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Summary

Global Nonlinear Model Identification

with Multivariate Splines

At present, model based control systems play an essential role in many aspects of

modern society. Application areas of model based control systems range from food

processing to medical imaging, and from process control in oil refineries to the flight

control systems of modern aircraft. Central to a model based control system is a

mathematical model of the physical system or process that is being controlled. The field

of science concerned with the identification of models of physical systems is called system

identification. In this thesis, a new methodology is proposed for the identification of models

of nonlinear systems using multivariate simplex splines. This new methodology has the

potential to increase the performance of any model based control system by improving the

quality of system models.

Modeling systems with nonlinear dynamics is a challenging task, and currently only

a handful of methods exist that are capable of creating sufficiently accurate models of

such systems. The four most widely known of these methods are neural networks, kernel

methods, polynomial blending methods, and tensor product spline methods. All these

methods are able to produce models of an arbitrarily high approximation power on a

global model scale. However, these methods currently suffer from a number of inherent

shortcomings. Neural networks are essentially black-box models and use global basis

functions, resulting in complex, nontransparent, and inefficient computational schemes for

their training and evaluation. Kernel methods are non-parametric in nature, which means

that in principle there are as many kernel functions as there are data points, leading to

inefficient computational schemes for large datasets. Polynomial blending methods use

fuzzy logic techniques to blend local polynomial models into a single global model. The

tuning of the fuzzy blending operation is done based on expert knowledge, with the result

that it is unlikely to ever become a fully automated technique. Polynomial spline methods
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have been successfully used in the past for the modeling of nonlinear systems. However,

these spline methods employed multivariate tensor product B-splines which are limited to

rectangular domains, and are incapable of fitting widely occurring scattered data.

The new methodology proposed in this thesis is based on multivariate simplex splines,

which are a recent type of multivariate spline that have a number of important advantages

over the above mentioned methods. Firstly, simplex splines have a local polynomial

basis, which implies that only small subsets of parameters and basis polynomials need

to be considered during estimation and evaluation, resulting in efficient computational

schemes. Secondly, simplex spline models are parametric models, which allows for

efficient approximation of very large datasets. Thirdly, the simplex splines are linear in

the parameters, meaning that linear regression methods can be used for their estimation.

Fourthly, the simplex splines are defined on non-rectangular domains and can be used to

approximate scattered data. And finally, the quality of simplex spline based models can be

assessed using a number of unique and powerful model quality assessment methods.

Multivariate simplex splines consist of polynomial basis functions, called B-form

polynomials, which are defined on geometric structures called simplices. Every simplex

supports a single B-form polynomial which itself consists of a linear combination of

Bernstein basis polynomials. Each individual Bernstein basis polynomial is scaled by a

single coefficient called a B-coefficient. The B-coefficients have a special property in the

sense that they have a unique spatial location inside their supporting simplex. This spatial

structure, also known as the B-net, provides a number of unique capabilities that add to the

desirability of the simplex splines as a tool for data approximation. For example, the B-net

simplifies local model modification by directly relating specific model regions to subsets of

B-coefficients involved in shaping the model in those regions. This particular capability has

the potential to play an important role in future adaptive model based control systems. In

such a control system, an on-board simplex spline model can be locally adapted in real time

to reflect changes in system dynamics.

The approximation power of the multivariate simplex splines can be increased by

joining any number of simplices together into a geometric structure called a triangulation.

Triangulations come in many shapes and sizes, ranging from configurations consisting of

just two simplices to configurations containing millions of simplices. Triangulations can be

optimized by locally increasing or decreasing the density of simplices to reflect local system

complexity. In principle, the total number of simplices in a triangulation is bounded only by

the available computational resources. This thesis shows, however, that there is an important

practical limit to the size and resolution of a triangulation. This practical limit is the result

of every simplex requiring a minimum data content which is determined by the degree and

continuity order of the basis polynomials. It was shown in this thesis that this data coverage

problem requires a new approach towards triangulation optimization, as methods in the

existing literature do not consider per-simplex data coverage as an optimization parameter.

The newly proposed method for triangulation optimization produces triangulations that are
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specifically suited for use with simplex splines by ensuring that every individual simplex in

a triangulation contains a minimum amount of data.

While multivariate simplex splines have been used in the past to model scattered

nonlinear data in two and three dimensions, no methodology existed for their use inside

a framework for system identification. The unique properties of the simplex splines,

together with the above mentioned advantages over existing data approximators, makes

them highly desirable for use within such a framework. It is the main objective of this

thesis to present a new methodology for system identification based on multivariate simplex

splines. This new methodology encompasses the three main aspects of system identification;

model structure selection, parameter estimation, and model validation. The aspect of

model structure selection for the multivariate simplex splines consists of two parts. The

first part is the geometric model structure selection which consists of the selection of

the spline model dimensions and the creation of a triangulation embedded in this set of

dimensions. The second part is the determination of the polynomial model structure. For

the aspect of parameter estimation, a new formulation of the standard linear regression

model structure was developed. In this formulation, the B-form polynomials of the simplex

splines form the regressors. Using the new regression model structure, a number of different

parameter estimation techniques can be employed to estimate the B-coefficients of the B-

form polynomials. This thesis introduces two such methods for parameter estimation. The

first is a generalized least squares estimator, which enables the estimation of B-coefficients

on simplices containing measurement noise of varying magnitudes. The second parameter

estimator is a differentially constrained recursive least squares estimator which allows,

in real-time, the reconfiguration of spline models using incoming observations. During

the aspect of model validation, the quality of the estimated spline models is assessed

using existing methods based on an analysis of model residuals and parameter variances.

Additionally, a number of completely new quality assessment methods are enabled by

the use of the B-form polynomials. For example, the variances of the B-coefficients can

be pinpointed to specific locations within the model. This means that regions of high

parameter variance can be isolated within the global model and subjected to further analysis.

These unique and powerful properties together may result in a new perspective on system

identification and parameter estimation, potentially leading to further innovations in the

field.

This thesis introduces three major theoretical innovations in the field of multivariate

spline theory. These innovations were essential in the creation of an effective method for

system identification with simplex splines. The first of these innovations was the definition

of the differential constraints, which are used to constrain the directional derivatives of the

simplex splines at selected locations within the spline domain. The differential constraints

enable bounded model extrapolation and limit polynomial divergence near the bounds of the

spline domain. Additionally, the differential constraints can be applied to impose boundary

conditions like Dirichlet or Cauchy conditions on the simplex spline functions, thereby
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enabling the approximation of solutions to boundary value problems using simplex splines.

The second innovation was the development of a theory for the quantification of B-net

propagation, a new effect observed in large scale triangulations. B-net propagation is the

spreading of local disturbances from the B-net of one simplex to that of its neighbors. It

was proved that B-net propagation effectively transforms a simplex spline function from a

local approximator into an global approximator if its continuity order is high with respect

to its polynomial degree, and when it is defined on the most widely used triangulation type.

A final innovation was a new formulation of the B-form in global Cartesian coordinates

instead of local barycentric coordinates. The Bernstein basis polynomials of the simplex

splines are functions in terms of local barycentric coordinates, which means that their global

interpretation is meaningless. The new formulation of the B-form polynomials in global

coordinates adds a global interpretation capability. Additionally, and more importantly, the

new formulation enables the optimization of triangulation and B-coefficients in a single

step, thereby avoiding the need for separate triangulation optimization.

Aircraft aerodynamics are notoriously nonlinear, and the identification of accurate

aerodynamic models from flight data has historically been a challenging task. Aerodynamic

models are crucial in the correct functioning of flight simulators and flight control systems.

The higher the quality of an aerodynamic model, the more accurate its predictions on the

aerodynamic forces and moments acting on an aircraft. For flight simulator applications,

this directly translates into increased simulator fidelity, and consequently a better training

environment for pilots. For flight control systems this results in a more accurate reference

signal tracking performance, and an increased tolerance to damage events. Ultimately,

high quality aerodynamic models have an important societal relevance by benefiting flight

safety. The societal relevance of accurate aerodynamic models, together with the technical

challenge of their identification from flight data, presents the ideal case for demonstrating

the new methodology proposed in this thesis.

Two identification experiments in the field of aerodynamic model identification were

conducted with the new methodology. The first experiment was the identification of

an aerodynamic model for the F-16 fighter aircraft using a NASA wind tunnel dataset.

The internal structure of this wind tunnel model was known, and as such it provided a

controlled environment for testing and validating the new methodology. In the second

identification experiment a complete set of aerodynamic models for the Cessna Citation

II laboratory aircraft were identified using flight data obtained during seven test flights

conducted between 2006 and 2010. In total, 247 flight test maneuvers were flown which

together provided a significant coverage of the flight envelope of the Citation II. The

complete identification dataset consisted of millions of measurements on more than sixty

flight parameters. For this real-life experiment it was necessary to consider the aspects

of model structure selection, parameter estimation, and model validation. The geometric

model structure selection was performed using a novel approach based on the occurrence

of hysteresis in the time trace of the aerodynamic force and moment coefficients. Using
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the hysteresis analysis method, a number of candidate dimension sets was defined. For

each candidate dimension set, a triangulation of the hypercube was created that minimally

envelopes the flight test data. The polynomial model structure was selected by validating

the performance of a number of prototype simplex spline functions of different degree and

continuity order on the hypercube triangulation. More than 2000 prototype spline models

were identified using a newly developed, highly optimized software implementation of

the simplex spline identification algorithm. The final geometric and polynomial model

structures were selected based on the further optimization of the best performing prototype

model.

The identified simplex spline based aerodynamic models are phenomenological models,

that is, models that are based directly on observational data. Using the developed methods

for simplex spline model validation it is proved that the models are both accurate and of

guaranteed numerical stability inside the spline domain. The identification and validation

results of the simplex spline models were compared with those of ordinary polynomial

models identified using standard identification methods. These results showed that the

multivariate simplex spline based aerodynamic models were of significantly higher quality

than the aerodynamic models based on ordinary polynomials.

The research performed in the framework of this thesis leads to three principal

recommendations. First, it was found that the greatest practical limit in the application

of multivariate simplex splines in real life data approximation is per-simplex data coverage.

To alleviate this problem, and further improve the practical utility of the simplex splines,

a software tool should be developed for checking, in real time, the coverage of the system

operating domain with measurements. In the case of aerodynamic model identification,

such a software tool would provide cues to the pilots for executing specific maneuvers.

The second recommendation is that a general triangulation optimization method should be

developed that is specifically suited for system identification with simplex splines. Such

a method could be based on the global formulation of B-form polynomials provided in

this thesis, and would close an important gap in current simplex spline theory. A final

recommendation is a real-life implementation of an adaptive model based control system

which employs the recursive B-coefficient estimator introduced in this thesis. For aerospace

applications, this would result in a fault tolerant flight control system with a built in flight

envelope prediction functionality. Installed in future aircraft, simplex spline adaptive model-

based flight control systems could increase flight safety by turning catastrophic events into

survivable incidents thereby saving human lives.
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Chapter 1

Introduction

1.1 Modeling Reality

A model is an abstraction of physical reality in which mathematics are used to reduce

the complexity of reality into a conceptual structure [79]. It is in the approach towards

this abstraction that there exist two different philosophies, which are the phenomenological

modeling approach on the one hand and the physical modeling approach on the other. Both

approaches have an identical goal, which is achieving the most accurate approximation to

physical reality that produces the best possible predictions using the simplest possible model

structure.

The physical modeling approach can be classified as a ‘theory first’ approach in which

model structure and dynamics are derived directly from a set of first principles in the form

of the laws of physics. The phenomenological modeling approach is a more pragmatic one,

an ‘observation first’ approach, in which empirical observations of phenomena are linked

together using a mathematical structure which is not directly reducible to first principles

[78, 79, 83]. The phenomenological modeling approach has proven itself as a powerful tool

when the underlying principles of a system are unknown. The difference between the two

approaches is therefore that the physical modeling approach requires a firm foundation on

the fundamental laws of physics, while the phenomenological approach does not require

such a foundation.

While both model approaches have been used successfully throughout history, the phys-

ical model approach has invariably been valued more than the phenomenological approach.

Because the physical model approach is based on the laws of physics, it is assumed to

produce models that achieve a higher power of prediction than phenomenological models,

which do not have such a deep underlying philosophy. The physical model approach has
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Figure 1.1: An example of a model based on an erroneous first principle: The

Ptolemaic cosmological model in which planets move on epicycles which move

on deferents. The deferents are centered on the center of the cosmos which lies

exactly in between the Earth and an equant.

an inherent pitfall, however, and that is the presumed absoluteness of its first principles1

[79]. When a new observation on some physical phenomenon indicates that a first principle

is incomplete, or even erroneous, then all models built upon that principle are invalidated.

In the best case the first principles are modified or extended to fit the new observations.

In the worst it can lead to the outright rejection of observational disproof of the principle,

potentially leading to centuries of scientific stagnation.

An illustrative example of how an erroneous first principle can lead to such stagnation

is the Ptolemaic model of the Solar System (Figure 1.1). The Ptolemaic model of the

solar system was based on first principles postulated by the influential Greek philosopher

Aristotle (384 BC322 BC) in his cosmology. Aristotle’s first principles on cosmology

assumed that all celestial bodies moved on perfect circles around the Earth, and that

the Earth was the center of the cosmos [120]. Created by the Greek astronomer

and mathematician Ptolemy (ca.90-ca.168), the Ptolemaic model of the solar system

was based on the astronomical and mathematical knowledge accumulated over 1000

years by the Sumerians of Mesopotamia and Ptolemy’s predecessor Hipparchos [170].

Hipparchos(ca.190 BC−ca.120 BC) had earlier discovered that the orbit of the moon was

eccentric, which was in contradiction with Aristotle’s first principles on cosmology [206].

1Edmund Husserl, founder of phenomenology, states in his Amsterdam Lectures “The sense of this method

[phenomenology] in men like Mach and Hering lay in a reaction against the threatening groundlessness of

theorizing in the exact natural sciences.”[79]
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Hipparchos had solved the problem by assuming that the moon moved on an epicycle,

which was a secondary smaller circular orbit superimposed on its main orbit, called the

deferent (Figure 1.1). Over the centuries astronomers had discovered that not only the orbit

of the Moon, but also the orbits of the planets were eccentric. Ptolemy found that these

eccentricities could not be modeled with any accuracy using Hipparchos’ model. Rather

than questioning the truth of Aristotle’s first principles, Ptolemy solved the problem by

adding one new entity to Hipparchos’ model structure in the form of the equant. By adding

additional equants to the epicycles of the planets, Ptolemy could increase the accuracy of

his model such that the error between the predicted and observed angle of longitude of a

planet was never larger than 10 minutes of arc2 [116].

It would be another fifteen centuries before Aristotle’s first principles were finally

falsified by observational evidence. In January 1610, Galileo Galilei (1564-1642) had

pointed his self-made telescope at the planet Jupiter and discovered its four moons [62, 48].

These four moons did not orbit the central sphere of the cosmos as Aristotelian cosmology

dictated, but another planet. Galileo continued his observations and using telescopes of ever

increasing power he discovered the four phases of the planet Venus, which proved that the

Sun was the actual center of the Solar System [48].

Ptolemy’s model of the cosmos would be superseded by Johannes Kepler’s (1571−1630)

laws of planetary motion [212]. Kepler’s laws of planetary motion were phenomenological

in nature as they were not based on any first principle. Kepler’s second law3 (the Area Law)

was exact, however, and would be proved by Isaac Newton 70 years later using his laws of

gravity and motion.

In this thesis a case is made for a balanced approach towards the physical and the

phenomenological modeling philosophies. While the physical approach can result in models

with a higher power of prediction than phenomenological models, it also assumes that the

underlying laws of physics are known, complete, and correct. In situations where the laws of

physics are unknown or incomplete, or the involved mathematics too complex to be solved

analytically, accurate phenomenological models can still be produced. Furthermore, the

phenomenological approach tends to be more open to first-principle defying observational

evidence than the physical approach, simply because the implications of such evidence

are limited only to those models that are directly dependent on these observations. For

the physical approach, an observational disproof of a first principle can have far-reaching

consequences for the whole of science.

As the knowledge of the workings of nature and the science of mathematics advances,

valid phenomenological models can eventually be translated into a form based on first

principles. Examples of phenomenological models translated into physical models are

Kepler’s second law of planetary motion, which required Newton’s differential calculus, and

2As a comparison, the angular resolution of the unaided human eye is 1 to 2 arcminutes.
3Kepler’s second law of planetary motion states that the velocity of a planet changes at each moment such that

the time between two positions is always proportional to the area swept out on the orbit between these positions.
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the second law of thermodynamics which required the development of statistical mechanics

by Ludwig Boltzmann (1844-1906). Modern examples of pure phenomenological model

are Whitcombs ‘area rule’ for reducing wave drag during supersonic flight [215], and the

Modified Newtonian Dynamics [133], which is an alternative non-Einsteinian universal

theory of gravity which can explain the rotational velocities of galaxies [221] without having

to assume the existence of dark matter [133, 129]. A final example of phenomenological

models are the aerodynamic models created in this thesis.

1.2 Models, Identification, and Control

The primary purpose of a model of a physical system is the prediction of system dynamics

based on current and past system states. When used inside a model based controller, these

predictions are used in the derivation of laws for controlling the system. Currently, model

based controllers play an essential role in many aspects of modern society. Applications

of model based controllers range from food processing to engine controllers in cars, and

from process control in oil refineries to the flight control systems of modern aircraft [180,

173]. At present, the most widely used model types at the heart of such control systems are

polynomial models, spectral models, B-splines, and neural networks. In this thesis, a new

type of model is proposed in the form of the multivariate simplex spline model. It will be

shown that this new model type has a number of compelling advantages over current model

types in terms of computational efficiency, approximation power, and flexibility. As such,

the multivariate simplex spline models have the potential to increase controller performance

in many industrial applications.

In Figure 1.2, an overview of a model based control system is shown. In this case

the controlled system is an aircraft, but any other system could be controlled with this

control scheme simply by changing the specific model implementation. The control loop

in Figure 1.2 actually consists of two loops. The first loop is a static control loop. In

the static control loop, the various aircraft states like angle of attack and Mach number

are fed through a state estimation routine which removes sensor biases and noise. These

reconstructed states then form the input for the model based flight control system. At the

heart of this flight control system is the system model, in this case an aerodynamic model.

The system model predicts the system output based on the current system states, and these

predictions are then used to generate control laws. In the case of the flight control system in

Figure 1.2 the control laws lead to commands for the control surface actuators of the aircraft.

The second control loop shown in Figure 1.2 is the adaptive loop. Like the static loop, the

adaptive loop also uses the state estimation routine to remove sensor biases and noise, but

this time the reconstructed states form the input of a model estimation block. This block

uses the incoming observations on the aircraft states to reconfigure the system model if its

predictions differ significantly from the observations. This can for example be the case if the
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Figure 1.2: A high level overview of a model-based flight control system.

system has been damaged. After reconfiguration, the system model should produce higher

quality predictions, allowing the control system to adapt to the changed system dynamics.

Creating models of dynamic systems is a challenging task, especially if the dynamics

of the system are nonlinear. It is the research field of system identification that is

concerned with the identification of models of dynamic systems based on their inputs

and outputs. System identification allows the creation of accurate models of systems

even if the underlying first principles of the system are unknown. The field of system

identification was founded in the 1970’s and has since then grown into an active research

area [65, 119]. In its most high-level form, system identification consists of three phases; a

model structure selection phase, a model parameter estimation phase, and a model validation

phase. Model structure selection is concerned with the definition of the abstract functional

form of the model. During the second phase, the model parameter estimation phase, the

model parameters are estimated using a parameter estimator and a set of input-output data.

The created model is then put through the third phase, the model validation phase. Based

on the outcome from the validation, a decision is made whether to start a new identification

cycle and again go through these three phases, or to terminate the process and output the

model.

When the dynamics of a system change, for example after a structural failure, then its

onboard model may no longer be accurate, possibly leading to loss of control. In that

case a recursive system identification method must be used to adapt the system model

based on incoming observations. Recursive system identification methods operate in-

the-loop, and as such must be optimized for real-time functionality. Recursive system

identification and its algorithmic implementations have seen many innovations in the past,

see e.g. [199, 118, 117, 12]. Current trends in recursive system identification point towards
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Figure 1.3: Control loop for an adaptive multivariate simplex spline model based

controller.

nonlinear recursive identification methods like recursive neural networks [134], direct

weighting methods [182], and modified stepwise regression methods [125]. A new method

for recursive system identification with multivariate simplex splines was first introduced in

[41]. This method uses a constrained recursive least squares estimator for the coefficients

of the simplex splines. The recursive estimator for simplex splines would be valuable in

an adaptive model based controller for complex nonlinear systems with changing dynamics

(Figure 1.3).

The models identified with the identification methods in this thesis are global models,

which in the context of this thesis are defined as follows:

Definition 1. A global model is a spatial structure that can instantaneously predict system

output at any location in the operating domain of the system.

A global model differs from a local model in the sense that it has an a-priori ‘presence’

at every location inside the operating domain of a system. As such, global models can be

used to predict system output independently from the current state of the system. In contrast,

local models are valid only within a limited radius4 around the current system state. Local

models can therefore not be guaranteed to produce accurate predictions at locations beyond

a limited radius about the current system state. The advantage of global models over local

models is most apparent during recursive model identification. While a part of the model is

being reconfigured using incoming observations, the remainder of the model can be used as

4This radius should be seen as the geometric radius vector in the state dimensions of the system, which is

centered at the current system state.
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an a-priori source of information. This can prevent the occurrence of sudden fundamental

changes in the basic model structure for which there can be no physical explanation.

1.3 Introduction to Aerodynamic Model Identification

Detailed aerodynamic models play a crucial role in the design and operation of flight

simulators and flight control systems. The function of aerodynamic models in flight

simulators is the prediction of the required movements of the motion base in order to

produce an experience that is as close as possible to real flight. For flight control systems,

aerodynamic models are used to predict the real aerodynamic forces and moments acting

on an aircraft as a function of its states. These predictions are then used to generate control

laws resulting in control actions like the deflection of control surfaces and the changing of

engine power output.

Identifying aerodynamic models involves the synthesis of computer fluid dynamics

(CFD) results, wind tunnel measurements, and flight test data. In most cases an initial

aerodynamic model of an aircraft is created using wind tunnel and CFD results. This initial

aerodynamic model in most cases does not cover the complete flight envelope because some

dynamic states cannot be reached in wind tunnels, while CFD results may be inaccurate in

nonlinear regions of the flight envelope . The goal of flight testing is to validate and expand

an initial aerodynamic model such that it covers the complete flight envelope with sufficient

accuracy.

One of the first documented systematic flight test campaigns was conducted by

F.H. Norton at the beginning of the 1920’s. Norton used a converted Curtiss Jenny

biplane (Figure 1.4) to determine models for the static and dynamic stability of aircraft

[156, 157]. In 1951, Shinbrot was the first to use parameter estimation techniques to

identify aerodynamic models from flight data. Using a least squares parameter estimator,

Shinbrot determined the coefficients of differential equations describing aircraft responses

to transient inputs.

The development of the field of system identification in the beginning of the 1970’s led

to a much more rigorous approach to aerodynamic model identification. In the following

years, experiments with different system identification and parameter estimation techniques

applied to aerodynamic model identification were performed, most notably by Taylor [205],

Gerlach [64], and Iliff [82].

From the middle of the 1970’s, aircraft system identification had become an essential

element in the design of aircraft. More advanced methods for aerodynamic model

identification based on Kalman filters [91], maximum likelihood estimation [81, 88],

stepwise regression [90, 89], and more advanced frequency domain identification methods

[88] were developed. While digital computers were getting ever more powerful, in

particular the output error method with its maximum likelihood estimator was difficult to



8 Introduction

Figure 1.4: Curtiss JN-4H Jenny conducting a flight test in the early 1920’s.

use in practice because of the computationally expensive nonlinear optimization problem it

presented.

In order to reduce the complexity of the output error method, the Two-Step method was

developed at the Delft University of Technology in the 1970’s and 1980’s [64, 146, 147].

The Two-Step method decoupled the joined nonlinear state-estimation and model parameter

estimation problem into two separate optimization problems. In the first step of the Two-

Step method, a Kalman filter is used to estimate the true states of an aircraft from biased and

noise contaminated sensor measurements [149]. The second step of the Two-Step method

is the aerodynamic model parameter identification step, which can now be posed as an

equation error problem in terms of the estimated aircraft states.

As aircraft performance increased, so did the complexity of their flight control systems.

Simple constant gain linear feedback control systems could be used to control aircraft with

limited flight envelopes, but were inadequate for controlling high performance aircraft with

large flight envelopes and significant nonlinear aerodynamics. A solution to this problem

was to partition the flight envelope of a high performance aircraft into regions with different

feedback gains. This, however, created problems on its own as it could not be guaranteed

that there were no discontinuities in the resulting control structure. A more elegant solution

to the problem would come in the form of feedback linearization (FBL) control [63, 15].

The form of FBL best suited for use in flight control systems was the nonlinear dynamic

inversion (NDI) control [111, 178, 179]. NDI uses an accurate nonlinear global model

of aircraft aerodynamics to cancel out the real nonlinear aerodynamics of the aircraft,
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Figure 1.5: The (nonlinear) effect of the leading edge flap on the aerodynamic

pitching moment coefficient of the F-16.

resulting in a linearized system. The resulting linearized system can then be controlled

using classic linear control techniques. The challenge of using NDI in a real life flight

control system is that a sufficiently accurate aerodynamic model is required, because an

incomplete cancellation of the nonlinear aerodynamics will result in a system that cannot

be adequately controlled using a linear controller [179].

The requirement for more accurate aerodynamic models led to many advances in the

field of aerodynamic model identification in the middle of the 1990’s. These advances

were related not only to the development of new identification techniques, but also to the

development of optimal input sequences to increase the efficiency of flight test maneuvers.

Mulder had earlier used orthogonal input functions, which were optimized based on

norms of the Fisher information matrix of an a-priori aircraft model [147, 148, 68].

Morelli used a different method for input optimization which was based on dynamic

programming [143, 139, 140, 141, 85]. More advanced methods for aerodynamic model

identification were to follow these developments. Linse for the first time used artificial

neural networks to model aircraft aerodynamics [115], Laban created an online aerodynamic

model identification method [94], while Morelli used an orthogonal least squares estimator

[138, 142] for aerodynamic model identification.

It was soon found that models based on ordinary polynomials had insufficient ap-

proximation power to model the highly nonlinear aerodynamics of the new generation of
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fighter aircraft (Figure 1.5). These limitations could be avoided by using a non-global

online identification method, like the modified stepwise regression method introduced

by Lombaerts [123, 124, 125, 121] and advanced model-free control methodologies like

adaptive backstepping [200, 201, 202, 211].

While polynomials lack the approximation power to produce global models of sufficient

accuracy, they can still be used in the estimation of local models that are valid only on

partitions of the flight envelope. The resulting set of polynomials can then be blended

together using a smoothing technique like fuzzy blending [1, 122] or neural networks [44].

A set of numerical tables can subsequently be derived from the blended polynomial models.

This approach was used for the creation of the aerodynamic model of Eurofighter Typhoon

[162, 160, 158, 161], the F16-XL [110], and the X-31[181]. The disadvantage of this

approach is that the validation and refinement of data table based models is cumbersome

at best [162].

Until recently, the only alternative global aerodynamic modeling method of sufficient

approximation power were methods based on neural networks[13, 72, 44, 84, 2] and

derivative techniques like polynomial neural networks [168, 165, 164, 169]. While neural

networks are powerful function approximators they suffer from numerical instabilities [45]

and are inherently intransparent as a result of their black-box nature [8].

In this thesis, a new method for aerodynamic model identification is presented which

combines the approximation power of neural networks and data table based models with

the transparency and numerical stability of polynomial models. This method is based

on a recent type of multivariate spline, the multivariate simplex spline [31, 7, 104, 40].

Multivariate simplex splines consist of polynomials defined on simplices which are

geometric structures that minimally span a set of dimensions. The basis functions of the

simplex splines are Bernstein basis polynomials, which guarantee a stable local basis. In

this thesis, the theory of multivariate simplex splines is introduced in Chpt. 2, extended in

Chpt. 3, and integrated with a framework for system identification in Chpt. 4. Finally,

the new methodology for aerodynamic model identification is demonstrated with the

identification of a complete set of aerodynamic models for the Cessna Citation II in Chpt. 5

using flight data obtained during seven test flights.

1.4 A Case for Multivariate Splines

Creating accurate global models of nonlinear systems with large operating domains requires

the use of modeling methods of sufficient flexibility and approximation power. Currently,

there are only a handful of methods available for modeling such systems. These methods

are neural networks, kernel methods, polynomial models, and spline models.

Neural networks are powerful function approximators that have been used successfully

in many fields of science and engineering, see e.g. [13, 72, 168, 44, 54, 84, 11, 165, 164,
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169, 134]. Neural networks are black box models, and therefore suffer from an inherent

intransparency [8]. This has as result that their performance can only be guaranteed under

special circumstances [11]. Additionally, the radial basis functions in a neural network

have a global influence on neural network output, with the result that all basis functions

and coefficients need to be considered during evaluation and estimation, resulting in non-

sparse and therefore inefficient evaluation and solution systems. It can therefore be argued

that neural networks based on radial basis functions are not well suited for large scale

identification problems because of computational limitations.

Kernel methods like the support vector machines can also be used for scattered nonlinear

data modeling [50, 189, 51]. While very powerful in their role as categorizers, kernel

methods are non-parametric in nature [17]. This produces computationally expensive

optimization problems, especially when the modeled datasets are large. In general, kernel

methods require that every significant data point is associated with a single kernel function,

with the result that the size of the optimization problem is proportional with the total number

of data points [17].

Polynomial modeling methods are perhaps the simplest and the most widely used of

all modeling methods. While a single polynomial has only a limited approximation power

(Figure 1.6), accurate models can still be created by estimating local models on subregions

of the system operating domain [122]. This, however, introduces discontinuities in the

model which can form a problem if it is to be used in some model based controller.

Continuity can be restored by employing a blending scheme like Takagi-Sugeno fuzzy

blending [1, 8, 122]. While fuzzy blending techniques are powerful, their construction

and tuning is done based on expert knowledge which means that they will probably never

result in a fully automated identification technique [8].

Finally, polynomial spline methods have been used in the past for the modeling of

nonlinear systems, see e.g. [198, 89, 10]. These spline methods employed multivariate

tensor product B-splines which are incapable of fitting scattered data and can only be used

on rectangular domains [3].

In this thesis a case is made for using multivariate simplex splines in global models

of nonlinear systems with large operating domains. Multivariate simplex splines combine

most of the advantages of the above mentioned methods, without suffering from their

disadvantages. The advantages of the multivariate simplex splines can be summarized as

follows. Firstly, the simplex splines have an arbitrarily high approximation power on a

global model scale. Secondly, simplex spline models are parametric models, which allows

for efficient approximation of very large datasets. Thirdly, the simplex splines are linear in

the parameters, which means that linear regression methods can be used for their estimation

[40]. Finally, the simplex splines have a local polynomial basis, which implies that only

small subsets of parameters and basis polynomials need to be considered during estimation

and evaluation, resulting in efficient computational schemes.

In Figure 1.6 the modeling performance of the multivariate simplex splines is compared
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with a radial basis function neural network and a high degree polynomial model. The spline

function and the neural network both have 750 optimization parameters. The figure clearly

shows that the 30th degree polynomial model can only produce a rough approximation to

the original dataset. Using polynomials of even higher order did not result in higher quality

models due to the numerical instability of the optimization problem. The neural network,

in this case a simple single layer network consisting of 750 neurons5, could not accurately

approximate local details in the target dataset. Additionally, the solution system for the

neural network was essentially non-sparse (100% non-zeros) resulting in a computationally

inefficient optimization problem. From Figure 1.6, it can be seen that the simplex spline

model closely resembles the modeled dataset, both on a local scale as well as on a global

scale. Furthermore, the solution system for the multivariate simplex splines was highly

efficient because of its 99% sparseness factor (more than 99% zeros). While the scope of

the illustration in Figure 1.6 is limited, it nevertheless highlights some of the advantages of

the multivariate simplex splines over other methods, and helps make the case for using the

simplex splines as the modeling tool of choice in this thesis.

1.5 Thesis Goals and Research Approach

1.5.1 Goals of this thesis

The goal of this thesis is the development of a new time domain methodology for global

model identification based on multivariate simplex splines. This new methodology should

be able to identify global models of higher quality than existing methods. Additionally, the

new methodology offers a number of unique model quality assessment methods that enable

a thorough analysis of parameter estimator performance, model coherence and stability, and

model residue.

The goal of this thesis is reflected by the main research statement:

“A methodology for global nonlinear model identification based on multivariate simplex

splines can outperform current global model identification methods on aspects of model

quality and model quality assessment.”

The main research statement can be split into three research questions. The first question

is related to the mathematical theory of the multivariate simplex splines:

“What theory should be added to current multivariate simplex spline theory to enable

its integration in a framework for system identification?”

5Neuron placement was done using the clustering algorithm from Park et al. [169]
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Figure 1.6: Comparison of three models of a nonlinear aerodynamic dataset (top

left) created with three different modeling methods; a multivariate simplex spline

model (top right), a 750-neuron neural network (bottom left), and a high order

polynomial model (bottom right).

The second question is related with the framework for system identification with

multivariate simplex splines:

“What form should a framework for system identification based on multivariate simplex

splines take?”

The third question concerns the demonstration of the new methodology for global

nonlinear model identification using a real life dataset:

“Which advantages of the new methodology for global model identification can be

demonstrated in a real-life aerodynamic model identification experiment?”
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The main research statement, together with the three questions, determined the research

approach taken in this thesis.

1.5.2 Research Approach

The research approach taken in this thesis follows from the research questions and consists

of three main facets. The first facet is the extension of multivariate simplex spline theory to

allow its use in a framework for system identification. The second facet is the development

of this framework, while the third facet is the demonstration of the new method with a

real-life aerodynamic model identification experiment.

The following developments in multivariate simplex spline theory were anticipated:

1. A matrix formulation for the basis polynomials of the simplex splines is required.

2. A method for creating triangulations suitable for use with simplex splines should be

developed.

3. A general method for formulating continuity conditions should be developed.

4. The global effects of continuity should be investigated.

5. A new type of constraint for limiting polynomial divergence should be developed.

6. A formulation of the basis polynomials in terms of global Cartesian coordinates

should be developed.

Using these developments, a framework for system identification with simplex splines

can be defined. This definition requires the following developments:

1. A technique for the structure selection of multivariate simplex spline models should

be developed.

2. One or more parameter estimators for the simplex splines need to be developed.

3. The parameter covariance matrix should be estimated.

4. Methods for creating statistical and empirical confidence bounds for the spline model

should be developed.

5. A method for assessing the coherence and stability of the simplex spline models

should be developed.

Finally, the new method for system identification is demonstrated by identifying a

complete set of aerodynamic models for the Cessna Citation II laboratory aircraft based

on flight test data. The following steps are required for a successful demonstration:

1. Flight test data needs to be obtained.

2. The flight test data should be pre-processed to remove sensor glitches, measurement

rate discrepancies, and engine induced noise sources.
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3. An engine model should be used to estimate engine thrust during flight test maneu-

vers.

4. A mass model should be used to estimate mass and moments of inertia.

5. A flight path reconstruction method must be applied to estimate the true aircraft states.

6. A set of candidate spline dimensions should be defined.

7. A set of candidate polynomial spaces should be defined.

8. A set of prototype aerodynamic models should be created to allow the determining of

the dimension and polynomial space of the definite simplex spline model.

9. The final simplex spline based aerodynamic models should be estimated and vali-

dated.

1.5.3 Scope and limitations

The new methodology for system identification presented in this thesis is focused on time

domain model identification.

As mentioned in Sec. 1.5.1 and Sec. 1.5.2 the research in this thesis is focused on

developing a new method for identifying models of nonlinear systems. Therefore, no

dynamic simulations are performed using the identified aerodynamic models.

While an in-depth validation of the identified aerodynamic models is performed, no

dynamic simulations are realized using the identified aerodynamic models. Additionally,

the aerodynamic models identified in this thesis are not used inside any control systems,

although doing so would be relatively straightforward, using for example a nonlinear

dynamic inversion control design.

Finally, the performance of the new methodology for global model identification is

compared with standard polynomial model identification methods, and not with techniques

like for example (polynomial) neural networks. Such a comparison was not made in this

thesis because to the knowledge of the author none of the more advanced techniques were,

in their current forms, suitable for large scale, high-data volume identification experiments.

1.6 Contributions

The research performed in the framework of this thesis has lead to a number of publications

in peer reviewed scientific journals and conference proceedings. A summary of these

publications is provided below:

• C. C. de Visser, Q. P. Chu, and J. A. Mulder. A new approach to linear regression

with multivariate splines. Automatica, 45(12):2903–2909, 2009.

• C.C. de Visser, J.A. Mulder, and Q.P. Chu. Global nonlinear aerodynamic model

identification with multivariate splines. In AIAA Atmospheric Flight Mechanics

Conference, 2009.
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• E. de Weerdt, C. C. de Visser, Q. P. Chu, and J. A. Mulder. Fuzzy simplex splines. In

IFAC SYSID 2009, 2009.

• C.C. de Visser, J. A. Mulder, and Q. P. Chu. A multidimensional spline based global

nonlinear aerodynamic model for the Cessna Citation II. In AIAA Atmospheric Flight

Mechanics Conference, 2010.

• C. C. de Visser, Q. P. Chu, and J. A. Mulder. Differential constraints for bounded

recursive identification with multivariate splines. Automatica, 2011. article in press.

• C. C. de Visser, Q. P. Chu, and J. A. Mulder. A global trim manifold based on

multivariate splines for the Cessna Citation II. In The 1st European Aerospace GNC

Conference, 2011.

1.7 Outline of the Thesis

This thesis is roughly divided into four parts. The first part of the thesis is concerned with

an introduction into multivariate simplex spline theory. Because the multivariate simplex

splines are not (yet) widely known, an comprehensive introduction to the theory is provided

in Chpt. 2. Additionally, a number of innovations are presented in Chpt. 2 such as the

vector formulation of the B-form polynomials, and a novel algorithm for triangulation

optimization.

The second part of this thesis is focused on introducing a number of new developments

in the mathematical theory of the multivariate simplex splines. These developments are

presented in Chpt. 3, and are aimed at enabling the use of simplex splines for system

identification applications. In Chpt. 3 a new vector formulation of the B-form on a complete

triangulation is given, and a new general formulation of the smoothness conditions that

govern the continuity between the polynomial pieces of the spline function is introduced.

A new effect called B-net propagation was observed in a specific class of triangulations.

B-net propagation was found to occur for certain combinations of spline degree and

continuity order, and can potentially negate the local model property of the simplex

splines. Additionally, a new one-step matrix formulation of the de Casteljau algorithm is

presented. This matrix formulation is essential in the definition of the differential constraints

for simplex spline functions. The differential constraints allow the constraining of the

directional derivatives of the simplex splines at specific locations within the spline domain.

The differential constraints can be used to bound the directional derivatives of spline

polynomials on the edges of the spline domain, thereby reducing polynomial divergence

resulting in a bounded model extrapolation capability for the simplex splines. Finally, a

new formulation of the B-form polynomials in terms of global Cartesian coordinates was

derived. This formulation has many tentative applications, such as global triangulation

optimization, and the physical interpretation of B-form polynomials.
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The third part of this thesis is focused on the integration of the multivariate simplex

splines in a framework for system identification. This part is the main topic of Chpt. 4.

In this chapter the process of model structure selection for simplex splines is discussed.

A constrained generalized least squares estimator and a constrained recursive least squares

estimator are presented and a number of techniques for validating the estimated simplex

spline models are introduced. Some of these techniques are unique to simplex spline

models, such as the variance surface estimation and the model stability analysis through

B-coefficient value assessment. Finally, the new methodology for model identification with

simplex splines is demonstrated with a numerical experiment.

The fourth and final part of this thesis is the application of the new model identification

method in a real-world aerodynamic model identification experiment. This experiment is

described in detail in Chpt. 5. In this chapter the complete procedure, from flight test design

to model validation is discussed.

The research performed in this thesis is divided into three main facets; multivariate

simplex spline theory, system identification, and aerodynamic model identification. In

Chpt. 6 a number of conclusions are provided on each of these three research facets. Finally,

in Chpt. 7 recommendations arising from the research are presented.
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Chapter 2

Introduction to Multivariate

Simplex Splines

Splines have been an important tool in design and construction for many centuries. Splines,

in the form of slender flexible beams, were first used by draftsmen in the middle-ages for the

design of smooth curves for the bows and hulls of ships. In modern science and engineering,

there are many uses for splines. Splines are used in fields as diverse as car design, medical

imaging, signal analysis, and system identification. In essence, a spline is a piecewise

defined function with a predefined continuity between the pieces. This piecewise nature

allows splines to be used to fit data that is too complex to be approximated with any single

functional piece.

The mathematical theory of one-dimensional, or univariate, splines is considered to be

complete in the form of the extremely popular ordinary B-spline. In contrast, the theory

of multi-dimensional, or multivariate, splines is still an active research area. At current,

there are many different multivariate spline types, all with their respective strengths and

weaknesses. There is one type of multivariate spline, however, that can be considered to

be the true generalization of the univariate B-spline, inheriting most of its strengths, and

almost none of its weaknesses. This multivariate spline type is the multivariate simplex

spline. Multivariate simplex splines consist of ordinary polynomials which are defined

on geometric structures called simplices. The approximation power of the multivariate

simplex splines can then be increased by stitching together any number of simplices into

a larger geometric structure called a triangulation. The most important advantage of the

multivariate simplex spline over other multivariate approximation methods is that it can be

used to approximate scattered multi-dimensional data on non-rectangular domains using
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only polynomials. These polynomials have a number of unique properties which makes

them extremely useful when used inside a framework for system identification.

The objective of this chapter is to introduce the reader to the basic mathematical theory

of the multivariate simplex spline. The chapter contains three main sections. In Sec. 2.1

an in-depth discussion on the basic principle of splines and the history of multivariate

spline theory is presented. This section additionally serves as a motivation for the choice

in this thesis for the multivariate simplex spline as the primary tool for global non-linear

aerodynamic model identification. Then, in Sec. 2.2 the basic mathematical properties of

the simplex splines are introduced. It will be explained that these mathematical properties

are at the very heart of many of the unique features of the simplex splines. Finally, in Sec. 2.3

an in-depth analysis on the various aspects of triangulations is offered. The triangulation is

the source of the approximation power of the multivariate simplex spline but at the same

time presents a number of important challenges that, until now, have prevented the simplex

splines from being used as a tool for system identification. The solutions to these challenges

will be presented in this final section, setting the stage for the next chapter, which will

introduce a number of new mathematical theories aimed at enabling system identification

with simplex splines.

2.1 Introduction to Multivariate Simplex Splines

In the mathematical theory of splines, there are two main directions. The first is univariate

spline theory which is the most reminiscent of the draftsman’s spline and deals with smooth

1-dimensional curves. The second direction is multivariate spline theory, which deals with

n-dimensional (hyper) surfaces. While univariate spline theory has been well developed

in the past, multivariate spline theory is a much less finalized theory. In the literature,

there exists a multitude of different types of multivariate spline, each with their particular

strengths and weaknesses. Important properties for the various multivariate spline types are

their scattered data fitting capabilities, their local basis properties and their generality with

respect to the univariate B-spline. Starting at the simple end of the complexity spectrum

there are the multivariate tensor product splines, which are considered somewhat of a ‘poor

man’s multivariate spline’ in the mathematical community1. Despite this, tensor product

splines are quite efficient in terms of computing resources, and simple to understand and

implement algorithmically. The great downside of tensor product splines is that they are,

for fundamental reasons, incapable of fitting scattered data. Therefore, they cannot be

considered a true generalization of univariate spline theory. On the extreme end of the

complexity spectrum are the polyhedral splines. Polyhedral splines are very general and

1Carl de Boor, one of the founders of multivariate spline theory, summarizes his thoughts on tensor product

splines as follows: “I want to point out that there is available one way of generalization that is specifically designed

to require no thought, no new idea (if this construction is satisfactory for you, I have nothing further to tell you).

This is the tensor product construct.”[32]
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are, according to some influential authors, true generalizations of the univariate B-spline.

The central idea of polyhedral splines is that the location of the control points in a space

R
n are determined by the projection of a polyhedron in R

n+s with m > 0 on R
s. While

general and mathematically elegant, there exists no general scattered data approximation

scheme using polyhedral splines in the literature.

The purpose of the multivariate splines in this thesis is the fitting of scattered n-

dimensional data within a system identification framework. This implies a multivariate

spline type which is general in all dimensions, can handle scattered data and has a simple

and efficient implementation. At current, there is only one type of multivariate spline in

the literature that has all these properties. This multivariate spline type is the multivariate

simplex spline. The generality of the multivariate simplex spline with respect to the

univariate B-spline is not absolute, as it completely does away with the concept of knots.

Its mathematical formulation, however, is invariant of dimension and polynomial degree.

This makes it an extremely powerful function approximation and data fitting tool which is

perfectly adapted for use within a framework for system identification.

In this section a brief history of the multivariate simplex spline is told, starting with the

univariate B-spline Sec. 2.1.1 and the difficulty of finding its n-dimensional generalization

Sec. 2.1.2. Then, some of the most widely known multivariate spline types are presented:

the tensor product splines in Sec. 2.1.3, thin plate splines in Sec. 2.1.4 and the polyhedral

splines in Sec. 2.1.5. The main theoretical research topic in this thesis is an alternative

multivariate spline type; the multivariate simplex spline, which is introduced in Sec. 2.1.6.

2.1.1 Univariate B-Splines

Splines have been used for hundreds of years by draftsmen for the design of smooth curved

lines for the bows and hulls of ships. A spline in this sense is a thin strip of elastic material

which is bended in shape and clamped at a number of locations by metal weights called

‘ducks’. The elastic properties of the material together with the location of the ducks, forces

the spline in a curve that minimizes strain energy Figure 2.1.

According to Euler-Bernoulli beam bending theory, the curve that is made by the spline

tool will approximate that of a cubic polynomial. This can be seen as follows. Let Pa be an

externally applied force on a one-dimensional beam at location A ≤ a ≤ B, and let w(x)

be the deflection of the beam at any location A ≤ x ≤ B. The deflection of the beam is

then given by the Euler-Bernoulli equation with constant stiffness:

Pa = EI
d4w(x)

dx4
, (2.1)

with EI the stiffness of the spline material. The solution of this fourth order differential

equation is determined by the boundary conditions imposed on w(x) and its derivatives. If
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Figure 2.1: The draftsman’s spline: a piecewise defined cubic polynomial

( c©Pearson Scott Foresman)

the spline tool is considered to have two simply supported ends at locations A and B, i.e.

w(A) = cA,
d2w

dx2
|A = 0, w(B) = cB ,

d2w

dx2
|B = 0, (2.2)

and letting L = B −A, then the solution to Eq. 2.1 is found to be:

w(x) =

{

B1(x) = Pabx(L
2−b2−x2)

6LEI , A ≤ x ≤ a

B2(x) = Pabx(L
2−b2−x2)

6LEI + Pa(x−a)3
6EI , a < x ≤ B

(2.3)

Interestingly, the analytical solution to the Euler-Bernoulli equation with the boundary

conditions Eq. 2.2 is itself a piecewise polynomial, or a spline function. In Figure 2.2

the polynomial w(x) is drawn, together with the two polynomial pieces B1(x) and B2(x)

that define it. The polynomial spline function w(x) from Eq. 2.3 is formulated in the so-

called piecewise polynomial form, or pp-form. The pp-form is relatively easy to interpret

as the individual polynomials that constitute the spline can readily be identified. Each of

the polynomial pieces is valid only on a part of the total spline domain, e.g. in Eq. 2.3 we

have that B1(x) is valid only on A ≤ x ≤ a, while B2(x) is valid only on a < x ≤ B.

The boundaries of the domains of the individual polynomials are called ‘breaks’. As it turns

out, however, the pp-form is difficult to work with for a number of different reasons. First

of all, polynomials defined in the pp-form lack a stable local basis, which not only greatly

increases the complexity of schemes for fitting data, but which can also lead to numerical

instabilities. Then there is the problem of the definition of continuity between spline pieces

for which the pp-form does not provide any obvious functionality. Finally, the formulation
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Figure 2.2: Deflection of a natural (cubic) spline consisting of two polynomial

pieces due to a force acting at a = 0.4.

of the pp-form itself is rather cumbersome:

p(x) =

k∑

i=1

(x− ξj)
k−icji, j = 1, 2, . . . , L, (2.4)

that is, ξj is the x-coordinate of the jth break and cji is the coefficient corresponding with

the jth break and the ith polynomial term. Therefore, every break supports a complete

polynomial of degree k − 1 with k terms. Continuity is somehow coded in the matrix of

coefficients cji. In short, the pp-form forces one to store a set of L breaks as well as a matrix

of k ·L coefficients. Luckily, a much more elegant alternative to the pp-form is available. In

1946 Schoenberg introduced2 an alternative spline representation to the pp-form he called

the ‘basic kth order spline curves’ [187]. In 1967, based on work by Schoenberg’s colleague

Curry [20], Schoenberg named the ‘basic spline’ or B-spline [188]. The beauty of the B-

spline is that it is completely determined by a sequence of knots, and a matching sequence

of coefficients. Knots differ from the breaks of the pp-form in the sense that they can have a

user-definable multiplicity, that is, knots are allowed to overlap while breaks are not. Knot

multiplicity controls the continuity of the spline function at the location of the overlapping

knots. The univariate B-spline consisting of a total of d basis functions has the following

definition:

p(x) =

d∑

i=1

Bi,k(x)ci (2.5)

with d a positive integer and with basis function Bi,k(x) a polynomial of degree k − 1,

2Schoenberg himself states that spline curves where already known to Laplace in the 17th century.
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defined implicitly in terms of the knot sequence (ti, ti+1, . . . , ti+k) as follows:

Bi,k(x) = B(x|ti, ti+1, . . . , ti+k) (2.6)

The set of basis functions forms a partition of unity as follows:

d∑

i=1

Bi−d+1,k(x) = 1, x ∈ [ti, ti+1], (2.7)

which means that at any point x on the interval [ti, ti+1] there are d non-zero basis functions

Bi−d+1,k(x) to Bi,k(x), which on the given interval sum up to a value of 1 [28, 29].

The basis functions of the univariate B-spline from Eq. 2.6 can be constructed

recursively using the Cox-de Boor recursion, named after the inventors Cox [19] and de

Boor [28] who independently discovered it. The Cox-de Boor recursion relationship is the

following:

Bi,1(x) =

{

1, ti ≤ x < ti+1

0, otherwise
(2.8)

Bi,k(x) =
x− ti

ti+k−1 − ti
Bi,k−1(x) +

ti+k − x

ti+k − ti+1
Bi+1,k−1(x) (2.9)

In Figure 2.3 a set of six knots supports three third degree basis functions. On the

knot interval [ti, ti+1] all basis function sum op to one, demonstrating the partition of unity

property of the B-spline. The graphical depiction of the B-spline in Figure 2.3 helps one

to appreciate some of the powerful features of the B-spline. For example, adding a knot to

the end of the knot sequence adds a complete, locally acting basis function to the B-spline

function. New knots can be added on the fly without sacrificing continuity or disrupting the

global model structure. This in turn allows B-splines to be used in for example real-time

signal filters, like those presented by Unser [207, 208] and image compression filters, like

that presented by Panda [167].

The continuity order of the B-spline function on the knots is determined by the so-

called ‘knot-multiplicity’. Knot multiplicity allows for multiple knots to be placed at the

same location, thereby influencing the structure of the basis polynomial. The relationship

between the multiplicity of the knot ti, the continuity order Cri at ti and the degree d of the

B-spline is given by:

ri +#ti = d (2.10)

which was taken from [33]. With Eq. 2.10 the continuity order at a specific knot location

can be defined. For example, if we have a B-spline of degree 4, and we want C2 continuity

at ti we need knot multiplicity #ti = 4− 2 = 2.
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Figure 2.3: Three third degree basis functions defined on six knots.

At this point, the basic theory of the univariate B-spline has been introduced. This

introduction, however, contains only a fraction of the complete mathematical theory on

univariate B-splines. The interested reader is therefore referred to [29] which provides an

excellent overview of the mathematical theory of univariate B-splines, and to [36] which

can be considered the standard textbook on univariate B-splines.

2.1.2 The unclear path from univariate to multivariate splines

The elegance and power of the mathematical theory of univariate B-splines motivated the

search for a multivariate generalization of the theory, which proved to be much more difficult

than initially expected. Since the end of the 1950’s many authors have contributed to

various types of multivariate splines, each with their advantages and disadvantages. As

of this writing, however, the debate about what should be considered the true multivariate

generalization of the univariate B-spline is ongoing [32, 38, 34, 153]. In his 1990 paper,

de Boor formulated the problem as follows. “The generalization of univariate polynomial

interpolation to the multivariate context is made difficult by the fact that one has to decide

just which of the many of its nice properties to preserve, as it is impossible to preserve them

all”[38]. The following list of properties taken from [34] describes a true generalization of

the univariate B-spline:
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Table 2.1: Comparison of different multivariate spline types

Type year main innovators local

polynomial

basis

general

domains

scattered

data fitting

efficient

approximation

algorithms

Tensor 1971 de Casteljau, Bézier yes no no yes (O(N))
Thin plate 1980 Meinguet, Franke no yes yes no (O(N3))
Polyhedral 1986 de Boor, Dahmen,

Micchelli, Neamtu

yes yes yes no

Simplex 1986 de Casteljau, Farin, Lai,

de Boor, Schumaker

yes yes yes yes (O(N))

P1 Explicit formulae for the dimension of spline spaces.

P2 Explicit bases consisting of locally supported elements.

P3 Convenient algorithms for storing and evaluating the splines, their derivatives and

integrals.

P4 Estimates of the approximation power of spline spaces.

P5 Conditions under which interpolation is well defined.

P6 Algorithms for interpolating and approximation.

As of current, there are four multivariate spline types which possess at least some of

the above mentioned properties. They are the tensor product spline, the thin plate spline,

the polyhedral spline and the simplex spline. In Table 2.1 the main properties of these four

spline types are compared. The four multivariate spline types are discussed in detail in the

next four paragraphs.

2.1.3 Tensor product splines

While mathematicians where struggling with the derivation of a true multivariate general-

ization of the univariate B-spline, an immediate need arose in the car and aviation industry

for computer algorithms that could be used to model smooth two- and three-dimensional

surfaces. In the car industry, the 1950’s and 1960’s saw a great rise in the use of curved lines

and surfaces in the body works of cars, which were very hard to engineer for manufacturing.

In 1959 Paul de Casteljau, a mathematician working at car manufacturer Citroën, invented

a method for rendering smooth two dimensional surfaces using Bernstein polynomials in

barycentric coordinates defined on rectangular and triangular patches [53]. This method,

when defined on triangular patches, would later form the basis of the multivariate simplex

spline. The work of the de Casteljau was considered so advanced that it was kept secret

by Citroën until 1971, by which time Pierre Étienne Bézier (1910-1999), then head of
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Figure 2.4: Approximation of Franke’s function [61] along the x0-axis (left) and

x1-axis (right) using sets of univariate B-splines.

the design department of car manufacturer Renault, had developed and widely published

an almost similar method based on what were afterwards known as Bézier curves and

Bézier patches3. Bézier used the exact same curves and patches as de Casteljau, but

his mathematics were different as he did not use Bernstein polynomials nor barycentric

coordinates in his definitions.

In 1972 Forrest for the first time applied Bernstein polynomials in Bézier curves and

patches, thereby exactly reproducing de Casteljau’s results on rectangular patches from

more than a decade earlier [56]. The rectangular Bézier patches immediately led to one

of the most widely used types of multivariate spline; the multivariate tensor product spline

(TPS), which are essentially Bézier patches stitched together so that they form a continuous

surface. Tensor product splines are constructed by taking the tensor product of any number

of univariate spline functions, like for example the univariate B-spline. Tensor product

splines had a simple and efficient algorithmic implementation, which led to their wide

acceptance in CAD application used in industry [30, 145]. By their very nature, however,

tensor product splines are incapable of fitting scattered data [16, 3]. This is not such an

important issue when the tensor product splines are used for CAD purposes, because the

data is artificial and can be placed exactly on a rectangular grid. However, data obtained by

taking measurements of the state of some continuous physical system is inherently scattered,

which means that tensor product splines cannot be used to model this data directly.

3Bézier curves and Bézier patches were used in the Renault CAD/CAM system UNISURF which was entirely

based upon them. UNISURF, in turn, influenced developments at the French aircraft manufacturer Dassault who

built a system called EVE which later evolved into the well-known and widely used CAD/CAM system CATIA

(Computer Aided Three-dimensional Interactive Application).
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The principle behind the tensor product spline is very simple. If one has two univariate

functions f(x) and g(y) than one can construct a bivariate function by taking their tensor

product: p(x, y) = f(x)⊗g(y). The bivariate tensor product spline can thus be constructed

by taking the tensor product of two univariate B-splines:

f(x, y) =
r∑

i=1

s∑

j=1

B(x|ti, . . . , ti+v)B(y|tj , . . . , tj+w)cij , (2.11)

with B(x|ti, . . . , ti+v) a set of basis functions of degree v − 1 in terms of x and with

B(y|tj , . . . , tj+w) a set of basis functions of degree w − 1 in y as in Eq. 2.6 and with

cij ∈ R
r×s a matrix of coefficients. Using the shorthand notation from Eq. 2.6 this can be

simplified into the following:

f(x, y) =

r∑

i=1

s∑

j=1

Bi,v(x)Bj,w(y)cij . (2.12)

The working of the tensor product spline can be seen as follows. By first fitting a set of

univariate B-spline curves in the y-direction, the expression Eq. 2.12 is reduced into an

explicit function of x and an implicit function of y as follows:

f(x, y) =

r∑

i=1

Bi,v(x)cij(y). (2.13)

This situation is visualized in the right hand plot of Figure 2.4. The set of B-spline curves

in the y direction clearly uses the same set of knots. The complete bivariate tensor product

surface is then created by using the knots of the univariate B-splines in the y-direction as

knots in the x-direction, thereby producing a smooth surface as shown in Figure 2.5. The

process can also be reversed with the exact same results by first fitting univariate B-spline

curves in the x-direction as shown in the left hand plot of Figure 2.4, and then interpolating

these curves in the y-direction. The total number of knots is thus simply the number of

knots in the x-direction multiplied with the number of knots in the y-direction. In order to

produce the value of f(x, y) at the knot location (i, j), the value of the basis polynomial

at that location is multiplied with the corresponding coefficient value cij . Because the B-

spline curves in the x-direction are independent from the B-spline curves in the y-direction,

basis polynomials of different degrees can be used along the different axis. For example, it

is possible to produce a tensor product spline with 4th degree polynomials in the x-direction

and 2nd degree polynomials in the y-direction. It is now easy to see that data points must be

located exactly on the knot locations, because only then can they be approximated by both

the B-spline curves in the x-direction and the B-spline curves in the y-direction.

The general tensor product B-spline of dimension n is created by taking the tensor
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Figure 2.5: Bivariate tensor product spline approximation to Franke’s function

using a set of gridded data points.

product of n univariate B-splines as follows:

f(x) =

r0∑

i1=1

r2∑

i2=1

· · ·
rn∑

in=1

Bi1,v1(x1)Bi2,v2(x2) · · ·Bin,vn(xn)ci1i2···in

=
n∏

j=1

rj∑

ij=1

Bij ,vj (xj)ci1i2···in , (2.14)

with the coefficient matrix ci1i2···in ∈ R
r1×r2×···×rn an n-dimensional array of size

∏n
j=1 rj .

Tensor product splines were the first true multivariate spline type. Their development

was driven by the industry, and as such their mathematical generality was of secondary

importance. Tensor product splines are very efficient computationally and have a simple

software implementation. Their greatest limitation, however, is their inability to fit scattered

data as well as their dependence on rectangular domains. As most real-life physical datasets

are scattered and defined on non-rectangular domains, their use as a general modeling tool

is very limited.

2.1.4 Thin plate splines

The fundamental inability to approximate or interpolate scattered data with tensor product

splines led to the development of a number of alternative methods for modeling scattered
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ψ1(x)c1

ψ2(x)c2

∑2
j=1 ψj(x)cj

Figure 2.6: Principle of the thin plate spline: two radial basis functions (left) on a

global domain combine into a single smooth thin plate spline surface on the same

domain (right).

data. One of the most popular of these methods was the ‘thin plate spline’, named so

because of the analogy with the bending of a plate due to some external force [130]. Such a

plate will deform such that its bending energy is minimized, and as such a thin plate spline

interpolation to a set of scattered data is determined by minimizing an energy integral. The

basis functions of thin plate splines are radial basis functions (RBF) which are centered on

the data points. As such, a thin plate spline has as much basis functions as there are data

points. The basis functions are non-local, that is, they have a global influence on the thin

plate spline function, see Figure 2.6. This means that all basis functions, and all coefficients

must be used to evaluate the thin plate spline at a single location. Additionally, the global

influence of the basis functions leads to very non-sparse solution systems for the coefficients

of the thin plate splines.

Thin plate spline have seen many uses in industry, for example to model deflections

of aircraft wings due to aeroelastic loads [71]. Because the thin plate spline has a non-

local basis, however, solving the optimization problem involves all data points, and all

basis functions which takes an O(N3) effort [32]. Franke demonstrated that this led to

very inefficient interpolation algorithms, effectively limiting the dimension of the thin plate

spline to just two [59]. Franke developed a local version of the thin plate spline which

significantly reduced computational load, but which required the data to be placed in a

rectangular grid of rectangles, and was limited to first order continuity [60]. Micchelli
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Table 2.2: Different radial basis functions.

RBF type definition

Gaussian ψ(x) = exp
(

−c|x|2
)

, c > 0

thin plate spline ψ(x) = |x|λ log (|x|) , λ ∈ 2N : even

multiquadric ψ(x) =
(

|x|2 + c2
)λ/2

, λ ∈ N : odd, c > 0

proved a conjecture by Franke that any set of scattered data can be uniquely approximated

with multiquadric surfaces [132].

In more recent years there have been some advancements in the area of thin plate splines.

Important theoretical proofs on aspects of scattered data interpolation with radial basis

functions were presented by Powell [172], Dyn and Ron [49], Schaback [185, 186] and

de Boor [37]. Yoon presented an advanced type of thin plate spline called the shifted thin

plate spline [216, 217, 218]. Shifted thin plate splines have a semi-local basis, resulting in

more efficient approximation schemes than ordinary thin plate splines. However, as Yoon

himself observes, the method requires special ‘tricks’ to ensure reasonable interpolation

behavior near the boundaries of the spline domain [217]. These tricks involve the creation

of virtual data points beyond the spline domain bounds through the extrapolation of existing

data.

The thin plate spline is defined as follows:

f(x) =

N∑

j=1

ψj(x)cj (2.15)

with ψj(x) a kernel function, with cj a vector of coefficients and with N the total number

of data points. The kernel function ψj(x) can be any type of RBF, see Table 2.2.

Thin plate splines were an early solution to the scattered data interpolation and

approximation problem. In contrast with the tensor product splines, thin plate splines had

a scattered data modeling capability. The basis functions of the thin plate splines are non-

local which directly leads to computationally inefficient algorithms for their creation and

evaluation. Both its creation and its evaluation requires the evaluation of all basis functions

as well as all coefficients. Thin plate splines can therefore not be considered a truly general

scattered data modeling tool, as it is limited to only small datasets and low dimensions.

2.1.5 Polyhedral splines

The middle of the 1980’s was a time of great innovation in the field of multivariate

splines. Much of the mathematics used in current multivariate spline theory was developed

by mathematicians in these days. What was considered to be the ‘true’ multivariate

generalization of univariate B-spline theory was developed in the form of the polyhedral



32 Introduction to Multivariate Simplex Splines

R
n+s

(
R

3
)

R
s
(
R

1
)

v0|R1 v1|R1 v2|R1 v3|R1

v0

v1

v2

v3

t

x1 x2

B (x1 |X )

B (x2 |X )

Figure 2.7: Principle of the polyhedral spline: a univariate B-spline as the shadow

of a tetrahedron.

spline [32, 34]. The mathematical theory of the polyhedral spline combined most properties

of the univariate B-spline into a framework for multivariate approximation. In essence, a

polyhedral spline is formed by projecting a multidimensional polyhedron in R
n+s like a

hypercube or simplex onto a lower dimensional plane in R
s. The value of the multivariate

polynomial at a specific location in R
s would be the volume of a slice of the polyhedron

‘floating above’ the plane in R
s, see Figure 2.7. A polyhedral spline would be formed by

combining polyhedrons such that the resulting projections would overlap [152]. In this way,

polyhedrons could be added to polyhedral splines on the fly, like knots could be added to

univariate B-splines. Two of the most used types of polyhedral splines are the Box spline

and the polyhedral simplex spline. It must be noted at this point that in this thesis the

term ‘simplex spline’ refers exclusively to a different multivariate spline concept, that is,

Bernstein basis polynomials in barycentric coordinates defined on simplices.

The polyhedral splines were a popular research topic from the middle of the 1980’s

till the middle of the 1990’s. Important contributions were made by Micchelli [131],

Hakopian [67], Dahmen [21, 22, 23, 24, 25], de Boor [32, 39, 34, 35], Lai [109] and later

Neamtu [151, 152, 153, 154]. The 1992 paper by Dahmen, Micchelli, and Seidel [25] was

considered by de Boor [34] to be the ‘right’ approximation scheme in hindsight. In their



33

paper, Dahmen et al. apply the concept of blossoming [175, 176], which uses the Polarizing

Principle to convert polynomial behavior into multiaffine behavior, to obtain the control

points of Bézier patches. This particular type of polyhedral spline would later be called

the Dahmen-Micchelli-Seidel spline or DMS spline. DMS splines use as basis functions

Bernstein polynomials in polar form obtained through the blossoming principle.

The polyhedral spline is defined as follows. First let h ∈ R
n+s be a polyhedron

of dimension n + s, and let X ⊂ R
s be the canonical projection of the vertices of h

onto R
s acting as the spline knots in R

s. Now let the canonical projection of a point

p = (p1, p2, . . . , ps, . . . , ps+n) ∈ R
n+s onto R

s be defined as p|Rs := (p1, p2, . . . , ps).

The polyhedral spline Bh(x|X) is then defined as the volumetric projection of h onto R
s as

follows:

Bh(x|X) :=
voln (p ∈ h : p|Rs = x)

voln+s (h)
, (2.16)

with volk(A) the k-dimensional volume of a set A. In the case that h is a simplex, then

the polyhedral spline can be evaluated by Micchelli recurrence [131]. Micchelli recurrence

allows a polyhedral simplex spline to be expressed in terms of its lower degree versions as

follows:

Bh(x|X) :=
n+ s

n

∑

y∈X
λyBh (x|X \ {y}) , x ∈ R

s, (2.17)

with the number λy and y chosen such that

∑

y∈X
λy = 1, (2.18)

∑

y∈X
λyy = x. (2.19)

As an example of Eq. 2.16 consider the case pictured in Figure 2.7. Here h is a

tetrahedron in R
3 and the projection is onto R

1. This means that s = 1 and thus that

the spline function is univariate. The degree of the spline function is n = 2, that is, a

quadratic spline function. The knotset X is given by the projection of the vertices of h onto

R
1: X = v0|R1 , v2|R1 , v3|R1 , v4|R1 . In this case Eq. 2.16 can be written as

Bh (x |v0|R1 , v2|R1 , v3|R1 , v4|R1 ) :=
vol2 (p ∈ h : p|R1 = x)

vol3 (h)
(2.20)

It is now clear that the only way to increase the degree of the spline function is by increasing

the dimension of the polyhedrons that form it.

Polyhedral splines have lost much of their popularity over the last decade. This is

reflected by the fact that at the time of this writing, there have only been a handful of

practical applications of polyhedral splines in the literature. Fong and Seidel compared

DMS splines with triangular Bézier patches and showed that the DMS splines preserved
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Figure 2.8: A problem with the polyhedral spline: where should the next

tetrahedron be located, and how should it be oriented?

continuity when moving a single control point, while the Bézier patches did not [55]. Seidel

elegantly demonstrated the basis function property of DMS splines in [191]. In 1996, Pfeifle

and Seidel used DMS splines in 2-D to create a geographical model of a large, scattered, set

of elevation data [171]. More recently Hua, He and Qin used DMS splines to model complex

3-dimensional datasets [76]. Hansen uses a scheme developed by Neamtu to parameterize

2-dimensional image data [70].

As it turns out, the problem with polyhedral splines is that they simply are too general.

Fong and Seidel had observed in 1991 that polyhedral splines “exhibit the problem that it is

a priori unclear how to form linear combinations and how to use them for constructing

piecewise polynomial surfaces over arbitrary triangulations” [55]. That is, they found

that it was unclear how to combine multiple polyhedrons of higher dimension into a single

geometry of which the projection would result in a specific spline function, see Figure 2.8.

This argument was emphasized in a more recent paper by Neamtu as follows: “Since there

is no natural ordering in the Euclidean plane, it should not come as a surprise that the

problem of choosing an appropriate collection of knots is far from trivial” [152]. This is

in stark contrast with the univariate B-spline in which the addition of knots is quite trivial.

Finally, Grandine had already proved in 1987 that construction and evaluation of polyhedral

splines would always remain very inefficient computationally [66]. It is therefore safe to

conclude that polyhedral splines, while mathematically elegant, are not a suitable tool for

practical scattered data approximation.
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Figure 2.9: The principle of the simplex spline: (left) four individual 2-simplices

(triangles) each support a bivariate B-form polynomial and its control coefficient

net. By joining the four simplices together into a triangulation, a simplex spline

surface is created (right).

2.1.6 Simplex splines

In 1986, while most spline theoreticians were focused on the development of the polyhedral

spline, a small group of mathematicians and computer graphics specialists concentrated

their efforts on another type of multivariate spline. This multivariate spline type was the

multivariate simplex spline, and it was based on the triangular Bernstein-Bézier patches

invented by de Casteljau in 1971 [53]. In 1986, Farin published a paper in which he

presented, in exquisite detail, the theory of the 2-dimensional simplex spline [52]. A year

later, de Boor published an influential paper in which he presented a general multivariate

formulation of the B-form [31] using Bernstein polynomials in barycentric coordinates.

Initial methods for creating spline interpolations were based on the multivariate B-form and

used simplex subdivision schemes like the Clough-Tocher and Powell-Sabin subdivision

schemes [34].

The principles of the simplex spline are relatively simple, see Figure 2.9. Geometric

n-dimensional structures called simplices each support a single B-form polynomial. The

B-form polynomial is a linear combination of Bernstein basis polynomials which are

individually scaled by control coefficients called B-coefficients. Many simplices can be

joined together into a special configuration called a triangulation4, see Figure 2.10.

4While the triangle is the 2-simplex, the word triangulation would seem to be specific for the 2-dimensional

case. However, in the literature, the word triangulation is used for all simplex spline dimensions.
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The simplex spline is defined as follows. First, let b ∈ R
n+1 be the barycentric

coordinate of the point x ∈ R
n with respect to the n-dimensional simplex t. The Bernstein

basis polynomial Bdκ(b) of degree d is then given by:

Bdκ(b) :=
d!

κ!
bκ, (2.21)

with κ a multi-index. Using Eq. 2.21, the B-form of the multivariate simplex spline of

degree d and dimension n for a single simplex t is then defined as follows:

p(b) =
∑

|κ|=d
cκB

d
κ(b), (2.22)

with cκ the B-coefficients and with Bdκ(b(x)) the Bernstein basis polynomials. The

control coefficients completely determine the shape of the spline function. This means that

finding a solution to a scattered data approximation problem on a given triangulation reduces

to finding an optimal set of B-coefficients for every B-form polynomial. The B-coefficients

of the multivariate simplex spline have a spatial location within a simplex. Together they

form a structure called the B-coefficient net, see Figure 2.9.

The true power of the simplex spline comes from the versatility of the triangulation.

Triangulations can come in many sorts and sizes, from two simplices to millions of simplices

in any number of dimensions. Triangulations can be refined locally in areas of higher

data complexity by increasing the density of simplices, or be simplified locally to increase

computational efficiency. There is one strict rule, however, as to what is a valid triangulation

and what is not. In a valid triangulation, simplices are only allowed to meet at their vertices

and no two simplices are allowed to overlap, see Figure 2.11. This is one of the properties

that sets the simplex spline apart from the polyhedral spline because the polyhedral spline

imposes no strict rules on the placing of polyhedrons. One of the most used triangulation

types is the Delaunay triangulation, invented by the Russian mathematician Boris Delaunay

in 1934 [113].

Because the simplex spline completely does away with the concept of knots, mathemati-

cians did not consider it to be the true multivariate generalization of the univariate B-spline.

This lack of generality perhaps prevented the simplex splines from becoming a popular

research topic in the mathematical community. While at first it seemed that the dependence

on triangulations rather than knots would make simplex splines a static and inflexible tool,

the concept of the triangulation also prevented the arbitrariness from which the polyhedral

spline was suffering. As it turned out, in fact, concepts like triangulation refinement and

variable inter-simplex smoothness provided simplex splines with most of the flexibility of

polyhedral splines.

From the middle of the 1990’s, Lai and Schumaker laid down most of the theoretical

foundation of the multivariate simplex spline. In 1996 Lai presented an important result
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Figure 2.10: 4 different types of triangulations in the 2-plane.

on scattered data approximation with piecewise cubic polynomials on a triangulation [95].

Then, in 1997 Lai reproduced Farin’s geometric interpretation [52] of the smoothness

conditions and generalized them to higher degrees and dimensions [96]. Together with

Schumaker, Lai presented a number of important theories on the approximation power

of various spline spaces [100, 101, 102, 26]. Lai, Wenston and Awanou demonstrated

that simplex splines are powerful function approximators by using them to approximate

the Navier-Stokes equations for fluid flows [106, 107, 4, 5]. More recently, the same

authors presented a highly efficient and powerful scheme for scattered data approximation

using simplex splines [97, 213, 103, 108, 7, 99, 98]. This scheme allows the formulation

of any scattered data approximation problem into a Karush-Kuhn-Tucker (KKT) solution
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Figure 2.11: Two invalid triangulations: overlapping simplices (left) and

asymmetric edge cut (right).

system using Lagrange multipliers to incorporate the smoothness conditions [7]. Awanou

presented an iterative method for efficiently solving the KKT system with a guaranteed

convergence [6]. Because the size of the KKT system grows proportionally with the total

number of simplices and exponentially with the degree and dimension of the splines, it can

become large enough to exceed computer memory limits. However, because the simplex

splines are local approximators, the triangulation can be decomposed into smaller sets in

a process called domain decomposition. Domain decomposition splits up the complete

triangulation into a number of sub-triangulations leading to much smaller, partial solution

systems [105]. Most theoretical developments from the 1980’s and 1990’s on simplex

splines were consolidated in the excellent textbook by Lai and Schumaker in 2007 [104].

Although the book concentrates on bivariate splines, it contains many theories and insights

applicable to simplex splines of any dimension.

Multivariate simplex splines are a truly general interpolation and approximation tool.

They can be used to model scattered data on non-rectangular domains in any number of

dimensions. Their approximation power is limited only by the complexity and density of the

triangulation on which they are defined. Because the multivariate simplex spline has existed

in the shadow of the other multivariate spline types, its applications have been relatively

limited. Some recent applications of simplex splines are the solving of partial differential

equations [75], aerodynamic model identification [43, 42] and volumetric data modeling

[86]. Another recent development has been the integration of multivariate simplex splines

in a framework for system identification [40, 41].
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2.2 The Basis of the Multivariate Simplex Spline

In this section the basic mathematical theory of the multivariate simplex splines is presented.

This basic mathematical theory is centered on the polynomial basis functions of the simplex

spline, and the coefficients called B-coefficients that are used to scale these basis functions.

The theory in this section is limited to polynomials on a single simplex, where a simplex is

a special geometric entity that minimally spans a set of dimensions. It will be shown in this

section that the basis functions are Bernstein basis polynomials, which form a stable local

basis for approximating any continuous function as closely as desired. The stable local basis

property will be proved to be a direct result of expressing the basis polynomials in terms of

the barycentric coordinate system, a special coordinate system that is native to the simplex.

This section has the following structure. First, in Sec. 2.2.1 the simplex is introduced.

It will then be shown in Sec. 2.2.2 that the simplex brings rise to a special local coordinate

system called the barycentric coordinate system. In Sec. 2.2.3 the Bernstein basis functions

of the multivariate simplex spline are presented. Then, in Sec. 2.2.4 it is proven that

Bernstein basis polynomials, when expressed in barycentric coordinates, allow every

polynomial of given degree and dimensionality to be written in the B-form. The B-form

has an alternative vector representation introduced in Sec. 2.2.5 which will prove to be

invaluable in later sections. In Sec. 2.2.6 it will be then shown that the control coefficients of

B-form polynomials have a spacial location within a simplex, giving rise to one of the most

powerful features unique to the multivariate simplex spline: the B-net. Finally, Sec. 2.2.7

introduces the concept of spline spaces.

2.2.1 The Simplex

A key concept within the mathematical theory of multivariate simplex splines is a general

geometric entity called the simplex. The simplex is a special type of n-dimensional

polytopes that minimally spans a given set of n dimensions. More precisely, the simplex

of n-dimensional space, or n-simplex, is the convex hull of a set of n + 1 non-degenerate

points embedded in an n + k dimensional space with k ≥ 0. As an example of the above,

the 0-simplex is the vertex, the 1-simplex is the line, the 2-simplex is the triangle and the 3-

simplex is the tetrahedron, see Figure 2.12. The n-simplex can be considered a platonic

entity because it resembles a class of n-dimensional objects rather than any particular

instance of that class. It is easy to see that there are infinitely many unique instances of any

n-simplex; for example, there are infinitely many possible triangles that are all instances of

the 2-simplex.

The n-simplex has the following mathematical definition. First, define a singular point,

or vertex, in an (n+ k) dimensional space as follows:

vpi := (x1, x2, . . . , xn+k) ∈ R
n+k, k ≥ 0, (2.23)
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with pi ∈ N the vertex index, and with xj single coordinate components in (n + k)-space.

The vertex indexer is simply a non-negative integer that uniquely identifies a vertex within

the global set of vertices5.

Now, using Eq. 2.23, let Vt be a tuple6 consisting of n+ 1 vertices:

Vt := (vp0 ,vp1 , . . . ,vpn) ∈ R
n+k, k ≥ 0, (2.24)

with

p0 > p1 > · · · > pn. (2.25)

The vertices in the tuple Vt are ordered based on the vertex index, which will prove to be

essential when working with triangulations consisting of more than a single simplex as will

be explained in Sec. 2.3.5.

The n-simplex t is defined as the convex hull of Vt from Eq. 2.24 as follows:

t := 〈Vt〉 ∈ R
n. (2.26)

A key requirement for the vertices of the n-simplex t is that they must be non-degenerate,

where non-degeneracy is defined as follows:

Definition 2. A set of n + 1 vertices Vt is considered non-degenerate if, and only if, the

convex hull of Vt is of dimension n.

That is, if a vertex vpi within the vertex set Vt of the simplex t can be removed without

changing the dimension of t, then vpi is a degenerate vertex.

In Figure 2.12 the simplices of dimension 0 to 15 are drawn by projecting their vertices

on the 2-plane using a skew orthogonal projection. Visualizing and interpreting simplices

of dimension 4 and higher is not an easy task, as we humans are used to thinking in 3-

dimensions. For example, it may not seem apparent that the n-simplices in Figure 2.12

are all regular, which means that the Euclidean distance between any two of their vertices

is equal in n-space. The n-simplex has a fundamental property, however, that aids its

visualization and interpretation. This fundamental property of the n-simplex is that its

geometric elements, also called faces, are themselves simplices of all dimensions lower

than n. Simplices have a recursive structure! For example, the triangle (2-simplex) contains

three lines (1-simplex) and three vertices (0-simplex). In the same way, the tetrahedron

(3-simplex) contains four triangles, six lines and four vertices.

In Table 2.3 the total number of faces of increasing dimension of the simplices of

dimension 0 to dimension 8 are listed. Observe that the elements in Table 2.3 are, in fact,

5While not explained at this point, the global set of vertices are all vertices for all simplices that form the

complete spline function. A detailed discussion of the need for global indexing as well as its uses takes place in

Sec. 2.3 and Sec. 3.3.
6A tuple is a special set in which the elements are ordered.
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15-simplex14-simplex13-simplex12-simplex

11-simplex10-simplex9-simplex8-simplex

7-simplex6-simplex5-simplex4-simplex

3-simplex2-simplex1-simplex0-simplex

Figure 2.12: Projections on the 2-plane of the regular simplices of dimension 0 to

15.
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Table 2.3: Elements of simplices

Dimension n 0-faces 1-faces 2-faces 3-faces 4-faces 5-faces 6-faces 7-faces 8-faces

0 1 0 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0 0 0

2 3 3 1 0 0 0 0 0 0

3 4 6 4 1 0 0 0 0 0

4 5 10 10 5 1 0 0 0 0

5 6 15 20 15 6 1 0 0 0

6 7 21 35 35 21 7 1 0 0

7 8 28 56 70 56 28 8 1 0

8 9 36 84 126 126 84 36 9 1

the elements of the first eight rows of Pascal’s Triangle7. In general, it is found that the total

number of m-faces of an n-simplex is:

Nm =

(

n+ 1

m+ 1

)

(2.27)

which is the equation for the (n+ 1)th row and (m+ 1)th column in Pascal’s triangle.

One important type of face of an n-simplex t is the n − 1 face, called the edge facet

and denoted t̃. An edge facet shares n vertices with t, and therefore is itself a simplex of

dimension n − 1. It is easy to check that any n-simplex has n + 1 edge facets. Therefore,

the following indirect definition of the ith edge facet can be given:

t̃i := 〈Vt \ vpi〉 ∈ R
n, i = 0, 1, . . . , n. (2.28)

In words, Eq. 2.28 states that any edge facet t̃i can be defined implicitly in terms of the

single vertex vpi in the n-simplex t which is not in t̃i. This observation, made by de Boor in

[31], will prove to be instrumental in the definition of the continuity conditions that govern

the continuity between simplex polynomials on neighboring simplices.

Using the recursive simplex structure, the visualization and interpretation of higher

dimensional simplices can be simplified. Consider for example a 4-simplex, or pentachoron,

which has five tetrahedrons as edges. Figure 2.13 shows a pentachoron with four vertices

in the 3-plane, and one vertex in the 4-plane. The ‘base plane’ of this pentachoron thus is

an ordinary tetrahedron; it exists entirely in 3-space. The other four tetrahedron edges exist

partly in 4-space. In Figure 2.14 the five edge tetrahedrons of a pentachoron are highlighted.

7Pascal’s triangle makes a number of unexpected entries throughout multivariate simplex spline theory, perhaps

suggesting some mysterious connection. While attributed posthumously to the French mathematician Blaise Pascal

(1623-1662), Pascal’s triangle has been known to many mathematicians throughout written history, with the first

surviving reference dating back to the Persian mathematician al Karajı̈ sometime around 1100 AD [57]. The

popularity of Pascal’s triangle is probably due to its close links with geometry, which also explains its (less than

mysterious) connection with simplex spline theory.
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Figure 2.13: The pentachoron, or 4-simplex, with its tetrahedral base plane

highlighted.

It is clear from the figure that each set of four vertices forms an edge tetrahedron. Now

consider a 5-simplex such as that pictured in Figure 2.12. What the tetrahedron was to the

pentachoron, the pentachoron is to the 5-simplex, that is, a 5-simplex has six pentachorons

as edges. In the same line of reasoning, a line is to a tetrahedron what a tetrahedron is to a

5-simplex. Conversely, a 5-simplex is to a 7-simplex what a line is to a tetrahedron; a rather

insignificant part in terms of complexity as compared to the whole. This reasoning not only

aids the interpretation, but also helps one to appreciate the true complexity of these higher

dimensional structures.

A useful entity related to any n-simplex is the normalized simplex vertex matrix At.

This matrix contains the vertex coordinates of t normalized with the coordinates of the first

vertex as follows:

At =
[

vp1 − vp0 vp2 − vp0 · · · vpn − vp0

]

∈ R
n×n (2.29)
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Figure 2.14: Highlighting the five tetrahedrons that form the edges of a

pentachoron, or 4-simplex.

The normalized simplex vertex matrix from Eq. 2.29 can be used to calculate the

Euclidean volume of an n-simplex t as follows:

V ol(t) =
1

n!
detAt (2.30)

2.2.2 Barycentric Coordinates

In 1827, the famous German mathematician August Ferdinand Möbius8 (1790-1868)

introduced a new coordinate system he named the barycentric coordinate system [136].

Möbius used the term barycentric to indicate the relationship of the new coordinate system

with the center of mass, or barycenter, of a set of point masses located at the vertices

of (fixed) triangles and tetrahedrons. Möbius found the new coordinate system to be

8Möbius is perhaps best known for his invention of the Möbius strip, which is a geometry embedded in

Euclidean 3-space, and which only has one boundary component.
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homogeneous [136, 197], that is, invariant of scalar multiplication. This can be explained

by considering the barycenter of the set of point masses; multiplication of these masses

with a common multiplication factor will not change the location of the barycenter. Möbius

proved that any coordinate in a 2-dimensional or 3-dimensional Euclidean plane can be

expressed as a weighted vector sum of the vertices of respectively a triangle or tetrahedron.

While Möbius restricted his discussion of barycentric coordinates to the 2-dimensional

and 3-dimensional Euclidean planes, the concept of the barycentric coordinates is easily

generalized to the n-dimensional Euclidean plane.

The derivation of the barycentric coordinates starts with a point x in the n-dimensional

Euclidean plane:

x = (x1, x2, . . . , xn) ∈ R
n. (2.31)

The point x can be expressed in terms of the vertices of an n-simplex as follows:

x =

n∑

i=0

bivpi , (2.32)

with vpi ∈ R
n from Eq. 2.23 and with bi ∈ R scalar weights. The barycentric coordinate

of x is the vector of vertex weights b given by:

b = (b0, b1, . . . , bn) ∈ R
n+1, (2.33)

In the following we define the implicit transformation of the Cartesian coordinate x from

Eq. 2.31 into the barycentric coordinate b from Eq. 2.33 as follows:

b(x) := b ∈ R
n+1, (2.34)

While the definition of the barycentric coordinates from Eq. 2.32 is complete, an additional

expression in the form of the normalization property is required to explicitly calculate b(x)

given a set of simplex vertices:
n∑

i=0

bi = 1. (2.35)

The normalization property of the barycentric coordinates effectively reduces the number

of degrees of freedom of the barycentric coordinate transformation by one, since any single

component of b can now be expressed in terms of the remaining components:

b0 = 1−
n∑

i=1

bi. (2.36)

An implicit expression for the Cartesian-to-barycentric coordinate transformation was

already given in Eq. 2.34. At this point, all the theory is in place to allow the derivation of an
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explicit form of this transformation. Starting with Eq. 2.32 together with the normalization

property Eq. 2.36 we get:

x =

n∑

i=0

bivpi

= b0vp0 +
n∑

i=1

bivpi

=

(

1−
n∑

i=1

bi

)

vp0 +

n∑

i=1

bivpi

= vp0 +

n∑

i=1

(bivpi − bivp0)

= vp0 +
n∑

i=1

bi (vpi − vp0) . (2.37)

So, finally:

x− vp0 =
n∑

i=1

bi (vpi − vp0) . (2.38)

Notice that the right hand side of this equation can be written in the following vector form:

x− vp0 =
[

vp1 − vp0 vp2 − vp0 · · · vpn − vp0

]

·









b1
b2
...

bn









(2.39)

This expression can be simplified by substitution of the normalized simplex vertex matrix

from Eq. 2.29:

x− vp0 = At ·









b1
b2
...

bn









(2.40)

The vector of barycentric coordinates is obtained by multiplying the left and right hand side

with A−1
t :

A−1
t · (x− vp0) =









b1
b2
...

bn









(2.41)
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Note that At is invertible if the vectors vpi − vp0 are linearly independent, which is the

case when the vertices vpi are non-degenerate according to Definition 2. If At is invertible

then the Cartesian-to-barycentric coordinate system transformation is a linear, one-to-one

transformation. This in turn implies that any Cartesian coordinate in the Euclidean n-plane

has a unique barycentric coordinate with respect to a given n-simplex. This also holds for

points that are located outside the simplex with respect to which the barycentric coordinates

are calculated. In fact, the barycentric coordinates provide a simple method for determining

whether a point is inside or outside an n-simplex t:

bi > 0 −→ x ∈ t, ∀i (2.42)

bi < 0 −→ x /∈ t, 0 ≤ i ≤ n (2.43)

That is, if a point is located inside a simplex, all its barycentric coordinate components with

respect to that simplex are larger than or equal to zero. If a point is located outside a simplex

at least one, and possibly all, barycentric coordinate components are smaller than zero.

In Figure 2.15 the principle of barycentric coordinates is demonstrated on a single

triangle. There are some important things to note from the figure. First, all barycentric

coordinate components of points inside the triangle are positive, which is according to

Eq. 2.43. After closer inspection, it can be seen that points located on the triangle edges have

2 nonzero components, while points located at the vertices have only 1 nonzero component.

This is not a coincidence; in general, points located on the m-face of an n-simplex face will

have m+ 1 nonzero barycentric components.

A numerical example of a Cartesian-to-barycentric coordinate transformation will now

be given.

Example 1 (Cartesian to barycentric transformation). The Cartesian-to-barycentric coor-

dinate transformation for a point x ∈ R2 with respect to a triangle t.

Let x = (1, 0.5) and let t be a triangle with a vertex set Vt = {v12,v13,v34} with p0 =

12, p1 = 13, and p2 = 34. The vertices have coordinates v12 = (0.5, 0),v13 = (2, 0),

and v34 = (0, 2). The 2 × 2 normalized simplex vertex matrix from Eq. 2.29 can now be

constructed:

At =
[

vp1 − vp0 vp2 − vp0

]

=

[ [

2

0

]

−
[

0.5

0

] [

0

2

]

−
[

0.5

0

] ]

=

[

1.5 −0.5

0 2

]

.
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(+,+,+)

(+,−,+)

(−,−,+)

(−,+,+)

(−,+,−)(+,+,−)(+,−,−)

(0, 1/2, 1/2)(1/2, 0, 1/2)

(1/2, 1/2, 0)

(1/3, 1/3, 1/3)

(0, 0, 1)

(0, 1, 0)(1, 0, 0)

v2

v1v0

Figure 2.15: Barycentric coordinates of some points with respect to a triangle,

together with regions of positivity and negativity of barycentric coordinate

components.

Inverting At and using Eq. 2.41 we get for the last 2 elements of b:

[

b1
b2

]

= A−1
t · (x− vp0)

=

[

0.6667 0.1667

0 0.5

]

·
[

0.5

0.5

]

=

[

0.4167

0.25

]

.
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Finally, using the normalization property Eq. 2.36 we get:

b = (1− (0.4167 + 0.25), 0.4167, 0.25)

= (0.3333, 0.4167, 0.25) .

All barycentric coordinate components are larger than zero, so according to Eq. 2.43 the

point x is located inside t.

�

The barycentric coordinate system may at first seem to be an unnecessary excursion

into some obscure corner of mathematics. As it will turn out, however, the barycentric

coordinate system is absolutely essential in the definition of the polynomial basis functions

that constitute the multivariate simplex spline functions.

2.2.3 Bernstein basis polynomials

A simplex spline function consists of a set of neighboring simplices on each of which is

defined a single simplex polynomial. A simplex polynomial is defined locally on a single

simplex, and can be considered a Bernstein polynomial9. Being a Bernstein polynomial, a

simplex polynomial consists of a linear combination of Bernstein basis polynomials. In this

section, the Bernstein basis polynomials of the multivariate simplex spline will be derived

from the well-known multinomial theorem.

First, let b = (b0, b1, . . . , bn) be a coordinate in R
n+1. The multinomial theorem then

states the following for polynomials of degree d in b:

(b0 + b1 + · · ·+ bn)
d =

∑

κ0+κ1+···+κn=d

d!

κ0!κ1! · · ·κn!
bκ0
0 bκ1

1 · · · bκn
n (2.44)

with the exponential d ∈ N the polynomial degree. This expression can be simplified by the

introduction of a new entity called the multi-index. The multi-index κ of dimension n is a

tuple defined as follows:

κ := (κ0, κ1, . . . , κn) ∈ N
n+1. (2.45)

The 1-norm of the multi-index κ is given by:

|κ| = κ0 + κ1 + · · ·+ κn = d, d ≥ 0, (2.46)

9Bernstein polynomials are named after Russian mathematician Sergei Natanovich Bernstein (1880-1968) who

used them to prove the Weierstrass approximation theorem. The Weierstrass approximation theorem states that

every continuous function can be approximated as closely as desired by a polynomial function on a closed interval,

and as such has many important theoretical and practical applications.
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The factorial of the multi-index κ is:

κ! = κ0!κ1! · · ·κn!. (2.47)

Using Eq. 2.47, the multinomial coefficient from Eq. 2.44 can be simplified as follows:

d!

κ0!κ1! · · ·κn!
=
d!

κ!
. (2.48)

The polynomial part from Eq. 2.44 can also be simplified using multi-index notation:

bκ0
0 bκ1

1 · · · bκn
n = bκ (2.49)

Combining Eq. 2.48 with Eq. 2.49 leads to the simplified expression for the multinomial

theorem using multi-index notation:

(b0 + b1 + · · ·+ bn)
d =

∑

|κ|=d

d!

κ!
bκ, (2.50)

Note that the total number of polynomial terms in Eq. 2.50 is determined by the length of

the sum, which in turn is determined by the total number of valid permutations of κ. The

total number of valid permutations of κ for a given dimension n and polynomial degree d is

d̂, which is defined as follows:

d̂ =

(

d+ n

d

)

=
(d+ n)!

n!d!
. (2.51)

This expression has been taken from literature, see [31] and [7]. Interestingly, the total

number of valid permutations of κ for a given dimension n and polynomial degree d is

equal to the total number of elements on the dth level of Pascal’s (n + 1)-simplex . This

is no coincidence, as the values on the dth level of Pascal’s n-simplex are the values of the

multinomial coefficient for a given n and d. Logically, there must be as many multinomial

coefficient values as there are polynomial terms and thus total number of valid permutations

of κ. For example, for n = 2 the total number of permutations of κ for d = 1, 2, 3, 4 is equal

to the total number of elements on respectively the first, second, third and fourth levels of

Pascal’s tetrahedron: 3, 6, 10 and 15.

The Bernstein basis polynomial can now be defined as follows:

Bdκ(b) :=
d!

κ!
bκ. (2.52)

The Bernstein basis polynomial of the multivariate simplex spline is itself a polynomial of

degree d, scaled by the constant multinomial coefficient. Using Eq. 2.52 the multinomial
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expression from Eq. 2.50 can be simplified as follows:

(b0 + b1 + · · ·+ bn)
d =

∑

|κ|=d
Bdκ(b), (2.53)

where the expression on the right hand side is a Bernstein polynomial. The multinomial

theorem from Eq. 2.50 can be expressed in terms of the barycentric coordinates, leading

to a powerful new concept called the partition of unity of the Bernstein basis polynomials.

If b = (b0, b1, . . . , bn) is a barycentric coordinate, then according to the normalization

property from Eq. 2.35 we have b0 + b1 + · · · + bn = 1. The normalization property thus

allows a slight, but very significant, reformulation of Eq. 2.50 into:

1 =
∑

|κ|=d
Bdκ(b). (2.54)

The partition of unity quality simply states that every Bernstein basis polynomial contributes

to the total value of 1, at every location within an n-simplex, see e.g. Figure 2.17. In

the following the Bernstein polynomial will sometimes be expressed in terms of Cartesian

coordinates, rather than barycentric coordinates. In that case, the implicit Cartesian to

barycentric coordinate transformation operator b(x) is used to reformulate Eq. 2.54 into:

1 =
∑

|κ|=d
Bdκ(b(x)). (2.55)

Every Bernstein basis polynomial has a unique maximum at a specific location inside

the n-simplex. The location of this maximum bmaxκ
is:

bmaxκ
=
κ

d
, |κ| = d. (2.56)

Before continuing with the definition of the B-form in the next section, one additional

entity needs to be introduced in the form of the tuple of valid permutations of the multi-index

κ. Let Kdn be this tuple for polynomial degree d and dimension n as follows:

Kdn = (κ)|κ|=d . (2.57)

The tuple Kdn thus contains all permutations of κ that have all non-negative components and

that sum up to d. The cardinality of Kdn follows immediately from Eq. 2.51:

∣
∣Kdn

∣
∣ = d̂. (2.58)

A complete example of the construction of a Bernstein polynomial from its basis

functions is now given.
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Example 2 (Using the Multinomial Theorem). Expansion of the multinomial theorem for a

third degree trivariate basis polynomial.

The procedure for the expansion starts by constructing the tuple Kdn with n = 2 and

d = 3 using Eq. 2.57:

K3
2 = {(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3)}

This tuple can now be used to expand the multinomial equation from Eq. 2.54 as follows:

(b0 + b1 + b2)
3 =

∑

|κ|=d
B3
κ(b)

= B3
300(b) +B3

210(b) +B3
201(b) +B3

120(b) +B3
111(b) +

B3
102(b) +B3

030(b) +B3
021(b) +B3

012(b) +B3
003(b)

=
3!

3!0!0!
· b30b01b02 +

3!

2!1!0!
· b20b11b02 +

3!

2!0!1!
· b20b01b12 +

3!

1!2!0!
· b10b21b02 +

3!

1!0!2!
· b10b11b12 +

3!

0!3!0!
· b10b01b22 +

3!

0!3!0!
· b00b31b02 +

3!

0!2!1!
· b00b21b12 +

3!

0!1!2!
· b00b11b22 +

3!

0!0!3!
· b00b01b32

= b30 + 3b20b1 + 3b20b2 + 3b0b
2
1 + 6b0b1b2 + 3b0b

2
2 + b31 + 3b21 + 3b1b

2
2 + b32

�

In Figure 2.16, the 15 individual polynomial basis functions that together form the 4th

degree polynomial
∑

|κ|=4B
4
κ(b) on a single 2-simplex are shown. The figure clearly

shows that the Bernstein basis polynomials have a localized influence on the complete

simplex polynomial. In Figure 2.17 the partition of unity property of the polynomial basis

functions is demonstrated. In the figure, individual polynomial basis function terms are

added according to the sum in
∑

|κ|=4B
4
κ(b). This sum of terms reaches a constant value

1 (unity) over the entire simplex after the last basis polynomial has been added.

2.2.4 The B-form

In his 1987 theoretical paper, Carl de Boor provided a proof of the stable local basis property

of Bernstein basis polynomials, thereby laying down the mathematical foundations of what

was to become the multivariate simplex spline [31]. The stable local basis allows every

polynomial of degree d to be expressed as a unique linear combination of Bernstein basis

polynomials. The B-form10 in turn provides an elegant notation for the linear combination

10At current, there seems to be no consensus on the actual meaning of the capital ‘B’ in the B-form. Carl de

Boor, who was the first author in the literature to use the term B-form notes that ‘For the sake of brevity, and since

there are several people and ideas responsible, I am proposing here the term B-form [...] for what would, more

properly, be called the barycentric-Bernstein-de Casteljau-Bézier-Farin-· · · -form.’
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Figure 2.16: The 15 individual basis functions of a 4th degree polynomial on a

single 2-simplex.
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Figure 2.17: Construction of the complete 4th degree polynomial
∑

|κ|=4
B4

κ(b)
demonstrates the partition of unity property of the 15 individual basis polynomials.
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of Bernstein basis functions on a single n-simplex. De Boor’s general proof for n-variate

basis functions has been repeated for some special cases in the literature, see e.g. [104]

for bivariate basis functions and [4] for trivariate basis functions. Because this proof is

fundamental to the validity of the multivariate spline approximation scheme it is repeated

here for the n-variate case using the notation from [4] and [104] .

Theorem 1. Any polynomial p(x) of degree d in the space of polynomials Pd can be written

in the B-form as follows:

p(x) =
∑

|κ|=d
cκB

d
κ(b(x)). (2.59)

Proof. The theorem implies that the set of basis polynomials Bd =
{
Bdκ(b(x))

}

|κ|=d is a

basis for Pd. Therefore, we must have that every polynomial xγ11 x
γ2
2 · · ·xγnn for 0 ≤ |γ| ≤ d

is in the span of Bd, with γ = (γ1, γ2, . . . , γn) a multi-index. The proof is based on

the partition of unity property of the Bernstein basis polynomials from Eq. 2.55 and the

definition of the barycentric coordinates from Eq. 2.32.

Using Eq. 2.32 we can write for the variable xi:

xi = b0v0i + b1v1i + · · ·+ bnvni
. (2.60)

The partition of unity property holds for Bernstein polynomials of all degrees, which means

that multiplying with
∑

|κ|=d−1B
d−1
κ (b(x)) is equal to multiplying by 1:

xi = b0v0i + b1v1i + · · ·+ bnvni

= (b0v0i + b1v1i + · · ·+ bnvni
)




∑

|κ|=d−1

Bd−1
κ (b(x))





=
∑

|κ|=d
(v0i + v1i + · · ·+ vni

)Bdκ(b(x))

=
∑

|κ|=d
aκB

d
κ(b(x)), (2.61)

with aκ a constant independent of b. We have now proved that all individual components,

or variables xi are in span
(
Bd
)
. Using the same line of reasoning we can prove that

xγ11 x
γ2
2 · · ·xγnn ∈ span

(
mathcalBd

)
by again using the partition of unity property to raise

the total degree of the right hand side to d as follows:

xγ11 x
γ2
2 · · ·xγnn = (b0v01 + b1v11 + · · ·+ bnvn1

)
γ1 (b0v02 + b1v12 + · · ·+ bnvn2

)
γ2 · · ·

(b0v0n + b1v1n + · · ·+ bnvnn
)
γn ·

∑

|κ|=d−|γ|
Bd−|γ|
κ (b(x))
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We will now proceed with moving the first polynomial xγ11 inside the sum:

xγ11 x
γ2
2 · · ·xγnn = (b0v02 + b1v12 + · · ·+ bnvn2

)
γ2 · · · (b0v0n + b1v1n + · · ·+ bnvnn

)
γn ·

∑

|κ|=d−|γ|+γ1
(v01 + v11 + · · ·+ vn1

)
γ1 Bd−|γ|+γ1

κ (b(x))

= (b0v02 + b1v12 + · · ·+ bnvn2
)
γ2 · · · (b0v0n + b1v1n + · · ·+ bnvnn

)
γn ·

∑

|κ|=d−|γ|+γ1
a1κB

d−|γ|+γ1
κ (b(x)) (2.62)

with a1κ a constant independent of b. Applying this procedure to all polynomials xγii we

finally end up with:

xγ11 x
γ2
2 · · ·xγnn = (b0v0n + b1v1n + · · ·+ bnvnn

)
γn ·

∑

|κ|=d−γn
a1κa

2
κ · · · an−1

κ Bd−γnκ (b(x))

=
∑

|κ|=d
a1κa

2
κ · · · anκBdκ(b(x))

=
∑

|κ|=d
cκB

d
κ(b(x)) (2.63)

which proves that xγ11 x
γ2
2 · · ·xγnn ∈ span

(
Bd
)

for 0 ≤ |γ| ≤ d thereby proving the theorem.

The coefficients cκ in Eq. 2.59 are called a control coefficients, or more commonly, B-

coefficients11. The B-coefficients fully control the particular shape of a B-form polynomial

by scaling the individual basis functions. In total, there are as much B-coefficients for a

given B-form polynomial as there are basis function terms, with the total number given by

Eq. 2.51. The resulting complete B-form polynomial is constructed by multiplying every

individual basis function with its corresponding B-coefficient. In the following, the term

simplex polynomial shall be used intermittently with the term ’B-form polynomial’, with

both terms pointing to the same entity: a polynomial of any degree, and dimension in

barycentric coordinates written in the B-form on a single simplex.

The following example demonstrates the scaling of individual basis function terms

with the B-coefficients. Note that the commas in the multi-index values are dropped for

readability!

Example 3 (Using B-coefficients). B-coefficients in action: scaling the basis functions of a

third degree trivariate polynomial.

11In the past, B-coefficients have also been called Bézier ordinates after Pierre Étienne Bézier (1910-1999), an

engineer at car maker Renault who patented them in 1962, but not invented them. The inventor of the Bézier

ordinates is actually Paul de Casteljau, another important innovator of multivariate spline theory.
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The third degree trivariate B-form polynomial from Eq. 2.54 is expanded as follows:

p(x) =
∑

|κ|=3

cκB
3
κ(b(x))

= c300B
3
300(b) +

c210B
3
210(b) + c201B

3
201(b) +

c120B
3
120(b) + c111B

3
111(b) + c102B

3
102(b) +

c030B
3
030(b) + c021B

3
021(b) + c012B

3
012(b) + c003B

3
003(b)

= c300b
3
0 + c2103b

2
0b1 + c2013b

2
0b2 + c1203b0b

2
1 + c1116b0b1b2 +

c1023b0b
2
2 + c030b

3
1 + c0213b

2
1 + c0123b1b

2
2 + c003b

3
2

�

2.2.5 A Vector form of the B-form

The B-form can be expressed in a vector form, which shall prove to be essential when

simplex splines are to be used within a parameter estimator. Vector forms of the B-

form are well known in the literature, e.g. [104] and [40]. The vector form from

[40] is used in this thesis. This particular formulation differs from others present in the

literature in its explicit matrix formulation, which simplifies its algorithmic implementation

in programming languages like C++ and Matlab.

First, define the vector of B-coefficients for a single n-simplex tj as follows:

ctj := [ctjκ ]|κ|=d ∈ R
d̂×1. (2.64)

In this definition the rows of ctj contain individual B-coefficients. In contrast with the

ordinary B-form, the vector B-form requires an explicit sorting of the B-coefficients in the

vector ctj . [75] as well [104] introduced a very useful lexicographical sorting order on the

values of the multi-index κ:

κd,0,0···0 > κd−1,1,0···0 > κd−1,0,1,0···0 > · · · > κ0···0,1,d−1 > κ0···0,0,d. (2.65)

The lexicographical sorting rule is used to sort the individual B-coefficients in ctj and

basis functions. This effectively means that κ is mapped to a linear index i in the vector of

B-coefficients or basis functions.

Now let Bd
tj

be defined as the vector of basis polynomials for the simplex tj .

Bd
tj
(b) := [Bdκ(b)]|κ|=d ∈ R1×d̂, (2.66)

in which the polynomial members of Bd
tj

are sorted with the lexicographical sorting rule
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from Eq. 2.65. With Eq. 2.64 and Eq. 2.66 the per-simplex B-form in vector formulation is:

p(b) = Bd
tj
(b) · ctj . (2.67)

Example 4 (The vector B-form). The vector form of the B-form of a first degree

quadrivariate polynomial on a single tetrahedron.

The vector of B-coefficients is constructed using Eq. 2.64 and the lexicographical sorting

rule from Eq. 2.65:

ctj =
[

c1000 c0100 c0010 c0001

]⊤
∈ R

4×1.

The vector of basis function is constructed using Eq. 2.66 and Eq. 2.65:

B1
tj
(b) =

[

B1
1000(b) B1

0100(b) B1
0010(b) B1

0001(b)
]

∈ R
1×4.

This leads to the vector form of the B-form:

p(b) =
[

B1
1000(b) B1

0100(b) B1
0010(b) B1

0001(b)
]

·








c1000
c0100
c0010
c0001








∈ R (2.68)

�

2.2.6 The B-coefficient net

The B-coefficients are ordered in a unique spatial structure called the B-coefficient net, or B-

net for short. This spatial structure is well known in the literature, see e.g. [52, 109, 191, 96]

and [104]. The B-net enables a number of features that are unique to multivariate simplex

splines:

• Simplification of the formulation of the continuity equations that govern continuity

between polynomials on neighboring simplices.

• The ability to perform local model modification without disrupting the global model

structure by modifying B-coefficients close to a specific region of interest.

• Estimated variances in the B-coefficients also have a spatial location, which allows

for a new kind of statistical model quality assessment.

The spatial location in barycentric coordinates of a B-coefficient cκ inside an n-simplex

is given by:

b(cκ) =
κ

d
, |κ| = d, (2.69)
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Figure 2.18: Spatial location of B-coefficients for 2-dimensional simplex

polynomials of degree 1 to 4.

which is equal to the location of the unique maximum of the Bernstein basis polynomial

Bdκ(b) from Eq. 2.56. The uniqueness of the B-coefficients’ spatial location property

may be easy to underestimate. Consider for example a bivariate polynomial in Cartesian

coordinates z(x, y) = a0x
2 + a1xy + a2y

2. The question ‘what is the location of the

coefficients a0, a1 and a2?’ has no answer because the question itself is meaningless; the

coefficients have a global influence on z(x, y). On the other hand, if one considers the

bivariate polynomial in barycentric coordinates p(b0, b1) = c20b
2
0 + c11b0b1 + c02b

2
1 the

above question has a perfectly reasonable answer: in barycentric coordinates we would find

b(c20) = (1, 0), b(c11) = (0.5, 0.5) and b(c02) = (0, 1).

Using Eq. 2.69, the B-net of simplex polynomials of any degree and dimension can be

constructed. In Figure 2.18 four B-nets for trivariate (in barycentric coordinates) simplex

polynomials of degree 1 to 4 are shown on a single triangle. The density of the B-net clearly

increases with increasing polynomial degree. In Figure 2.19 the B-nets for quadrivariate

simplex polynomials of degree 1 and 2 are shown. The total number of B-coefficients for

the quadrivariate case is higher for a given polynomial degree, but the overall structure of

the B-net is similar.
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Figure 2.19: Spatial location of B-coefficients for 3-dimensional simplex

polynomials of degree 1 and 2.

Finally, in Figure 2.20 the functioning of the B-net is demonstrated for a bivariate

B-form polynomial p(x) of degree 12 on a single simplex. There are a few interesting

observations that can be made from the figure. First, the figure shows that a polynomial

does not have to go through every single B-coefficient. This means that the value of the

polynomial in general differs from the value of the B-coefficient at the same location. The

only exceptions are the vertices, where the B-coefficients have the exact same value as the

polynomial. The barycentric coordinate at a vertex contains only one nonzero component

which is equal to 1. The partition of unity property then dictates that there can be only one

‘active’ basis function at the vertex which also has the value 1. Therefore, the value of the

simplex polynomial at a vertex must be equal to the B-coefficient at that vertex. A second

observation is that the B-form polynomial is bounded by the B-coefficients. This is a direct

result of the stable local basis property of the Bernstein basis polynomials.

2.2.7 Spline Spaces

A spline space is the space of all spline functions s of a given degree d and continuity order

Cr on a given triangulation T . Such spline spaces have been studied extensively, see e.g.

[109] [101] [104]. In this thesis the definition of the spline space from [104] is used:

Srd(T ) := {s ∈ Cr(T ) : s|t ∈ Pd, ∀t ∈ T } (2.70)

with s the n-variate simplex spline function of degree d and continuity order r on the

triangulation T and with Pd the space of all polynomials of total degree d. The definition of

the spline space in Eq. 2.70 provides a convenient notation for stating the degree, continuity
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Figure 2.20: B-nets of a trivariate 12th degree simplex polynomial approximating

a Gaussian radial basis function (top), and a periodic function (bottom).
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and triangulation of a spline solution without having to specify individual spline functions.

For example, S1
3 (T ) is the space of all cubic spline functions with continuity order C1

defined on the triangulation T .

2.3 Triangulations of Simplices

The true approximation power of a simplex spline function is only attained when many

simplex polynomials are combined. Because each of the simplex polynomials is defined on

its own respective simplex, combining simplex polynomials means combining simplices.

While in theory any configuration of simplices would suffice in the construction of a global

spline function, there are some stringent constraints on which simplex configurations are

allowed and which are not. These constraints are based on some important numerical

arguments, but most importantly, on the requirement for continuity of simplex polynomials

between neighboring simplices. When these constraints are met, the resulting set of

simplices is called a triangulation.

In this section the various aspects of triangulations for simplex splines are discussed.

First, a number of simplex metrics important for triangulation purposes are introduced in

Sec. 2.3.1. Then, in Sec. 2.3.2 a general definition of a triangulation is given. In the

following sections a number of the most used triangulation types are presented. In Sec. 2.3.3

the Type I/II triangulation is introduced, followed by the well-known Delaunay triangulation

in Sec. 2.3.4. In Sec. 2.3.5 an important rule for the orientation of B-nets in general

triangulations is introduced. As it turns out, the sharing of information between simplices is

determined by the Star structure of a simplex, which is discussed in Sec. 2.3.6. Finally, the

section is concluded with the presentation of a geometric triangulation optimization method

which aims to produce high quality triangulations.

2.3.1 Simplex metrics

Before starting the discussion on the definition of triangulations, a number of metrics for

simplices need to be defined. These metrics not only play an important role in assessing the

quality of a triangulation, but also act as optimization criteria when performing geometric

triangulation optimization. In this thesis four different metrics are used, see Figure 2.21;

the relative location and radius of the circum (hyper) sphere of a simplex (SRLC), the

ratio between the radius of the circumsphere and the shortest simplex ridge (SRSC), the

minimum in-plane angle between two simplex ridges (SMA) and the total number of data

points contained by a simplex (SDP). All metrics except for the simplex data volume metric

SDP are taken from the literature, see [193].

The SDP is the single simplex metric that does not only depend on the vertex

configuration of a simplex, but also on the spatial distribution of the dataset. The SDP

was found to be the most important simplex metric because an insufficient value will in
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SDP: Simplex data volume (|Ξ ∈ t2| = 7)SDP: Simplex data volume (|Ξ ∈ t1| = 21)

SMA: Min angles (φmin = 14.0◦)SMA: Min angles (φmin = 42.3◦)

SRSC: Ratio Rc - lmin (Rc/lmin = 2.06)SRSC: Ratio Rc - lmin (Rc/lmin = 0.74)

SRLC: Center XR and Radius RcSRLC: Center XR and Radius Rc
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Figure 2.21: Four different simplex metrics for a well-defined simplex (left) and a

sliver simplex (right).
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Table 2.4: Guidelines for the metrics of well defined (‘good’) and sliver (‘bad’)

simplices.

Simplex metric ‘Good’ ‘Bad’

Location and radius of circumsphere center (SRLC) SRLC ∈ t, Rc ≤ K SRLC /∈ t, Rc > K
Ratio radius circumsphere and shortest ridge (SRSC) SRSC < 2 SRSC > 2
Minimum angle (SMA) SMA ≥ 14◦ SMA < 14◦

Minimum data points (SDP) SDP ≥ d̂ SDP < d̂

general prevent an optimization problem from having a solution. The SRLC, SRSC, and

SMA metrics on the other hand, will not affect the direct solvability of an optimization

problem, but can cause numerical problems in the solver algorithm. Additionally, these

metrics will also give an indication of the distribution of approximation power of a spline

function. The SRLC, SRSC and SMA are purely geometric metrics because they depend

solely on the geometric configuration of the vertices of the simplex. The values of the SRSC

and SMA in particular help to determine whether a simplex is a so called sliver-simplex, see

the right hand plots in Figure 2.21. A sliver simplex is a simplex with a large circumsphere

radius with respect to its shortest edge (large SRSC), and a small minimum angle (small

SMA). Sliver simplices are undesirable because they tend to produce non-uniformities in the

distribution of the approximation power of a spline function. This can be seen as follows.

The difference in length between the shortest and longest ridge of a sliver simplex will be

large. This causes the B-net of the simplex to be compacted in the direction of the shortest

ridge and expanded in the other directions. The simplex polynomial will therefore have a

greater approximation power in the direction of the shortest ridge as compared to the other

directions. In general, non-uniformities in the approximation power of a spline function will

lead to inadequate spline models.

In Table 2.4 the four simplex metrics for a well-defined simplex and a sliver simplex are

compared. The SDP depends on the total number of per-simplex basis polynomials d̂ from

Eq. 2.51. The numerical values for the SRLC, SRSC and SMA in the table should be taken

as guidelines and not as absolute measures. It may for instance prove to be impossible to

create a triangulation for a given dataset and problem domain that does not contain any sliver

simplices. Only the data volume metric SDP provides a hard limit on the configuration of a

simplex. An optimization problem for the B-coefficient of a simplex spline function defined

on a triangulation containing a single simplex with an insufficient SDP will in general not

be solvable.

2.3.2 General definition

A triangulation is a special ordering of n-simplices in which two neighboring simplices

are only allowed to overlap on at most n − 1 of their vertices. The formal definition of a
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ve vd
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tr

tqtp

Figure 2.22: A triangulation consisting of the three simplices tp, tq and tr together

with the two edge facets t̃pr and t̃qr.

triangulation T consisting of J simplices is:

T :=

J⋃

i=1

ti, ti ∩ tj ∈
{
∅, t̃
}
, ∀(ti, tj) ∈ T , i 6= j (2.71)

with t̃ a k-face of the n-simplices ti and tj , with 0 ≤ k ≤ n− 1 as discussed in Sec. 2.2.1.

A special case of t̃ would be k = n− 1, in which case t̃ is called an edge facet. In this case

two simplices of dimension n share exactly n− 1 vertices, and each have a single unshared

vertex. Another special case is k = 0 in which case t̃ is just a single vertex. In Figure 2.10

some examples were shown of valid triangulations, while in Figure 2.11 an example is given

of an invalid triangulation.

In Figure 2.22 a simple two-dimensional triangulation is shown consisting of the three

simplices tp, tq and tr. This triangulation has two edge facets: t̃pr = tp ∪ tr = 〈vb, ve〉 and

t̃qr = tq ∪ tr = 〈vb, vd〉. Also, the simplices tp and tq share a single vertex: t̃pq = tp∪ tq =
vb.

In order to assess the quality of a triangulation, an objective performance measure of the

entire triangulation is required. In this thesis it was found that the mean simplex radius to

shortest edge ratio for the complete triangulation provided a good measure of triangulation

quality. This measure is based on the earlier defined SRSC simplex metric and for an n-

dimensional triangulation is defined as follows:

PT :=
1

J

J∑

i=1

rΘj

min |vu − vw|vu,vw∈t̃j
, (2.72)
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Nonuniform Type II (64 triangles)Nonuniform Type I (32 triangles)

Figure 2.23: Nonuniform rectangular Type I (left) and Type II (right) triangulations

in two dimensions.

with rΘj
the radius of the circum-hypersphere of the n-simplex tj , with t̃j an edge facet of

tj and with vu and vw vertices in the edge facet t̃j .

2.3.3 Type I/II triangulations

The Type I and Type II triangulations are the simplest forms of triangulation. A Type I/II

triangulation is constructed by filling in the multi-dimensional cells of a grid with a single

symmetric prototype triangulation of the hypercube, or n-cube, see Figure 2.23 for a 2-

dimensional example and Figure 2.24 for a 3-dimensional example. Mara finds in [128]

that a symmetric Type I triangulation contains n! simplices:

|T | = n! (2.73)

The difference between the Type I and Type II triangulations is that the Type II uses a

single extra vertex at the center of the n-cube. Valid Type I and Type II triangulations of the

form Eq. 2.71 can only be constructed if the n-cube triangulation is symmetric along the

grid axes. In that case, the grid cells can be filled using scaled and unrotated versions of the

n-cube triangulation.

In Figure 2.25 a triangulation of the 3-cube for a Type I triangulation is shown. This

triangulation consists of six tetrahedrons and clearly is symmetric along the ridges of the

3-cube. In Figure 2.26 the Type II triangulation of the 3-cube is shown. In this case the cube

is split into six pyramids, with each pyramid consisting of two tetrahedrons.

The total number of n-simplices in the symmetric Type I/II triangulation of the n-cube

as a function of the dimension is given in Table 2.5. The values for the Type I triangulation

were obtained using Eq. 2.73.
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Figure 2.24: Uniform rectangular Type I triangulation in three dimensions

consisting of 450 tetrahedrons.
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Figure 2.25: Triangulated 3-cube (left) for a Type I triangulation consisting of 6
tetrahedrons and its exploded view (right).
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Figure 2.26: Triangulated 3-cube (left) for a Type II triangulation consisting of 12
tetrahedrons and its exploded view (right).

The first of the bracketed numbers in Table 2.5 were obtained with the Qhull triangula-

tion engine 12 to triangulate the n-cube. The second of the bracketed numbers in Table 2.5

is the theoretical minimum number of simplices in a triangulation. These numbers are

given by the work by Cottle [18], Sallee [184], Hughes and Anderson [77], and Orden

and Santos [166]. Note that the minimum number of simplices given by these authors is

significantly less than the numbers obtained by using Qhull. In other words, the n-cube can

be triangulated in many different ways, which is again a reminder that higher dimensional

spaces are complex and sometimes counterintuitive.

The most important advantages of Type I/II triangulation method over other triangula-

tion methods, like the Delaunay triangulation method discussed in the next section, is that

the simplices of the Type I/II are guaranteed to be well defined in terms of the metrics from

Sec. 2.3.1; sliver simplices are in general not present in Type I/II triangulations.

While at first it would seem that the Type I and Type II triangulations are purely

rectangular triangulation forms, this is actually not the case. Approximations of non-

rectangular domains can be made using Type I/II triangulations by removing simplices

extending beyond the convex hull of the non-rectangular domain, see Figure 2.27. Ad-

ditionally, the triangulated n-cubes can be scaled to produce nonuniform Type I and Type

II triangulations. Simplex removal together with n-cube scaling is a simple but powerful

12Qhull (http://www.qhull.org/) is an open source software package for computing Delaunay triangulations and

Convex hulls of point sets in any number of dimensions. Matlab uses the Qhull libraries in its delaunayn and

convhulln functions.
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Table 2.5: Per-n-cube simplex count for triangulated n-cubes of dimension 2 to

8 as produced by the Qhull triangulation engine. Values between brackets are

minimal theoretical triangulations of the n-cube from [166].

n n-cube vertex count Type I simplex count Type II simplex count

2 4 2 (2,2) 4

3 8 6 (6,5) 12

4 16 24 (22,16) 44

5 32 120 (108,67) 210

6 64 720 (618,308) 1236

7 128 5040 (4217,1493) 8870

8 256 40320 (33313,≤ 11944) 65298

Figure 2.27: Uniform non-rectangular Type II triangulation in two dimensions.

method for optimization of Type I/II triangulations, a topic that will be discussed in more

detail in Sec. 2.3.7.

A note must be made at this point on the generality of type I/II triangulations. While the

principle of the Type I/II triangulation is general in any number of dimensions, the practical

construction of these triangulation types in dimensions higher than 8 becomes problematic.

This is because of the computational cost, but more importantly, because of the demands on

the size of the required data set.

In order to appreciate the problem, one must consider the sheer size of higher

dimensional spaces. Hypercubes of dimension more than five are truly enormous structures.

For example, the 8-cube is a structure with 28 = 256 vertices, or corners, see Table 2.5. An

8-dimensional Type I triangulation consisting of triangulated 8-cubes would then contain

33313 eight-dimensional simplices per 8-cube while an 8-dimensional Type II triangulation

would contain a staggering 65298 eight-dimensional simplices per 8-cube! In order to find
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Figure 2.28: Two valid triangulations of two identical vertex sets: a non-Delaunay

triangulation (left) and a Delaunay triangulation (right).

a first order (linear) solution to a data approximation problem on a Type II triangulation of

this single 8-cube, we would need at least 587682 (scattered) data points, distributed such

that every 8-simplex contains a minimum of 9 data points. This requirement on data volume

is a direct result of the SDP simplex measure from Table 2.4 that provides a bound on the

total number of data points per simplex required for a solution to exist.

In short, the Type I/II triangulation is a very powerful and easy to implement

triangulation method. It produces well defined simplices and avoids the creation of sliver

simplices by using triangulated n-cubes as basic units. In dimensions higher than 5,

however, the n-cubes become so large that it may be hard to meet the simplex data volume

metric from Table 2.4.

2.3.4 Delaunay triangulations

The Delaunay triangulation is perhaps the best known triangulation type. Delaunay

triangulations are the most flexible type of triangulation to be used with simplex splines. The

Delaunay triangulation method was invented by the Russian mathematician Boris Delaunay

(1890-1980) in 1934. It has seen many uses over the years in fields as diverse as terrain

modeling [190, 27] and wireless network design [114]. The most important advantage of

the Delaunay triangulation method over other triangulation methods is that it makes no

assumption on the configuration of the set of points to be triangulated, other than that they

should be non-degenerate. Furthermore, the Delaunay triangulation method is general in

any number of dimensions and easy to implement algorithmically, see [27].

The general definition of the Delaunay triangulation is the following. In a valid

Delaunay triangulation, the vertices of the n-simplex tj must be located exactly on, and

only on, the circum-hypersphere of tj . This is the Delaunay condition for simplices. That
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is, if Θtk is the circum-hypersphere of the n-simplex tk, and Vj are the vertices of tj , then

the Delaunay condition is the following:

Vj ∈ Θtk if j = k

Vj /∈ Θtk if j 6= k (2.74)

The principle of the Delaunay triangulation is demonstrated in Figure 2.28. In the

left hand plot of this figure a set of 5 vertices is triangulated in a non-Delaunay simplex

configuration. Notice how the circumsphere of t2 contains not only the vertices of t2, but

also a vertex from t3. The circumsphere of t3 contains the vertices of t3, but also a vertex

from t2. In this case, only t1 is ‘Delaunay’ as its circumsphere contains only vertices from

t1. In the right hand plot of Figure 2.28 the exact same set of vertices is triangulated using

a Delaunay triangulation algorithm. In this case, the circumspheres of the three resulting

simplices contain only their respective vertices. This example shows that a set of vertices

can be triangulated such that the resulting triangulation is valid in terms of Eq. 2.71, but

not a Delaunay triangulation according to Eq. 2.74. This is why, in general, a Type I/II

triangulation is not a Delaunay triangulation. When the grid of hypercubes has a lower

or higher resolution in one direction, then the simplices resulting from the scaling and

translating of the triangulated hypercube are no longer in a Delaunay configuration.

A larger scale example of a valid Delaunay triangulation is shown in Figure 2.29. In the

left hand plot of Figure 2.29 the circumspheres of a number of simplices are drawn. This

plot again illustrates the general definition of the Delaunay triangulation from Eq. 2.74;

the circumsphere of any simplex tj contains only the vertices of tj . In the right hand plot

of Figure 2.29 the Voronoi diagram of the Delaunay triangulation in the left hand plot is

shown. A Voronoi diagram can be considered the dual graph of a Delaunay triangulation.

The lines in a Voronoi diagram are the equidistance points of two neighboring vertices. The

Voronoi diagram therefore provides a graphical depiction of the closest neighbor set of a set

of vertices. This closest neighbor set can be used to create the Delaunay triangulation of the

set of vertices by constructing simplices which each contain the most compact set of n+ 1

vertices.

In general, the Delaunay triangulation of a set of scattered vertices is unique. However,

when the vertices are not scattered but in some way coplanar, there will be multiple sets of

n+1 vertices with equal compactness. The Voronoi diagram of the set of coplanar vertices

will then be symmetric, and there will be many different valid Delaunay triangulations of

that same vertex set, see the example in Figure 2.30. The actual triangulation produced by

a Delaunay triangulation algorithm may in this case be determined by roundoff error rather

than geometry13.

While the Delaunay triangulation method is very flexible, it tends to produce badly

13the Qhull package issues a warning when coplanar points are detected. In most cases, however, a valid



72 Introduction to Multivariate Simplex Splines

Figure 2.29: Delaunay triangulation of a set of scattered vertices together with

some simplex circumspheres (left), and the Voronoi diagram of the same vertex

set. (right)

Voronoi Diagram of A and B

Delaunay Triangulation B (32 triangles)

Delaunay Triangulation A (32 triangles)

Figure 2.30: Two valid Delaunay triangulations of a coplanar vertex set and their

shared Voronoi diagram.



73

Figure 2.31: Two common problems with Delaunay triangulations: simplex fans

(left) and sliver simplices (right).

defined simplices, especially along the boundaries of the triangulation domain. This is a

fact that has been recognized by many authors in the past, see e.g. [14, 183] and [192].

In Figure 2.31 the two most common problems with Delaunay triangulations are illustrated.

The left hand plot shows a so-called simplex fan. Simplex fans are produced when the vertex

density changes abruptly, causing the creation of simplices with badly defined SRLC and

SRSC metrics. In the right hand plot of Figure 2.31 an illustration is given of a sliver simplex

on the boundary of the spline domain. The sliver simplex, in this case, has a circumsphere

(the blue line in Figure 2.31) that has a larger radius than the entire triangulation.

2.3.5 B-nets on triangulations

The relative ordering of B-coefficients within a simplex is determined using the expression

from Eq. 2.69. However, no rules are specified in the literature for orienting the B-net as

a whole with respect to the simplex vertices. In fact, there are (n + 1)! different ways of

orienting the B-net within an n-simplex, and all are valid from the perspective of a single

simplex. When working with general triangulations, however, a formal orientation rule is

essential, as without it a systematic algorithmic implementations of solution systems and

constraint conditions are impossible.

The definition of a rule for the orientation of the B-net requires that every vertex in

a triangulation has a globally unique index. Now define the vertex B-coefficients as the

Delaunay triangulation can still be produced by giving each vertex a very small (i.e. 1e−6) random translation or

‘joggle’. In that case, the resulting Delaunay configuration is effectively determined by the random joggle.
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lexicographically sorted subset of B-coefficients located at the simplex vertices as follows:

{čt(γ·d)}|γ|=1 ⊂ {ctκ}|κ|=d, (2.75)

with {č(γ·d)}|γ|=1 the vertex B-coefficients for a degree d B-form polynomial on the n-

simplex t. The vector of lexicographically sorted vertex B-coefficients then is:

čt = [{čt(γ·d)}]|γ|=1 ∈ R
n×1. (2.76)

The B-net should be oriented such that the vertex B-coefficient with the highest lexicographical

sorting order is located at the vertex with the highest index. The vertex B-coefficient with

the second highest sorting order should be located at the vertex with the second highest

index, and so on. This is the B-net Orientation Rule , which formal definition is given

below.

Definition 3. The B-net Orientation Rule Let every n-simplex t consist of a tuple Vt of

n+ 1 globally indexed vertices from Eq. 2.24. The vertices in the set are ordered using the

rule from Eq. 2.25. A new set is now introduced which consists of tuples of vertices and

B-coefficients as follows:

VB = {(cd,0,0,...,0,vp0), (c0,d,0,...,0,vp1), . . . , (c0,0,0,...,d,vpn)} . (2.77)

The B-net orientation rule, which must hold for all n+ 1 vertex B-coefficients, then is:

{
(čti,vpi)

}n

i=0
= VB, ∀t ∈ T . (2.78)

with čti the vector of vertex B-coefficients from Eq. 2.76.

�

Example 5 (The B-net Orientation Rule). Use the B-net orientation rule to determine the

sorting order of the vertices in Figure 2.32.

When the B-net orientation rule is applied to the B-net in Figure 2.32 we find the

following vertex ordering: c > b > e > a, d. This can be seen as follows. Using Eq. 2.78

we find the following sets for ti, tj and tk:

{
(čtie , vpe)

}n

e=0
= {(cti4,0,0, vb), (cti0,4,0, ve), (cti0,0,4, va)},

{

(č
tj
f , vpf )

}n

f=0
= {(ctj4,0,0, vb), (c

tj
0,4,0, ve), (c

tj
0,0,4, vd)},

{
(čtkg , vpg )

}n

g=0
= {(ctk4,0,0, vc), (ctk0,4,0, vb), (ctk0,0,4, ve)},

from the first set it can be concluded that b > e > a, from the second set that b > e > d,

and from the third set that c > b > e. Combining these results leads to the given vertex

ordering c > b > e > a, d, with the relative order of a and d undefined. �



75

vd

va

ve

vb vc

tj

tkti

cj004cj013cj022cj031cj040

cj103cj112cj121cj130

cj202cj211cj220

cj301cj310

cj400

ck004

ck013

ck022

ck031

ck040

ck103

ck112

ck121

ck130

ck202

ck211

ck220

ck301

ck310 ck400ci004

ci013

ci022

ci031

ci040

ci103

ci112

ci121

ci130

ci202

ci211

ci220

ci301

ci310

ci400

Figure 2.32: B-nets for the three simplices ti, tj and tk defined using the B-net

orientation rule. The B-net orientation rule in this case requires that the vertex

indices have the ordering: c > b > e > a, d.

2.3.6 Simplex Stars

An important sub-structure of a triangulation are simplex Stars. The Star of a simplex tj
is the set of all simplices that share at least one vertex with tj . For example, it will be

proved in a later section that the geometry of a simplex Star determines the propagation of

disturbances through the global B-net. In this thesis, the definition of the simplex Star from

[104] is extended slightly as follows:

startj =
⋃

{ti ∩ tj}, ∀ti ∈ T , (2.79)

where the subscript is the simplex of which the Star is taken. The Star structure of level-L

is formed by taking the Star of all simplices in the Star structure of level-(L−1) as follows:

starLtj =
⋃

{ti ∩ tk}, ∀tk ∈ starL−1
tj

, ∀ti ∈ T . (2.80)

In Figure 2.33 and Figure 2.34 the Star structure of level-0 to level-5 is shown for

respectively a Type I and Type II triangulation.



76 Introduction to Multivariate Simplex Splines

 

 

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0
Star structures for Type I triangulation

Figure 2.33: Star structures of level-0 to level-5 for a single simplex in a Type I

triangulation.

2.3.7 Geometric Triangulation optimization

A triangulation can be considered to be both a curse and a blessing when used in

combination with simplex splines. A blessing, because it is very flexible and supports the

local basis properties of the simplex polynomials. A curse, because it is not flexible enough

and through the Delaunay condition from Eq. 2.74 produces ‘bad’ simplices. All is not

lost, however. Because of their wide use in many fields, the optimization of triangulations

is and has been an active research area. In short, triangulation optimization is concerned

with the reconfiguring of a triangulation such that no badly defined simplices in terms of

the simplex metrics from Table 2.4 are present after the optimization. In the literature, most

triangulation optimization methods are constrained Delaunay triangulation (CDT) methods.

CDT methods use geometric simplex metrics as user definable constraints in their Delaunay

algorithms. The CDT method is therefore considered a geometric triangulation optimization

method.

Important contributions to triangulation optimization in the form of CDT were from

Chew [14], Dey et al. [47], Mitchell et al. [135], Ruppert [183] and Shewchuk [192].

According to Shewchuk, the most successful triangulation optimization method in two

dimensions is Ruppert’s method, about which he says the following: “Jim Rupperts

algorithm for two-dimensional quality mesh generation is perhaps the first theoretically
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Figure 2.34: Star structures of level-0 to level-5 for a single simplex in a Type II

triangulation.

guaranteed meshing algorithm to be truly satisfactory in practice.”. In 2001 Shewchuk14

published a very extensive paper in which he presented Ruppert’s algorithm in minute detail

[192]. The strength of Ruppert’s method is that the quality of the resulting triangulation

can be guaranteed, despite its stepwise nature. The central idea of Ruppert’s algorithm

is the stepwise vertex insertion and removal procedure. For this procedure to work,

Ruppert (and Shewchuk) defined a number of different scenarios, each with a particular

solution. Shewchuk extended his method to include 3-dimensional constrained Delaunay

triangulation which is, for fundamental reasons, more difficult than 2-dimensional CDT.

The problem with 3- and higher dimensional CDT is that there are certain polytopes, such

as the Schönhardt’s polyhedron, that cannot be triangulated at all without adding additional

vertices. Shewchuk’s work was extended by Si15 and Gärtner [195, 196] who refined some

aspects of Shewchuk’s algorithm. The current state of the art in n-dimensional CDT is

represented by Shewchuk’s 2008 paper [194], which is the first part in a projected three-part

series. However, at current there is no implementation of Shewchuk’s algorithm. One of the

14Jonathan Shewchuk is also the author of the open source quality mesh generation program ‘Triangle’ available

for download from http://www.cs.cmu.edu/∼quake/triangle.html.
15TetGen, an open source three-dimensional optimal mesh generating application was authored by Si, see

http://tetgen.berlios.de/
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recommendations in this thesis is therefore to create a code implementation of Shewchuk’s

n-dimensional CDT.

In this thesis a new method for geometric triangulation optimization is used. This new

method uses the Type I/II hypercube triangulation method from Sec. 2.3.3 together with

a new vertex insertion method based on the intersection points of a grid and the convex

hull of the dataset. This method is called the HCI triangulation method which stands for

‘Hypercube-Convex hull-Intersection’ method. The HCI method differs from CDT methods

in the literature because it produces triangulations that are specifically suitable for simplex

splines. Such a triangulation should be as close as possible to a Type I/II triangulation

because this triangulation type contains simplices of equal dimensions. This in turn

creates an homogeneous grid of B-coefficients which provide a homogeneous distribution of

approximation power. Additionally, the HCI method allows a post-processing step in which

the SDP simplex metric is used as an optimization parameter to produce a triangulation in

which every simplex contains a guaranteed minimum of data points.

In Figure 2.35 the four different modes of the HCI triangulation method are demon-

strated. The simplest mode, Mode-0, of the HCI method is actually just the Type I/II

triangulation method from Sec. 2.3.3. HCI Mode-1 creates a non-rectangular Type I/II

triangulation that is guaranteed to minimally fit the convex hull of a non-rectangular dataset.

The next mode is HCI Mode-2 which creates a Type I/II triangulation which is guaranteed

to overfit the convex hull of a non-rectangular dataset. The most complex mode is HCI

Mode-3 which fits a scattered triangulation to the convex hull of a non-rectangular dataset.

HCI Mode-3 triangulations exactly fits the convex hull of any dataset, while at the same

time guaranteeing adequate values for all simplex metrics. The SDP simplex metric can be

used in all modes as a optimization parameter in a post-processing step.

Some numerical results from four different triangulations created with the HCI algo-

rithm are shown in Table 2.6. The dataset in this case consisted of 4551 scattered data

points on a non-rectangular domain, see Figure 2.36. The four modes of the HCI algorithm

clearly produce triangulations with widely varying simplex metrics. From Table 2.6 it is

clear that the only triangulation with a non-zero SDP is the triangulation created with HCI

Mode-3 together with an SDP post-processing optimization. The SDP optimization reduces

the geometric quality of the triangulation, as the ‘worst’ simplex can almost be considered

a sliver simplex.

A high level listing of the HCI algorithm is shown in Algorithm 1. In the following,

this algorithm will be discussed step by step, using the plots in Figure 2.37, Figure 2.36,

Figure 2.38, Figure 2.39, Figure 2.40, Figure 2.41, and Figure 2.42 as an illustration of

the algorithm. The HCI algorithm requires as input a dataset (X ∈ R
N×n), a specifier for

the type of the triangulation (TYPE), the minimum allowed distance between to vertices

in the triangulation (Rmin), the required grid resolution (RES) and the optimization mode

(MODE). In the following it is assumed thatX is a bivariate non-uniformly scattered dataset

consisting of 4551 points on a non-rectangular domain, see Figure 2.36. A direct Delaunay
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Scattered: CX = T (149 triangles)Uniform: CX ∈ T (261 triangles)

Uniform: T ∈ CX (177 triangles)Uniform rectangular: CX ∈ T (320 triangles)

Figure 2.35: Four triangulation methods for non-rectangular datasets. Top left:

a uniform rectangular triangulation completely envelopes the convex hull of the

dataset CΞ (Mode-0). Top right: a uniform non-rectangular triangulation completely

fits in CΞ (Mode-1). Bottom left: a uniform non-rectangular triangulation minimally

envelopes CΞ (Mode-2). Bottom right: a scattered non-rectangular triangulation

which exactly fits the convex hull CΞ (Mode-3).
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Table 2.6: Numerical quality assessment of the HCI triangulation method.

Method |T | |V| Coverage max SRSC mean SRSC min SDP mean SDP

Delaunay 4551 2300 100.00% 645.04 2.95 0 0.51

HCI Mode-1 79 54 71.39% 0.80 0.80 0 23.10

HCI Mode-2 139 87 100.00% 0.80 0.80 0 16.55

HCI Mode-3 121 78 99.49% 1.45 0.81 0 14.56

HCI Mode-3 + SDP 101 68 99.49% 1.98 0.89 3 22.07

Delaunay triangulation of datapoints (4551 triangles)
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x
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Figure 2.36: The triangulation optimization problem: non-uniformly scattered

dataset and its direct Delaunay triangulation.

triangulation of the dataset produces many badly conditioned simplices, see Figure 2.37,

validating the use of the HCI algorithm. The HCI algorithm will use a Type I triangulation

that exactly fits the convex hull of the dataset (MODE = 3) with a symmetric grid (RES =

0.1).

The algorithm starts with the allocation of the global vertex matrix V and the

triangulation index matrix T . The rows of T contain n+1 integers which are indices into the

vertex matrix V; each integer indexes a single vertex of the n-simplex. The first functional

step is the determination of the convex hull of the dataset CX and its corresponding vertex

set VC , listed on line 1 of Algorithm 1, and plotted in Figure 2.37. In most cases, the convex

hull of the dataset will be a polygon consisting of many vertices, some located very close

together, see for example the top left of Figure 2.37. Triangulating vertices that are too close

together will result in a triangulation containing many badly defined simplices. To prevent

this, the convex hull of the dataset can be resampled using the Rmin parameter which is

the minimum allowed distance between any two vertices. This step, listed on lines 2-6, is

optional. If Rmin is set to zero, no convex hull points will be removed. In the right hand

plot of Figure 2.37, the resampled convex hull of the dataset is shown. Notice in Figure 2.37
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that not all data points are contained by the resampled convex hull. If this is unwanted, then

the convex hull can be stretched such that every data point is inside it.

Require: X ∈ R
N×n, TYPE ∈ {I, II} ,Rmin ∈ R

n, RES ∈ R
n, MODE ∈ {0, 1, 2, 3}

1: CX ,VC = getConvexHull(X)
2: for all vertices p in VC do

3: if for any vertex v 6= p in VC : ‖p− v‖ > Rmin then

4: remove p from VC

5: end if

6: end for

7: TH = triangulateHyperCube(TYPE)

8: G = buildGrid(RES)

9: for all gridcells g in G do

10: scale and translate TH such that TH ∈ g
11: add TH to T , add VTH

to V
12: end for

13: if MODE = 0 then

14: return Trect = T ,V
15: end if

16: if MODE = 1 or MODE = 3 then

17: for all simplices t in Tnrect = Trect do

18: if t\CX 6= ∅ then

19: remove t from Tnrect

20: end if

21: end for

22: if MODE = 3 then

23: VG = getConvexhullGridIntersectionPoints(G, CX)
24: for all vertices p in VG do

25: if for all vertices v in VC : ‖p− v‖ < Rmin then

26: add p to VC

27: end if

28: end for

29: for all vertices p in V do

30: if for all vertices v in VC : ‖p− v‖ < Rmin then

31: remove p from V
32: end if

33: end for

34: Tscat,Vscat = retriangulate(Tnrect,V ∪ VC)
35: return Tscat,Vscat

36: end if

37: else if MODE = 2 then

38: for all simplices t in Tnrect = T do

39: if t ∩ CX = ∅ then

40: remove t from Tnrect

41: end if

42: end for

43: end if

44: return Tnrect,V
Algorithm 1: The Hypercube-Convex hull-Intersection (HCI) triangulation method.

The prototype Type I triangulation TH of the 2-cube is then created on line 7. The

prototype Type I triangulation of the 2-cube consists of 4 vertices and 2 simplices, according

to Table 2.5. Then, on line 8 of Algorithm 1, the grid G is created which spans the

complete rectangular domain containing the convex hull of the dataset, see also the left plot

in Figure 2.38. The following step, listed on lines 9-12, is the crux of the HCI algorithm.

Here the prototype triangulation TH is scaled and translated such that the n-cube vertices

coincide exactly with the grid G. The result is a rectangular Type I triangulation Trect and

its corresponding vertex set V , see the right hand plot in Figure 2.38. At this point the
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algorithm can return the Type I triangulation, or go into the next phase which is the convex

hull fitting phase.

In the first step of the convex hull fitting phase, all simplices are removed that are outside

the (resampled) convex hull CX , see the left hand plot in Figure 2.39. This step of the HCI

algorithm is listed on lines 17-21 of Algorithm 1. The resulting triangulation is a non-

rectangular Type I triangulation Tnrect, that is completely inside the convex hull of the

dataset, see the right hand plot in Figure 2.39. The algorithm can now return the non-

rectangular Type I triangulation, or continue with the next step, which is the generation of

intersection points of the grid with the convex hull. The intersection points can be included

with the vertex set from Tnrect to provide a complete covering of the convex hull.

Finding the intersection points of a grid with a convex hull polytope is not a trivial task.

In Algorithm 1 this step takes place on line 23, where the method getConvexhullGridIn-

tersectionPoints() is used to determine the intersection points VG. In the left hand plot of

Figure 2.40 the results of the grid-convex hull intersection method are shown. The solid

green dots in this case are the intersection points of the grid G with the convex hull CX . The

intersection points can now be added to the set of convex hull points VC , as listed on lines

24-28, but only if they are not to close to any other point already in VC . The resulting set

VC is shown in the right hand plot of Figure 2.40. This procedure of adding points to VC
guarantees that the convex hull points have priority over any intersection points. In this way

it can be guaranteed that the (resampled) convex hull is protected from any further changes.

A final filtering step is the removal of points from V that are too close to the, now

optimal, convex hull point-set VC . This step in the algorithm is listed on lines 29-33 of

Algorithm 1. Any of these points that will be removed from V can be associated with a

simplex in Tnrect; these will have to be removed from Tnrect. This step is demonstrated in

the left hand plot in Figure 2.41, in which points in V that are too close to VC are shown

in bold black, and in which the simplices that will be removed are shown in solid red. The

resulting two vertex sets are V which only contains points which are at a distance of at least

Rmin from any points in VC and the optimal convex hull point-set VC , as shown in the right

hand plot in Figure 2.41.

The final step in the algorithm is the re-triangulation of the combined vertex set Vscat =
V∪VC into the scattered triangulation Tscat. This action is listed on line 34 of Algorithm 1,

and again is a non-trivial task. Re-triangulation of Vscat using a Delaunay algorithm

can destroy the Type I/II structure, because coplanar vertices have an ambiguous Voronoi

diagram as demonstrated earlier in Figure 2.30. Therefore, in the method retriangulate()

only simplices that contain at least 1 new vertex from VC will be added to the set Tnrect
to form Tscat. In the left hand plot of Figure 2.42 the resulting triangulation is shown.

From this plot, it is immediately clear that the resulting triangulation is of very high quality

in terms of the geometric simplex metrics from Table 2.4. There are no sliver simplices

and only the simplices with vertices on the convex hull of the dataset are non-Type I/II.

In Table 2.6 some quality measures of the created triangulation are shown (HCI Mode-3).
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Figure 2.37: Step 1: determine convex hull, and downsample if required.
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Figure 2.38: Step 2: add grid and create Type I triangulation using triangulated

n-cubes.

These quality measures show that the created triangulation is of a high geometric quality,

but that the SDP requirement has not been satisfied for all simplices in the triangulation.

The per-simplex data volume requirement SDP has not been taken into account during

construction of the HCI triangulation. It was found, however, that the scattered triangulation

Tscat is a desirable starting point for an additional post processing step in which the SDP

is used as an optimization parameter. In the right hand plot of Figure 2.42 the results from

this post-processing step are shown. Clearly, the geometric quality of some of the simplices

has been degraded as a result of the SDP based optimization, see also Table 2.6. It should

be noted, however, that geometric simplex quality is of secondary importance to the SDP;

an inadequate geometric simplex quality can lead to local spline model inaccuracies while

an inadequate SDP can prevent a solution from existing in the first place.

Triangulation optimization is a difficult problem because of the non-convex nature of

the optimization problem and the ambiguity in the choice of optimization criterion.
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Figure 2.39: Step 3: remove any simplices that are outside the convex hull of the

dataset.
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Figure 2.40: Step 4: determine the intersection points of the grid with the convex

hull of the data and remove any that are too close to convex hull points.
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Figure 2.41: Step 5: construct the final vertex set by removing any vertices and

corresponding simplices that are too close to convex hull and intersection points.



85

HCI + SDP triangulation (68 vertices, 101 triangles)
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Figure 2.42: Step 6: finalize HCI triangulation, and post-process such that the

simplex data volume requirement is met.
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Chapter 3

Advances in Simplex Spline

Theory

This thesis presents a new method for system identification based on multivariate simplex

splines. Multivariate simplex splines are a special type of multivariate spline with many

unique and powerful features. The most important of these features are the ability to

model scattered multi-dimensional data on non-rectangular domains, and an approximation

power that is only bounded by available computing resources. Multivariate simplex splines

consist of sets of multivariate polynomials which are each defined on a simplex, a geometric

structure which minimally spans a given set of dimensions. The simplices are joined

together in a larger spatial structure called a triangulation. In theory, there is no limit to the

size and complexity of a triangulation, which effectively means that there is no theoretical

limit to the approximation power of a simplex spline function.

In the previous chapter it was shown that the basis functions of the simplex splines

are Bernstein basis polynomials in terms of the barycentric coordinates. The Bernstein

basis polynomials form a partition of unity which results in a stable local basis for function

approximation and data modeling. The Bernstein basis polynomials are scaled by the B-

coefficients which for every simplex uniquely determine the shape of the supported basis

function. It was also shown that the B-coefficients have a distinct spatial location within

their parent simplex, a property unique to simplex splines. It was demonstrated that creating

triangulations for simplex splines is not a trivial task. In fact, it turns out that there are

many different methods for creating triangulations, each with their own advantages and

disadvantages.

It is the aim of this chapter to introduce the theory necessary to elevate the multivariate
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simplex spline from a tool for simple data modeling into a feasible new method for nonlinear

system identification. For this, a number of new concepts need to be explored. The

first of these is a new matrix form of the de Casteljau algorithm, which is introduced

in Sec. 3.1. In Sec. 3.2 a number of different operations that are possible with B-form

polynomials will be discussed. In the same section it will also be proved that the de Casteljau

matrix is instrumental in a new formulation of the directional derivatives of the simplex

splines. In Sec. 3.3 the equations that govern continuity between neighboring simplices are

discussed. It will be shown that the continuity equations give rise to a new effect called B-net

propagation, which is the propagation of disturbances between neighboring simplices. Two

new theorems will be presented that quantify B-net propagation, and it will be proved that

the Type I triangulation is especially susceptible to its effects. Then, in Sec. 3.4 a new type of

constraint to be used in conjunction with simplex splines is introduced. This new constraint

type are the differential constraints which constrain the directional derivatives of the simplex

splines. The differential constraints have many uses, of which the most promising is the

facilitating of bounded model extrapolation. Finally, in Sec. 3.5 a new formulation of the

B-form in global coordinates is introduced. The Bernstein basis polynomials of the simplex

splines are functions in terms of barycentric coordinates which are local coordinates. This

means that the polynomial basis functions of the simplex spline are meaningless in the

global coordinate system. In some cases, however, it is desirable to analyze a model in terms

of the global physical variables. Additionally, a global formulation of the B-form makes it

possible to optimize the triangulation and the B-coefficients in a single step, negating the

need for separate triangulation optimization.

3.1 The de Casteljau algorithm

The de Casteljau algorithm was developed in 1959 by Paul de Casteljau, a physicist and

mathematician working at the French car manufacturer Citroën. De Casteljau invented his

algorithm for the computation of Beziér curves which, at the time, were used in the car

industry as a method for efficiently storing and rendering curved line and surface data.

The principle of the de Casteljau algorithm, presented in Sec. 3.1.1, is the recurrent degree

reduction of the polynomial basis functions by shifting, one degree at a time, the polynomial

degree of the basis functions to the polynomial degree of the B-coefficients.

In Sec. 3.1.2 a new one-step form of the de Casteljau algorithm is introduced which does

not require the recursion of the original algorithm. The one-step form is easily translated in

a new matrix form presented in Sec. 3.1.3. This new matrix form will prove to be essential in

the formulation of differential constraints on the B-coefficients of the multivariate simplex

splines. This one-step matrix form of the de Casteljau algorithm was first introduced in [41].
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3.1.1 The ordinary de Casteljau algorithm

The de Casteljau algorithm is a well-known recursive method for iteratively calculating the

value of a polynomial in the B-form, see e.g. [53]. A B-form polynomial can be expressed

in terms of the mth de Casteljau iteration as follows:

p(b) =
∑

|κ|=d−m
c(m)
κ (b)Bd−mκ (b), (3.1)

in which the B-coefficient of iteration m is related to the B-coefficient of iteration m− 1 as

follows:

c(m)
κ (b) :=

∑

|γ|=1

bγc
(m−1)
κ+γ (b), m ≤ d, (3.2)

with c
(0)
κ (b) = cκ and with bγ = bγ0bγ1 · · · bγn a first order polynomial in the barycentric

coordinate b. The final value of the polynomial at the evaluation point b is c
(d)
0 (b), which

is the last iteration of the de Casteljau algorithm.

The de Casteljau algorithm requires d iterations for the evaluation of a B-form

polynomial of degree d, which at first may seem inefficient. The de Casteljau algorithm

does not require exponential operators, however, and is more stable numerically than direct

evaluation, which in the time of 8-bit computers with limited floating point capabilities

was an important advantage1. At current though, it makes more sense to directly evaluate

the B-form polynomial using exponential operators as this requires significantly less

computational steps.

Example 6 (The de Casteljau algorithm). In this example the de Casteljau algorithm

is demonstrated by evaluating a bivariate B-form polynomial of degree d = 3 at the

barycentric coordinate b = (b0, b1).

Using Eq. 3.1, the iterations of the de Casteljau algorithm are:

p(b) =
∑

|κ|=3

cκB
3
κ(b)

=
∑

|κ|=2

c(1)κ (b)B2
κ(b)

=
∑

|κ|=1

c(2)κ (b)B1
κ(b)

= c
(3)
0 (b).

1Hardware support for floating point mathematical functions has only been present since 1980 when Intel

introduced the 8087 mathematical co-processor [174].
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Using Eq. 3.2 to expand c
(1)
κ (b), with κ ∈ {(2, 0), (1, 1), (0, 2)} we get:

c
(1)
2,0(b) = b0c3,0 + b1c2,1

c
(1)
1,1(b) = b0c2,1 + b1c1,2

c
(1)
0,2(b) = b0c1,2 + b1c0,3.

For c
(2)
κ (b) and κ ∈ {(1, 0), (0, 1)} we find:

c
(2)
1,0(b) = b0c

(1)
2,0(b) + b1c

(1)
1,1(b)

= b0(b0c3,0 + b1c2,1) + b1(b0c2,1 + b1c1,2)

c
(2)
0,1(b) = b0c

(1)
1,1(b) + b1c

(1)
0,2(b)

= b0(b0c2,1 + b1c1,2) + b1(b0c1,2 + b1c0,3).

Finally, for c
(3)
κ (b) and κ = {0} we find

c
(3)
0 (b) = b0c

(2)
1,0(b) + b1c

(2)
0,1(b)

= b0(b0c
(1)
2,0(b) + b1c

(1)
1,1(b)) + b1(b0c

(1)
1,1(b) + b1c

(1)
0,2(b))

= b0(b0(b0c3,0 + b1c2,1) + b1(b0c2,1 + b1c1,2)) +

+b1(b0(b0c2,1 + b1c1,2) + b1(b0c1,2 + b1c0,3))

= b30c3,0 + 3b20b1c2,1 + 3b0b
2c1,2 + b31c0,3.

The final step in the de Casteljau algorithm results in the full expanded form of the B-form

polynomial. �

3.1.2 A multi-degree formulation of the de Casteljau recursion

In the following sections, the formulation of the multi-degree form of the de Casteljau

algorithm as first derived in [41] is presented.

First, notice that the polynomial basis function Bdκ(b) from Eq. 2.52 can be expanded as

follows:

Bdκ(b) = b0B
d−1
κ0−1,κ1,...,κn

(b) + b1B
d−1
κ0,κ1−1,...,κn

(b) + · · ·+
bnB

d−1
κ0,κ1,...,κn−1(b), |κ| = d

=
∑

|γ|=1

bγB
d−1
κ−γ(b). (3.3)

with γ = (γ0, γ1, . . . , γn) a multi-index dependent on κ as follows:

|γ| = d− |κ| (3.4)
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In general, for any degree m ≤ d we have for a single basis function term:

Bdκ(b) = Pmγ (b)Bd−mκ0−m,κ1,...,κn
(b) + Pmγ (b)Bd−mκ0,κ1−m,...,κn

(b) + · · ·+
Pmγ (b)Bd−mκ0,κ1,...,κn−m(b)

=
∑

|γ|=m
Pmγ (b)Bd−mκ−γ (b). (3.5)

with the mth degree basis function Pmγ (b) defined as follows:

Pmγ (b) =
m!

γ!
bmγ . (3.6)

It is important to note that any polynomial terms with negative multi-indices are defined to

be equal to zero.

Example 7 (Using the generalized de Casteljau algorithm). Use Eq. 3.5 to expandB3
2,1,0(b)

with m = 2.

In this case we have κ = (2, 1, 0) and |γ| = 2. Therefore, we have for γ:

γ ∈ {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}

using Eq. 3.5, B3
2,1,0(b) can be expanded as follows:

B3
2,1,0(b) = P 2

2,0,0(b)B
1
0,1,0(b) + P 2

1,1,0(b)B
1
1,0,0(b) + P 2

1,0,1(b)B
1
1,1,−1(b) +

+P 2
0,2,0(b)B

1
2,−1,0(b) + P 2

0,1,1(b)B
1
2,0,−1(b) + P 2

0,0,2(b)B
1
2,1,−2(b),

= P 2
2,0,0(b)B

1
0,1,0(b) + P 2

1,1,0(b)B
1
1,0,0(b),

where all basis functions with negative multi-index components have been dropped. �

Substitution of Eq. 3.5 and Eq. 3.6 in the B-form from Eq. 2.59 results in the following

expression:

p(b) =
∑

|κ|=d



cκ
∑

|γ|=m
Pmγ (b)Bd−mκ−γ (b)



 . (3.7)

When we let |κ| = d −m Eq. 3.7 can be reformulated such that no negative multi-indices

are produced:

p(b) =
∑

|κ|=d−m

∑

|γ|=m
cκ+γP

m
γ (b)Bd−mκ (b). (3.8)

We will now introduce a theorem for multi-degree de Casteljau algorithm, which is

necessary for the definition of the one-step de Casteljau matrix.
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Theorem 2. The multi-degree de Casteljau algorithm, which relates the B-coefficients of

iteration q with those of iteration m+ q is:

c(q+m)
κ (b) =

∑

|γ|=m
Pmγ (b)c

(q)
κ+γ(b), q ≥ 0, (3.9)

with c
(0)
κ (b) = cκ.

Proof. Let δi, i = 1, 2, . . . ,m be a set of q independent multi-indices. The ordinary de

Casteljau algorithm then is:

c(q+1)
κ (b) =

∑

|δ1|=1

bδ1c
(q)
κ+δ1(b), q ≥ 0. (3.10)

The next iteration then is

c(q+2)
κ (b) =

∑

|δ2|=1

bδ2c
(q+1)
κ+δ2 (b)

=
∑

|δ2|=1

bδ2
∑

|δ1|=1

bδ1c
(q)
κ+δ1+δ2(b). (3.11)

Repeating this process and letting γ =
∑m
i=1 δ

i we get for the mth iteration:

c(q+m)
κ (b) =

∑

|δm|=1

bδm
∑

|δm−1|=1

bδm−1 · · ·
∑

|δ1|=1

bδ1c
(q)
κ+γ(b).

(3.12)

Using the multinomial theorem the product of sums can be rewritten as follows:

c(q+m)
κ (b) =

∑

|γ|=m

d!

γ!
bmγ c

(q)
κ+γ(b) (3.13)

=
∑

|γ|=m
Pmγ (b)c

(q)
κ+γ(b), (3.14)

the last equality follows from the definition of Pmγ (b) from Eq. 3.6 and proves the theorem.

3.1.3 A one-step matrix form of the de Casteljau algorithm

All theory is now in place to be able to present the general, one-step matrix form of the

de Casteljau algorithm from [41]. The de Casteljau matrix function of degree m, which

reduces a set of B-coefficients of degree d into a set of B-coefficients of degree d −m, is
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defined as follows:

Pd,d−m(b) ∈ R
d̂∗×d̂, (3.15)

with d̂∗ the total number of basis function terms for degree d−m and dimension n:

d̂∗ =
(d−m+ n)!

(d−m)!n!
. (3.16)

Example 8 (Using the de Casteljau matrix form). As an example of the use of Eq. 3.15,

consider the case of the de Casteljau matrix P3,1(b) for n = 1. In this case, the de Casteljau

matrix reduces the degree of an original set of B-coefficients from degree 3 to degree 1 as

follows:

[ c1,0(b) c0,1(b) ]⊤ = P3,1(b) · [ c3,0 c2,1 c1,2 c0,3 ]⊤.

�

The de Casteljau matrix has the following structure:

[
Pd,d−m(b)

]

i(κ),i(θ)
= Pmθ−κ(b), |θ| = d, |κ| = d−m, (3.17)

with i(κ) and i(θ) index functions for the rows and columns of Pd,d−m(b), respectively.

The index function i(κ) for the rows of the de Casteljau matrix is defined as follows:

i(κ) :=
∑

|γ|=d−m
1, γ ≤ κ, |κ| = d−m, (3.18)

while the index function i(θ) for the columns of the de Casteljau matrix has the following

definition:

i(θ) :=
∑

|γ|=d
1, γ ≤ θ, |θ| = d. (3.19)

Example 9 (Using index functions). In this example the concept of the index functions from

Eq. 3.18 and Eq. 3.19 will be demonstrated. We want to find the value of i(θ) for θ = (1, 3)

for a bivariate 4th degree B-form polynomial. For a bivariate 4th degree polynomial we

have the following values for θ: θ ∈ {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}. we then find for

Eq. 3.19:

i(θ) =
∑

|γ|=4

1, γ ≤ (1, 3), |θ| = 4,

= 1 + 1 + 1 + 1,
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so i(1, 3) = 4. �

Note that basis polynomials with negative multi-indices can be (and are) produced by

Eq. 3.17. These basis polynomials are again zero by definition.

Before a vector form of the B-form based on the de Casteljau matrix can be derived, a

proof is required for the following theorem.

Theorem 3. Based on the results from Theorem 2, the following statement must hold for

the de Casteljau matrix from Eq. 3.17:

Pd,d−m(b) · ctj =




∑

|γ|=m
Pmγ (b)cκ+γ





|κ+γ|=d

, (3.20)

where the right hand term of this statement follows from Eq. 3.9 using q = 0.

Proof. The proof starts by reformulating Eq. 3.20 in a form that permits negative multi-

indices. For this, we let θ = κ+ γ such that |θ| = |κ+ γ| = d and γ = θ− κ. Substitution

of θ in the right hand side of Eq. 3.20 then results in:

Pd,d−m(b) · ctj =




∑

|θ|=d
Pmθ−κ(b)cθ





|κ|=d−m

. (3.21)

Using the definition of the structure of Pd,d−m(b) from Eq. 3.17 and the definitions of

the index functions from Eq. 3.18 and Eq. 3.19, the following must hold for every single

element of the de Casteljau matrix, and thus for every value of κ and θ:

[
Pd,d−m(b)

]

i(κ),i(θ)
· ctj
i(θ) = Pmθ−κ(b) · c

tj
i(θ),

= Pmθ−κ(b) · cθ, (3.22)

as long as |θ| = d and |κ| = d−m. Therefore, we get for the multiplication of a single row

of the de Casteljau matrix with the vector of B-coefficients:

[
Pd,d−m(b)

]

i(κ),• · c
tj =

∑

|θ|=d
Pmθ−κ(b)cθ. (3.23)

Finally, the multiplication of all rows of the de Casteljau matrix with the vector of B-

coefficients immediately results in Eq. 3.21, thus proving the theorem.

With Theorem 3 a vector form of the B-form using the de Casteljau matrix can be

defined. This vector form is essential for defining directional derivatives in terms of the

original global vector of B-coefficients, as will be shown in Sec. 3.4. Substitution of the
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B-coefficient vector from Eq. 2.64, the vector form of the basis function from Eq. 2.66, and

the de Casteljau matrix from Eq. 3.17 in Eq. 3.8 results in the vector form of the de Casteljau

B-form of degree d on a single simplex tj :

p(b) = Bd−m(b)Pm,d−m(b) · ctj . (3.24)

It is easy to check that this equation reduces to the ordinary vector form of the B-form from

Eq. 2.67 by letting m = 0.

Example 10 (Constructing the de Casteljau matrix). Use Eq. 3.17 to construct the de

Casteljau matrix P3,1(b) that reduces a set of B-coefficients of degree d = 3 to degree

d−m = 1, such that m = 2. The B-form polynomial in this case is a bivariate polynomial

in barycentric coordinates.

In this case we have for κ:

κ ∈ {(1, 0), (0, 1)}, |κ| = d−m.

The index function i(κ) from Eq. 3.18 for the rows of P3,1(b) therefore has the following

values:

i(1, 0) = 1, i(0, 1) = 2.

The valid values for the multi-index θ are:

θ ∈ {(3, 0), (2, 1), (1, 2), (0, 3)}, |θ| = d,

with which the index function i(θ) from Eq. 3.19 for the columns of P3,1(b) takes the

following values:

i(3, 0) = 1, i(2, 1) = 2, i(1, 2) = 3, i(3, 0) = 4.

We are now ready to construct the rows and columns of P3,1(b) using Eq. 3.17.

Expanding the row and column indices generated by i(κ) and i(θ), and calculating the

multi-index of the corresponding polynomials, we get:

i(κ) i(θ) θ κ θ − κ Pmθ−κ(b)
1 1 (3, 0) (1, 0) (2, 0) P 2

2,0(b)
1 2 (2, 1) (1, 0) (1, 1) P 2

1,1(b)
1 3 (1, 2) (1, 0) (0, 2) P 2

0,2(b)
1 4 (0, 3) (1, 0) (−1, 3) 0
2 1 (3, 0) (0, 1) (3,−1) 0
2 2 (2, 1) (0, 1) (2, 0) P 2

2,0(b)
2 3 (1, 2) (0, 1) (1, 1) P 2

1,1(b)
2 4 (0, 3) (0, 1) (0, 2) P 2

0,2(b)



96 Advances in Simplex Spline Theory

By filling in the polynomial values of the rightmost column in the de Casteljau matrix

at the row and column indices provided by the index functions i(κ) and i(γ), the following

result is obtained:

P3,1(b) =

[

P 2
2,0(b) P 2

1,1(b) P 2
0,2(b) 0

0 P 2
2,0(b) P 2

1,1(b) P 2
0,2(b)

]

.

�

The de Casteljau matrix P for a complete triangulation is constructed by placing per-

simplex de Casteljau matrix blocks on the main diagonal of P:

P = diag
([

Pd,d−m(b)
]

j
, j = 1, 2, . . . , J

)

. (3.25)

3.2 Calculations with B-form Polynomials

In his influential 1987 publication, the spline theoretician Carl de Boor stated that “[The

n-variate formulation of the B-form] forces careful consideration of notation and brings

out the essential mathematical aspects and surprising beauty of the B-form.” [31]. This

statement is very much true; the elegance of the B-form is not just limited to its formulation,

it also extends to many aspects of operations with B-form polynomials, such as directional

derivatives and integrals.

In this section the most important operations that can be performed with polynomials

in the B-form are discussed. In Sec. 3.2.1 a full-triangulation formulation of the B-form

will be provided. This formulation will prove to be instrumental in all of the following. In

Sec. 3.2.2, Sec. 3.2.3, Sec. 3.2.4 and Sec. 3.2.5 generalizations to the n-dimensional case of

expressions for respectively the sum, the integral, the inner product, and the degree raising

of B-form polynomials are presented. A new formulation for the directional derivatives of

B-form polynomials in terms of the original vector of B-coefficients is then presented in

Sec. 3.2.6. Finally, in Sec. 3.2.7 bounds on the accuracy of spline model approximations

are given.

3.2.1 Full triangulation vector form of B-form polynomials

The vector form of B-form polynomials on a single simplex was already discussed in

Sec. 2.2.5. In the following, this vector form will be used in the formulation of an expression

for B-form polynomials defined on complete triangulations. In this thesis, such a full-

triangulation form of the B-form is called the global B-form. The global B-form presented

below was first derived in [40], where it was used in the definition of a linear regression

scheme for simplex splines.
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First, let T be a triangulation consisting of J simplices. The full-triangulation basis

function vector Bd(b(x)) for a single point x in Cartesian coordinates then is defined as

follows:

Bd(b(x)) := [ Bd
t1
(b(x)) Bd

t2
(b(x)) · · · Bd

tJ
(b(x)) ] ∈ R1×J·d̂, (3.26)

with Bd
tj
(b(x)) the vectors of basis polynomials as defined in Eq. 2.66, and with b(x) the

implicit barycentric coordinate transformation of the point x with respect to the simplex tj
as defined in Eq. 2.34.

Using the per-simplex vector of lexicographically sorted B-coefficients ctj from

Eq. 2.64, the full triangulation vector of B-coefficients is constructed as follows:

c =
[
ctj
]J

j=1
∈ RJ·d̂×1. (3.27)

A non-local, full triangulation vector form of the B-form would then be given as:

P (b(x)) = Bd(b(x)) · c, (3.28)

While technically correct, the above expression would not lead to a meaningful piecewise

defined polynomial because it does not consider the fact that a point x is in general contained

by only a single simplex2. The barycentric coordinate transformation b(x) of x with respect

to the simplex tj is defined regardless of x being located inside or outside of tj , the only

difference being that in the latter case b(x) has at least one negative component, see Eq. 2.43.

Because b(x) is defined for all simplices, an evaluation of Eq. 3.28 at x would have to

involve the evaluation of all B-form basis functions of the complete triangulation, even

though the point x is located in a single simplex. With Eq. 3.28 we have effectively

destroyed the local basis function property of the multivariate simplex spline, thereby

negating one of the main advantages of simplex splines over other approximation methods.

In order to transform Eq. 3.28 into a local-global form in which the actual location of

data is taken into account, an additional entity is required in the form of the data sifting

matrix (DSM). The function of the DSM is to assign a location x to the simplex in which

it is contained, such that b(x) is strictly positive. Before being able to define the DSM, the

simplex membership operator δjk(x) must be defined:

δjk(x) =

{

1, if j = k(x)

0, if j 6= k(x)
, (3.29)

2This statement holds only for scattered datasets in which the data or evaluation points are not ordered in any

way. When a dataset has a gridded nature, there is a significant probability that some points are located exactly on

vertices or simplex edges, causing them to be contained by more than one simplex.
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with k(x) an index function3 which produces the index of the n-simplex which contains x

as follows:

x ∈ tk(x), ∀x ∈ X , (3.30)

with X ∈ R
n the set of all data points.

In short, δjk(x) is a switch that is equal to 1 only when j equals the index k(x), which

is the case when x is located inside tk(x). When x is located outside of tk(x) then δjk(x) is

equal to 0.

Using Eq. 3.29 the per-simplex d̂ × d̂ diagonal data membership matrix for the point x

can be defined as follows:

Dtj (x) =
[
(δj,k(x))q,q

]d̂

q=1
∈ Rd̂×d̂ (3.31)

The block diagonal full-triangulation data membership matrix D(x) for a single observation

is a matrix with Dtj (x) blocks on the main diagonal:

D(x) =
[(
Dtj (x)

)

j,j

]J

j=1
∈ R(J·d̂)×(J·d̂) (3.32)

Using Eq. 3.27, Eq. 3.26 and Eq. 3.32 the global B-form of the multivariate simplex spline

for the complete triangulation in vector form becomes:

P (b) = Bd(b(x)) ·D(x) · c (3.33)

In general, the global DSM matrix D(x) is rarely explicitly defined or calculated. Instead,

the points x are assigned to their parent simplices during the Cartesian to barycentric

coordinate transformation. Therefore, in most cases the evaluation of the global B-form

polynomial only requires the evaluation of the B-form polynomial on simplex tj only for

points located within tj .

3.2.2 Sums of B-form polynomials

B-form polynomials are linear in the parameters, which means that any two B-form

polynomials p(b) and q(b) of equal degree d and dimension n can be summed as follows:

p(b) + q(b) =
∑

|κ|=d
cκB

d
κ(b) +

∑

|κ|=d
dκB

d
κ(b)

=
∑

|κ|=d
(cκ + dκ)B

d
κ(b). (3.34)

3The algorithmic analogy of the simplex membership operator is a data membership search like the function

tsearchn in Matlab.
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Note that while the sum of any two B-form polynomials can be taken as long as their

dimension and degree are equal, no meaningful results are obtained when they do not share

the same triangulation.

3.2.3 Integrals of B-form polynomials

The integral of the B-form polynomial p(b) of degree d and dimension n over any n-simplex

t is given by: ∫

t

p(b)db =
At

d̂

∑

|κ|=d
cκ. (3.35)

with At the volume of the n-simplex, which was given by Eq. 2.30. Interestingly, the

analytical integral of a B-form polynomial is simply the sum of the B-coefficients multiplied

with a constant!

Calculation of the numerical value of the full-triangulation integral of a spline function

is quite trivial:
J∑

j=1

∫

tj

p(b)db =
J∑

j=1

Atj

d̂

∑

|κ|=d
ctjκ . (3.36)

3.2.4 Inner products of B-form polynomials

The inner product of two B-form polynomials is also relatively simple, and well known in

the literature, see e.g. Lai and Schumaker [104]. If the two B-form polynomials of degree

d and dimension n are given by:

p(b) =
∑

|κ|=d
cκB

d
κ(b); q(b) =

∑

|γ|=d
c̃γB

d
γ(b),

then their inner product is given by:

∫

tj

p(b)q(b)db =
At

(

dn

d

)(

nd+ n

n

)

∑

|κ| = d

|γ| = d

cκc̃γ

n∏

i=0

(

κi + γi
κi

)

. (3.37)

3.2.5 Degree raising

Any B-form polynomial p(b) of degree d can be transformed into a polynomial of higher

degree d̃ with d̃ > d in a process called ‘degree raising’ . Degree raising can be useful when

one wants to upgrade the approximation power of a spline model without influencing the

existing model. The formula for raising by a single degree p(b) from degree d to degree

d+ 1 is:



100 Advances in Simplex Spline Theory

Degree 4 Spline (degree raised, 480 B-coefficients)

x1 x0

Degree 1 Spline (96 B-coefficients)

x1 x0

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.5

1

−1

0

1

2

3

4

−1

0

1

2

3

4

Figure 3.1: Spline function of degree 1 with B-net consisting of 96 B-coefficients

(left), which after degree raising to degree 4 has a B-net consisting of 480 B-

coefficients (right). The resulting spline function (colored surface) resulting from

both B-nets is artificially lowered in both plots to aid visibility.

p(b) =
∑

|κ|=d+1

c[d+1]
κ Bd+1

κ (b), (3.38)

with c
[d+1]
κ the degree raised B-coefficients calculated as follows:

c[d+1]
κ =

1

d+ 1

j=n
∑

j = 0

|γ| = 1

κjc
[d]
κ−γ . (3.39)

Note that the degree raised B-coefficients are not to be confused with the B-coefficients

produced with the de Casteljau algorithm. Multiple degree raising can be achieved by

iteratively executing Eq. 3.39.

In Figure 3.1 the degree raising process is demonstrated. In the left plot of Figure 3.1,

a first degree (linear) spline function is shown, together with its B-net consisting of 96 B-

coefficient. Using the degree raising process, the degree of the spline function is increased

to a fourth order spline function, which is shown in the right hand plot of Figure 3.1. Notice

that both spline functions produce exactly the same results, only the density of the B-net has

been affected by the degree raising.
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3.2.6 Directional derivatives of B-form polynomials

The de Casteljau matrix, which was introduced in Sec. 3.1.3, allows for a very elegant

formulation of the directional derivatives of B-form polynomials. This formulation comes

in the form of a matrix equation, and was first introduced in [41]. Before being able

to introduce the new formulation, the concept of the directional derivatives must first be

introduced. The directional derivatives of B-form polynomials are well known in the

literature, see e.g. Lai and Schumaker [104].

First, let f(x) be some differential function in x ∈ R
n, and let u be a directional vector

in Euclidean R
n. The directional derivative of f(x) at x in the direction u is defined as

follows:

Duf(x) :=
d

dt
f(x+ tu). (3.40)

Note that both x and u are global Cartesian coordinates. Because we are interested in the

directional derivatives of B-form polynomials in barycentric coordinates, a definition of the

directional derivative in barycentric coordinates is required. Therefore, let b(x) ∈ R
n+1 be

the barycentric coordinate of x. Because u is a vector, and not a point, a direct translation

into barycentric coordinates cannot be made. Instead, u can be described as the difference

vector of two points v and w in Euclidean R
n as follows:

u = v −w ∈ R
n. (3.41)

The barycentric coordinates of v and w can be calculated directly; let b(v) be the

barycentric coordinate of v, while b(w) is the barycentric coordinate of w. The barycentric

representation of u then is:

b(u) = a = b(v)− b(w) ∈ R
n+1 (3.42)

The vector a is called the directional coordinate of u, see e.g. [104]. Note that |a| = 0 as it

is the difference of two normalized barycentric coordinates.

From the literature, the first order derivative in the direction of a is found to be:

Dup(b) = d
∑

|κ|=d−1

c(1)κ (a)Bd−1
κ (b), (3.43)

with c
(1)
κ (a) the first de Casteljau iteration of the B-coefficients cκ. Higher order derivatives

are given by:

Dm
u p(b) =

d!

(d−m)!

∑

|κ|=d−m
c(m)
κ (a)Bd−mκ (b), (3.44)

with c
(m)
κ (a) the mth de Casteljau iteration.

In Figure 3.2 the use of the directional derivative is demonstrated. In the figure, a fourth



102 Advances in Simplex Spline Theory

D3
x0
s(x0, x1) ∈ S−1

1 (T32)

x1 x0

D2
x0
s(x0, x1) ∈ S0

2 (T32)

x1 x0

D1
x0
s(x0, x1) ∈ S1

3 (T32)

x1 x0

s(x0, x1) ∈ S2
4 (T32)

x1 x0

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

−2000

−1000

0

1000

2000

−150

−100

−50

0

50

100

−10

−5

0

5

10

−0.5

0

0.5

1

Figure 3.2: A fourth degree spline function with continuity order C2 approximating

the Mexican hat function, together with its first three directional derivatives in the

x0 direction.
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degree spline function with C2 continuity approximates the Mexican hat function. The first

three directional derivatives of the spline function in the direction x0 are also plotted. Notice

that the first and second order directional derivatives are spline functions of continuity order

C1 and C0, respectively. The third order directional derivative, however, is a discontinuous

linear function.

In section Sec. 3.1 a one-step matrix form of the de Casteljau algorithm was presented.

It was proved in [41] that this matrix form allows the directional derivatives of a B-form

polynomial of order m to be expressed in terms of the original B-coefficient vector rather

than in the mth de Casteljau iteration of the original B-coefficients.

Theorem 4. The matrix form of the directional derivative of order m of the B-form

polynomial p(b) in the direction u in terms of the original B-coefficients is:

Dm
u p(b) =

d!

(d−m)!
Bd−m(b)Pd,d−m(a) · ctj , (3.45)

with Pd,d−m(a) the de Casteljau matrix from Eq. 3.20 of degree d to d − m expressed

in terms of the directional coordinate a of u, with Bd−m(b) the vector form of the basis

polynomials, and with ctj the vector of B-coefficients for a single simplex tj .

Proof. Starting with the mth order directional derivative of the B-form from Eq. 3.44, and

substituting the multi-degree de Casteljau form from Eq. 3.9 with q = 0 and the directional

coordinate a we get:

Dm
u p(b) =

d!

(d−m)!

∑

|κ|=d−m

( ∑

|γ|=m
Pmγ (a)cκ+γ

)

Bd−mκ (b). (3.46)

The theorem is proved by using Eq. 3.20 from Theorem 3 and Eq. 2.66 to replace the sums

in Eq. 3.46 with their equivalent matrix forms:

∑

|κ|=d−m

( ∑

|γ|=m
Pmγ (a)cκ+γ

)

Bd−mκ (b) =
([
Bd−mκ (b)

]

|κ|=d−m

)

·




∑

|γ|=m
Pmγ (a)cκ+γ





|κ+γ|=d

= Bd−m(b)Pd,d−m(a) · ctj . (3.47)

substitution of the final result of Eq. 3.47 in Eq. 3.46 then immediately results in Eq. 3.45,

proving the theorem.

An example of the formulation of the directional derivatives in the matrix form from

Eq. 3.45 will now be given.
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Example 11 (Formulating directional derivatives). In this example, the second order

directional derivative of a bivariate spline function p(b) of degree d = 3 in the direction u

on the simplex tj will be derived. In this case, we have m = 2, d−m = 1 and b = (b0, b1),

with which Eq. 3.45 becomes:

D2
up(b0, b1) =

3!

1!
B1(b0, b1)P

3,1(a) · ctj , (3.48)

with a the directional coordinate of u.

In Eq. 3.48 we recognize the de Casteljau matrix P3,1(a) from Example 10:

P3,1(a) =

[

P 2
2,0(a) P 2

1,1(a) P 2
0,2(a) 0

0 P 2
2,0(a) P 2

1,1(a) P 2
0,2(a)

]

.

The vector of basis polynomials B1(b) contains only linear terms:

B1(b0, b1) =
[

b0 b1

]

.

Putting everything together, we find that the directional derivative is a linear function in b0
and b1:

D2
up(b0, b1) = 6

[

b0 b1

]

·
[

P 2
2,0(a) P 2

1,1(a) P 2
0,2(a) 0

0 P 2
2,0(a) P 2

1,1(a) P 2
0,2(a)

]

· ctj .

�

Some further useful operators which can be expressed in terms of the directional

derivatives are the gradient, Laplacian, and divergence operators. These operators can be

simplified using the matrix form of the directional derivatives from Eq. 3.45.

The gradient of a spline function is given by:

∇p(b(x))tj =
(
D1
x1
p(b(x))tj , D

1
x2
p(b(x))tj , . . . , D

1
xn
p(b(x))tj

)

= dBd−1(b) ·
(

Pd,d−1(a(x1)) · ctj ,Pd,d−1(a(x2)) · ctj , . . . ,

Pd,d−1(a(xn)) · ctj
)

, (3.49)

with a(xi) the directional coordinate of the (normalized) vector xi in the direction of the

i-axis.
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The Laplacian is given by:

∆p(b(x))tj =
(
D2
x1
p(b(x))tj , D

2
x2
p(b(x))tj , . . . , D

2
xn
p(b(x))tj

)

=
d!

(d− 2)!
Bd−2(b) ·

(

Pd,d−2(a(x1)) · ctj ,Pd,d−2(a(x2)) · ctj , . . . ,

Pd,d−2(a(xn)) · ctj
)

.

(3.50)

Finally, the divergence of a spline function is given by:

div p(b(x))tj =
(
D1
x1
p(b(x))tj +D1

x2
p(b(x))tj + · · ·+D1

xn
p(b(x))tj

)

= dBd−1(b) ·
(

Pd,d−1(a(x1)) · ctj +Pd,d−1(a(x2)) · ctj + · · ·+

Pd,d−1(a(xn)) · ctj
)

.

(3.51)

The expressions Eq. 3.49, Eq. 3.50 and Eq. 3.51 are given in the context of per-simplex

calculations. They can easily be extended, however, by using the global B-form matrices

from Eq. 3.33 and global de Casteljau matrix from Eq. 3.25.

In Figure 3.3 the divergence operator of a 5th degree bivariate spline function is

demonstrated. The spline function in this case is discontinuous, that is, there is no continuity

between the individual spline pieces. When looking at the spline function in the left hand

plot of Figure 3.3, this discontinuous nature may not be immediately apparent. In this

case, the approximation power of the spline function is sufficient to accurately model the

Mexican hat function, seemingly without discontinuities. The divergence operator tells

a different story, however. In the right hand plot of Figure 3.3 the divergence operator

from Figure 3.51 of the spline function is shown. The plot clearly shows significant

discontinuities in the divergence vector field along the edges of simplices. As it turns out,

the divergence operator provides a powerful method of visually inspecting the continuity of

a simplex spline function.

3.2.7 Bounds on approximation with B-form polynomials

In [104] Lai and Schumaker derived a bound for how well a smooth function f can be

approximated by a polynomial pf of degree d. In this thesis, this expression is generalized

to the n-dimensional case.

Lai and Schumaker showed in [104] that the smoothness of a function f on the domain

Ω can be expressed as the following seminorm:

|f |m+1,Ω := max
∑

αi=m+1
‖Dα0

x0
Dα1
x1

· · ·Dαn
xn
f‖Ω, (3.52)
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Figure 3.3: Discontinuous fifth degree spline function approximating the Mexican

hat function (left) and a plot of its divergence operator (right). Notice that the

discontinuities in the plot of the divergence operator coincide with simplex edges.

with ‖ • ‖ the notation for the ∞-norm as used in [104], and with xi directional vectors.

Additionally, the diameter of the domain Ω was defined in [104] as follows:

|Ω| := max
v,w∈Ω

|v −w|. (3.53)

Using Eq. 3.52 and Eq. 3.53, the generalized bound on the accuracy of fit of a

polynomial pf ∈ Pd to the function f ∈ Cd+1(Ω) then is:

‖Dα0
x0
Dα1
x1

· · ·Dαn
xn

(f − pf )‖Ω ≤ K · |Ω|d+1−∑

αi · |f |d+1,Ω, 0 ≤
∑

αi ≤ d, (3.54)

with K a constant dependent only on the polynomial order d and with Pd the space of all

polynomials of degree d.

Because f is assumed to have a minimum continuity order Cd+1 on Ω, the definition of

the ∞-norm from [104] can be used to simplify this equation as follows:

max |Dα0
x0
Dα1
x1

· · ·Dαn
xn

(f − pf )|Ω ≤ K · |Ω|d+1−∑

αi · |f |d+1,Ω, 0 ≤
∑

αi ≤ d,

(3.55)

Special cases of Eq. 3.55 are found for
∑
αi = 0, the maximum absolute error between
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f and pf on Ω, and
∑
αi = d the maximum absolute error between the dth order derivative

of f and the maximum derivative of pf . For
∑
αi = 0 Eq. 3.55 can be written as follows:

max |f − pf |Ω ≤ K · |Ω|d+1 · |f |d+1,Ω, (3.56)

while for
∑
αi = d Eq. 3.55 becomes:

max |Dα0
x0
Dα1
x1

· · ·Dαn
xn

(f − Pf )|Ω ≤ K · |Ω| · |f |d+1,Ω, (3.57)

with Pf = Dα0
x0
Dα1
x1

· · ·Dαn
xn
pf the maximum derivative of pf , which is a constant.

An important implication of Eq. 3.56 is the case when both pf and f are a polynomials of

degree d. In that case |f |m+1,Ω = 0 according to Eq. 3.52, and therefore max |f−pf |Ω = 0.

In other words, if f is a polynomial of degree d which is being approximated by a B-form

polynomial pf of degree d, then the approximation is exact.

In [104] Lai and Schumaker presented an important proof on the bounds of a B-form

polynomial p ∈ Pd given a set of B-coefficients. These bounds were found to be dependent

only on the B-coefficients and degree of a B-form polynomial. The expression found by Lai

and Schumaker is the following:

‖c‖
K

≤ ‖p‖ ≤ ‖c‖, (3.58)

with ‖p‖ the maximum norm of the polynomial p and with ‖c‖ the maximum absolute value

in the vector of per-simplex B-coefficients as follows:

‖c‖ := max
|κ|=d

|cκ|, (3.59)

The constant K in Eq. 3.58 is dependent on the B-coefficients and a constant matrix M as

follows:

K := max

{∥
∥M−1c

∥
∥

‖c‖

}

, ‖c‖ 6= 0. (3.60)

The matrix M in Eq. 3.60 is defined as follows:

M := [Bκ(b(cγ))]|κ|=d,|γ|=d ∈ R
d̂×d̂ (3.61)

in which Bκ(b(cγ)) is the κth Bernstein basis polynomial from Eq. 2.52 evaluated at the

γth B-coefficient location from Eq. 2.69 where κ and γ are independent, lexicographically

sorted, multi-indices. In this case M is a square matrix of size d̂× d̂.

The bounds on the error between the smooth function f and the polynomial pf given in

Eq. 3.55 will prove to be instrumental in the quantization of bounds for model extrapolation

which will be discussed in Sec. 3.4.3.
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3.3 Smoothness Constraints

A spline function is, per definition, a piecewise defined polynomial function with Cr

continuity between its pieces. Continuity between the polynomial pieces of the simplex

spline is achieved by imposing smoothness constraints on the B-coefficients of neighboring

simplices in the estimator for the B-coefficients. These smoothness constraints are

formulated by relating the B-coefficients on both sides of an edge facet with special

equations called continuity conditions.

In this section the concept of the continuity conditions is presented, along with a number

of related topics. While the continuity conditions as presented in Sec. 3.3.1 are well known

in the literature, see e.g. [31, 4, 7, 96, 104], their formulation is not correct in general. In

Sec. 3.3.2 a general formulation for the continuity conditions is provided which is valid for

all possible triangulations, as long as B-nets are orientated using the B-net orientation rule

from Sec. 2.3.5. A qualitative analysis of the effects of the continuity conditions on the

global spline function will then be provided in Sec. 3.3.3.

Some aspects related to the continuity conditions have been little explored in the

literature. One of these aspects is the propagation of disturbances through the B-net of a

triangulation as the result of a localized excitation. When left unrestrained, propagation

effectively transforms a simplex spline from a local approximator into a semi-global

approximator. In Sec. 3.3.4 it is shown that the order of continuity with respect to the

spline degree together with the triangulation configuration are the determining factors in the

magnitude of disturbance propagation through the B-net.

3.3.1 Definition of the continuity conditions

Smoothness constraints are formed by relating the B-nets of two n-simplices that share an

edge facet using special equations called continuity conditions. As already explained in

Sec. 2.2.1, an edge facet is a unique simplex of dimension n − 1 which is formed by the

n vertices that define the edge between two simplices. Any set of two simplices share one,

and only one, unique edge facet. The formal definition of an edge facet is the following. Let

two neighboring n-simplices ti and tj be defined as follows:

ti = 〈v0,v1, . . . ,vn−1, ṽi,j〉 , tj = 〈v0,v1, . . . ,vn−1, ṽj,i〉 . (3.62)

Then ti and tj meet along the edge facet t̃i,j given by:

t̃i,j = ti ∩ tj = 〈v0,v1, . . . ,vn−1〉 . (3.63)

Using Eq. 2.26 it is easy to see that t̃i,j is an (n − 1)-simplex, because it consists of n

vertices. Each of the simplices ti and tj has a single vertex which is not part of the edge

facet. Given the edge facet t̃i,j these vertices are ṽi,j for ti and ṽj,i for tj . These vertices
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Figure 3.4: The edge facet t̃i,j of the two 4-simplices ti and tj is a tetrahedron.

are the so-called out-of-edge vertices, which have the following formal definition:

ṽi,j , ṽj,i /∈ t̃i,j . (3.64)

As de Boor observed in [31] the edge facet t̃i,j is indirectly defined by either one of the out

of edge vertices ṽi,j and ṽj,i as follows:

t̃i,j =

{

ti \ ṽi,j ,
tj \ ṽj,i

(3.65)

De Boor’s observation will prove to be important, because it simplifies the implementation

of the algorithm for formulating the generalized continuity conditions as will be shown at a

later point.

In Figure 3.4 two neighboring 4-simplices are shown, together with their edge facet,

which is the tetrahedron t̃i,j defined by the vertices v0, v1, v2 and v3. Interestingly, if the

4th spatial component of the vertices of t̃i,j are all equal to zero, then t̃i,j is a structure that

is completely embedded in R
3. In this case, the two 4-simplices are said to have a mutual

tetrahedronal base in R
3. From this perspective it can be reasoned that any tetrahedron

in R
3 is in fact an edge facet of two special 4-simplices with tetrahedronal bases in R

3.

Furthermore, any 3-D shape can in theory be triangulated with arbitrary precision with a

set of J < ∞ tetrahedrons. Therefore, any 3-dimensional object in the real world can be

considered an edge facet, or interface object, between two 4-dimensional objects!

Continuity of order Cr between B-form polynomials on two neighboring simplices ti
and tj is achieved when their directional derivatives up to order Cr are equal at every point
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Figure 3.5: An example of the structure of continuity of 4 individual continuity

conditions for C0, C1, C2 and C3 continuity on a fourth order B-net on the three

simplices ti, tj and tk.

on the edge facet t̃i,j . Therefore, if pti is a B-form polynomial on ti and ptj is a B-form

polynomial on tj , then the following expression must hold for all points x in t̃i,j :

Dm
u pti(b(x)) = Dm

u ptj (b(x)), ∀ x ∈ t̃i,j , m = 0, 1, . . . , r (3.66)

It has been proved in the literature that Eq. 3.66 holds when the B-nets of ti and tj are

related through continuity conditions, see e.g. [4]. The most prevalent formulation of the

continuity conditions is that offered by Awanou [4] and Lai [104] as follows:

ctiκ0,...,κn−1,m
=
∑

|γ|=m
c
tj
(κ0,...,κn−1,0)+γ

Bmγ (ṽi,j), 0 ≤ m ≤ r, (3.67)

with γ = (γ0, γ1, . . . , γn) ∈ R
n+1 a multi-index independent of κ. Note that the basis

functionBmγ (ṽi,j) is a polynomial in terms of the barycentric coordinate of ṽi,j with respect

to simplex tj .

The total number of continuity conditions required for Cr continuity depends on the

dimension, degree, and continuity order of a spline function. In the following theorem, an

expression for this number will be presented.
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Theorem 5. For Cr continuity of an n-variate spline function s ∈ Srd(T ) there are a total

of Rr continuity conditions per edge with Rr defined as follows:

Rr :=

r∑

m=0

(d−m+ n− 1)!

(n− 1)!(d−m)!
(3.68)

Proof. The proof is based on the dimensionality of the edge facet t̃i,j , which according to

Eq. 3.63 is always equal to n − 1. Furthermore, it should be observed that B-coefficients

are located on a total of d+ 1 parallel planes of dimension n− 1, see e.g. Figure 2.18 and

Figure 2.19. The base plane (i.e. plane-0) in this case is t̃i,j itself, which using Eq. 2.51

contains R0 B-coefficients:

R0 =
(d+ n− 1)!

(n− 1)!d!
. (3.69)

In general, the mth plane (i.e. plane-m) from t̃i,j contains Rm B-coefficients:

Rm =
(d−m+ n− 1)!

(n− 1)!(d−m)!
. (3.70)

Because every B-coefficient in the 0th till mth plane is subject to a single continuity

condition, the proof of the theorem follows from summing Eq. 3.70 for every continuity

order 0 till m which results in Eq. 3.68.

While it may not be immediately apparent from Eq. 3.67, there exists a strong structure

in the continuity conditions. This structure, here called the structure of continuity is well

known in the literature, see e.g. [52] and [96]. The principle of the structure of continuity

is demonstrated in Figure 3.5, where parts of the continuity structure for C0, C1, C2 and

C3 continuity are shown. For example, the continuity condition for cti2,1,1 involves three

B-coefficients in tj : c
ti
3,1,0, cti2,2,0 and cti2,1,1. In this thesis, these coefficients are called the

continuity body B-coefficients as they form the polynomial body of the continuity condition.

The single B-coefficient for which the continuity conditions is formulated, in this case cti2,1,1,

is called the continuity point B-coefficient. The continuity body and continuity point B-

coefficients together form a diamond like structure which chord lies in the edge facet. This

diamond structure actually is a miniature version of the two neighboring simplices. In higher

dimensions this pattern continues: the structure of continuity of an n-simplex consists of

two smaller n-simplices joined together at their edge facet. A special case is C0 continuity;

in this case the structure of continuity lies entirely in the edge facet.

Example 12 (Formulating continuity conditions). Using Eq. 3.67, the three continuity

conditions associated with the edge between ti and tj in Figure 3.5 will be derived.
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For C0 continuity at cti4,0,0 we have:

γ = (0, 0, 0).

The C0 continuity condition then is:

cti4,0,0 =
∑

|γ|=0

c
tj
(4,0,0)+γB

0
γ(va),

= c
tj
4,0,0.

For C1 continuity at cti2,1,1 we have:

γ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

The C1 continuity condition then is:

cti2,1,1 =
∑

|γ|=1

c
tj
(2,1,0)+γB

1
γ(va),

= c
tj
3,1,0B

1
1,0,0(va) + c

tj
2,2,0B

1
0,1,0(va) + c

tj
2,1,1B

1
0,0,1(va).

For C2 continuity at cti0,2,2 we have:

γ ∈ {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}.

The C2 continuity condition then is:

cti0,2,2 =
∑

|γ|=2

c
tj
(0,2,0)+γB

2
γ(va),

= c
tj
2,2,0B

2
2,0,0(va) + c

tj
1,3,0B

2
1,1,0(va) + c

tj
1,2,1B

2
1,0,1(va) + c

tj
0,4,0B

2
0,2,0(va) +

+c
tj
0,3,1B

2
0,1,1(va) + c

tj
0,2,2B

2
0,0,2(va).

�

3.3.2 A general formulation for the continuity conditions

There is a fundamental problem with the formulation of the continuity conditions in

Eq. 3.67. It turns out that the formulation provided in the literature is valid only for a

single very specific orientation of the two B-nets of the neighbor simplices. For all other

((n + 1)! − 1) B-net orientations, Eq. 3.67 produces invalid results. This failure is due to

the fixed position of the 0 and m constants within the multi-indices of the B-coefficients in
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Eq. 3.67. In the following example, the failure of Eq. 3.67 to describe the correct continuity

structure will be demonstrated.

Example 13 (A problem with continuity). The expression for the continuity conditions from

Eq. 3.67 is incomplete, as it only describes the correct continuity structure for a single B-

net orientation, which is the orientation between ti and tj in Figure 3.5. For the continuity

conditions between tj and tk the formulation from Figure 3.5 produces invalid results, as

will be shown here.

For C0 continuity at ctk0,4,0 we have:

γ = (0, 0, 0).

According to Eq. 3.67 the C0 continuity condition then is:

ctk0,4,0 =
∑

|γ|=0

c
tj
(0,4,0)+γB

0
γ(vc),

= c
tj
0,4,0.

which clearly is an invalid result as c
tj
0,4,0 is not in the edge facet t̃j,k.

For C3 continuity at ctk3,0,1 we have:

γ ∈ {(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3)}.

The C3 continuity condition is:

ctk3,0,1 =
∑

|γ|=3

c
tj
(3,0,0)+γB

3
γ(vc),

which can never produce correct results; the first right hand term would be c
tj
6,0,0B

2
3,0,0(vc),

which contains a B-coefficient index that is not even in the B-net.

�

At this point it should be clear that Eq. 3.67 is only valid for a single orientation of

B-nets, which is the orientation of the B-nets of ti and tj in Figure 3.5. This orientation

is called the maximum degree symmetric orientation. The maximum degree symmetric

orientation requires that the B-coefficient with the lowest lexicographical sorting order, i.e.

c0,0,...,d, should be located at the out-of-edge vertex. It is easy to see that it is impossible to

create a valid global B-net orientation scheme that at every set of two neighboring simplices

has the same orientation as ti and tj in Figure 3.5. In the following we shall therefore

assume that the B-net is oriented using the B-net orientation rule from Eq. 2.78.

At this point one can wonder as to why a global orientation scheme is used at all. Why

not just simply reorganize, on-the-fly, the B-net for every set of two simplices such that
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Eq. 3.67 becomes valid? The problem with this approach is that the B-coefficients have a

unique fixed location in the global vector of B-coefficients from Eq. 3.27. This location is

determined by the lexicographical sorting rule for B-coefficients together with the simplex

index, and is essential for the correct functioning of the estimator for the B-coefficients. If

the B-net is reorganized, the continuity conditions will refer to the wrong B-coefficients in

the global vector of B-coefficients. The only way that on-the-fly reorganization can work

is when the B-coefficients subject to the continuity conditions are translated back into the

B-coefficients in the global B-coefficient vector. For example, we could flip the B-net of tj
and rotate the B-net of tk in Figure 3.5 counterclockwise such that we get the orientation

for which Eq. 3.67 is valid. In that case we get the following set of C0 continuity conditions

for the transformed B-coefficients:

c
tj
4,0,0 = ctk4,0,0, c

tj
3,1,0 = ctk3,1,0, c

tj
2,2,0 = ctk2,2,0, c

tj
1,3,0 = ctk1,3,0, c

tj
0,4,0 = ctk0,4,0,

where the overline denotes that these are on-the-fly transformed B-coefficients.

Now these equations should be translated back into the original B-net orientation using

the inverse transformation rules:

c
tj
4,0,0 → c

tj
4,0,0, c

tj
3,1,0 → ctk3,0,1, c

tj
2,2,0 → c

tj
2,0,2, c

tj
1,3,0 → ctk1,0,3, c

tj
0,4,0 → c

tj
0,0,4,

ctk4,0,0 → ctk4,0,0, c
tk
3,1,0 → ctk0,3,1, c

tk
2,2,0 → ctk0,2,2, c

tk
1,3,0 → ctk0,1,3, c

tk
0,4,0 → ctk0,0,4,

where the overline again denotes the on-the-fly transformed B-coefficients.

What just happened here is that the problem has been transformed from the formulation

of the continuity conditions into the determination of the correct rotation and flip sequences

to get to the maximum degree symmetric B-net orientation. While this is all technically

possible, it requires much more complex mathematics and algorithmic implementations,

especially for higher dimensional B-nets where it may be a very challenging task to just

find the correct sequence of rotations and flips to get to the required B-net orientation. This

is the reason why on-the-fly B-net reorganization is abandoned, and with it the formulation

of the continuity conditions from Eq. 3.67.

It should be clear that a new, general, formulation of the continuity conditions is

required. This new formulation is based on insights gained from the graphical interpretation

of the continuity conditions, such as those shown in Figure 3.5 and Figure 3.6. First of all,

it can be observed from these figures that for a globally indexed B-net, the location of the

constant in the multi-index (i.e. the m and 0) is equal to the location of the single non-zero

value in the multi-index of the B-coefficient located at the out-of-edge vertex. For example,

the C3 continuity condition for the B-coefficient ctk3,0,1 in Figure 3.6 requires that the value

m = 3 should be inserted at location 1 in the multi-index because this is also the location in

the multi-index of the non-zero value of the B-coefficient ctk4,0,0 at the out of edge vertex vc.

At the same time, the corresponding continuity point B-coefficients are c
tj
(0,0,1)+γ , which
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have a 0 inserted at location 2 in the multi-index because this is the location of the non-zero

value of of the B-coefficient ctk4,0,0 at the out of edge vertex ve.

There are only a finite number of possible values of this new multi-index created through

the insertion of m or 0. It is therefore possible to define a function that produces the

complete set of all multi-indices. Let the tuple function M(w, κ) be defined as the function

that produces all new multi-indices for a given value w as follows:

M(w, κ) :=










(w, κ0, κ1, . . . , κn−1),

(κ0, w, κ1, . . . , κn−1),

(κ0, κ1, w, . . . , κn−1),

(κ0, κ1, . . . , w, κn−1),

(κ0, κ1, . . . , κn−1, w)










, |Mi(w, κ)| = d−m+ w, (3.71)

where the ith multi-index is given by Mi(w, κ). Letting w = m, M(w, κ) produces all

possible multi-indices of the continuity point (i.e. the left hand) B-coefficients, if w = 0

then M(0, κ) + γ produces all possible multi-indices of the continuity body (i.e. the right

hand) B-coefficients.

Because κ in Eq. 3.71 has a total of n− 1 components and because |κ| = d− w = d∗,

the total number of valid permutations of a single tuple Mi(w, κ) follows from Eq. 2.51 as

follows:

|{Mi(w, κ)}| =
(d∗ + n− 1)!

(n− 1)!(d∗)!
= Rw, (3.72)

with Rw the total number of continuity conditions of order w from Eq. 3.70. Note that in

this case the operator | • | is the set cardinality operator.

So what is the role of M(w, κ) in the context of the continuity conditions? The

answer to this question is rather simple. The problem with the original continuity condition

formulation from Eq. 3.67 was that its B-coefficient indexing scheme was only functional

on a single, very specific B-net configuration. The tuple function M(w, κ) allows for a

much more powerful indexing scheme that can be used on any combination of two B-nets

as long as they are both oriented using the B-net orientation rule from Eq. 2.78. In this

sense, M(w, κ) can be used as a multi-index generator as follows:

κ̄ = Mρ(v)(w, κ), |κ̄| = d−m+ w, (3.73)

with κ̄ a new multi-index and with ρ(v) a rank function that produces the index into

M(m,κ). It is important to note that the actual values of the components of κ̄ are

determined by the requirement that |κ̄| = d−m+ w.

The rank function ρ(v) returns the rank of a given vertex within the set of simplex
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Figure 3.6: The two C3 continuity conditions for the edge tj and tk.

vertices Vt based on the global vertex index. The rank function is defined as follows:

ρ(vpi) := (n+ 2)−
pi∑

j=0

kvj ,

{

kvj = 1 if vj ∈ Vt
kvj = 0 if vj /∈ Vt

(3.74)

Because the output from the tuple function Eq. 3.71 is a tuple, pairs of tuples of continuity

point-body indices are produced as follows:

(Mi(m,κ),Mj(0, κ)) = (κpoint, κbody) (3.75)

These pairs form the basis of the indexing scheme for the formulation of the general

continuity conditions.

In the following example, the use of the tuple function from Eq. 3.71 together with the

rank function from Eq. 3.74 will be demonstrated.

Example 14 (Using the tuple function M(w, κ)). In this example we want to derive the

multi-indices of the B-coefficients for C3 continuity for the edge between tj and tk for

the 4th degree B-net in Figure 3.6. The B-net of tk will produce the continuity body B-

coefficients, while the B-net of tj produces the continuity point B-coefficients. The vertex

indices are explicitly given as follows: a = 3, b = 6, c = 8, d = 2 and e = 5.
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In this case we have tj = 〈v6,v5,v2〉 and tk = 〈v8,v6,v2〉.

The first step in the derivation is the determination of the vertex rank of the out of edge

vertex vc = v8 for simplex tk. Using Eq. 3.74 we find for the vertex rank function:

ρ(v8) = (n+ 2)−
8∑

j=0

kv8

= (n+ 2)− (0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + 1).

so the rank of v8 is given by as ρ(v8) = 1. We can now use the tuple function M(w, κ) to

construct all possible multi-indices for w = 3 (and n = 2):

M(3, κ) =






(3, κ0, κ1),

(κ0, 3, κ1),

(κ0, κ1, 3)




 , |Mi(3, κ)| = 4− 3 + 3 = 4, 1 ≤ i ≤ 3.

Using the outcome from the vertex rank function, we find all possible multi-indices for C3

continuity in tk:

Mρ(v8)(3, κ) = M1(3, κ)

= (3, κ0, κ1) ∈ {(3, 1, 0), (3, 0, 1)} .

We repeat this process to find the multi-indices for the continuity point B-coefficients for tj .

First, we find for the rank of ve = v5:

ρ(v5) = (n+ 2)−
5∑

j=0

k

= (n+ 2)− (0 + 0 + 1 + 0 + 0 + 1) = 2.

Using the tuple function M(w, κ) to construct all possible multi-indices for w = 0 we get:

M(0, κ) =






(0, κ0, κ1),

(κ0, 0, κ1),

(κ0, κ1, 0)




 , |Mi(0, κ)| = 4− 3 + 0 = 1, 1 ≤ i ≤ 3.

We find all possible multi-indices for C3 continuity in tj as follows:

Mρ(v5)(0, κ) = M2(0, κ)

= (κ0, 0, κ1) ∈ {(1, 0, 0), (0, 0, 1)} .
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Combining results and using Eq. 3.75 we get the following set of continuity pairs:

(M1(w, κ),M2(0, κ)) ∈
{

((3, 1, 0), (1, 0, 0)) ,

((3, 0, 1), (0, 0, 1))

}

.

�

All theory is now in place to introduce a theorem for the continuity conditions of B-nets

oriented using the B-net orientation rule from Eq. 2.78.

Theorem 6. The general formulation for the continuity conditions for two n-simplices tf
and tg with dth degree B-nets which are oriented using the B-net orientation rule from

Eq. 2.78 is the following:

c
tf
Mρ(ṽf,g)(m,κ)

=
∑

|γ|=m
c
tg
(

Mρ(ṽg,f )(0,κ)+γ
)Bmγ (ṽf,g), 0 ≤ m ≤ r. (3.76)

with Mρ(•)(•) the tuple function Eq. 3.71 which uses the vertex rank function from Eq. 3.74

to index its members. The basis function Bmγ (ṽf,g) is a polynomial in terms of the

barycentric coordinate of ṽf,g with respect to simplex tg .

Proof. The proof of the theorem requires that the correct continuity structure is produced for

all possible combinations of ranks of ṽf,g and ṽg,f , that is, all (n+1)! possible orientations

of B-nets.

Observe that Eq. 3.76 reduces to Eq. 3.67 when ρ(ṽf,g) = n+ 1 and ρ(ṽg,f ) = n+ 1,

because this indexes the last multi-index value of the tuple function from Eq. 3.71. In that

case we get the following result:

c
tf
(κ0,κ1,...,κn−1,m) =

∑

|γ|=m
c
tg
(κ0,κ1,...,κn−1,0)+γ

Bmγ (ṽf,g), 0 ≤ m ≤ r. (3.77)

which has been proved to be correct in the literature, see e.g. [4]. Now reorient both B-nets

such that ρ(ṽf,g) = n and ρ(ṽg,f ) = n, that is, the rank of the out of edge vertices is

increased by 1. Note that this B-net orientation is again symmetric. In this case we get for

Eq. 3.76:

c
tf
(κ0,κ1,...,m,κn−1)

=
∑

|γ|=m
c
tg
(κ0,κ1,...,0,κn−1)+γ

Bmγ (ṽf,g), 0 ≤ m ≤ r. (3.78)

It is straightforward to prove that this equation is correct; by simply swappingm and κn−1 in

the continuity body B-coefficients and 0 and κn−1 in the continuity point B-coefficients we

get the exact same continuity structure as that produced by Eq. 3.77. Through induction (i.e.

swapping m and 0 with κn−2 and then m and 0 with κn−1) we can prove that the theorem
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is valid for all possible symmetric B-net orientations, leaving us to prove the theorem for all

asymmetric B-net orientations, which is now straightforward.

If Mρ(ṽf,g)(m,κ) produces the correct multi-indices for all ranks of ṽf,g , and

Mρ(ṽg,f )(0, κ) + γ produces the correct multi-indices for all ranks of ṽg,f then logically,

Eq. 3.76 produces the correct continuity structures for all possible combinations of ranks of

ṽf,g and ṽg,f , which proves the theorem.

Example 15 (Formulating general continuity conditions). In this example, the general

formulation of the continuity conditions from Eq. 3.76 will be demonstrated. Using the

results form Example 14, the two continuity conditions for C3 continuity between the

simplices tj and tk in Figure 3.6 will be derived.

In Example 14 we found that ρ(v8) = 1 and ρ(v5) = 2, which led to the following

expression for the two continuity pairs:

(M1(w, κ),M2(0, κ)) ∈
{

((3, 1, 0), (1, 0, 0)) ,

((3, 0, 1), (0, 0, 1))

}

with each of the two pairs associated with a single continuity condition.

We now first use the continuity pair ((3, 1, 0), (1, 0, 0)) to find the continuity condition

in which ctkMρ(v8)(3,κ)
= ctk3,1,0 is the continuity point B-coefficient:

ctk3,1,0 =
∑

|γ|=3

c
tj
Mρ(v5)(0,κ)+γ

B3
γ(v8)

=
∑

|γ|=3

c
tj
(1,0,0)+γB

3
γ(v8)

= c
tj
4,0,0B

3
3,0,0(v8) + c

tj
3,1,0B

3
2,1,0(v8) + c

tj
3,0,1B

3
2,0,1(v8) + c

tj
2,2,0B

3
1,2,0(v8) +

+c
tj
2,1,1B

3
1,1,1(v8) + c

tj
2,0,2B

3
1,0,2(v8) + c

tj
1,3,0B

3
0,3,0(v8) + c

tj
1,2,1B

3
0,2,1(v8) +

+c
tj
1,1,2B

3
0,1,2(v8) + c

tj
1,0,3B

3
0,0,3(v8)

We then use the second continuity pair ((3, 0, 1), (0, 0, 1)) to find the continuity condition
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in which ctkMρ(v8)(3,κ)
= ctk3,0,1 is the continuity point B-coefficient:

ctk3,0,1 =
∑

|γ|=3

c
tj
Mρ(v5)(0,κ)+γ

B3
γ(v8)

=
∑

|γ|=3

c
tj
(0,0,1)+γB

3
γ(v8)

= c
tj
3,0,1B

3
3,0,0(v8) + c

tj
2,1,1B

3
2,1,0(v8) + c

tj
2,0,2B

3
2,0,1(v8) + c

tj
1,2,1B

3
1,2,0(v8) +

+c
tj
1,1,2B

3
1,1,1(v8) + c

tj
1,0,3B

3
1,0,2(v8) + c

tj
0,3,1B

3
0,3,0(v8) + c

tj
0,2,2B

3
0,2,1(v8) +

+c
tj
0,1,3B

3
0,1,2(v8) + c

tj
0,0,4B

3
0,0,3(v8)

It is now easy to check in Figure 3.6 that both expressions indeed form the correct continuity

structures.

�

3.3.3 The effects of continuity

It was explained in the previous section how the continuity of B-form polynomials on

neighboring simplices could be enforced using the continuity conditions. But what exactly

is continuity between simplices, and what are its effects on the complete spline function?

Because a dth degree B-form polynomial is a differentiable function, its continuity order

is Cd at every point inside its domain. In the definition of a spline function as a member of

the spline space Srd(T ) from Eq. 2.70, therefore, the continuity order Cr always refers to

the continuity order on the edge facets.

Continuity comes at an unavoidable price. By relating B-coefficients through the

continuity conditions, degrees of freedom of the spline polynomials are lost proportionally

with increasing continuity order. A higher continuity order always comes at the cost of a

lower approximation power. A good indicator of spline approximation power is the semi-

degree δ which is defined as follows:

δ := d− r − 1. (3.79)

The semi-degree should be seen as the effective degree of the B-form polynomial with Cr

continuity.

An additional spline approximation power indicator is ξc, which is a count of the number

of B-coefficients that are not used in the continuity conditions for a single edge facet:

ξc := d̂−Rr, (3.80)

with d̂ the total number of B-coefficients from Eq. 2.51 and with Rr the total number of

continuity conditions for Cr continuity on a single edge facet from Eq. 3.68.
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Up to this point only individual continuity conditions and their corresponding continuity

structures have been considered. When Cr continuity is required at an edge facet, however,

a total of Rr continuity conditions of orders C0 to Cr are required, see Eq. 3.68. In

Figure 3.7 the structures of continuity for C0 to C3 continuity of the 4th degree spline

function from Figure 3.5 and Figure 3.6 is shown. To achieve C3 continuity across the two

edge facets, the continuity conditions from C0, C1, C2 and C3 continuity should all be

included in the optimization process for the B-coefficients of the spline function.

Also shown in Figure 3.7 are 1-dimensional sections of the spline function after

appliance of the continuity conditions up to the given order. It is important to mention

that all spline functions model the exact same objective function, which is the Mexican

hat function plotted in Figure 3.8. The four plots in Figure 3.7 clearly demonstrate the

effects of the continuity conditions on the resulting spline function. For C0 continuity, for

example, the spline function is discontinuous (i.e. not differentiable) at the edge facets. For

C1 continuity, this discontinuity is no longer present, and the spline function appears to be

more smoothened. For C2 and C3 continuity, the spline function is completely smooth, so

smooth in fact that one can wonder as to what degree the objective function is still being

accurately approximated.

In Figure 3.8 the complete spline functions corresponding with the four continuity

orders from Figure 3.7 are plotted, together with the function that is being approximated,

the Mexican hat function. The Mexican hat function was designed such that none of the

spline functions would be able to approximate it accurately. This was done to amplify

the differences in approximation power between the four spline functions. Two important

observations can be made from Figure 3.8. First, the figure demonstrates the global

smoothening effect of the continuity conditions. Compare, for example, the plot of the

C0 continuous spline with the plot for the C3 continuous spline. The former shows large

gradients and many details on a local scale. The C3 continuous spline function, on the

other hand, looks very smooth and shows very little detail on a local scale. Second, the

best performing spline function in this case turns out to be the C1 continuous spline, which

outperforms the C0 continuous spline, even though it has one less degree of freedom. The

large gradients in the C0 continuous spline indicate that there are numerical instabilities in

the estimator for its B-coefficients, which has a detrimental effect on its approximation

power. The spline functions with higher continuity order clearly do not suffer from

these numerical instabilities. This leads to another qualitative observation: increasing the

continuity order of a spline increases the numerical stability of the estimator for its B-

coefficients.

To summarize these findings it can be said that increasing the continuity order

- increases the continuity of a spline function at the edge facets of a triangulation,

- increases the global smoothness of a spline function,
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C3 continuity
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Figure 3.7: Complete structures of continuity for C0, C1, C2 and C3 continuity

together with 1-dimensional sections of the resulting spline function.
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C3 continous splineC2 continous spline

C1 continous splineC0 continous spline

Figure 3.8: Four 4th degree spline functions with continuity orders C0, C1, C2 and

C3 approximating the same objective function plotted in the center.



124 Advances in Simplex Spline Theory

- increases the numerical stability of the estimator for the B-coefficients of a spline

function when data is scarce.

- results in a more shallow cost function,

- reduces the approximation power of a spline function,

- leads to a higher propagation factor.

The final item in this list, the propagation factor, is the subject of the next section.

3.3.4 B-net propagation

In the previous section, a qualitative analysis of the effects of continuity on the global spline

function was provided. This section focuses on one specific, but highly important effect:

B-net propagation. B-net propagation is the propagation of local disturbances in the B-net

of one simplex to B-nets of other simplices. Propagation effectively transforms a simplex

spline from a local into a semi-global approximator. One of the new findings in this thesis is

that propagation is strongly dependent on the configuration of a triangulation. In particular,

it was found that the Type I triangulation is much more susceptible to B-net propagation

than the Type II triangulation.

It is found that B-net propagation consists of two components. Firstly, there is

a polynomial component, which is damped proportionally with the total number of

unconstrained B-coefficients at Star level-L from the perturbed simplex. Secondly, there is a

geometric component, which is related to the configuration of the triangulation of the spline

function, and which in some cases is undamped. For a local approximator, polynomial B-net

propagation is acceptable, but geometric B-net propagation is not.

B-net propagation is demonstrated in Figure 3.9, Figure 3.10, Figure 3.11, and

Figure 3.12. All spline functions are 4th degree spline functions with a continuity order

which is varied between C1 and C2. The propagation in this case is caused by fixing the

values of the 15 B-coefficients of a single simplex tp to the value 1. The spline function is

then used to approximate the objective function f(x0, x1) = 0. The optimal solution in this

case would be that all B-coefficients are equal to zero, according to Eq. 2.59. This means

that any non-zero B-coefficients are produced entirely by the propagation effect.

The following theorem will introduce an expression for the factor Gp which determines

the polynomial B-net propagation.

Theorem 7. The polynomial component of B-net propagation at Star level-L is determined

by the factor Gp(L), which is defined as follows:

Gp(L) :=
d̂

2Lξc
(3.81)
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Figure 3.9: Propagation of a 4th degree bivariate spline function of continuity

order 1 on a Type I triangulation consisting of 450 triangles. The polynomial

propagation is strongly damped, while no geometric propagation occurs. The

perturbed simplex tp is drawn in red (right).

 

 

Propagation of s(x0, x1) ∈ S1
4 (T900)

x1

x0

Type II Triangulation and Spline Function Propagation

x
1

x0

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.10: Propagation of a 4th degree bivariate spline function of continuity

order 1 on a Type II triangulation consisting of 900 triangles. The polynomial

propagation is strongly damped, while no geometric propagation occurs. The

perturbed simplex tp is drawn in red (right)
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Figure 3.11: Propagation of a 4th degree bivariate spline function of continuity

order 2 on a Type I triangulation consisting of 1800 triangles. The geometric

propagation is undamped, and is present throughout the entire spline domain.

The perturbed simplex tp is drawn in red (right)
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Figure 3.12: Propagation of a 4th degree bivariate spline function of continuity

order 2 on a Type II triangulation consisting of 3600 triangles. The geometric

propagation is damped, and is present only on a part of the spline domain. The

perturbed simplex tp is drawn in red (right)



127

with ξc the total number of unconstrained B-coefficients for a simplex with a single

constrained edge from Eq. 3.80.

The following ranges are found for Gp(L) :

Gp(L) −→
{

Gp(L) ≤ 1 ⇒ no propagation

Gp(L) > 1 ⇒ damped propagation
(3.82)

Proof. The proof of the theorem is based on an analysis of the equilibrium in approximation

power between the constrained part and the unconstrained part of the B-form polynomial.

The first step in the proof therefore is the decomposition of the B-form polynomial ptL in

an unconstrained (free) and a constrained (fixed) part:

ptL(b(x)) = pfreetL
(b(x)) + pfixtL (b(x)) (3.83)

=

|Wr|
∑

k=1

ctL,freeWr
k

BdWr
k
(b(x)) +

|Mr|
∑

q=1

ctL,fixMr
q

BdMr
q
(b(x)), (3.84)

with Wr the set of multi-indices corresponding with unconstrained (free) B-coefficients and

with Mr the set of multi-indices corresponding with constrained (fixed) B-coefficients. The

sizes of Wr and Mr are related as follows:

|Wr|+ |Mr| = d̂, (3.85)

It is the polynomial pfixtL in Eq. 3.84 that is responsible for the polynomial B-net

propagation. If the polynomial pfreetL
has equal or higher approximation power than pfixtL ,

then the disturbance can be fully damped on tL. Because both pfreetL
and pfixtL have the

same polynomial degree, the only way that the approximation power of pfreetL
can match or

exceed that of pfixtL is if it has more polynomial terms, and therefore more B-coefficients.

This implies the following:

|Wr| ≥ |Mr| =⇒ ‖pfreetL
− pfixtL ‖2 = 0. (3.86)

It is not important what the actual members of Wr and Mr are. Instead, we are only

interested in the total number of elements of Wr and Mr, which are found to be:

|Wr| = Lξc (3.87)

|Mr| = d̂− |Wr| (3.88)

The size of the set of free B-coefficients is determined by the total number of free B-

coefficients multiplied by the Star level L. This is a direct result of the overlapping of

continuity structures in which free B-coefficients are mixed with fixed B-coefficients.
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We are now ready to prove the theorem. It was shown in Eq. 3.88 that the number of free

B-coefficients accumulates with the Star level such that at Star level-L there are |Wr| = Lξc
free B-coefficients.

From Eq. 3.86 it follows that Lξc ≥ |Mr| for the disturbance to be damped out. It then

follows that if Lξc ≥ d̂/2, the approximation power of pfreetL
matches or exceeds that of

pfixtL . With the definition of Gp(L) from Eq. 3.81 we can then derive the ranges presented

in Eq. 3.82:

Lξc ≥
d̂

2
=⇒ 1 ≥ d̂

2Lξc
= Gp(L), (3.89)

which proves the theorem.

Using Eq. 3.81 and Eq. 3.82 we find the following expression for the Star level Ldamp
at which the polynomial B-net propagation is fully damped:

Ldamp ≥
d̂

2ξc
(3.90)

In Figure 3.13 an example is shown of polynomial B-net propagation. In the figure a

spline function s ∈ S1
2 defined on a Type II triangulation is shown. In this case, d̂ = 6 and

ξc = 1, so according to Eq. 3.90 Ldamp ≥ 3. Therefore, the polynomial B-net propagation

can be considered to be fully damped beyond Star level-3. When observing Figure 3.13, it

may seem that there still is plenty of B-net propagation beyond Star level-3. Upon closer

inspection, however, the propagation never exceeds the 5% level outside the Star level-3

bounds.

Using the general formulation of the continuity conditions from Eq. 3.76, a more exact

expression for polynomial B-net propagation between simplices of Star level-L and Star

level-(L − 1) can be derived. These expressions are meant for the precise calculation of

local polynomial propagation for a given disturbance.

Let the B-coefficients c
tj
κ of a spline polynomial of degree d with Cr continuity on a

simplex tj be perturbed with the disturbance function φtj as follows:

ctjκ = φtj (b(c
tj
κ )), |κ| = d. (3.91)

For Star level-1, the fixed B-coefficients ct1,fixMr from Eq. 3.84 then are completely

determined by the general continuity conditions from Eq. 3.76 between the simplex t1 and

the simplex tj as follows:

ct1,fixMρ(m,κ)
=
∑

|γ|=m
φtj

(

b
(

c
tj
Mρ(0,κ)+γ

))

Bmγ (ṽt1,tj ), 0 ≤ m ≤ r, (3.92)
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Figure 3.13: The propagation of a 2nd degree spline function with C1 continuity

together with the Star structures of the perturbed simplex on a Type II triangulation

consisting of 900 triangles. The polynomial propagation Gp(L) is damped beyond

Star level-3.

in which the argument lists of the rank functions ρ from Eq. 3.74 are dropped to aid

readability.

For Star level-L, the fixed B-coefficients ctL,fixMr from Eq. 3.84 are completely deter-

mined by the general continuity conditions from Eq. 3.76 between the simplex tL and the

simplex t(L−1) as follows:

ctL,fixMρ(m,κ)
=
∑

|γ|=m
c
t(L−1)

Mρ(0,κ)+γ
Bmγ (ṽtL,t(L−1)

), 0 ≤ m ≤ r, L > 1, (3.93)

It is important to note in Eq. 3.93 that the B-coefficients c
t(L−1)

Mρ(0,κ)+γ
contain at least a single

free B-coefficient. This is caused by the incomplete overlap of the continuity structures of

neighboring simplices. As a result, Eq. 3.93 cannot be applied in a recursive form.

The second B-net propagation component is geometric B-net propagation. Geometric

B-net propagation is an effect that is present in a special class of partially symmetric

triangulations of dimension n ≥ 2, like the Type I triangulation. Fully symmetric

triangulations like the Type II triangulation are much less susceptible to geometric

propagation. Geometric propagation is caused by a recursive interaction between identical

continuity conditions on neighboring simplices. There are cases for which the Geometric

B-net propagation on Type I triangulations is undamped, affecting the entire triangulation.

In Figure 3.11 and Figure 3.14 two examples are given of geometric B-net propagation.
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Figure 3.14: The propagation of a 5th degree spline function with C2 continuity

together with the Star structures of the perturbed simplex on a Type I triangulation.

The geometric propagation GT is undamped and present across the entire

triangulation.

From Figure 3.14 it is clear that the simplex Star does not have any influence on geometric

propagation.

The following theorem presents an expression for geometric propagation.

Theorem 8. The geometric component of B-net propagation is determined by GT which is

defined as follows:

GT =
3r

d
, 0 ≤ GT ≤ 3− 3

d
, (3.94)

where the following ranges are found for GT :

GT −→







0 ≤ GT < 1 ⇒ no propagation

GT = 1 ⇒ critically damped propagation

GT > 1 ⇒ undamped propagation

. (3.95)

Proof. The proof of the theorem is based on the observation that geometric propagation

only occurs when the Cr continuity structures within an n-simplex tj overlap completely.

Geometric propagation can therefore be prevented by choosing an order of continuity for

which the overlap of the continuity structures is incomplete, see Figure 3.15. The continuity

structure coverage is incomplete when there is a set of n+ 1 B-coefficients in the center of

the B-net which are covered by at most n continuity conditions.

The derivation of the expression Eq. 3.94 uses the fact that the set of n + 1 special B-
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coefficients forms a triangle t∆ with a base consisting of r + 2 B-coefficients on any ridge

t̄ of tj . This triangle is present in any simplex with an incomplete coverage of continuity

structures. For symmetry, there must be a total of at least r B-coefficients located on the

line that connects the base of t∆ with the closest vertex in tj , see Figure 3.15.

Therefore, in order to support the existence of t∆, the total number of B-coefficients in

t̄ is bound by the following inequality:

d+ 1 >= (r + 2) + 2r, (3.96)

with the part (r + 2) the total number of B-coefficients in the base of t∆, and with 2r the

number of B-coefficients on the two shortest lines that connect the base of t∆ with the two

closest vertices in tj .

This leads to the expression for damped geometric propagation:

3r + 1

d
≤ 1 (3.97)

A special situation occurs when there is a single central B-coefficient which is present in at

most n+1 continuity equations. In this case, geometric propagation is found to be critically

damped. With the same reasoning as before, the single B-coefficient forms the peak of a

triangle t∆, but this time with a base consisting of only r+1 B-coefficients on any ridge t̄ of

tj . Again for symmetry, a total of r B-coefficients must be located on the line that connects

the base of t∆ with the closest vertex in tj , see Figure 3.15.

d+ 1 = (r + 1) + 2r (3.98)

which leads to the expression for critically damped geometric propagation:

3r

d
= 1 (3.99)

Combining Eq. 3.97 with Eq. 3.99 and observing that 3r
d
< 3r+1

d
for positive d and r we

get the following expression:
3r

d
<

3r + 1

d
≤ 1 (3.100)

Therefore, geometric propagation is avoided when the following inequality holds:

3r

d
< 1 (3.101)

Finally, Eq. 3.99 together with Eq. 3.101 results in the ranges for GT , and proves the

theorem.
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C1 continuity

C2 continuity

s ∈ S1
4s ∈ S2

7

s ∈ S1
3

Figure 3.15: The coverage of the C1 and C2continuity structures for the B-nets

of a 3rd degree (top left), a 7th degree (center) and a 4th degree (right) spline

function. For the 3rd degree spline function we have GT = 3r
d

= 1, which means

geometric propagation is critically damped. For the 7th and 4th degree spline

functions we have GT = 3r
d
< 1, and therefore, no geometric propagation will

occur. In the figure, the blue dots are special B-coefficients that are covered by at

most n continuity conditions, while the red dot is the single B-coefficient which is

covered by at most n+ 1 continuity conditions

Concluding this section, Figure 3.16 demonstrates a spline function s ∈ S1
3 for which

GT = 1, that is, a spline function with critically damped geometric propagation.

3.3.5 The Smoothness Matrix

In the end all continuity conditions for all edges in a triangulation must be included in a

matrix called the smoothness matrix. In this section the construction of the smoothness

matrix will be discussed.

Let H be the smoothness matrix, which is used together with the global vector of B-

coefficients c from Eq. 3.27 such that a homogeneous set of equations is produced:

Hc = 0. (3.102)

Each row in H contains a single continuity condition Eq. 3.76 which is equated to zero as

follows:

− c
tf
Mρ(ṽf,g)(m,κ)

+
∑

|γ|=m
c
tg
Mρ(ṽg,f )(0,κ)+γ

Bmγ (ṽf,g) = 0, 0 ≤ m ≤ r. (3.103)
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Figure 3.16: An example of critically damped geometric propagation: a 3rd degree

spline function with C1 continuity defined on a Type I triangulation.

With Cr continuity between simplices it is found that H ∈ R
(E·Rr)×(J·d̂), with E the total

number of edges in a triangulation and Rr and d̂ as in Eq. 3.68 and Eq. 2.51 respectively.

In Figure 3.17 the smoothness matrix forC2 continuity of the spline function s ∈ S2
4 (T1800)

is shown. Note that this is the smoothness matrix of the spline function which propagation

was plotted in Figure 3.11. In this figure, every blue dot corresponds with a non-zero B-

coefficient value in H. The smoothness matrix has a very high sparseness factor which

increases with the size of the triangulation and the polynomial degree. The smoothness

matrix in Figure 3.17, for example, contains 124080 non-zero values spread out over a total

of 31680 continuity conditions. The total number of elements of H in this case is more than

855 million, which leads to a sparseness factor that is more than 99.98%.

The rank of the smoothness matrix is given by:

rank H ≤ (E ·Rr) (3.104)

However, only for the simplest of triangulations will H be of full rank. As Lai and

Schumaker observed in [104], the rank deficiency of H is caused by the fact that there are

redundant continuity equations for triangulations with an interior vertex. Rank deficiencies

in H are easily produced, even for very simple triangulations and low continuity orders,

such as that shown in Figure 3.18. In this case, the triangulation T3 has three edges, and thus

three sets of C0 continuity equations. At the internal vertex v3, we get three C0 continuity
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Figure 3.17: The rank-deficient smoothness matrix H for C2 continuity for the

spline function s ∈ S2

4 (T1800). The bandedness of H is the result of formulating the

continuity conditions per-continuity order, instead of per-edge.

equations which using Eq. 3.76 are found to be:

t̃1,2 −→ ct10,0,1 = ct20,0,1

t̃1,3 −→ ct10,0,1 = ct30,0,1

t̃2,3 −→ ct20,0,1 = ct30,0,1. (3.105)

It is easy to check that one of these three equations is redundant. For example, when the

equation for t̃1,2 is substituted in the equation for t̃1,3 the result is ct20,0,1 = ct30,0,1, which is

equal to the equation for t̃2,3, which has therefore become redundant.

Constructing a smoothness matrix of full rank is not a trivial task. Redundancies do

not only arise between continuity conditions of equal order, but also between conditions of

different orders. For example, it can be shown that in some cases a Cr continuity condition

can be formed by combining a number of Cr−1 conditions. This makes the creation of an

analytical algorithm for formulating full rank smoothness matrices a very challenging task.

In this thesis a more practical approach to creating full rank smoothness matrices is

taken. Small to medium sized smoothness matrices containing less than 1000 continuity

conditions can be transformed into a row reduced echelon formation, after which the rows



135

containing only zeros can be removed. The problem with this approach is that it destroys

the sparseness of the original smoothness matrix and also introduces roundoff errors in the

new smoothness matrix.

For larger smoothness matrices a different approach is taken which is based on an

estimate of the condition number of H. The condition number estimator is very efficient

computationally, and can handle very large (sparse) matrices, see [73]. The algorithm for

constructing a full rank smoothness matrix starts by initializing H with a single continuity

condition. Then, a new candidate smoothness matrix Hc is created by adding a new

continuity condition h as follows:

Hc =

[

H

h

]

(3.106)

The condition number estimator requires a square matrix, while in general H and Hc are

non-square. A square matrix can be obtained by multiplying Hc with its transpose. As

a rule, the rank of the product of two matrices is equal to, or less than, the rank of the

individual matrices, see e.g. [74]. Therefore, the following statement holds:

rank Hc ≥ rank HcH
⊤
c (3.107)

This means that a conservative estimate of the condition number of the candidate smooth-

ness matrix Hc can be obtained by estimating the condition number of HcH
⊤
c . Now, if

Hc is singular, this condition number will be some very large number. In this thesis it is

assumed that any candidate smoothness matrix with an estimated condition number larger

than 1010 is singular. In that case, it can be reasoned that the continuity condition h caused

Hc to become singular, which means that h is redundant and should be dropped. If the

condition number has a lower value than 1010, it is safe to assume that h is not redundant.

In that case the candidate matrix becomes the new smoothness matrix, and the process can

be repeated until all E ·Rr − 1 continuity conditions have been checked for redundancy.

Example 16 (Construction of a smoothness matrix). In this example, the complete H matrix

for C0 continuity for the spline function s ∈ S0
1 (T3) defined on the triangulation shown

in Figure 3.18 is constructed. The continuity conditions for the given triangulation are

formulated using Eq. 3.76.

The continuity conditions of t1 with respect to t2 are:

ct1(κ0,0,κ1)
=
∑

|γ|=0

ct2(κ0,0,κ1)
B0
γ(v1) = ct2(κ0,0,κ1)

,

which leads to the continuity conditions

ct11,0,0 = ct2(1,0,0), c
t1
0,0,1 = ct2(0,0,1).
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The continuity conditions of t1 with respect to t3 are given by:

ct1(0,κ0,κ1)
=
∑

|γ|=0

ct3(κ0,0,κ1)
B0
γ(v0) = ct2(κ0,0,κ1)

.

leading to the continuity conditions

ct10,1,0 = ct3(1,0,0), c
t1
0,0,1 = ct3(0,0,1).

Finally, the continuity conditions of t2 with respect to t3 are:

ct2(0,κ0,κ1)
=
∑

|γ|=0

ct3(0,κ0,κ1)
B0
γ(v0) = ct2(0,κ0,κ1)

.

which results in the continuity conditions

ct20,1,0 = ct3(0,1,0), c
t2
0,0,1 = ct3(0,0,1).

The global vector of B-coefficients is:

c =
[

ct11,0,0 ct10,1,0 ct10,0,1 ct21,0,0 ct20,1,0 ct20,0,1 ct31,0,0 ct30,1,0 ct30,0,1

]⊤
.

It can then be checked that the complete, full rank smoothness matrix H for C0 continuity

for this example is:

H =










−1 0 0 1 0 0 0 0 0

0 0 −1 0 0 1 0 0 0

0 −1 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 0 1

0 0 0 0 −1 0 0 1 0










Note that the continuity condition ct20,0,1 = ct30,0,1 was rejected because it was redundant as

was explained in Eq. 3.105.

3.4 Differential Constraints

In this section, a new type of constraint for simplex splines is introduced in the form of the

differential constraints. Differential constraints locally constrain the directional derivatives

of the spline polynomials. The differential constraints can be used, for example, to limit

polynomial divergence in areas of the spline domain with insufficient data coverage or to

enforce differential boundary conditions on the edges of the spline domain. In order to
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Figure 3.18: Exploded view of a triangulation T3 consisting of 3 simplices with 1st

degree B-nets. The triangulation contains a single interior vertex v3.

define differential constraints on the B-coefficients of a spline function, an expression is

required for the directional derivatives of the simplex splines in terms of the original vector

of B-coefficients. It will be shown in this section, that the derivation of the directional

derivatives in terms of the original B-coefficients is based on the one-step matrix form of

the de Casteljau algorithm introduced in Sec. 3.1. The theory presented in this section is

based on the work presented in [41].

This section consists of three subsections. The first, Sec. 3.4.1, introduces the concept

of differential constraints. Following the formal definition of the differential constraints,

a theory for the required total number of differential constraints for constraining the spline

polynomials along edges and sub-simplices is presented in Sec. 3.4.2. The section concludes

with an in depth analysis of bounded model extrapolation in Sec. 3.4.3.

3.4.1 Definition of differential constraints

In [41] it was proved that the differential constraints can be expressed in the form of the

following linear matrix equation:

D · c = d, (3.108)
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with D a block diagonal matrix holding M differential constraints for the optimization

problem. The vector c is the global vector of B-coefficients from Eq. 3.27, while d ∈ R
M×1

is the vector of differential constraint values.

The blocks of D are formed by evaluating the differential constraint matrix function

D
tj
m(a,b) for any simplex tj :

D = diag
(
Dtj
m(a,b), 1 ≤ j ≤ J

)
∈ R

M×J·d̂ (3.109)

with the matrix function D
tj
m(a,b) defined using Eq. 3.45 as follows:

Dtj
m(a,b) :=

d!

(d−m)!
Bd−m(b)Pd,d−m(a), (3.110)

with Pd,d−m(a) the de Casteljau matrix from Eq. 3.20 of degree d to d −m expressed in

terms of the directional coordinate a of the constraint direction u and with Bd−m(b) the

vector of basis polynomials from Eq. 2.66.

For every differential constraint, D
tj
m(a,b) is evaluated for a given differential order m,

directional coordinate a and evaluation location b such that

Dtj
m(a,b) · ctj = Dm

u p(b)
∣
∣
∣
tj

= di. (3.111)

with di a single constraint value.

Example 17 (Formulating differential constraints). In this example a single differential

constraint is derived for a bivariate 2nd degree B-form polynomial on a single simplex, with

vertex coordinates as defined in Figure 3.19. We want to constrain the B-form polynomial

with a first order (i.e. m = 1) differential constraint at the vertex v1 in the direction

u = (0, 1).

In this case the differential constraint matrix function from Eq. 3.110 becomes

Dt
1(a,b) =

2!

(2− 1)!
B2−1(b(v1))P

2,2−1(b(u)), (3.112)

with b(v1) the barycentric coordinate of v1, and with a(u) the directional coordinate of u.

Using the definition of the barycentric coordinate transformation from Eq. 2.41 and Eq. 2.36

we find b(v1) = (0, 1, 0). Using the definition of the directional coordinate from Eq. 3.42,

we find b(u) = a = (−1,−1, 2). Using the definition of the vector of basis polynomials

from Eq. 2.66, we find for B2−1(b(v1)):

B2−1(b) =
[

0 1 0
]

(3.113)

The de Casteljau matrix P2,2−1(b(u)), which reduces a set of B-coefficients of degree d = 2
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to degree d−m = 1, can be constructed using Eq. 3.17. For this, we use the same procedure

as that in Example 10, which results in the following table of values.

i(κ) i(θ) θ κ θ − κ Pmθ−κ(a)
1 1 (2, 0, 0) (1, 0, 0) (1, 0, 0) P 1

1,0,0(a)
1 2 (1, 1, 0) (1, 0, 0) (0, 1, 0) P 1

0,1,0(a)
1 3 (1, 0, 1) (1, 0, 0) (0, 0, 1) P 1

0,0,1(a)
1 4 (0, 2, 0) (1, 0, 0) (−1, 2, 0) 0
1 5 (0, 1, 1) (1, 0, 0) (−1, 1, 1) 0
1 6 (0, 0, 2) (1, 0, 0) (−1, 0, 2) 0
2 1 (2, 0, 0) (0, 1, 0) (2,−1, 0) 0
2 2 (1, 1, 0) (0, 1, 0) (1, 0, 0) P 1

1,0,0(a)
2 3 (1, 0, 1) (0, 1, 0) (1,−1, 1) 0
2 4 (0, 2, 0) (0, 1, 0) (0, 1, 0) P 1

0,1,0(a)
2 5 (0, 1, 1) (0, 1, 0) (0, 0, 1) P 1

0,0,1(a)
2 6 (0, 0, 2) (0, 1, 0) (0,−1, 2) 0
3 1 (2, 0, 0) (0, 0, 1) (2, 0,−1) 0
3 2 (1, 1, 0) (0, 0, 1) (1, 1,−1) 0
3 3 (1, 0, 1) (0, 0, 1) (1, 0, 0) P 1

1,0,0(a)
3 4 (0, 2, 0) (0, 0, 1) (0, 2,−1) 0
3 5 (0, 1, 1) (0, 0, 1) (0, 1, 0) P 1

0,1,0(a)
3 6 (0, 0, 2) (0, 0, 1) (0, 0, 1) P 1

0,0,1(a)

Using P 1
1,0,0(a) = a10a

0
1a

0
2 = −1, P 1

0,1,0(a) = a00a
1
1a

0
2 = −1, and P 1

0,0,1(a) =

a00a
0
1a

1
2 = 2, the de Casteljau matrix is:

P2,2−1(a) =






P 1
1,0,0(a) P 1

0,1,0(a) P 1
0,0,1(a) 0 0 0

0 P 1
1,0,0(a) 0 P 1

0,1,0(a) P 1
0,0,1(a) 0

0 0 P 1
1,0,0(a) 0 P 1

0,1,0(a) P 1
0,0,1(a)






=






−1 −1 2 0 0 0

0 −1 0 −1 2 0

0 0 −1 0 −1 2




 (3.114)

Substituting Eq. 3.114 and Eq. 3.113 in the expression for the differential constraint matrix

function from Eq. 3.112 we get:

Dt
1(b(u), b(v1)) = 2

[

0 1 0
]

·






−1 −1 2 0 0 0

0 −1 0 −1 2 0

0 0 −1 0 −1 2






=
[

0 −2 0 −2 4 0
]
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Figure 3.19: Depiction of the problem described in Example 17. The spline

function has a single differential constraint at the location of v1 in the direction

(0, 1).

Using these results, the complete constraint matrix equation from Eq. 3.108 is:

D · c =
[

0 −2 0 −2 4 0
]

·
[

c2,0,0 c1,1,0 c1,0,1 c0,2,0 c0,1,1 c0,0,2

]⊤

This equation constrains the first order derivative of the second degree B-form polynomial

at the vertex v1 in the direction u = (0, 1).

�

3.4.2 Differentially constraining polynomials on subsimplices

In this section it is proved that simplex polynomials can be differentially constrained on

any (n− k)-dimensional sub-simplex ts contained within the convex hull of the n-simplex

t by formulating the constraints for a specific number of points located in ts. A specific

case of this proof was first provided in [41] where it was shown that a polynomial can be

differentially constrained along simplex edge facets if constraints are imposed onNδ unique

points in the edge facet. It was shown that in this case, Nδ is given by:

Nδ =
(d−m+ n− 1)!

(n− 1)!(d−m)!
. (3.115)

A new theorem will be now be presented that generalizes the results in [41] to all (n−k)-
dimensional subsimplices ts ∈ t.

Theorem 9. The directional derivative in the direction u of a B-form polynomial Dm
u p(b)

on a simplex ts of dimension n − k, contained within the convex hull of the n-simplex t, is
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fully constrained at a value d by constraining a total of Nδ unique points in ts, where Nδ
is given by:

Nδ :=
(d−m+ n− k)!

(n− k)!(d−m)!
. (3.116)

Proof. From Eq. 3.45 it is clear that the directional derivative Dm
u p(b) is a polynomial of

degree d−m in b. Now let q(bs) be a B-form polynomial of degree d−m which is defined

on the (n− k)-sub-simplex ts as follows:

q(bs) =
∑

|κ|=d−m
ctsκ B

d−m
κ (bs) (3.117)

with bs barycentric coordinates on ts. Using Eq. 2.51, it follows that q(bs) consists of

a linear combination of Nδ basis polynomials and B-coefficients, with Nδ as in Eq. 3.116.

The complete polynomial q(bs) is therefore fully constrained whenNδ constraint equations

are present, which proves the theorem.

3.4.3 Differential constraints for bounded model extrapolation

Model extrapolation is the expansion of the domain of a model using the information present

in the model. In general, a model can only provide accurate results inside the model domain.

The model can be extrapolated, however, such that it can make predictions outside the

bounds of the model domain. The region outside the model domain inside which valid

predictions can be made is defined as the valid extrapolation region, or VER. The volume of

the VER is determined primarily by the complexity of the modeled system and the physical

accuracy of the model. Pure physical models of simple systems result in the largest VER’s

while black box phenomenological models of complex systems have extremely limited

VER’s. For example, the orbit of a planet around the sun can be extrapolated accurately

by using Newtonian mechanics together with a few measurements. In contrast, a purely

phenomenological aerodynamic model of an aircraft can hardly be extrapolated with any

accuracy at all, especially in nonlinear areas of the flight envelope [46].

Models based on simplex splines are pure phenomenological models. They are created

by fitting, in some optimal sense, a set of special polynomials to a set of measurement

data. While a simplex spline model may contain physical information4 on the system

it is not directly based on the actual physical laws that determine the dynamics of the

4In Sec. 3.5 a method is presented to extract physical information from simplex spline models using a global

(i.e. non-barycentric) formulation of the simplex spline polynomials.
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modeled system. This lack of a physical basis can result in divergent behavior of the spline

polynomials outside the domain of the dataset used to create the simplex spline model.

The polynomial divergence is caused by unbounded behavior of the directional deriva-

tives of the simplex polynomials outside the dataset domain. Essentially, the simplex

polynomials attempt to approximate the data generating function as well as its directional

derivatives as closely as possible inside the domain of the dataset. Outside the dataset

domain, however, the directional derivatives are no longer constrained by any data and

therefore remain unchanged. If the directional derivatives of the data generating function

have large values near the bounds of the dataset domain, the directional derivatives of

the spline polynomials will be equally large in those areas. This causes the simplex

polynomial to diverge proportionally. It is important to note that the divergence of the

simplex polynomials takes place on a per-simplex level, that is, the divergence is present

even on a single simplex with incomplete data coverage.

The differential constraints introduced in this section provide a powerful method for lim-

iting polynomial divergence beyond the boundaries of the data domain by constraining the

directional derivatives of the simplex polynomials. This effectively makes the differential

constraints a very promising tool for bounded model extrapolation which aims to increase

the VER’s of simplex spline models. In the following, an expression will be derived for

the polynomial divergence at the boundary of the data domain given some data generating

function f .

In [104] Lai and Schumaker derived a bound for how well a smooth function f can be

approximated by a polynomial pf of degree d. In this thesis, this expression was generalized

to the n-dimensional case in Eq. 3.55 as follows:

max |Dα0
x0
Dα1
x1

· · ·Dαn
xn

(f − pf )|Ω ≤ K · |Ω|d+1−∑

αi · |f |d+1,Ω, 0 ≤
∑

αi ≤ d.

This generalization will be used in two theorems that quantify the polynomial diver-

gence given a data generating function f . Before introducing the theorems, a clear definition

is required for when a B-form polynomial is interpolating, and when it is extrapolating. For

this, a new domain related to the domain Ω in Eq. 3.55 must be defined. This new domain

is ω which is the smallest n-dimensional sub-simplex contained by the n-simplex t which

contains all the data Ξt present in t, see Figure 3.20. The sub-simplex ω is defined as

follows:

ω ⊆ t, Ξt ∈ ω (3.118)

The seminorm |ω| is defined as follows:

|ω| := max
y,y∈ω

|y − z|. (3.119)

Using Eq. 3.118 the following behavior can now be defined for the B-form polynomial
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Figure 3.20: The simplex t together with the sub-simplex ω containing all the data.

The valid extrapolation region (VER) is the shaded area, with ∆u the increment in

the direction u from the point xb on the edge of ω.

p:

p(b(x)) −→
{

x ∈ ω : interpolating

x /∈ ω : extrapolating
(3.120)

with b(x) the barycentric coordinates with respect to the n-simplex t of the Cartesian point

x ∈ R
n.

Finally, the polynomial divergence is defined implicitly in the form of the divergence

function ψ as follows:

ψ(xb,∆u) := p(b(xb +∆u))− p(b(xb)), (xb +∆u) /∈ ω (3.121)

with xb a point located on the convex hull of ω and with ∆u an increment in the direction

u, see Figure 3.20 for a simple example.

All definitions are now in place for the introduction of the theorems on polynomial

divergence of B-form polynomials inside simplices due to incomplete data coverage. In

the first theorem, an explicit definition of ψ will be given. In the second theorem, minimum

bounds will be derived for the directional derivatives of a B-form polynomial approximating

a data generating function on the sub-simplex ω. In the third theorem, these minimum

bounds will be used to derive an expression for the lower bound of the divergence function

ψ.

Theorem 10. If p is a B-form polynomial of degree d, then the divergence function ψ from

Eq. 3.121 has the following explicit definition:
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ψ(xb,∆u) =
d∑

m=1

{
Dm

u p(b(xb))

m!
· (∆u)m

}

(3.122)

with xb ∈ ω a point on the convex hull of ω and with (xb +∆u) /∈ ω.

Proof. The proof makes use of the Taylor series expansion of p centered at the location xb

in the direction u as follows:

p(b(xb +∆u)) = p(b(xb)) +D1
up(b(xb)) ·∆u+

D2
up(b(xb))

2!
· (∆u)2 + · · ·

+
Dd

up(b(xb))

d!
· (∆u)d. (3.123)

It is worth noting that this Taylor series expansion of p is exact, and thus has no remainder.

By reorganizing Eq. 3.123 and collecting the differential terms, we get:

p(b(xb +∆u))− p(b(xb)) =

d∑

m=1

{
Dm

u p(b(xb))

m!
· (∆u)m

}

. (3.124)

The proof then follows immediately from the definition of ψ from Eq. 3.121.

Theorem 11. The lower bound for the mth order directional derivatives in the direction

u ∈ R
n of the B-form polynomial p of degree d approximating the data generating function

f inside the simplical data domain ω are given by:

max |Dm
u p|ω ≥ K · |ω|d+1−m ·max |Dd+1

u f |ω −max |Dm
u f |ω, 0 ≤ m ≤ d (3.125)

with ω the simplical domain from Eq. 3.118, |ω| the diameter of ω from Eq. 3.119, and with

K a constant depending only on d.

Proof. The proof is based on a reformulation of Eq. 3.55. Because we are only interested

in polynomial divergence in unary directions, i.e. u = x0 = x1 = . . . = xn, the expression

for the maximum approximation error from Eq. 3.55 can be simplified as follows:

max |Dm
u (f − p)|ω ≤ K · |ω|d+1−m · |f |d+1,ω, 0 ≤ m ≤ d, (3.126)

with
∑
αi = m. The linear relation between f and p in Eq. 3.126 allows the following

simplification:

max |Dm
u f −Dm

u p|ω ≤ K · |ω|d+1−m · |f |d+1,ω, 0 ≤ m ≤ d. (3.127)
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Now notice that

max |Dm
u f |ω −max |Dm

u p|ω ≤ max |Dm
u f −Dm

u p|ω. (3.128)

The term left of the inequality can be substituted for the term left of the inequality in

Eq. 3.128 at the price of a more conservative expression for the bound:

max |Dm
u f |ω −max |Dm

u p|ω ≤ K · |ω|d+1−m · |f |d+1,ω, 0 ≤ m ≤ d. (3.129)

which after reorganization and substitution of the definition of |f |d+1,Ω from Eq. 3.52

immediately results in Eq. 3.125.

Using Theorem 10 and Theorem 11 a lower bound can now be given for the polynomial

divergence of p for xb outside ω given a data generating function f .

Theorem 12. A lower bound for the polynomial divergence of the B-form polynomial p in

the direction u for (xb +∆u) /∈ ω is:

max
xb∈ω

|ψ(xb,∆u)| ≥ max
xb∈ω

∣
∣
∣
∣
∣

d∑

m=1

{
(
K · |ω|d+1−m ·max |Dd+1

u f |ω −max |Dm
u f |ω

)
· ∆u

m!

}
∣
∣
∣
∣
∣
.

(3.130)

Proof. The proof is based on the combination of the results from Theorem 10 and

Theorem 11. First, the maximum value for ψ can be found using Eq. 3.122 as follows:

max
xb∈ω

|ψ(xb,∆u)| = max
xb∈ω

∣
∣
∣
∣
∣

d∑

m=1

{
Dm

u p(b(xb))

m!
· (∆u)m

}
∣
∣
∣
∣
∣
. (3.131)

Now notice that the right hand term in Eq. 3.131 is actually equal to:

max
xb∈ω

∣
∣
∣
∣
∣

d∑

m=1

{
Dm

u p(b(xb))

m!
· (∆u)m

}
∣
∣
∣
∣
∣
= max

xb∈ω

∣
∣
∣
∣
∣

d∑

m=1

{
max |Dm

u p(b(xb))|
m!

· (∆u)m
}
∣
∣
∣
∣
∣
.

(3.132)

Using Eq. 3.125 we find that

max
xb∈ω

∣
∣
∣
∣
∣

d∑

m=1

{
max |Dm

u p(b(xb))|
m!

· (∆u)m
}
∣
∣
∣
∣
∣
≥

max
xb∈ω

∣
∣
∣
∣
∣

d∑

m=1

{
(
K · |ω|d+1−m ·max |Dd+1

u f |ω −max |Dm
u f |ω

)
· (∆u)m

m!

}
∣
∣
∣
∣
∣
. (3.133)

Substitution of Eq. 3.133 into Eq. 3.131 then proves the theorem.
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Based on the results from the theorems, a full explanation for the polynomial divergence

limiting effect of the differential constraints can be offered. By imposing mth order

differential constraints with value 0 at Nδ locations on the boundaries of ω, the mth term in

the summation for ψ in Eq. 3.122 is effectively made constant. The result is that the lower

bound for max |ψ| from Eq. 3.130 is reduced because the mth term in the summation is

equal to 0.

The use of differential constraints for bounded model extrapolation is demonstrated with

a numerical experiment. In the experiment, the approximation performance of an ordinary

6th degree spline function with C2 continuity is compared to a differentially constrained

spline function of the same degree and continuity order. The spline functions are both

defined on a triangulation consisting of 4 triangles. The dataset used in the experiment

is XD, which only partly covers the triangulation, see Figure 3.21. The green line in

Figure 3.21 is the boundary of the data domain, while the magenta line in Figure 3.21 is the

boundary of the spline domain on simplex t4. The data values at XD are generated using

Franke’s function which is shown in the right hand plot of Figure 3.21. In [58] Franke’s

function is defined as follows:

f(x0, x1) =
3

4
exp

(

− (9x0 − 2)2 + (9x1 − 2)2

4

)

+

3

4
exp

(

−
(
(9x0 + 1)2

49
− 9x1 + 1

10

))

+

1

2
exp

(

− (9x0 − 7)2 + (9x1 − 3)2

4

)

−

1

5
exp

(
−
(
(9x0 − 4)2 − (9x1 − 7)2

))
(3.134)

Franke’s function is a sum of exponential functions, and thus has an infinite number of

derivatives. Furthermore, the maximum values for the derivatives tend to increase in

magnitude, as the order of the polynomial terms in the derivatives of f(x0, x1) increases

with the derivative order. Based on Eq. 3.130, it is now clear that the divergence of a B-

form polynomial p approximating Franke’s function increases with increasing polynomial

degree because the lower bound increases with increasing d.

Two bivariate 6th degree simplex spline functions s1 and s2 of continuity order C2

are then used to approximate f(XD) using the dataset XD. The spline function s1 is only

constrained by smoothness constraints, while the second spline function s2 is constrained by

smoothness constraints and differential constraints. In total, s2 is constrained by four sets of

second order (i.e. m = 2) differential constraints in the x1 direction, such that u = (0, 1),

see the left hand plot in Figure 3.21. Three sets of constraints are positioned on the boundary
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Figure 3.21: The dataset, triangulation and differential constraint locations (left)

used for demonstrating the effects of differential constraints. The data values

(right) are generated with Franke’s function f(x0, x1).

of the data domain (the green line in Figure 3.21) such that every one of the three simplices

on this edge has Nδ = 5 constraint equations associated with it. One set of constraints is

positioned on the edge of the spline domain (the magenta line in Figure 3.21). In all, the

simplex polynomials of s2 on t2 and t3 are constrained by 5 differential constraint equations

while the simplex polynomial on t4 is constrained by a total of 10 differential constraints.

The resulting spline functions s1 and s2 are plotted in Figure 3.22. The spline function

s1 in the left hand plot of Figure 3.22 diverges rapidly beyond the bounds of the domain of

the dataset. This is as expected because the spline function effectively extrapolates the data

beyond these bounds. The differentially constrained spline function s2, plotted in the right

hand plot of Figure 3.22, does not show significant divergence. The differential constraints

have greatly reduced polynomial divergence, resulting in a bounded model extrapolation of

s2.

In Figure 3.23 the second order derivatives of s1 and s2 in the x1 direction are shown.

This figure clearly demonstrates the effects of the differential constraints on the directional

derivatives of a simplex spline function. The left hand plot of Figure 3.23 shows that δ2s1
(δx1)2

diverges uncontrollably beyond the bounds of the data domain. In contrast, the right hand

plot shows that δ2s2
(δx1)2

= 0 at the data domain bounds and the edge of the spline domain.



148 Advances in Simplex Spline Theory
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Figure 3.22: Two spline functions of degree 6 and continuity order C2 in a least

squares fit to the identification dataset (XD, f(XD)). The spline function in the left

hand plot does not use differential constraints, while the spline function in the right

hand plot is differentially constrained. The gray grid shows where the model is

extrapolating the data.

3.5 A B-form in Global Coordinates

The barycentric coordinate system is a coordinate system defined in terms of a weighted ver-

tex sum of the vertices of an n-simplex t. The barycentric coordinate system is instrumental

in the definition of the stable local basis of the simplex spline basis polynomials. Because

the barycentric coordinate system is a local coordinate system, defined on a per-simplex

basis, the polynomials defined in terms of these coordinates have a local interpretation

only. In many cases, it is desirable to obtain a global physical interpretation of the simplex

polynomials, for instance when defining physical constraints on the B-coefficients. Such

a physical interpretation requires a reformulation of the simplex polynomials in terms of

global physical coordinates. Additionally, the global formulation of the B-form enables the

creation of a combined triangulation and B-coefficient optimization algorithm. Combined

with a global optimization method like interval analysis [137, 69, 210, 209], the global

formulation of the B-form could finally solve the triangulation optimization problem.

In this section, a new formulation of the B-form multivariate simplex splines in terms of

global coordinates will be introduced. It will be shown how this new formulation should be

used to derive a global interpretation of the simplex spline polynomials.

The section starts with a review of the barycentric coordinate transformation in

Sec. 3.5.1. This leads to the formulation of the B-form in global coordinates in Sec. 3.5.2.

Finally, in Sec. 3.5.3 an example is given of the use of the B-form in global coordinates for
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Figure 3.23: The second order directional derivatives of the unconstrained and

constrained spline functions s1 and s2 in the x1 direction. The unconstrained spline

function is shown in the left plot, while the differentially constrained spline function

is shown in the right plot.

the physical interpretation of polynomials. It will be demonstrated that a B-form polynomial

of degree d uniquely approximates any function, thereby negating the need for the selection

of a specific model structure.

3.5.1 Barycentric coordinates revisited

Before starting the derivation of the B-form in global coordinates, a better insight into

the barycentric coordinate system is required. It was shown in Sec. 2.2.2 that the global

coordinate x = (x0, x1, . . . , xn) ∈ R
n can be written as follows:

x =
n∑

i=0

bivi, (3.135)
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with vi the i-th vertex of the n-simplex t and bi the i-th barycentric component. This

expression can be rewritten in matrix formulation as follows:

x =
[

v0 v1 · · ·vn
]









b0
b1
...

bn









(3.136)

= V · b, (3.137)

with V ∈ R
n×n+1 a singular matrix having the n + 1 vertices of t as columns. The

singular nature of V shows that the system is under determined, or in other words, contains

dependent variables. This is where the barycentric normalization property from Eq. 2.35 is

introduced:

b0 = 1−
n∑

i=1

bi. (3.138)

Substitution of Eq. 3.138 in Eq. 3.137 results in:

x =
[

v0 v1 · · ·vn
]









1−∑n
i=1 bi

b1
...

bn









.

Expanding Eq. 3.139, leads to the following expression:

x =
[

(v1 − v0) (v2 − v0) · · · (vn − v0)
]









b1
b2
...

bn









+ v0. (3.139)

So finally,

x− v0 =
[

(v1 − v0) (v2 − v0) · · · (vn − v0)
]









b1
b2
...

bn









= Ṽ









b1
b2
...

bn









, (3.140)
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with the matrix Ṽ defined as:

Ṽ =
[

(v1 − v0) (v2 − v0) · · · (vn − v0)
]

∈ R
n×n. (3.141)

It is now easy to see that the matrix Ṽ is invertible when the n-simplex has n + 1 unique

vertices. Define Λ as the inverse of Ṽ:

Λ = Ṽ−1 ∈ R
n×n. (3.142)

The barycentric components (b1, b2, . . . , bn) of x with respect to the simplex t then are:









b1
b2
...

bn









= Λ(x− v0) (3.143)

Now let z = (z1, z2, . . . , zn) ∈ R
n be the relative coordinate of x with respect to t as

follows:

z = x− v0 ∈ R
n. (3.144)

With the relative coordinate, Eq. 3.143 can be simplified as follows:









b1
b2
...

bn









= Λz (3.145)

Using the normalization property of the barycentric coordinates from Eq. 3.138, the b0
component becomes:

b0 = 1− |Λz| , (3.146)

with | • | the 1-norm of a vector.

At this point the representation in global coordinates of the barycentric coordinate

b = (b0, b1, . . . , bn) is completely determined, with Eq. 3.145 providing an expression

for (b1, b2, . . . , bn) and with Eq. 3.146 providing an expression for b0.

3.5.2 A B-form in global coordinates

In Sec. 2.2.5 the vector formulation of the B-form was introduced. This formulation

simplifies the definition of the global mapping operator. In Eq. 2.66 the vector formulation
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of the B-form of polynomial degree d for a single n-simplex t was found to be:

pd(b) = Bd(b) · ct.

Now, let the equivalent vector form of the B-form in terms of the global coordinate z from

Eq. 3.144 be defined as follows:

pd(z) = Zd(z) · ct, (3.147)

with Zd(z) ∈ R
1×d̂ the vector of basis polynomials which is constructed as follows:

Zd(z) = [Zdκ(z)]|κ|=d, (3.148)

with Zdκ(z) the individual basis polynomials in multi-index notation.

At this point, the actual elements of Zd(z) are unknown. In the following two theorems,

expressions will be derived for the actual basis polynomials in terms of global coordinate.

Theorem 13. Any B-form polynomial of degree d = 1 on the n-simplex t has the following

representation in the global coordinate z from Eq. 3.144:

p1(z) = Z1(z) · ct, (3.149)

with Z1(z) ∈ R
1×n+1 the vector of Bernstein basis polynomials from Eq. 3.148 for d = 1.

The vector of first degree Bernstein basis polynomials in the global coordinate z is then

given by:

Z1(z) =











1− Λ1z1 − Λ2z2 − · · · − Λnzn
Λ1,1z1 + Λ1,2z2 + · · ·+ Λ1,nzn
Λ2,1z1 + Λ2,2z2 + · · ·+ Λ2,nzn

...

Λn,1z1 + Λn,2z2 + · · ·+ Λn,nzn











, (3.150)

with Λi,j the individual components of the matrix Λ from Eq. 3.142 and with Λj the sum of

all n elements of the jth column of Λ as follows:

Λj :=

n∑

i=1

Λi,j (3.151)

Proof. Expanding the vector form of the B-form in barycentric coordinates for a first degree
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simplex polynomial leads to:

p1(b) = [bκ]|κ|=1 · ct

= [bκ0
0 bκ1

1 · · · bκn
n ]|κ|=1 · ct

=
[

b0 b1 · · · bn

]

· ct (3.152)

In Eq. 3.145 it was found that the barycentric coordinate components (b1, b2, . . . , bn)

are given by:








b1
b2
...

bn









= Λz.

with Λ the inverted normalized vertex matrix from Eq. 3.142.

Expanding the matrix multiplication from Eq. 3.145 results in the following expression

for the individual barycentric components bi with i > 0:

bi = Λi,1z1 + Λi,2z2 + · · ·+ Λi,nzn, i > 0, (3.153)

Using Eq. 3.146, the b0 component can be reformulated as follows:

b0 = 1− |Λz|
= 1− ((Λ1,1 + Λ2,1 + · · ·+ Λn,1)z1 + (Λ1,2 + Λ2,2 + · · ·+ Λn,2)z2 + · · · +

+(Λ1,n + Λ2,n + · · ·+ Λn,n)zn)

= 1−
n∑

j=1

(Λ1,j + Λ2,j + · · ·+ Λn,j)zj

(3.154)

Using Eq. 3.151, Eq. 3.154 can be simplified as follows:

b0 = 1−
n∑

j=1

Λjzj

= 1− Λ1z1 − Λ2z2 − · · · − Λnzn (3.155)

Substitution of the expression for b0 from Eq. 3.155 and the expression for (b1, b2, . . . , bn)

from Eq. 3.153 in Eq. 3.152 then immediately results in Eq. 3.150, which proves the

theorem.

Higher order polynomials in terms of the global coordinate z can be found easily
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by recursively multiplying the vector of basis polynomials from Eq. 3.150. Based on

Theorem 13, the following theorem for the general B-form in global coordinates can be

introduced.

Theorem 14. The B-form polynomial of degree d on the n-simplex t has the following

representation in the global coordinate z:

pd(z) = Zd(z) · ct, (3.156)

with Zd(z) the vector of basis polynomials of degree d in the global coordinate z which is

defined as follows:

Zd(z) :=

[
d!

κ!
· (Z1(z))κ

]

|κ|=d
, Zd(z) ∈ R

1×d̂, (3.157)

with Z1(z) the vector of basis polynomials of degree 1 from Eq. 3.150

Proof. By treating every individual polynomial basis function in Z1
i (z) as a single term, the

multinomial theorem can be used to create a new polynomial of any degree d:

(
Z1

1(z) + Z1
2(z) + · · ·+ Z1

n+1(z)
)d

=
∑

|κ|=d

d!

κ!
(Z1(z))κ. (3.158)

Using the method for constructing the vector of basis polynomials from Eq. 2.66, the right

hand term in Eq. 3.158 can be represented in the vector formulation of Eq. 3.157, thereby

proving the theorem.

A number of examples of the use of the global B-form will be given below.

Example 18 (The global B-form for a first degree polynomial on a 1-dimensional simplex).

A 1-dimensional simplex is formed by the convex hull of two vertices:

t = 〈(v0, v1)〉 (3.159)

In this case we have n = 1, d = 1 and κ ∈ {(1, 0), (0, 1)}. The transformation matrix Λ

from Eq. 3.142 is actually a scalar:

Λ = Ṽ−1 =
1

v1 − v0
, (3.160)

which implies that Λ = Λ1 = Λ1,1. The global coordinate in this case is z = z1 = x− v0,
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which is a scalar. Using Eq. 3.150 the following vector of basis polynomials is obtained:

p1(z) =

[

1− Λ1,1z1
Λ1,1z1

]⊤

· ct

=

[

1− 1
v1−v0 z1

1
v1−v0 z1

]⊤

· ct

Example 19 (The global B-form for a second degree polynomial on a 1-dimensional

simplex). In this case we have n = 1, d = 2 and κ ∈ {(2, 0), (1, 1), (0, 2)}. The

transformation matrix Λ, again a scalar, is the same as in Eq. 3.160. Using Eq. 3.157

together with the results of Example 18 results in:

p2(z) =






2!
2!0! (1− Λ1z1)

2(Λ1,1z1)
0

2!
1!1! (1− Λ1z1)

1(Λ1,1z1)
1

2!
0!2! (1− Λ1z1)

0(Λ1,1z1)
2






⊤

· ct

=






1− 2Λ1z1 + Λ2
1z

2
1

2Λ1,1 − 2Λ1Λ1,1z
2
1

Λ2
1,1z

2
1






⊤

· ct

=






1− 2
v1−v0 z1 +

1
(v1−v0)2 z

2
1

2
v1−v0 z1 −

2
(v1−v0)2 z

2
1

1
(v1−v0)2 z

2
1






⊤

· ct

Example 20 (The global B-form of a first degree polynomial on a 2-dimensional simplex).

A 2-dimensional simplex is formed by the convex hull of three vertices:

t = 〈(v0,v1,v2)〉 (3.161)

In this case we have n = 2, d = 1 and κ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The

transformation matrix Λ from Eq. 3.142 is:

Λ = Ṽ−1 (3.162)

=

[

v11 − v01 v21 − v01

v12 − v02 v22 − v02

]−1

. (3.163)
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Using Eq. 3.151 we find for Λ1 and Λ2:

Λ1 = (v11 − v01) + (v12 − v02)

Λ2 = (v21 − v01) + (v22 − v02),

while Λ1,1, Λ1,2, Λ2,1, and Λ2,2 are the elements of Λ from Eq. 3.163. Combining these

results results in the global B-form of degree 1 and dimension 2:

p(z) =






1− Λ1z1 − Λ2z2
Λ1,1z1 + Λ1,2z2
Λ2,1z1 + Λ2,2z2






⊤

· ct

Example 21 (The global B-form of a second degree polynomial on a 2-dimensional

simplex). In this example the simplified construction method for B-form polynomials in

global coordinates will be demonstrated. In this case, the global B-form polynomial of

degree d = 2 on a single 2-simplex will be derived using Theorem 14.

First, we need the first degree basis function vector in global coordinates from Eq. 3.150

for n = 2. In Example 20 this basis was found to be:

Z1(z) =






1− Λ1z1 − Λ2z2
Λ1,1z1 + Λ1,2z2
Λ2,1z1 + Λ2,2z2






⊤
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Using Eq. 3.157, together with the valid values for κ we can derive Z2(z):

Z2(z) =

[
2!

κ!
· (Z1(z))κ

]

|κ|=2

, Z2(z) ∈ R
1×6

=












2!
2!0!0! · (Z1(z))2,0,0

2!
1!1!0! · (Z1(z))1,1,0

2!
1!0!1! · (Z1(z))1,0,1

2!
0!2!0! · (Z1(z))0,2,0

2!
0!1!1! · (Z1(z))0,1,1

2!
0!0!2! · (Z1(z))0,0,2












⊤

=












(1− Λ1z1 − Λ2z2)
2

2 ((1− Λ1z1 − Λ2z2)(Λ1,1z1 + Λ1,2z2))

2 ((1− Λ1z1 − Λ2z2)(Λ2,1z1 + Λ2,2z2))

(Λ1,1z1 + Λ1,2z2)
2

2 ((Λ1,1z1 + Λ1,2z2)(Λ2,1z1 + Λ2,2z2))

(Λ2,1z1 + Λ2,2z2)
2












⊤

=












1− 2Λ1z1 − 2Λ2z2 + 2Λ1Λ2z1z2 + Λ2
1z

2
1 + Λ2

2z
2
2

2Λ1,1z1 + 2Λ1,2z2 − 2Λ1Λ1,2z1z2 − 2Λ1,1Λ2z1z2 − 2Λ1Λ1,1z
2
1 − 2Λ1,2Λ2z

2
2

2Λ2,1z1 + 2Λ2,2z2 − 2Λ1Λ2,2z1z2 − 2Λ2Λ2,1z1z2 − 2Λ1Λ2,1z
2
1 − 2Λ2Λ2,2z

2
2

2Λ1,1Λ1,2z1z2 + Λ2
1,1z

2
1 + Λ2

1,2z
2
2

2Λ1,1Λ2,2z1z2 + 2Λ1,2Λ2,1z1z2 + 2Λ1,1Λ2,1z
2
1 + 2Λ1,2Λ2,2z

2
2

2Λ2,1Λ2,2z1z2 + Λ2
2,1z

2
1 + Λ2

2,2z
2
2












⊤

3.5.3 Globally interpreting B-form polynomials

In the previous section, a new formulation of the B-form of the multivariate simplex spline

was introduced. This new formulation uses global coordinates instead of local barycentric

coordinates. The advantage of this approach is that the resulting basis polynomials have an

actual meaning in a physical context. In this section, an example will be given of the use of

the global B-form formulation for physically interpreting simplex polynomials.

First, define α and q̄ as the physical variables in which the B-form polynomial will be

expressed. Then, let XD be a scattered dataset as shown in Figure 3.24. Let the data values

be generated by the bivariate quadratic function Cm(α, q) as follows:

Cm(α, q) = Cm0
+ Cmα

α+ Cmα2α
2 + Cmq

q̄, (3.164)

where the values of the parameters are Cm0
= 0.6, Cmα

= −0.5, Cmα2 = −5.2, and

Cmq
= −7.0.
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Simplex polynomial p(z) ∈ P2 and dataset XD
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Figure 3.24: The dataset XD, the triangulation consisting of a single simplex, and

the simplex polynomial that best fits Cm(α, q̄).

A simplex is now created inside the domain of XD:

t = 〈(v0,v1,v2)〉 , (3.165)

where the vertices are assumed to have the following values:

v0 = (0, 0), v1 = (15
180

π
,−10

180

π
), v2 = (15

180

π
, 10

180

π
). (3.166)

In this case, the relative global coordinate z is given by:

z =

[

α

q̄

]

− v0

=

[

α

q̄

]

Using Eq. 3.156 and z = (α, q̄) , the function Cm(α, q) is then approximated with a

quadratic simplex polynomial in global coordinates p ∈ P2 as follows

p2(α, q̄) = Z2(α, q̄) · ct.

The vector of bivariate, second degree basis polynomials was already derived in Exam-
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ple 21, and will be used here with z = (α, q̄) as follows:

Z2(α, q̄) =












1− 2Λ1α− 2Λ2q̄ + 2Λ1Λ2αq̄ + Λ2
1α

2 + Λ2
2q̄

2

2Λ1,1α+ 2Λ1,2q̄ − 2Λ1Λ1,2αq̄ − 2Λ1,1Λ2αq̄ − 2Λ1Λ1,1α
2 − 2Λ1,2Λ2q̄

2

2Λ2,1α+ 2Λ2,2q̄ − 2Λ1Λ2,2αq̄ − 2Λ2Λ2,1αq̄ − 2Λ1Λ2,1α
2 − 2Λ2Λ2,2q̄

2

2Λ1,1Λ1,2αq̄ + Λ2
1,1α

2 + Λ2
1,2q̄

2

2Λ1,1Λ2,2αq̄ + 2Λ1,2Λ2,1αq̄ + 2Λ1,1Λ2,1α
2 + 2Λ1,2Λ2,2q̄

2

2Λ2,1Λ2,2αq̄ + Λ2
2,1α

2 + Λ2
2,2q̄

2












⊤

.

After explicitly calculating the values of Λ this results in:

Z2(α, q̄) =













144α2

π2 − 24α
π

+ 1
12α
π

− 18 q̄
π

− 144α2

π2 + 216α q̄
π2

12α
π

+ 18 q̄
π

− 144α2

π2 − 216α q̄
π2

36α2

π2 − 108α q̄
π2 + 81 q̄2

π2

72α2

π2 − 162 q̄2

π2

36α2

π2 + 108α q̄
π2 + 81 q̄2

π2













⊤

.

Using a least squares estimator, the vector of B-coefficients is found to be:

ct =
[

0.6000 1.1454 −0.0763 1.3344 0.1127 −1.1090
]⊤

. (3.167)

The complete B-form polynomial in global coordinates then becomes:

p2(α, q̄) = Z2(α, q̄) · ct

=













144α2

π2 − 24α
π

+ 1
12α
π

− 18 q̄
π

− 144α2

π2 + 216α q̄
π2

12α
π

+ 18 q̄
π

− 144α2

π2 − 216α q̄
π2

36α2

π2 − 108α q̄
π2 + 81 q̄2

π2

72α2

π2 − 162 q̄2

π2

36α2

π2 + 108α q̄
π2 + 81 q̄2

π2













⊤ 










0.6000

1.1454

−0.0763

1.3344

0.1127

−1.1090












= 0.6− 0.5α− 5.2α2 − 7.0q̄.

The final result shows that the function Cm(α, q̄) has been approximated exactly to within

numerical accuracy! Even more profoundly, this shows that any polynomial of degree d is

indeed uniquely approximated using a B-form polynomial of degree ≥ d. In fact, it can be

shown that a third degree B-form polynomial p ∈ P3 produces the exact same results as the
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second degree polynomial shown above:

p3(α, q̄) = Z3(α, q̄) · ct

=























− 1728 ᾱ3

π3 + 432 ᾱ2

π2 − 36 ᾱ
π

+ 1
18 ᾱ
π

− 27 q̄
π

− 432 ᾱ2

π2 + 2592 ᾱ3

π3 − 3888 ᾱ2 q̄
π3 + 648 ᾱ q̄

π2

18 ᾱ
π

+ 27 q̄
π

− 432 ᾱ2

π2 + 2592 ᾱ3

π3 + 3888 ᾱ2 q̄
π3 − 648 ᾱ q̄

π2

− 1296 ᾱ3

π3 + 3888 ᾱ2 q̄
π3 + 108 ᾱ2

π2 − 2916 ᾱ q̄2

π3 − 324 ᾱ q̄
π2 + 243 q̄2

π2

− 2592 ᾱ3

π3 + 216 ᾱ2

π2 + 5832 ᾱ q̄2

π3 − 486 q̄2

π2

− 1296 ᾱ3

π3 − 3888 ᾱ2 q̄
π3 + 108 ᾱ2

π2 − 2916 ᾱ q̄2

π3 + 324 ᾱ q̄
π2 + 243 q̄2

π2

216 ᾱ3

π3 − 972 ᾱ2 q̄
π3 + 1458 ᾱ q̄2

π3 − 729 q̄3

π3

648 ᾱ3

π3 − 972 ᾱ2 q̄
π3 − 1458 ᾱ q̄2

π3 + 2187 q̄3

π3

648 ᾱ3

π3 + 972 ᾱ2 q̄
π3 − 1458 ᾱ q̄2

π3 − 2187 q̄3

π3

216 ᾱ3

π3 + 972 ᾱ2 q̄
π3 + 1458 ᾱ q̄2

π3 + 729 q̄3

π3























⊤




















0.6000

0.9636

0.1491

1.2084

0.3939

−0.4206

1.3344

0.5199

−0.2945

−1.1090





















= 0.6− 0.5α− 5.2α2 − 7.0q̄.

This example demonstrates that the usage of B-form polynomials negates the need for

the selection of a specific polynomial model structure. The only choice in model selection

with B-form polynomials is the selection of the maximum polynomial degree. This property

of B-form polynomials will prove to be extremely useful when using simplex splines for

system identification purposes.



Chapter 4

System Identification with

Simplex Splines

In this thesis, a new method for system identification in the time domain based on

multivariate simplex splines is presented. The theoretical basis for this method was first

introduced in [40] and [41], and is based on a new formulation of the standard linear

regression model. The crux of this new formulation is the inclusion of the B-form basis

polynomials of the multivariate simplex splines in a linear regression scheme. The new

approach to linear regression with multivariate splines results in a powerful new method for

parameter estimation and system identification of complex time-variant nonlinear systems.

Using the new regression model structure, a number of different equality constrained

parameter estimation techniques can be employed in the estimation of the B-coefficients

of the simplex splines. In this thesis two such methods for parameter estimation will

be introduced. The first is a generalized least squares estimator, which enables the

estimation of B-coefficients on simplices containing noise of varying magnitudes. The

second parameter estimator is a differentially constrained recursive least squares estimator.

The recursive estimator has the potential to revolutionize the field of adaptive model based

control as it allows, in real-time, the reconfiguration of spline based models based on

incoming observations. The quality of the estimated spline models can be assessed using

existing methods based on an analysis of the model residuals and parameter variances.

Additionally, a number of completely new quality assessment methods are enabled by

the use of the B-form polynomials. For example, because the coefficients of the simplex

splines have a spatial location within the spline domain, the variances of the B-coefficients

can be pinpointed to specific locations within the model. This means that regions of high



162 System Identification with Simplex Splines

parameter variance can be isolated within the global model and subjected to further analysis.

These unique and powerful properties together may result in a new perspective on system

identification and parameter estimation, potentially leading to further innovations in the

field.

In this chapter, the theory of the multivariate simplex spline will be cast into a framework

for system identification. First, in Sec. 4.1 the process of model structure selection for

simplex splines will be presented. It will be explained that the model structure selection

process can be split into two parts, the first of which is the geometric structure selection,

and the second the polynomial structure selection. The geometric part together with the

polynomial part are then fused together in the new linear regression model for simplex

splines. In Sec. 4.2 the new linear regression model is used in the definition of two new

parameter estimators for the B-coefficients of the multivariate simplex splines. The first new

estimator is a generalized least squares estimator which allows the accurate estimation of B-

coefficients and their variances on triangulations with locally varying noise intensities. The

second new estimator is a differentially constrained recursive least squares estimator which

allows for the real-time estimation of the B-coefficients. This is useful when the simplex

splines are used in an adaptive model based control system which must adapt to changing

system dynamics. The recursive B-coefficient estimator is enabled by the inclusion of the

differential constraints from Chpt. 3. The differential constraints bound the directional

derivatives of the model in areas where data is scarce, effectively adding a bounded model

extrapolation capability to the simplex splines. The quality of simplex spline models can

be assessed using a number of different methods, some of which are unique to the simplex

splines. In Sec. 4.3 these quality assessment methods will be introduced. Finally, in Sec. 4.4

the generalized least squares estimator will be demonstrated on a real-life dataset, in this

case a part of a NASA wind tunnel dataset of the F-16 fighter aircraft. The various model

quality assessment methods will be demonstrated, and it will be shown that these methods

indeed provide a new perspective on model quality assessment.

4.1 Model Structure Selection

A multivariate simplex spline function effectively consists of two components; a geometric

component and a polynomial component. The geometric component is the triangulation,

which provides a geometric basis for the second component, the polynomials that make up

the actual spline functions.

Geometric model structure selection is a challenging task, as it presents a nonlinear,

non-convex optimization problem for which there is no general solution at the time of this

writing. However, it was found that geometric structure selection can be decomposed into

a prototype phase and a subsequent refinement phase, resulting in an adequate geometric

model structure. In Sec. 4.1.1 this two-phased approach towards geometric model structure
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Figure 4.1: An overview of the prototype phase in simplex spline model

identification.

selection is discussed. The polynomial model structure selection is more straightforward

because the simplex spline polynomials form a basis for all polynomials of a given degree.

Polynomial model structure selection therefore boils down to the selection of a single

spline space of a certain degree and continuity order, as explained in Sec. 4.1.2. With the

geometric and polynomial model structures defined, a linear regression model structure can

be formulated which enables the use of well-known and much used parameter estimators

like least squares, and maximum likelihood estimators. In Sec. 4.1.3 this linear regression

model structure for simplex splines is introduced.

4.1.1 Geometric model structure selection

In their very essence, simplex splines are geometric entities. Their basis functions are

defined on geometric structures called simplices, and their parameters have a spatial location

inside the simplices that support them. Geometric model structure selection for simplex

splines actually consists of two parts. The first part is the selection of the spline dimensions.

The second part is the triangulation generation process during which a set of interconnected

simplices is defined which in some way optimally span a given dataset. Geometric model

structure selection forms a nonlinear and non-convex optimization problem for which there

is no general solution at the time of this writing.

In this thesis a two-phase approach towards geometric model structure selection is

taken. The first phase is called the ‘prototype phase’, see Figure 4.1. The second phase

is the ‘refinement phase’ which is shown in Figure 4.2. The goal of the prototype phase

is the selection of the spline model dimension from a given set of candidate dimensions.

During this phase, one of the simplest possible triangulations is used in the form of the

Type I triangulation of the hypercube, which was discussed in-depth in Sec. 2.3.3. An

example of this triangulation for the 3-dimensional case is shown in Figure 4.3. For every

dimension candidate a number of different spline spaces are used to model the dataset on the



164 System Identification with Simplex Splines

Geometric Model 

Structure Refinement

Model Estimation 

and Validation

B-coefficient 

Estimation

Model 

Validation

Triangulation

Optimization

Spline Model Validation Data

ID Data

Figure 4.2: An overview of the final model refinement phase in simplex spline

model identification.
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Figure 4.3: A single triangulated 3-cube (left) consisting of six tetrahedrons used

during the prototype phase and its exploded view (right).

hypercube triangulation. The set of dimensions that produced the best overall performing

spline function is then selected as the dimension set of choice.

The aim of the refinement phase is the creation of an optimal triangulation using

the selected dimension candidate from the prototype phase. In Chpt. 2 a method for

triangulation optimization was introduced which produces well-defined triangulations by

filling the convex hull of the dataset with triangulated hypercubes. It was shown that this

method produces high quality triangulations, which may not be globally optimal, but are

nevertheless well suited for use with simplex splines. During the refinement phase, this

triangulation optimization method will be used to create spline functions of the highest

possible quality.

An even more powerful triangulation optimization method could be based on the

formulation of the B-form polynomials in global coordinates from Sec. 3.5. Using a global
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optimization method, like interval analysis [137, 69, 209], this could lead to a triangulation

that is guaranteed to be the optimal solution.

4.1.2 Polynomial model structure selection

While the geometric model structure selection procedure is relatively complex, the poly-

nomial model structure selection procedure is rather trivial. The only degrees of freedom

during polynomial model structure selection are the selection of the polynomial degree and

the continuity order of the simplex spline polynomials. It was explained in Sec. 2.2 that a

spline space of a given degree d is a basis for the complete space of polynomials of degree

d. This means that selection of the degree of the spline space is equivalent to selecting all

possible polynomials of the same total (and maximum) degree. The specific form of the

spline polynomials is determined during parameter estimation.

One important aspect of polynomial model structure selection is B-net propagation, see

Sec. 3.3.4. B-net propagation is the propagation of local disturbances through the B-nets

of the multivariate simplex splines. B-net propagation was proved to be a function of the

spline degree and continuity order, see Theorem 7 and Theorem 8, and is most likely to

occur on Type I triangulations. The Type I triangulation is a very convenient triangulation

type, as it is the simplest possible triangulation of the hypercube, see e.g. Figure 2.23

and Figure 2.24. B-net propagation is not an issue during the prototype phase, because

only a single triangulated hypercube is used. During the refinement phase, however, B-net

propagation is an important factor in the determination of the spline degree and continuity

order.

4.1.3 A linear regression model for B-form polynomials

In this paragraph a new linear regression model structure for simplex splines will be

presented. This model structure was first introduced by the author in [40]. The regression

model structure presented here is essential when using simplex splines inside a framework

for system identification, as it enables the use of standard parameter estimation techniques

for the estimation of the B-coefficients. It is assumed at this point that the dimensions,

triangulation, and spline space have already been defined during geometric and polynomial

model structure selection.

First, consider the vector-scalar pair of observations (x(i), y(i)), which are related as

follows:

y(i) = f(x(i)) + r(i), i = 1, 2, . . . , N, ∈ R
1, (4.1)

with f an unknown function and with r(i) a residual term. We now introduce a regression

model structure for approximating f that is equivalent to a linear combination of B-form
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polynomials Eq. 2.59 of degree d, defined on a triangulation consisting of J simplices:

y(i) =

J∑

j=1

∑

|κ|=d
ctjκ B

d
κ(b(i)) + r(i), (4.2)

with b(i) the barycentric coordinate of x(i) with respect to the simplex tj as in Eq. 2.32.

The model structure in Eq. 4.2 is an entirely valid linear regression structure, but it would

not lead to a meaningful approximation scheme because all data points x(i) contribute to

the approximation on a simplex tj , regardless of whether they are inside or outside tj . In

order to obtain a per-simplex interpolation scheme, a simplex membership operator δjk(i) is

introduced:

δjk(i) =

{

1, if j = k(i)

0, if j 6= k(i)
, (4.3)

with k(i) an index function that produces the index of the simplex which contains the data

point x(i), i.e., x(i) ∈ tk(i), ∀i. The membership operator Eq. 4.3 is now applied to

the regression model Eq. 4.2, which leads to the multivariate simplex spline based linear

regression model:

y(i) =
J∑

j=1



δjk(i)
∑

|κ|=d
ctjκ B

d
κ(b(i))



+ r(i). (4.4)

This expression can be restated in a matrix form that includes all measurements. For this

purpose, a vector formulation of the B-form from Eq. 2.59 must first be defined. First, let

Bd
tj

be the vector of lexicographically sorted basis polynomial terms for the simplex tj :

Bd
tj
(i) = [Bd,tjκ (b(i))]|κ|=d ∈ R

1×d̂, (4.5)

in which the simplex identifier tj was added to the definition of the basis function for clarity.

With Eq. 2.64 and Eq. 2.66 the per-simplex B-form in vector formulation is:

p(b(i)) = Bd
tj
(i) · ctj . (4.6)

The per-simplex d̂ × d̂ diagonal data membership matrix for observation i is defined as

follows:

Dtj (i) =
[
(δj,k(i))q,q

]d̂

q=1
∈ R

d̂×d̂. (4.7)

The full-triangulation basis function vector for a single observation is:

Bd(i) = [ Bd
t1
(i) Bd

t2
(i) · · · Bd

tJ
(i) ] ∈ R

1×J·d̂. (4.8)
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The block diagonal full-triangulation data membership matrix D(i) for a single observation

is a matrix with Dtj (i) blocks on the main diagonal:

D(i) =
[(
Dtj (i)

)

j,j

]J

j=1
∈ R

(J·d̂)×(J·d̂). (4.9)

Using Eq. 3.27, Eq. 4.8 and Eq. 4.9 the B-form of the multivariate simplex spline for the

complete triangulation in vector form becomes:

P (b(i)) = Bd(i) ·D(i) · c. (4.10)

Now let X(i) be a single row in the full-triangulation regression matrix for all observations

X ∈ R
N×J·d̂ as follows:

X(i) = Bd(i) ·D(i) ∈ R
1×J·d̂. (4.11)

For a single observation on y we then have:

y(i) = X(i)c+ r(i), (4.12)

which, for all observations, leads to the well-known formulation:

Y = Xc+ r ∈ R
N×1. (4.13)

4.2 Spline Model Estimation

In this section, two estimators for the B-coefficients of multivariate simplex spline functions

will be presented. These estimators differ in scope and complexity and together provide the

user with a complete suite of solvers that are applicable to a wide range of simplex spline

data modeling problems.

The first estimator, discussed in Sec. 4.2.1, is a generalized least squares estimator

which was first presented in [40]. The generalized least squares estimator relies on the

linear regression scheme for simplex splines from Sec. 4.1.3. The second estimator is

the constrained recursive least squares estimator, which is discussed in Sec. 4.2.2. The

constrained recursive least squares estimator was first introduced by the author in [41], and

was designed for use in real-time adaptive modeling applications like adaptive model based

controllers.

4.2.1 Generalized Least Squares with simplex splines

In Sec. 4.1.3 it was shown that the scattered data modeling problem for multivariate simplex

splines can be formulated in the form of the linear regression problem from Eq. 4.13, which
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is repeated here:

Y = Xc+ r ∈ R
N×1,

with Y the vector containing all observations, with X the regression matrix for all

observations constructed using Eq. 4.11, and with c the global vector of B-coefficients from

Eq. 3.27.

Equation Eq. 4.13 can be solved using many different methods, depending on the

assumptions made on the nature of the residual term r. A generalized least squares (GLS)

estimator for Eq. 4.13 will be introduced, which implies that the residual contains white

noise of varying magnitude:

E(r) = 0, Cov(r) = Σ, (4.14)

with Σ ∈ R
N×N the residual covariance matrix, which is both non-singular and positive

definite. The well-known (see e.g. [87]) GLS cost function is:

JGLS(c) =
1

2
(Y −Xc)⊤Σ−1(Y −Xc). (4.15)

Up to this point it has not been discussed how continuity between simplices is achieved. As

explained in Chpt. 3, the continuity conditions are contained in the smoothness matrix H

from Eq. 3.102. The continuity conditions act as linear equality constraints on B-coefficients

located in the continuity structure of a triangulation. Therefore, the complete optimization

problem can be stated as an equality constrained GLS problem (ECGLS) as follows:

min
c

JGLS(c), subject to Gc = g. (4.16)

with G ∈ R
G×J·d̂ a matrix containing a total of G linear constraints, and with g ∈ R

G×1

a vector containing a total of G constraint values as follows:

G =
[

H D

]⊤
, g =

[

0 d

]⊤
, (4.17)

with H the all-important smoothness matrix from Eq. 3.102, and with D and d a constraint

matrix and vector, respectively.

Using Lagrange multipliers the constrained optimization problem from Eq. 4.16 can be

stated as:

L(c, ν) = JGLS(c) + νT (Gc− g), (4.18)

with ν a vector of Lagrange multipliers. Equating the partial derivatives of Eq. 4.18 to zero
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and writing the results in matrix form results in the Karush-Kuhn-Tucker (KKT) system:

[

X⊤Σ−1X G⊤

G 0

][

c

ν

]

=

[

X⊤Σ−1Y

g

]

, (4.19)

Using the entities from Eq. 4.13 and the residual covariance matrix from Eq. 4.14 the

dispersion matrix Q is defined as follows:

Q := X⊤Σ−1X ∈ R
J·d̂×J·d̂. (4.20)

The left hand matrix in Eq. 4.19 is known in the literature as the Karush-Kuhn-Tucker

matrix [9]. The complete KKT system in Eq. 4.19 can be solved using a variety of different

methods, see e.g. [9] and [112]. Most methods in the literature require that that the

dispersion matrix Q is non-singular. Awanou and Lai presented a matrix iterative solver

which converges to c for a singular Q as long as Q is positive definitive on the kernel of H

[7, 6]. The first iterate for c is:

c(1) = (2Q+
1

ǫ
GTG)−1(2X⊤Σ−1Y +

1

ǫ
GTg −GT ν(0)), (4.21)

with ǫ > 0, and with ν(0) an initial guess for the Lagrange multipliers1. The iteration

sequence is:

c(k+1) = (2Q+
1

ǫ
GTG)−1(2Qc(k) +

1

ǫ
GTg). (4.22)

The iterative solver was found to be very efficient computationally when solving large

scale data modeling problems in which more than 20000 B-coefficients had to be estimated.

The exact solution of the KKT system from Eq. 4.19 is:

[

ĉ

ν̂

]

=

[

C1 C2

C3 C4

]

·
[

X⊤Σ−1Y

g

]

, (4.23)

with ĉ and ν̂ estimators for c and ν respectively. Using Eq. 4.23 a more explicit expression

for the ECGLS estimator for the B-coefficients can be derived as follows:

ĉ = C1 ·X⊤Σ−1Y. (4.24)

Rao shows in [177] that the matrix in Eq. 4.23 is equal to the pseudo inverse of the KKT

matrix:
[

C1 C2

C3 C4

]

=

[

Q G⊤

G 0

]+

. (4.25)

1In practice, it was found that ǫ = 10−6 resulted in fast convergence of the iterative solver
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Note that the sizes of the submatrices C1, C2 and C3 in Eq. 4.25 are equal to the sizes of

Q, G⊤ and G respectively.

In order to obtain accurate estimates for the B-coefficient variances, it is required that

the KKT matrix in Eq. 4.19 is non-singular. The KKT matrix is found to be non-singular

if the dispersion matrix Q from Eq. 4.20 is positive definite on the kernel of the constraint

matrix G:

Gc = 0, c 6= 0 =⇒ c⊤Qc > 0. (4.26)

This statement holds if G and Q are both of full rank. The proof of Eq. 4.26 for the

general KKT matrix is well known in the literature, see e.g. [9]. The constraint matrix G

from Eq. 4.17 can only be of full rank when the smoothness matrix H and constraint matrix

D are both of full rank, and when no linear dependencies exist between the rows of H and

D. The following theorem will prove that the rank of Q is dependent on the volume and

configuration of the data.

Theorem 15. The dispersion matrix Q is non-singular when every simplex in a triangula-

tion T contains a minimum of d̂ non-coplanar data points, with d̂ as in Eq. 2.51.

Proof. The proof requires that the data content of every individual simplex is considered

separately. We therefore first re-order the rows in X and Σ−1 such that they are in block

diagonal form. This operation does not alter the rank of Q. We denote the per-simplex

blocks Xj , and Σ−1
j with j = 0, 1, . . . , J . The number of data points in the simplex tj is

Nj . The rank of Q is now simply the sum of the ranks of the diagonal sub blocks:

rank Q =
J∑

j=0

rank X⊤
j Σ

−1
j Xj . (4.27)

For Q to be of full rank, we must have for every set of blocks:

rank X⊤
j Σ

−1
j Xj = d̂. (4.28)

In the following, use is made of a nested form of the rank statement from [74]:

rank X⊤
j + rank Σ−1

j Xj −Nj ≤ rank X⊤
j Σ

−1
j Xj ≤

min{rank X⊤
j , rank Σ−1

j Xj}, (4.29)

where the rank of Σ−1
j Xj is given by:

rank Σ−1
j + rank Xj −Nj ≤ rank Σ−1

j Xj ≤
min{rank Σ−1

j , rank Xj}. (4.30)

Because Σ is invertible, its rank is equal to the total number of data points Nj in simplex tj .
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The rank of Xj is:

rank Xj = min{Nj , d̂}. (4.31)

WhenNj < d̂, i.e. when there are less than d̂ non-coplanar data points in simplex tj , we

get rank Xj = Nj with which the inequalities in Eq. 4.30 reduce to the following equality:

rank Σ−1
j Xj = Nj . (4.32)

Using this result in Eq. 4.29, and eliminating the inequalities the following results are

obtained:

rank X⊤
j Σ

−1
j Xj = Nj < d̂. (4.33)

This result proves that Q is singular when there are one or more simplices with less than d̂

non-coplanar data points. When Nj ≥ d̂ we have rank Xj = d̂ with which the inequalities

in Eq. 4.30 reduce to:

rank Σ−1
j Xj = d̂. (4.34)

Substituting this result in Eq. 4.29 and eliminating the inequalities we get:

rank X⊤
j Σ

−1
j Xj = d̂. (4.35)

Which proves that Q is non-singular only if Nj ≥ d̂.

Theorem 16. First let M be the Fisher information matrix of the KKT system from Eq. 4.23

as follows:

M =

[

Q G⊤

G 0

]−1

∈ R
(J·d̂+G)×(J·d̂+G). (4.36)

Then M is non-singular if and only if the dispersion matrix Q from Eq. 4.20 and the

constraint matrix G from Eq. 4.17 are both of full rank.

Proof. The information matrix from Eq. 4.36 can be factorized as follows:

M =

[

Q 0

G I

][

Q−1 0

0 −C

][

Q GT

0 I

]

, (4.37)

with C = GQ−1GT an G × G matrix and with I the G × G identity matrix. The rank of

the non-singular lower and upper block triangular matrices in Eq. 4.37 is at least, and can

be greater than, the sum of the ranks of the diagonal blocks [74]. The ranks of the diagonal

blocks follow directly from Eq. 4.27 and the fact that the constraint matrix G is considered
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to be of (full) rank G:

rank

[

Q 0

G I

]

= rank

[

Q GT

0 I

]

= J · d̂+G. (4.38)

The lower and upper block diagonal matrices in Eq. 4.37 are of full rank if Q is of full rank.

Rank is unchanged by left and right multiplication of non-singular matrices [74], therefore

we must have:

rank M = rank

[

Q−1 0

0 −C

]

= rank Q−1 + rank C. (4.39)

The rank of Q−1 is equal to J · d̂ leaving only the determination of the rank of C. The

square G × G matrix matrix C is formed by left and right multiplication with the non-

square matrices G and GT . To prove that C is of full rank, we again make use of the nested

form of the rank statement from [74]:

rank G+ rank P−R ≤ rank GP ≤ min{rank G, rank P}, (4.40)

with P = Q−1GT . The rank of P follows from the same rank statement:

rank Q−1 + rank GT − J · d̂ ≤ rank P ≤
min{rank Q−1, rank GT }. (4.41)

Because we have rank GT ≤ rank Q−1 this reduces to:

rank GT ≤ rank P ≤ rank GT .

And therefore:

rank P = rank Q−1GT = rank GT . (4.42)

Returning to Eq. 4.40, and using the result from Eq. 4.42 we get:

rank G+ rank GT −R ≤ rank GQ−1GT

≤ min{rank G, rank GT }, (4.43)

with which the following rank statement for C is found:

rank GQ−1GT = rank G = rank C, (4.44)
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proving the theorem. This proof is also valid for the OLS information matrix; in that case

Σ is replaced with the identity matrix of the same size.

A complete and easy to reproduce example of the use of the generalized least squares

estimator was provided in [40].

4.2.2 Constrained recursive regression with simplex splines

In this section an equality constrained Recursive Least Squares (RLS) estimator for the

B-coefficients of multivariate simplex splines is presented. This recursive estimator is

based on the linear regression model for simplex splines introduced in [40], and repeated in

Sec. 4.1.3. The RLS estimator significantly reduces the computational efforts for real-time

model modification with simplex splines, because no matrix inversions are required beyond

the initial covariance matrix estimation.

First, let J(c) be a least squares cost function in the global vector of B-coefficients

c = [ctj ]Jj=1 ∈ R
J·d̂×1 as follows:

J(c) = (y −Xc)⊤(y −Xc), (4.45)

with X ∈ R
N×J·d̂ the matrix of B-form regressors for N observations as derived in

Eq. 4.13, and with y the vector containing all N observations. The equality constrained

least squares (ECLS) optimization problem then is:

min
c
J(c), subject to Gc = g, (4.46)

with G the matrix with linear constraints, and with g a vector of constraints as defined in

Eq. 4.17. Note that G contains both the smoothness matrix H and the linear constraint

matrix D. In this case, D is the differential constraint matrix as defined in Eq. 3.108 in

Chpt. 3.

There are many different methods available in the literature for solving the ECLS

problem Eq. 4.46 such as null-space methods [112] and Lagrange multiplier methods [9].

In the literature the Lagrange multiplier method has been successfully used with simplex

splines, see e.g. [7][40]. Using the null-space method from [112], the B-coefficient ĉ

estimator minimizing the LS cost function J(c) subject to the linear equality constraint

Gc = g is:

ĉ = G+g + (XZ)+(y −XG+g), (4.47)

with Z an orthogonal projector onto the null-space of G:

Z = I−G+G ∈ R
J·d̂×J·d̂. (4.48)
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Lawson and Hanson proved in [112] that a unique solution for ĉ exists if the matrix
[

X G
]

is of full (row) rank. In this case this means the following:

rank

([

X

G

])

= J · d̂. (4.49)

The expression for ĉ from Eq. 4.47 can be restated in terms of the parameter covariance

matrix P as follows:

ĉ = G+g +PX⊤(y −XG+g), (4.50)

where we make use of the following properties of the Moore-Penrose pseudo inverse, and

the fact that Z is symmetric:

(XZ)+ =
(
(XZ)⊤(XZ)

)+
(XZ)⊤

=
(

ZX⊤XZ
)+

ZX⊤

= PX⊤,

with P the parameter covariance matrix estimate for all t defined as follows:

P =
(

ZX⊤XZ
)+

∈ R
J·d̂×J·d̂. (4.51)

A theorem will now be presented for the recursive equality constrained generalized least

squares estimator for the B-coefficients of multivariate simplex splines. This theorem was

already presented by Zhu and Li [220], but the proof offered in this thesis differs from these

authors in the sense that it is based on the matrix pseudo inversion lemma from Ogawa

[163], and therefore more akin to the proof of the ordinary unconstrained recursive least

squares estimator from literature.

Theorem 17. The RECLS estimator for the B-coefficients of a constrained simplex spline

function is:

L(t+ 1) = P(t)x⊤(t+ 1)
[
1 + x(t+ 1)P(t)x⊤(t+ 1)

]−1
,

P(t+ 1) = P(t)− L(t+ 1)x(t+ 1)P(t),

ĉ(t+ 1) = ĉ(t) + L(t+ 1) [y(t+ 1)− x(t+ 1)ĉ(t)] ,

(4.52)

with P parameter covariance matrix estimate from Eq. 4.51 having the initial condition:

P(0) =
(

ZX⊤(0)X(0)Z
)+

, (4.53)
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and with ĉ the estimated B-coefficients having the initial condition:

ĉ(0) = G+g +P(0)X⊤(0)(y −X(0)G+g). (4.54)

Proof. We start the proof of Theorem 17 by observing that the parameter covariance matrix

P in Eq. 4.51 can be decomposed into an ‘old’ part and a ‘new’ part:

P =
[
ZX⊤(t)X(t)Z+ Zx⊤(t+ 1)x(t+ 1)Z

]+
. (4.55)

We now use the theorem for the matrix pseudo inversion lemma from Ogawa [163] which

states that:

(A+BCB⊤)+ = A+ −A+B
[
C−1 +B⊤A+B

]−1
B⊤A+, (4.56)

if and only if R(A) ⊃ R(B), or the range of A is a superset of the range of B. In our

case we have A = ZX⊤(t)X(t)Z, B = Zx⊤(t + 1) and C = I. It is now easy to

see that the range statement holds for the given A and B, because B is a vector in R
J·d̂×1.

with the matrix pseudo inversion lemma, the expression for the parameter covariance matrix

estimation from Eq. 4.55 becomes:

P(t+ 1) = P(t)−P(t)x⊤(t+ 1) ·
[
1 + x(t+ 1)P(t)x⊤(t+ 1)

]−1 · x(t+ 1)P(t)

= P(t)− L(t+ 1)x(t+ 1)P(t), (4.57)

with L(t+ 1) a scaling vector as follows:

L(t+ 1) = P(t)x⊤(t+ 1) ·
[
1 + x(t+ 1)P(t)x⊤(t+ 1)

]−1
. (4.58)

From Eq. 4.50 it follows that the update value for the B-coefficients, i.e. ĉ(t + 1), can be

formulated in terms of a combination of old data and new data:

ĉ(t+ 1) = G+g +P(t+ 1)
[
(X⊤(t)y(t)−X⊤(t)X(t)G+g)+

(x⊤(t+ 1)y(t+ 1)− x⊤(t+ 1)x(t+ 1)G+g)
]
. (4.59)

Using the results from Eq. 4.57 to expand P(t+ 1) in Eq. 4.59 we get:

ĉ(t+ 1) = G+g +

[I− L(t+ 1)x(t+ 1)]P(t)
[
(X⊤(t)y(t)−X⊤(t)X(t)G+g)

]
+

P(t+ 1)
[
(x⊤(t+ 1)y(t+ 1)− x⊤(t+ 1)x(t+ 1)G+g)

]
.

(4.60)
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Observe that with Eq. 4.50 we have for ĉ(t):

ĉ(t) = G+g +P(t)
(
X⊤(t)y(t)−X⊤(t)X(t)G+g

)
, (4.61)

Using Eq. 4.61 the ex Eq. 4.60 can be simplified Eq. 4.60 to:

ĉ(t+ 1) = G+g + [I− L(t+ 1)x(t+ 1)] (ĉ(t)−G+g) +

P(t+ 1)
[
x⊤(t+ 1)y(t+ 1)− x⊤(t+ 1)x(t+ 1)G+g

]

= ĉ(t) + L(t+ 1)x(t+ 1)
[
G+g − ĉ(t)

]
+

P(t+ 1)
[
x⊤(t+ 1)y(t+ 1)− x⊤(t+ 1)x(t+ 1)G+g

]
. (4.62)

Lemma 1. After initialization of the recursion the constraint terms can be dropped, which

is equivalent to the following statement:

0 = L(t+ 1)x(t+ 1)G+g −P(t+ 1)x⊤(t+ 1)x(t+ 1)G+g. (4.63)

Proof. First, let the scalar s(t+ 1) be defined as follows:

s(t+ 1) =
(
1 + x(t+ 1)P(t)x⊤(t+ 1)

)−1
. (4.64)

Then, together with the expressions for P(t+ 1) from Eq. 4.57 and L(t+ 1) from Eq. 4.58

we get for Eq. 4.63:

0 =
[
s(t+ 1)P(t)−P(t) + s(t+ 1)P(t)x⊤(t+ 1)x(t+ 1)P(t)

]
·

x⊤(t+ 1)x(t+ 1)G+g, (4.65)

Multiplication with s−1(t+ 1) results in:

0 =
[
P(t)− s−1(t+ 1)P(t) +P(t)x⊤(t+ 1)x(t+ 1)P(t)

]
·

x⊤(t+ 1)x(t+ 1)G+g, (4.66)

which, after substitution of the inverse of the right hand side of Eq. 4.64 results in:

0 =
[
P(t)−

(
1 + x(t+ 1)P(t)x⊤(t+ 1)

)
P(t) +

P(t)x⊤(t+ 1)x(t+ 1)P(t)
]
· x⊤(t+ 1)x(t+ 1)

= −x(t+ 1)P(t)x⊤(t+ 1)P(t)x⊤(t+ 1)x(t+ 1) +

P(t)x⊤(t+ 1)x(t+ 1)P(t)x⊤(t+ 1)x(t+ 1). (4.67)

It is easy to check that with x(t + 1) a column vector, we have for the trace of
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P(t)x⊤(t+ 1)x(t+ 1):

x(t+ 1)P(t)x⊤(t+ 1) = tr
(
P(t)x⊤(t+ 1)x(t+ 1)

)
, (4.68)

such that

0 = −tr
(
P(t)x⊤(t+ 1)x(t+ 1)

)
P(t)x⊤(t+ 1)x(t+ 1) +

P(t)x⊤(t+ 1)x(t+ 1)P(t)x⊤(t+ 1)x(t+ 1).

(4.69)

Because P(t)x⊤(t + 1)x(t + 1) is a symmetric matrix this statement holds, proving the

lemma.

Using the lemma, Eq. 4.62 can be simplified to:

ĉ(t+ 1) = ĉ(t)− L(t+ 1)x(t+ 1)ĉ(t) +

P(t+ 1)x⊤(t+ 1)y(t+ 1).

(4.70)

After some manipulations we find that

P(t+ 1)x⊤(t+ 1) = L(t+ 1). (4.71)

So finally,

ĉ(t+ 1) = ĉ(t) + L(t+ 1) [y(t+ 1)− x(t+ 1)ĉ(t)] .

(4.72)

which proves the theorem.

A tutorial example of the use of the differentially constrained recursive least squares

estimator was provided in [41].

4.3 Model Quality Assessment

In this section three different methods are presented for assessing the quality of multivariate

simplex spline models. The first method is the model residue analysis, which is discussed

in Sec. 4.3.1. The second quality assessment method is the statistical model quality

assessment, which is presented in Sec. 4.3.2. The third, and final, model quality assessment

method is the spline model stability analysis, which is introduced in Sec. 4.3.3. Together,
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these three quality assessment methods allow the rigorous and precise testing of the quality

of a simplex spline model.

4.3.1 Model residue analysis

The model residue analysis provides a direct measure of the data fitting performance of a

multivariate simplex spline function by analyzing the residual. The model residue analysis

also plays an important role in determining whether the problem should be stated as an

OLS problem or as a GLS problem, and should therefore always precede the statistical

model quality assessment. When the problem is stated as a GLS problem, the estimation

of the residual covariance matrix Σ is performed as a post processing step using the model

residual from the OLS parameter estimation. The model residue ǫ follows from Eq. 4.13

and the estimated B-coefficient vector from Eq. 4.24:

ǫ = Y −Xĉ. (4.73)

The model residue analysis consists of two parts. The first part is a direct analysis of the

magnitude of the residual in the form of the residual RMS. The residual RMS provides an

adequate overview of the overall data fitting quality of a spline function. The residual RMS

is given by:

RMS(ǫ) =

√
√
√
√ 1

N

N∑

i=1

(ǫ(i)). (4.74)

While the RMS(ǫ) is a useful model quality metric, it can in some cases lead to

confusing results if the vector of validation observations contains numerical data of very

low or very high magnitude. A more useful performance metric is the relative residual

RMS which normalizes the RMS score to the range of validation observations as follows:

RMSrel(ǫ) =
RMS(ǫ)

maxYV −minYV

, (4.75)

with YV the vector of validation observations.

When significant correlations are found to be present in the residue, the OLS assumption

of uncorrelated residuals is violated, resulting in an underestimation of parameter variances.

As a result, the problem may need to be restated as a GLS problem. The per-simplex

estimate of the autocorrelation function R̂t(k) is calculated as follows:

R̂t(k) =
1

Nt

Nt−k∑

i=1

ǫt(i)ǫt(i+ k), k = 0, 1, . . . , Nt, (4.76)

with Nt the number of data points present in simplex t, and with ǫt the residual inside t.
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The per-simplex residual is considered to be uncorrelated when the expression

|R̂t(k 6= 0)|
R̂t(0)

≤ Nα√
Nt
, k > 0 (4.77)

holds for at least α · Nt of Nt values of the per-simplex autocorrelation function, with Nα

the α-level of the N (0, 1) distribution, e.g N0.95 ≈= 1.96. The expression Eq. 4.77 is a

direct result of the central limit theorem, i.e.
√
Nt · Rt(k 6= 0)

D→ N (0, σ2
ǫt
), with the

assumption that the values Rt(k 6= 0) are independent and identically distributed. This

test for correlation was found to be more reliable than the Durbin-Watson statistic, which is

calculated for only a single lag value and may miss larger scale correlations. The residual

autocorrelation function also forms the basis for estimating the residual covariance matrix.

The second part of the model residue analysis is concerned with the estimation of the

residual covariance matrix. Residual covariance matrix estimation is not a trivial task, and

many different methods for constructing such matrices are presented in the literature, see

e.g [177, 87, 92]. In this thesis the following method, presented by Klein and Morelli in

[92], is used to calculate the Nt ×Nt per-simplex residual covariance matrix Σt:

Σt =
1

Nt

Nt−k∑

i=1

ǫt(i)ǫt(i+ k), k = 1, 2, . . . , Nt (4.78)

The per-simplex residual covariance matrix blocks are then assembled into the global, block

diagonal N ×N residual covariance matrix ΣT :

ΣT =










Σt1 0 · · · 0

0 Σt2
. . .

...
...

. . .
. . . 0

0 · · · 0 ΣtJ










(4.79)

Note that this residual covariance matrix structure does not consider inter-simplex residue

correlations. Instead, the effects of inter simplex correlations on the parameter variances

will be transmitted through the smoothness conditions in the ECGLS problem from

Eq. 4.19.

The block diagonal structure of the global residual covariance matrix ΣT greatly
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reduces the computational efforts of determining Σ−1
T , i.e:

Σ−1
T =










Σ−1
t1

0 · · · 0

0 Σ−1
t2

. . .
...

...
. . .

. . . 0

0 · · · 0 Σ−1
tJ










(4.80)

where it is assumed that every per-simplex estimated covariance matrix block Σtj is

nonsingular and positive definite.

The third part of the model residue analysis is concerned with the creation of empirical

confidence intervals for the B-coefficients of the multivariate spline. The empirical

confidence intervals are based on the local (per-data point) model error and Chebychev’s

inequality:

Pr(|ǫ− µ(ǫ)| ≥ aσ) ≤ 1

a2
(4.81)

with σ the local standard deviation of the model residue, and 0 < a ≤ 1. It can be seen

that σ is not constant over the triangulation T , as the quality of the spline model varies

locally. For this reason a moving average algorithm was devised that locally determines

the value of σ across the triangulation. The result of the moving average algorithm is a

smoothened empirical confidence interval for every data point. The confidence intervals

are then interpreted as data values which are used to construct a secondary multivariate

spline function of the same degree as the original spline function. The B-coefficients of the

resulting secondary spline function effectively are the empirical confidence bounds for the

B-coefficients of the original spline function.

4.3.2 Statistical model quality assessment

The linear regression scheme for multivariate simplex splines from [40] leads to an

additional model quality measure in the form of the parameter covariance matrix for the

B-coefficients. Rao shows in [177] that when the pseudo inverse in Eq. 4.25 is equal to the

true inverse, the parameter covariance matrix of ĉ is equal to the C1 submatrix in Eq. 4.25.

In section Sec. 4.2 it was proved that the information matrices for ECGLS and ECOLS are

invertible when sufficient data is present in every simplex, and when the linear constraint

matrix G from Eq. 4.17 is of full rank; in the following it will be assumed that both these

conditions are met. In that case the GLS parameter covariance matrix is given by:

Cov(ĉ) = C1 (4.82)
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with parameter variances equal to the main diagonal of Cov(ĉ):

V ar(ĉq) = Cov(ĉ)q,q, q = 1, 2, . . . J · d̂ (4.83)

The OLS parameter covariance matrix is:

Cov(ĉOLS) = σ2C1 (4.84)

with C1 the submatrix in Eq. 4.25 and with the global (estimated) variance of the residue

σ2. OLS parameter variances are determined as in Eq. 4.83 but with the GLS covariance

matrix replaced with the OLS covariance matrix from Eq. 4.84.

The GLS Eq. 4.82 and OLS Eq. 4.84 parameter covariance matrices are used to

compute statistical confidence intervals on the estimated B-coefficients of the multivariate

spline. Kyriakides and Heydt present a conservative, simultaneous method for determining

confidence intervals for parameter estimates called the Simultaneous Bonferroni method

[93]:

|cq − ĉq| ≤ t α
2p ,N−p

√

V ar(ĉ)q (4.85)

with t α
2p ,N−p the Student’s t distribution with N − p degrees of freedom and significance

level α
2p and with p = J · d̂. The B-coefficient confidence intervals lead to the definition

of a secondary, or companion, spline function accompanying a primary modeling spline

function. This companion spline function adds statistical upper and lower bounds on

the function values of the modeling spline. The companion, statistical confidence spline

function of the spline function sc ∈ Srd(T ) is defined as follows:

sc =
∑

|κ|=d
τ tjκ B

d
κ(b), j = 1, 2, . . . , J, (4.86)

with τ
tj
κ = t α

2p ,N−p

√

V ar(ĉ
tj
κ ) the B-coefficients of the statistical confidence spline.

4.3.3 Stability analysis

A final measure of model quality is its guaranteed stability within the model domain. This

measure is hard, if not impossible, to determine for other nonlinear function approximators

like neural networks. For the simplex splines, however, this measure is almost trivially

simple, because it depends completely on the values of the estimated B-coefficients. In

Chpt. 3 an expression for bounds on the values of B-form polynomials was presented.

These bounds guarantee the well-behavedness of the spline function inside its domain. The

expression for the bounds of B-form polynomials was given in Eq. 3.58, but is repeated here

for clarity:
‖c‖
K

≤ ‖p‖ ≤ ‖c‖,
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with ‖p‖ the maximum norm of the spline polynomial p and with ‖c‖ the maximum absolute

value in the vector of per-simplex B-coefficients as follows:

‖c‖ := max
|κ|=d

|cκ|.

For the stability analysis, only the upper bound of the spline polynomial p is considered.

This bound, follows from the maximum value in the vector of B-coefficients as follows:

‖p‖ ≤ ‖c‖, (4.87)

that is, the maximum value in the vector of B-coefficients bounds the maximum value of the

spline polynomial.

4.4 Scattered Data Modeling with Simplex Splines

In this section the new methodology for system identification with multivariate simplex

splines is demonstrated with a numerical experiment. In the experiment, bivariate simplex

spline functions of varying polynomial degree and continuity order were used to fit a highly

nonlinear, bivariate dataset describing the aerodynamic pitching moment coefficient of the

F-16 fighter aircraft. This dataset was generated by querying a 5-dimensional NASA wind

tunnel model [155] of the F-16 at a set of scattered angle of attack and angle of sideslip

coordinates. The generalized least squares estimator from Sec. 4.2.1 was then used to

estimate the B-coefficients of the simplex splines. The main focus of this experiment will

be on the polynomial model structure selection part of the complete spline model structure

selection procedure as presented in Sec. 4.1. More accurately, this experiment can be

considered as the inner loop of the prototype phase in simplex spline model identification

shown earlier in Figure 4.1.

A number of different spline spaces were used in the demonstration experiment, with

polynomial degrees ranging from 1 to 6. White noise of four different magnitudes was added

to the dataset in order to test the noise sensitivity of the various spline spaces. The quality

of the spline models was assessed using the residual analysis and the statistical analysis

methods from 4.3.

The demonstration starts with Sec. 4.4.1 in which the dataset, the tested spline spaces

and the triangulation are discussed. The results from the model residue analysis are then

presented in Sec. 4.4.2. Following this, the results from the statistical model quality

analysis are presented in Sec. 4.4.3. The results from the final model quality analysis

method, the stability analysis, are presented in Sec. 4.4.4. Based on the results from

the model residual analysis, empirical confidence bounds can be defined. The resulting

empirical confidence bounds are discussed in Sec. 4.4.5. Finally, in Sec. 4.4.6 the statistical

Bonferroni confidence bounds for two spline functions are presented.
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4.4.1 Experiment setup

The following simplified equation of motion for the pitch rate acceleration of the F-16 is

used:

q̇ =
1

2
ρV 2Srefbref

1

Iyy
(Cm(α, β) + δe) +

Ixz
Iyy

(r2 − p2)− Izz − Ixx
Iyy

rp,

(4.88)

with Cm(α, β) an unknown nonlinear function of angle of attack α and angle of sideslip

β. In this experiment, bivariate simplex spline functions s(α, β) of varying degree and

continuity order will be used to approximate the nonlinear function Cm(α, β):

s(α, β) ≈ Cm(α, β), s(α, β) ∈ Srd . (4.89)

The parameters of the multivariate simplex spline function will be estimated using the

ECGLS estimator from Eq. 4.23. For this, the problem is first stated in a slightly modified

form of the linear regression problem from Eq. 4.13:

Y = Xc+ ǫ+ ν(k), (4.90)

with Y the observation vector, X the matrix with B-form regressors evaluated at the data

points (α(i), β(i)), and with c the global vector of B-coefficients. The new function ν(k)

in Eq. 4.90 is a variable magnitude noise generating function given by:

ν(k) = 0.01k · (max{Y} −min{Y}) · ν, k ≥ 0, (4.91)

with ν a uniformly distributed, zero-mean white noise sequence in the interval [−0.5 0.5].

For the factor k the following values are taken: k ∈ {0, 1, 10, 100}. The noise function

ν(k) enables the investigation of the effects of measurement noise on the quality of the

spline approximations.

The data values used for estimating the spline parameters are generated by querying

the 5-dimensional NASA wind tunnel model of the F-16 pitching moment coefficient at

15000 (α, β) data points which are randomly distributed over the flight envelope. The

flight envelope is the rectangular region −10◦ ≤ α ≤ 45◦,−30◦ ≤ α ≤ 30◦. The set

of 15000 data points is the identification dataset which is defined as XI . In Figure 4.4 the

identification dataset XI is drawn together with the triangulation T98. A single observation

of y(i) is:

y(i) = Cwtm (α(i), β(i), δe = 0, δlef = 0, q = 0) + ν(k)

= Cwtm (α(i), β(i)) + ν(k), (4.92)
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Figure 4.4: The identification dataset XI and the triangulation T98

Table 4.1: Spline spaces

Continuity order spline spaces

-1 S−1

d S−1

1
, S−1

2
, S−1

3
, S−1

4
, S−1

5
, S−1

6

0 S0

d S0

1 , S
0

2 , S
0

3 , S
0

4 , S
0

5 , S
0

6

1 S1

d S1

2 , S
1

3 , S
1

4 , S
1

5 , S
1

6

2 S2

d S2

3 , S
2

4 , S
2

5 , S
2

6

3 S3

d S3

4 , S
3

5 , S
3

6

4 S4

d S4

5 , S
4

6

with Cwtm (α, β) the reduced (i.e. from 5-variate to bivariate) wind tunnel model, including

the linear interpolation algorithm. The vector Y containing all measurements is then

constructed row by row. Two surface plots of the bivariate wind tunnel model Cwtm (α, β)

together with the noise function ν(k) are drawn in Figure 4.5. This figure clearly illustrate

the nonlinear nature of Cwtm (α, β), as well as the effect of measurement noise on the

smoothness of the dataset. For the spline model validation a new dataset XV is created.

This validation dataset consists of 50000 (α, β) points which are distributed randomly, and

independently from XI , over the flight envelope.

A total of 26 different bivariate spline spaces are used to approximate Y, see Table 4.1.

The triangulation used in the experiment was a Type I triangulation consisting of 98
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Figure 4.5: The data generating function Cwt
m (α, β) + ν(k) for k = 0 (top) and

k = 10 (bottom)

Table 4.2: Triangulation

Triangulation simplex count min data max data

T98 98 123 188

simplices, see Table 4.2. The B-coefficients of the in total 208 spline functions are estimated

using the ECGLS estimator from Sec. 4.2.1. In all cases, the ECGLS estimator was

employed as a post-processing step after ECOLS parameter estimation, as explained in

Sec. 4.3.

In the remainder of this section 2 of these 208 spline functions were put through the

complete model validation process from Sec. 4.3. These two selected spline functions are

s ∈ S0
5 and s ∈ S2

5 . These two spline functions were selected, as they produced very

different model validation results, even though they were both 5th degree spline functions.

As it will turn out, the continuity order of a spline space is a very important factor for the

quality of a spline function.
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4.4.2 Model residue analysis

The model residual analysis is the analysis of the difference between the validation

observations and the spline model output at the validation locations. The model residual

analysis is performed using the theory from Sec. 4.3.1.

In Figure 4.6 the relative residual RMS of the spline functions is plotted for four different

values of the noise factor k. When no measurement noise is present (i.e. k = 0), the lowest

RMS values are found for spline functions of high degree, and low continuity order. When

noise is present, however, spline functions with low continuity orders produce significantly

lower quality results than splines with a high continuity order. This can be explained as

follows. Splines with a low continuity order have a higher approximation power than

splines of higher continuity order. On noise-free datasets, low continuity splines will

always outperform high continuity splines, see for example the top left figure in Figure 4.6.

When noise is present in the identification dataset, the low continuity order splines have the

approximation power to fit the measurement noise. Because the noise is random, this will

lead to larger than normal errors during validation. The low continuity spline functions will

in that case be outperformed by high continuity order splines. In Figure 4.6 this can be seen

in the bottom right plot, where the s ∈ S2
4 (left) clearly outperforms the s ∈ S−1

5 spline,

completely reversing the situation in the top left plot ofFigure 4.6.

The relative residual RMS is a global statistic; it does not provide any information

about the local modeling quality of the spline spaces. For this reason four individual spline

functions are plotted for the two noise intensities k = 0 and k = 10. In Figure 4.7 the

spline functions s ∈ S0
5 and s ∈ S2

5 respectively are plotted for the zero noise case (k = 0).

According to Figure 4.6, the C0 continuity order spline function has a residual RMS that is

more than half an order of magnitude smaller than the residual RMS of the C2 continuity

order spline function. In Figure 4.8 the same spline spaces are again plotted, but now for the

k = 10 noise case. The left hand figure shows that the spline space S0
5 is actually modeling

the noise term ν(k), which is apparent from the noisy residual plot. The spline space S2
5 on

the other hand is relatively insensitive to noise, its residual is quite similar to the residual

for the zero noise case.

4.4.3 Statistical model quality analysis

The B-coefficient variances are estimated based on the methodology presented in Sec. 4.3.

A useful statistical measure for assessing the global quality of a spline model is the

logarithm of the mean of the variances of all B-coefficients in a single spline function as

follows:

log(V ar(ĉ)) = log

(

1

(T · d̂)
∑

q

V ar(ĉ)q

)

, (4.93)



187

lo
g
(R
M
S
r
e
l
(ǫ
))

k = 0% k = 1.0%

d

lo
g
(R
M
S
r
e
l
(ǫ
))

k = 10.0%

d

k = 100.0%

S−1
d

S0
d

S1
d

S2
d

S3
d

S4
d

1 2 3 4 5 61 2 3 4 5 6

1 2 3 4 5 61 2 3 4 5 6

-3

-2.5

-2

-1.5

-1

-3

-2.5

-2

-1.5

-1

-4

-3.5

-3

-2.5

-2

-1.5

-4

-3.5

-3

-2.5

-2

-1.5

Figure 4.6: The relative residual RMS resulting from model validation, as a

function of spline space and noise level on the triangulation T98

with V ar(ĉ) as in Eq. 4.83, T the number of simplices, and d̂ the number of B-coefficients

in a single simplex. In Figure 4.9 this statistical measure is plotted as a function of spline

degree and continuity for the four different noise levels. A clear pattern emerges in this

figures; for a given spline degree, the mean of the B-coefficient variances for low continuity

order splines is higher than for high continuity order splines, especially when noise is

present. The spline space that for a given degree d best fits the data according to Figure 4.9

is the S−1
d spline space. This spline space, however, has the highest mean B-coefficient

variance according to Figure 4.9.

The individual values of estimated B-coefficient variances for the two 5th degree spline

functions s ∈ S0
5 and s ∈ S2

5 are plotted in Figure 4.10 and Figure 4.11 for two different

measurement noise values. The zero-noise case is shown in Figure 4.10 while the variances

for the 10% noise case are shown in Figure 4.11. These two figures confirm the global

statistics from Figure 4.9, that is, the s ∈ S0
5 spline function is much more susceptible to

measurement noise than the s ∈ S2
5 spline function.

The spatial location of the B-coefficients allows the variances of individual B-coefficients

to be visualized. In the left half plots in Figure 4.12 the B-coefficient variance surfaces are

drawn for the S0
5 and S0

5 spline spaces. These plots show that the global statistical measure

from Eq. 4.93 is just that; a global measure. The variance surfaces in Figure 4.12 clearly
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Figure 4.7: Two 5th degree spline functions with continuity order C0 (left) and C2

(right) and their validation residuals for the zero-noise case (k = 0)

show local fluctuations. The variances of the B-coefficients in the neighborhood of the

edges of the flight envelope show much larger values than in the inner regions of the flight

envelope. Note that the B-coefficient variance surface of the S0
5 spline resembles the model

residue from Figure 4.7, while the S0
5 spline has a more flattened variance surface.

In the right hand plots of Figure 4.12 the B-coefficient variance surfaces of both spline

functions are drawn for the k = 10 noise case. This time there is a striking difference in

the structure of the variance surfaces of the two spline spaces. The variance surface of the

S0
5 spline is highly erratic, while the variance surface of the S2

5 spline is very smooth.

Effectively, the continuity equations cause a sharing of information between simplices

which reduces B-coefficient variances. In fact, the B-coefficients of the S2
5 spline with the

highest variance are B-coefficients that are located on the edge of the triangulation. These

B-coefficients are subject to less continuity constraints than B-coefficients that are located

away from the triangulation edges. The variance surfaces in Figure 4.12 also help to explain

the noisy nature of the S0
5 spline in Figure 4.8; high parameter variances lead to high noise

sensitivity.
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Figure 4.8: Two 5th degree spline functions with continuity order C0 (left) and C2

(right) and their validation residuals for the 10%-noise case (k = 10)

4.4.4 Stability analysis

Using the method from Sec. 4.3.3, the stability of the two 5th degree spline models was

tested. The results from these tests are shown in Figure 4.13 and Figure 4.14. In Figure 4.13

the B-coefficient values for the zero-noise case are shown. From this figure, it can be seen

that both the s ∈ S0
5 and the s ∈ S2

5 spline functions have B-coefficient values that are

relatively close. The black lines in the figures are the bounds of the identification dataset

(i.e. maxY/minY ) which are, as they should be, contained within the hull of the B-

coefficients.

For the 10% measurement noise case, things start to change, see Figure 4.14. This time,

the B-coefficients of the spline function withC0 continuity behave much more erratic, while

the B-coefficients of the spline function with continuity orderC2 show hardly any difference

with the zero-noise case. An explanation for this result will have to wait until the statistical

model quality analysis.

From the results Figure 4.13 and Figure 4.14 it can safely be concluded that both the

s ∈ S0
5 as well as the s ∈ S2

5 spline function are stable and well defined within the spline

domain.
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Figure 4.9: The mean B-coefficient variances as a function of the spline space

and noise level.
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5 spline (right) for the zero-noise case (k = 0).
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Figure 4.11: Individual B-coefficient variances of the s ∈ S0

5 spline (left) and the

s ∈ S2

5 spline (right) for the 10%-noise case (k = 10).
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Figure 4.13: B-coefficient values for s ∈ S0

5 (left) and s ∈ S2

5 (right) for the zero-

noise case. The black lines are the maxY/minY bounds.
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Figure 4.14: B-coefficient values for s ∈ S0

5 (left) and s ∈ S2

5 (right) for the 10%-

noise case. The black lines are the maxY/minY bounds.

4.4.5 Empirical confidence bounds

The method for creating empirical confidence bounds was presented in Sec. 4.3.1. In this

paragraph this method will be used to define empirical confidence bounds for the two spline

functions s ∈ S0
5 and s ∈ S2

5 which should contain at least 97% of all identification data

points. Using Chebyshev’s inequality from Eq. 4.81 the 97% inclusion level requires 6σ

confidence bounds.

In Figure 4.15 the 6σ empirical confidence bounds of both 5th degree spline functions

for the zero-noise case are shown. From this figure it can be seen that the empirical

confidence model for s ∈ S0
5 is an order of magnitude tighter than the empirical confidence

model for s ∈ S2
5 .
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Figure 4.15: 6σ Empirical confidence model for s ∈ S0

5 (left) and the empirical

confidence model for s ∈ S2

5 (right) for the zero noise case (k = 0). The top row

shows the spline models together with the confidence bounds.

If the noise level is increased to the 10% level, the 6σ confidence bounds widen such that

97% of the identification dataset remains within the confidence bounds. In Figure 4.16 the

confidence bounds for both spline functions s ∈ S0
5 and s ∈ S2

5 are shown. From this figure

it is clear that both confidence intervals are of equally wide magnitudes. The confidence

interval for s ∈ S0
5 , however, is much flatter than that of s ∈ S2

5 . This means that the white

noise does not significantly impact the ability of s ∈ S0
5 to accurately fit the data, but does

lead to small scale fluctuations over the complete spline domain.

4.4.6 Statistical confidence bounds

The B-coefficient variances are used to construct Bonferroni confidence intervals for the B-

coefficients of the multivariate spline functions using the theory in Sec. 4.3.2. In Figure 4.17

the 99% Bonferroni confidence models of the primary spline functions S0
5 and S2

5 are shown.

This figure shows a completely different picture than that for the empirical confidence

bounds in Sec. 4.4.5. More specifically, it can be seen in the top right plot of Figure 4.17

that the statistical confidence bounds for the s ∈ S0
5 spline function are very sensitive to

the increased (10%) noise level. Not only are the bounds twice as wide as the bounds for

s ∈ S2
5 , but their overall value is more or less constant across the spline domain. The

Bonferroni confidence bounds for s ∈ S2
5 on the other hand are much smoother, and attain

their highest magnitude at the edges of the spline domain.
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Chapter 5

Aerodynamic Modeling of the

Cessna Citation II

Detailed aerodynamic models play a crucial role in the design of flight simulators as

well as flight control systems. Identifying and validating aerodynamic models involves

the synthesis of large databases containing wind tunnel data and data obtained during

flight testing [159, 162, 161]. Currently, the most widely used method for identifying

aerodynamic models uses a parameter estimation method like least squares or maximum

likelihood to estimate the parameters of a polynomial regression model, see e.g. [81,

90, 147, 88, 138, 144, 142, 92, 84, 125]. It is well known that polynomials have a

limited approximation power, which is directly proportional with their degree. This in

turn limits the application of polynomial based aerodynamic models to aircraft with small

flight envelopes and limited nonlinear aerodynamics. More complex models can be created,

however, by creating local polynomial models on partitions of the flight envelope. The set

of local polynomial models can then be blended into a single smooth structure with for

example fuzzy blending techniques [8, 122] or neural networks [115, 72, 44, 84]. However,

these blending methods suffer from a number of important drawbacks such as loss of

transparency, loss of the linear-in-the-parameter property of the polynomial models, and

the human intervention required in the blending operation[8].

Many authors have therefore suggested the use of polynomial spline functions for fitting

flight data [198, 89, 10, 92]. Spline functions are piecewise defined polynomials with a

predefined continuity order between polynomial pieces. The approximation power of spline

functions is proportional with the degree of the polynomial but also with the number and
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density of the polynomial pieces. Polynomial spline functions are therefore capable of

fitting highly nonlinear datasets over large domains.

While one-dimensional (i.e. univariate) spline theory is well known and developed,

multi-dimensional (i.e. multivariate) spline theory is still an active research field. Many

different multivariate spline types exist, such as the thin plate splines [216, 217], polyhedral

splines [25], and the well-known tensor product B-spline [16]. Most of these multivariate

spline types have been proved to be difficult to work with in practice [55, 152]. In the past,

however, multivariate tensor product splines have been used successfully for the modeling of

aircraft aerodynamics using gridded wind tunnel data [198, 89, 88, 10]. The great downside

of tensor product splines, however, is that they are, for fundamental mathematical reasons,

incapable of fitting scattered data [16, 3]. This means that tensor product splines cannot be

used to model flight test data, which is inherently scattered. More recently, a new type of

multivariate spline called the multivariate simplex spline was introduced [7, 99, 40]. The

multivariate simplex splines are capable of fitting nonlinear, multi-dimensional scattered

data and have an arbitrarily high approximation power, which makes them especially suited

for the modeling of aircraft aerodynamics based on flight data.

In this chapter, the new methodology for global model identification based on mul-

tivariate simplex splines introduced in Chpt. 4 is applied inside the Two-Step method

for aerodynamic model identification [64, 146, 147, 149] to identify global models

for the aerodynamic force and moment coefficients of the Cessna Citation II laboratory

aircraft. The Two-Step method decomposes the output-error problem of combined state

and parameter estimation into a separate state estimation and aerodynamic model parameter

estimation problem. This in turn allows the use of the linear regression method from [40]

for estimating the parameters of the simplex spline based aerodynamic models. The data

for the model identification process was real flight data, which was obtained during seven

test flights with the Cessna Citation II.

A phenomenological modeling approach will be taken in the aerodynamic model

identification process. The phenomenological approach differs from the physical modeling

approach only during the model structure selection phase. The physical model approach

uses model structures that can be directly related to well established methods from the

literature. The phenomenological model approach, on the other hand, does not exclude any

model structure beforehand. Instead, it simply tries to find the model structure that results in

the highest quality model. It will be shown in this chapter that the phenomenological model

approach leads to sometimes surprising model structures that can nevertheless be proven to

be of excellent quality.

This chapter is organized as follows. First, in Sec. 5.1 the subject of the identification

experiment, the Cessna Citation II and its advanced flight test instrumentation system will

be introduced. Then, in Sec. 5.2 the design of the flight test maneuvers is presented. The

results from the flight tests then is presented in Sec. 5.3. The first step in the Two-Step

method for aerodynamic model identification is flight path reconstruction which is presented
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in Sec. 5.4. Finally, in Sec. 5.5 the new simplex spline based system identification method

is applied to the reconstructed flight data for the estimation of multivariate simplex spline

based aerodynamic models.

5.1 Introduction

In this section, a high level overview of the procedure for aerodynamic model identification

is presented in Sec. 5.1.1. Following this, the main subject of the identification experiment,

the Cessna Citation II laboratory aircraft is introduced in Sec. 5.1.2.

5.1.1 A procedure for AMI with simplex splines

In Figure 5.1 a high level overview of the complete aerodynamic model identification (AMI)

procedure is given. The bracketed numbers in the figure refer to the sections of this chapter

in which that particular element receives an in-depth discussion.

The complete procedure for aerodynamic model identification consists of three distinct

parts, the first of which is the ‘Data Acquisition’ part. The goal of data acquisition is the

creation of a set of flight data which is suitable for aerodynamic model identification. This

implies that the subject aircraft must be sufficiently excited with specially designed input

sequences [147, 84]. In the ideal case, the data should be acquired from hundreds of special

flight test maneuvers scattered through the complete flight envelope. Operating an aircraft

is expensive, however, and in the framework of this thesis only three flights that were at

least partially dedicated to aerodynamic model identification took place. Despite this, much

more flight data was available from earlier flights with the laboratory aircraft. In most cases,

however, this data was logged using different formats and standards. Data mining resulted

in four additional usable flights of which one was completely dedicated to aerodynamic

model identification. The total dataset after flight testing and data mining consisted of 247

maneuvers. This raw flight data forms the input to the next part of the aerodynamic model

identification procedure, which is the data pre-processing part.

The data pre-processing part is actually the first step in the Two-Step method for

aerodynamic model identification [147, 149]. The first element in this step is the pre-

processing of raw data, which is aimed at removing data corruptions and sensor glitches,

resulting in coherent datasets. The next element is flight path reconstruction (FPR), which

is aimed at estimating the true states of the aircraft from the biased and noise contaminated

observations [149]. The results from the flight path reconstruction are the true aircraft states,

which can now be used in the actual aerodynamic model identification part in Figure 5.1.

The final part of the procedure is the aerodynamic model identification part, which is

the second step in the Two-Step method, see Figure 5.1. This part of the procedure is aimed

at the identification of a high fidelity aerodynamic model based on multivariate simplex

splines. The first element in this part is the simplex spline model estimator, which contains
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Figure 5.1: A high level overview of the complete aerodynamic model identification

procedure.

of the model structure selection and parameter estimation procedures. The model structure

selection and parameter estimator procedures were discussed in-depth in Chpt. 4. Both

procedures are based on the theory presented in Chpt. 2 and Chpt. 3. The identified spline

model is then subjected to the various different model validation techniques discussed in

Chpt. 4. Depending on the results from the model validation, either a new model with a

different model structure is created or the resulting spline model is returned, ending the

procedure.

Now that the procedure for aerodynamic model identification is clear, a more exact

analysis on the details of the Cessna Citation II laboratory aircraft and its flight test instru-

mentation system is required. These details for a large part determine the implementation of

the various elements of the procedure for aerodynamic model identification in Figure 5.1.

5.1.2 The Cessna Citation II and its FTIS

The subject of the aerodynamic model identification procedure presented in the previous

paragraph is the Cessna Citation II laboratory aircraft operated by the Delft University of

Technology and the Netherlands National Aerospace Laboratory (NLR), see Figure 5.2.

The call sign of the aircraft is PH-LAB, and in the following this call sign will frequently

be used as an abbreviation.
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Figure 5.2: The Cessna Citation II laboratory aircraft with call sign PH-LAB.

The PH-LAB is a twin-jet business aircraft designed and constructed by the aircraft

manufacturer Cessna. It is equipped with two Pratt & Whitney JT15D-4 turbofan engines

each having a static thrust of 11.12 KN. The maximum operating altitude of the aircraft

is 13100 meters (43000 ft) and the maximum cruising speed is 207 m/s (403 kt). The

aircraft is equipped with a modern flight test instrumentation system (FTIS) developed

by the Delft University of Technology. At the heart of the FTIS system is a dSPACE

computer which is connected to an advanced suite of inertial, GPS, control input, and

air data sensors Figure 5.3. Additionally, the laboratory aircraft was recently equipped

with a fly-by-wire (FBW) control system, allowing fully automatic, precise execution of

preprogrammed maneuvers [219].

In Figure 5.3, the various components of the FTIS are highlighted. The heart of the FTIS

is the data acquisition computer (DAC) which consists of a ruggedized Pentium PC. The

DAC hosts a dSPACE real-time computer in one of its ISA slots. The dSPACE computer

in turn interfaces with the various sensors and transducers. In Table 5.1 the various sensors

and transducer components are listed, together with their outputs to the dSPACE computer.



202 Aerodynamic Modeling of the Cessna Citation II

Figure 5.3: Cessna Citation II laboratory aircraft flight test instrumentation system

Table 5.1: Available

FTIS Component Description Output

Noseboom Intrusive nose boom αv , βv , Ayboom , Azboom

α-vane Stall warning device αw at the wing root

IMU Inertial Measurement Unit Ax, Ay , Az , p, q, r
TARSYN Three-Axis Reference SYNchro θ, φ
DADC Digital Air Data Computer Mach, Palt, IAS, CAS, TAS, TAT

FMS Flight Management System Navigational and Engine parameters

GPS Global Positioning System ECEF positions and velocities

Synchros Measure control surface deflections δa, δe, δr , δte
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5.2 Flight Test Design

The ultimate goal of flight testing for aerodynamic model identification is the creation and

validation of accurate aerodynamic models for aircraft. In order to create an aerodynamic

model that is valid across the full flight envelope of an aircraft, flight testing would in the

ideal case cover the complete flight envelope with test points. At every test point, a number

of different maneuvers would be performed to investigate the longitudinal, lateral and cross-

coupled dynamics of the aircraft. In the real world, however, such a strategy would be

prohibitively expensive as it would require many thousands of test points and hundreds of

flying hours. It is the goal of flight test design to maximize the yield of significant data

while minimizing the required number of test points.

In this section the process of flight test design in the framework of aerodynamic model

identification will be elaborated. First, in Sec. 5.2.1 the equations of motion for aircraft are

presented. Using the equations of motion, the aerodynamic force and moment coefficients

can be calculated, as is shown in Sec. 5.2.2. Following this, in section Sec. 5.2.4 an initial

assumption on the model structure of the complete aerodynamic model will be presented.

A list of the required parameters for defining the model can then be defined based on this

initial assumption. In Sec. 5.2.4 the list of required parameters is then translated into a set of

test points at which special flight test maneuvers need to be performed. Finally, in Sec. 5.2.5

the specific design of the control surface inputs resulting in these maneuvers is discussed.

5.2.1 Aircraft Equations of motion

The well-known equations of motion of an aircraft come in the form of three sets of first

order differential equations [149, 203]. The first set of equations of motion are the equations

for the total aerodynamic forcesX , Y and Z working in the direction of the axes of the body

fixed reference frame FB (see Appendix A):

X := m (u̇+ qw − rv) +mg sin(θ),

Y := m (v̇ + ru− pw)−mg cos(θ) sin(φ),

Z := m (ẇ + pv − qu)−mg cos(θ) cos(φ),

(5.1)

with φ, θ and ψ the Euler angles of rotation about FB , with p, q and r denoting the rates of

rotation about FB , with u, v and w the translational velocities in the direction of FB , and

with u̇, v̇ and ẇ the translational accelerations in the direction of FB . The forces X , Y and

Z include the aerodynamic effects of propulsion systems.

The second set of equations of motion are the equations for the total moments L, M ,

and N about the axes of FB which for a symmetric aircraft configuration are defined as
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follows:

L := Jxṗ− (Jy − Jz)qr − Jxz(ṙ + pq),

M := Jy q̇ − (Jz − Jx)rp− Jxz(r
2 − p2) +Me,

N := Jz ṙ − (Jx − Jy)pq − Jxz(ṗ− qr),

(5.2)

with Jx, Jy , Jz and Jxz elements from the inertia matrix, which for an aircraft that is

symmetric about the Xb − Zb plane is given by:

J :=






Jx 0 −Jxz
0 Jy 0

−Jxz 0 Jz




 (5.3)

The term Me in Eq. 5.2 is the gyroscopic effects of spinning turbines or propeller blades as

follows:

Me := Jeωer, (5.4)

with Je the moment of inertia in the YB − ZB plane and with ωe the rotational velocity of

the blades. It is assumed in the following that engine thrust induced moments are negligible.

This means that both the differential thrust effects on the yawing moment, and engine

induced pitching moments are not modeled in this thesis.

Finally, the third set of equations are the kinematic equations for the time rate of change

of the Euler angles φ, θ and ψ:

φ̇ = p+ q sin(φ) tan(θ) + r cos(φ) tan(θ),

θ̇ = q cos(φ)− r sin(φ),

ψ̇ = q sin(φ) sec(θ) + r cos(φ) sec(θ).

(5.5)

Now let Ax, Ay and Az be the accelerations of an aircraft in the direction of the axes of

FB as follows:

Ax :=
X

m
,

Ay :=
Y

m
,

Az :=
Z

m
.

(5.6)
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These accelerations would be the accelerations measured by a set of perfect accelerometers

located in the center of gravity of an aircraft. In the literature, the accelerations Ax, Ay and

Az are sometimes referred to as ‘specific forces’ as they are the total force per unit of mass

[149].

Substitution of Eq. 5.6 in Eq. 5.1 then leads to the following set of equations:

u̇ = Ax − qw + rv − g sin(θ),

v̇ = Ay − ru+ pw + g cos(θ) sin(φ),

ẇ = Az − pv + qu+ g cos(θ) cos(φ).

(5.7)

5.2.2 Determination of the force and moment coefficients

The dimensionless aerodynamic force coefficients can be introduced into the force equations

from Eq. 5.1 as follows:

1

2
ρV 2S · CX = mu̇+m(qw − rv) +mg sin(θ),

1

2
ρV 2S · CY = mv̇ +m(ru− pw)−mg cos(θ) sin(φ),

1

2
ρV 2S · CZ = mẇ +m(pv − qu)−mg cos(θ) cos(φ),

(5.8)

with ρ the air density, with V the true airspeed, and with S the wing surface of the aircraft.

Klein and Morelli also present an alternative representation for the aerodynamic force

coefficients that directly relates the specific forces from Eq. 5.6, with the force coefficients

[92]:

CX =
mAx

1
2ρV

2S
,

CY =
mAy

1
2ρV

2S
,

CZ =
mAz

1
2ρV

2S
.

(5.9)

In general, the accelerations measured by the IMU are not the true accelerations of the

aircraft. Therefore, Eq. 5.9 will result in biased values for these coefficients. As will be

explained in Sec. 5.4, however, the two-step method circumvents this problem by using

state estimation techniques to estimate the true accelerations of the aircraft from the biased
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and noise contaminated accelerometer measurements. In that case it is actually valid to use

Eq. 5.9.

The derivation of the aerodynamic moment coefficients is somewhat more complex than

the derivation of the force coefficients because the equations for Cl and Cn are coupled in

ṗ and ṙ. In this thesis, the formulation from Klein and Morelli in [92] is used to derive the

aerodynamic moment coefficients:

1
2ρV

2Sb

Jx
Cl = ṗ− Jxz

Jx
ṙ +

Jz − Jy
Jx

qr − Jxz
Jx

qp,

1
2ρV

2Sc̄

Jy
Cm = q̇ +

Jx − Jz
Jy

pr +
Jxz
Jy

(p2 − r2)− Me

Jy
,

1
2ρV

2Sb

Jz
Cn = ṙ − Jxz

Jz
ṗ+

Jy − Jx
Jz

pq +
Jxz
Jz

qr,

(5.10)

with ρ the air density, with V the true airspeed, with S the wing surface of the aircraft, c̄ the

wing chord, and with b the wing span of the aircraft.

5.2.3 Initial assumptions on model structure

The purpose of an aerodynamic model is to predict the aerodynamic forces and moments

acting on an aircraft based on the current aircraft state. Because an aircraft is a six degree

of freedom system, with three translational and three rotational degrees of freedom, the

complete aerodynamic model consists of six sub-models for each of the individual degrees

of freedom. The most general formulation of the complete aerodynamic model then is the

following vector function:

Fae(x) = (CX(x), CY (x), CZ(x), Cl(x), Cm(x), Cn(x)) ∈ R
n. (5.11)
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Each of the individual components Fae(x) is itself a function of the aircraft state, and a

specific aerodynamic force or moment as follows:

CX(x) =
X(x)
1
2ρV

2S
,

CY (x) =
Y (x)
1
2ρV

2S
,

CZ(x) =
Z(x)

1
2ρV

2S
,

Cl(x) =
L(x)

1
2ρV

2Sb
,

Cm(x) =
M(x)

1
2ρV

2Sc̄

Cn(x) =
N(x)

1
2ρV

2Sb
.

(5.12)

In Eq. 5.12, X(x), Y (x), and Z(x) are the aerodynamic forces acting along the aircraft

body reference frame axes XB , YB , and ZB , respectively (see Appendix A).

The corresponding models for these aerodynamic forces areCX(x),CY (x), andCZ(x),

which respectively are the longitudinal, lateral, and vertical force models. The aerodynamic

moments L(x), M(x), and N(x) are the moments about the aircraft body reference frame

axes XB , YB , and ZB , respectively. The models for these moments then are Cl(x), Cm(x),

and Cn(x), which are the models for the rolling, pitching, and yawing moments. It is

important to note that the models in Eq. 5.12 are dimensionless, which allows for the direct

comparison between wind tunnel models and models created from flight test data [203].

From the general form Eq. 5.12, a more specific formulation can be derived by defining

the contents of the state vector x. This definition is in no way trivial, but most authors

[147, 94, 203, 92, 84] agree that x is a vector with the following minimum structure:

x =
(

α, β, α̇, β̇, p, q, r, h,Mach, Te, δ
)

⊇ R
13, (5.13)

with h the (pressure) altitude, with Te the combined engine thrust. The vector δ in Eq. 5.13

is a vector of control surface deflections, which for a conventional aircraft configuration

consists of at least 3 components:

δ = (δa, δe, δr) ∈ R
3 (5.14)

The definition of the state vector from Eq. 5.13 implies that any of the models in Eq. 5.12

is a model of dimension 13 or higher. In Sec. 2.2 the complexity and counterintuitiveness of
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high dimensional spaces was discussed. For example, a 1-dimensional polynomial of degree

3 consists of 4 terms and 4 coefficients: ax3 + bx2 + cx+ d. An equivalent 13-dimensional

polynomial of degree 3, on the other hand, consists of 560 terms and coefficients. Clearly, a

13-dimensional model is not 13 times more complex1 than a 1-dimensional model, but 13k

times more complex. The cause of this is that the full 13-dimensional polynomial not only

matches the approximation power of the 1-dimensional polynomial along each of the 13

coordinate axes, but also at every possible cross-coupling, or combination, between these

axes.

It is now very important to observe that the approximation power of the 13-dimensional

model in the example above is exactly equal to that of the 1-dimensional model, because

both models are 3rd degree models. The only difference between these two models is that

the 13-dimensional model offers this approximation power in R
13, while the 1-dimensional

model is limited to R
1.

Models of dimension 10 or higher are rarely used in practice because of the extreme

complexity of their structure, and the very high required data volumes required for

their successful estimation, see Sec. 4.2. Luckily, there is an escape to this curse of

dimensionality. The 13-dimensional model in the example achieves the full approximation

power of the polynomial at every location in R
13. However, in most cases this full

approximation power is not required at every point. In general, this implies that not all

dimensional cross-couplings have to be present in a model for it to be a member of Rn.

The trick is to split up the complete n-dimensional model into a number of sub-models of

lower dimension, where multilinear combinations of the lower dimensional models together

provide a membership in R
n. In mathematical terms, this means the following:

f(x1, x2, . . . , xn) ⊇ f(x1, x2, . . . , xn−1) · xn ⊇
⊇ f(x1, x2, . . . , xn−2) · xn−1xn ⊇ · · ·
⊇ x1x2 · · ·xn−1xn ∈ R

n (5.15)

In practical term, this means that models of very high dimensionality can be produced

by forming multilinear combinations of models of lower dimensions.

Example 22 (Full dimensionality vs. multilinear combinations). In this example the

difference between a model that fully spans R
5 and a model that spans R

5 through

multilinear combinations.

First, let x be a vector in R
5 as follows:

x = (α, β, p, q, r) ∈ R
5

1Complexity in this context is considered to be the total number of coefficients and polynomial terms.
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Then define two sub-vectors of x as follows:

x1 = (α, β) ∈ R
2, x2 = (p, q, r) ∈ R

3

Now any function that forms a linear combination of x1 and x2 is a function in R
5:

f(x1,x2) = g(x1) + h(x2) ∈ R
5

= α2β + pqr (5.16)

Now consider the difference with the following function:

f(x1,x2) = k(x1,x2) ∈ R
5

= (α+ β + p+ q + r)
3

(5.17)

While Eq. 5.16 spans only a small subset of R5, Eq. 5.17 actually forms a polynomial

basis for it. This means that Eq. 5.16 is a (very) small subset of Eq. 5.17 as the complete

expansion of (α+ β + p+ q + r)
3

consists of 56 polynomial terms. But both models are

true 5-dimensional models!

Returning to the general form of the six aerodynamic models in Eq. 5.12, it is clear that

measurements on the aerodynamic forces and moments need to be performed at different

values of the state vector from Eq. 5.13 in order to obtain a dataset using which an

aerodynamic model can be identified. At this point it is not clear at what locations these

measurements should be taken or how many should be made. In order to aid this process,

a new concept is introduced in the form of the state-plane. A state plane has the following

definition:

Definition 4. The state plane A state-plane is anm-plane embedded in n-dimensional state

space, with m ≤ n, in which the m dimensions are fully cross-coupled.

�

The total number of measurements required for aerodynamic model identification

depends on the nonlinearity of the aerodynamics and the size of the flight envelope of

an aircraft. For an aircraft with limited nonlinear aerodynamics, multilinear combinations

of sub-models of lower dimension suffice. In that case, the complete state space can be

decomposed into a number of state-planes of lower dimension, where measurements are

only required at certain points within these planes. For an aircraft with significant nonlinear

behavior, the state-planes need to be of higher dimension, which means that a much larger

number of measurements are required for model identification.

Returning to the case of the Cessna Citation II, it is expected that significant nonlinear

(coupled) aerodynamics are present in the (α, β, α̇, β̇, p, q, r) plane. Moderate nonlineari-

ties are expected in the (Mach, h, δa, δe, δr, Te) plane. The decoupling of aircraft dynamics
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Table 5.2: State-planes for coupled, longitudinal, and lateral dynamics.

Dynamics Significant Nonlinearities Moderate/limited Nonlinearities

Coupled (α, β, α̇, β̇, p, q, r) (Mach, h, δa, δe, δr, Te)
Symmetric (α, α̇, q) (Mach, h, δe, Te)

Asymmetric (β, β̇, p, r) (Mach, h, δa, δr)

into symmetric and asymmetric dynamics is a method of further reducing the dimensionality

of the state planes. This method of dimensional reduction is frequently used in the aerospace

community to reduce the complexity of the aerodynamic sub-models.

In Table 5.2 the various state planes for the coupled and decoupled dynamics are

listed. It is the aim of the flight test maneuvers to cover the nonlinear state-planes as

completely as possible. This is achieved through the execution of maneuvers specifically

designed to excite the variables that form a basis for this state-plane. The remaining

state-planes are expected to contain only minor nonlinearities, and therefore require fewer

measurements. This effectively means that only a small number of so-called test points

along these dimensions suffice to cover the state-planes of limited nonlinearity. The result

in practical terms is that no high density coverage of for example the Mach2 dimension or

the altitude dimensions is required. This is convenient because it removes the requirement

for flight test maneuvers with very large velocity and altitude amplitudes.

The final topic to be treated in this paragraph is the actual availability of measurements

on the components of the state vector from Eq. 5.13. The FTIS system of the Cessna

Citation was already discussed in-depth in Sec. 5.1.2. From this discussion it is clear that all

necessary variables are indeed available for aerodynamic model identification, see Table 5.3.

5.2.4 Test point selection

With a general definition of the aerodynamic models, the dimensionality of the state vector,

and the dimensions of the state-planes in the previous paragraph, a choice of the location

of the test points can be made. It was argued in the previous paragraph that the test

points should be points along the dimensions of the full state space in which only limited

nonlinearities are expected to be present. In the case of the aerodynamic model identification

of the Cessna Citation II these dimensions were the Mach and altitude dimensions.

As stated before operating an aircraft is expensive. In the context of this thesis, three

flights were performed which were only partially dedicated to flight tests in the framework

of aerodynamic model identification. In the past, however, more flight tests have been

performed with the Cessna Citation II. While the first of these flight tests were performed

with a different FTIS system, a careful reconstruction of the raw data resulted in four

additional usable flights, which added more than 100 maneuvers to the maneuver database.

2This changes when the Mach number increases and effects of compressibility can no longer be neglected.
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Table 5.3: Available parameters for aerodynamic model identification.

Parameter Symbol Unit Std Error Sensor/Source

Angle of Attack α [rad] 3.5 · 10−3 rad alpha vane

Angle of Sideslip β [rad] 3.5 · 10−3 rad beta vane

True airspeed V [ms] n/a Pitot-static probe (AADC)

XB-axis acceleration Ax [ms−2] 2 · 10−2 Q-Flex 3100 accelerometer (IMU)

YB-axis acceleration Ay [ms−2] 2 · 10−2 Q-Flex 3100 accelerometer (IMU)

ZB-axis acceleration Az [ms−2] 3 · 10−2 Q-Flex 3100 accelerometer (IMU)

XB-axis velocity u [ms−1] - Not measurable

YB-axis velocity v [ms−1] - Not measurable

ZB-axis velocity w [ms−1] - Not measurable

XB-axis rotational rate p [rads−1] 2 · 10−3 LITEF µFORS rate gyro (IMU)

YB-axis rotational rate q [rads−1] 2 · 10−3 LITEF µFORS rate gyro (IMU)

ZB-axis rotational rate r [rads−1] 5 · 10−3 LITEF µFORS rate gyro (IMU)

XB-axis rotation φ [rad] 8.7 · 10−3 Sperry VG-14H vertical gyro (TARSYN)

YB-axis rotation θ [rad] 8.7 · 10−3 Sperry VG-14H vertical gyro (TARSYN)

ZE-axis rotation ψ [rad] n/a gyrosyn compass (FMS)

Altitude h [m] n/a static probe (AADC)

Elevator deflection δe [rad] 1.7 · 10−3 Elevator synchro

Aileron deflection δa [rad] 1.7 · 10−3 Aileron synchro

Rudder deflection δr [rad] 1.7 · 10−3 Rudder synchro

Engine thrust Te [N ] n/a Engine model

Used fuel weight Wfuel n/a [Kg] FMS

Aircraft mass m [Kg] n/a Mass model

Aircraft inertia matrix J [Kg ·m2] n/a Mass model

One of the more interesting of these flights was a test flight executed in the summer

of 2008, in which a prototype fly by wire system was put through its paces. The goal of

this test flight was testing worst case scenarios for autopilot failures in which simultaneous

maximum control surface deflections were commanded. These hardover maneuvers are

very interesting as they fully excite the nonlinear coupled state-plane, allowing for the

identification of coupled aerodynamic models.

In Table 5.4 a complete listing of all test flights and maneuver data used in this thesis is

given. The values between brackets in Table 5.4 are the total number of maneuvers used for

model identification. The remaining maneuvers are used to validate the identified models.

The complete set of flight test maneuvers are plotted inside the flight envelope of the Cessna

Citation II in Figure 5.4. The test points are roughly located in three altitude planes and

provide a relatively dense coverage of the Mach dimension.

In the next paragraph the design of maneuvers that should be flown to best cover the

nonlinear state-planes will be discussed. These maneuvers will be executed at the test points

specified in this paragraph.
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Figure 5.4: Flight envelope of the Cessna Citation II, with the 247 test points.

Table 5.4: List of test flights.

Flight No. Flight date Total Coupled Longitudinal Lateral Remarks

1 06-09-2006 81 25 30 26 Many FTIS glitches

2 28-09-2008 30 30 0 0

3 30-10-2008 35 8 13 14 No GPS/engine readings

4 01-11-2008 28 9 12 7 No GPS/engine readings

5 07-10-2010 25 0 15 10 No GPS/engine readings

6 09-10-2010 17 0 4 13 No GPS/engine readings

7 10-10-2010 29 12 9 8 No GPS/engine readings

Total 247 106 79 62
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5.2.5 Maneuver input design

Since the early days of flight, scientists and engineers have tried to obtain an understanding

of the dynamic behavior of the aircraft they designed. One of the first well documented flight

test campaigns was that performed by Norton in the middle of the 1920’s [156, 157]. Norton

investigated the lateral and longitudinal dynamic stability of the Vought VE-7 ‘Bluebird’

and the Curtiss JN-4H ‘Jenny’ through systematic observations on the responses to aileron

and elevator step inputs.

The step inputs were the first type of input designed to excite the dynamic modes

of aircraft. It was later found that the doublet input produced better results. A doublet

consists of a step input followed by another step input in the opposite direction. The timing

between the two step inputs can be varied to excite different frequency modes of the aircraft.

This input type is widely used because it is relatively simple to produce manually, while

still resulting in interesting datasets, especially for high performance unstable aircraft like

Eurofighter Typhoon [162].

In 1976 a new type of control input was first introduced. Called the 3211 control

input signal, or alternatively the Koehler input, it was designed to optimally excite specific

frequency modes of an aircraft. The 3211 input consists of four contiguous steps with

alternating signs lasting for 3, 2, 1 and 1 time units, where the time units can be adjusted to

center the frequency band around the dynamic eigenmodes of an aircraft.

A more difficult input for pilots to fly is the frequency sweep input. The frequency

sweep input is formed by a set of harmonic inputs with specific frequencies. Each of the

individual harmonic inputs is flown for some time after which the frequency of the input

is changed. This type of input is designed to completely cover all dynamic eigenmodes of

an aircraft. The disadvantage of the frequency sweep input is that there can be a coupling

between motions or off-axis responses which invalidates the results [141].

A more advanced approach to input design is the field of optimal input design. In the

past many authors have suggested different methods of maneuver design. J.A. Mulder was

arguably the first to present a formal method for the design of optimal inputs. Mulder’s

method was based on orthogonal input functions which were optimized based on norms

of the Fisher information matrix [147, 148, 68]. Morelli used a different method for input

optimization which was based on dynamic programming [143, 139, 141, 85].

Mulder’s method was used during the first flight test performed in the framework of this

thesis. This test flight took place on the 6th of September 2006 (see Table 5.4), and consisted

of more than 100 individual, manually flown maneuvers, see Figure 5.5. The second flight

test was performed on the 28th of September 2008 and was aimed at testing worst case

scenarios for the failure of a prototype autopilot, see Figure 5.6. The hardover maneuvers

were not designed specifically for aerodynamic model identification, but they did lead to

very large excitations of the aircraft in the cross-coupled state-plane. The two flights on the

30th of October and the 1st of November 2008 were aimed at estimating the aerodynamic
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Figure 5.5: Manually flown optimal input sequence on the elevator.
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Figure 5.6: Autopilot executed hardover input sequence on the ailerons, the

elevator, and the rudder.

hinge moments and consisted of single and double 3211 maneuvers which were executed

by the autopilot [126, 150], see Figure 5.7. The goal of the final three flights was to produce

high amplitude, coupled dynamic maneuvers which were manually executed, see Figure 5.8.

With these maneuvers, parts of the nonlinear state-plane were covered that are otherwise

unreachable. The final input type is a pseudo random noise (PRN) input, which is not used

very often for aerodynamic model identification purposes Figure 5.9. In the general system

identification community, however, the PRN is widely used because it provides a complete

coverage of the frequency spectrum [117]. In this case the PRN actually was the residual of

a multi-sine forcing function and a disturbance rejecting pilot input sequence [219].
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5.3 Flight Test Results

In this section the results from seven flight tests performed with the Cessna Citation II

laboratory aircraft (PH-LAB) between 2006 and 2010 are presented. It will be shown that

the four different input types presented in Sec. 5.2 produce very different aircraft responses,

and provide a dense coverage of the flight envelope in which significant nonlinearities are

expected.

In Sec. 5.3.1 the raw results from the flight testing are presented. It will then be

explained in Sec. 5.3.2 that a valid spline model can only be estimated within the convex

hull of the identification dataset. In Sec. 5.3.3 an analysis on the output of the linear

accelerometers during ground testing is presented. In this analysis it is shown that noise

levels in the accelerometers are more than an order of magnitude higher than those specified

by the manufacturer. This analysis serves as a motivation for the choice of the cutoff

frequency of the low-pass filter that will be applied to the raw flight data. Finally, in

Sec. 5.3.4 a procedure for preprocessing the raw results from the flight testing is discussed.

5.3.1 Flight test results

The four different control surface input methods, discussed in Sec. 5.2.5, were used during

the flight tests. Each of these different inputs resulted in a different response of the aircraft.

First, in Figure 5.10 and Figure 5.11 the responses and aircraft states resulting from an

optimal input based on Mulder’s method are plotted. Noticeable in these responses are

the continuously increasing angular accelerations, which reach a very significant level of

15 deg/s2 for the pitch rate. Notice also that the angle of attack measured by the α-vane

on the boom in Figure 5.11 which reaches a maximum of 13 degrees, which is very close to

the edge of the flight envelope of the Cessna Citation II.

In Figure 5.12 and Figure 5.13 the responses and states are shown that result from a

hardover input consisting of a simultaneous step input on the ailerons, the elevator, and

the rudder. This time, a complex, coupled response of the aircraft is produced. A positive

elevator deflection causes a nose down moment, while simultaneous positive aileron and

rudder deflections cause the aircraft to roll and yaw towards the left.

In Figure 5.14 and Figure 5.15 an autopilot induced 3211 input on the elevators is

executed. Interesting to note here is the high temporal and spatial precision of the maneuver.

The angular rates and linear accelerations do not show the large peaks produced by the

manually flown optimal input. This is both a result of the autopilot having less control

authority than the pilots, and the sub-optimality of the inputs.

In Figure 5.16 and Figure 5.17 the inputs and states are shown of a manually flown high

amplitude input consisting of elevator, aileron, and rudder 3211 inputs. Notice that a short

period of weightlessness is experienced 14 seconds into the maneuver. This time, the angle
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Figure 5.10: Optimal input on the elevator with dynamic responses of the aircraft.

of sideslip measured at the boom reaches a very significant value of 13 degrees, which is

actually outside the envelope specified by the manufacturer.

In Figure 5.18 and Figure 5.19 the dynamic responses and states are shown that result

from a manually flown pseudo-random noise (PRN) sequence on the ailerons. In this case,

the PRN was the residual from a sine-forcing function and a disturbance rejecting pilot input

sequence. The dynamic responses in this case are rather limited in magnitude, but the time

derivatives of the responses, in this case that of the roll rate p, reach very high magnitudes.
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220 Aerodynamic Modeling of the Cessna Citation II

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 βv [rad]

time [s]

αv [rad]

ψm [rad]

time [s]

θm [rad]

φm [rad]

hp [m]

time [s]

Mach [−]

VTAS [m/s]

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40

−0.04

−0.03

−0.02

−0.01

0

0.01

0

0.005

0.01

0.015

0.02

0.025

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

5140

5160

5180

5200

5220

5240

0.49

0.5

0.51

0.52

0.53

0.54

0.55

160

162

164

166

168

170

172

174

Figure 5.13: Aircraft states after a hardover input sequence, with αv and βv the

angle of attack and angle of sideslip measured by the vanes on the boom



221

 

 

 

 

 

 

r
q
p

Angular rates

time [s]

ra
d
/s

Az

Ay

Ax

Linear accelerations

m
/s

2

δr

δe

δa
Control surface deflections

ra
d

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

−0.1

−0.05

0

0.05

0.1

−15

−10

−5

0

5

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Figure 5.14: Autopilot executed 3211 input sequence on the elevator with dynamic

responses of the aircraft.



222 Aerodynamic Modeling of the Cessna Citation II

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 βv [rad]

time [s]

αv [rad]

ψm [rad]

time [s]

θm [rad]

φm [rad]

hp [m]

time [s]

Mach [−]

VTAS [m/s]

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

−0.1

−0.05

0

0.05

0.1

5130

5140

5150

5160

5170

5180

5190

0.24

0.245

0.25

0.255

0.26

0.265

0.27

77

78

79

80

81

82

83

84

Figure 5.15: Aircraft states after an autopilot executed 3211 input sequence, with
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Figure 5.16: High amplitude input sequence with aircraft dynamic responses.

5.3.2 Flight envelope coverage

During the 247 flight test maneuvers a total of almost 8 million measurements were made

on the state parameters. These measurement points spanned a significant part of the flight

envelope of the Cessna Citation II, see Figure 5.20. Only the altitude dimension of the flight

envelope received a limited covering. An important entity related to the set of measurement

points is the convex hull of the measurement points. In Figure 5.20 the convex hull of the

measurement points is shown as the shaded area.

The convex hull of the measurement points turns out to be a key structure for

aerodynamic model identification because it bounds the area in which linear interpolation

is guaranteed to be possible. This can be seen as follows. Every ridge on the edge of the
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Figure 5.17: Aircraft states after a high amplitude input sequence, with αv and βv
the angle of attack and angle of sideslip measured by the vanes on the boom.
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Figure 5.18: High amplitude input sequence with aircraft dynamic responses.

convex hull is formed by two vertices on the hull. The maximum degree polynomial that

can be defined between each of these two vertices therefore is a linear polynomial.

In the following, the convex hull of the measurement points is called the ‘region of

validity’ as the spline model can only be validated within this region. The formal definition

of the region of validity is the following:

EX = 〈Xident〉 , (5.18)

with Xident the identification dataset. The operator 〈•〉 in Eq. 5.18 is the convex hull

operator.
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Figure 5.19: Aircraft states after a high amplitude input sequence, with αv and βv
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Figure 5.20: Flight envelope coverage for the 247 flight test maneuvers.

Any evaluation of the aerodynamic model outside of EX effectively extrapolates the

model, with results that can not be guaranteed to be accurate.

5.3.3 IMU sensor noise analysis

The output from the Honeywell Q-Flex 3100 accelerometers in the IMU of the Cessna

Citation II laboratory aircraft contains noise of significantly higher magnitude than specified

by the manufacturer3. Closer investigation of the noise signal shows that it is caused by an

engine induced resonance. This can be concluded from the fact that the noise signal is

absent in engine-off ground tests, while present in engine-idle ground tests. The spectrum

3See http://www.inertialsensor.com/docs/qa3000.pdf for full specifications.



228 Aerodynamic Modeling of the Cessna Citation II

 

 

 

 

 

 

 

 

 

 

 

 
Eng. off

Eng. idle

r
[r
a
d
/s
]

time [s]

Eng. off

Eng. idle

q
[r
a
d
/s
]

Eng. off

Eng. idle
Angular rates

p
[r
a
d
/s
]

Eng. off

Eng. idle

A
z
[m
/s

2
]

time [s]

Eng. off

Eng. idle

A
y
[m
/s

2
]

Eng. off

Eng. idle
Accelerations

A
x
[m
/s

2
]

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

×10−3

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

−0.01

−0.005

0

0.005

0.01

−6

−4

−2

0

2

4

6

−10.5

−10

−9.5

−9

−0.5

0

0.5

1

−0.2

0

0.2

0.4

0.6

Figure 5.21: Engine-off and engine-idle accelerations and angular rates measured

by the IMU during ground testing.

of the engine-idle accelerometer output shows some strong unexplained peaks around 47

Hz. Peaks of lower magnitude are present up to 7 Hz. This finding motivates the decision

to pre-filter the raw IMU data with a low-pass filter with a threshold at 7 Hz. The LITEF

µ-FORS fiber optic rate gyro’s do not suffer from this engine induced noise.

In Figure 5.21 and Table 5.5 the raw output from the IMU sensors is plotted and

compared. From the figure, it can be seen that the accelerometers produce noise of a

significantly higher magnitude when the engines are running then when the engines are

off. In fact, the standard deviation of the noise is more than an order of magnitude larger

than that specified by the manufacturer.

Frequency domain analysis shows that there are some clear peaks in the spectra of Ax,

Ay , and Az for the engine-idle ground tests, with a very noticeable peak at 47.5 Hz. A

second set of peaks is present at around 23 Hz and 26 Hz, while a third strong peak can

be found at around 7 Hz. All these peaks are present in every engine-idle ground test data

set, although they are more pronounced in some data sets. The spectra for the engine-off

data sets do not contain any of the peaks observed in the engine-idle ground test data sets,
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Table 5.5: Standard deviation of accelerometer output during ground testing.

Channel Manufacturer Spec. Engine-off [m/s2] Engine-idle [m/s2]

std(Ax) 0.0147 0.0161 0.0838
std(Ay) 0.0147 0.0186 0.2068
std(Az) 0.0147 0.0213 0.1544

Table 5.6: Standard deviation of fiber optic rate gyro output during ground testing.

Channel Manufacturer Spec. Engine-off [rad/s] Engine-idle [rad/s]

std(p) N/A 0.00086 0.00116
std(q) N/A 0.00147 0.00156
std(r) N/A 0.00486 0.00533

leading to the conclusion that the engines are the main cause of these peaks. Additionally,

from observations on the shape of the noise signal in the time domain in Figure 5.21 it can

be concluded that the signal bears a strong resemblance with a ‘beat’-signal, which should

be caused by interference of two (or more) high frequency sources.

When filtering the accelerometer output with a low-pass filter at a cutoff frequency of

7 Hz, the noise magnitude during engine-idle tests is reduced to levels comparable with

engine-off tests, see Figure 5.23 and Figure 5.24, and the numerical results in Table 5.7.

5.3.4 IMU center of gravity offset correction

The IMU is not located exactly in the center of gravity, but is located at an offset vector

(xcg−xac, ycg−yac, zcg−zac) from it, see Appendix A. As such, the accelerations measured

by the accelerometers in the IMU are not the true accelerations at the center of gravity. In

[94] Laban derives the following correction for the true linear acceleration of the center of

Table 5.7: Standard deviation of filtered accelerometer output during engine-idle

ground tests.

Channel Unfiltered [m/s2] Fc = 40 [Hz] Fc = 22 [Hz] Fc = 7 [Hz]

std(Ax) 0.0838 0.0703 0.0437 0.0131
std(Ay) 0.2068 0.0604 0.0407 0.0159
std(Az) 0.1544 0.1170 0.0971 0.0247
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Figure 5.22: Engine-off and engine-idle spectra of the accelerometer output

during ground testing.

gravity:

Axcg
= Axac

+ (xcg − xac)(q
2 + r2)− (ycg − yac)(pq − ṙ)− (zcg − zac)(pr + q̇)

Aycg = Ayac
+ (ycg − yac)(r

2 + p2)− (zcg − zac)(qr − ṗ)− (xcg − xac)(qp+ ṙ)

Azcg = Azac
+ (zcg − zac)(p

2 + q2)− (xcg − xac)(rp− q̇)− (ycg − yac)(rq + ṙ)

(5.19)

While this correction is relatively simple to apply in theory, there is a serious implication

to flight path reconstruction, the next step in the identification procedure. As it happens to be

the case, the IMU sensors are subject to sensor biases and noise. The measured accelerations

and angular velocities therefore are not the true accelerations and angular accelerations, but

form a (presumed) linear combination with a bias term. For example, the measured pitch

rate qm is related to the true pitch rate q as follows: qm = q+λq, with λq an unknown bias.

In the next section (Sec. 5.4), a method will be presented to estimate these biases using a
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Figure 5.23: Low-pass filtered engine-idle accelerations and angular rates during

ground testing, using a filter cutoff frequency at 7 Hz.

Kalman filter. However, if the correction from Eq. 5.19 is applied, the Kalman filter will

become much more complex4.

An investigation on the magnitude of the corrections from Eq. 5.19 as a function of the

position of the c.g. shows that the effects are relatively minor in most cases, see Figure 5.25.

In the figure, the position of the c.g. is varied along the body axes, after which the error

between the true acceleration and the measured acceleration is computed. The vertical lines

in the figure show a realistic arm length from the c.g. to the IMU, in this case (xac −
xcg, yac − ycg, zac − zcg) = (1.16, 0, 0.06). The error between the true and measured

accelerations along the YB and ZB axes is in most cases smaller than 0.01 m/s2, which is

actually below the noise magnitude of accelerometer output after prefiltering as was shown

in the previous section. The magnitude of the accelerometer measurement error along the

4More specifically, the linear accelerations would become a reconstructed state, much like the angle of attack

and angle of sideslip, while the biased time derivatives d
dt
(p + λp),

d
dt
(q + λq) and d

dt
(r + λr) would have to

be added as additional inputs.
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Figure 5.24: Engine-off and engine-idle spectra of the accelerometer output

during ground testing after filtering the data with a low-pass filter with a cutoff

frequency of 7 Hz.

XB axis, however, will in some exceptional cases exceed 0.05 m/s2, which means that in

those cases a correction for Axcg
is warranted.
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Figure 5.25: Effects of shifting the position of the c.g. on accelerometer

measurements for a representative 3211 maneuver. The vertical lines in the xcg
and zcg shift plots indicate a realistic c.g. position.
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Figure 5.26: The complete flight path reconstruction procedure.

5.4 Flight Path Reconstruction

Flight path reconstruction (FPR) is the crucial first step in the two-step method (TSM) which

was developed by the Delft University of Technology during 1970’s [64, 146, 147, 149]. The

two step method proposes a decomposition of the nonlinear combined state and parameter

estimation problem into a separate state estimation problem and an aerodynamic model

parameter estimation problem. While the original combined state and parameter estimation

problem constitutes a difficult nonlinear optimization problem, the two individual steps in

the two-step method result in two linear optimization problems which are much simpler to

solve.

In this section the FPR method introduced by Mulder et al. in [149] is applied for

the estimation of the states of the Cessna Citation II (PH-LAB) laboratory aircraft. In

Figure 5.4.1 an overview of the complete FPR procedure is given, which will be shown

to consist of four distinct parts. The heart of the FPR procedure is an iterated extended

Kalman filter (IEKF) which estimates the true states of the aircraft based on preprocessed

sensor data and a set of kinematic models. In Sec. 5.4.2 a general introduction on the iterated

extended Kalman filter is given. Then, in Sec. 5.4.3 the specific implementation of the IEKF

used for the estimation of the states of the PH-LAB is presented. The crisp states form the

input to the engine model as well as the aircraft mass model. Using the crisp states, the

output from the engine model and the output from the aircraft mass model, the aerodynamic

force and moment coefficients can be calculated. In Sec. 5.4.7 the results from the flight

path reconstruction are presented.
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5.4.1 Flight path reconstruction procedure

The complete flight path reconstruction (FPR) procedure consists of four separate parts, see

Figure 5.26. The input data for the FPR procedure is the preprocessed set of flight data

resulting from the preprocessing operations discussed in Sec. 5.3. The most complex part

of the FPR procedure is the iterated extended Kalman filter (IEKF). The IEKF is used to

estimate the true aircraft states from the biased and noise contaminated states, as will be

explained in detail in the next sections.

Another block that takes the preprocessed flight data as input is the model for the Pratt

& Whitney JT15D-4 turbofan engine. This model was supplied by the manufacturer of the

engine and is a data table based model that predicts engine thrust as a function of a number

of input parameters. One of these inputs is the revolutions per minute of the low pressure

turbine (N1). Unfortunately, this parameter was only logged during test flights 1 and 2,

but the data of test flight 1 was severely compromised by sensor glitches. The fuel flow

per engine was a logged parameter, however, and using the data from flight 2 a black box

simplex spline model is created that related the fuel flow with the revolutions per minute

of the low pressure turbine, see Figure 5.28. Using the spline model from Eq. 5.65, N1 is

estimated for the remaining test flights, which then forms the input to Pratt & Whitney’s

JT15D-4 engine model.

The final block taking preprocessed flight data as input was the mass model of the

Citation II. This mass model was created at the Delft University of Technology and can

be considered to be very accurate. The mass model calculates the aircraft mass, moments

of inertia and the location of the c.g. as a function of the fuel load, passenger number and

seating locations and baggage.

The estimated states from the Kalman filter, the estimated engine thrust from the engine

model and the estimated moments of inertia from the mass model are the inputs for the

aerodynamic force and moment coefficient calculation block.

In the next sections the various parts of the FPR procedure will be discussed in-depth.

5.4.2 The iterated extended Kalman filter

The Kalman filter is a recursive filter that can be used to reconstruct system states from

noisy and biased sensor measurements. The Kalman filter was purportedly invented by

Rudolf Kalman in 1958 although Thorvald Thiele and Peter Swerling developed had earlier

developed a similar algorithm. Kalman was the first, however, to identify its use for

the estimation of trajectories which lead to its implementation in the Apollo navigation

computer. Since then, the Kalman filter has seen many uses, with applications ranging from

cruise missile navigation computers to the phase locked loop present in most FM-radio

systems.

The crux of the Kalman filter is the calculation of a weighted average between the

measured and the predicted state, where the weight depends on the uncertainty in the
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measurement; the higher the uncertainty, the lower the weight. The number of internal

states of a system may be much larger than the number of measured states. The Kalman

filter allows the reconstruction of the full internal system states using only the measured

states in combination with the physical relationships that bind them.

In essence, the Kalman filter is a linear filter. In the form of the extended Kalman filter

(EKF) it can be used for state estimation of nonlinear systems through the local linearization

of the nonlinear transition and observation models. In that case, however, the Kalman

filter is no longer an optimal estimator which means that the estimated state can no longer

be guaranteed to converge to the true system state. The solution to this problem is the

iterated extended Kalman filter (IEKF) which uses an internal iteration which compensates

for inaccuracies resulting from the linearization.

The IEKF is at the heart of the flight path reconstruction algorithm used in this thesis.

Its specific implementation was discussed in detail in [149], but will be repeated here for

completeness.

First, let x ∈ R
n be the internal state of a general dynamic system. Then, let u ∈ R

Nu

be the vector of system inputs. Finally, let y ∈ R
Ny be the vector of observations on the

system. Now let the general nonlinear dynamic system, which relates the state x, the input

u, and the observation y, be defined as follows:

ẋ(t) = f(x(t),u(t),w(t), t),

y(t) = h(x(t),u(t),v(t), t),

(5.20)

with f(•) a nonlinear state transition model, and with h(•) a nonlinear observation model.

The terms w(t) and v(tk) are the process noise and the observation noise, respectively. The

process or input noise covariance matrix Q and the observation noise covariance matrix R

are:

Q := Cov(w(t)) ∈ R
Nu×Nu ,

R := Cov(v(t)) ∈ R
Ny×Ny .

(5.21)

It is assumed in the following that both the input noise covariance matrix Q as well as the

observation noise covariance matrix R are time invariant and known a-priori.

The Kalman filter is a discrete time filter, so consequently Eq. 5.20 should be

transformed into a discrete time form. The continuous to discrete time transformation5

is based on a Taylor series expansion of f(•) and h(•) about the current state x(k) at time

tk.

5Matlab provides a very useful built-in function (C2D) for the transformation of continuous time systems into

discrete time systems.
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For this, the Jacobian’s Fx(t) and Fu(t) of the state transition model f(x(t),u(t),w(t), t)

in the directions of respectively x and u are required:

Fx(t) = δxf(x(t),u(t),w(t), t) ∈ R
n×n,

Fu(t) = δuf(x(t),u(t),w(t), t) ∈ R
n×Nu .

(5.22)

The Jacobian Hx(t) of the output model h(x(t),u(t),v(t), t) in the direction of x is

Hx(t) = δxh(x(t),u(t),v(t), t) ∈ R
n×Nu (5.23)

Using the Jacobian’s Fx(t) and Fu(t) from Eq. 5.22 the discrete time state transition

and input matrices can be derived:

Φ(k + 1|k) =

∞∑

n=0

Fx
n(tk+1 − tk)

n

n!
∈ R

n×n,

Γ(k + 1|k) =

( ∞∑

n=0

Fx
n(tk+1 − tk)

n+1

(n+ 1)!

)

· Fu(t) ∈ R
n×Nu .

(5.24)

All entities that are required for the actual IEKF are now defined. The first step in the

IEKF is the one-step-ahead prediction of the discretized system state by integration of f(•)
over the time interval [tk, tk+1]:

x̂(k + 1|k) = x̂(k|k) +
∫ tk+1

tk

f(x̂(τ), ũ,w(τ), τ)dτ , x(0|0) = x0, (5.25)

with x0 the initial state, and with ũ the average input between step k and k + 1:

ũ =
u(k + 1) + u(k)

2
. (5.26)

The covariance matrix of the predicted state x(k + 1|k) is:

P(k+1|k) = Φ(k+1|k)P(k|k)Φ⊤(k+1|k)+Γ(k+1|k)QΓ⊤(k+1|k) ∈ R
n×n, (5.27)

with Q ∈ R
Nu×Nu the input noise covariance matrix from Eq. 5.21 and with Φ⊤(k + 1|k)

and Γ(k+ 1|k) the discretized state transition and input matrices from Eq. 5.24. The initial

value of the error covariance matrix is assumed to be

P(0|0) = I ∈ R
n×n. (5.28)
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The measurement residual or innovation z(k + 1) is calculated as the difference between

the observation y(k+1) and the predicted observation h(x̂(k+1|k),u(k+1),v(k+1), t)

as follows:

z(k + 1) = y(k + 1)− h(x̂(k + 1|k),u(k + 1),v(k + 1), t). (5.29)

The covariance matrix of the innovation is calculated as follows:

S(k + 1) = Hx(k + 1)P(k + 1|k)Hx
⊤(k + 1) +R ∈ R

Ny×Ny , (5.30)

with Hx(k+1) the Jacobian of the output model from Eq. 5.23 and with R the observation

noise covariance matrix from Eq. 5.21. Using the covariance matrix of the predicted state

P(k+1|k) from Eq. 5.27, the Jacobian Hx(k+1) from Eq. 5.23 and the covariance matrix

of the innovation S(k + 1) from Eq. 5.30, the Kalman gain matrix can be calculated:

K(k + 1) = P(k + 1|k)Hx
⊤(k + 1)S−1(k + 1) ∈ R

n×Ny . (5.31)

The predicted state x(k+1|k) from Eq. 5.25 can now be updated using a weighted average

of the innovation z(k + 1) from Eq. 5.29 in which the Kalman gain matrix from Eq. 5.31

acts as the weighting matrix:

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)z(k + 1). (5.32)

The new estimate of the state thus is x̂(k + 1|k + 1). In general, however, it cannot be

guaranteed that x̂(k + 1|k + 1) is the true system state. This is a direct consequence of

the linearization of the nonlinear system. The iterated extended Kalman filter aims to solve

this problem by introducing an iterative loop which is terminated once the magnitude of the

innovation drops below some predefined threshold.

The iterative part of the IEKF is initialized by defining a two new variables:

η1 = x̂(k + 1|k),
η2 = η1.

(5.33)

The iteration itself is started by calculating a new Jacobian matrix H̃x:

H̃x(t) =
δ

δx
h(η1,u(t),v(t), t). (5.34)

Using η1, a new innovation z̃(k + 1) is calculated:

z̃(k + 1) = y(k + 1)− h(η1,u(k + 1),v(k + 1), t). (5.35)



239

The new innovation covariance matrix S̃(k + 1) then becomes:

S̃(k + 1) = H̃x(k + 1)P(k + 1|k)H̃⊤
x (k + 1) +R, (5.36)

with P(k + 1|k) the covariance matrix of the predicted state from Eq. 5.27.

K̃(k + 1) = P(k + 1|k)H̃⊤
x (k + 1)S̃−1(k + 1). (5.37)

Using Eq. 5.34, Eq. 5.35, and Eq. 5.37 the variables η1 and η2 are then updated as

follows:

η1 = η2,

η2 = x̂(k + 1|k) + K̃(k + 1)
(

z̃(k + 1)− H̃x(k + 1) ·
(
x̂(k + 1|k)− η1

))

.

(5.38)

After which the magnitude of the error is calculated as follows:

ǫ(k + 1) =
‖η2 − η1‖∞

‖η1‖∞
. (5.39)

If ǫ(k + 1) > ǫmax, then the iteration continues by returning to Eq. 5.34 and calculating a

new Jacobian after which the whole process is repeated. If ǫ(k + 1) ≤ ǫmax, the iteration

terminates, and the new estimated state becomes:

x̂(k + 1|k + 1) = η2. (5.40)

Finally, the updated error covariance matrix P(k+1|k+1) can be calculated as follows:

P(k + 1|k + 1) =
(

I− K̃(k + 1)H̃x(k + 1)
)

P(k + 1|k). (5.41)

5.4.3 Kalman filter model structure

The iterated extended Kalman filter (IEKF) introduced in the previous section is applied

to reconstruct the flight path of the Cessna Citation II laboratory aircraft (PH-LAB) during

flight test maneuvers. In order to use the IEKF, the structure of the filter must first be

determined. For this, the state vector x, the input vector u and the observation vector y need

to be defined, as well as the nonlinear transition model f(•) and the observation model h(•)
from Eq. 5.20.

These definitions depend not only on the available parameters measured by the sensors,

but also on the equations of motion of the aircraft. First, let Y be the complete set

of measurable parameters relevant for aerodynamic model identification during the flight
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testing as follows:

Y = {V, z,Ax, Ay, Az, p, q, r, φ, θ, ψ, αv, βv} (5.42)

with αv and βv respectively the angle of attack and angle of sideslip as measured by the air

data boom. The remaining parameters in Eq. 5.42 were already introduced in Table 5.3. The

observation vector y ∈ R
7 can now be defined by selecting terms from Eq. 5.42 as follows:

y =
[

φ θ ψ V αv βv z
]⊤

, (5.43)

Then, the input vector um ∈ R
6 is defined to be:

um = u+ λ+w

=












Ax
Ay
Az
p

q

r












+












λx
λy
λz
λp
λq
λr












+












wx
wy
wz
wp
wq
wr












, (5.44)

with u the true accelerations, with λ a vector of sensor biases and with w a vector of white

process noise. Note that um in Eq. 5.44 is the vector of parameters that is measured by

the IMU. The sources of bias in these measurements can be explained as follows. For the

linear accelerometers, biases occur when the location of the IMU does not correspond with

the location of the center of gravity of the aircraft, as was demonstrated in Figure 5.10 in

Sec. 5.3.4. For the rate gyros, biases are produced if there are errors in estimations for the

moments and products of inertia.

The particular choice for Eq. 5.44 as the input vector has the following motivation.

The input vector must contain directly measurable parameters that are only present in their

non-differential forms in the kinematic equations from Eq. 5.5 and the equations of motion

from Eq. 5.7. Additionally, the parameters in u should be ‘simple’ parameters that are not

(hidden) functions of any other parameters. This prevents αv and βv from being included

in um, as these parameters are in fact unknown functions of many other parameters.

In fact, the angle of attack αv as measured by the α-vanes on the boom is not the true

geometric angle of attack as defined in Eq. 5.46. This notion has been widely recognized

in the literature, see e.g. [149] and [94]. Instead, the α-vane measures a combination of

the true angle of attack, a kinematically induced angle of attack, a fuselage-upwash induced

angle of attack and a vertical wind component, see Figure 5.27. In [94] a model is derived

for the angle of attack αv measured by the α-vane on the boom. In this case this model is
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Figure 5.27: The angle of attack measured by the vane (αv) on the boom differs

from the true geometric angle of attack (α) because the fuselage induces an

additional vertical flow component in the neighborhood of the vane.

extended to also include the sensor biases λ from Eq. 5.44:

αv = (1 + Cαup
)α+

(q + λq)xvα√
u2 + v2 + w2

+ Cα0
, (5.45)

withCαup
the fuselage upwash coefficient, withCα0

an unknown wind component and with

V the true airspeed as defined in Eq. 5.49. In Eq. 5.45 the true geometric angle of attack α

also occurs. The true geometric angle of attack has the following definition:

α := arctan
(w

u

)

, (5.46)

with u and w the velocity components along the XB , and ZB body axes respectively.

Just like the α-vane, the β-vane on the boom does not measure the true angle of sideslip

as defined in Eq. 5.48. Instead, the measured sideslip angle will be a combination of the true

geometric angle of sideslip, the fuselage induced sidewash and a lateral wind component.

The model for βv given by Laban in [94] is extended to also include the sensor biases λ

from Eq. 5.44 resulting in:

βv = (1 + Cβsi
)β − (r + λr)xvβ√

u2 + v2 + w2
+

(p+ λp)zvβ√
u2 + v2 + w2

+ Cβ0
, (5.47)

with Cβsi
the fuselage sidewash coefficient, with Cβ0

again an unknown wind component,

and with V the true airspeed as defined in Eq. 5.49. The true, geometric angle of sideslip β
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used in Eq. 5.47 has the following definition:

β := arctan

(
v√

u2 + w2

)

, (5.48)

with u, v, and w the velocity components along the XB , YB , and ZB respectively.

While the true geometric angle of attack and angle of sideslip are not directly

measurable, they can nevertheless be inferred from Eq. 5.45 and Eq. 5.47 if the rotational

rates and the velocity components of the aircraft are combined with the measured αv and

βv , respectively. This leaves the IMU as the only direct source of input data to the IEKF,

and motivates the choice for the structure of u as given in Eq. 5.44.

Now that the observation vector y and the input vector um are defined, the state vector

can be constructed. The state vector should include all parameters that together allow the

construction of the output vector y. Based on the expressions for αv from Eq. 5.45 and βv
from Eq. 5.47 this implies that the velocity components u, v, and w and the coefficients

Cαup
, Cα0

, Cβsi
, and Cβ0

are state variables. This would at first seem to imply that the true

airspeed V is a state variable, however, on closer inspection V can be reconstructed using

the velocity components u, v, and w as follows:

V :=
√

u2 + v2 + w2 (5.49)

Combining results, this leads to the following state vector:

x =
[

u v w φ θ ψ z Cαup
Cα0

Cβsi
Cβ0

]⊤
, (5.50)

The sensor biases in Eq. 5.44 should also be estimated, and therefore the state vector from

Eq. 5.51 is augmented as follows:

xaug =

[

x

λ

]

∈ R
17, (5.51)

With the completed definitions of the observation vector y, the input vector um, and

the augmented state vector xaug , construction of the state transition model f(•) and the

observation model h(•) can commence. For this, the state transition equations as well as

the observation equations must first be derived.

These equations are well known in the literature, see e.g. [203], but must be appended

with the sensor biases λ from Eq. 5.44 as demonstrated by Mulder et al. in [149].

Starting with the state transition equations for u, v, and w, the following set of equations

are found after substitution of the measured (non-stochastic) accelerations and rotational
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rates from Eq. 5.44 in Eq. 5.20:

u̇ = (Ax + λx)− (q + λq)w + (r + λr)v − g sin(θ),

v̇ = (Ay + λy)− (r + λr)u+ (p+ λp)w + g cos(θ) sin(φ),

ẇ = (Az + λz)− (p+ λp)v + (q + λq)u+ g cos(θ) cos(φ).

(5.52)

For the state transition equations for φ, θ, and ψ, the substitution of the measured (non-

stochastic) rotational rates from Eq. 5.44 in Eq. 5.5 leads to:

φ̇ = (p+ λp) + (q + λq) sin(φ) tan(θ) + (r + λr) cos(φ) tan(θ),

θ̇ = (q + λq) cos(φ)− (r + λr) sin(φ),

ψ̇ = (q + λq) sin(φ) sec(θ) + (r + λr) cos(φ) sec(θ).

(5.53)

Finally, the state transition equation for the relative altitude z was given by [149] as follows:

ż = w cos(φ)cos(θ)− u sin(θ) + vcos(θ)sin(φ) (5.54)

It is important to note that the remaining states λ,Cαup
,Cα0

,Cβsi
, andCβ0

are assumed

to be time invariant. Therefore, no state transition equations are required for these entities.

The complete state transition equation is therefore found by combining the expressions

Eq. 5.52, Eq. 5.53, and Eq. 5.54 as follows:

ẋ = f(xaug(t),um(t),w(t), t)

=

















Ax + λx − g sin(θ)− w(λq + q) + v(λr + r)

Ay + λy + w(λp + p)− u(λr + r) + g cos(θ) sin(φ)

Az + λz − v(λp + p) + u(λq + q) + g cos(φ) cos(θ)

λp + p+ (λr + r) cos(φ) tan(θ) + (λq + q) sin(φ) tan(θ)

(λq + q) cos(φ)− (λr + r) sin(φ)

(λr + r) cos(φ) sec(θ) + (λq + q) sin(φ) sec(θ)

w cos(φ) cos(θ)− u sin(θ) + v cos(θ) sin(φ)

010×1

















(5.55)

For the observation equations, the roll angle φ and the pitch angle θ were obtained

directly from the vertical gyro, while the yaw angle ψ was obtained directly from the

gyrosyn compass. The true airspeed was derived using Eq. 5.49 while the equations for

αv and βv were already derived in Eq. 5.45 and Eq. 5.47. The only new equation is that for
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the relative altitude z which is given by:

z = h− h0, (5.56)

with h the time varying altitude and with h0 the initial altitude at the start of the maneuver

as measured by the AADC.

Combination of Eq. 5.45, Eq. 5.47, Eq. 5.56, and Eq. 5.49 then leads to the following

observation model:

y = h(xaug(t),um(t),v(t), t)

=
















φ

θ

ψ√
u2 + v2 + w2

(1 + Cαup
) arctan

(
w
u

)
+

(q+λq)xvα√
u2+v2+w2

+ Cα0

(1 + Cβsi
) arctan

(
v√

u2+w2

)

− (r+λr)xvβ√
u2+v2+w2

+
(p+λp)zvβ√
u2+v2+w2

+ Cβ0

h− h0
















.(5.57)

The Jacobians of f(•) from Eq. 5.55 and h(•) from Eq. 5.57 can now be calculated as

shown in Eq. 5.22 and Eq. 5.23, respectively. Before being able to start up the IEKF, the

input and observation noise covariance matrices Q and R from Eq. 5.21, respectively, are

initialized using the expected standard deviation of the measurement error from Table 5.3:

Q =












σ2
Ax

0 0 0 0 0

0 σ2
Ay

0 0 0 0

0 0 σ2
Az

0 0 0

0 0 0 σ2
p 0 0

0 0 0 0 σ2
q 0

0 0 0 0 0 σ2
r












, R =














σ2
φ 0 0 0 0 0 0

0 σ2
θ 0 0 0 0 0

0 0 σ2
ψ 0 0 0 0

0 0 0 σ2
V 0 0 0

0 0 0 0 σ2
α 0 0

0 0 0 0 0 σ2
β 0

0 0 0 0 0 0 σ2
h














.

(5.58)

5.4.4 Investigation of state observability

An important consideration to be made during state estimation is the observability of

the state. While it is straightforward to check the observability of linear systems, the

observability of nonlinear systems is much less trivial, see e.g. [80, 127, 214]. In this thesis,

the algorithm given by Walcott et al. is used [214] to analytically check the observability of

the system from Eq. 5.55 and Eq. 5.57.
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First, let O be the nonlinear observability matrix as follows:

O =













δxh

δx(Lfh)

δx(LfLfh)
...

δx(Lf · · ·Lf
︸ ︷︷ ︸

n−1

h)













, (5.59)

with Lf the Lie derivative as follows:

Lfh = δxh · f
LfLfh = δx(Lfh) · f

LfLfLfh = δx(LfLfh) · f
...

(5.60)

The state is observable if the observability matrix is of full rank:

rank O = n (5.61)

Using the Matlab symbolic toolkit, it was found that the observability matrix O from

Eq. 5.59 was rank deficient for the state matrix given in Eq. 5.51. In fact, it was found that

the observable subspace of the system did not contain the states Cα0
and Cβ0

. At runtime,

however, it was found that the local linearization of the system in step Eq. 5.24 and Eq. 5.34

of the IEKF further reduced the observable subspace, such that the state Cβsi
was no longer

observable.

Subsequently, a new observable state xm ∈ R
14 was defined as follows:

xm =
[

u v w φ θ ψ z λu λv λw λp λq λr Cαup

]⊤
, (5.62)

Because the new observable state vector xm does not contain Cα0
, Cβsi

, and Cβ0
, both

the state transition model f(•) and the output model h(•) need to be modified to reflect

this change. The new state transition model is modified from the form in Eq. 5.55 into the
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following:

ẋm = f(xm(t),um(t),w(t), t)

=

















Ax + λx − g sin(θ)− w(λq + q) + v(λr + r)

Ay + λy + w(λp + p)− u(λr + r) + g cos(θ) sin(φ)

Az + λz − v(λp + p) + u(λq + q) + g cos(φ) cos(θ)

λp + p+ (λr + r) cos(φ) tan(θ) + (λq + q) sin(φ) tan(θ)

(λq + q) cos(φ)− (λr + r) sin(φ)

(λr + r) cos(φ) sec(θ) + (λq + q) sin(φ) sec(θ)

w cos(φ) cos(θ)− u sin(θ) + v cos(θ) sin(φ)

07×1

















(5.63)

The observation model is modified from the form in Eq. 5.55 into the following:

ym = h(xm(t),um(t),v(t), t)

=
















φ

θ

ψ√
u2 + v2 + w2

(1 + Cαup
) arctan

(
w
u

)
+

(q+λq)xvα√
u2+v2+w2

+

(arctan
(

v√
u2+w2

)

− (r+λr)xvβ√
u2+v2+w2

+
(p+λp)zvβ√
u2+v2+w2

h− h0
















. (5.64)

5.4.5 Engine model

The model for the Pratt & Whitney JT15D-4 turbofan engines is a complex, data table

based model. The model takes various air data readings as inputs, as well as the fraction of

maximum rotational velocity of the low pressure turbine stage (N1), which is connected to

the fan. Unfortunately, during test flights 3 till 7,N1 was not logged; the only logged engine

parameter was the fuel flow. However, this parameter is correlated toN1 and can be used to

create a black box model that relates the fuel flow to N1. A bivariate simplex spline model

was used to create the black box model relating the fuel flow to N1. The identification and

validation data came from the hardover test flight in 2008. During this particular flight, both

N1 and the fuel flow where logged. The simplest model structure that produced the best fit

with the validation dataset was a 3rd degree bivariate simplex spline model on 5 simplices:

N1 = f(TAT, FF ) ∈ S1
3 (T5), (5.65)

with TAT the total air temperature in Kelvin, and with FF the fuel flow in Kg/s.

In Figure 5.28 the output from the spline function is shown, together with a plot of the
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Figure 5.28: The 3rd degree simplex spline model relating the total air temperature

(TAT ) and the engine fuel flow (FF ) to the fraction of maximum rotational velocity

(N1) of the low pressure turbine.

triangulation and the identification dataset. This dataset consisted of more than one million

data points, which were scattered through the TAT -FF plane. The output from the spline

function then formed the input to the Pratt & Whitney model for the JT15D-4 turbofan

engine.

5.4.6 Mass model

The mass model for the Cessna Citation II used in this thesis was developed at the faculty of

Aerospace Engineering of the Delft University of Technology. The model is highly accurate

and takes into account the geometry of the fuel tank, the remaining fuel weight, and the

locations and weights of passengers and baggage. The mass model is initialized using

estimates of the basic empty weight (BEW) of the aircraft, the locations and weights of

the passengers and baggage, and the usable fuel weight. After initialization, the mass model

is updated using the fuel flow parameter.

The outputs from the mass model are the moments of inertia, and the location of the

center of gravity with respect to the datum of the axis system used by Cessna, a point

2.31 meter below, and 0.38 meter in front of the nose (see Appendix A). While these mass

related quantities vary only little during a maneuver, there is a significant difference in their

values between maneuvers. In Figure 5.29 the output from the mass model for test flight

5 is shown. This flight lasted almost three hours, during which the aircraft burned a total

of 1048 Kg (2312 lbs) of fuel. During this time, the principal moments of inertia change

significantly. The strongest change is found in the moment of inertia Jxx, the moment of
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Figure 5.29: The time varying moments and products of inertia and center of

gravity position for a complete test flight lasting almost three hours.

inertia about the XB-axis, which can be explained by the aircraft losing fuel mass from the

wing fuel tanks. At the same time, Figure 5.29 shows that the center of gravity position

does not vary significantly during flight, as the total c.g. shift over the entire flight is in the

order of centimeters.

5.4.7 Flight path reconstruction results

With the structure of the iterated extended Kalman filter defined by Eq. 5.62, Eq. 5.43,

Eq. 5.44, Eq. 5.64, and Eq. 5.63, the actual flight path reconstruction operation can

commence.

The only tunable values left are the expected standard deviations of the sensor

measurement errors, which were already presented in Table 5.3. With these values, the input

and observation noise covariance matrices Q and R from Eq. 5.58 could be initialized.
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The IEKF was run for all 247 flight test maneuvers. An indicative result of the state

estimation for a pitch 3211 maneuver is shown in Figure 5.30. It is interesting to note that

the angle of attack value measured at the boom is around 0.02 radians, or 1.14 degrees,

higher than the true geometric angle of attack. This bias was present in all maneuvers,

and proves that the angle of attack at the boom is indeed influenced by a fuselage induced

upwash. Also interesting in Figure 5.30 is the slight bias present in the pitch angle (i.e. θ)

plot, which increases over time. This is exactly as expected, because the accuracy of the

vertical gyro is limited, especially during the relatively violent flight test maneuvers. These

inaccuracies are integrated over time, causing a time dependent error. On the other hand,

the dead reckoning sensors like the AADC supplied altitude and velocity produce values

with an error which is more or less constant in time. Also interesting to note is the relative

inaccuracy of the gyrosyn compass, which produces a heading angle (i.e. ψ) which differs

significantly from the reconstructed heading angle.

In Figure 5.31 the sensor biases of the linear accelerometers and the rate gyroscopes are

plotted for a longitudinal maneuver. A measure of the convergence of the IEKF estimated

state to the true system state is obtained by initializing the IEKF with two additional initial

state vectors, one with a much lower than expected initial value and one with a much higher

than expected value. In Figure 5.31 these bounds are plotted as dashed lines, showing that

the IEKF converges to the optimal state estimation within a few hundred samples. However,

a comparison between the sensor biases of the linear accelerometers and the rate gyroscopes

shows that the linear accelerometers have much larger sensor biases than the gyroscopes.

In Figure 5.32 the estimated standard deviations of the sensor biases are plotted, showing

a strong convergence to their respective steady state values, proving that the estimator is

functioning properly.

In Figure 5.33 the Cαup
coefficient for a longitudinal 3211 maneuver is plotted, together

with the convergence bounds. WhileCαup
stabilizes at a value of around 0.18 the coefficient

can hardly be called a constant. The comparison of the estimated values for Cαup
for all 79

longitudinal maneuvers showed a standard deviation of 2.43 ·10−1 which is higher than any

of the sensor biases. This is a strong indication that Cαup
is actually a function, and not a

constant. In fact, it can be argued that Cαup
in this case is a compound function of fuselage

upwash and a turbulence function. The estimated standard deviation of Cαup
is shown in

Figure 5.34, again showing that the estimate of Cαup
is accurate.

In Figure 5.35 an indicative result of the state estimation for a (lateral) roll-3211

maneuver is shown. These results show that the angle of sideslip measurements are much

less biased than the angle of attack measurements. The physical explanation for this is the

fact that the v component of the total velocity is much smaller in magnitude than the u

component of the total velocity. This means that the streamlines induced by the fuselage

are effectively 2-dimensional and present mostly in the Xb − Zb-plane. The remainder of

the reconstructed parameters shows the same general characteristics as the reconstructed

parameters resulting from the longitudinal maneuver.
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Figure 5.30: The reconstructed state parameters (u, v, w, φ, θ, ψ and z) together

with the observed parameters (V , α and β) for a longitudinal δe-induced 3211

maneuver.
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by initializing the IEKF with a different initial condition for a longitudinal δe-induced

3211 maneuver.
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Table 5.8: Statistics of the sensor biases for all 247 maneuvers.

Bias term Long. mean Long. std Lat. mean Lat. std

λx −2.50 · 10−2 9.08 · 10−2 −3.85 · 10−2 8.70 · 10−2

λy 5.61 · 10−3 1.73 · 10−1 −5.34 · 10−2 1.88 · 10−1

λz 4.36 · 10−2 6.33 · 10−2 5.66 · 10−2 8.05 · 10−2

λp −1.66 · 10−4 4.04 · 10−4 −1.88 · 10−4 3.51 · 10−4

λq 1.63 · 10−4 5.09 · 10−4 1.22 · 10−4 6.66 · 10−4

λr 4.85 · 10−4 1.37 · 10−3 −4.23 · 10−5 1.25 · 10−3

In Figure 5.36 the estimated sensor biases for the lateral maneuver are shown, while

Figure 5.37 shows their estimated standard deviations. A measure of the convergence of

the IEKF estimated state to the true system state is obtained by initializing the IEKF with a

lower and upper bound initial state vector. In Figure 5.36 these bounds are plotted, showing

that the IEKF converges to the optimal state estimation within a few hundred samples, just

as for the longitudinal maneuver.

In Figure 5.38 the Cαup
coefficient for the roll-3211 maneuver is plotted, together with

the convergence bounds. In Figure 5.39 the estimated standard deviation of Cαup
is plotted,

proving that the estimate is accurate. This time Cαup
stabilizes at a value of around 0.23,

and does not fluctuate as much as for the longitudinal case. However, the standard deviation

in the Cαup
values for all 62 lateral maneuvers is 2.22 ·10−1 which, like for the longitudinal

case, is higher than any of the sensor biases.

Finally, in Figure 5.40 and Figure 5.41 the complete set of sensor biases for respectively

all 79 longitudinal and 62 lateral flight test maneuvers are plotted. These figures clearly

show that the sensor biases are confined to a relatively limited range. The corresponding

statistics of the bias terms are shown in Table 5.8. From the figures and the table it can be

concluded that the variance in the bias of the linear accelerometers is two to three orders of

magnitude higher than that of the rate gyroscopes. This again strengthens the argument that

the linear accelerometers in the IMU produce substandard quality measurements.
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Figure 5.35: The reconstructed state parameters (u, v, w, φ, θ, ψ and z) together

with the observed parameters (V , α and β) for a lateral δa-induced 3211 maneuver.
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Figure 5.36: The sensor biases together with convergence bounds obtained by

initializing the IEKF with a different initial condition for a lateral δa-induced 3211

maneuver.
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Figure 5.37: Estimated standard deviations of the sensor biases for a lateral δa-

induced 3211 maneuver.
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Figure 5.38: The Cαup coefficient for a lateral δa-induced 3211 maneuver.
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Figure 5.40: The sensor biases for all 79 longitudinal flight test maneuvers.



260 Aerodynamic Modeling of the Cessna Citation II

λr values for all maneuvers

[r
a
d
/s
]

time [s]

λq values for all maneuvers

[r
a
d
/s
]

λp values for all maneuvers

[r
a
d
/s
]

λz values for all maneuvers

[m
/s

2
]

time [s]

λy values for all maneuvers

[m
/s

2
]

λx values for all maneuvers

[m
/s

2
]

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

−0.01

−0.005

0

0.005

0.01

−0.01

−0.005

0

0.005

0.01

−0.01

−0.005

0

0.005

0.01

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

Figure 5.41: The sensor biases for all 62 lateral flight test maneuvers.
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5.5 Spline Model Estimation

In this section, the new identification method based on multivariate simplex splines is

used to identify spline based models for the aerodynamic force and moment coefficients

of the Cessna Citation II laboratory aircraft. The data used for identification and validation

was the result of 247 flight test maneuvers flown during seven test flights. The raw data

was preprocessed after which flight path reconstruction techniques were used to estimate

the crisp aircraft states, as explained in Sec. 5.4. The resulting dataset was split in

an identification dataset, which consisted of roughly two-thirds of the maneuvers, and a

validation dataset which consisted of the remaining third of the flight test maneuvers. The

validation set was blindly selected from the complete dataset to prevent user induced biases

in the results. The spline models were then identified using the identification dataset, and

validated with the validation maneuvers.

The aim of this section is the presentation of the procedure for creating multivariate

simplex spline based aerodynamic models using flight test data. First, in Sec. 5.5.1, an

overview of the complete procedure is given. Next, in Sec. 5.5.2 the geometric model

structure selection is discussed. Geometric model structure selection is the process in

which candidate input dimensions and triangulations are defined based on a set of input and

validation data. This candidate selection is performed using a novel method which analyses

the occurrence and magnitude of hysteresis in datasets. After the candidate geometric

model structures are selected, the candidate polynomial model structures are defined in

Sec. 5.5.3. With a large set of candidate geometric and polynomial model structures, the

prototype phase of aerodynamic model estimation could commence during which a total of

2142 spline models were created. In Sec. 5.5.4, the high level results from this phase are

discussed. Additionally, it is demonstrated that simplex spline models are of a quality that

is superior to ordinary polynomial models in the majority of cases. From the full set of

prototype spline models, the best performing subsets are selected for the model refinement

phase. The model refinement phase aims to create higher quality models by refining the

triangulations and determining the optimal spline space for the spline models. In Sec. 5.5.6

the results from the model refinement phase are discussed.

5.5.1 A framework for AMI with simplex splines

In Figure 5.42 an overview of the spline model estimation part of the multivariate simplex

spline based aerodynamic model identification (AMI) procedure is given. The input to

the spline model estimator is a set of identification maneuvers, and a set of validation

maneuvers. In Table 5.9, an overview is given of the number of identification and validation

maneuvers.

The spline model estimation part in Figure 5.42 can be divided into a geometric

model structure selection block, a polynomial model structure selection block, a parameter
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Table 5.9: Properties of the identification and validation datasets.

State plane Identification maneuvers Validation maneuvers

longitudinal 57 22

lateral 42 20

coupled 78 28

estimation block and a model validation block. The most complex of these blocks is the

geometric structure selection block. In this block a set of input dimensions is selected from

a list of candidate dimensions, after which a triangulation is created which is embedded in

the space spanned by the input dimensions. The second model structure selection block is

the polynomial model structure selection. The selection of the polynomial model structure

itself is rather trivial, as only the degree and continuity of the spline space needs to be

set. However, care must be taken to avoid B-net propagation for certain combinations of

polynomial degree and continuity order, as explained in Sec. 3.3.4.

With a valid triangulation and a given polynomial model structure, parameter estimation

can commence. The output from the parameter estimator are the estimated B-coefficients,

and the B-coefficient covariance matrix introduced in Sec. 4.2. The resulting multivariate

spline model is then validated using a set of validation data. Based on the results from model

validation, the loop is either repeated or exits with a multivariate simplex spline model that

best fits the given identification and validation datasets.

Spline model estimation is conducted in two distinct phases, as was explained in

Sec. 4.1. During the first phase, which is the prototype phase, the best performing geometric

model structure is determined by creating spline models of varying degrees and continuity

orders on the simplest possible triangulation, the triangulation of the hypercube. Based on

this initial analysis, the best performing candidate dimensions are selected.

Using the best performing spline functions resulting from the prototype phase, the next

model refinement phase can commence. During the refinement phase, the resolution of

the triangulations is increased to improve model quality. Additionally, the differential

constraints presented in Sec. 3.4 can be applied to further increase the quality of the model

in areas with insufficient data coverage.

In the next two sections the geometric and polynomial model structure selection

procedures will be discussed in depth.

5.5.2 Geometric model structure selection

Geometric model structure selection consists of the selection of the model dimensions, and

the creation of a triangulation in the selected model dimensions. Finding the true set of

dimensions of a model given a set of data is a key task in system identification. This task

is challenging, especially when the number of dimensions is greater than 3. In this thesis
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Figure 5.42: An overview of the procedure for aerodynamic model estimation with

simplex splines.

a novel method for determining the dimensions of a model is used. This method uses the

occurrence of hysteresis as an indicator for missing model dimensions. In the following, the

mathematical reasoning behind the use of this indicator is given.

First let xi be an input dimension of some physical system S with a domain D(S) ∈ R
s.

For example, for an aircraft xi could be the angle of attack α, or the angle of sideslip β.

Every dimension xi of a physical system has some influence on its dynamics, otherwise it

would not be considered a system dimension in the first place. This effectively means that

measurements made on the output y(t) of S along a trajectory with a non-zero component in

the direction of the axis xi contain the influence of xi on S. The complete input-observation

pair for this trajectory would then be X = (x(t),y(t)). Now let x̃(t) ∈ R
s−k, with 1 ≤

k < s be a projection of the real trajectory x on the lower dimensional space R
s−k. The

physical interpretation of this would be that x̃(t) is the measured state vector of a physical

system along a trajectory, while x(t) are its true states which are not all measured. The

observations y(t) made along the trajectory x̃(t) are still the same as those made for the

true trajectory x(t). Because x̃(t) is a projection of x(t) on a space of reduced dimension,

however, there can be values in x(t) which are separated in R
s along k dimensions, but

which are identical in R
s−k. In that case it is possible that there are multiple, possibly

widely varying, values of y(t) at the same location in R
s−k. Hysteresis has occurred in the

space R
s−k, but only because k input dimensions of the system where neglected.

An illustration of this reasoning is given in Figure 5.43, where apparent hysteresis effects

are shown in the left hand plot. The hysteresis in this case is caused by the fact that the
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Figure 5.43: Hysteresis as a result of hidden model dimensions; apparent

hysteresis for a trajectory in the (x0, f(x0) plane (left) resulting from effects of

the hidden dimension x1 (right).

domain of the system being modeled is D(S) ∈ R
2, which is shown in the right hand plot.

When measurements on the system are made along the trajectory x(t) ∈ R
2, no hysteresis

occurs. Only when projecting the true trajectory x(t) onto R
1 such that x̃(t) ∈ R

1 does

hysteresis in the measurements on the system occur.

The actual hysteresis analysis is performed as follows. First, a grid of hypercubes of a

selected set of dimensions is inserted in the data space. The data points are then assigned

to the hypercube which envelopes them. Next, the range of values of the aerodynamic

coefficients is determined for the data points in every hypercube. Finally, the aerodynamic

coefficient ranges between hypercubes are compared. If there is a significant overlap of the

aerodynamic coefficient ranges between hypercubes, then this may point to the occurrence

of hysteresis, and a possible missing dimension. After hysteresis has been discovered, a new

candidate dimension is added to the hypercube grid, after which the process is repeated.

When the ranges of the aerodynamic coefficients between hypercubes show an overlap

which is in the order of magnitude of the measurement noise, then an adequate set of

dimensions has been selected.

It should be noted here that the accuracy of the method depends for a large part on the

resolution of the grid of hypercubes. It was found that at least 10 hypercube vertices should

be placed along every dimension. In spaces of high dimensionality (i.e. n > 8), the total set

of hypercubes can easily outnumber the total number of available data points. For example,

for n = 8 a total of 100 million 8-dimensional hypercubes would be necessary to cover

the complete data space. This means that for any reasonable analysis, hundreds of millions
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Table 5.10: The dimension candidates of the aerodynamic models for the

longitudinal coefficients CX , CZ and Cm.

n Candidate Dimension Sets

CX

1 α, q̂, δe, Te

2 (α, q̂), (α,M), (α, δe), (α, Te), (α, β), (q̂,M), (q̂, Te), (δe, Te)
3 (α, q̂, δe), (α,M, δe), (α, β, δe), (α, q̂, Te), (α,M, Te), (α, β, Te),

(α, δe, Te), (α, β,M), (α, β, q̂), (α, q̂,M), (α,M, δe), (α,M, Te), (q̂, δe, Te)
4 (α, q̂, δe, Te), (α, q̂,M, Te) (α,M, δe, Te) (α, β,M, Te) (α, β,M, Te)

(α, β, δe, Te) (α, β,M, δe)
5 (α, q̂,M, δe, Te), (α, β, q̂,M, Te) (α, β, q̂,M, Te) (α, β,M, δe, Te)

CZ

1 α, q̂, δe, Te

2 (α, q̂), (α,M), (α, δe), (α, Te), (α, β), (q̂,M), (q̂, Te), (δe, Te)
3 (α, q̂, δe), (α,M, δe), (α, β, δe), (α, q̂, Te), (α,M, Te), (α, β, Te),

(α, δe, Te), (α, β,M), (α, β, q̂), (α, q̂,M), (α,M, δe), (α,M, Te), (q̂, δe, Te)
4 (α, q̂, δe, Te), (α, q̂,M, Te) (α,M, δe, Te) (α, β,M, Te) (α, β,M, Te)

(α, β, δe, Te) (α, β,M, δe)
5 (α, q̂,M, δe, Te), (α, β, q̂,M, Te) (α, β, q̂,M, Te) (α, β,M, δe, Te)

Cm

1 δe
2 (α, δe), (q̂, δe)
3 (α, q̂, δe), (α,M, δe), (α, β, δe), (α, δe, Te), (α,M, δe), (q̂, δe, Te),

(α, α̇, δe), (α̇, δe, Te)
4 (α, q̂, δe, Te), (α, q̂,M, δe), (α, α̇, δe, Te), (α, α̇,M, δe), (α,M, δe, Te),

(α, β,M, δe), (α, β, q̂, δe), (α, β, α̇, δe)
5 (α, β, q̂, δe, Te), (α, β, q̂,M, δe), (α, β, α̇, δe, Te), (α, β, α̇,M, δe),

(α, q̂,M, δe, Te), (α, α̇,M, δe, Te)

of measurement points should be available. This problem with high dimensional spaces

is aptly formulated by Tarentola in [204]: “There is one problem with large-dimensional

spaces that is easy to underestimate: they tend to be terribly empty.”

Using the hysteresis analysis, the candidate dimension sets for the aerodynamic models

were determined. In Table 5.10 the candidate dimension sets for the longitudinal models are

shown. The candidate dimension sets for the lateral models are shown in Table 5.11. In the

table, the dimensionless roll rate p̂, pitch rate q̂, yaw rate r̂, and engine thrust T̂e are defined

as follows:

p̂ =
pb

2V
, q̂ =

qc

V
, r̂ =

rb

2V
, T̂e =

Te
1
2ρV

2S
, (5.66)

With model dimension candidates selected, the next step in the geometric model

structure selection can commence; the triangulation generation. In Chpt. 2 a geometric
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Table 5.11: The dimension candidates of the aerodynamic models for the lateral

coefficients CY , Cl and Cn.

n CY

2 (β, δr), (β,M), (β, r̂), (r̂,M)

3 (β,M, δr), (β, β̇,M), (β, r̂,M), (r̂,M, δr), (β̇,M, δr), (β, r̂, δr), (r̂, δa, δr),
(α, β, δr), (α, β,M)

4 (β, r̂,M, δr), (β, β̇,M, δr), (β,M, δa, δr), (r̂,M, δa, δr), (β̇,M, δa, δr),
(α, β, δa, δr), (α, β,M, δr), (β, p̂, r̂,M)

5 (β, r̂,M, δa, δr), (α, β, r̂,M, δr), (β, β̇,M, δa, δr), (β, p̂, r̂,M, δr)

Cl

1 δa
2 (β, δa), (p̂, δa)

3 (β,M, δa), (β, β̇, δa), (β, p̂, δa), (α, β, δa)

4 (β,M, p̂, δa), (β, β̇,M, δa), (α, β,M, δa), (β, p̂, q̂, δa)

5 (β,M, p̂, r̂, δa), (β, β̇,M, δa, δr), (α, β,M, p̂, δa), (α, β, β̇,M, δa),
(α, β, p̂, q̂, δa), (β, p̂,M, δa, δr), (α, β,M, δa, δr)

Cn

1 δr
2 (β, δr), (r̂, δr)

3 (α, β, δr), (β, δr,M), (β, r̂, δr), (β, β̇, δr)

4 (α, β, δa, δr), (α, β,M, δr), (α, β, r̂, δr), (β, r̂,M, δr), (β, β̇,M, δr),
(β, r̂, δa, δr), (β, q̂, r̂, δr), (β,M, δa, δr)

5 (β,M, p̂, r̂, δr), (β, β̇,M, δa, δr), (α, β,M, r̂, δr), (α, β, β̇,M, δr),
(α, β, p̂, q̂, δr), (β, r̂,M, δa, δr), (α, β,M, δa, δr)

triangulation optimization method was introduced which was based on a geometrically

optimal fill of the convex hull of the data set. This method was used for the creation of

the triangulations for the multivariate simplex spline model.

In order to determine the best candidate from the preselected dimensions in Table 5.10

and Table 5.11, prototype spline models were created for every individual candidate

dimension. These prototype spline models use one of the simplest possible triangulations,

which is the Type I triangulation of a single hypercube. Based on the performance on the

single Type I hypercube triangulation, the best overall performing spline function can be

selected. The triangulation of this spline function will then be refined to further increase

the quality of the model. In Sec. 2.3.3 it was shown that the total number of simplices for a

symmetric Type I triangulations is equal to n!, with n the dimension of the spline model. In

Table 5.12 these numbers are repeated for clarity.

5.5.3 Polynomial model structure selection

As explained in Sec. 4.1 the polynomial model structure selection process for simplex

splines is relatively straightforward. Because the basis functions of the simplex splines form
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Table 5.12: Simplex count for Type I triangulations of the n-dimensional cube.

n Simplex Count Type I triangulation

2 2

3 6

4 24

5 120

Table 5.13: Polynomial model structures for all aerodynamic models.

r Spline spaces

-1 S−1

1
,S−1

2
,S−1

3
,S−1

4
,S−1

5

0 S0

1 ,S
0

2 ,S
0

3 ,S
0

4 ,S
0

5

1 S1

2 ,S
1

3 ,S
1

4 ,S
1

5

a basis for the space of all polynomials of degree d, it is not necessary to select individual

polynomial terms. Rather, a complete spline space of a given degree and continuity order is

selected, which then contains all possible polynomial terms of total degree d.

For the spline model identification prototype phase a total of 14 different degree-

continuity order combinations are used, see Table 5.13. Because the triangulation consists

of only a single hypercube, B-net propagation is not an issue, and any combination of

polynomial degree and continuity order can be tested. The tested polynomial model

structures can be divided into three groups; a group of discontinuous spline spaces

(continuity order −1), a group of value-continuous spline spaces (continuity order 0), and a

group of first order continuous spline spaces (continuity order 1).

In the following example, an elaboration of the polynomial model structure of a 3rd

degree spline model is provided.

Example 23 (A complete 3rd degree model structure for the pitching moment coefficient).

Let (δe, q̂,M) be the assumed geometric model structure for the pitching moment coefficient

Cm. If a 3rd degree model structure is to be used, the model has the following definition:

f(δe, q̂,M) ∈ S1
3 (5.67)

This means that for every single simplex, we have the following (equivalent) complete model

structure:

f(δe, q̂,M) = c1δ
3
e +

c2δ
2
e q̂ + c3δ

2
eM +

c4δeq̂
2 + c5δeq̂M + c6δeM

2 +

c7q̂
3 + c8q̂

2M + c9q̂M
2 + c10M

3 (5.68)
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with c1, c2, . . . , c10 the polynomial coefficients that are estimated during parameter

estimation.

5.5.4 Prototype phase results

Spline model estimation consists of two distinct phases. In the first phase, the prototype

phase, a large number (i.e. 2000+) of simplex spline models are created using the ordinary

least squares B-coefficient estimator from Sec. 4.2. The goal of this phase is the selection

of the best performing candidate dimension set. The triangulation used during the prototype

phase is the Type I triangulation of the hypercube. For the polynomial model structures all

spline spaces from Table 5.13 are used.

Parameter estimation is performed using a set of identification data which consists of

a subset of the flight test maneuvers. The remaining maneuvers are then used to validate

the estimated spline models, see Table 5.4. For assessing the quality of the created spline

models, three different quality measures are used; the root mean square (RMS) of the

residual, the maximum absolute residual, and the coefficient of determination. These model

quality measures will first be discussed.

First, let Xval ∈ R
s be a set containing a total of Nval validation data locations. The set

of validation locations is formed by the union of Nval vectors in R
s as follows:

Xval =
Nval⋃

i=1

xi, xi ∈ R
s, (5.69)

with xi a single validation data location.

The model residual of the general aerodynamic coefficient C and the spline function s

can then be defined as follows:

ǫ(Xval) := C(Xval)− s(Xval), (5.70)

with C(Xval) the measured values of one of the six aerodynamic coefficients at every

location in the validation dataset Xval, and with s(Xval) the values predicted by the simplex

spline model at these same locations. The residual RMS is then calculated as follows:

RMSǫ :=

√
√
√
√ 1

N

N∑

i=1

(ǫ(xi))2, xi ∈ Xval. (5.71)

The quality of aerodynamic models can be better assessed and compared if the residual RMS

is scaled by the range of values of the aerodynamic coefficient at the validation locations as

follows:

RMSrelǫ =
RMSǫ

|maxC(Xval)−minC(Xval)|
. (5.72)
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In the following, the scaled RMS will be called the ‘relative RMS’, or RMSrel score. The

relative RMS gives a good and easily interpretable indication of the quality of a model. For

example, ifRMSrel = 1.0 the root of the mean squared residual is of the same magnitude as

the range of the data being approximated, from which it can be concluded that this particular

model is of inadequate quality. In this thesis, a model is considered to be of adequate quality

if it has an RMSrel score of < 5 · 10−2, while a model is considered excellent if it achieves

an RMSrel score of < 1 · 10−2.

The RMSrel score is just part of the whole story. A model can achieve an adequate

RMSrel score, but still have significant outliers, indicating a possible overfitting model or

a numerical instability in the B-coefficient estimator. This is why the maximum residual is

also considered an important model quality measure. Using Eq. 5.70 the maximum residual

is defined as follows:

ǫmax := max |ǫ(Xval)|. (5.73)

Again, a better assessment of the quality of the spline models can be obtained if the

maximum error is scaled by the range of C(Xval) as follows:

ǫrelmax :=
max |ǫ(Xval)|

|maxC(Xval)−minC(Xval)|
. (5.74)

This is the maximum relative error ǫrelmax. The maximum relative error should not be used

as the primary model quality measure since a single outlier of an otherwise adequate spline

model can lead to it being classified as inadequate. Together with the relative RMS score,

however, it provides an efficient way of assessing the overall quality of a spline model.

A final measure of model quality is the well-known coefficient of determination R2

which is defined using Eq. 5.70 as follows:

R2 := 1−
∑Nval

i=1 ǫi(Xval)2
∑Nval

i=1

(

Ci(Xval)− C(Xval)
)2 , (5.75)

with C(Xval) the mean value of C(Xval).
The coefficient of determination was not used as a primary measure of model quality

because in some cases it produced overly optimistic validation results for models that were

of obviously low quality.

The complete set of prototype spline models consisted of 2142 models. In Figure 5.44,

Figure 5.45, Figure 5.46, Figure 5.47, Figure 5.48, and Figure 5.49 the overall model

validation results are shown for all models. In all figures a more negative RMSrel and

ǫrelmax score should be interpreted as a more accurate validation result and thus a higher

quality model. In the figures, the model validation results on the exact same datasets of 2142

ordinary polynomial models are shown. Like the simplex spline models, the polynomial

models are estimated using an ordinary least squares estimator. The gray lines in the figures
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show the connection between the simplex spline model of degree d and the corresponding

polynomial model of degree d on the same dataset.

Three very important conclusions can be drawn from Figure 5.44, Figure 5.45,

Figure 5.46, Figure 5.47, Figure 5.48, and Figure 5.49. First, the simplex spline based

models invariably are of higher quality than ordinary polynomial models if the set of

candidate dimensions is adequately chosen. A good example of this is the plot for the

pitching moment coefficient Cm. In this plot, almost all simplex spline models are of a

significantly higher quality than polynomial models of the same degree on the same set of

dimensions.

The second conclusion is that if the set of model dimensions is not adequately chosen,

then the simplex spline models produce highly inadequate results. In this case, the

polynomial models outperform the spline models, sometimes by many orders of magnitude.

An example of this is the plot for CX in Figure 5.44. Most spline models at the right side of

the plot, which corresponds with models of high dimension, produce low quality results and

are outperformed by simple polynomials of the same total degree. This can be explained

as follows. A simplex spline function has an approximation power that is proportional with

the total number of simplices on which it is defined. In this sense, a simple polynomial

model is exactly equal to a simplex spline polynomial on a single simplex, a fact that was

proved in Sec. 3.5. If an inadequate set of dimensions is chosen, the B-coefficient estimator

still finds an optimal solution which in most cases accurately fits the identification dataset.

On the validation dataset, however, this same spline function will produce wildly varying

results. This situation is demonstrated in the center of the plot for Cl in Figure 5.47, where

there is 1 spline function which achieves an RMSrel value of around 10−1.85. This is a

suspicious result, because the other spline functions of the same dimension but with different

polynomial degrees produce validation errors which are significantly larger.

This leads to the third conclusion, which is that high quality spline functions defined

on an adequately chosen set of dimensions will produce validation results which between

different spline degrees do not differ by more than a factor 5 (±0.7 orders of magnitude).

Furthermore, increasing the degree of a spline function should reduce the validation error,

at least up to some point. On the other hand, increasing the continuity of the spline function

should somewhat increase the validation error, because a higher continuity order results in

a lower approximation power, as was explained in Sec. 3.3.3.

5.5.5 Prototype phase final model structure selection

Based on the results from the prototype model estimation, the best performing spline model

structures are selected. For most force and moment coefficients, however, there remain two

or more viable geometric model structure candidates, see Table 5.14. In the final selection

procedure, a single geometric model structure will be selected for each force and moment

coefficient. Additionally, the specific degree and continuity order of the spline model will
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Figure 5.44: A qualitative comparison between the relative residual RMS (top)

and the relative maximum error (bottom) in the model validation results of all 448

spline based aerodynamic models for CX . The performance is compared with

polynomials of the same dimension and total degree as the spline models. A score

of −1 corresponds with a 90% accurate model, while a score of −1.5 corresponds

with a 97% accurate model.
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Figure 5.45: A qualitative comparison between the relative residual RMS (top)

and the relative maximum error (bottom) in the model validation results of all 350

spline based aerodynamic models for CY . The performance is compared with

polynomials of the same dimension and total degree as the spline models. A score

of −1 corresponds with a 90% accurate model, while a score of −1.5 corresponds

with a 97% accurate model.
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Figure 5.46: A qualitative comparison between the relative residual RMS (top)

and the relative maximum error (bottom) in the model validation results of all 448

spline based aerodynamic models for CZ . The performance is compared with

polynomials of the same dimension and total degree as the spline models. A score

of −1 corresponds with a 90% accurate model, while a score of −1.5 corresponds

with a 97% accurate model.
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Figure 5.47: A qualitative comparison between the relative residual RMS (top) and

the relative maximum error (bottom) in the model validation results of all 252 spline

based aerodynamic models for Cl. The performance is compared with polynomials

of the same dimension and total degree as the spline models. A score of −1
corresponds with a 90% accurate model, while a score of −1.5 corresponds with a

97% accurate model.
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Figure 5.48: A qualitative comparison between the relative residual RMS (top)

and the relative maximum error (bottom) in the model validation results of all 336

spline based aerodynamic models for Cm. The performance is compared with

polynomials of the same dimension and total degree as the spline models. A score

of −1 corresponds with a 90% accurate model, while a score of −1.5 corresponds

with a 97% accurate model.
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Figure 5.49: A qualitative comparison between the relative residual RMS (top)

and the relative maximum error (bottom) in the model validation results of all 308

spline based aerodynamic models for Cn. The performance is compared with

polynomials of the same dimension and total degree as the spline models. A score

of −1 corresponds with a 90% accurate model, while a score of −1.5 corresponds

with a 97% accurate model.
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Table 5.14: The selected geometric model structures for the decoupled

aerodynamic models.

Coefficient Candidate Dimension Sets for Refinement

CX (α,M, δe), (α, q̂,M, δe)
CY (β, r̂, δr)
CZ (α, q̂, δe), (α, q̂,M, δe)
Cl (β, p̂, δa), (β,M, p̂, r̂, δa)
Cm (α, β, q̂, δe), (α, α̇, β, δe), (α, β, q̂,M, δe)
Cn (β,M, r̂, δr), (β,M, p̂, r̂, δr)

be determined. This determination will be made on the basis of a number of criteria. The

first criterion is that the quality of the model should improve with increasing spline degree,

at least up to a certain degree. The second criterion is that the model quality should be

consistently higher than that of ordinary polynomials of the same degree. The final criterion

is that a model of higher dimension will only be selected if it produces results of significantly

higher quality than models of lower dimension.

During this final selection procedure, an additional set of spline spaces was used to help

determine the optimal polynomial degree for the model. The additional spline spaces are

S3
5 , S−1

6 , S0
6 , S1

6 , S2
6 , and S3

6 .

In the following, the final model structure selection procedure for each aerodynamic

force and moment coefficient will be discussed. It is important to note that the results

shown in the following paragraphs are the results from model validation, and not from

model identification.

5.5.5.1 CX final model structure selection

The validation performance of the remaining two spline model structure candidates for the

longitudinal force coefficient CX is plotted in Figure 5.50 and Figure 5.51. A comparison

between these two plots shows that the 3-dimensional spline models produce lower (=better)

overall RMSrel values than the 4-dimensional models. The inclusion of the dimensionless

pitch rate does not significantly improve model quality. The selected spline space is a fourth

degree model with second order continuity between the spline pieces. This spline space is

selected because it produced one of the lowest RMSrel values, while also producing one

of the lowest maximum relative error values. The selected spline model for CX therefore is

f(α,M, δe) ∈ S2
4 .

5.5.5.2 CY final model structure selection

The lateral force coefficient CY proved to be the most challenging coefficient to model.

It is hypothesized that this is the result of insufficient excitation of the aircraft in the YB
direction. The model structure that produced adequate results contained the dimensions β,
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Figure 5.50: Validation results for the spline model f(α,M, δe) for CX . The

ordinary polynomial models are indicated as p ∈ Pd.
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Figure 5.51: Validation results for the spline model f(α,M, δe, q̂) for CX . The

ordinary polynomial models are indicated as p ∈ Pd.
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Figure 5.52: Validation results for the spline model f(β, δr, r̂) for CY . The ordinary

polynomial models are indicated as p ∈ Pd.

r̂, and δr. In Figure 5.52 the validation results of the highest scoring dimension candidate

are shown. The selected spline space for CY is f(β, δr, r̂) ∈ S1
3 , a third degree spline space

with second order continuity. This spline space produced adequate RMSrel values, as well

as the lowest relative maximum error.

5.5.5.3 CZ final model structure selection

In Figure 5.53 and Figure 5.54 the validation results of the two best performing spline

model structure candidates for the vertical force coefficient CZ are shown. In this case the

4-dimensional models f(α,M, δe, q̂) produce significantly higher quality validation results

than the 3-dimensional models. From the 4-dimensional spline spaces, the spline space

f(α,M, δe, q̂) ∈ S2
4 is selected for refinement. This particular spline space produced high

RMSrel scores as well as high relative maximum error scores.

5.5.5.4 Cl final model structure selection

In Figure 5.55 and Figure 5.56 the validation results of the two remaining spline model

structure candidates for the aerodynamic rolling moment coefficient Cl are shown. The

first candidate is the 3-dimensional set (β, δa, p̂), and the second the 5-dimensional set

(M,β, δa, p̂, r̂). The figures show that the validation results of some of the 5-dimensional

spline functions are of significantly higher quality than the 3-dimensional spline functions.

However, a number of spline spaces produce very low quality results, most notably the

spline spaces with low continuity orders. This points to numerical issues which find their
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Figure 5.53: Validation results for the spline model f(α, δe, q̂) for CZ . The ordinary

polynomial models are indicated as p ∈ Pd.
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Figure 5.54: Validation results for the spline model f(α,M, δe, q̂) for CZ .
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Figure 5.55: Validation results for the spline model f(β, δa, p̂) for Cl. The ordinary

polynomial models are indicated as p ∈ Pd.
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Figure 5.56: Validation results for the spline model f(M,β, δa, p̂, r̂) for Cl. The

ordinary polynomial models are indicated as p ∈ Pd.

cause in the data coverage problem. It was found earlier that the data coverage problem is

more severe for higher dimensional splines. Given the current dataset, the spline function

f(β, δa, p̂) ∈ S2
4 is selected for further refinement.
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Figure 5.57: Validation results for the spline model f(α,M, δe, q̂) for Cm. The

ordinary polynomial models are indicated as p ∈ Pd.

5.5.5.5 Cm final model structure selection

For the pitching moment coefficient Cm, three candidate model structures remain in the

form of the two 4-dimensional sets (α,M, δe, q̂) and (α, β, δe, q̂), and the 5-dimensional set

(α,M, β, δe, q̂). The validation results for these three candidate model structures is shown

in Figure 5.57, Figure 5.58, and Figure 5.59. From these figures it can be seen that the

5-dimensional model structure produces adequate results, but only for a subset of spline

spaces. Again, this is the result of numerical issues caused by the data coverage problem.

The two 4-dimensional models consistently produce adequate quality models. Of these two

remaining candidates, the set (α,M, δe, q̂) results in lower relative maximum error values.

From Figure 5.57 it can be seen that the f(α,M, δe, q̂) ∈ S2
4 spline function produces

adequate values for RMSrel and for ǫrelmax, leading to its selection as the refinement

candidate for Cm

5.5.5.6 Cn final model structure selection

In Figure 5.60 and Figure 5.61 the validation results from the modeling of the yawing

moment coefficient Cn are shown. In these figures, the f(M,β, δr, r̂) and f(M,β, δr, p̂, r̂)

spline models are plotted. From the figure, it can be seen that the 5-dimensional model

produces adequate quality results, but only for lower degree models and high relative

continuity orders. This indicates that there are numerical problems in the estimator, which

again is caused by insufficient per-simplex data coverage. While 4-dimensional spline

models are of somewhat lower quality, the overall results are more consistent. From the
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Figure 5.58: Validation results for the spline model f(α, β, δe, q̂) for Cm. The

ordinary polynomial models are indicated as p ∈ Pd.
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Figure 5.59: Validation results for the spline model f(α,M, β, δe, q̂) for Cm. The

ordinary polynomial models are indicated as p ∈ Pd.
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Figure 5.60: Validation results for the spline model f(M,β, δr, r̂) for Cn. The

ordinary polynomial models are indicated as p ∈ Pd.

 

 

p ∈ Pd

s ∈ S3
d

s ∈ S2
d

s ∈ S1
d

s ∈ S0
d

s ∈ S−1
d

Maximum residual error for Cn = f(M,β, δr, p̂, r̂)

d

L
og
(ǫ

r
el
m
a
x
)

Relative residual RMS for Cn = f(M,β, δr, p̂, r̂)

d

L
og
(R
M
S
r
el
(ǫ
))

1 2 3 4 5 61 2 3 4 5 6
−0.6

−0.59

−0.58

−0.57

−0.56

−0.55

−0.54

−0.53

−0.52

−0.51

−0.5

−1.64

−1.62

−1.6

−1.58

−1.56

−1.54

−1.52

−1.5

Figure 5.61: Validation results for the spline model f(M,β, δr, p̂, r̂) for Cn. The

ordinary polynomial models are indicated as p ∈ Pd.

4-dimensional set of spline spaces the spline function f(M,β, δr, r̂) ∈ S2
4 is selected for

further refinement.
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Table 5.15: The results from the model refinement phase.

ADM Spline Initial Triangulation Final Triangulation

CX f(α,M, δe) ∈ S2

4 T6 T6

CY f(β, δr, r̂) ∈ S1

3 T6 T6

CZ f(α,M, δe, q̂) ∈ S2

4 T24 T22

Cl f(β, δa, p̂) ∈ S2

4 T6 T6

Cm f(α,M, δe, q̂) ∈ S2

4 T24 T22

Cn f(M,β, δr, r̂) ∈ S2

4 T24 T22

5.5.6 Model refinement

The prototype phase of the aerodynamic model identification experiment is now complete,

resulting in the selection of the spline dimensions and spline spaces shown in Table 5.15.

The refinement phase of spline model estimation can commence. During model refinement,

it was found that data coverage was by far the most important factor for the quality of a

spline model. In most cases, the spline models became of higher quality after simplices with

insufficient data coverage were actually removed from the triangulation, see Table 5.15. The

data coverage problem effectively prevented the creation of triangulations of significantly

higher resolution than that of the prototype hypercube triangulation. Perhaps the most

important recommendation made in this thesis is that a software tool should be developed

for checking, during flight, the data coverage of candidate triangulations.

The differential constraints from Sec. 3.4.1 were imposed on the edges of the triangu-

lations to reduce polynomial divergence. The differential constraints effectively enabled

the successful estimation of spline functions for triangulations with inadequate local data

coverage, thereby reducing the severity of the data coverage problem.

5.6 Spline Model Validation

A model has no value without having been extensively validated. All spline models created

in Sec. 5.5 are put through the model validation steps presented in Sec. 4.3 to confirm

their quality. These steps include a global model inspection and flight dynamics analysis,

a B-coefficient stability analysis, a model residue analysis and a number of statistical tests.

Some of these quality methods, like the spatial B-coefficient variance analysis and the B-

coefficient stability analysis, are unique to simplex spline based models. Together, these

analysis methods provide a complete overview of the quality of a multivariate simplex spline

model.

The first analysis is an inspection of the raw validation results and model residuals,

which are discussed in Sec. 5.6.1. Following this, a global model inspection is performed

in Sec. 5.6.2. In Sec. 5.6.3 the results from a model residue analysis are presented. The

stability of the spline models is analyzed in Sec. 5.6.4 based on the values of the B-
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coefficients of the simplex splines. Subsequently, in Sec. 5.6.5 a statistical model quality

analysis is performed using the tools and techniques presented earlier in Sec. 4. This chapter

is summarized in Sec. 5.6.6 with a conclusion of the aerodynamic model identification

experiment.

5.6.1 Raw validation results

The raw results of the model validation give a more complete indication of the quality of the

multivariate spline based aerodynamic models than the global quality assessment discussed

in Sec. 5.5. These results will now be discussed for the final six selected aerodynamic

models from Sec. 5.5.6.

First, in Figure 5.62 the results from the validation of the 4-dimensional spline model

for the longitudinal force coefficient CX are shown. The results show that the model

only produces a globally accurate fit to the validation data, while failing to accurately

predict local details (RMSrel = 4.79%). This can be explained by the fact that all force

coefficients, including CX , are highly sensitive to errors in the estimate of aircraft mass.

Additionally, engine thrust was not a model dimension. While many prototype models were

created that included engine thrust as a dimension (see Table 5.10), none produced models

of adequate quality. The most likely cause for this is the fact that there was very little (if

any) excitation in the direction of aircraft thrust.

In Figure 5.63 the validation results of the spline model for the lateral force coefficient

CY are shown. This spline model produces reasonable quality validation results for most

of the validation maneuvers. However, the spline model predictions on CY for a number

of maneuvers at the beginning of the validation sequence in Figure 5.63 show significant

discrepancies with the measured CY , leading to low scores for model quality(RMSrel =

7.18%).

The validation results of the spline model for the vertical force coefficient CZ are

shown in Figure 5.64. Of all aerodynamic force coefficients, CZ proved to be the least

challenging to model accurately (RMSrel = 3.6%). As in the raw validation results for

CX and CY , significant offsets between model prediction and measured values are present.

Again, it is assumed that this is caused mainly by errors in the estimation of aircraft mass.

This assumption is strengthened by the fact that the most significant prediction errors of

the models for CX , CY , and CZ occur at the same maneuvers. For example, all force

predictions in the sample interval [0 2 · 104], which contains 4 maneuvers, show significant

errors.

The validation results of the spline model for the rolling moment coefficient Cl are

shown in Figure 5.65. These validation results show that the model for Cl is of adequate

quality for high amplitude maneuvers, like the maneuver shown in Closeup#2. For lower

amplitude maneuvers, however, the spline model consistently underestimates Cl, leading to

a less than adequate overall quality score (RMSrel = 7.18%). It is hypothesized that this is
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Figure 5.62: Validation results for the spline model f(α,M, δe) ∈ S2

4 for CX .

caused by the fact that the Mach number is not a dimension of this particular model. During

the prototype phase, models for Cl which included the Mach number were created, but all

suffered from numerical issues during estimation.

In Figure 5.66 the results of the validation of the spline model for Cm on the validation

maneuvers is shown. This spline model is of adequate quality, especially for high amplitude

maneuvers (RMSrel = 3.03%). Like the models for the aerodynamic forces, the spline

model for Cm produces inadequate predictions in the interval [0 2 · 104], strengthening the

argument that the mass model produces inaccurate predictions, in this case of the moments

of inertia.

Finally, the validation results of the spline model for the yawing moment coefficient Cn
are shown in Figure 5.67. This model is of adequate overall quality (RMSrel = 2.55%),

although some high amplitude maneuvers are not adequately modeled. It is worth noting
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Figure 5.63: Validation results for the spline model f(β, δr, r̂) ∈ S1

3 for CY .

that the measured values for Cn contains significant levels of (sensor) noise, which may

mask low magnitude features.

5.6.2 Global model inspection

The global quality of a spline model can be analyzed best by evaluating the spline function

on a number of grid points spaced equally throughout the spline model domain. This

analysis helps to determine the overall shape and smoothness of the spline models, which

in turn enable an interpretation of the models from a flight dynamics perspective. The

plots shown in this paragraph consist of slices through the multi-dimensional models, as

the higher dimensional models themselves cannot be visualized directly. Additionally, the

slices have been trimmed to show only those regions of the spline domain that are inside the
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Figure 5.64: Validation results for the spline model f(α,M, δe, q̂) ∈ S2

4 for CZ .

convex hull of the identification dataset. This ‘validity region’ was defined in Sec. 5.18, and

shown in Figure 5.20.

In Figure 5.68 four 2-dimensional slices through the domain of the spline function for

CX are shown. The slices in this case are made along the elevator deflection (δe) axis. The

surfaces shown in the individual plots thus show the effects of a constant elevator deflection

and varying Mach number and angle of attack. An important detail in Figure 5.68 is that the

slope of f(α,M, δe) in the direction of α is positive, i.e. CXα
> 0, which is an expected

result.

A global overview of the 3-dimensional spline model for CY is shown in Figure 5.69. In

this case 4 slices along the rudder deflection (δr) axis are plotted, where the surfaces show

the effect of β and r̂ on CY . In this case the slope of f(β, δr, r̂) in the direction of β is

negative, i.e. CYβ
< 0, which again is an expected result.

A total of eight 2-dimensional slices through the 4-dimensional model forCZ are shown
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Figure 5.65: Validation results for the spline model f(β, δa, p̂) ∈ S2

4 for Cl.

in Figure 5.70 and Figure 5.71. The slices in this case are made along the elevator (δe)

and dimensionless pitch rate (q̂) axes. The slope of f(α,M, δe, q̂) in the direction of α

is negative, i.e. CZα
< 0. However, as the angle of attack increases, CZα

becomes less

negative, indicating that the upper part of the lift slope has been reached.

In Figure 5.72 four slices along the δa axis through the 3-dimensional model for the

rolling moment coefficient Cl are shown. It can be observed that Clβ is negative, but only

slightly so. Only at large angles of sideslip does Clβ become significantly negative; Clβ
clearly is a nonlinear function in β.

A global overview of the 4-dimensional model for the aerodynamic pitching moment

coefficient Cm is shown in Figure 5.73 and Figure 5.74. The figures show eight slices

through the model for Cm along the dimensionless pitch rate (q̂) and the elevator deflection

(δe) axes. The figures show that the slope of f(α,M, δe, q̂) with respect to α is strongly

negative, i.e. Cmα
< 0. This is an expected result for a statically stable aircraft like the
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Figure 5.66: Validation results for the spline model f(α,M, δe, q̂) ∈ S2

4 for Cm.

Cessna Citation II. Additionally, it can be seen from the figure that Cm becomes more

negative with a more positive elevator deflection. This implies that Cmδe
< 0, which is

again an expected result.

Finally, in Figure 5.75 and Figure 5.76 eight slices along the rudder deflection and

dimensionless yaw rate axes of the 4-dimensional model for the yawing moment coefficient

Cn are shown. From the figure it can be seen that the slope of f(M,β, δr, r̂) in the direction

of β is positive, that is, Cnβ
> 0. For an aircraft with a damped Dutch Roll motion, like the

Cessna Citation II, this is an expected result. The rudder scales the complete model output,

with a more positive rudder deflection leading to a more negative Cn, i.e. Cnδe
< 0.



292 Aerodynamic Modeling of the Cessna Citation II

 

 

Spline Cn

Measured Cn

Closeup 4

Samples

Closeup 3

Samples

Closeup 2

Samples

Closeup 1

C
n

Samples

Cn validation results for f(M,β, δr, r̂) ∈ S2
4 (T22)

Samples

C
n

×104×104×104×104

×104

8.3 8.4 8.57.9 8 8.14.6 4.7 4.83 3.2 3.4

0 1 2 3 4 5 6 7 8 9 10

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

−0.015

−0.01

−0.005

0

0.005

0.01

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 5.67: Validation results for the spline model f(M,β, δr, r̂) ∈ S2

4 for Cn.

5.6.3 Model residual analysis

In Sec. 4.3 a spatial model residual analysis method based on Chebyshev’s inequality

was introduced. This analysis method results in empirical confidence intervals for the

B-coefficients of multivariate simplex splines. The empirical confidence intervals use the

identification model residual together with Chebyshev’s inequality, which is repeated here

for clarity:

Pr(|ǫ(Xid)− µ(ǫ(Xid))| ≥ aσ) ≤ 1

a2
, a ≥ 1,

with ǫ(Xid) the identification residual equivalent to Eq. 5.70, with σ the local standard

deviation of the model residue, and with a some constant. The constant a can now be

chosen such that a predefined fraction of all model residuals are inside the confidence

bounds. In this thesis, the requirement was made that at least 97% of all model residuals

should be inside the model confidence bounds, resulting in a = 6. It should be noted
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Figure 5.68: Four slices through the spline model f(α,M, δe) ∈ S2
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Figure 5.70: Four slices through the spline model f(α,M, δe, q̂) ∈ S2
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4 for Cl.

Cm for q̂ = −4 · 10−3 [−], δe = 2.01 [deg]

C
m

M [−]
α [deg]

Cm for q̂ = −4 · 10−3 [−], δe = −2.03 [deg]

C
m

M [−]
α [deg]

Cm for q̂ = −4 · 10−3 [−], δe = −4.52 [deg]

C
m

M [−]
α [deg]

Cm for q̂ = −4 · 10−3 [−], δe = −6.38 [deg]

C
m

M [−]
α [deg]

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10
15

0.2

0.3

0.4

0.2

0.3

0.4

0.2

0.3

0.4

0.2

0.3

0.4

−0.15
−0.1
−0.05

0
0.05

−0.05
0

0.05
0.1

0.1

0.2

0.1

0.2

0.3

Figure 5.73: Four slices through the spline model f(α,M, δe, q̂) ∈ S2
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Figure 5.74: Four slices through the spline model f(α,M, δe, q̂) ∈ S2

4 for Cm.
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Figure 5.75: Four slices through the spline model f(M,β, δr, r̂) ∈ S2

4 for Cn.
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Figure 5.76: Four slices through the spline model f(M,β, δr, r̂) ∈ S2

4 for Cn.

that the confidence models are accurate only inside the data envelope EX from Eq. 5.18

as, by definition, no identification residuals are available outside EX . In the following,

the confidence models for the six aerodynamic models are presented and discussed. In the

following figures, the distance between the confidence model and the spline model gives an

indication of the relative width of the confidence bounds.

In Figure 5.77 a total of four slices through the spline model for CX are shown.

Projected in scale on top of the spline model is the 97% confidence model for this particular

spline function. Figure 5.77 proves that the spline model for CX is of less than adequate

quality, as the confidence intervals are wide relative to the spline model values.

In Figure 5.78 four slices through the confidence model of the spline model for CY are

shown. In this case, the distance between the confidence model and the spline model is

relatively small, except for large rudder deflections. This means that the confidence bounds

have a relatively small width, indicating that the model for CY is of adequate quality.

Eight slices through the confidence model and the spline model for CZ are shown in

Figure 5.79 and Figure 5.80. The confidence bounds are of average relative width, indicating

that the model for CZ is of adequate overall quality.

Four slices through the confidence model and the spline model for Cl are shown in

Figure 5.81. The confidence model for Cl shows a clear bulge for high positive values of

p̂. In this region, the spline models also shows a significant nonlinearity. This nonlinearity,

however, is located completely inside the confidence bounds, which in turn means that it is

more likely to be a modeling error than an actual nonlinearity in Cl.
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Figure 5.77: Four slices through the 97% confidence model for CX .
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Figure 5.78: Four slices through the 97% confidence model for CY .



299
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Figure 5.79: Four slices through the 97% confidence model for CZ .
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Figure 5.80: Four slices through the 97% confidence model for CZ .
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Figure 5.81: Four slices through the 97% confidence model for Cl.

In Figure 5.82 and Figure 5.83 a total of eight slices through the confidence model and

the spline model for Cm are shown. The confidence bounds for negative values of q̂ are

relatively tight as can be seen in Figure 5.82. For positive values of q̂ the confidence bounds

widen considerably, especially for more positive elevator deflection angles, as can be seen

in Figure 5.83. The explanation for this is that for a stable aircraft, positive pitch rates are

directly correlated with negative elevator deflections. A positive pitch rates with a negative

elevator deflection is a relatively rare occurrence. The result of this is that the amount of

data in these regions of the flight envelope is limited, leading to a lower per-simplex data

coverage and with that, lower estimator performance. In other words, the wider confidence

bounds in Figure 5.83 are the result of the data coverage problem .

Eight slices through the confidence model and the spline model for Cn are shown in

Figure 5.84 and Figure 5.85. The distance of this confidence model to the spline model is

very small, meaning that the confidence interval is tight. This is another indication that the

spline model for Cn is of a high quality.

5.6.4 Stability analysis

A unique property of a simplex spline based model is that its well-behavedness and stability

are completely determined by the maximum absolute values of its B-coefficients. In Chpt. 3

an expression for bounds on the values of B-form polynomials was presented. These bounds
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Figure 5.82: Four slices through the 97% confidence model for Cm.

6σ Conf. Model for Cm for q̂ = 3 · 10−3 [−], δe = 2.01 [deg]

C
m

M [−]
α [deg]

6σ Conf. Model for Cm for q̂ = 3 · 10−3 [−], δe = −2.03 [deg]

C
m

M [−]
α [deg]

6σ Conf. Model for Cm for q̂ = 3 · 10−3 [−], δe = −4.52 [deg]

C
m

M [−]
α [deg]

6σ Conf. Model for Cm for q̂ = 3 · 10−3 [−], δe = −6.38 [deg]

C
m

M [−]
α [deg]

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10
15

0.2

0.3

0.4

0.2

0.3

0.4

0.2

0.3

0.4

0.2

0.3

0.4

−0.18
−0.16
−0.14
−0.12
−0.1

−0.05

0

0.05

0

0.05

0.1

0

0.05

0.1

0.15

Figure 5.83: Four slices through the 97% confidence model for Cm.
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Figure 5.84: Four slices through the 97% confidence model for Cn.
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Figure 5.85: Four slices through the 97% confidence model for Cn.
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were used in Sec. 4.3 to derive an expression for the stability of a simplex spline based

model. This expression, which was derived in Eq. 4.87, was found to be:

‖s‖ ≤ ‖c‖, (5.76)

with s the complete simplex spline function, and with c the global vector of estimated B-

coefficients. This expression states that the maximum value in the vector of B-coefficients

bounds the maximum value of the spline polynomial within the spline domain.

In the following the values of the B-coefficients of all spline models will be shown.

A distinction will be made between B-coefficients inside the validity region EX of the

spline function as defined in Eq. 5.18. This distinction is warranted because the influence

of B-coefficients on the global spline function is local, as was explained in Chpt. 2. This

means that any B-form polynomial inside EX is loosely bounded by the B-coefficients in

EX , while having hard bounds given by the complete set of B-coefficients. A measure

for the well-behavedness of the B-coefficients is the ratio between the maximum absolute

B-coefficient value and the range of EX :

REX
=

range {c ∈ EX}
range EX

, (5.77)

The values of the B-coefficients of the spline model for CX are shown in Figure 5.86.

In the left hand plot of Figure 5.86, the complete set of B-coefficients of f(α,M, δe) ∈ S2
4

are shown. In this case, the white dots correspond with B-coefficients inside EX . The B-

coefficients insideEX are also plotted in the right hand plot of Figure 5.86. The shaded area

in the figures shows the bounds of the observed values of CX inside the validity region. The

figure shows that the values of the B-coefficients inside EX are of relatively low magnitude.

In particular, it is found that REX
= 2.15. This means that any B-form polynomial is

loosely bounded inside EX by these coefficient values. In this case, it is safe to conclude

that the model for CX is well-behaved and stable within EX .

In Figure 5.87, the values of the B-coefficients of the spline model for CY are shown.

This time, the values of the B-coefficients insideEX are somewhat larger (i.e. REX
= 5.77)

than the bounds of the observed values of CX , which is represented by the shaded area in

Figure 5.87. Inside EX the spline model can be assumed to be relatively stable.

The B-coefficients values of the spline model for CZ are shown in Figure 5.88. The B-

coefficient values inside EX are not well-behaved, as some have values that are more than

one order of magnitude larger than the measured values for CZ inside EX (REX
= 37.5).

It can be assumed that this model is subject to significant instabilities inside and outside of

EX .

The B-coefficients values of the spline model for Cl are plotted in Figure 5.89. The B-

coefficients of the spline function f(β, δa, p̂) ∈ S2
4 for Cl are somewhat better behaved than

the B-coefficients of the spline function for CZ (i.e. REX
= 10.7). However, care should
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Figure 5.86: B-coefficient values of the spline model f(α,M, δe) ∈ S2

4 for CX .
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Figure 5.87: B-coefficient values of the spline model f(β, δr, r̂) ∈ S1

3 for CY .
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Figure 5.88: B-coefficient values of the spline model f(α,M, δe, q̂) ∈ S2

4 for CZ .
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Figure 5.89: B-coefficient values of the spline model f(β, δa, p̂) ∈ S2

4 for Cl.

be taken with this spline function as stability cannot be guaranteed, especially outside of

EX .

In Figure 5.90 the B-coefficient values of the spline model for Cm are shown. This

time, the B-coefficients inside EX are relatively well-behaved (REX
= 8.5). These results

show that caution should be taken with this particular spline model because there is a

possibility that it is not well behaved inside EX . Additionally, there are a number of outlier

B-coefficients Outside EX , which point to unstable model regions.
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Figure 5.90: B-coefficient values of the spline model f(α,M, δe, q̂) ∈ S2

4 for Cm.
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ĉ

B-coefficient Values for Cn

0 100 2000 500 1000 1500

−0.2

−0.15

−0.1

−0.05

0

0.05

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 5.91: B-coefficient values of the spline model f(M,β, δr, r̂) ∈ S2

4 for Cn.

Finally, Figure 5.91 shows the values of the B-coefficients of the spline model for Cn.

In this case all B-coefficients inside EX are relatively well-behaved (REX
= 3.75), but

there are some outliers outside EX . It can therefore be concluded that the model is likely to

be relatively stable inside EX .
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Figure 5.92: B-coefficient variances for the spline function f(α,M, δe) ∈ S2

4 for

CX .

5.6.5 Statistical analysis

The estimator for the B-coefficients of the multivariate simplex spline enables the statistical

analysis of parameter estimation results. The exact method for estimating parameter

covariances as well as the Cramér-Rao lower bounds was presented in Chpt. 4. In this

paragraph, the results from a rigorous statistical analysis of the spline models are presented.

It should be noted that all variances presented here are estimated using an ordinary least

squares estimator, which implies that the residuals are white noise which, as was shown in

Sec. 5.6.2, is clearly not the case. However, the results from the analysis presented here do

provide lower bounds for the variances. Two different perspectives on the statistical analysis

are provided. The first of these is a straightforward linear plot of the B-coefficient variances.

The second perspective is the variance hyper surface, which were first introduced in [40].

The variance hyper surface is a linear interpolation of the B-coefficient variances, which

is possible because the B-coefficients of the multivariate simplex splines have a spatial

location within the spline domain. All 2-dimensional slices through the variance hyper

surfaces correspond with the slices of their respective spline models shown in Sec. 5.6.2.

In Figure 5.92 a linear plot of the B-coefficient variances of the spline model for CX
is shown. The variances of the B-coefficients inside EX are of limited magnitude and

show little spread, indicating adequate estimator performance. Outside EX , however, B-

coefficient variances reach very significant values. In Figure 5.93 four slices through the

3-dimensional B-coefficient variance surface are shown. These slices correspond with the

slices shown in the global model inspection from Sec. 5.6.2. In this case, the variance

hypersurfaces clearly show that estimator performance drops dramatically outside EX , i.e.

the corners of the plots in the figure.

As a demonstration of the unique statistical validation methods enabled by the simplex
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Figure 5.93: B-coefficient variance surfaces of the spline function f(α,M, δe) ∈
S2

4 for CX .

splines, the B-net of the spline function for CX is shown in Figure 5.94. In this case, the

size and color of the B-coefficients are proportional with their variances, that is, the larger

and more red (and less blue) a B-coefficient is, the higher the variance. Figure 5.94 clearly

shows that B-coefficients located on external edges of the triangulation tend to have larger

variances.

The estimated B-coefficient variances of the spline model for CY are shown in

Figure 5.96. The magnitudes of the B-coefficient variances are relatively high, indicat-

ing inadequate estimator performance. However, the B-coefficient variance surfaces in

Figure 5.96 peak at locations outside of EX , indicating that the estimator is performing

adequately inside EX .

In Figure 5.97 the estimated B-coefficient variances of the spline model for CZ are

shown. These variances have a wide spread, indicating inadequate estimator performance.

In Figure 5.98 and Figure 5.99 the variance hyper surfaces of the spline model are shown.

In these figures it can be seen that the variance surface has peaks at locations inside EX .

This means that the B-coefficient estimator is performing inadequately inside EX .

In Figure 5.100 the B-coefficient variances for the spline model for Cl are shown. The

variances form a tight group, and have a low overall magnitude over the complete spline

domain, indicating that the estimator is performing adequately. The B-coefficient variance
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Figure 5.98: B-coefficient variance surfaces of the spline function f(α,M, δe, q̂) ∈
S2

4 for CZ .

surfaces shown in Figure 5.101 reflect this fact, as the peaks in the variance surfaces are all

outside EX .

The B-coefficient variances of the model for Cm are shown in Figure 5.102. The

B-coefficient variances again form a tight group indicating adequate estimator perfor-

mance. The corresponding B-coefficient variance surfaces are shown in Figure 5.103 and

Figure 5.104. These surfaces show that B-coefficient variances are highest close to the

boundaries of the spline domain. Inside EX there are a number of peaks in the variance

surfaces, but they are of low magnitude. It can therefore be concluded that the estimator is

performing adequately.

In Figure 5.105 the B-coefficient variances of the spline function for Cn are plotted.

The variances are of very low magnitude and form a tight group. The B-coefficient variance

hyper surfaces of this spline function are shown in Figure 5.106 and Figure 5.107. These

surfaces show that B-coefficient variances are highest outside of EX . There are some peaks

inside EX , but these are of very low magnitude. Therefore, it can be concluded that the

B-coefficient estimator is performing adequately.
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Figure 5.99: B-coefficient variance surfaces of the spline function f(α,M, δe, q̂) ∈
S2

4 for CZ .
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Figure 5.101: B-coefficient variance surfaces of the spline function f(β, δa, p̂) ∈
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Variance for Cm for q̂ = 3 · 10−3 [−], δe = 2.01 [deg]
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Figure 5.104: B-coefficient variance surfaces of the spline function

f(α,M, δe, q̂) ∈ S2

4 for Cm.
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Figure 5.105: B-coefficient variances for the spline function f(M,β, δr, r̂) ∈ S2

4 for

Cn.

Table 5.16: Final quantitative evaluation of the validation results

CX CY CZ Cl Cm Cn

Dimensions (α,M, δe) (β, δr, r̂) (α,M, δe, q̂) (β, δa, ṗ) (α,M, δe, q̂) (M,β, δr, r̂)
Triangulation T6 T6 T22 T6 T22 T22

Spline Space S2

4 S1

3 S2

4 S2

4 S2

4 S2

4

RMSrel ǫ 4.79% 7.18% 3.6% 1.73% 3.03% 2.55%
ǫrelmax 30.61% 37.91% 20.90% 22.32% 26.68% 28.76%
R2 87.07% 41.59% 90.78% 56.34% 64.44% 63.99%

5.6.6 Final model quality assessment

Using the combined results from the model validation methods presented in this section,

a final evaluation of spline performance can be made. These results are summarized in

Table 5.16, and will briefly be discussed here. Note that all numerical results are the

results from the model validation, and not from model identification. The results shown

in Table 5.16 were the most optimal results that could be achieved with the current dataset.

A final qualitative evaluation of the spline models based on the various model validation

results is presented in Table 5.17.

In general, it can be concluded that the spline model for Cn was of excellent quality,

while the spline models for Cm and Cl were of adequate quality. The Spline models for CX
and CZ were of mediocre quality and the spline model for CY was of inadequate quality.

The aerodynamic coefficient that proved to be the most challenging to identify was the

lateral force coefficient CY .
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Figure 5.106: B-coefficient variance surfaces of the spline function

f(M,β, δr, r̂) ∈ S2

4 for Cn.

Table 5.17: Final qualitative evaluation of the validation results.

CX CY CZ Cl Cm Cn

Raw validation results − + +/− − + ++
Global model inspection + +/− + + + +
Residual analysis − +/− + − + ++
Stability analysis ++ + −− − +/− +
Statistical analysis +/− − − + ++ ++

(++:very good, +:good, +/−: mediocre, −: bad, −−:very bad)
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Figure 5.107: B-coefficient variance surfaces of the spline function

f(M,β, δr, r̂) ∈ S2

4 for Cn.



Chapter 6

Conclusions

The aim of this thesis is the development of a new methodology for identifying global

models of nonlinear systems using multivariate simplex splines. This aim is reflected by the

main research statement of this thesis:

“A methodology for global nonlinear model identification based on multivariate simplex

splines can outperform current global model identification methods on aspects of model

quality and model quality assessment.”

The general conclusion of the work in this thesis results in the following response to the

main research statement:

A new methodology for global model identification based on multivariate simplex

splines was successfully developed. The new methodology was successfully applied to

the aerodynamic model identification of the Cessna Citation II laboratory aircraft. It was

demonstrated with a real-life aerodynamic model identification experiment that the new

methodology not only produces global models of significantly higher quality than existing

methods based on ordinary polynomials, but additionally provides a number of unique

measures of model quality that allow for a much deeper and complete assessment of model

quality.

The positive response to the research statement required the completion of a three-

faceted research project in the fields of mathematical spline theory, system identification,

and flight dynamics. The first facet of this research project was the development of new

theories in the field of multivariate simplex splines in order to allow their use in a framework

for system identification. The second facet of this research project was the development of
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a new methodology for system identification based on simplex splines. The third research

facet was focused on using the new methodology in a real world application which was the

identification of a complete set of aerodynamic models for the Cessna Citation II laboratory

aircraft using flight test data.

It is the purpose of the remainder of this section to provide conclusions on the three main

research facets. First, a conclusion on the mathematical theory of the multivariate simplex

splines is presented in Sec. 6.1. Subsequently, in Sec. 6.2 conclusions of the research done

in the field of system identification are presented. Finally, in Sec. 6.3 the research and

experiments done in the field of aerodynamic model identification will be concluded.

6.1 Simplex spline theory

The mathematical foundations of the multivariate simplex splines were laid down quite

recently, and many areas of research within the field remain unexplored. A further

exploration of these areas could significantly increase the utility of the simplex splines in

science and engineering. In this thesis the following contributions to multivariate simplex

spline theory were made:

• A new matrix formulation for the multivariate simplex splines was developed

(Sec. 3.2.1). This matrix formulation proved to be instrumental in the definition of

the linear regression model for simplex splines.

• A new geometric triangulation optimization method was developed which resulted in

triangulations well suited for use with simplex splines (Sec. 2.3.7)

• A new general formulation for the continuity conditions for the multivariate simplex

splines was developed (Sec. 3.3.2). This new formulation is valid for all B-nets

ordered according to the B-net orientation rule presented in this thesis.

• A new numerical method for defining smoothness matrices of full rank was developed

(Sec. 3.3.5).

• A new effect was observed that negates the local approximator property of the simplex

splines. This effect, called B-net propagation, was found to be present specifically in

the popular Type I triangulation, and theories were developed for determining its

occurrence and quantifying its effects (Sec. 3.3.4).

• A new one-step matrix formulation of the de Casteljau algorithm was developed,

enabling the definition of the differential constraints (Sec. 3.1.3).

• A new type of linear constraints were developed in the form of the differential

constraints (Sec. 3.4.1). Differential constraints bound the directional derivatives
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of the simplex splines and enable recursive model estimators and local model

extrapolation.

• Theories were developed for determining polynomial divergence on the boundaries

of the spline domain (Sec. 3.4.3). These theories aid the required number and order

of differential constraints necessary for bounded model extrapolation.

• Theories for a new formulation of the Bernstein basis polynomials in terms of global

coordinates were developed. This new formulation allows the physical interpretation

of the B-form polynomials and the development of rigorous triangulation optimiza-

tion methods (Sec. 3.5.2).

The defining purpose of these developments is the creation of a new methodology for

global model identification based on multivariate simplex splines. In short, the matrix

formulation for the multivariate simplex splines not only simplifies their use in software

applications (Matlab), but more importantly, allows for the definition of a linear regression

model based on B-form polynomials. The power of the simplex spline comes from the

combination of many basis polynomials defined on optimal triangulations. At the time

of this writing, however, no general method for triangulation optimization exists in the

literature. Therefore, a geometric triangulation optimization method was developed which

produced triangulations that are specifically suited for use with simplex splines.

The definition of the continuity conditions used in the literature is not general enough

to allow the creation of smoothness matrices on triangulations of general form. Therefore,

a new formulation of the continuity conditions was developed which only requires that

the B-nets on simplices are oriented using the B-net orientation rule. It was found that

the smoothness matrix for general triangulations is rank deficient in most cases, with the

result that any linear regression scheme for simplex splines is singular, and unsolvable

using standard parameter estimation techniques. A new method for creating full rank

smoothness matrices was therefore developed. This new method uses an estimate of the

condition number of the smoothness matrix to determine whether a candidate continuity

condition causes a rank deficiency. If so, the continuity condition is rejected, and if not,

the continuity condition is added to the smoothness matrix. It was found that the most

widely used triangulation type, the symmetric Type I triangulation, is subject to a newly

discovered effect in the form of B-net propagation. B-net propagation is the sometimes

undamped propagation of disturbances through the B-net of a complete triangulation. B-net

propagation, when left unchecked, effectively transforms the multivariate simplex spline

from a local approximator into a global approximator. It was proved in this thesis that only

specific combinations of spline degree and continuity order produce undamped propagation

effects. By avoiding these combinations, the local approximator property of the simplex

splines is retained.

A new, highly promising application of the multivariate simplex spline was found in

the form of a recursive simplex spline model estimator. The challenge with such an
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estimator is that the simplex splines are defined on triangulations which in their present

form are static geometric structures. For real-time applications it cannot be guaranteed

that every simplex in the triangulation is adequately covered with data. The result of this

is that local model extrapolation will occur at regions inside the spline domain were data

is scarce. In order to analyze the effects of this local model extrapolation, mathematical

theories were developed which enabled the quantification of extrapolation effects. It was

found that these extrapolation effects depend on the directional derivatives of the dataset

being modeled. Additionally, it was found that polynomial divergence beyond the bounds

of the dataset domain was unavoidable. In order to solve these problems a new type of

linear constraints was created in the form of the differential constraints. The differential

constraints required the formulation of a new form of the de Casteljau algorithm that

reduced its iterative nature into a single-step form. The resulting differential constraints

effectively allow the formulation of the directional derivatives of B-form polynomials in

terms of their original vector of B-coefficients. Because of this, the differential constraints

can be included in the Karush-Kuhn-Tucker solution system for the multivariate simplex

splines. Additionally, and perhaps even more interesting, is the potential application of the

differential constraints in the solving of partial differential equations using simplex splines,

with differential constraints acting as Cauchy or Neumann boundary conditions.

The Bernstein basis polynomials of the simplex splines are defined in terms of

barycentric coordinates which are local coordinates. The simplex spline polynomials

therefore do not have any meaning beyond the simplex on which they are defined. In some

cases it may be desirable, however, to obtain a global interpretation of the simplex spline

polynomials, for example if a physical interpretation of a spline solution is required. In order

to facilitate the physical interpretation of multivariate simplex splines, a new formulation of

the Bernstein basis polynomials in global coordinates was developed. This new formulation

not only makes it possible to determine the global physical meaning of a simplex spline

function, but also enables new methods for triangulation optimization. Such a triangulation

optimization method could use a global optimization technique like interval analysis to

determine in a single step the optimal triangulation and B-coefficient values for a given

set of data.

6.2 System identification with simplex splines

The theoretical contributions to the mathematical theory of multivariate simplex splines

had a common objective which was the development of a new methodology for system

identification based on the simplex splines. While these theoretical contributions enabled

the methodology, its actual implementation was yet to be defined. In order to create a

functional and practical method for system identification with simplex splines, the following

developments were made:



323

• A new linear regression model based on the Bernstein basis polynomials of the

multivariate simplex splines (Sec. 4.1.3) was developed.

• Theories were developed for the required per-simplex data volume and constraint

matrix ranks (Sec. 4.2.1).

• A new equality constrained generalized least squares estimator for the B-coefficients

of the multivariate simplex splines (Sec. 4.2.1) was developed.

• A new differential equality constrained recursive least squares estimator for the B-

coefficients of the multivariate simplex splines (Sec. 4.2.2) was developed.

• A new method was developed for creating empirical confidence bounds for simplex

splines using the spline model residual and Chebyshev’s inequality.

• A completely new model quality assessment method based on the spatial location

of the B-coefficients was discovered. This new method results in variance hyper-

surfaces which allow the pinpointing of regions of high variance inside the spline

model (Sec. 4.3.2).

The new linear regression model based on Bernstein basis polynomials was essential to

all further efforts in implementing the methodology. This new regression model allowed

the application of existing parameter estimation techniques for the estimation of the B-

coefficients of the multivariate simplex splines. It was soon found that simplex data

coverage was one of the most important limiting factors during B-coefficient estimation.

Data coverage was found to be the spatial analogue of system excitation; a sufficient

data coverage is equivalent to a sufficient excitation. Two theories were proved which

allowed the quantification of the required data coverage given a specific spline space and

triangulation.

Using the linear regression model structure, a generalized least squares estimator was

defined, and methods were developed for estimating parameter and measurement covariance

matrices. The next step was the development of a recursive least squares estimator for the

B-coefficients of the simplex splines. The recursive estimator allows the reconfiguration of

simplex spline models in real-time, which will prove useful in adaptive model-based control

systems based on simplex splines.

The new methodology for system identification with simplex splines leads to several

new approaches to assessing the quality of the estimated models. One of these new

approaches is a model residual analysis, which uses Chebyshev’s inequality to estimate

localized confidence bounds for simplex spline models. Another new quality assessment

method is the creation of variance hyper surfaces based on the estimated parameter variances

and the insight that B-coefficients have a spatial location within the spline domain. Finally,

the stability of simplex spline models can be assessed simply by comparing the values of

the B-coefficients with the range of the identification data values.
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Summarizing, the new methodology for system identification with simplex splines has

a number of advantages over other identification methods in use today. Firstly, the simplex

splines have an arbitrarily high approximation power on a global model scale. Secondly,

simplex spline models are parametric models, which allows for efficient approximation of

very large datasets. Thirdly, the simplex splines are linear in the parameters, which means

that linear regression methods can be used for their estimation. Fourthly, the simplex splines

have a local polynomial basis, which implies that only small subsets of parameters and basis

polynomials need to be considered during estimation and evaluation, resulting in efficient

(sparse) computational schemes. And finally, the quality of simplex spline based models

can be assessed using a number of unique and very powerful model quality assessment

methods. These advantages became apparent during the identification of simplex spline

based aerodynamic models for the Cessna Citation II laboratory aircraft.

6.3 Aerodynamic model identification with simplex

splines

The new methodology for system identification based on multivariate simplex splines was

used to identify aerodynamic models for the Cessna Citation II laboratory aircraft using a

set of flight test data obtained during 247 flight test maneuvers. While the theoretical part

of the system identification framework was complete, the following practical developments

were necessary for a successful application and evaluation of the new framework:

• Flight tests were performed with the Cessna Citation II laboratory aircraft (Sec. 5.2,

Sec. 5.3).

• Ground tests showed that the Q-Flex 3100 linear accelerometers in the current (2011)

IMU aboard the PH-LAB contain noise levels that are an order of magnitude higher

than manufacturer specifications (Sec. 5.3).

• A fully automated framework for data pre-processing, maneuver detection, and flight

path reconstruction was implemented in Matlab (Sec. 5.3, Sec. 5.4).

• A new method for spline dimension selection based on the analysis of hysteresis

effects was developed (Sec. 5.5).

• A general Matlab toolbox for the creation of multivariate simplex splines was created

(Sec. 5.5).

• A high performance C++ implementation of the multivariate simplex spline toolbox

was created (Sec. 5.5).

• A fully automated framework for aerodynamic model identification with multivariate

simplex splines was implemented in Matlab (Sec. 5.5).
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• A Matlab implementation of the various model quality analysis methods was made

(Sec. 5.6).

• A validated set of longitudinal and lateral aerodynamic models were made for the

Cessna Citation II (Sec. 5.6).

The main application of the new methodology for system identification developed in

this thesis was that of aerodynamic model identification. Aerodynamic model identification

aims to create models for the aerodynamic force and moment coefficients of aircraft

using flight data. For this reason, a large database with flight data was assembled. This

dataset contained flight data from a total of 7 test flights executed between 2006 and

2010. It was found that the data obtained during test flights performed before 2008 was

seriously compromised by sensor glitches. Using different data reconstruction techniques,

a significant fraction of this data could be recovered. The results from flight testing showed

that the optimal input sequences in particular resulted in excellent excitations of aircraft

dynamics.

A comparison between engine-idle and engine-off ground tests showed that the noise

levels produced by the Q-Flex 3100 linear accelerometers inside the current (2011) IMU

were an order of magnitude higher than those specified by the manufacturer, but only when

the engines were running. The exact source of the noise is unknown at the time of this

writing, but a mechanically induced vibration of the entire IMU assembly seems the most

likely cause.

Using a fully automated framework for data pre-processing, automatic maneuver

detection and flight path reconstruction, a set of 247 maneuver datasets was created. This

dataset was split into an identification dataset and a validation dataset. The identification

dataset formed the input to the multivariate simplex spline based aerodynamic model

identification toolbox. This toolbox was implemented in Matlab, with performance critical

parts implemented in C++. The resulting application was efficient enough to allow the

creation of thousands of candidate aerodynamic models per day on a workstation class PC1.

Following the identification of the aerodynamic models, the validation dataset was used

to validate the identified aerodynamic models. During this phase, the unique model quality

assessment methods available to the simplex splines were applied. The model validation

proved that the new methodology for system identification with simplex splines invariably

produces higher quality results than methods based on ordinary polynomials.

The full potential of the simplex splines as a tool for system identification was

compromised by the data coverage problem. The data coverage problem, which is the

result of an insufficient per-simplex data coverage, requires a different approach towards

data gathering. An important conclusion is therefore that the new methodology for system

identification with simplex splines should be used in conjunction with a new tool that, during

experiment time, provides an indication of per-simplex data coverage.

1In this case an Intel Core i7-920 with 12 GB of RAM
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Chapter 7

Recommendations

In this chapter the recommendations resulting from the research performed in the framework

of this thesis will be presented. This research consisted of three main facets in three different

fields of science. The first facet was the further development of the mathematical theory

of the multivariate simplex splines with the aim of enabling their use in a framework for

system identification. The second facet was the development of a new methodology for

system identification based on the simplex splines. The third facet was the application of

the new methodology for the identification of aerodynamic models for the Cessna Citation

II laboratory aircraft. This research resulted in a number of recommendations that should

aid future research efforts in these three fields of science.

In Sec. 7.1 recommendations in the field of multivariate simplex splines are presented.

Recommendations in the field of system identification are presented in Sec. 7.2. Finally,

in Sec. 7.3 recommendations in the field of aerodynamic model identification and flight

dynamics are presented.

7.1 Simplex spline theory

A number of recommendations result from the research performed in the field of multi-

variate simplex spline theory. These recommendations will aid any future research efforts

in the field of simplex spline based global model identification. The most important

recommendations are the following:

• A truly general triangulation optimization method should be developed which is

specifically aimed at creating optimal triangulations for multivariate simplex splines

and which is fully integrated with the new global model identification methodology.
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• An analytical method for creating full-rank smoothness matrices should be developed.

• Distributed computing schemes for creating simplex splines that take advantage of

current trends in parallel computing should be developed.

• Methods for formulating physical equality and inequality constraints based on the

global formulation of the B-form should be added to the current theory.

The first, and most important recommendation is that a general triangulation optimiza-

tion method should be developed that is specifically suited for global model identification

with simplex splines. Current methods for triangulation optimization, including the method

presented in this thesis, result in triangulations that are optimal in a geometric sense.

Effective triangulation methods for simplex splines, however, should also take the data

coverage of simplices into account. It was proved in this thesis that an inadequate coverage

of simplices with data results in singular B-coefficient estimation problems.

The second recommendation is that an analytical method for the creation of full-rank

smoothness matrices should be developed. The method used in this thesis is a numerical

method, which is computationally expensive, especially for large smoothness matrices.

An analytical method would prevent the formulation of redundant continuity conditions

altogether, resulting in a much lower computational load. At the time of this writing,

however, such an analytical method has proved to be quite elusive to develop.

The current trend in computing is parallelization, which is made possible by very

powerful multi-core CPU’s and GPU’s. The third recommendation therefore is to develop a

parallel solver for the B-coefficients of the multivariate simplex splines. The main challenge

in developing such a parallel solver is that the enforcement of continuity between simplices

is a serial task, at least at this point in time.

Finally, it is recommended to develop methods for formulating equality and inequality

constraints that have a physical meaning. It would be desirable for aerodynamic model

identification to define differential constraints that bound the values of the (directional)

stability derivatives, for example Cmα
, to within physical limits.

7.2 System identification with simplex splines

The following recommendations are made with the aim of advancing the new methodology

for system identification with multivariate simplex splines:

• An orthogonal least squares estimator should be added to the framework.

• A maximum likelihood estimator should be added to the framework.

• A global optimization method for solving the triangulation optimization and B-

coefficient estimation problem in a single step should be developed.
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• An ability to handle linear inequality constraints should be added to the B-coefficient

estimators.

• A model-based controller based on multivariate simplex splines should be developed.

• A fault tolerant simplex spline based controller utilizing the recursive estimator

should be developed.

The development of an orthogonal least squares estimator for the B-coefficients of

the multivariate simplex splines should further increase the power and utility of the

methodology. The same holds for the development of a maximum likelihood estimator

which transforms the current equation error method into an output error method. In that

case, the new methodology can be used directly on the raw flight data, bypassing the

requirement for flight path reconstruction.

Another tentative development is the creation of a global optimization method for

solving the triangulation optimization problem and the B-coefficient estimation problem

in a single step. Such a method should be based on the global formulation of the B-form

presented in this thesis. A promising research direction for such a single step method is the

combination of interval analysis with the B-form in global coordinates.

The methodology for system identification with simplex splines can be made more

powerful by including linear inequality constraints to the B-coefficient estimators. Linear

inequality constraints could then be used to loosely bound the spline functions and their

directional derivatives.

A model based control scheme should be developed that is based entirely on simplex

splines. One possibility would be a nonlinear dynamic inversion controller using simplex

spline based plant models. Another, even more interesting possibility is the creation of an

adaptive model based controller that utilizes the differential equality constrained recursive

least squares estimator presented in this thesis.

Finally, a fault tolerant controller using an onboard adaptive spline model should be

developed. Such a controller would utilize the recursive least squares estimator for simplex

splines, and would be able to adapt to changing system dynamics.

7.3 Aerodynamic model identification with simplex

splines

The following recommendations result from the process of flight testing with the Cessna

Citation II, and the subsequent identification of its aerodynamic models:

• A high quality IMU making accurate measurements at the highest possible measure-

ment rates (>1kHz) is essential for accurate aerodynamic model identification.
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• The linear accelerometers in the current (2011) IMU produce excessive noise caused

most likely by a mechanical vibration of the entire IMU assembly. It is recommended

that this source of vibration is isolated and corrected for.

• A software tool for checking simplex data coverage during flight is highly desirable

for aerodynamic model identification with simplex splines.

• To increase the coverage of the spline domain with data, measurements should

be made at the highest possible sampling rate. From the perspective of the new

identification methodology, the more data is logged during a flight, the better.

• Attempts should be made to use the new methodology to model the effects of

nonlinear aerodynamic phenomena like shock waves and flow separation.

• Dynamic simulations of the flight test maneuvers should be performed using the

identified aerodynamic models, the results of which should be compared with the

measured aircraft dynamics.

• The new methodology should be tested against other advanced identification methods

like artificial (polynomial) neural networks.

The output from the Q-Flex 3100 linear accelerometers in current IMU aboard the

PH-LAB contains noise levels that are an order of magnitude higher than manufacturer

specifications. The source of this noise is unknown at the time of this writing, but an

engine induced mechanical vibration of the complete IMU assembly is the prime suspect. A

recommendation is to further investigate this noise source, because any external cause will

also negatively influence the next generation IMU.

The single most important recommendation to be made to further increase the applica-

tion of the new identification methodology is a software tool that can be used during flight

for assessing the degree of coverage of the flight envelope with measurement points. Such

a software tool should be operated either by the pilot or by the experiment coordinator,

and should give clear visual cues as to what degree the flight envelope has been covered

with measurement points. These cues can then be used to execute subsequent maneuvers.

Another tentative option is to integrate the data coverage tool with the autopilot, which then

automatically executes maneuvers that are designed to provide the most complete coverage

of the flight envelope.

In order to test the true potential of the new methodology, it should be used to model the

effects of highly nonlinear aerodynamic phenomena like shock waves and flow separation.

These phenomena tend to produce discontinuities in the measured aerodynamic forces and

moments, and form a challenge for any continuous modeling method. The simplex splines,

however, are capable of modeling discontinuities by either locally increasing the density

of the triangulation in areas of the flight envelope in which discontinuities occur, or by
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configuring the triangulation such that areas of discontinuity coincide with the simplex

edges.

An alternative measure of model quality is the comparison between simulated and actual

flight. For this, the aerodynamic models identified in this thesis should be integrated with

a dynamic simulation of the Cessna Citation II. The flight test maneuvers could then be

simulated using the measured initial state and control inputs. A comparison between the

simulated states and the true states would then provide another measure of model quality.

The performance of the new methodology for global model identification should be

compared with other global model identification methods, most notably (polynomial)

neural networks. The reason that this comparison was not made in this thesis is that

current implementations of these alternative methods are unsuitable for large scale, high

data-volume identification experiments as they produce non-sparse solution systems. For

experiments on the scale of those performed in this thesis, this would lead to extremely high

demands on computational resources.

Data coverage, which is the simplex spline analogue of system excitation, is the most

important practical issue during real-life global model identification with simplex splines.

In order to increase data coverage, measurements should be made at a rate of at least 1kHz.

In order to accommodate these higher data rates, a number of FTIS systems need to be

upgraded or replaced.
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Appendix A

Reference Frame Definitions

Y
B

Y
A

Z
A

Z
B

α

β
X
A

X
B

α

β

α

β

Figure A.1: The body fixed reference frame FB and the aerodynamic reference

frame FA.

In this appendix, the reference frames used in this thesis are introduced. First, in
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Figure A.1 the Body fixed reference frame FB and the aerodynamic reference frame FA
are shown. While FB is fixed to the aircraft, the FA reference frame points in the direction

of the incoming flow. The FA reference frame is found by rotating FB over α and β.

In Figure A.2 the body fixed reference frame FB is shown together with the earth fixed

reference frame FE . The FE reference frame in this case functions as an inertial reference

frame.

OE
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YE

XE

ZB

YB

XB

Figure A.2: The Earth fixed reference frame FE and the body fixed reference

frame FB .

In Figure A.3 the location of the IMU in terms of the aircraft reference frame is shown.

The aircraft reference frame itself is shown in Figure A.4.
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Figure A.3: Location of the IMU box in terms of the aircraft reference frame.

Figure A.4: Definition of the aircraft reference frame of the Cessna Citation II.
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Appendix B

IMU Geometry

In this appendix, the geometric specifications of the IMU box installed in the PH-LAB are

presented.

Figure B.1: The IMU box installed as installed in the PH-LAB. The LITEF fiber

optic gyroscopes are fixed to the outside of the IMU box.
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Figure B.2: Positions of the IMU accelerometers inside the IMU box.
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[20] H. B. Curry and I. J. Schoenberg. On pólia frequency functions iv: The fundamental

spline functions and their limits. Journal d’Analyse Mathématique, 17:71–107, 1966.

[21] W. Dahmen. Polynomials as linear combination of multivariate b-splines.

Mathematische Zeitschrift, 169:93–98, 1979.

[22] W. Dahmen. On multivariate b-splines. Journal of Numerical Analysis, 17:179–191,

1980.

[23] W. Dahmen. Approximation by linear combinations of multivariate b-splines.

Journal of Approximation Theory, 31:299–324, 1981.



341

[24] W. Dahmen and C. A. Micchelli. On the linear independence of multivariate b-splines

in triangulations of simploids. SIAM Journal on Numerical Analysis, 19:993–1012,

1982.

[25] W. Dahmen, C. A. Micchelli, and H. P. Seidel. Blossoming begets b-spline bases

built better by b-patches. Mathematics of Computation, 59:97–115, 1992.

[26] O. Davydov and L. L. Schumaker. On stable local bases for bivariate polynomial

spline spaces. Constructive Approximation, 18:87–116, 1999.

[27] M. de Berg, O. Cheong, M. Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications, chapter Delaunay Triangulations, pages 191–218.

Springer-Verlag, 2008.

[28] C. de Boor. On calculating with b-splines. Journal of Approximation Theory, 6:50–

62, 1972.

[29] C. de Boor. Splines as linear combinations of b-splines. a survey. In G. G. Lorentz,

C. K. Chui, and L. L. Schumaker, editors, Approximation Theory II, pages 1–47,

1976.

[30] C. de Boor. Efficient computer manipulation of tensor products. ACM Transactions

on Mathematical Software, 5(2):173–182, 1979.

[31] C. de Boor. B-form basics. In G. Farin, editor, Geometric modeling: algorithms and

new trends. SIAM, 1987.

[32] C. de Boor. What is a multivariate spline? In J. McKenna and R. Temam, editors,

ICIAM ’87: Proceedings of the First International Conference on Industrial and

Applied Mathematics, pages 90–101, 1987.

[33] C. de Boor. Fundamental Developments of Computer-Aided Geometric Modeling,

chapter B-spline Basics, pages 27–49. Academic Press, New York, 1993.

[34] C. de Boor. Multivariate piecewise polynomials. Acta Numerica, 2:65–109, 1993.

[35] C. de Boor. On the evaluation of box splines. Numerical Algorithms, 5:5–23, 1993.

[36] C. de Boor. A Practical Guide to Splines (Revised Edition). Springer-Verlag New

York, Inc., 2001.

[37] C. de Boor. On interpolation by radial polynomials. Advances in Computational

Mathematics, 24:143–153, 2006.

[38] C. de Boor and A. Ron. On multivariate polynomial interpolation. Constructive

Approximation, 6(3):287–302, 1990.



342 Bibliography

[39] C. de Boor and A. Ron. Polynomial ideals and multivariate splines. In C. Chui,

W. Schempp, and K. Zeller, editors, ISNM 90, Multivariate Approximation Theory

IV, volume 25, pages 31–40, 1991.

[40] C. C. de Visser, Q. P. Chu, and J. A. Mulder. A new approach to linear regression

with multivariate splines. Automatica, 45(12):2903–2909, 2009.

[41] C. C. de Visser, Q. P. Chu, and J. A. Mulder. Differential constraints for bounded

recursive identification with multivariate splines. Automatica, 2011. article in press.

[42] C.C. de Visser, J. A. Mulder, and Q. P. Chu. A multidimensional spline based global

nonlinear aerodynamic model for the Cessna Citation II. In AIAA Atmospheric Flight

Mechanics Conference, 2010.

[43] C.C. de Visser, J.A. Mulder, and Q.P. Chu. Global nonlinear aerodynamic model

identification with multivariate splines. In AIAA Atmospheric Flight Mechanics

Conference, 2009.

[44] E. de Weerdt, Q. P. Chu, and J. A. Mulder. Neural network aerodynamic model

identification for aerospace reconfiguration. In AIAA Guidance, Navigation, and

Control Conference and Exhibit, 2005.

[45] E. de Weerdt, C. C. de Visser, Q. P. Chu, and J. A. Mulder. Fuzzy simplex splines. In

IFAC SYSID 2009, 2009.

[46] E. de Weerdt, E. R. van Oort, Q. P. Chu, and J. A. Mulder. Level set method based

on interval analysis. In AIAA GNC Conference, 2011. Submitted for publication.

[47] T. K. Dey, C. L. Bajaj, and K. Sugihara. On good triangulations in three dimensions.

In SMA ’91: Proceedings of the first ACM symposium on Solid modeling foundations

and CAD/CAM applications, pages 431–441, New York, NY, USA, 1991. ACM.

[48] S. Drake. Galileo at Work: His Scientific Biography. Courier Dover Publications,

2003.

[49] N. Dyn and A. Ron. Radial basis function approximation: from gridded centers to

scattered centers. Proc. London Mathematical Society, 71:76–108, 1995.

[50] M. Espinoza, J.A.K. Suykens, and B. de Moor. Kernel based partial linear models and

nonlinear identification. IEEE Transactions On Automatic Control, 50:1602–1606,

2005.

[51] H. Y. Fan, G. S. Dulikravich, and Z. X. Han. Aerodynamic data modeling using

support vector machines. Inverse Problems in Science and Engineering, 13:261–278,

2005.



343
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Samenvatting

Globale Non-lineaire Model Identificatie

met Multivariate Splines

Op dit moment spelen modelgebaseerde regelaars een essentiële rol in veel aspecten van

de moderne samenleving. Gebieden van toepassing van modelgebaseerde regelaars variëren

van de levensmiddelenindustrie tot medische scan apparatuur, en van procesbeheersing

in olieraffinaderijen tot de besturingssystemen aan boord van moderne vliegtuigen. Het

hart van een modelgebaseerde regelaar is een wiskundig model van het fysieke systeem

of proces dat wordt gecontroleerd. Het gebied van de wetenschap die zich bezighoudt

met de identificatie van modellen van fysische systemen heet systeem identificatie. In dit

proefschrift wordt een nieuwe methode voorgesteld voor de identificatie van modellen van

niet-lineaire systemen met complexe dynamica met behulp van multivariate simplex splines.

Deze nieuwe methode heeft de potentie om de prestaties van elke modelgebaseerde regelaar

te verbeteren door de accuratesse van de systeem modellen te verhogen.

Het is een uitdagende taak om systemen te modelleren met non-lineaire dynamica. Op

dit moment bestaat er slechts een handvol methodes die correcte modellen kunnen maken

van zulke systemen. Van deze methodes zijn de vier meest bekende de neurale netwerken,

kernfunctie methodes, polynoom mengmethodes en spline methodes. Al deze methodes

kunnen modellen produceren met een willekeurig hoge benaderingsmethode op een globale

modelschaal. Tot voor kort hadden deze methodes echter inherente tekortkomingen.

Neurale netwerken zijn in wezen black-box modellen die globale basisfuncties gebruiken.

Dit resulteert in complexe en inefficiënte algoritmes voor hun training en evaluatie.

Kernfunctie methodes zijn van nature niet parametrisch, wat betekent dat er in principe

net zoveel kernfuncties zijn als datapunten. Dit leidt tot inefficiënte algoritmes voor grote

datasets. Polynoom mengmethodes gebruiken fuzzy logic technieken om lokale polynoom

modellen te vermengen tot één globaal model. De afstemming van de fuzzy menging

is gebaseerd op de kennis van deskundigen, waardoor het onwaarschijnlijk is dat deze
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techniek ooit geheel geautomatiseerd kan worden. Polynome spline methodes zijn in het

verleden met succes gebruikt om modellen te maken van non-lineaire systemen. Deze spline

methodes gebruiken echter multivariate tensor product B-splines, die niet alleen beperkt zijn

tot modellering op rechthoekige domeinen, maar daarnaast niet gebruikt kunnen worden om

verstrooide data te benaderen.

De nieuwe methode die in dit proefschrift wordt voorgesteld, is gebaseerd op multivari-

ate simplex splines. Dit zijn een nieuw soort multivariate splines die een aantal belangrijke

voordelen hebben ten opzichte van de genoemde methodes. Ten eerste hebben simplex

splines een lokale polynoom basis. Dit betekent dat slechts kleine deelverzamelingen

van parameters en basispolynomen overwogen hoeven worden tijdens de schatting en

evaluatie, wat resulteert in efficiënte algoritmes. Ten tweede zijn simplex spline modellen

parametrische modellen, die voor een efficiënte benadering zorgen van zeer grote datasets.

Ten derde zijn simplex splines lineair in de parameters. Dit houdt in dat lineaire

regressiemethodes gebruikt kunnen worden om hun parameters te schatten. Ten vierde

worden simplex splines bepaald op niet-rechthoekige domeinen en kunnen ze gebruikt

worden om verstrooide data te benaderen. Ten slotte kan de kwaliteit van op simplex splines

gebaseerde modellen vastgesteld worden door gebruik te maken van een aantal unieke en

krachtige methodes voor de bepaling van de modelkwaliteit.

Multivariate simplex splines bestaan uit polynome basisfuncties, ook wel B-polynomen

genoemd. De B-polynomen zijn gedefinieerd op simplices, wat speciale geometrische

structuren zijn. Elke simplex draagt één B-polynoom, die weer uit een lineaire combinatie

van Bernstein basispolynomen bestaat. Iedere Bernstein basispolynoom wordt geschaald

door één coëfficiënt, de zogenaamde B-coëfficiënt. De B-coëfficiënten hebben een

bijzondere eigenschap in die zin dat ze een unieke ruimtelijke locatie hebben binnen hun

ondersteunende simplex. Deze ruimtelijke structuur, die ook wel bekend staat als het

B-net, biedt een aantal unieke mogelijkheden die pleiten voor het gebruik van simplex

splines als een instrument voor modelering. Het B-net vereenvoudigt bijvoorbeeld de lokale

modificatie van modellen door direct specifieke modelgebieden te relateren aan subsets

van B-coëfficiënten die betrokken zijn bij de vorm van het model in die gebieden. Deze

bijzondere mogelijkheid kan een belangrijke rol gaan spelen in toekomstige adaptieve

modelgebaseerde besturingssystemen. In een dergelijk systeem kan een geı̈ntegreerd

simplex spline model lokaal en in real-time worden aangepast om veranderingen in de

systeemdynamica te op te vangen.

Het benaderingsvermogen van de multivariate simplex splines kan verhoogd worden

door een willekeurig aantal simplices samen te voegen in een geometrische structuur. Dit

wordt een triangulatie genoemd. Triangulaties komen in vele vormen en maten voor,

variërend van configuraties die slechts uit twee simplices bestaan tot configuraties die

miljoenen simplices bevatten. Triangulaties kunnen geoptimaliseerd worden door lokaal

de resolutie van simplices te verlagen of te verhogen om de lokale complexiteit van het

systeem optimaal te kunnen benaderen. In principe wordt het totaal aantal simplices binnen
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een triangulatie alleen beperkt door de beschikbare rekenmiddelen. In dit proefschrift

wordt echter geconstateerd dat er een belangrijke praktische grens is voor de grootte en

resolutie van een triangulatie. Deze praktische grens is het gevolg van het feit dat iedere

simplex een minimum aan datacontent nodig heeft, welke wordt bepaald door de orde

en de continuı̈teit van de basispolynomen. In dit proefschrift wordt aangetoond dat dit

probleem van datadekking een nieuwe aanpak van triangulatie optimalisatie noodzakelijk

maakt, aangezien de methodes in de bestaande literatuur de per-simplex datadekking niet

beschouwen als een parameter voor optimalisatie. Deze nieuwe voorgestelde methode

voor de optimalisatie van de triangulatie produceert triangulaties die speciaal geschikt zijn

voor de simplex splines, door ervoor te zorgen dat iedere simplex in een triangulatie een

minimum aantal gegevens bevat.

Hoewel multivariate simplex splines in het verleden zijn gebruikt voor het modelleren

van verstrooide non-lineaire data in twee en drie dimensies, was er geen schema voor

systeemidentificatie beschikbaar op basis van de simplex splines. De unieke eigenschappen

van de simplex splines, samen met de hierboven genoemde voordelen ten opzichte van

bestaande data approximatoren, maakt ze zeer wenselijk voor gebruik in een dergelijk

schema. De belangrijkste doelstelling van dit proefschrift is om een nieuw schema

te definiëren voor systeemidentificatie, welke gebaseerd is op de multivariate simplex

splines. Deze nieuwe methode omvat de drie hoofdaspecten van systeemidentificatie:

modelstructuurselectie, parameterschatting en modelvalidatie. Het aspect van modelstruc-

tuurselectie voor de multivariate simplex splines bestaat uit twee delen. Het eerste deel is

de geometrische modelstructuurselectie, die bestaat uit de selectie van de dimensies van het

spline model en de definitie van een triangulatie in deze set dimensies. Het tweede deel

bestaat uit de definiëring van de polynome modelstructuur. Met betrekking tot het aspect

van parameterschatting is een nieuwe formulering van het standaard lineaire regressiemodel

ontwikkeld. In deze formulering vormen de B-polynomen van de simplex splines de

regressoren. Door deze nieuwe formulering kunnen een aantal verschillende technieken

van parameterschatting worden toegepast om de B-coëfficiënten van de B-polynomen

te schatten. In dit proefschrift worden twee nieuwe methodes voor parameterschatting

geı̈ntroduceerd. De eerste methode is een gegeneraliseerde kleinste kwadratenschatter,

waarmee B-coëfficiënten op simplices kunnen worden geschat die meetruis bevatten van

wisselende magnitude. De tweede methode is een recursieve kleinste kwadratenschatter

met differentile randvoorwaardes waarmee in real-time de spline modellen gemodificeerd

kunnen worden aan de hand van nieuw binnenkomende observaties. Voor het aspect van

modelvalidatie werd de kwaliteit van de geschatte spline modellen bepaald door bestaande

methodes te gebruiken die gebaseerd zijn op een analyse van modelresiduen en parameter

varianties. Daarnaast werd er een aantal geheel nieuwe methodes voor kwaliteitsbepaling

mogelijk gemaakt door gebruik te maken van B-polynomen. Zo kunnen bijvoorbeeld de

statistische varianties van de B-coëfficiënten worden gelokaliseerd tot specifieke locaties

binnen het model. Dit betekent dat gebieden met een hoge parameter variantie geı̈soleerd
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kunnen worden binnen het totale model en vervolgens nader geanalyseerd. Deze unieke

en krachtige eigenschappen kunnen nieuwe inzichten geven in systeemidentificatie en

parameterschatting, hetgeen mogelijk kan leiden tot nieuwe ontwikkelingen op dit gebied.

Dit proefschrift introduceert drie belangrijke innovaties op het gebied van de multivari-

ate spline theory. Deze innovaties zijn noodzakelijk om een effectieve methode te creëren

voor systeemidentificatie met simplex splines. De eerste vernieuwing is de definitie van de

differentiële randvoorwaardes, die gebruikt worden om de richtingsafgeleide van de simplex

splines te beperken op geselecteerde locaties binnen het spline-domein. De differentiële

randvoorwaardes maken begrensde modelextrapolatie mogelijk en beperken de divergentie

van polynomen op de grens van het spline-domein. Daarnaast kunnen de differentiële

randvoorwaardes toegepast worden om bijvoorbeeld Dirichlet- of Cauchy-randvoorwaarden

op te stellen, waardoor het mogelijk wordt om oplossingen van randwaardeproblemen te

benaderen met simplex splines. De tweede vernieuwing is de ontwikkeling van een theorie

voor de kwantificatie van B-net propagatie, een nieuw effect dat werd waargenomen in

triangulaties op grote schaal. B-net propagatie is de verspreiding van lokale verstoringen

van het B-net van één simplex naar dat van zijn buren. Er wordt bewezen dat B-net

propagatie een simplex spline-functie effectief van een lokale approximator in een globale

approximator transformeert als de continuı̈teit van de spline-functie hoog is ten opzichte

van zijn polynoomorde en wanneer deze functie gedefinieerd is op het meest gebruikte type

triangulatie. De derde innovatie is een nieuwe formulering van de B-polynomen in globale

Cartesische coördinaten in plaats van lokale barycentrische coördinaten. De Bernstein

basispolynomen van de simplex splines zijn functies in termen van lokale barycentrische

coördinaten. Dit houdt in dat hun globale interpretatie betekenisloos is. De nieuwe

formulering van de B-polynomen in globale coördinaten maakt een globale interpretatie

mogelijk. Bovendien maakt de nieuwe formulering het mogelijk om triangulaties en B-

coëfficiënten in één stap te optimaliseren, waardoor er geen noodzaak meer bestaat voor

afzonderlijke triangulatie optimalisatie.

Vliegtuigaerodynamica staart bekend om zijn niet lineaire aard. Dit heeft ten gevolge

gehad dat dat de identificatie van nauwkeurige aerodynamische modellen op basis van

vluchtdata een uiterst uitdagende taak is gebleken. Aerodynamische modellen zijn van

cruciaal belang in de correcte werking van vluchtsimulators en vluchtbesturingssystemen.

Hoe hoger de kwaliteit is van een aerodynamisch model, hoe nauwkeuriger de voorspelling

van de werkelijke aerodynamische krachten en momenten die op een vliegtuig werken. Voor

vluchtsimulatortoepassingen vertaalt dit zich direct in een hogere waarheidsgetrouwheid

van de simulatie, met als gevolg een betere trainingsomgeving voor piloten. Voor

vluchtbesturingssystemen leiden aerodynamische modellen van hogere kwaliteit tot een

betere bestuurbaarheid van het vliegtuig, ook na het optreden van structurele schade. Het

uiteindelijke gevolg van het verhogen van de kwaliteit van aerodynamische modellen is

het verbeteren van de vliegveiligheid. Deze maatschappelijke relevantie, tezamen met de
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technische uitdaging van het identificeren van nauwkeurige aerodynamische modellen, biedt

de ideale argumenten voor het demonstreren van de nieuwe methode.

Met de nieuwe methode zijn twee identificatie-experimenten uitgevoerd op het gebied

van aerodynamische modelidentificatie. Het eerste experiment betrof de identificatie

van een aerodynamisch model voor een F-16 gevechtsvliegtuig op basis van een NASA

windtunnel model. De interne structuur van dit windtunnel model was bekend en bood

daardoor een gecontroleerde omgeving om de nieuwe methode te testen en te valideren.

Bij het tweede identificatie-experiment werd een complete set aerodynamische modellen

geı̈dentificeerd voor het Cessna Citation II laboratorium vliegtuig met behulp van vluchtdata

die verkregen werd uit zeven testvluchten die werden uitgevoerd tussen 2006 en 2010.

In totaal werden 247 testvluchtmanoeuvres uitgevoerd die een significante dekking boden

van de vluchtenveloppe van de Citation II. De volledige dataset voor identificatie bestond

uit miljoenen metingen van meer dan zestig vluchtparameters. Voor dit experiment

werden de modelstructuurselectie, parameterschatting en modelvalidatie aspecten van de

systeemidentificatie behandeld. De geometrische modelstructuurselectie werd uitgevoerd

door gebruik te maken van een nieuwe aanpak die gebaseerd is op de aanwezigheid

van hysterese in de aerodynamische kracht- en momentcoëfficiënten. Door de hysterese-

analysemethode te gebruiken, werden een aantal mogelijke dimensiesets gedefinieerd. Voor

iedere mogelijke dimensieset werd een triangulatie van de hyperkubus gecreëerd die de

data van de vluchttest omvatte. De polynome modelstructuur werd geselecteerd door de

prestaties te vergelijken van een aantal prototype simplex spline-functies van verschillende

polynoom- en continuı̈teit ordes op de hyperkubus triangulatie. Meer dan 2000 prototype

spline-modellen werden geı̈dentificeerd door gebruik te maken van een geoptimaliseerde

software-implementatie van het simplex spline identificatiealgoritme. De uiteindelijke

geometrische en polynoom modelstructuren werden geselecteerd op basis van een verdere

optimalisatie van het best presterende prototypemodel.

De geı̈dentificeerde aerodynamische modellen zijn fenomenologische modellen, ofwel

modellen die direct op observatie gebaseerd zijn. De validatie van de spline modellen wees

uit dat de modellen nauwkeurig zijn en ook een gegarandeerde numerieke stabiliteit hebben

binnen het spline-domein. De identificatie- en validatieresultaten van de simplex spline

modellen werden vergeleken met die van gangbare polynoom modellen, die geı̈dentificeerd

werden met standaard systeem identificatie methodes. Deze resultaten toonden aan dat

de aerodynamische modellen die gebaseerd zijn op multivariate simplex splines van een

significant hogere kwaliteit waren dan de aerodynamische modellen die gebaseerd waren

op gangbare polynomen.

Het onderzoek dat werd uitgevoerd in het kader van dit proefschrift heeft tot drie

hoofdaanbevelingen geleid. Ten eerste werd vastgesteld dat de belangrijkste praktische

beperking van de toepassing van multivariate simplex splines voor systeem identificatie

de per-simplex datadekking is. Om het praktische nut van simplex splines te verhogen,

zou er een software-instrument ontwikkeld moeten worden om, in real-time, de dekking
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met data van de triangulatie te analyseren. In het geval van de identificatie van aero-

dynamische modellen zou een dergelijk software-instrument signalen doorsturen naar de

piloten om specifieke manoeuvres uit te voeren. De tweede aanbeveling is dat een

algemene optimalisatiemethode voor triangulaties ontwikkeld zou moeten worden die

speciaal geschikt is voor systeemidentificatie met simplex splines. Een dergelijke methode

zou gebaseerd kunnen zijn op de globale formulering van de B-polynomen die in dit

proefschrift gepresenteerd wordt. Dit zou een belangrijk hiaat kunnen dichten in de

huidige simplex spline-theorie. De derde aanbeveling is een real-life implementatie van

een besturingssysteem dat is gebaseerd op een adaptief model waarbij de recursieve B-

coëfficiënt schatter wordt toepast die in dit proefschrift is geı̈ntroduceerd. Voor toepassingen

in de lucht- en ruimtevaart zou dit resulteren in een fouttolerant vluchtbesturingssys-

teem met een ingebouwde voorspellingsfunctionaliteit voor de vluchtenveloppe. Een

dergelijk besturingssysteem, wanneer geı̈nstalleerd in een toekomstig vliegtuig, zou de

vliegveiligheid verhogen door potentieel fatale gebeurtenissen om te zetten in overleefbare

incidenten.
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