approximates 1) there is much more 
randomness in the choice outcome than is the case when little time pressure is felt. 
Importantly, however, it is easily seen that for values of sDS close to 0, the scale of the 

utility is smaller than for intermediate values. This suggests that when very little time is used 
to reach a decision, this signals the absence of engagement with the choice task (more than 
that it signals the absence of time pressure). Therefore, it can be concluded that of the two 
hypotheses derived at the end of chapter 2, the second one is supported by our empirical 
outcomes: 

 Travel choice outcomes tend to become more random when the choice is made at a 
moment when not much additional time is left for decision-making (suggesting the 
presence of time pressure); 

 Very short decision times also lead to more random behaviour, although in that case 
there is no evidence of time pressure (interpreted in terms of a lack of engagement 
with the choice task among those who make a choice within a matter of a few seconds 
after being presented with the choice task ).  

The impact of the interaction effect 

In eq. (4.7), apart from the separate impacts of task complexity and time pressure, there is a 
term describing the interaction effect between these two factors. However, in the course of the 
estimation efforts, the parameter   for this interactive effect has been found statistically 
insignificant with p-values around 0.42. As a result, in the subsequent estimation efforts,   
was fixed at zero. In Chapter 2, it had been hypothesized that there may be an interaction 
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effect between task complexity and engagement/time pressure. However, in the context of the 
data collected in this research and the models estimated, such an interactive effect has not 
been found. It may suggest that the impacts of task complexity and time pressure are 
independent effects. In other words, the impact of task complexity does not become greater 
when there is more time pressure, and vice versa. 

4.3.3 The systematic component of the utility function 

As indicated in Table 4.2, most of the estimates in the MNL, the ML, and the HML model for 
the total travel cost, the total travel time and the total number of interchanges are significant 
and all have taken a negative sign, as expected. The relatively large standard deviation of 
Car  suggests that both strongly positive and strongly negative intrinsic preferences towards 

car travel exist in the data.  

4.3.4 Value of travel time savings 

For the last several decades, the notion of a value of travel time savings (VTTS) has been an 
important concept in transportation research. In the UK, for example, travel time savings have 
accounted for around 80% of the monetised benefits within cost-benefit analyses of major 
transport infrastructure projects (Mackie et al. 2001). Based on the results attained in this 
research, some implications can also be drawn towards the estimation of VTTS.  

Mean, median, or fixed VTTS? 

Given the fact that TT  and TC  are randomly distributed, the mean VTTS attained from 

either the ML or the HML model has to be an average ratio of simulated pairs of random 

draws from the triangular distributions of TT  and that ofTC  respectively. As shown in the 

histograms of Figures 4.2 and 4.321, the distribution of the ratio of two triangularly distributed 
random numbers is by definition not a triangular one, and can be heavily skewed to one side. 
In this case, this distribution is positively skewed, suggesting that a large mass of simulated 
VTTSs is concentrated within a narrow range of values that are smaller than the mean VTTS. 
As shown in Table 4.2, the mean VTTSs of Model 3 and 4 are 34.32 and 33.27 €/h 
respectively, which are quite high values compared to the literature (Wardman 2012). This 

happens mainly because a random draw ofTC  close to the value of 0 can create outliers of 

extremely large VTTS, inflating the mean VTTS. Intuitively speaking, those outliers with 
large VTTS values are extremely unlikely to be found in real life. If this is the case, the 
question is if this mean VTTS is an appropriate VTTS to represent the sample population.  

Perhaps the answer is negative. As Algers et al. (1998) suggest, there are two alternative 
VTTSs to replace the mean VTTS. The first one is to use the median VTTS rather than the 
average VTTS as a more representative VTTS of the sample population. The median is the 
numerical value separating the higher half of a probability distribution, from the lower half. 
(Brownstone and Small 2005) adopt medians to describe their travellers’ VTTS and value of 
reliability. In Table 4.2, the median VTTSs of the ML and the HML model are 24.83 and 
23.98 €/h, which are much smaller than their mean counterparts and more in line with VTTSs 

obtained in other studies. The second way is to simply treat mean (TT ) and mean (TC ) as 

                                                        
21 One million random draws have been made for each distributions, the results of VTTS produced by which are stable.  



54                            Task Complexity and Time Pressure: Impacts on Activity-Travel Choices 

the fixed estimates, by which the direct computation of Mean (TT ) / Mean (TC ) *60 as 

used in Model 1 would produce 24.83 and 24.00 €/h for Model 3 and 4 respectively. That is 
why in this research it is called the fixed VTTS. Interestingly, both the fixed VTTSs are 
almost equal to their median counterparts. The two ways proposed by Algers et al. (1998) 
empirically converge to produce the same results of VTTS. This may imply that using the 
median VTTS rather than the mean VTTS is more appropriate. Therefore, the median VTTSs 
are used for subsequent analysis instead of the mean VTTS.  

VTTS comparisons 

The (median) VTTSs derived from Model 1, 3, and 4 are 18.07, 24.83, and 23.98 €/h 
respectively. Results obtained in other studies (e.g., Hensher 2001; Hess et al. 2005; Shires 
and De Jong 2009; Hensher and Greene 2011) suggest that the VTTSs attained from the 
MNL, the ML, and the HML model remain in the comparable scale of a reasonable VTTS, 
though on the high side of the average VTTSs. There could be several factors contributing to 
these above-average VTTSs. First of all, as suggested by Wardman (2012), VTTS estimated 
from SP data is usually larger than that from RP data, which may be the case with this 
research. Secondly, the participants recruited in the experiment are mostly daily commuters 
who keep regular jobs and averagely have high education levels, who compared with the 
average in the population are more sensitive to travel time. As such, it is reasonable to attain 
the high VTTSs from these participants. Finally, the experiment setting is focused on daily 
commuting travels, which may also help produce the above-average VTTSs.  

If the MNL and the ML model (or the HML) are compared, the difference in VTTS is quite 
noticeable, with 6.76 and 5.91 €/h respectively. This confirms the observation found in 
literature (e.g., Hensher 2001; Hess et al. 2005) that accounting for the taste heterogeneities in 
the systematic component of the utility function may heavily impact the estimates of VTTS.   

If the ML and the HML model are compared with each other, the difference in VTTS is 
marginal, with 0.85 €/h. This shows that accounting for the impacts of task complexity and 
engagement/time pressure would have only modest impacts on the estimation of VTTS, 
especially in contrast to the impact of accounting for taste heterogeneity in the systematic 
component of the utility function.  

4.3.5 Value of avoiding a travel interchange (in both time and cost) 

The Value of avoiding a travel interchange (VATI) is particularly important for transport 
policies that involve public transportation and/or multimodal travel. It consists of two 
elements, namely VATI (min) for value of time and VATI (euro) for monetary value. Any 
transport policy that promotes multimodal travel has to deal with the fact that even if the 
overall travel time of a multimodal travel alternative is very short, travellers may still not 
choose the alternative because of its interchanges. In addition, the value of VATI (euro) can 
have a significant impact on the outcomes of Cost-Benefit Analyses of transport policies and 
projects.  

Mean, median, or fixed VATI? 

Similar to VTTS, given the fact that TT  and TI  are randomly distributed, the mean VATI 

attained from either the ML or the HML model has to be an average ratio of simulated pairs 
of two random draws from the two triangular distributions respectively. As shown in the 
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histogram of Figure 4.4 and 4.5, and Figure 4.6 and 4.7, this distribution is positively skewed, 
suggesting a large mass of individually simulated VATIs concentrated within a narrow range 
of values that are smaller than the mean VATI. As shown in Table 4.2, the mean VATIs (min) 
of the ML and the HML model are 17.17 and 20.49 minutes respectively, which are much 
higher than their median counterparts of 12.40 and 14.77 respectively. Similarly, the mean 
VATIs (euro) of the ML and the HML model are 7.25 and 8.17 euros respectively, which are 
higher than their median counterparts of 5.25 and 5.19 euros respectively. Again, this happens 

mainly because a random draw of TT  close to the value of 0 can create outlier of extremely 

large VATI, inflating the mean VATI. Intuitively speaking, those outliers with large VATI 
values are extremely unlikely to be found in real life. Comparable to the suggestion 
concerning VTTS, using the median VATI may also be more appropriate than using the mean 
VATI. 

VATI comparisons 

VATI generated by the MNL, the ML and the HML model are 29.84, 12.40, and 14.77 
minutes per interchange respectively. In the meanwhile, VATI generated by the MNL, the 
ML and the HML model are 8.99, 5.25, and 5.91 euro per interchange respectively. The value 
produced by the MNL model is much larger than the other ones, and also larger than the value 
of 18.25 (min) found by Hensher et al. (2013). In contrast, the VATIs of the ML and the HML 
model come much closer to 18.25 (min). Therefore, it is reasonable to assume that the VATIs 
produced by the ML and the HML model are more credible than the one generated by Model 
1. This suggests that accounting for unobserved taste heterogeneity may heavily influence the 
estimates of VATI.  

If the ML and the HML model are compared with each other, there is a noticeable difference 
of 2.37 min/inter. and 0.66 euro/inter. of VATI. This indicates that accounting for the impacts 
of task complexity and engagement/time pressure modestly affects the estimate of VATI.  

 

Figure 4.2: Simulated histogram of value of travel time savings in the ML model 

 

Figure 4.3: Simulated histogram of value of travel time savings in the HML model 



56                            Task Complexity and Time Pressure: Impacts on Activity-Travel Choices 

 

 

Figure 4.4: Simulated histogram of value of avoiding a travel interchange (min) in the 
ML model 

 

Figure 4.5: Simulated histogram of value of avoiding a travel interchange (min) in the 
HML model 

 

Figure 4.6: Simulated histogram of value of avoiding a travel interchange (euro) in the 
ML model 

 

Figure 4.7: Simulated histogram of value of avoiding a travel interchange (euro) in the 
HML model 
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4.3.6 Choice probability predictions 

Beyond the inspection of estimation results, an important question relates to the potential 
differences in choice probability predictions implied by the estimated Heteroscedastic models 
(which capture task complexity and time pressure) and their homoscedastic counterparts 
(which do not). As will be seen in the following illustration, this difference – and hence the 
bias resulting from not accommodating for task complexity and time pressure – can be 
substantial. For the sake of manifesting this difference, a choice task was selected that was 
considered as relatively complex by participants, in the sense that the average decision time 
(in the condition where no time constraints were present) was higher than those of other tasks. 
Recall that the task complexity indicator is individually specific, and hence even though the 
decision time of the selected choice task is relatively high, there is still much heterogeneity in 
perceived complexity among the participants. As shown in Table 4.3, the selected task 
involved a choice between four alternatives, each containing a relatively large number of 
travel interchanges. 

Table 4.3: Choice task used for illustration 

Alternative Travel cost 
(euro) 

Travel time 
(min) 

Nr. of travel 
interchanges 

Car as the 
main travel 
mode 

1 10 118 7 No 

2 15 117 9 No 

3 12 110 8 No 

4 19 121 5 Yes 

For this choice task, choice probabilities for each of the four alternatives using the 
Heteroscedastic Mixed Logit 22  model were predicted and so were its homoscedastic 
counterpart. Four (two x two) conditions were distinguished: first, low task complexity for 
which the average decision time of 87 seconds was taken, and high task complexity for which 
the highest recorded decision time was taken for this task, being 227 seconds. Second, time 
pressure, which was varied in a low value, for which the value of the engagement/time 
pressure index that corresponds to the highest scale was taken – see Figure 4.5, and a 
relatively high value for which the value of 1 for the engagement/time pressure index was 
taken. Table 4.4 reports the simulation results. The table reports choice probabilities for the 
four alternatives as implied by the Homoscedastic Mixed Logit model, as well as by the 
Heteroscedastic Mixed Logit model (under the four different conditions); in addition, the 
choice probability difference between the most and least popular alternatives is reported. A 
first result is that for the condition of both low task complexity and low time pressure levels, 
the Heteroscedastic Mixed Logit model predicts more profound differences in choice 
probabilities than its homoscedastic counterpart, However, when time pressure increases to its 
maximum level (i.e., right before the time runs out), and keeping task complexity fixed, the 
Heteroscedastic Mixed Logit model predicts much less profound differences in choice 
probabilities than its homoscedastic counterpart. For respondents that consider the task to be 
highly complex (the two columns on the right hand side), the Heteroscedastic Mixed Logit 
model predicts less profound differences in choice probabilities than its homoscedastic 

                                                        
22 Given the partly unreliable results obtained for the Heteroscedastic Logit model (see discussion further above) we choose 
to focus on the Mixed (Heteroscedastic) Logit models. Each choice probability was simulated using 1,000,000 
multidimensional Halton draws. 
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counterpart, and especially so when much time pressure is present. In this latter situation, i.e., 
high levels of task complexity and time pressure, the difference between the Homo- and 
Heteroscedastic models is particularly striking: while the former model predicts that the most 
popular alternative is more than seven times as popular as the least popular alternative, the 
latter model predicts that the two are almost equally popular. 

Table 4.4: Illustration of the modelled impact of task complexity and time pressure on 
choice probabilities 

 Mixed Logit 
(Homoscedastic) 

Heteroscedastic Mixed Logit 
 

   
Low task complexity 

 
High task complexity 

  Low time 
pressure 

High time 
pressure 

Low time 
pressure 

High time 
pressure 

P(alt1) 0.23 0.22 0.25 0.25 0.25 

P(alt2) 0.06 0.05 0.19 0.14 0.23 

P(alt3) 0.30 0.27 0.26 0.27 0.26 

P(alt4) 0.41 0.47 0.30 0.35 0.27 

P(alt4) 
– 
P(alt2) 

 
0.35 

 
0.42 

 

 
0.11 

 
0.21 

 
0.04 

These results are of course fully in line with expectations (and with theory) in the sense that 
higher levels of task complexity and time pressure were expected to lead to more random 
choice behaviour. This dependency of choice behaviour on task complexity and time pressure 
conditions is captured by the Heteroscedastic model, but ignored by its homoscedastic 
counterpart. To the extent that the Heteroscedastic model fits the data statistically better than 
its homoscedastic counterpart (as is the case on the data in this research), these results suggest 
that failing to incorporate task complexity and time pressure in activity-travel choice models 
may lead to non-trivial biases in forecasting. 

4.4 Conclusions 

This chapter serves the purpose of operationalizing the generic models proposed in chapter 2, 
and presenting and interpreting estimation results. To achieve this, four models with different 
levels of sophistications and their estimation results are presented.  

The main results are as follows: firstly, high levels of time pressure and task complexity lead 
to a smaller scale of utility and hence to more random choice behaviour. Secondly, very short 
decision times also lead to more random behaviour, although in that case there is no evidence 
of time pressure. This phenomenon is interpreted in terms of a lack of engagement with the 
choice task among those who make a choice within a matter of a few seconds after being 
presented with the choice task. Thirdly, contrary to expectations, no empirical evidence is 
found for an interaction effect between task complexity and time pressure. In other words, the 
impact of task complexity on choice behaviour in the context of the collected data does not 
become more pronounced when there is a high level of time pressure (and neither vice versa). 
Fourthly, on the data, heteroscedastic models that incorporate the impacts of time pressure 
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and task complexity achieve significantly higher levels of model fit than corresponding 
homoscedastic models that do not accommodate these effects. Fifthly, and more importantly 
than these differences in model fit, it is found that choice probability predictions differ 
substantially between estimated homo- and heteroscedastic models: the former predict much 
more pronounced differences in choice probabilities between alternatives than the latter, when 
there are relatively high levels of task complexity and time pressure. In other words, under 
these conditions, heteroscedastic models predict a much more even distribution of choice 
probabilities across choice alternatives, than their homoscedastic counterparts.  

Finally, the results also show that accounting for the impacts of task complexity and 
engagement/time pressure may affect the estimation of the value of travel time savings and 
the value of avoiding interchanges, although not as much as the accommodation of random 
taste heterogeneity does. 



60                            Task Complexity and Time Pressure: Impacts on Activity-Travel Choices 

  



 

61 
 

5. Main conclusions and implications for policy and 
research 

5.1 Introduction 

This research aims to examine the impacts of task complexity and time pressure on 
travellers’ activity-travel choices. These two aspects, as argued in Chapter 1, may have 
impacts on travellers’ choices particularly when network synchronisation policies are 
implemented. To understand these impacts, three primary and one secondary research goals 
were conceived in Chapter 1. The following Chapter 2, 3, and 4 have respectively addressed 
the three primary goals in detail. This chapter first presents the main conclusions concerning 
the primary goals, and then draw implications for policy and research by utilizing the findings 
attained in the previous chapters. In doing so, the secondary goal of the research is addressed. 
Last but not least, the avenue for further research is also presented in the end. 

5.2 Model developing (Goal 1) 

To develop coherent discrete choice models that can accommodate the impacts of both task 
complexity and time pressure on travellers’ choices simultaneously 

A Heteroscedastic model that can simultaneously accommodate the impacts of both task 
complexity and time pressure on travellers’ choices is developed in Chapter 2. As 
theoretically argued in Chapter 2 and empirically tested in Chapter 4 by using the Stated 
Preference choice data collected in Chapter 3, this Heteroscedastic model is tractable, 
coherent, structurally simple, and easily estimable. 

It has been acknowledged by many researchers that the assumed underlying decision process 
of multi-attribute Utility Maximization would require intensive efforts from a decision-maker. 
When a choice task assigned to the decision maker is quite complex and when such a task has 
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to be finished under time pressure, it can be argued that the decision-maker would become 
less able to select the highest utility alternative from the set.  

The approach taken in this research to model the impacts of task complexity and time 
pressure on travellers’ choices is to allow for the variance of the random component in the 
utility function to be a function of task complexity and time pressure. This is equivalent to the 
notion that the scale of the utility is a function of task complexity and time pressure, as the 
variance of the random component is confounded with the scale of the utility. In light of the 
fact that each choice task may be associated with a different level of task complexity and time 
pressure, the scale is no longer identical for all the choice tasks. This gives rise to a more 
flexible RUM-based model, called Heteroscedastic Logit model.  

As far as measuring task complexity and time pressure are concerned, Chapter 2 reviews 
several approaches that can be implemented. For task complexity, there are two types of 
measurement, indirect assessment of choice task and a direct indicator. The former may 
include the number of alternatives, the number of attributes, the similarities between 
alternatives, and entropy measure, etc. This research suggests the direct indicator that uses 
decision time as a measure of task complexity is the better choice for the choice models. 
Compared with the indirect measures as introduced beforehand, this direct measure of task 
complexity is intuitive, direct and highly individualized. This is mainly because even for a 
same choice task two distinctive decision-makers may assess its complexity differently, 
probably resulting in a difference in decision time. It may imply that this direct measure may 
be a more accurate representation of task complexity.  

As for time pressure, this research recommends using a so-called engagement/time pressure 
index, rather than adopting the conventional measure of varied fixed decision time budget, 
since the latter is in comparison to the former not only not individualized (i.e. the time 
pressure felt by one decision-maker may not be transferrable to another with a same fixed 
decision time budget), but too blunt as well since time pressure changes gradually.  

5.3 Data collection (Goal 2) 

To collect relevant data concerning the impacts of task complexity and time pressure on 
travellers’ daily activity-travel choices in the context of highly synchronised networks 

Given the targeted context of daily activity travel, the data requirement of the models 
formulated in Chapter 2 has clearly indicated that besides conventional attributes like travel 
time and travel cost, three additional attributes, namely the amount of travel alternatives in a 
given choice set, the number of daily activities in an assigned activity program, and the time 
pressure level in a choice task, need to be properly varied in the data for model estimation. As 
argued in Chapter 1, a travel-simulator approach is the most suitable method for observing 
those choices.  

Compared with the conventional SP methods, travel simulators usually provide illustrative 
and interactive user interfaces, stimulating respondents to more actively involve themselves in 
the experiment and allowing for easy interactions between respondents and experimental 
conditions. They are invariably designed to help increase the validity of SP data. Inspired by 
these efforts, a 2D computer-based activity travel simulator (ATS) is developed in Chapter 2. 
While typically the previous mentioned travel simulators consider only single trips, ATS 
deals with complete daily activity programs, hence with all trips made for a whole day.   
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In the simulator, participants make choices with respect to the execution of complete activity 
programs. Task complexity is varied by varying across the choice sets both the number of 
activities included in the activity program and the number of activity program executions to 
choose from. In addition, choices are observed for a choice situation without time pressure 
and a situation with time pressure. In total, 194 persons participated in the travel simulator. 
The majority of the participants have a paid job and 85 % of those with paid jobs commute to 
work four days or more per week.  

Two approaches have been taken to validate the ATS. Firstly, as prerequisites to induce real 
behaviours from the experiment participants, they must adequately understand the 
functionality of ATS and the process of the experiment, and preferably enjoy the experiment, 
which is an indication for their engagement in the experiment. The self-reported feedbacks 
from the participants after they complete the experiment are useful to demonstrate whether 
these prerequisites are indeed met or not. The results from the feedbacks have shown that the 
majority of the participants felt that it was easy to understand the travel simulator, easy to 
remain focused during the experiment, the information shown in the abstract map was 
illustrative, the daily activity programs presented in the experiment look realistic to them, and 
it was enjoyable to participate in the experiment. Secondly, Chorus et al. (2007) suggest that 
using a less strict validation a travel simulator may be regarded as a valid way to collect data 
when it is established that observed behaviours made within the simulator resemble intuitions 
concerning what kind of behaviours would be made in real life. The analyses of the data 
generated from the experiment show that the formulated intuitions have been confirmed. 
These intuitions include the ones concerning choice probability (a. the higher the overall 
travel time, the lower the choice probability; b. the higher the overall travel cost, the lower the 
choice probability; c. the larger the total number of travel interchanges, the lower the choice 
probability) and the ones concerning task complexity (a. the larger the number of travel 
alternatives in the choice set, the more decision time used; b. the larger the number of 
activities in the activity program, the more decision time used). Therefore, based on the 
validity tests conducted for the experiment, it is reasonable to think that ATS is a valid way to 
collect the required SP data.  

5.4 Traveller behaviour in synchronized networks (Goal 3) 

To gain insight in traveller behaviour in the context of highly synchronised networks, with an 
emphasis on capturing the possible impacts of task complexity and time pressure 

To reach Goal 3 it is required that the theoretical models constructed in reaching Goal 1 
should be estimated using the data collected when reaching Goal 2. Further analyses 
concerning the traveller behaviour in synchronized networks can then be made based on the 
estimation results.  

Model estimation 

Irrespective of the assumptions regarding scale / error variance, the systematic components of 
the utility functions of the RUM-based models can share the same functional form. As such, a 
logical first step in specifying the discrete choice-based models is to specify the functional 
form of the systematic component of the utility function, which is the same for the MNL 
model and the HL model; and the second step is to specify the functional form of the model’s 
scale, which differs between model types (MNL versus HL). Finally, choice probabilities for 
both model specifications are formulated. By following these steps, four functional 
RUM-based models are specified for further analysis, including a MNL model that only 
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includes the total travel cost, the total travel time, the total number of travel interchanges, and 
the car preference as the attributes in the systematic component of the utility function, a 
Heteroscedastic MNL model (HL), which is based on the MNL model with the additional 
specification on the scale of the systematic component of the utility function, a ML model, 
which is based on the MNL model with the tastes of the four attributes randomly drawn from 
separate distributions, and a Heteroscedastic ML model (HML), which is based on the HMNL 
model with the four attributes randomly drawn from separate distributions. 

The estimation results suggest that all the four models can be estimated. In particular, the 
HML model, which can accommodate the impacts of both task complexity and time pressure 
on travellers’ choices simultaneously, can not only be estimated but produce statistically 
significant and theoretically interpretable results as well. 

The selection of the distributions 

In addition to the analysis of the model estimates, it has been discussed in Chapter 4 that the 
applications of different random distributions in the Mixed Logit models. Although a normal 
distribution is the most popular one to choose for a random distribution, many literature 
advocates the idea that given particular circumstances surrounding the targeted estimates, 
other distributions may be given priority above the normal one. This is the similar case in my 
research. I suggest that it should be preferred to unbounded ones like normal distribution 
when the assumptions on the signs of the tastes are strongly held. This is well supported by 
the fact that the triangular distribution holds theoretical superiority and empirical 
non-inferiority above the normal one in the research.  

However, the adoption of triangular distributions in ML or HML model, compared with 
normal distributions, has brought a particular issue concerning the derivations of the derived 
values, i.e., the value of travel time savings (VTTS) and the value of avoiding a travel 

interchange (VATI). Take VTTS for an example. Given the fact that TT  and TC  are 

randomly distributed, the mean VTTS attained from either the ML or the HML model has to 
be an average ratio of simulated pairs of random draws from the triangular distributions of 

TT  and that of TC  respectively. Interestingly, the distribution of the ratio of two 

triangularly distributed random numbers is by definition not a triangular one, and can be 
heavily skewed to one side. Then, a question arises concerning which of three derived values, 
namely the mean VTTS, the median VTTS, and the fixed VTTS should be chosen as the 
representative VTTS. Given the empirical evidence so far, I would argue that using the 
median or fixed values may be a better choice for representativeness than using the mean 
ones. However, I feel the evidence to support my argument may not be sufficient enough, thus 
making this topic an interesting avenue for further research. 

The impacts of task complexity and time pressure 

The insights this thesis provides into traveller behaviour in the context of highly synchronised 
networks mainly relate to the impacts of task complexity and time pressure on travellers’ 
choices.  

It is clearly demonstrated that the impacts of task complexity and time pressure on traveller’s 
choice do exist. More specifically, the estimate associated with task complexity is statistically 
significant and takes a negative sign. This suggests that the more complex the choice task is 
(as measured in terms of the decision time with no time constraint), the smaller the scale of 
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the systematic component of the utility function is, leading to more random choice. This result 
is in line with the relevant first hypothesis developed in Chapter 2. 

The estimates associated with time pressure conform to the hypothesis that the scale of the 
systematic component of the utility function first increases and then decreases as the 
engagement/time pressure index increases, as depicted in Figure 6.1. More specifically, the 
two estimates, T  and T  equal to 2.56 and -3.96 respectively.  Instead of a monotonic 

relationship, this suggests that given task complexity remains constant, the scale would first 
increase with the increase of the value of the engagement/time pressure index until it reaches 
its maximum value of 1.512 when the engagement/time pressure index approximates to 0.321 
(32.1% of the decision time budget), and then the scale decreases until it reaches its minimum 
of 0.247 as the value of the engagement/time pressure index further increases towards 1. The 
minimum value suggests that when under extremely high time pressure (as the 
engagement/time pressure index approximates 1) there is much more randomness in the 
choice outcome than is the case when little time pressure is felt. In other words, the 
distribution of the choice outcome would tend to approximate towards a totally random 
choice when all the choice alternatives have the same choice probability.  

Importantly, however, it is easily seen that for values of the engagement/time pressure index 
close to 0, the scale of the utility is smaller than that for intermediate values of the 
engagement/time pressure index. This suggests that when very little time is used to reach a 
decision, it may indicate the absence of engagement into the choice task.  

To conclude, 1) travellers’ choices tend to become more random when the choice is made at a 
moment when not much additional time is left for decision-making (suggesting the presence 
of time pressure); 2) Very short decision times also lead to more random behaviour, although 
in that case there is no evidence of time pressure (interpreted in terms of a lack of engagement 
with the choice task among those who make a choice within a matter of a few seconds after 
being presented with the choice task ). 

In Chapter 2, it had been hypothesized that there may be an interaction effect between task 
complexity and engagement/time pressure. However, in the context of the data collected in 
this research and the models estimated, such an interaction effect was not found to be 
significant (p-values around 0.42). 

On the data, Heteroscedastic models that incorporate the impacts of time pressure and task 
complexity achieve higher levels of model fit than corresponding Homoscedastic models that 
do not accommodate these effects.  

More importantly than these differences in model fit, it is found that choice probability 
predictions differ substantially between estimated Homo- and Heteroscedastic models: the 
former predict much more pronounced differences in choice probabilities between alternatives 
than the latter, when there are relatively high levels of task complexity and time pressure. In 
other words, under these conditions, Heteroscedastic models predict a much more even 
distribution of choice probabilities across choice alternatives, than their Homoscedastic 
counterparts.  
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5.5 Implications for policy and research (the secondary goal) 

To utilize the gained insights to provide the relevant societal implications, in particular with 
respect to policies involving highly synchronised networks 

5.5.1 Estimating VTTS and VATI 

Incorporating task complexity and time pressure into the model have an impact on the value 
of travel time savings and the value of avoiding a travel interchange (VATI) implied by the 
model, though the specific pattern of the impact cannot be determined. 

People generally prefer shorter travel times over longer. Many transport policies (such as new 
infrastructure or road pricing) aim to reduce travel times. Travel time savings therefore are a 
critical component of the evaluation of transport policy options. Synchronisation policies will 
probably first affect the value of travel time savings (VTTS) and secondly the value of 
avoiding a travel interchanges (VATI). This will be discussed in more detail.  

First public transport policies will be discussed. In these policies the general transport costs of 
a trip depend on the value of the in vehicle time, walk time, waiting time and service 
headway, etc. (Wardman 2004). If policies aim to reduce the travel times, or more generally: 
the overall resistance of a transport trip (often referred to as the generalized transport costs, 
including time, costs, effort, perceived safety etc.) of public transport trips it is very important 
to have reliable estimates of all these components of the trip.  

The VTTS is generally the single most important parameters for the estimation of generalized 
transport costs. The evaluation of policies to improve accessibility / reduce travel times are 
affected by the VTTS and VATI. Whereas the VTTS is relevant for any policy that has an 
impact on travel times, the VATI is particularly important for the evaluation of transport 
policies that involve transit, especially multimodal travel that is partly transit based. Any 
transport policy affecting multimodal travel would have to deal with the fact that in addition 
to the overall travel time of the trip, also the valuation of interchanges matter, and 
consequently the VATI is relevant.  

Table 5.1: The results of the model estimation 

 ML HML 

Mean VTTS (€/h) 34.32 33.27 

Median VTTS  24.83 23.98 

Fixed VTTS 24.83 24.00 

Mean VATI (min/inter.) 17.17 20.49 

Median VATI 12.40 14.77 

Fixed VATI 12.39 14.75 

Mean VATI (euro/inter.) 7.25 8.17 

Median VATI 5.25 5.91 

Fixed VATI 5.13 5.90 
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This research allows us to show that the derived value of these two parameters, namely the 
value of travel time savings (VTTS) and the value of avoiding a travel interchange (VATI) 
can be influenced by incorporating task complexity and time pressure into the model. Table 
5.1 is an extraction from the results attained in Chapter 4. In comparison between the ML 
model that excludes the impacts of task complexity and engagement/time pressure and the 
HML model that includes, their respective VTTSs and VATIs appear to be different.  

In the literature, there are many efforts to investigate and improve the reliable and accurate 
estimations of the VTTS and VATI (e.g. Mackie et al. 2001; Hess et al. 2005; Hensher et al. 
2013). This research shows that incorporating two additional factors into the model may also 
impact the values of the two parameters implied. In Chapter 2, the Heteroscedastic models 
that embed the impacts of choice task complexity and time pressure on travel choice is 
presented and in Chapter 4, these models are estimated. In the analysis section of the latter 
chapter, the inclusion and the exclusion of choice task complexity and time pressure make 
noticeable differences in both parameters, as shown in Table 5.1. Although whether these 
differences are statistically significant or not is yet to be tested, it is plausible to say that they 
are at least significant in terms of policy sensitivity. Although a clear pattern has not been 
found in the impact of incorporating choice task complexity and time pressure into the model 
on VTTS and VATI implied, at least it is clear at the moment that this impact does exist.  

5.5.2 Choice probability predictions 

By ignoring in choice models the effects of task complexity and time pressure on 
activity-travel behaviour, policy makers are likely to overestimate traveller sensitivity to 
changes in the attributes of existing travel options or in the availability of travel options, when 
choices are made under conditions of high-level task complexity and time pressure. 

The analysis in Sub-section 4.3.6 in Chapter 4 suggests that capturing the impacts of time 
pressure and task complexity in discrete choice models of activity-travel behaviour is also 
important from a practical or policy viewpoint; this holds even more in light of the fact that in 
real life, many activity-travel choices are made under conditions of considerable task 
complexity and time pressure. In other words, the Heteroscedastic models suggest that under 
these conditions, choice behaviour is governed to a large extent by randomness, implying a 
limited sensitivity to changes in the availability and characteristics of travel options. This 
should warrant attentions from policy makers that traveller sensitivity are likely to be 
overestimated in the attributes of existing travel options or in the availability of travel options, 
when these choices are made under conditions of high-level task complexity and time 
pressure. 

5.5.3 Travel information service providers 

Several travel information systems are available or in the design stage. Travellers can benefit 
from these systems. In addition they have the potential to change travel behaviour in such 
ways that they increase the efficiency of the transport system. Chorus et al. (2006) reviewed 
the literature concerning the usage of Travel Information Services, underpinning the 
importance to carry out relevant research aimed at designing travel information service as 
well as policy initiatives that aim at optimal use and effects of such services. Researchers 
have studied both the level of use of such travel information services as well as the impact of 
information provided on travel behaviour.  
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Though not directly related to the main findings of the research, some implications can be 
derived with respect to the second topic. It is advocated (1) that the current single-trip-based 
travel information service can be upgraded to at least multiple-trip-based travel information 
services, (2) that map-based information provision has an impact on travel, and (3) that the 
supply of travel information load to travellers should be properly limited.  

Although the experiment explained in Chapter 3 is essentially concerned with traveller’s 
activity-travel choices under the impacts of task complexity and time pressure, the setting of 
the experiment can actually be interpreted as a type of travel information services that provide 
travel information for a whole workday. The experiment has assumed a travel context in 
which a traveller, who has just moved to a new place, needs to finish some activities in a 
weekday. In order to carry out these activities at different locations, the traveller must 
schedule an activity program (including the locations of these activities and the order), 
starting and ending at home. The experiment provides the traveller with the travel alternatives 
(i.e. the choice set) that the traveller can choose from to finish the scheduled activity program. 
Therefore the experiment can be interpreted as a travel information service. The three 
implications of the findings as presented above will be discussed next. 

Upgrading travel information service 

Current state-of-the-practice travel information services provide trip-based travel information. 
This research advocates it is promising to develop a new type of upgraded travel information 
service that is multiple-trip-based and that arranges travel for a whole day.  

Current travel information services only provide travellers information about options to travel 
between origin and destination. Travel services have different levels of sophistication in terms 
of the inclusion of personal preferences (e.g., a traveller’s preferred travel mode, departure 
time, etc.). Two typical leading examples of such travel information service providers are 
Google Maps and (in the Netherlands) OV9292 (public transport information).  

Notwithstanding the huge benefits provided by these travel information service providers, 
traveller’s information demand may easily go beyond that. In many occasions, travellers may 
have to plan activities and related travel for the whole day. Chapter 3 shows that we included 
such choices in the experiment. In the real world, in such occasions, travellers have to derive 
travel options for each possible trip separately, and next schedule their activity-travel 
program. This is because there does not yet exist an upgraded travel information service that 
can assist them to schedule this program. In Chapter 3 the feedbacks attained from the 
experiment participants show that the majority of the participants can recognize the 
importance of scheduling activity-travel programs, and understand the travel simulator that 
provides them with the travel alternatives. Although these are no direct evidences indicating a 
large demand for such upgraded travel information services, it can be reasonably considered 
as an early sign of a potential demand for them. Thus, this research would advocate more 
attention to be paid to such services from both travel information service providers and 
academia.  

Improving travel information format 

Many efforts in the literature mainly focus on the contents of travel information service. More 
specifically, they intend to investigate the effects of the contents of travel information on 
travellers’ choices. Nevertheless, there is an important element that has been generally 
ignored. There is virtually no research in transportation that looks into the effects of the 
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format of the travel information on travellers’ choices. This research however advocates that 
the format of the travel information may also be important and can influence choices.  

This format essentially deals with how the travel information content is visually presented to 
travellers. As pointed out by Waygood et al. (2012), this format may have non-negligible 
effects on how effective a traveller would be able to process the travel information received. 
For example, a piece of a multimodal travel information can be either narrated in the form of 
abstract words / figures (as OV9292 does in Figure 5.1), visualized in a reality-augmented 
map, or a combination of the two (as Google Maps does in Figure 5.2). The intuition may be 
that the latter is preferred to the former for most travellers, which may be partially supported 
by many researches in fields like education and human learning (e.g. Najjar 1996; Mayer and 
Moreno 2002). In the experiment shown in Chapter 3 the travel information can be both 
animatedly visualized on the abstract map in the middle of the experiment simulator interface 
and concisely narrated in the bottom panel of the interface, as shown in Figure 5.3. With 
hindsight, it is regrettable that the experiment participants were not asked specifically of the 
questions concerning which way of the two information formats they preferred. However, 
since the majority of the participants report that they feel the information presented in the 
abstract map is very illustrative, it may imply that the majority of them think that the 
presented information format can be quite useful. Given this feedback, it may add supportive 
evidence to the abovementioned intuition. As such, it can be argued that the information 
format of Google Maps with the additional reality-augmented map can be effective in terms 
of conveying the travel information to travellers. Not only travel information service 
providers are recommended to explore this topic, but researchers are recommended to do 
more related research as well, because the findings are only preliminary, remaining largely as 
assumptions. 

An important question is: do travellers adequately deal with all the information provided for a 
full travel-activity program? The experiment simulator of this research is based on the 
upgraded multiple-trip-based travel information service mentioned in the previous subsection. 
Therefore, in terms of the volume of travel information, it naturally exceeds that of trip-based 
travel information services like OV9292 and Google Maps. Comparatively, it is foreseeable 
that if OV9292 upgrades its travel information service to the multiple-trip level, the amount of 
narrative information presented to the traveller by using the same information format would 
be much more than that of the current OV9292 service, which would probably hinder 
travellers from effectively processing the received information. Although Google Maps has a 
reality-augmented map to facilitate travellers, the specific travel information (e.g., travel time 
and travel cost for each trip) are still presented in the narrative way. If Google Maps also 
upgrades its travel information service to the multiple-trip-based level, it is also foreseeable 
that travellers may find it difficult to effectively process the received information. However, 
the majority of the experiment participants report that they do not only find the travel 
information presented in the experiment illustrative but also that they understand the 
experiment simulator very well. This may imply the information format adopted in the 
experiment could be a feasible direction to present future multiple-trip-based travel 
information. Because the experiment simulator of this research is not designed as a 
full-fledged travel information system, it needs to be redesigned and tested before any real 
world services can be based on it. 
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Figure 5.1: An example of the interface of OV9292 travel information service 

 

Figure 5.2: An example of the interface of Google Maps travel information service 
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Figure 5.3 An example of multiple-trip-based travel information from the experiment  

More specifically, an effective format of multiple-trip-based travel information requires 
attaching the specific trip information directly to the reality-augmented maps. For Google 
maps, it is a relatively easy step to go ahead, as it not only possesses large amounts of 
activity-location information, which are the basis for the upgraded travel information service, 
but also can realize the unified format by simply adding another travel information layer atop 
the layer of the reality-augmented map. In comparison, a travel information service like 
OV929, which lacks data/resources needed for a reality-augmented map, may find it more 
difficult to improve the travel information format to the multiple-trip level.  

Although this research found support for the usefulness of travel information services that 
allow for the planning of multiple trips and communicate results in a map-based format, it is 
not sure if map-based communication is the way to go for all potential users of such system. 
So, the map-based way of communication information could probably best be an option that 
users can choose, not the only way to communicate travel information. 

Limiting the information load 

The estimation results in Chapter 4 clearly show that the more complex a choice task is, the 
more randomly travellers choose. Such an increase of randomness in choice is undesirable not 
only for the traveller himself but also for the travel service providers. However, to reduce the 
complexity of choice tasks to the extreme of only one single alternative left in the choice set 
may also be undesirable, as traveller may still crave for the liberty to choose rather than being 
told what to do. Therefore, it is important to achieve a balance between the oversupply of 
travel information and the provision of traveller’s liberty to choose. More research is needed 
to come to conclusions about this balance. For example, by collecting user data concerning 
the information provision, it would give the service providers more clues about this balance. 
For another example, it may work best if users of such systems can choose settings based on 
their preferences.  
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5.6 Avenue for further research 

Firstly, as argued in Chapter 2, the Heteroscedastic models specified in this research can well 
accommodate the impacts of task complexity and time pressure on travellers’ choices. The 
decision rule assumed by these models is linear additive utility maximisation-based, implying 
that even if task complexity and time pressure levels are high, travellers would always adopt 
this same decision rule to make their choices. There is some literature that suggests this may 
not necessarily be the case. Notwithstanding the fact that the Heteroscedastic Logit model 
performs adequately when accommodating the impacts of task complexity and time pressure, 
it would be interesting to construct models that adopt decision rules other than the linear 
additive utility maximisation-based one, which may provide additional insights into the 
impacts of task complexity and time pressure on travellers’ choices.  

Secondly, in Chapter 3, notwithstanding the overall legitimacy of the travel simulator 
approach, there are some points in the detailed design of the experiment that can be further 
improved. It is evident that the result of the time factors looks arbitrary. By design the 
possibility of observing the extreme cases of ultimate time pressure experience was excluded. 
For example, a choice situation is excluded where a choice that usually takes 60 seconds to 
think is only assigned with 5 seconds. Traveller behaviours under these circumstances cannot 
be observed by using this experimental setup, as decision time budget should be more or less 
proportional to its normal decision time. Moreover, the values of the time factor are correlated 
with the increased complexity of the choice task, which implies that the more complex a 
choice task is, the larger the time factor becomes. As such, the participants may not feel as 
much time pressure in a more complex choice situation as in a less complex one.  

With hindsight, the setup should have been better – for reasons for creating more random 
variations in experimental conditions – to randomly vary the values of the time factor across 
and within tasks, as this would have allowed for a more efficient simultaneous identification 
of engagement/time pressure effects and task complexity effects (since the latter also vary 
between tasks but not within tasks).  

With this improvement of design, some experiment participants would have experienced 
much more intense time pressure situations, and some would much less to the extent as if 
there were no time pressure at all. I would expect the curve depicted in Figure 4.5 would 
become even steeper where the minimum value of the scale would be smaller than that of 
now. In other words, the engagement/time pressure effect as found in this research may be 
underestimated. Thus, in light of these considerations, the experiment design needs further 
improvement. 

In Chapter 4, the Mixed Logit model has four random tastes in the formulation. If there is 
more than one random taste in a Mixed Logit model, there may exist correlation of random 
parameters of attributes that are common across alternatives. However, it is pragmatically 
assumed in this research that the four random tastes are independent from each other, the 
practise of which is found not uncommon in empirical modelling in literature. Thus, the 
correlations of the random parameters have not been tested and maintain a venue for further 
research.  

In this chapter, several directions are suggested for further research. Specifically, more 
research attention is advocated to be paid to the use of the activity-travel information services 
from both travel information service providers and academia, as this new type of travel 
information may benefit a lot to the users. This research also states the importance to achieve 
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a balance between the oversupply of travel information and the provision of traveller’s liberty 
to choose. To strike such a balance warrants further research to draw to a clear conclusion.  
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Appendices  

Appendix I: The experiment settings for the other three groups of 
participants 

The group of “escorting children to school” and “private car-user” 

Table A.1: Travel choice sets assigned for the group of “escorting children to school” 
and “private car-user” 

  Nr. of activity-travel alternatives in choice set 

  2 3 4 

  

N
r.

 o
f 

ac
ti

vi
ti

es
 in

 a
n

 a
ct

iv
it

y 
p

ro
gr

am
 

1 Set 2 
 
 

  

2 Set 1 
 

Set 3 
 

 

3  Set 4 Set 5 
 

4   Set 6 
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Table A.2: The activity programs assigned for the group of “escorting children to school” 
and “private car-user” 

Set  Activity Program 

Set 1 Escorting children, Work 

Set 2 Work 

Set 3 Work, Grocery Shopping 

Set 4 Work, Escorting Children, Grocery shopping 

Set 5 Work, Grocery shopping, Fitness 

Set 6 Work, Leisure shopping, Fitness, Meeting 
friends 

The group of “not escorting children to school” and “none private car-user” 

Table A.3: Travel choice sets assigned for the group of “not escorting children to school” 
and “none private car-user” 

  Nr. of activity-travel alternatives in choice set 

  2 3 4 
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1 Set 1 
 
 

  

2 Set 2 
 

Set 3 
 

 

3  Set 4 Set 5 
 

4   Set 6 
  

Table A.4: The activity programs assigned for the group of “not escorting children to 
school” and “none private car-user” 

Set  Activity Program 

Set 1 Work 

Set 2 Work, Grocery shopping 

Set 3 Work, Fitness 

Set 4 Work, Fitness, Grocery shopping 

Set 5 Work, Meeting friends, Fitness 

Set 6 Work, Leisure shopping, Fitness, Meeting 
friends 
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The group of “escorting children to school” and “none private car-user” 

Table A.5: Travel choice sets assigned for the group of “escorting children to school” 
and “none private car-user” 

  Nr. of activity-travel alternatives in choice set 

  2 3 4 
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1 Set 2 
 
 

  

2 Set 1 
 

Set 3 
 

 

3  Set 4 Set 5 
 

4   Set 6 
  

Table A.6: The activity programs assigned for the group of “escorting children to school” 
and “none private car-user” 

Set  Activity Program 

Set 1 Escorting children, Work 

Set 2 Work 

Set 3 Work, Grocery Shopping 

Set 4 Work, Escorting Children, Grocery shopping 

Set 5 Work, Grocery shopping, Fitness 

Set 6 Work, Leisure shopping, Fitness, Meeting 
friends 
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Appendix II: Activity-travel simulator user manuel 

General Introduction 

This simulator creates a virtual situation, where you will be assigned with a pre-defined daily 
task, starting from your house. This task has the form of a sequence of activities. The 
simulator will always provide you with two or more options to fulfil your tasks. These options 
thus take the form of a so-called activity-travel schedule, which consists of a sequence of 
activities at various locations and associated travel arrangements. After reviewing the 
available options, you may decide which option is most favourable to you, and submit your 
answer to the simulator.  

Once you submit your answer, the simulator will assign a new and different task to you, with 
a new and different set of options to choose from. Please be aware the travel time and the 
travel cost of each travel mode on each connection may also be different from those of the 
previous task.  

You will be asked to complete several such tasks during the experiment. In the first half of the 
experiment, you can spend as much time as you want on each task. However, in the second 
half of the experiment, you will have to finish each task within a certain prefixed amount of 
time. There will be a countdown clock on the screen, indicating how much time there is left 
for you to choose your option. If you are not able to choose your option in time, the simulator 
will automatically and randomly select one for you.  

Introduction to the Setting 

The geographical setting of your tasks involves two virtual cities: City A and City B. City A 
is where you live and perform the other activities. City B is where you work.  As explained 
above, each task includes one or several activities. Each activity has its associated locations 
where the activity can be performed. Below is a list of these activities and the associated 
location icons that will appear on the simulator. 

In City A, close to where you live 
Icon Location Activity 

 

your house  

 

supermarket Grocery shopping 

 

fitness/sport center Fitness/sport 

 

shopping center leisure shopping 

 

cafeteria  Meet your friends 

 

school Drop-off/pick-off your 
children 
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In City A, further away from where you live 
Icon Location Activity 

 

integrated facility  
(containing  
supermarket,  
fitness/sport centre, 
shopping centre, and 
cafeteria) 

Grocery shopping, 
 
Fitness/sport, 
 
Leisure shopping, 
 
Meet your friends 

 

 
Train station City A  

 
Where you can take 
a train to City B 

 
In City B 
Icon Location Activity 

 

your office  
 

Work 

 

Train station 
city B  
 

Where you can 
take a train to 
City A 

How to play the simulator  

Step 1: Get familiar with the interface 

When you enter the simulator interface for the first time, the computer screen will appear like 
this: 
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Task bar shows the activity (or 
activities) of your current task (in 
this case: “gotoWork”).   

  

 

Countdown bar indicates how much 
time there is left for your to choose 
an option; if the bar does not show 
a decreasing number of seconds, it 
means that you can spend as much 
time as you want on your 
decision-making. 

  

 

Two or more options are for you to 
choose from; here, only textual 
information regarding the 
sequences of the activity location is 
shown. Click on the button “show 
on map In order to receive more 
specific information about travel 
times, costs and modes of a 
particular option. This is placed at 
the right side of each option. (This 
step will be shown later.) 

  

 

Here you can select your preferred 
option and submit your decision.  

Step 2: Assess each option 

In order to receive more specific information about the various options, you may click on the 
“show on map” buttons, which are placed at the right side of each option. By clicking the 
button, an animation will show specific information such as the location of the activities, and 
the travel modes that are used including their travel times and costs. An example is shown in 
the screenshot below. At the same time, clicking the “show on map” button allows you to see 
a summary of this information at the bottom of the interface. If you want to see the animation 
again, just click the “show on map” button again. 
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The information on the travel mode includes three parts: travel mode, travel time and travel 

cost. For example, , this icon, suggests that the travel mode is private car, the travel time 
is 35 minutes, and the travel cost is 8 euros.  

An explanation on all the travel mode icons is listed below: 

Icon 
  

Mode Private 
Car 

Train Bicycle Bicycle 
carrying 
bags 

Bicycle 
with 
child 

Bicycle 
with 
child, 
carrying 
bags 

On foot On foot 
carrying 
bags 

After reviewing this information concerning the first option, if you want to assess the second 
option, just click the “show on map” button at the right side of Option 2 and you will see the 
following screenshot: 
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In this example, you can see that Option 1 and Option 2 are quite different from each other, 
although they are all “house—office—house”.  

Step 3: Make your choice 

Once you feel ready to make a choice between the various options, you may select an option 
and submit your answer to the simulator. For example, by selecting option1 and subsequently 
clicking the “submit” button, you choose option 1 and finish this task. 

 

Step 4: Repeat the whole process and finish all the other tasks 

After submitting your answer, the simulator will assign a new task to you again. Please be 
aware that in the next task, the activities, the options, and the travel (mode, time and cost) 
may be different from the ones in the previous task. For example, whereas the travel time and 
the travel cost of a particular travel connection in the previous task may have been 30 minutes 
and 5 euro respectively, in the current task these two numbers may become 15 minutes and 3 
euro. Please repeat the process outlined above, finish your current task and be assigned 
another new task, until all the tasks are finished 

Step 5: Make your choice under time pressure 

In the second half of the experiment, the simulator will exert time pressure on you, in the 
sense that you will have to finish choosing a particular option within a certain pre-specified 
amount of time which may vary between tasks (in this example, the time available for you to 
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make your choice is 50 seconds). If you are not able to submit your choice in time, then the 
simulator will automatically and randomly select an option for you. 
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Appendix III: The comparisons between different numbers of random 
draws 

Table A.7: The estimation results of the Mixed Logit model with numbers of random 
draws equal to 1000, 2000, and 3000 respectively 

Nr. of draws 1000 2000 3000 

 adjusted rho-square 0.271 0.271 0.270 

Final log-likelihood  -1108.436 -1109.157 -1110.163 

Parameters Value t-stat. Value t-stat. Value t-stat. 

Mean ( TC ) -0.111 -4.47 -0.114 -4.93 -0.115 -4.75 

Spread ( TC ) (0.111)  (0.114)  (0.115)  

Mean (TT) -0.0488 -5.27 -0.0479 -5.14 -0.0476 -5.10 

Spread(TT) (0.0488)  (0.0479)  (0.476  

Mean (TI ) -0.590 -9.70 -0.580 -10.19 -0.590 -9.72 

Spread( TI ) 0.363 3.41 0.404 -4.44 0.406 4.21 

Mean(Car ) 0  0  0  

Stt.Dev.( Car ) 1.77 5.54 1.72 6.46 1.70 6.07 

 

Table A.8: The estimation results of the Heteroscedastic Mixed Logit model with 
numbers of random draws equal to 1000, 2000, and 3000, respectively 

Nr. of draws 1000 2000 3000 

 adjusted rho-square 0.282 0.281 0.282 

Final log-likelihood  -1088.864 -1090.116 -1089.494 

Parameters Value t-stat. Value t-stat. Value t-stat. 

Mean ( TC ) -0.161 -3.88 -0.160 -3.81 -0.159 -3.88 

Spread ( TC ) (0.161)  (0.160)  (0.159)  

Mean (TT) -0.0671 -3.85 -0.0631 -3.67 -0.0636 -3.67 

Spread(TT) (0.0671)  (0.0631)  (0.0636)  

Mean (TI ) -0.925 -5.35 -0.915 -5.30 -0.938 -5.20 

Spread( TI ) 0.558 3.06 0.582 3.06 0.590 2.63 

Mean(Car ) 0  0  0  

Stt.Dev.( Car ) 3.07 4.48 2.88 4.24 2.92 4.12 

DT  -0.00754 -3.19 -0.00731 -3.11 -0.00745 -3.16 

T  2.58 4.45 2.56 4.44 2.56 4.44 

T  -4.00 -5.01 -3.96 -5.00 -3.96 -5.01 
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Summary 

One of the central aims of transport policy-makers and many transportation researchers is to 
improve accessibility in transportation. It is generally acknowledged that there are essentially 
two ways to achieve improvements in that respect: a first approach is to expand physical 
infrastructure capacity, and a second approach is to increase the efficient use of existing 
infrastructures and transportation services. In many societies, especially highly developed and 
urbanised ones, it is increasingly felt that the former of these two approaches (i.e., expanding 
physical infrastructure) comes with a number of critical disadvantages, such as need for high 
amounts of capital investments, large areas of land use, lengthy period of construction time, 
and relatively large impacts on environment. 

As many of these disadvantages are moderated if not absent in the second approach (better 
use of infrastructure and transportation services), the interest in this approach is growing 
among policy-makers and researchers. Increasing the level of network synchronisation 
through strategies related to improving the interconnectivity of different transportation and 
activity location networks belongs to this approach. Examples are synchronising the time 
tables of different public transportation services or realizing Park and Ride facilities near 
railways stations. In addition, as people travel because they want to conduct an activity at 
another location, also the geographical location of these activity locations may be 
synchronised with transportation networks. Hence, those who advocate this approach believe 
that sustainable accessibility can be enhanced by improving synchronisation, while increasing 
physical infrastructures to only a limited extent (e.g., enhancing interconnectivity between 
different public transport (PT) modes (e.g. train and bus), establishing park and ride facilities 
near train station, and adding or relocating supermarkets or day-care centres with more 
flexible opening hours near train stations, etc.).  

In principle many different synchronisation strategies can be developed, however, it is not yet 
clear how effective each strategy is. As methods to ex-ante evaluate synchronisation strategies 
were largely missing, a Supernetwork model was developed as a first innovative step to 
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understand the synchronisation strategies. An important part of this Supernetwork model is 
concerned with traveller behaviour.  

The underlying assumption of the Supernetwork model is that travellers would be able to 
choose their favourite alternatives from their choice sets independent of choice situations they 
are faced with. However, because of task complexity as induced by synchronisation strategies 
and time pressure travellers may not be able to choose the more effective ways to conduct 
their activity program offered by increased synchronisation. This would mean that potential 
gains in sustainable accessibility of synchronisation strategies as predicted by the 
Supernetwork model may not be reached. Therefore, in the context of modelling choice in 
highly synchronised networks it is important to study the impacts of task complexity and time 
pressure and take these impacts into account while making predictions.   

Given the potential importance of task complexity and time pressure for the prediction of 
travellers’ choices in the context of highly synchronised networks, it is important to study the 
impacts of these two aspects on travellers’ choices in order to improve the evaluations of the 
synchronisation policies in terms of traveller behaviour. However, it is unclear at the moment 
how these two aspects together should be properly modelled in the discrete choice modelling 
framework and what the impacts of these two aspects are on traveller choice. In light of these, 
the following research goals of this thesis are formulated. This research primarily aims: 

To develop coherent discrete choice models that can accommodate the impacts of both task 
complexity and time pressure on travellers’ choices simultaneously; 

To collect relevant data concerning the impacts of task complexity and time pressure on 
travellers’ daily activity-related travel choices in the context of highly synchronised networks; 

To gain insight in traveller behaviour in the context of highly synchronised networks, with an 
emphasis on capturing the possible impacts of task complexity and time pressure.  

Besides these three primary goals, this research also aims as a secondary goal to utilize the 
gained insights to provide the relevant societal implications, in particular with respect to 
policies involving highly synchronised networks. 

To reach the research goals of this thesis, several methods are adopted, including literature 
review, model construction, Stated Preference data collection by using a travel simulator, 
estimating econometric models, and societal implication-related analyses. In particular, the 
paradigm of random utility maximization (RUM) is applied for model construction. Briefly 
stated the RUM assumes that decision makers evaluate and compare all possible alternatives 
known to them and eventually choose the alternative that maximises their utility. In order to 
estimate the developed travel behaviour models, choices travellers make between among 
alternatives need to be observed by adopting Stated Preference (SP) data. More specifically, 
hypothetical alternatives are presented to participants, of which they select the alternative that 
they would choose in real life situations.  

Goal 1 

The Heteroscedastic model, which is tractable, coherent, structurally simple, and easily 
estimable, is constructed to model the impacts of task complexity and time pressure on 
travellers’ choices. In specific, the variance of the random component in the utility function is 
formulated as a function of task complexity and time pressure. Since the variance of the 
random component is confounded with the scale of the utility, this is equivalent to the notion 
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that the scale of the utility is a function of task complexity and time pressure. As each choice 
task may be associated with a different level of task complexity and time pressure, the scale is 
no longer identical for all the choice tasks, which gives rise to a new RUM-based model, 
called Heteroscedastic Logit model. Decision time as a measure of task complexity is an 
appropriate choice for the choice models, as it is intuitive, direct and individualized. As for 
time pressure, this research recommends using a so-called engagement/time pressure index, 
rather than adopting the conventional measure of varied fixed decision time budget, since the 
latter is in comparison to the former not only not individualized (i.e. the time pressure felt by 
one decision-maker may not be transferrable to another with a same fixed decision time 
budget), but too blunt as well since time pressure changes gradually.  

Goal 2 

Given the data requirement, an activity-travel-simulator (ATS) approach is the most suitable 
method for observing those activity-travel choices. Travel simulators have been gaining 
popularity since the mid-1990s with the aim of addressing the issue of validity in collecting 
SP data. Compared with the conventional SP methods, travel simulators usually provide 
illustrative and interactive user interfaces, stimulating respondents to more actively involve 
themselves in the experiment and allowing for easy interactions between respondents and 
experimental conditions. While typically the previously mentioned travel simulators consider 
only single trips, ATS deals with complete daily activity programs, hence with all trips made 
for a whole day.   

In the simulator, participants make choices with respect to the execution of complete activity 
programs. Task complexity is varied by varying across the choice sets both the number of 
activities included in the activity program and the number of activity program executions to 
choose from. In addition, choices are observed for a choice situation without time pressure 
and a situation with time pressure. In total, 194 persons participated in the travel simulator. 
The majority of the participants have a paid job and 85 % of those with paid jobs commute to 
work four days or more per week.  

Two approaches have been taken in this research to validate the ATS. Firstly, as prerequisites 
to induce real behaviours from the experiment participants, they must adequately understand 
the functionality of ATS and the process of the experiment, and preferably enjoy the 
experiment, which are the indications for their engagement in the experiment. The 
self-reported feedbacks from the participants after they complete the experiment are useful to 
demonstrate whether these prerequisites are indeed met or not. The results from the feedbacks 
have shown that the majority of the participants felt that it was easy to understand the travel 
simulator, easy to remain focused during the experiment, the information shown in the 
abstract map was illustrative, the daily activity programs presented in the experiment look 
realistic to them, and it was enjoyable to participate in the experiment. Secondly, using a less 
strict validation a travel simulator may be regarded as a valid way to collect data when it is 
established that observed behaviours made within the simulator resemble intuitions 
concerning what kind of behaviours would be made in real life. The analyses of the data 
generated from the experiment show that the formulated intuitions have been confirmed. 
These intuitions include the ones concerning choice probability (a. the higher the overall 
travel time, the lower the choice probability; b. the higher the overall travel cost, the lower the 
choice probability; c. the larger the total number of travel interchanges, the lower the choice 
probability) and the ones concerning task complexity (a. the larger the number of travel 
alternatives in the choice set, the more decision time used; b. the larger the number of 
activities in the activity program, the more decision time used). Therefore, based on the 
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validity tests conducted for the experiment, it is reasonable to think that ATS is a valid way to 
collect the required SP data.  

Goal 3 

The analyses on the estimation results suggest that the impacts of task complexity and time 
pressure on traveller’s choice do exist. More specifically, the estimate associated with task 
complexity is significant and takes a negative sign. This suggests that the more complex the 
choice task is (as measured in terms of the decision time in the absence of time pressure), the 
smaller the scale of the systematic component of the utility function is, that is more random 
choice. 

Additionally, the estimates associated with time pressure support the hypothesis that the scale 
of the systematic component of the utility function first increases and then decreases as the 
engagement/time pressure index increases. To conclude, 1) travellers’ choices tend to become 
more random when the choice is made at a moment when not much additional time is left for 
decision making (suggesting the presence of time pressure); 2) Very short decision times also 
lead to more random behaviour, although in that case there is no evidence of time pressure 
(interpreted in terms of a lack of engagement with the choice task among those who make a 
choice within a matter of a few seconds after being presented with the choice task ).  

It was hypothesized that there may be an interaction effect between task complexity and 
engagement/time pressure on travellers’ choices. However, in the context of the data collected 
in this research and the models estimated, such an interaction effect was found to be close to 
zero and statistically insignificant. 

On the data, Heteroscedastic models that incorporate the impacts of time pressure and task 
complexity achieve higher levels of model fit than corresponding Homoscedastic models that 
do not accommodate these effects.  

More importantly than these differences in model fit, it is found that choice probability 
predictions differ substantially between estimated Homo- and Heteroscedastic models: the 
former predict much more pronounced differences in choice probabilities between alternatives 
than the latter, when there are relatively high levels of task complexity and time pressure. In 
other words, under these conditions, Heteroscedastic models predict a much more even 
distribution of choice probabilities across choice alternatives, than their Homoscedastic 
counterparts.  

The secondary goal 

This research recommends to include task complexity and time pressure in choice models so 
that more reliable and accurate estimation of the Value of Travel Time Savings (VTTS) and 
the Value of Avoiding a Travel Interchange (VATI) can be achieved. However, it is important 
to realize that these recommendations are deduced from experiments.  

As far as travel information service providers are concerned, it is recommended to upgrade 
their travel information services to a higher level that arranges travel for a whole day (i.e. 
multiple-trip-based travel information service) – the current generation only provides 
single-trip-based travel information. Secondly, it is recommended that travel information 
service providers should at least provide travellers with an option in which travel information, 
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especially multiple-trip-based travel information, can be conveyed in a way similar to the 
augmented-map-based format as used in this research. 

Thirdly, it is concluded that the supply of travel information to travellers should be limited, as 
too much of it may result in an increase of randomness in choice. However, to reduce the 
complexity of choice task to the extreme of only one single alternative left in the choice set 
may also be undesirable, as traveller may still crave for the liberty to choose rather than being 
told what to do. Therefore, it is important to achieve a balance between the oversupply of 
travel information and the provision of traveller’s liberty to choose.  

Avenue for further research 

Firstly, the Heteroscedastic models specified in this research can well accommodate the 
impacts of task complexity and time pressure on travellers’ choices. The decision rule 
assumed by these models is linear additive utility maximisation-based, implying that even if 
task complexity and time pressure levels are high, travellers would always adopt this same 
decision rule to make their choices. There is some literature that suggests that this may not 
necessarily be the case. Notwithstanding the fact that the Heteroscedastic Logit model 
performs adequately when accommodating the impacts of task complexity and time pressure, 
it would be interesting to construct models that adopt decision rules other than the linear 
additive utility maximisation-based one, which may provide additional insights into the 
impacts of task complexity and time pressure on travellers’ choices.  

Secondly, notwithstanding the overall legitimacy of the travel simulator approach, there are 
some points in the detailed design of the experiment that can be further improved. It is evident 
that the result of the time factors looks arbitrary. By design the possibility of observing the 
extreme cases of ultimate time pressure experience was excluded. With hindsight, the setup 
should have been better – for reasons for creating more random variations in experimental 
conditions – to randomly vary the values of the time factor across and within tasks, as this 
would have allowed for a more efficient simultaneous identification of engagement/time 
pressure effects and task complexity effects (since the latter also vary between tasks but not 
within tasks). With this improvement of design, some experiment participants would have 
experienced much more intense time pressure situations, and some would much less to the 
extent as if there were no time pressure at all. In other words, the engagement/time pressure 
effect as found in this research may be underestimated. Thus, in light of these considerations, 
the experiment design needs further improvement. 

Thirdly, the Mixed Logit model has four random tastes in the formulation. If there is more 
than one random taste in a Mixed Logit model, there may exist correlation of random 
parameters of attributes that are common across alternatives. However, it is pragmatically 
assumed in this research that the four random tastes are independent from each other, the 
practise of which is found not uncommon in empirical modelling in literature. Thus, the 
correlations of the random parameters have not been tested and maintain a venue for further 
research.  

Finally, several additional directions for future research are recommended. More research 
attention is recommended to be paid to the use of the activity-travel information services from 
both travel information service providers and academia. Moreover, to achieve a balance 
between the oversupply of travel information and the provision of traveller’s liberty to choose 
warrants further research to draw to a clear relevant conclusion. 
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Samenvatting 

Eén van de centrale doelen van beleidsmakers en transportwetenschappers is het vergroten 
van de bereikbaarheid. In principe zijn er twee manieren om dit te bereiken: door de capaciteit 
van de fysieke infrastructuur uit te breiden of door de bestaande infrastructuur en 
transportdiensten beter te benutten. In veel samenlevingen, en in ontwikkelde en 
verstedelijkte samenlevingen in het bijzonder, wordt de eerste manier meer en meer gezien als 
één die gepaard gaat met een aantal kritieke nadelen, zoals de noodzaak voor grote 
investeringen, het beslag op de bestaande ruimte, de lange constructieduur en de relatieve 
grote milieueffecten.    

Sinds veel van deze nadelen gemitigeerd of afwezig zijn binnen de tweede benadering (het 
efficiëntere gebruik van bestaande infrastructuur en transportdiensten), krijgt deze in 
toenemende mate de aandacht van beleidsmakers en onderzoekers. Eén van de strategieën die 
hoort bij deze aanpak is het vergroten van de mate van netwerksynchronisatie, wat mogelijk is 
door de interconnectiviteit van verschillende transport en activiteitenlocatie netwerken te 
verbeteren. Voorbeelden zijn het synchroniseren van reisschema ’ s van openbaar 
vervoersdiensten of het realiseren van Park & Ride voorzieningen naast een treinstation. 
Omdat mensen reizen om een bepaalde activiteit uit te voeren op een andere locatie, kan 
synchronisatie ook bereikt worden door de geografische locatie van activiteiten af te stemmen 
met transportnetwerken. Diegenen die deze aanpak voorstaan geloven dat duurzame 
bereikbaarheid bereikt kan worden door verbeterde synchronisatie, wat slechts minimale 
infrastructurele aanpassingen vereist (e.g. het verbeteren van de interconnectiviteit tussen 
verschillende openbaar vervoersdiensten (trein en bus), het implementeren van Park & Ride 
voorzieningen bij treinstations, en het toevoegen of verplaatsen van supermarkten of 
kinderopvangen met meer flexibele openingstijden nabij treinstations). 

In principe kunnen veel verschillende synchronisatiestrategieën ontwikkeld worden. Het is 
echter niet duidelijk hoe effectief iedere strategie is. Omdat methoden om 
synchronisatiestrategieën ex ante te evalueren niet bestaan, is als eerste innovatieve stap een 



94                            Task Complexity and Time Pressure: Impacts on Activity-Travel Choices 

supernetwerk model ontwikkeld om synchronisatiestrategieën beter te begrijpen. Een 
belangrijk deel van dit supernetwerk model heeft betrekking op reisgedrag. 

De onderliggende assumptie van het supernetwerk model is dat reizigers in staat zijn om hun 
favoriete alternatief te kiezen uit hun keuzesets onafhankelijk van de keuzesituaties waarmee 
ze geconfronteerd worden. Omdat synchronisatiestrategieën leiden tot een grotere 
taakcomplexiteit en tijdsdruk, is het echter mogelijk dat reizigers niet in staat zijn om de 
effectievere manieren om hun activiteitenprogramma uit te voeren te kiezen (die voorvloeien 
uit de toegenomen synchronisatie). Dit zou betekenen dat de potentiële winsten van 
synchronisatiestrategieën in termen van duurzame bereikbaarheid, zoals voorspeld door het 
supernetwerk model, niet gerealiseerd worden. In de context van het modelleren van keuzes in 
sterk gesynchroniseerde netwerken is het daarom belangrijk om de effecten van 
taakcomplexiteit en tijdsdruk te onderzoeken en hun effecten mee te nemen in het doen van 
voorspellingen. 

Gegeven het potentiële belang van taakcomplexiteit en tijdsdruk voor de voorspelling van 
reizigerskeuzes in de context van sterk gesynchroniseerde netwerken, is het van belang om de 
effecten van deze twee aspecten op de reizigerskeuzes te onderzoeken om zo tot betere 
evaluaties te komen van synchronisatiemaatregelen in termen van reisgedrag. Op dit moment 
is het echter onduidelijk hoe deze twee aspecten op de juiste wijze gemodelleerd kunnen 
worden binnen het raamwerk van discrete keuzemodellen en wat de invloeden van deze twee 
aspecten op reizigerskeuzes zullen zijn. Tegen deze achtergrond zijn de volgende 
onderzoeksdoelen geformuleerd: 

Het ontwikkelen van coherente keuzemodellen die de invloeden van zowel taakcomplexiteit 
als tijdsdruk op de reizigerskeuzes tegelijkertijd kunnen accommoderen. 

Het verzamelen van relevante data aangaande de invloeden van taakcomplexiteit en tijdsdruk 
op de dagelijkse activiteit-gerelateerde reiskeuzes van reizigers in de context van sterk 
gesynchroniseerde netwerken. 

Het krijgen van inzicht in reisgedrag in de context van sterk gesynchroniseerde netwerken, 
met een nadruk op het vaststellen van de mogelijke invloeden van taakcomplexiteit en 
tijdsdruk. 

Naast deze drie primaire doelen, heeft dit onderzoek als tweede en secundaire doel om de 
verkregen inzichten te vertalen naar maatschappelijk relevante implicaties, specifiek in 
relatie tot beleid op het gebied van sterk gesynchroniseerde netwerken. 

Om deze doelen te bereiken zijn de volgende methoden toegepast: een literatuurstudie, 
modelconstructie, verzameling van Stated Preference data middels een reissimulator, 
schatting van econometrische modellen, en maatschappelijke implicatie analyses. De 
modelconstructie is gebaseerd op het paradigma van random utility maximization (RUM). 
Kortgezegd veronderstelt RUM dat reizigers alle mogelijke alternatieven kennen, evalueren 
en vergelijken en uiteindelijk het alternatief kiezen dat hun nut maximaliseert. Om de 
ontwikkelde reisgedrag modellen te schatten, moeten de keuzes die reizigers maken 
geobserveerd worden door middel van een Stated Preference (SP) survey. Binnen een 
dergelijk survey worden hypothetische alternatieven aan reizigers voorgelegd en wordt hen 
gevraagd om het alternatief te kiezen dat zij in de werkelijkheid waarschijnlijk zouden kiezen. 
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Doel 1 

Om de invloeden van taakcomplexiteit en tijdsdruk op de reizigerskeuzes te modelleren is een 
heteroscedastisch model geconstrueerd dat handelbaar, coherent, structureel simpel en 
makkelijk schatbaar is. Binnen dit model is de variantie van de error component in de 
nutsfunctie geformuleerd als een functie van de taakcomplexiteit en de tijdsdruk. Omdat de 
variantie van de error component gecorreleerd is met de schaal van het nut, is dit equivalent 
aan het idee dat de schaal van het nut een functie is van de taakcomplexiteit en de tijdsdruk. 
Gegeven dat elke keuzetaak gepaard kan gaan met een verschillende mate van 
taakcomplexiteit en tijdsdruk, is de schaal niet langer identiek voor alle keuzetaken. Dit levert 
een nieuw RUM-gebaseerd model op, namelijk het Heteroscedastic Logit model. De tijd die 
nodig is om een keuze te maken kan als een geschikte indicator worden beschouwd voor de 
mate van taakcomplexiteit in keuzemodellen, omdat deze intuïtief, direct en 
geïndividualiseerd is. Voor de tijdsdruk beveelt dit onderzoek aan om een zogenaamde 
betrokkenheid/tijdsdruk index te gebruiken, in plaats van een conventionele indicator van 
gevarieerde vaste keuzebudgettijd. De conventionele indicator is ten opzichte van deze index 
niet alleen niet-geïndividualiseerd (i.e. de tijdsdruk die iemand voelt is niet per se 
overdraagbaar naar iemand anders met dezelfde vaste keuzebudgettijd), maar ook te grof 
omdat de tijdsdruk gradueel verandert. 

Doel 2 

Gegeven de datavoorwaarden, is een activiteit-reis-simulator (ATS) aanpak de meest 
geschikte methode om de activiteit-mobiliteit keuzes te oberserven. Reissimulatoren die als 
doel hebben om de validiteit van SP-data te vergroten zijn sinds het midden van de jaren 90 
steeds populairder worden. In vergelijking met conventionele SP methoden hanteren 
reissimulatoren illustratieve en interactieve gebruikersinterfaces waardoor respondenten 
gestimuleerd worden om meer betrokken te zijn bij het experiment en zorgen ze er ook voor 
dat respondenten makkelijk met de experimentele condities kunnen interacteren. Hoewel 
reissimulatoren in het verleden alleen enkele trips beschouwden, kan de ATS omgaan met 
volledige dagelijkse activiteitenprogramma’s, dus met alle trips voor een gehelde dag. 

In de simulator maken participanten keuzes met betrekking tot de uitvoering van complete 
activiteitenprogramma’s. Taakcomplexiteit is gevarieerd door zowel het aantal meegenomen 
activiteiten in het activiteitenprogramma als het aantal activiteitenprogramma uitvoeringen 
waaruit gekozen kon worden te variëren tussen keuzesets. Keuzes worden daarnaast 
geobserveerd voor een keuzesituatie zonder tijdsdruk en een situatie met tijdsdruk. In totaal 
hebben 194 personen deelgenomen aan de reissimulator. De meerderheid van de participanten 
heeft een betaalde baan en 85% van diegene met een betaalde baan reizen vier of meer dagen 
per week naar het werk. 

Er zijn twee aanpakken gehanteerd om de ATS te valideren. Als voorwaarden om reëel 
gedrag uit het experiment af te leiden, moesten participanten allereerst goed de functionaliteit 
van ATS en het proces van het experiment begrijpen. Daarnaast moesten ze het bij voorkeur 
ook leuk vinden om te doen. Dit zijn indicatoren voor hun betrokkenheid bij het experiment. 
De zelf-gerapporteerde terugkoppeling van de participanten, nadat zij het experiment hadden 
afgerond, zijn gebruikt om aan te tonen of aan deze voorwaarden inderdaad is voldaan. De 
resultaten van de reacties tonen aan dat de meerderheid van de participanten de reissimulator 
makkelijk vond om te begrijpen en ook dat het makkelijk was om gefocust te blijven tijdens 
het experiment. Ook vonden de participanten de getoonde informatie in de abstracte kaart 
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illustratief en werden de dagelijkse activiteitenprogramma’s realistisch bevonden. De 
meerderheid vond het ook leuk om deel te nemen aan het experiment. Ten tweede, als een 
minder strikte vorm van validatie kan gesteld worden dat een reissimulator valide is als 
vastgesteld kan worden dat de geobserveerde gedragingen intuïtief overeenkomen met de 
gedragingen die men zou kunnen verwachten in de werkelijkheid. De analyse van de door het 
experiment gegenereerde data laat zien dat de geformuleerde intuïties bevestigd worden. Deze 
intuïties omvatten diegene die betrekking hebben op de keuzekansen (a. hoe hoger de 
algemene reistijd, hoe lager de keuzekans; b. hoe hoger de algemene kosten, hoe lager de 
keuzekans; c. hoe groter het totaal aantal knooppunten, hoe lager de keuzekans) en diegene 
die betrekking hebben op de taakcomplexiteit (a. hoe groter het aantal reisalternatieven in de 
keuzeset, hoe hoger de gebruikte beslissingstijd; b. hoe groter het aantal activiteiten in het 
activiteitenprogramma, hoe hoger de gebruikte beslissingstijd). Op basis van de uitgevoerde 
validiteitstesten is het daarom aannemelijk om te denken dat ATS een valide manier is om de 
benodigde SP data te verzamelen. 

Doel 3 

De analyses van de schattingsresultaten suggereren dat er inderdaad invloed uitgaat van 
taakcomplexiteit en tijdsdruk op de keuzen van reizigers. Specifieker gesteld: de schatting 
gerelateerd aan taakcomplexiteit is significant en heeft een negatief teken. Dit suggereert dat 
hoe ingewikkelder de taak is om te kiezen (gemeten in de tijd nodig om te besluiten terwijl er 
geen tijdsdruk is), des te kleiner de schaal van de systematische component in de 
utiliteitsfunctie is; het wordt meer een willekeurige keuze.  

Daarnaast ondersteunen de schattingen gerelateerd aan tijdsdruk de hypothese dat de schaal 
van de systematische component van de utiliteitsfunctie eerst toeneemt en dan afneemt 
naarmate de betrokkenheid/tijdsdrukindex toeneemt. Concluderend: 1) reizigers maken 
willekeurigere keuzen op momenten dat er weinig extra tijd over is om een beslissing te 
nemen ( wat de aanwezigheid van tijdsdruk suggereert); 2) zeer korte besluittijden leiden ook 
tot willekeuriger keuzen wanneer er geen bewijs van tijdsdruk is (geïnterpreteerd als een 
gebrek van betrokkenheid bij de keuzetaak bij diegenen die een keuze maken binnen enkele 
seconden nadat de keuzetaak aan ze is gepresenteerd). 

De hypothese was dat er een interactie-effect op de keuzen van reizigers zou kunnen zijn 
tussen taakcomplexiteit en betrokkenheid/tijdsdruk. In de context van de dataverzameling in 
dit onderzoek en de daarop geschatte modellen werd echter een interactie-effect aangetoond 
dat dicht bij nul lag en statistisch insignificant was.  

Gerelateerd aan de data bereiken heteroscedastische modellen die de effecten van 
taakcomplexiteit en betrokkenheid/tijdsdruk meenemen hogere niveaus van modelfit dan 
overeenkomende homoscedastische modellen die deze effecten geen plaats kunnen geven. 

Belangrijker dan dit verschil in modelfit is dat de voorspellingen van keuzewaarschijnlijkheid 
substantieel verschillen tussen de homo- en heteroscedastische modellen: de eerstgenoemde 
modellen voorspellen geprononceerdere verschillen in keuzewaarschijnlijkheden tussen 
alternatieven dan de tweede-genoemde indien er relatief hoge niveaus van taakcomplexiteit en 
tijdsdruk zijn. Heteroscedastische modellen voorspellen onder deze condities met andere 
woorden een veel gelijkmatigere verdeling van keuzewaarschijnlijkheden over 
keuzealternatieven dan de homoscedastische tegenhangers. 
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Het secundaire doel 

Dit onderzoek beveelt aan om taakcomplexiteit en tijdsdruk mee te nemen in keuzemodellen 
zodat betrouwbaardere en accuratere schattingen gemaakt kunnen worden van de  ‘waarde 
van reistijdbesparing’ en de ‘waarde van het vermijden van een overstap tijdens een reis’. Het 
is echter belangrijk te realiseren dat deze aanbevelingen zijn afgeleid uit experimenten. 

Met betrekking tot aanbieders van reisinformatie wordt aanbevolen om de reisinformatie op te 
vijzelen naar een hoger niveau waarbij reizen gedurende een gehele dag gepland kunnen 
worden (met andere woorden reisinformatiediensten voor meervoudige verplaatsingen) – de 
huidige generatie levert uitsluitend informatie voor enkelvoudige verplaatsingen. Ten tweede 
wordt aanbevolen dat aanbieders van  reisinformatie op zijn minst reizigers de optie 
aanbieden waarbij ze reisinformatie, vooral voor meervoudige verplaatsingen, kunnen 
ontsluiten op een manier zoals gebruikt in dit onderzoek waarbij aan kaarten informatie is 
toegevoegd (‘augmented-map-based formats’).  

Ten derde wordt geconcludeerd dat het aanbod van reisinformatie beperkt zou moeten blijven 
omdat teveel informatie zou kunnen leiden tot een toename van willekeur in de keuzen. Aan 
de andere kant kan het reduceren van de keuzetaakcomplexiteit tot slechts één alternatief in de 
keuzeset ook ongewenst zijn omdat reizigers toch hechten aan de vrijheid om te kunnen 
kiezen in plaats van dat ze wordt verteld wat ze moeten doen.  

Richtingen voor verder onderzoek 

De heteroscedastische modellen zoals gespecifieerd in dit onderzoek kunnen op de eerste 
plaats goed de effecten van taakcomplexiteit en tijdsdruk op de keuzen van reizigers 
accommoderen. De veronderstelde beslisregel in deze modellen is gebaseerd op lineaire 
additieve nutsmaximalisatie, die inhoudt dat zelfs bij hoge niveaus van taakcomplexiteit en 
tijdsdruk reizigers altijd dezelfde beslisregel hanteren wanneer ze een keuze maken. Er is 
literatuur die suggereert dat dit niet noodzakelijkerwijs het geval is. Niettegenstaande het feit 
dat het heteroscedastische logit model adequaat presteert bij het accommoderen van de 
effecten van taakcomplexiteit en tijdsdruk zou het interessant kunnen zijn modellen te maken 
die andere beslisregels hanteren dan de lineaire additieve nutsmaximalisatie. Dit zou 
aanvullende inzichten kunnen  opleveren in het effect van taakcomplexiteit en tijdsdruk op 
de keuzen van reizigers.    

Niettegenstaande de in zijn algemeenheid geldende redelijkheid van de reissimulatoraanpak is 
er een aantal punten in het gedetailleerde ontwerp van het experiment dat kan worden 
verbeterd. Het is duidelijk dat de resultaten van de tijdsfactoren arbitrair lijken. In het ontwerp 
werd de mogelijkheid uitgesloten om extreme casussen van ultieme tijdsdruk te kunnen 
observeren. Met de wijsheid van nu zou de opzet van het experiment verbeterd kunnen 
worden – met als reden het creëren van meer random variatie in de experimentele condities -  
door het random variëren van de tijdsfactorwaarden tussen en binnen taken omdat deze opzet 
het mogelijk zou hebben gemaakt om betrokkenheid/tijdsdrukeffecten en 
taakcomplexiteitseffecten efficiënter tegelijkertijd te kunnen identificeren (omdat de 
laatstgenoemde soort van effect varieert tussen taken maar niet binnen taken). Met deze 
verbetering in het ontwerp zouden sommige deelnemers aan het experiment intensere 
tijdsdruksituaties hebben ondervonden, en sommigen veel minder tot de situatie alsof er totaal 
geen tijdsdruk was. Het betrokkenheid/tijdsdrukeffect zoals aangetoond in dit onderzoek is, 
met andere woorden, mogelijk onderschat. In het licht van deze overwegingen is het nodig, 
kortom, om het ontwerp van het experiment verder te verbeteren. 
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Ten derde, de mixed logit model heeft vier random smaken. Als er meer dan één random 
smaak aanwezig is in een mixed logit model zou er correlatie kunnen zijn tussen random 
parameters van attributen die gemeenschappelijk zijn bij alternatieven. Vanuit pragmatische 
overwegingen is verondersteld dat de vier random smaken onafhankelijk zijn van elkaar. Deze 
praktijk is niet ongewoon in de literatuur van empirische modelering. De correlatie van de 
random parameter is dus niet getest en vormt een terrein voor verder onderzoek. 

Tenslotte worden verscheidene aanvullende richtingen voor verder onderzoek aanbevolen. 
Meer aandacht wordt aanbevolen naar onderzoek van het gebruik van 
activiteit-reisinformatiediensten zowel bij reisinformatiedienstverleners als in de academische 
wereld. Bovendien vergt het bereiken van een evenwicht tussen enerzijds een overaanbod van 
reisinformatie en anderzijds de voorziening dat reizigers vrijheid hebben om te kiezen nader 
onderzoek.  
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