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Interrogation of a ring-resonator ultrasound
sensor using a fiber Mach-Zehnder
interferometer
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Abstract: We experimentally demonstrate an interrogation procedure of a ring-resonator
ultrasound sensor using a fiber Mach-Zehnder interferometer (MZI). The sensor comprises a
silicon ring resonator (RR) located on a silicon-oxide membrane, designed to have its lowest
vibrational mode in the MHz range, which is the range of intravascular ultrasound (IVUS)
imaging. Ultrasound incident on the membrane excites its vibrational mode and as a result induces
a modulation of the resonance wavelength of the RR, which is a measure of the amplitude of the
ultrasound waves. The interrogation procedure developed is based on the mathematical description
of the interrogator operation presented in Appendix A, where we identify the amplitude of the
angular deflection Φ0 on the circle arc periodically traced in the plane of the two orthogonal
interrogator voltages, as the principal sensor signal. Interrogation is demonstrated for two sensors
with membrane vibrational modes at 1.3 and 0.77 MHz, by applying continuous wave ultrasound
in a wide pressure range. Ultrasound is detected at a pressure as low as 1.2 Pa. Two optical
path differences (OPDs) of the MZI are used. Thus, different interference conditions of the
optical signals are defined, leading to a higher apparent sensitivity for the larger OPD, which
is accompanied by a weaker signal, however. Independent measurements using the modulation
method yield a resonance modulation per unit of pressure of 21.4 fm/Pa (sensor #1) and 103.8
fm/Pa (sensor #2).
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1. Introduction

Integrated photonics is an enabling technology for important application fields, such as telecom-
munication [1, 2], optical signal processing [3] and various types of photonic sensing [4]. In
the field of sensing the main advantages of integrated photonics sensors are small size, mass
producibility, low cost and electromagnetic immunity. The lab-on-chip approach to chemical
sensing and particle identification also benefits strongly from integrated photonics. This is
demonstrated for example by recent advances in excitation and collection of spontaneous Raman
scattering near silicon nitride waveguides [5] and in optical trapping and Raman spectroscopy of
micro-particles using a dual-beam trap made from composite silicon oxide-nitride waveguides [6].
In the field of sensing for health and medicine, integrated silicon photonics is used in our

department for an ultrasound sensor based on a ring resonator (RR) located on a thin membrane [7].
Ultrasound waves make the membrane vibrate and as a result induce a modulation of the optical
resonance wavelength of the RR, which characterizes the waves. The sensor is very promising
for medical ultrasound imaging, in particular for intravascular ultrasound (IVUS) imaging, which
is widely used to diagnose atherosclerosis in humans. For IVUS, important advantages of our RR
ultrasound sensor are its high sensitivity [7], the possibility to realize an array of sensors on a
single chip, which is spontaneously enabled by the CMOS fabrication technology, and the absence
of electrical wiring as needed for piezoelectric IVUS sensors. Wiring has the disadvantages of
being rather cumbersome for an array of piezoelectric sensors and susceptible to cross-talk, while
making the sensors incompatible with magnetic resonance imaging.

Here, we present an interrogation procedure of a RR ultrasound sensors of the type introduced
in [7] using a passive fiber Mach-Zehnder interferometer [8, 9]. The procedure yields a well-
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defined relation between the sensor signal and the applied ultrasound pressure. For amplitudes
of the ultrasound-induced resonance-wavelength modulation smaller than the bandwidth of the
spectrum incident on the RR, the signal is proportional to the applied ultrasound pressure. The
MZI employs a 3×3 fiber output coupler, of which at least two of the three outputs are non-zero for
any optical phase difference between the MZI arms. This is beneficial for the signal-to-noise ratio
of the quadrature signal components defined with the three outputs. We demonstrate detection of
ultrasound waves of a pressure amplitude as small as 1.2 Pa. A complete mathematical description
of the operation of the interrogator, resulting in the interrogation procedure we apply, is given in
Appendix A.

2. Silicon ring-resonator sensor for ultrasound

The heart of the ultrasound sensor is a racetrack silicon RR, coupled to bus waveguides as
depicted in Fig. 1. The sensor is located on a silicon oxide membrane with its lowest vibrational
mode in the MHz range. To mimic the situation of IVUS imaging, the sensor is operated in water.
Ultrasound of the proper characteristics incident on the membrane excites the vibrational mode
and therefore periodically deforms the RR. Thus, the optical signal is encoded with information
of the ultrasound. In particular, the RR resonance wavelength is modulated at the ultrasound
frequency. The modulation results from the combined effect [10] of elongation of the ring’s
straight parts and three other types of change, viz. of the ring’s cross section, of the refractive
indices of the waveguide core and cladding and of the effective index of the ring’s mode due to
the elasto-optic effect.

R

w

�0

R

input 

pass

add 

drop 

Fig. 1. Schematic view of the silicon ring-resonator sensor fabricated on a circular silicon
oxide membrane. Width of coupling waveguides and racetrack is w = 400 nm, while the
gap of the directional couplers is 200 nm. Radius of bends is R = 5 µm. The length of the
straight part of the racetrack `0 varies among the devices.

The RRs were fabricated at ePIXfab, Imec [11] on silicon-on-insulator wafers thinned to 250
µm. The silicon device layer and the buried oxide (BOX) layer are 220 nm and 2 µm thick,
respectively. The width of the ring and the bus waveguides are 400 nm, implying these are single
mode around the operational wavelength of 1550 nm. The gap of the identical directional couplers
of the RR is 200 nm. The length `0 of the straight part of the racetracks is in the range 20-100
µm, while the bend radius is 5 µm. For light coupling from and to external fibers we use grating
couplers (GCs), to which 10 µm wide waveguides are connected. The GCs are polarization
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sensitive, implying that the modes coupled into and out of the waveguides and circulating the
ring are TE polarized. The 10 µm wide waveguides are adiabatically tapered down to 400 nm in
two steps.
The actual sensors result after a post-processing step performed in the Kavli Nanolab Delft.

Under a RR a membrane is created by deep reactive ion etching of a circular hole in the handle
wafer. Etching from the backside stops selectively at the BOX layer, and thus a membrane is
formed. In this procedure, a 2.5 µm PECVD oxide layer is used as a hard mask and the photonic
circuitry on the front side is protected by a 0.5 µm thick PECVD oxide layer, also serving as
upper cladding. The resulting membranes thus have a thickness of 2.5 µm. The cavity under the
membrane is closed by gluing a glass platelet to the chip’s backside, entrapping air. The sensor
thus operates with a membrane that is water loaded on one side. The fibers are permanently
connected to the sensor via angled and aluminium coated Pyrex mirror blocks glued to the
chip [12]. Only the pass port is fiber-connected, implying that the transmission spectrum shows a
series of dips.

Silicon waveguides have high index contrast, allowing for small bend radii. This is advantageous
for small footprint sensors, as recognized before in [13], which reports a silicon RR sensor
on a membrane for measurement of static pressures. The RR, however, is still relatively large.
Ultrasound detection with polymer RRs is reported in [14]. These RRs are not located on a
membrane and thus only rely on the elasto-optic effect. Further, polymer waveguides have a
rather low index contrast with respect to the cladding. Therefore, bend radii are more limited
than for silicon RRs.
In this article we concentrate on two sensors: sensor #1 with `0 = 30 µm located on a 66 µm

diameter membrane (vibrational mode at 1.3 MHz) and sensor #2 with `0 = 40 µm located on a
124 µm diameter membrane (vibrational mode at 0.77 MHz). For sensor #1, the transmission
spectra without applied ultrasound are shown in Fig. 2. The resonance dips captured in Fig. 2(a)
give a free spectral range PRR = 6.01 nm. Fig. 2(b) is a zoom-in of the central dip at 1550.19 nm,
which we use for experiments with the interrogator (section 4). The setup for measuring the dips
is addressed in connection to the modulation method (Appendix B).
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Fig. 2. (a) Transmission spectrum of sensor #1, showing three resonance dips. (b) Zoom-in
of the central dip in (a). The blue curve is a fit of Eq. (3) to the data points. On the linear part
of the dip’s left flank the operation point λop. is shown, the static wavelength to which the
laser is tuned in the modulation method (section 4.2).

To analyze a single resonance, we start from the expression for the transmission to the pass
port for two identical directional couplers, which is [15]

Tpass(θ) =
r2 + r2a2 − 2r2a cos θ
1 + r4a2 − 2r2a cos θ

. (1)
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Here r is the self-coupling coefficient of the directional coupler, a the single round-trip amplitude
transmission, and θ is the accumulated phase of the mode for a single round trip in the ring.
When concentrating on a single resonance, the phase can be approximated by

θ =
2π
λ

neff(λ)L � 2πm − 2πngL
λ − λr
λ2
r

. (2)

Here λ is the wavelength, λr the resonance wavelength, L the round-trip length and m an integer.
neff and ng are the wavelength dependent effective index and the group index at resonance,
respectively. The right-hand side of Eq. (2) results from keeping only the first order term of the
Taylor expansion of the function neff(λ)/λ around λr and implementing the resonance condition
neff(λr )L = mλr . Eq. (1) simplifies further by using cos θ � 1 − θ2/2 near the resonance phase
θ = 2πm, which for the cosine is equivalent to θ = 0, and by using Eq. (2). This yields the
single-dip transmission

Tpass(λ) ≈
(λ − λr )2 + ε(γr/2)2
(λ − λr )2 + (γr/2)2

. (3)

Here γr and ε are defined by, respectively

γr =
λ2
r (1 − ar2)
πngLr

√
a
= FWHM (4)

ε =
r2(1 − a)2
(1 − ar2)2

. (5)

In Eq. (4), γr=FWHM is the full width at half minimum of the resonance dip. The line shape
function of Eq. (3) corresponds to [1 − (1 − ε)L(λ)], with L(λ) a Lorentzian function of maximum
value unity, centred at λr . We note that using Eq. (3) instead of Eq. (1) is not really needed for
analysis of a single dip. However, we already introduce Eq. (3) since it simplifies the integration
in Appendix A.
A fit of Eq. (3) to the measured dip of Fig. 2(b) yields the blue curve in that figure, giving

fit parameters ε = 0.043 and γr = 122 pm. Thus, the quality factor Q = λr/γr is 12706. The
value of ε being close to zero, the ring operates close to critical coupling, which holds for [15]
a = 1, i.e. ε = 0. With ng = 4.37 derived from the free spectral range PRR = λ

2
r/(ngL) = 6.01

nm, Eqs. (4,5) give the values r = 0.975 and a = 0.987.

3. Fiber interrogator

3.1. Circuitry and signal flow of the interrogator

The interrogator is a fiber optic circuit based on a Mach-Zehnder interferometer (MZI) with a 2×2
input coupler and a 3×3 output coupler. The circuit is depicted in Fig. 3. Light from a broadband
source (BBS, EXALOS EXS210069-01 superluminescent diode, maximum output power 14
mW) is guided to the sensor, via a circulator, a fiber Bragg grating (FBG, from TeraXion, FWHM
200 pm) and an EDFA set at gain of 24 dB (Amonics, AEDFA-PM-33-B-FA). The width of the
FBG reflection spectrum is such that a single dip can be selected by tuning the center of the
FBG spectrum to the sensor’s resonance wavelength in the absence of ultrasound, by applying
strain. The light from the sensor is guided to the MZI, of which one arm has a variable length air
gap, realized using two lenses (ThorLabs FiberPort collimators), one of which is translatable.
Thus, a variable optical path difference (OPD) is provided. One input of the 3×3 coupler is left
open. Outputs are connected to a combination of a photodetector (Fermionics, FD100) and a
transimpedance amplifier (TIA, ADA4899-1 from Analog Devices with gain 2.2 kV/A), after
which further amplification (gain=196) is applied (not shown in Fig. 3). The resulting output
voltages Vi are sampled by a data acquisition system (based on National Instruments NI 5734,
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Fig. 3. Schematic of the fiber interrogator, based on a Mach-Zehnder interferometer with a
2×2 coupler and a 3×3 coupler. BBS is the broadband source, FBG the fiber Bragg grating,
EDFA the erbium doped amplifier and AWG the arbitrary waveform generator. Sensor #1 is
placed at 135 mm from the transducer and sensor #2 is placed at 149 mm. The lenses L1 and
L2 are part of the variable optical path length of one MZI arm, ranging from 4 to 13.5 mm.
PD + TIA denotes combination of photodetector and transimpedance amplifier. V1, V2 and
V3 are the three output voltages used to calculate the orthogonal voltages Vx and Vy and the
angular deflection Φ(t) (see section 4.1). The signal spectrum has been indicated at the BBS,
after the circulator and before the MZI. The water tank with sensor and transducer shows the
setup for ultrasound measurements.

max. sampling rate 120 MSa/s, high pass filtering with cutoff frequency at fc = 20.0 kHz). The
sensor is immersed in a water tank, mounted on one side of a frame (see Fig. 3). On the other side,
actuated by an arbitrary waveform generator (AWG, Rigol DG1022), a transducer is mounted
for sending ultrasound waves. Prior to ultrasound measurements with the sensor, the ultrasound
pressure is calibrated with a hydrophone (Precision Acoustics, SN2082, 1.0 mm) placed at the
sensor’s position.

The power transmission Ti (i = 1, 2, 3) of the MZI, supposed lossless, at the optical outputs is
given by [16]

TMZI,i =
1
3

[
p + q cos

(
2π
λ

OPD + ϕi + ϕe

)]
≈ 1

3
[p + q cos (ξλ + ϕi + ψe)] . (6)

The parameters p and q determine the fringe visibility q/p. OPD is the aforementioned optical
path difference. For an ideal 3×3 coupler p = 1 and ϕi = 0◦, 120◦,−120◦ for i = 1, 2, 3. The phase
ϕe is a so-called environmental phase [9], that drifts slowly in time. Its origin is temperature
instability of the fiber optic circuit. Owing to the three phase shifted cosines in Eq. (6), at least two
of the voltages Vi are non-zero for any argument of the cosines, thus avoiding signal fading [9].
The right side of Eq. (6) is obtained by Taylor expanding 1/λ in the argument of the cosine
around λ = λr . Here we only retained the first order term, as the deviation of λ from λr is about
100 pm, to be compared with λr � 1550 nm. We have used ξ = 2πOPD/λ2

r = 2π/FSR, with
FSR the MZI’s free spectral range. Further, ψe is defined by ψe = −4πOPD/λr − ϕe, which thus
shows the same drift as ϕe. Renumbering the outputs has removed the minus sign of ϕi. TMZI,i of
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Eq. (6) is a main ingredient in deriving output voltages Vi (see Appendix A).

3.2. Characterization of the fiber Bragg grating and Mach-Zehnder interferometer

The FBG was characterized by measuring its reflection spectrum, using an optical spectrum
analyzer (OSA, Yokogawa AQ6315A) coupled to port 3 of the circulator (see Fig. 3). Figure 4(a)
shows the spectrum (blue data points), which has a top-hat shape and decays steeply. We have
fitted a super-Lorentzian function to the data points. This function is given by [17]

RFBG(λ) =
[
1 +

(
λ − λ0
γFBG/2

)N ]−1

. (7)

Here γFBG is the FWHM, λ0 the central wavelength, and the integer N the order of the super-
Lorentzian. N = 8 gives the best fit result. In Fig. 4(a) we also show the fitted function, which
yields γFBG = 207 pm, in agreement with the specification.
The combined spectrum of the FBG and sensor #1 is presented in Fig. 4(a) as well (green

data points). It was measured in the configuration of Fig. 3, but with the difference that the OSA
instead of the MZI is coupled to the sensor’s pass port. Alignment of the FBG spectrum is close
to symmetric with respect to the resonance dip, which here is broader than in Fig. 2(b), as a
result of the limited resolution of the OSA. The small blue shift of the resonance wavelength is
attributed to a slightly lower device temperature. The combined spectrum indicates a latitude of
about 100 pm before the dip moves out of the FBG spectrum as a result of applied ultrasound.
The MZI was characterized by directly connecting a tunable laser (Santec TSL-210VF, set

at output power 500 µW) to the MZI input, to measure the output voltages Vi as a function
of wavelength. The wavelength was swept from 1550 to 1551 nm at a rate of 1.2 nm/min,
giving a measurement time of 50 s. This time, unlike the very short measurement times in
the ultrasound experiments (section 4.2), is comparable to the time scale of the environmental
phase drift. Therefore, a stabilization time of the setup of several hours was observed before
this characterization, with the laser on. The characterization was done for five OPDs, i.e. five
positions of lens L2 in Fig. 3. In agreement with Eq. (7), the resulting five sets of Vi(λ) traces are
cosines, each oscillating around a non-zero average.
Traces for OPD = 12.9 mm are shown in Fig. 4(b), together with fits of the function

Vi = Ai cos(ξλ + ϕi + ψe) to the traces, from which first the average was subtracted. The fits are
performed for the five sets, treating Ai and the sum ϕi + ψe as fit parameters. The fits indicate
that the amplitudes of the three cosines of a set are not equal (see caption), which contradicts
Eq. (7). This implies that the circle defined by voltages Vx and Vy in Eqs. (A17) and (A18),
respectively, is deformed to an ellipse. As explained in Appendix A, the circular shape defined by
these equations plays a central role in the interrogation procedure. Taking for the traces of Fig.
4(b) the fitted phase of output V1 as a reference (ϕ1 + ψe = 0), we obtain ϕ2 + ψe = −117◦ and
ϕ3 + ψe = 117◦. Thus, the phases deviate somewhat from the nominal values. We note that slight
non-ideal behavior of amplitude and phase of 3×3 fiber couplers is not uncommon and has been
reported before [8, 18].
In order to make the amplitudes of the cosines equal, we modified Eqs. (A17) and (A18) by

including correction factors c2 and c3:

Vx = 2V1 − c2V2 − c3V3 (8)

Vy =
√

3 (c3V3 − c2V2) . (9)

Initially, we set c2 = c3 = 1 for the traces in Fig. 4(b). Using these start values, the equation
of the ellipse given by the locus of points (Vx,Vy) defined by Eqs. (8) and (9) is obtained by
least square fitting [19], giving the ellipse semi-axes a and b. Next, the function f (c2, c3) =
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Fig. 4. (a) FBG reflection spectrum and combined FBG reflection and RR transmission
spectrum, both normalized to their maximum value, and a fit of Eq. (7) to the FBG spectrum
for N = 8. (b) Traces of the interrogator outputs Vi as a function of wavelength, with data
points shown as crosses. Due to the way of plotting, the DC component of the Vi is not
visible. The oscillatory functions are fits of Ai cos(ξλ + ϕi + ψe) to the data points. The
fits give: Ai = 63.4, 68.9 and 68.7 mV (i = 1, 2, 3) and ϕi + ψe = 176◦, 59◦ and -67◦ (i =
1,2,3). The traces were used in obtaining the correction factors and in Eqs. (9) and (10). (c)
Corrected (Vx,Vy) points, together with the fitted circle. The circle radius is 181 mV.

|1−a(c2, c3)/b(c2, c3)| is minimized [20], yielding the circle aimed for. The result is c2 = 0.85 and
c3 = 0.86, for minimum f (c2, c3) = 0.001. The corrected (Vx,Vy) points have been plotted in Fig.
4(c), together with the fitted circle. The correction factors c2 and c3 are used in the interrogation
procedure of section 4.2.

4. Interrogation of the ultrasound sensor

4.1. Interrogation procedure

The goal of the interrogation procedure is quantitative extraction of the ultrasound-induced optical
signal of the sensor from the output voltages Vi(t). Appendix A is the basis of the procedure.
Here, we give the main data-processing steps for continuous wave ultrasound of frequency f0. We
start from slightly modified versions of Eqs. (A20) and (A21) for the mutual orthogonal voltages
Vx(t) and Vy(t) constructed from the measured Vi(t):

Vx(t) = 2V1(t) − V2(t) − V3(t) = 3RK cos (Φ(t) + ψe) + x0(ψe) (10)

Vy(t) =
√

3 (V3(t) − V2(t)) = 3RK sin (Φ(t) + ψe) + y0(ψe). (11)

The modifications comprise neglect of constant parameters in the argument of the cosine and sine,
and in the functions x0 and y0, which are understood to be absorbed in ψe. This simplifies the
analysis, but has no consequences for the final result. Eqs. (10) and (11) are parametric equations
of a circle of radius 3RK and with center (x0, y0). Φ(t) = Φ0 sin(2π f0t) is the instantaneous
angular deflection of the point (Vx,Vy) on an arc of the circle, which is periodically traced at the
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frequency f0. RK is constant for constant total gain of the interrogator circuit, independent of the
applied ultrasound pressure, but dependent on the MZI’s OPD. Dependence of Vx(t) and Vy(t)
on the environmental phase ψe is not an issue, since ψe is constant on the time scale of a single
interrogation of the sensor.

The data-processing steps are as follows. First, for a high enough reference pressure, the radius
3RK and the center (x0, y0) are determined using the fit procedure already described for an ellipse
in section 3.2. The fitted value of 3RK then holds for all other pressures of a measurement series.
For a series, we typically use a rather high reference pressure, since a high pressure gives a long
arc and thus an accurate fit result for 3RK .
Next, the fitted 3RK is used to retrieve the circle center (x0, y0) for each pressure amplitude p0 of
the series by minimizing [19,20] the average squared deviations of the locus of points (Vx,Vy)
from a circle of radius 3RK .
Subsequently, for each pressure of the series we determine the instantaneous deflection. In more
detail, we obtain the wrapped deflection from Eqs. (10) and (11) according to

Φ(t)wr. = atan2
(
Vy − y0,Vx − x0

)
− ψe. (12)

Here atan2 is the four-quadrant arctangent function. Upon input of the coordinates of a point in
the plane, atan2 returns the angle of the point in the range (−π, π ]. Φ(t)wr. in principle oscillates
regularly in time around −ψe, but may be discontinuous in view of the limited range of atan2.
Therefore, we unwrap Φ(t)wr. using the unwrap function of MATLAB [21], which returns the
smooth unwrapped deflection. After subtracting from the unwrapped deflection its average −ψe,
we arrive at the proper instantaneous deflection Φ(t), which describes the periodic tracing of the
circle arc. Fourier transformation of Φ(t) then yields the amplitude Φ0, the quantity sought for.
In the last step, again following Appendix A, the amplitude δ0 of the resonance-wavelength
modulation is obtained from

δ0 = κ
Φ0
ξ
= κ

λ2
rΦ0

2πOPD
. (13)

Here κ is the correction factor introduced in Appendix A. However, instead of obtaining δ0, we
will use this equation in the next section to make an experimental test of the value of κ.

The data-processing just described is performed offline, which is adequate for the present
purpose. Various scenarios can be conceived for real-time data processing, which is required for
later application to IVUS imaging.

4.2. Interrogation experiments

We interrogated sensors #1 and #2 according to the above procedure, using OPD values of 6.9 and
12.9 mm, which almost span the available range. We applied two series of pressures amplitudes,
which become apparent in Fig. 6 below. For each pressure we acquired time traces of the three
voltages Vi(t) during 300 ms, sampled at 30 MSa/s.

In Fig. 5(a), as an example, we show for sensor #1 part of the Vi(t) traces and of the Vx(t) and
Vy(t) traces deduced from these, for OPD = 12.9 mm and a pressure of 2280 Pa, the reference
pressure for determining radius 3RK for this sensor. Similar traces (not shown) were obtained
for sensor #2 for reference pressure 312 Pa. The traces results after noise reduction, applying
a Gaussian bandpass filter of FWHM = 80 Hz centred at the fundamental frequency and its
harmonics. The ultrasound period of 0.77 µs is clearly present in the traces, while the second
harmonic can be seen as well. In Fig. 5(b) the points (Vx,Vy) are plotted, together with the fitted
circle of radius 3RK = (191± 6) mV. The spectral content of the Vi(t) of sensor #1 is more
apparent in the Fourier transforms in Fig. 5(c), in which the transforms for sensor #2 are included
as well for reference pressure 312 Pa. Apart from the fundamental frequency (1.3 and 0.77 MHz
for sensor #1 and #2, respectively), the transforms also show peaks for the second and third
harmonic, albeit a very small peak for the third harmonic. Peaks at the harmonics agree with the
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3f0,#1

3f0,#1

0.5 radian

Fig. 5. (a) Part of traces of Vi(t) (i = 1, 2, 3) for sensor #1, sampled while interrogating the
sensor, and of the mutual orthogonal voltages Vx and Vy , for OPD = 12.9 mm and p0 = 2280
Pa. (b) Plot of the points (Vx,Vy), which trace a circle arc, together with the fitted circle. (c)
Fourier transforms of the Vi(t) and of the angular deflection Φ(t) for OPD = 12.9 mm and p0
= 2280 Pa (sensor #1) and p0 = 312 Pa (sensor #2). The weak signals at the third harmonic
are indicated as 3 f0,#1 and 3 f0,#2 for sensor #1 and #2, respectively.
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Bessel function expansion referred to in Appendix A. To obtain the angular deflection Φ(t) we
follow section 4.1, leading to the Fourier transforms in Fig. 5(c), upper panel. At the fundamental
frequency the transforms show a sharp peak. Its height is the angular deflection’s amplitude
and amounts to Φ0 = (0.69 ±0.04) radian and Φ0 = (0.62±0.05) radian for sensor #1 and #2,
respectively. This is the main interrogation result for these experimental conditions.
For all other pressures we determined the Φ(t) traces and the corresponding amplitudes Φ0

for both sensors. For sensor #1, Fig. 6(a) shows the main plot of Φ0 versus p0. The pressure
range is 2.3 - 5750 Pa. Figure 6(b) zooms in on the lower pressures. The straight lines through
the origin are fits to those data points showing the linear behavior discussed in Appendix A.
The slopes ∂Φ0/∂p0 of the fitted lines, which are the sensitivities of sensor #1 for these OPDs,
are given in Table 1, along with the sensitivities of sensor #2 and other parameters of the two
sensors. For sensor #2, a comparable data set is shown in Fig. 6(c,d) for the pressure range 1.2 -
775 Pa. The plots indicate that sensor #2 is more sensitive than sensor #1. This arises from the
larger membrane diameter of sensor #1, which results in a larger membrane deflection per unit
of pressure. Further, the sensitivity is higher for the larger OPD for both devices. This agrees
with Eq. (13), which indicates that the ratio Φ0/OPD is constant for a constant δ0. The sub-linear
behavior in the plots above a certain pressure indicates that in that range the amplitude of the
resonance-wavelength modulation is such that the bandwidth of the FBG becomes limiting. The
minimum pressures we succeed to detect in these measurements are 2.3 and 1.2 Pa for sensor #1
and #2, respectively, detection limits comparable to the one reported in [7]. The present detection
limit is determined by sources of disturbing signal external to the interrogator. For optimum
electromagnetic shielding, the combined noise of the photodetectors and their amplifiers and the
noise of the broadband light source will be limiting for the signal-to-noise ratio of the interrogator
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Fig. 6. Main results of the interrogation of the sensors: (a) amplitude of the angular deflection
Φ0 for sensor #1 as a function of the pressure amplitude p0 of 1.3 MHz ultrasound. (b)
Zoom-in of (a) for the pressure range 0-30 Pa. (c) Amplitude of the angular deflection Φ0 for
sensor #2 as a function of the pressure amplitude p0 of 0.77 MHz ultrasound. (d) Zoom-in of
(c) for the pressure range 0-15 Pa. In (a)-(d) OPDs of the MZI are as stated and the lines are
fitted straight lines through the origin. (e) Sensitivity as a function of frequency of sensor #2
for OPD = 12.9 mm.
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Table 1. Parameters obtained for sensors #1 and #2: ∂Φ0/∂p0 is the sensor sensitivity,
∂δ0/∂p0 is the amplitude of the resonance-wavelength modulation of the sensor per unit
of pressure, while κexp. and κtheo. are the experimental and theoretical correction factors,
respectively, which relate to Eq.(13). The uncertainty in ∂δ0/∂p0 was omitted, since its
contribution to the uncertainty of κexp. is negligible.

OPD (mm) Parameter Sensor #1 Sensor #2
6.9 ∂Φ0/∂p0 0.15 ± 0.02 1.04 ± 0.06
12.9 (milliradian/Pa) 0.30 ± 0.01 1.98 ± 0.08

- ∂δ0/∂p0
(fm/Pa) 21.4 103.8

6.9
12.9 κexp.

2.6 ± 0.3
2.41 ± 0.08

1.8 ± 0.1
1.77 ± 0.07

6.9
12.9 κtheo.

1.07
1.26

1.03
1.16

outputs.
The data shown in Fig. 6(a)-(d)were obtained usingmonochromatic continuouswave ultrasound,

chosen at the frequency of the membrane’s maximum deflection. The sensors, however, are
broadband owing to the membrane’s intrinsic loss. This property is apparent from the sensitivity
as a function of frequency, which for sensor #2 is shown in Fig. 6(e). The function plotted is
∂Φ0/∂p0 , normalized to unity at its maximum. It was measured using continuous waves and a
frequency sweep. The function has the typical shape for a damped resonator. The peak occurs at
0.77 MHz, while the -6 dB bandwidth is 14.5%. This sensitivity curve and the one in [7] for
the same sensor are very close to each other. We note that the bandwidth of the sensor enables
application of tailored ultrasound pulses, as may be more appropriate for later imaging. If for
certain applications a larger bandwidth is needed, it can for example be increased by adding a
lossy layer to the membrane.

We now discuss the correction factor κ occurring in Eq. (13) and finally, in relation to κ, make
further comments on the sensitivities ∂Φ0/∂p0 listed in Table 1. From Eq. (13), the correction
factor can be rewritten as κ = 2πOPD(∂δ0/∂p0)/(λ2

r (∂Φ0/∂p0)), where the missing ingredient
is ∂δ0/∂p0. The pressure dependence of δ0 is derived using the modulation method detailed in
Appendix B, for low pressures leading to linear behavior and the derivatives ∂Φ0/∂p0 listed in
Table 1. For the two sensors and for either OPD we thus obtain the experimental values κexp. listed
in Table 1, to be compared with the listed values κtheo. taken from Appendix A (discussed there
in relation to Fig. A1). The κexp. values for sensor #1 exceed those of sensor #2, in agreement
with the behaviour of κtheo.. Further, on average the ratio of the values is 0.47 for sensor #1 and
0.61 for sensor #2. In our opinion, the agreement to much better than one order of magnitude
validates the mathematical description of Appendix A in presenting the proper physics picture.

The ratio of the experimental sensitivities in Table 1 for the two OPDs equals 0.50 and 0.53 for
sensor #1 and sensor #2, respectively. The ratio of the theoretical sensitivities can be obtained
using the above relation between κ and ∂Φ0/∂p0 (where we use κtheo.). This yields for the
theoretical ratio 0.63 and 0.60 for sensor #1 and sensor #2, respectively. The relative difference
between the theoretical and experimental sensitivity ratios is 18% on average. This indicates a
high degree of consistency of our description of the operation of the interrogator and the actual
interrogation experiments.
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Conclusion and outlook

We interrogated two silicon ring-resonator sensors for ultrasound in the MHz range using an
interrogator based on a fiber Mach-Zehnder interferometer (MZI), by applying the procedure
based on our mathematical description of the interrogator operation in Appendix A. According
to the geometrical interpretation of the operation, the amplitude of the angular deflection Φ0
on the circle arc periodically traced in the plane of the two orthogonal interrogator voltages, is
the principal sensor signal. Φ0 is proportional to the amplitude of the resonance-wavelength
modulation of the sensor in response to the ultrasound. The main interrogation results are the
linear relations between Φ0 and the pressure amplitude of continuous wave ultrasound, in a
broad pressure range and for optical path differences (OPDs) of the MZI of 6.9 and 12.9 mm.
The minimum detected pressures is 1.2 Pa. For sensor #1, the sensitivity amounts to 0.15 and
0.30 milliradian/Pa, for OPDs of 6.9 and 12.9 mm, respectively. For sensor #2, the sensitivity
is 1.04 and 1.98 milliradian/Pa for these OPDs. This higher sensitivity for the larger OPD
is accompanied by a lower output voltages of the MZI, in agreement with the prediction in
Appendix A. This suggests a trade-off between sensitivity and signal strength, for which in future
a brighter broadband source will be helpful, also for avoiding the EDFA we use now. Using an
independent method of calibrating the optical response of the sensor to ultrasound, we arrive at
a resonance-wavelength modulation per unit of pressure of 21.4 fm/Pa (sensor #1) and 103.8
fm/Pa (sensor #2).
This work on the fiber interrogator is an important step towards an integrated photonics

interrogator, which is our next goal. The architecture of an integrated photonics version can
be similar to that of the fiber version. An integrated photonics version, however, will be much
smaller, implying that its temperature can be easily stabilized, such that the environmental phase
drift we have encountered here will be strongly reduced. An integrated photonics version can
be designed for interrogating an array of integrated ultrasound sensors for IVUS by applying
multiplexing using arrayed waveguide gratings, a certain version of which we have already
implemented for the multiplexing of FBG sensors [22]. The ultrasound sensors will then be
equipped with a drop port, which gives a peak in the transmission resembling the reflected peak
of FBG sensors considered in [22].

Appendix A : Mathematical description of the operation of the fiber interrogator

In this Appendix we present a mathematical description of the operation of the fiber interrogator
when interrogating a ring-resonator sensor in the pass-port configuration. Based on the overall
signal flow we arrive at the three outputs of the MZI, of which specific linear combinations yield
the signal that is a measure of the amplitude of the applied ultrasound waves. The interrogation
procedure we follow in the main text is based on this Appendix. Reproducing Eqs. (3), (6) and
(7) of the main text, the latter for N = 8 and λ0 = λr , gives

Tpass(λ, δ̃λr ) =

(
λ − λr − δ̃λr (t)

)2
+ ε(γr/2)2(

λ − λr − δ̃λr (t)
)2
+ (γr/2)2

(A1)

TMZI,i(λ) =
1
3
[p + q cos (ξλ + ϕi + ψe)] (A2)

with ϕi = 0◦, 120◦,−120◦ for i = 1, 2, 3.

RFBG(λ) =
1

1 +
(
λ−λr
γFBG/2

)8 . (A3)
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Eq. (A1) includes the resonance-wavelength modulation δ̃λr ≡ δ̃λr (t) = δ0 sin(2π f0t) resulting
from application of ultrasound waves of frequency f0 . Following the signal path in Fig. 3 and
using the integrating property of the photodetectors, we can write the time-dependent output
voltage of the TIAs as

Vi(δ̃λr ) = αPBBSRphG
∫ ∞

0
RFBG(λ)Tpass(λ, δ̃λr )TMZI,i(λ)dλ. (A4)

Here PBBS is the power density of the broadband source, supposed constant in the range the FBG
spectrum. Rph is the responsivity of the photodetectors, G the combined gain of the EDFA and
TIA, while α is a transmission coefficient of the overall fiber optic circuit. In the following we
drop the prefactors of the integral, since these turn out to cancel when extracting Φ0, which is the
principal sensor signal defined below. Also dropping the factor 1/3 of TMZI,i and the subscripts
FBG and pass, this leads to Ii(δ̃λr ), the ith component of the integral proportional to the voltage
Vi(δ̃λr )

Ii =
∫ ∞

0
R(λ)T(λ, δ̃λr ) [p + q cos (ξλ+ϕi + ψe)] dλ

= p
∫ ∞

0
R(λ)T(λ, δ̃λr )dλ + q

∫ ∞

0
R(λ)T(λ, δ̃λr ) cos (ξλ+ϕi + ψe) dλ (A5)

= pIα(δ̃λr ) + qIβ,i(δ̃λr ).

Here we have used
Iα(δ̃λr ) =

∫ ∞

0
R(λ)T(λ, δ̃λr )dλ (A6)

Iβ,i(δ̃λr ) =
∫ ∞

0
R(λ)T(λ, δ̃λr ) cos(ξλ + ϕi + ψe)dλ

= Re
{
ei(ϕi+ψe )

∫ +∞

0
R(λ)T(λ, δ̃λr )eiξλdλ

}
. (A7)

By substituting the expressions for T(λ, δ̃λr ) and R(λ) from Eqs. (A1) and (A3) into Eqs. (A6)
and (A7), we obtain

Ĵ ≡
∫ ∞

0
R(λ)T(λ, δ̃λr )eiξλdλ =

∫ ∞

0

(
λ − λr − δ̃λr

)2
+ ε(γr/2)2(

λ − λr − δ̃λr
)2
+ (γr/2)2

eiξλ

1 +
(
λ−λr
γFBG/2

)8 dλ. (A8)

The integrals Iα(t) and Iβ,i(t) can then be written as

Iα(t) = Ĵ
��
ξ=0 (A9)

Iβ,i(t) = Re
{
ei(ϕi+ψe ) Ĵ

}
. (A10)

Since the integrand in Eq. (A8) is vanishingly small for λ ≤ 0, the lower value of the integration
interval can be taken as −∞. Making the substitution λ − λr → z in Eq. (A8) and using contour
integration we obtain

Ĵ/eiξλr ≡ K̂ =
∮
C

(
z − δ̃λr

)2
+ ε(γr/2)2(

z − δ̃λr
)2
+ (γr/2)2

eiξz

1 +
(

z
γFBG/2

)8 dz =
∮
C

f (z)dz. (A11)
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The contour C is the upper half circle of radius R in the complex plane, including the interval
[−R, R] of the real axis, taken in the limit R → ∞. The poles of f (z) arise from the RR
transmission function and FBG reflection function, respectively, and for the contour C occur
for zRR = δ̃λr + iγr/2 (RR pole) and zFBG,k =

(
γFBG/2

)
exp [iπ (k + 1/2) /4], k = 0, 1, 2, 3 (FBG

poles). Using Cauchy’s residue theorem, the integral is evaluated to obtain∮
C

f (z)dz = F̂(δ̃λr ) + Ĝ(δ̃λr ). (A12)

Here F̂(δ̃λr ) and Ĝ(δ̃λr ) are given by:

F̂(δ̃λr ) = −
πγr

2
(1 − ε) e−ξγr /2

1 +
(
δ̃λr+iγr /2
γFBG/2

)8 eiξ δ̃λr ≡ Ê(δ̃λr )eiξ δ̃λr (A13)

Ĝ(δ̃λr ) = −i
π

4

3∑
k=0

zFBG,k

[(
zFBG,k − δ̃λr

)2
+ ε(γr/2)2

]
(
zFBG,k − δ̃λr

)2
+ (γr/2)2

eiξRe(zFBG,k)e−ξIm(zFBG,k). (A14)

The complex functions F̂(δ̃λr ) and Ĝ(δ̃λr ) are time-domain (oscillatory) signals resulting from
light interference in the 3×3 coupler, the time dependence being expressed by δ̃λr (t).
The oscillatory behavior of F̂(δ̃λr ) is recognized to the full extent from the Bessel function

expansions [23] of exp(iξδ̃λr ) = cos [ξλδ0 sin(2π f0t)]+ i sin [ξλδ0 sin(2π f0t)], which apart from
terms at the fundamental frequency also give harmonics. The factor exp(iξδ̃λr ) is multiplied
by the envelope Ê(δ̃λr ), implicitly defined in Eq. (A13). The envelope includes both RR and
FBG parameters and attenuates the oscillations with increasing δ0 and increasing OPD. This
OPD-dependence follows from the damping factor exp(−ξγr/2) = exp(−OPD/Lc,r). Here Lc,r

is the coherence length related to the spectral width of the ring’s resonance dip. Lc,r limits
the OPDs of the MZI for which fringes in traces Vi(t) can be resolved experimentally. For the
resonances we use for the sensing, Lc,r is in the range 6 - 8 mm.

Ĝ(δ̃λr ) arises from interference of waves within the bandwidth of the FBG, each FBG
pole giving rise its own interference signal, damped by the factor exp

[
−ξIm

(
zFBG,k

) ]
=

exp
(
−OPD/Lk

c,FBG

)
. Here Lk

c,FBG is the coherence length related to the width of the FBG
spectrum and due to the k th FBG pole. It is given by

Lk
c,FBG =

λ2
r

2πIm(zFBG,k)
=

λ2
r

πγFBG sin
[
π
4 (k + 1/2)

] . (A15)

For k = 0, we obtain Lk
c,FBG ≈ 10 mm.

We have studied the complex functions F̂(δ̃λr ), Ĝ(δ̃λr ) and their sum K̂(δ̃λr ). The behavior
of these functions in the complex plane for sensor #1 is exemplified in Fig. 7 by plots for OPDs
of 6.9 and 12.9 mm, the values used in the experiments (section 4.2 of the main text). Similar
plots have been obtained for sensor #2. The values of the other parameters used in obtaining the
functions are given in the figure caption. It can be seen that F̂(δ̃λr ) and K̂(δ̃λr ) resemble a circle
arc, whereas Ĝ(δ̃λr ) is like a short line segment given by Re{Ĝ(δ̃λr )} ≈ constant. Resulting
from a single period of δ̃λr (t) = δ0 sin(2π f0t), where δ0 = 40 pm is a typical amplitude in the
experiment, the arcs and line segments are symmetric with respect to the real axis.

F̂(δ̃λr ) would be a circle arc if it were given by solely the factor exp(iξδ̃λr ), implying that
deviation from an arc is due to the envelope Ê(δ̃λr ). To visualize the deviation, Fig. 7 also shows
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Fig. 7. Plots of the functions F̂, Ĝ, K̂ and F̂0 in the complex plane for (a) OPD=6.9 mm
and (b) OPD=12.9 mm. Zero angular deflection of the functions occurs for the point where
Im(function)=0. The black dash-dotted curve is a fit of a circle to the data points of K̂ , giving
radii of 54.3 and 32.6 pm for the OPDs of 6.9 and 12.9 mm, respectively. For F̂0 the radii are
60.1 and 23.2 pm, for these OPDs. In the plot the total bi-directional angular deflections 2ξδ0
and Φ0 for the functions F̂0 and K̂ , respectively, are indicated. In calculating the functions,
the following parameters were used: γr = 122 pm, γFBG = 207 pm, ε = 0.043 (the three
values in section 2 for sensor #1) and δ0 = 40 pm.

the circle F̂0(δ̃λr ) = RF0 exp{iξδ̃λr }, defined by the radius RF0 = Ê(0). Deviation form a circle
is present for either OPD, albeit most clearly for OPD = 6.9 mm.
The rather close resemblance of the sum K̂(δ̃λr ) = F̂(δ̃λr ) + Ĝ(δ̃λr ) to a circle arc for either

OPD suggests as a first approximation

K̂(δ̃λr ) = Ê(δ̃λr )eiξ δ̃λr + Ĝ(δ̃λr ) � F̂0(δ̃λr ) + z0 = RF0eiξ δ̃λr + z0. (A16)

Here z0 = |z0 | exp(iϕz0) is the circle center’s coordinate, which in this approximation can be
taken constant and real. Eq. (A16) for the function K̂(δ̃λr ) has a simple geometrical interpretation:
the product ξδ̃λr is as the instantaneous angular deflection of the periodic motion of the point
K̂(δ̃λr ) on the circle arc, induced by the ultrasound. In Fig. 7 the dash-dot circles through the
data points of K̂(δ̃λr ) are fits of a circle to these points, where the circle is given by the right
hand side of Eq. (A16) but RF0 is now treated as a fit parameter. Very close similarity to a circle
is quantified by the average deviation of 0.1% of the points from the circle.
Although the approximation given by Eq. (A16) and the periodic motion on the circle

arc already present the physics picture, refinement is needed, since the functions Ê(δ̃λr )
and Ĝ(δ̃λr ) are not constant and thus distort K̂(δ̃λr ). Further, Ê(δ̃λr ) and Ĝ(δ̃λr ) contribute
to the angular deflection on the curve K̂(δ̃λr ), modifying the total bi-directional deflection
angle 2ξδ0 on F̂0(δ̃λr ) to the value 2Φ0 on K̂(δ̃λr ). In Fig. 7 the deflection angles have been
indicated. Φ0 is the amplitude of the periodic deflection Φ(t) = Φ0 sin(2π f0t) for K̂(δ̃λr ).
Assuming that the sensor operates in the linear response regime, characterized by small
membrane deflections and small resonance-wavelength modulation compared to the width
of the FBG spectrum, the instantaneous deflection Φ(t) is expected to be proportional to
δ̃λr (t) = δ0 sin(2π f0t). δ0 in turn, is expected to be proportional to the amplitude p0 of the
ultrasound pressure. Fig. 7 shows that 2Φ0 < 2ξδ0, the inequality being marginally observable
for OPD = 6.9 mm. The modification of the total deflection angle suggests to introduce a
correction factor defined as κ = ξδ0/Φ0 > 1. The angles in Fig. 7 give κ = 1.07 and κ = 1.26
for the OPDs of 6.9 and 12.9 mm, respectively. Similarly, for sensor #2, we obtain κ = 1.03

                                                                                            Vol. 25, No. 25 | 11 Dec 2017 | OPTICS EXPRESS 31637 



and κ = 1.16 for these OPDs, which are some smaller than for sensor #1. This decrease of κ
arises from the smaller γr of sensor #2 (γr = 96 pm). Ultimately, in the limit where the width of
the line shape of the resonance in the integrand of Eq. (A8) goes to zero, it can be shown that κ = 1.

In the experiments, the sensors are interrogated by measuring the voltages Vi . Based on the
considerations leading to Eq. (A12), the Vi are described by the function Ĵ = exp(iξλr )K̂(δ̃λr ) =
exp(iξλr )

[
F̂(δ̃λr ) + Ĝ(δ̃λr )

]
. The function Ĵ, via its dependence on exp(iξδ̃λr ) or equivalently

on exp (iΦ(t)), in principle contains all information on the ultrasound. From the Vi the following
functions are constructed:

Vx(t) = 2V1(t) − V2(t) − V3(t), (A17)

Vy(t) =
√

3 (V3(t) − V2(t)) . (A18)

In Vx(t) and Vy(t) the contributions from Iα(t) cancel, as these are independent of ϕi (see Eq.
(A9)). Actually, Iα(t) does give an appreciable contribution to the total integral Ii(t), while Iα(t)
carries no useful information on δ̃λr and thus limits the smallest measurable δ̃λr .
We now rewrite Iβ,i of Eq. (A10) in the approximation given by Eq. (A16), using Eqs.

(A11)-(A13):

Iβ,i = Re
{
ei(ϕi+ψe ) Ĵ

}
= Re

{
ei(ϕi+ψe+ξλr )

[
Ê(δ̃λr )eiξ δ̃λr + Ĝ(δ̃λr )

]}
(A19)

� Re
{
ei(ϕi+ψe+ξλr )

[
RKeiΦ(t) + z0

]}
.

Here RK is used now instead of RF0 to emphasize that we are dealing with K̂(δ̃λr ). Based on the
definition of κ we have Φ(t) = ξδ̃λr (t)/κ. Using Eq. (A19) and omitting the prefactor q of Eq.
(A5), Vx(t) and Vy(t) can be written as:

Vx(t) = 3RK cos (Φ(t) + ψe + ξλr ) + 3|z0 | cos
(
ϕz0 + ψe + ξλr

)
= 3Re

{
ei(ξλr+ψe)K̂(δ̃λr)

}
, (A20)

Vy(t) = 3RK sin (Φ(t) + ψe + ξλr ) + 3|z0 | sin
(
ϕz0 + ψe + ξλr

)
= 3Im

{
ei(ξλr+ψe)K̂(δ̃λr)

}
. (A21)

Vx(t) and Vy(t) oscillate around levels x0 and y0, respectively, given by

x0 = 3|z0 | cos
(
ϕz0 + ψe + ξλr

)
, (A22)

y0 = 3|z0 | sin
(
ϕz0 + ψe + ξλr

)
. (A23)

Eqs. (A20) and (A21) show that Vx(t) and Vy(t) are orthogonal, a known property [16] for
the combinations of outputs of a 3×3 coupler defined by Eq. (A17) and (A18). Further, in
time, the point

(
Vx(t),Vy(t)

)
traces a circle arc in the Vx − Vy plane, of radius 3RK and with

center (x0, y0). Equivalently, the circle arc according to these equations is a plot of the function
3 exp (iξλr + iψe) K̂(Φ(t)) in the complex plane. Experimentally, measuringVx(t) and Vy(t) leads
to Φ(t), which yields Φ0 by Fourier transformation. Details about the interrogation procedure in
practice are given in section 4.1 of the main text.

As described in section 3.1, a high pass filter is applied after the TIAs. The signal components x0
and y0, which are close to DC in view of the slow drift of the environmental phase ψe, will thus be
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removed. However, by rewriting the terms with sin (Φ(t) + ξλr + ψe) and cos (Φ(t) + ξλr + ψe)
in Eqs. (A20) and (A21) towards linear combinations of sin (Φ(t)) and cos (Φ(t)), and by using
Bessel function expansions [23], it can be shown that signal components at the ultrasound
frequency f0 and its harmonics result. These components, which survive the high pass filtering,
are modulated by sin (ξλr + ψe) or cos (ξλr + ψe) and thus still depend on the environmental
phase. This is not an issue, since the time scale for interrogation of the sensor is much shorter
than the time scale of the drift. Thus, the angular deflection amplitude Φ0, which is the principal
sensor signal, can be obtained.

Appendix B : Modulation method for measuring the amplitude of the resonance-
wavelength modulation

The modulation method is based on ultrasound-induced modulation of the transmission of the
sensor operated in a point on the steep and linear flank of the transmission dip (see Fig. 2(b)).
The laser also used for characterizing the MZI (section 3.2) actuates the sensor and is tuned to
the operation point. We measure the modulated power transmitted through the sensor using a
photodetector (New Focus, 1811-FC-AC). The resonance-wavelength modulation according to
this method is

δ̃λr (t) ≈
T0

pass(λop.) − Tpass(λop., t)
∂T0

pass/∂λ
��
λop.

(B1)

Eq. (37) implies that δ̃λr can be obtained from a time trace Tpass(λop., t), and from the static
transmission value T0

pass(λop.) and its derivative ∂T0
pass/∂λ

��
λop.

. The latter two quantities follow
from a static transmission curve as in Fig. 2(b), which is also measured using the laser setup just
described, albeit that the laser wavelength is swept and the DC mode of the detector is used. The
modulation amplitude δ0 is obtained as the peak value of the Fourier transform of δ̃λr (t) at 1.3
and 0.77 MHz for sensors #1 and #2, respectively.
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